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Forestation originated in the planting of forest plantations with timber-sourcing as a goal. The practice has since changed 
to include a much wider number of forest types and aims. In recent years, forestation efforts are increasingly focused on 
forest ecosystem generation. These forest ecosystems can have a wide variety of goals, including Climate Adaptation and 
Ecosystem-based Disaster Risk Reduction. Forest ecosystems can help in Disaster Risk Reduction in two ways; they can 
decrease exposure to disasters (for example through increasing soil stability and decreasing landslides) as well as increase 
community resilience (for example through diversifying the income of local communities). These forest ecosystems require 
a different project approach than forest plantations as they need to be sustained on a much longer time-scale and their 
success often depends on interaction with the surrounding communities.

One part of the planning- and decision-making process of forestation projects is spatial analysis. Large scale spatial 
analysis used in the initial phases of forestation projects to identify suitable areas for forestation. Most current analyses 
focus on bio-physical factors for single tree species. However, forest ecosystems projects include a wider variety of 
species and social factors are crucial in their success. Therefore, this research aims to understand the possibility of using 
socio-economic factors as spatial indicators in the planning of forest ecosystem projects.

In order to understand the possibility of using different indicators for forest ecosystem suitability analysis, a number 
of bio-physical and socio-economic indicators are compared to forestation success for existing forestation projects in 
Ethiopia. Forestation projects are assessed from 5 different organizations with a total of 12 projects and 67 forestation 
sites. A literature review is conducted to understand factors influencing forestation success. From all identified factors 
influencing forestation success, 11 indicators are chosen based on data availability and limiting overlap in effects. Despite 
its lack of representation of social and economic success, vegetation growth, using Normalized Difference Vegetation 
Index or NDVI is identified as the most reliable way to determine forestation success because of the availability of 
consistent data for all projects. 

The suitability indicators selected are: soil texture, drainage, pH of soil, minimum monthly rain, solar radiation, elevation, 
distance to closest road, population, GDP, land cover and district. The forestation sites show a minimal average increase in 
NDVI. However, it is also found that areas without forestation projects with similar environmental and social factors show 
an increase in NDVI as well. When the success indicators of the reference sites are compared to the increase in NDVI, we 
see that the suitability indicators do not show a significant relationship with the NDVI increase over active project years.

The study shows the importance of standardized monitoring of forestation projects in order to gather not only bio-
physical improvement but also social success, especially for projects with a social purpose. The use of satellite imagery to 
make forestation success assessments do not only give an incomplete understanding of the forestation project, the data 
availability in temporal and spatial scale and resolution limit the assessment. Additionally, the study shows the difficulty 
in comparing varying project types with different aims, timespans and sizes.

More research is needed that includes a larger number of forestation projects that have similar goals, methods, timespan 
and sizes, as well as a standardized reporting of social and environmental success. This could be achieved by combining 
data from several similar countries and by working closely together with forestation organizations that have standardized 
monitoring of their projects on both social and environmental success.
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1.1 Climate change and the need for adaptation
The growing human population, still-increasing industrialization and astonishing consumption rates have great impact 
on the earth and her climate. The effects of our changing climate will create challenges for communities worldwide as 
the natural systems that are the basis of human societies are under pressure. Mitigating human impact and reducing the 
effects of our society on natural systems is therefore crucial to secure a sustainable future. Large efforts are made globally 
in the energy sector, materials sector and ecosystem services. In spite of numerous projects, conferences and agreements, 
climate change cannot be averted altogether.

Climate change will affect people around the world in varying ways. One of the main effects of climate change is an 
increase in the amount and intensity of natural disasters worldwide, from droughts to floods to typhoons (Triyanti & Chu, 
2018). In Figure 1 the effects of climate change are illustrated for different areas of Africa, including climatic factors such 
as extreme rainfall and droughts, sea level rise and an increase in temperature. 

1. Introduction and problem definition

Figure 1. IPCC prediction of future climate trends for Africa including prospects for average 
temperature, average rainfall, sea level rise and droughts until 2100  (Field et al., 2014)
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Poorer communities are at higher risk of these extreme weather events and experience more negative consequences from 
them (Singer, 2018), which further increases social inequality. Disadvantaged groups are more vulnerable, for example 
because they are more dependent on natural systems that are affected by climate change and do not have the means to 
overcome the damage done by disaster events. Climate Change Adaptation measures are actions that are taken to reduce 
these negative effects that communities experience from a changing climate. 

1.1.1 Climate Change Adaptation and the field of Industrial Ecology
The field of Industrial Ecology looks at sustainability problems from multiple perspectives, in the aim to reduce the 
environmental impact of human actions. Industrial Ecology systematically examines human activity within the context of 
the natural environment with which it interacts (Lifset, 1997). The field contributes to solutions to sustainability problems 
by changing the consumption and emissions behavior of socio-technical systems. The multi-perspective approach of 
Industrial Ecology is suited both for assessing climate change mitigation as well as climate change adaptation challenges. 
The Journal of Industrial Ecology even dedicated an issue to this overlap between Industrial Ecology and Climate 
Adaptation, specifically asking for studies about climate adaptation. 

As climate change results in an increase of disasters, one important aspect of Climate Adaptation is Disaster Risk Reduction. 
The multi-perspective approach of Industrial Ecology can contribute to Climate Adaptation and Disaster Risk Reduction 
in the same way in which the field examines sustainability issues: through examining the human system and the natural 
environment with which it interacts.

1.1.2 The role of ecosystems in Climate Change Adaptation and Disaster Response
A disaster is a physical hazard event, such as a typhoon or a flood, whose impacts surpasses the local society’s ability 
to cope with the damages (Marisol & Saalismaa, 2013). Impacts of disasters are determined by a combination of the 
vulnerability of the society and the exposure to the hazard. Vulnerability is described by a range of factors including 
physical, economic, environmental and political factors (Marisol & Saalismaa, 2013). From this definition we can understand 
that impacts of disasters can be reduced by decreasing the vulnerability of a society or to lower exposure to hazards. 
Activities to reduce disaster impact are called Disaster Risk Reduction (DRR). 

One of the methods to reduce impacts of disasters is through strengthening local ecosystems. Ecosystem-based Disaster 
Risk Reduction (Eco-DRR) is the sustainable management, conservation and restoration of ecosystems to reduce disaster 
risk, with the aim of achieving sustainable and resilient development (Marisol & Saalismaa, 2013). Many other terms 
are used for similar concepts, such as ‘ecosystem-based Climate Change Adaptation’, ‘Ecosystem-based approaches for 
Adaptation’ and ‘nature-based solutions’ (Renaud et al., 2016). 

The role of ecosystems in DRR, sustainable development and climate change mitigation and adaptation is recognized by 
many organizations. This is reflected within agreements such as the Sustainable Development Goals (UN), the UNFCCC 
Climate agreement and the Sendai Framework of DRR (Renaud, Sudmeier-Rieux, Marisol, & Nehren, 2016). Ecosystem 
management can not only help mitigate hazards and reduce exposure, it can additionally provide benefits to local 
communities and therefore increase the resilience of communities exposed to hazards (Abedin & Shaw, 2015). Such 
benefits obtained from ecosystems are called Ecosystem Services (Pramova et al., 2012).

1.1.3 Forestation as an Eco-DRR measure
Forestation is one of the practices that is used to strengthen forest ecosystems for Disaster Risk Reduction. The term 
forestation can refer to different concepts such as Forest Landscape Restoration (FLR) and sustainable forest management. 
ecosystem services that can be achieved from forest ecosystems are: reducing local temperatures, providing additional 
income, providing food and fodder in times of scarcity and protecting against several environmental risks such as soil 
erosion, landslides, avalanches, flooding events and water quality problems (Pramova, Locatelli, Djoudi, & Somorin, 2012). 
Smallholder farmers are often dependent on rainfed agriculture and experience great difficulties from climate change and 
weather variability. Planting trees in agricultural fields can help regulate local climate and waterflow (Pramova et al., 2012). 

1.2 A change in forestation
Forestation efforts have increased over the past decades and are expected to continuously increase in the coming years. 
Great effort already goes into forestation practices; Pistorius, Carodenuto, & Wathum (2017) identify the first Bonn 
Challenge, where countries that had previously already been involved in the Global Partnership for Forest Landscape 
Restoration participated, as a landmark for the field of forestation. It is one of the biggest forestation initiatives worldwide, 
with 43 countries participating and an aim of reforesting a total area of 350 million hectare. Additionally, there is no 
lack of opportunity for forestation projects in the future. The World Resource Institute states that globally, over 2 billion 
hectares of land has potential for restoration. (Minnemeyer, 2014).

However since their start, forestation practices have changed in focus and aim. In their beginning, large scale forestation 
projects were focused around large single species plantations and had carbon sequestration or the sourcing of timber 
for industrial purposes as a goal ((Liu, Kuchma, & Krutovsky, 2018). In the late 1990’s, a growing understanding that 
conservation practices were not enough in light of the depletion of natural resources made for an increasing interest in 
restorative practices (Mansourian, Stanturf, Derkyi, & Engel, 2017). Currently, forestation projects are used for a much 
wider range of goals, including DRR. Many NGO’s, such as Treesisters and the Eden Project, work with local communities 
in order to create ecosystem improvement and poverty alleviation at the same time (Barkham, 2019).

The increasingly social focus of forestation projects ask for a different understanding of forestation than before. The 
term forestation is at risk of being interpreted as covering large areas with trees (Mansourian et al., 2017), which 
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can be problematic when the goal is biodiversity or DRR. The broad range of definitions in forests, forestation and 
connected activities is a representation of the misalignment and misunderstanding in forestation projects, e.g. between 
conservationists and policy makers (Lewis, Wheeler, Mitchard, & Koch, 2019). The term ‘forest’ can describe a variety 
of ecosystems; uncut primary forest, regenerating natural forest or monoculture plantations of non-native trees (Yang, 
2011). All of the different types of “forests” offer a different range of ecosystem services and have different characteristics. 
A plantation is often harvested in 15-20 years while natural forests can last for decades (Lewis et al., 2019). 

This distinction is not always recognized in the field. A clear example of this are the parameters of the definitions of forest 
by several large authorities in the field of forestation, which are shown in Table 1. It is clear that these factors vary widely, 
agroforestry being counted as forest by one authority but not in the other. Additionally, factors like biodiversity are not 
mentioned in any of the definitions. According to these definitions, the two types of vegetation in Figure 2 can both be 
identified as forests. However, there is a big difference between these types of forest. Forest plantations require a lot of 
fertile land, they often require pesticides and fertilizers which can harm ecosystems (Liu et al., 2018). Large monoculture 
projects in China are referred to as “green deserts”, as they have little in common with natural ecosystems (Luttikhuis, 
2019). Besides the quickly growing trees that have economic benefit, such as eucalyptus, rubber or fruit trees, these 
plantations are not suitable for the interaction with native species; birds, bees, snakes and other animals (Luttikhuis, 2019). 
The monoculture plantations are often preferred because they provide more income in less time as all land can be used to 
plant one quick growing commercial species (Liu et al., 2018). FAO recognizes these shortcomings and the fact that these 
definitions are seen as lacking environmental and social criteria, especially for forest plantations (FAO, n.d.).

Table 1. Parameters of Definitions of ‘Forest’ by (FAO, n.d.)

Type Parameter UNFCCC CBD FRA
Binary 
parameters

Young stands 1 1 1
Temporarily unstocked areas 1 0 1
Non-forest land uses 0 1 1
Agroforestry 0 ? 1

Threshold 
parameters

Min. area (ha) 0.05-1.0 0.5 0.5
Min. height (m) 2-5 5 5
Crown cover (%) 10-30 10 10
Temporary (years) n/a n/a 10
Strip width (m) n/a n/a 20

1.2.1 Spatial data analysis for forestation
These forest ecosystem projects with social goals require a different approach from monoculture plantation projects. 
Monoculture plantations can be planted, monitored and harvested by an organization alone. Social oriented forestation 
projects require collaboration with local communities in order to achieve their social goals such as poverty alleviation and 
diversification of income and ensure sustainable forest management over a longer time span.

These different requirements in planning can be seen in the spatial data analysis that is used to identify the suitable areas 
for the forestation projects. For monoculture plantations, the sites environmental characteristics need to be suitable for 
one specific type of tree and the surrounding of the plantation site is of limited importance. However, for ecosystem 
generation, many more aspects are important (Le, Smith, & Herbohn, 2014). Apart from environmental characteristics, 
there are numerous factors that determine the success of forest ecosystem projects. Adams, Rodrigues, Calmon, & Kumar 
(2016) find that the effects of forestation on socio-economic factors vary depending on different variables including 
availability of jobs outside farming, housing type and the availability of markets for forest products.

Figure 2. Both 
the left and the 

right side of this 
picture might be 

considered forest 
(MAAP, 2018)
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1.3 Factors that influence forest-ecosystem suitability
In order to get a better understanding of which factors are influential in forestation success, a literature review is done. 

1.3.1 Bio-physical forestation suitability factors
There are numerous bio-physical factors that determine the suitability for forestation growth. Plants needs four main 
resources: light, air, nutrients and water (water and air can be considered nutrients as well). This paragraph provides an 
overview of the different bio-physical factors that determine the availability of these resources.

1.3.1.1 Soil texture
Soil texture refers to the size of the mineral particles in the soil. There are three classifications of soil particles: sand (1 
to 0.5 mm), silt (0.5 to 0.002 mm) and clay (less than 0.002 mm). The size of these particles determines a number of 
characteristics of the soil, such as aeration and drainage. On average, a soil with a good balance of sand, silt and clay 
particles is considered a soil that is easy to work with and is suitable for a big variety of vegetation. This soil is called a 
loamy soil. Soil texture (% sand, silt and clay) is used in literature studies on the suitability of forestation (Carver, Danskin, 
Zaczek, Mangun, & Williard, 2004). 

1.3.1.2 Soil drainage
The drainage capacity of the soil is important for the availability of resources for the plants. The drainage class describes 
how quickly (rain)water is “drained” through the depth of the soil in which the roots of the plants are growing into a 
deeper level. There are 5 types of drainage classes (well drained, moderately well drained, somewhat poorly drained, 
poorly drained and very poorly drained). Well-drained soils make it possible for plants to grow deeper roots as the water 
table does not limit the oxygen exchange (Cornell University, 2010).

1.3.1.3 Depth to bedrock/soil layer thickness
Soil layer thickness or depth to bedrock (cm) is identified as factor in forestation success (Le, Smith, & Herbohn, 2014) and 
used in forestation suitability studies (Apan & Peterson, 1998) (Chen et al., 2019).

1.3.1.4 Organic matter content or soil organic carbon
There are three different types of organic matter; living organisms, fresh residues and well-decomposed residues. Living 
organic matter includes roots, fungi, worms, bacteria and insects. Organic matter influences soil characteristics such as 
the stability of the soil and contributes to the recycling of nutrients (Cornell University, 2010). Very dead organic matter or 
humus is able to hold and release important plant nutrients. Soil organic carbon density (g/dm3) is used in existing tree 
suitability studies (Justdiggit, 2020).

1.3.1.5 pH of the soil
Acidity or basicity of the soil, can promote or hinder nutrient intake of the plant (Cornell University, 2010). A number of 
studies use soil water pH as indicators of forest suitability (Schwarz, Fahey, & McCulloch, 2003) (Carver et al., 2004).

1.3.1.6 Precipitation
One of the most important determinants of the availability of water is, naturally, rain. The average precipitation per 
month (mm), the precipitation in the driest month (mm) and the precipitation in the wettest month (mm) are important 
determinants as they give an indication of the plant available water. Next, the prolonged availability of the rainwater 
for the plant is determined by the evapotranspiration of water as well as the water drainage in the soil. Many literature 
resources describe precipitation level (in the watershed) as a determining factor in forest success (Cruz-Bello & Sotelo-
Ruiz, 2013) (Justdiggit, 2020).

1.3.1.7 Solar irradiance
There are several effects of the amount of sunlight available for the plant. Firstly, plant use light as their source of 
energy and need it in order to grow. However, there are other ways in which the availability of sunlight can have effects 
on vegetation growth. Sunlight has effect on the local temperature and can increase the water uptake by the air. The 
variability of solar irradiance on the earth surface (w/m2) mostly varies based on latitude. However, in addition to this, 
the amount of sunlight varies based on the landscape. In the northern hemisphere, South facing slopes get more sunlight 
than North-facing slopes. Therefore, aspect direction (E - NE - N – NW – W – SW – S – SE or degrees) is an additional 
indicator that can affect plant growth.

1.3.1.8 Air temperature
As the temperature increases, the water uptake in the air increases as well. Therefore, plants give off more water to the air 
in higher temperatures. Additionally, high temperatures can overheat the plant whereas low temperatures can freeze the 
plant. Therefore, important indicators are not only average temperature (⁰C) but also maximum temperature in warmest 
month (⁰C) and minimum temperature in coolest month (⁰C).

1.3.1.9 Air humidity
When air humidity is high, less water is taken up by the air. Some plants need a high air-humidity in order to keep the 
leaves from drying out. As transpiration is needed for nutrients to travel through the plant, too high air humidity can 
decrease the uptake of nutrients. Water vapor pressure (kPa) or relative air humidity (%) are not used in the example 
studies.

1.3.1.10 Wind speed
Wind speed can cause vegetation to be damaged. Depending on the tree type the strain experienced at different wind 
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speeds might differ and thus also the critical wind speed might differ. Additionally, the availability of wind affects the 
evapotranspiration: If there is more wind, more water can be taken up by the air. Wind affects the moisture content of the 
air surrounding the vegetation as well as the temperature. 

1.3.1.11 Elevation
Elevation (m) has an effect on several aspects important for plant growth. Temperature is limiting when growing in higher 
altitudes as plants need a certain temperature to be able to grow. However, vegetation in higher areas receive more 
sunlight needed for their growth than vegetation in lower areas. In addition, plants in lower regions are more affected 
by drought as they receive more rainfall whereas the plants in lower regions that are dependent on water in the forms 
or streams and rivers might dry up. Elevation is used in several suitability studies for forestation (Apan & Peterson, 1998) 
(Schwarz et al., 2003) (Chen et al., 2019).

1.3.1.12 Slope
The steepness of the slope (%) affects the physical support of the ground for the plant as well as the available water and 
nutrients in the ground. Many studies identify slope (%) as a factor for forestation success (Chen et al., 2019) (Schwarz et 
al., 2003) (Le et al., 2014).

1.3.1.13 Aspect
Aspect (in E – NE – N – NW – W – SW – S – SE) largely determines the amount of sunlight received in a certain area, 
especially in mountainous areas. Aspect becomes less important closer to the equator. The variability in sunlight and time 
of sunlight has a large influence on the temperature as well. (Chen et al., 2019) (Schwarz et al., 2003) (Apan & Peterson, 
1998)

1.3.2 Socio-economic forestation suitability factors
Next to bio-physical factors, numerous societal or human factors determine the success of forest ecosystem projects. 
Demographics, infrastructure, and governmental aspects can all influence the way in which a forestation project is 
adopted within society. This paragraph provides an overview of some of these socio-economic factors. 

1.3.2.1 Population density
The population density of an area determines both if there is actual space for a forestation project and also determines 
the use of the forest ecosystem, for the sourcing of e.g. timber or NTFP’s.  In Ethiopia, the quick population growth is 
identified as one of the main drivers for deforestation Stern (2016) (through (Kedir et al., 2018)). A densely populated 
area might therefore be less suitable for forestation as the demand for the use of the forest ecosystem challenges 
the possibility for sustainable forestry. Population density is a factor currently already in use for the 510 forestation 
suitability factor. 

1.3.2.2 Income
For community-based social forestry projects with a goal to diversify incomes of local communities, the success of a 
forestation project partly depends on the dependence of local communities on the forest for their income (Le et al., 
2014); when people are more dependent on the forest, their participation increases. Studies show that poorer households 
are more reliant on forests for their income (Pramova et al. 2012). Therefore, local income is expected to influence 
forestation success. However, intensive use of the forest resources can cause forest depletion and hinder the possibility 
for sustainable forestry. Therefore, a highly populated area with an average low income is expected to decrease forestry 
success.

1.3.2.3 Land use
An important factor that is already used widely in spatial assessments of forestation suitability is land use. Land use or 
landcover data helps to understand the current application of the land which can indicate the possibilities for further 
development. It can consist of different variety of classes, separating different vegetation types (forest, shrubs), different 
uses of the land (urban, agricultural land) and other “land covers” such as waterbodies or snow. Some land use classes 
can also indicate if the land is used for crops or pastoral farming. Additionally, the recent history of land use, as is used 
in the LULC change analysis that is already done by 510, can identify suitable sites as recently degraded sites are often 
promising for restoration as beneficial factors for forestation, such as soil structure and organic matter in the soil, often 
remain for some time (Justdiggit, 2020).

1.3.2.4 Corruption
In many studies, absence of corruption is seen as a greatly important requirement for forestation success (Le, Smith, 
Herbohn, & Harrison, 2012).

1.3.2.5 Land tenure 
One of the most important factors in the success of forestation projects is the local rights for the use of the forest and 
the regulation/enforcement of these rights (Baynes, Herbohn, Smith, Fisher, & Bray, 2015). In Ethiopia these rights are 
determined nationally but enforcement is mostly done per area. For example, three regional states have identified PFM 
as the main forest management principle to be applied in the area. 

1.3.2.6 Road conditions
Good road conditions are reported to have possible beneficial effects on forest growth (Le et al., 2014)  as well as negative 
effects (Kaczan, 2020). The benefits of good road conditions can be explained through the support of the forestation 
project: good road conditions reduce transportation costs and accessibility to the project which eases maintenance work 
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on the project (Le et al., 2014). Additionally, roads can increase productivity of non-agricultural sectors, therefore reducing 
agricultural activity and facilitate price convergence across regional forest-product markets (Kaczan, 2020). On the other 
hand, new roads are often linked with deforestation as they provide access to the forest area (Kaczan, 2020). 

1.3.3 Project characteristics
This research is aimed at identifying suitable areas for all types of forestation projects. However, many studies show 
that the project characteristics such as economic objective, education, capacity building, largely influence the success 
of forestation activities (Pramova et al., 2012) (Le et al., 2014). For example, the ‘Eden project’ reforestation projects in 
Ethiopia were cancelled in 2015 because of fraudulent behavior of the local staff. Naturally, such challenges can affect 
the project in many ways. Therefore, it is important to identify and highlight the effect of the project characteristics on 
the forestation success. Because it is difficult to gather information on all of the aspects of forestry projects, for now the 
organizations and the project sites are taken as categorical indicators for the statistical analysis.

1.4 Problem definition and Research Questions
It is clear that in spite of the focus on environmental factors in spatial data analysis for forest ecosystem planning, many 
social factors are crucial for success of forestation projects. Therefore the main research question becomes:

Can a combination of bio-physical and socio-economic spatial data predict planted 
forest ecosystem success?

In order to research this main research question, it is split up into three sub-research questions. First the factors that 
influence forestation success as described in the introduction need to be translated to spatial data (suitability indicators)
Next, in order to test the influence of the socio-economic factors on forestation success, it is needed to understand how 
forestation project success can be measured. This results in the following three sub-research questions:

What bio-physical and socio-economic spatial data (suitability indicators) can 
represent factors that influence planted forest ecosystem success?

How can the success of planted forest ecosystem projects be measured?
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1.5 Case of 510 forestation assessment
This thesis project is done in collaboration with the Netherlands Red Cross and more specifically their data team; 510. 
510 has the aim to improve humanitarian aid by providing data and digital products (510global, 2016). The team uses 
data to help improve aid, both for projects of the Red Cross-National Societies (the country branches of the International 
Federation Red Cross) and their local partners, including other NGO’s and governments. 

Partners for Resilience (PfR) is an NGO that contributes to the resilience of communities by integrating Climate Change 
Adaptation, ecosystem management and ecosystem restoration into Disaster Risk Reduction (DRR). One of the ways in 
which PfR does this is through Eco-DRR projects in five different countries. These Eco-DRR projects are part of their goal 
to demonstrate the full potential of community-based Eco-DRR. This is done by 5 projects in different countries that are 
implemented across large areas. Besides demonstrating the possibilities of Eco-DRR, the goal is also to develop methods 
for scaling up community based Eco-DRR. 510 is proposing to help in decision making for several PfR Eco-DRR activities, 
among which forestation.

1.5.1 510 forestation suitability assessment
Currently, the selection of reforesting areas is assisted by 510 through 3 analyses. Firstly, the Community Risk Assessment 
is used to identify districts with high disaster risk. For the selected areas, a historical forest cover and a climate and soil 
assessment is done.  

1. The methodology behind the Community Risk Assessment is based upon the widely accepted and used INFORM 
framework, which describes disaster risk based on three dimensions; Hazard & Exposure, Vulnerability and Lack of 
coping capacity (Figure 3). The components are based on several indicators that are found in databases from reliable 
sources with global coverage such as the World Bank, WHO and UNICEF. For the Community Risk Assessment, more 
detailed data needs to be found in order to provide the same methodology on district level

2. Based on satellite imagery an automatic identification of different land use classes is made and the difference 
between satellite imagery of different years is analyzed to find areas in which natural forest has degraded. 

3. 510 makes use of several indicators such as rock depth, temperature and population density (see Table 2). These 
indicators are used to set boundary values for a certain tree type in order to identify suitable locations for forest 
growth. 

Table 2. Geospatial indicators used in tree suitability analysis proposed by 510

Geospatial indicator Unit
Population Density 1000 people/km2
Elevation m
Rock-depth m
Slope %
average T ⁰C
maximum T ⁰C
minimum T ⁰C

Figure 3. INFORM methodology
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1.5.2 Elaboration of current method
It is clear that 510 takes into account social factors in their forestation planning. Because of the use of the INFORM 
framework, the analysis covers a number of socio-economic factors. However, these socio-economic factors are only 
taken into account in the disaster risk prediction. This is not done in the same way for forestation suitability; in the 
suitability analysis, only one social factor is included (population density). However, from literature it is clear that there 
are many additional socio-economic factors that influence forestation that are now not included in the spatial analysis 
of 510. Therefore, the suitability analysis method is less suited for ecosystem-based DRR activities for two reasons: First, 
the bio-physical analysis is more suited for single species rather than a variety of species included in an ecosystem as it 
works with boundary values. Second, the limited use of social factors in the suitability analysis makes the analysis more 
suited for top-down forestation projects rather than participatory forestation projects in which interaction with the local 
community is crucial.

Because of the large number of forestation projects, it can be expected that 510 will have the opportunity to help these 
projects more frequently. This project can help 510 gain insight into a more holistic approach towards spatial data analysis 
for forest ecosystem projects. The research can elaborate on the current methodologies used by 510 while incorporating 
a more holistic approach. 

1.6 Case study country
As forestation is one of the Eco-DRR measures selected for the project plans of PfR in Ethiopia, this country is chosen as 
a case study. The goal of the Eco-DRR project in Ethiopia is to prevent drought, diseases and conflict over water sources. 
Forestation is an identified method to contribute to achieving these goals. 

Ethiopia is a landlocked country located in the Horn of Africa neighboring Eritrea, Somalia, Kenya, South Sudan and 
Sudan. The country is 1,1 million km2 and has around 100 million inhabitants (World Bank, n.d.). The capital is Addis 
Ababa. Ethiopia’s population is young and quickly growing. From 1983 to 2018 the population grew from 33,5 million 
to 108 million, averaging at 3,4% of growth per year. The quick population growth results in a median age of 19.5 years. 
Ethiopia is predicted to have a 205 million inhabitants in 2050 (UN, 2019 through (Worldometer, n.d.). 

1.6.1 Economy
Ethiopia is the fastest growing African economy after Nigeria, with a 7.7% GDP growth in 2017. Despite its strong economic 
growth, the country’s poverty levels are still high, because of previous wars with neighboring countries. The per capita 
income is 790 US dollar per person (World Bank, n.d.). Although its importance is decreasing, agriculture is still the biggest 
contributor to the economy and makes up half of Ethiopia’s GDP, (Britannica, n.d.).

1.6.2 Geographic and climate
Ethiopia is split through the middle by the Ethiopian Highlands with the highest mountain being 4550 meters. These 
highlands cause a range of climates. The variety of climate types can be seen in Figure 4. Because of the elevation in the 
highlands, some areas have quite a temperate climate despite Ethiopia’s latitude close to the equator. However, there are 
also regions with a dry and hot climate. An extreme example is the Danakil depression (-125 meters) which is the hottest 
human settlement on earth with an average of 41 degrees Celsius. 

Ethiopia has three seasons; (1) a dry season from September to February, (2) a rainy season in March and April with a 
break in May to then be followed by a longer rain season in June, July and August (Britannica, n.d.). However, Ethiopia 
has four different yearly rainfall patterns in different areas of the country (Britannica, n.d.). Figure 5 shows the rainfall per 
month for 4 different meteorological stations in Ethiopia. 

Figure 4. Map of Ethiopia according to the Köppen climate classification (2018).
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1.6.3 Agriculture
Next to a varying climate, Ethiopia knows varying farming regions with more crop and livestock production in the 
highlands and more agro-pastoralism in the lowlands.  Smallholder farmers account for 74% of total farmers (FAO, 2018). 
Coffee accounts for 26% of the country’s export and there are five cereals (teff, wheat, maize, sorghum, and barley) 
which are Ethiopia’s main crops (FAO, 2018). Since 2019, Ethiopia’s agriculture has suffered from desert locust outbreaks 
(Reliefweb, 2019), (FAO, 2020).

1.6.4 Forests
Deforestation has been a pressing topic for many years for Ethiopia. Although the reported numbers vary, it is recognized 
widely that forest cover has declined rapidly in the past decades. Deforestation and forest degradation are results of free 
livestock grazing, fodder use, and fuel wood collection/charcoal production, farmland expansion, fires, and construction 
wood harvesting. The underlying causes of deforestation and degradation based on an analysis by Stern (2016) (through 
(Kedir, Negash, Yimer, & Limenih, 2018)) are population growth, insecure land tenure and poor law enforcement. The 
national land-policy and forest management approaches in Ethiopia have changed multiple times over the past decades. 
This uncertainty regarding land tenure has caused local communities to have lost interest in forest conservation (Kedir 
et al., 2018). 

An increase in awareness on the forest decline has created incentive for a number of forestation projects. The Participatory 
Forest Management approach was introduced in 1995 in Ethiopia through different organizations such as FARM Africa 
(Gobeze, Bekele, Lemenih, & Kassa, 2009). More recently, the government has started the green-legacy campaign with 
the goal of planting 4 billion trees to the end of 2019. The start was in 29 July with 350 million trees in a day (UN 
Environment, 2019).

Figure 5. Typical monthly rain 
patterns in Ethiopia as illustrated by 
four representative meteo-stations: 
Gore, mono-modal; Alamata, 
bimodal with a smaller peak in 
March/May and a more prominent 
peak in July/ August; Dire Dawa, 
bimodal with two peaks almost 
equivalent; Aseb, diffused pattern. 
(Billi, Alemu, & Ciampalini, 2015)
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In order to understand the effect of suitability factors on forestation succes, existing forestation projects are used as a 
reference. Existing forestation projects are selected within a case study country in order to limit the effect of geographic 
and national differences. From the selected reference forestation project sites, the socio-economic and bio-physical forest 
suitability factors are determined as well as their forestation success. From these grades the relationship between these 
suitability factors and forest success scores is determined. Therefore, the research consists of three parts:
• Data indicators are selected to represent important factors that influence forestation suitability and the indicator 

values are extracted for each reference forestation site
• The forestation success is determined for each reference forestation site
• The relationship between the forestation suitability indicators is analyzed

2.1 Reference forestation projects
Forestation projects are found through desk-research and literature review. A number of different ecosystem-based 
forestation approaches are included in the analysis in order to increase the number of forestation sites. However, only 
multi-species projects with a social purpose are included rather than monoculture plantations. An overview of the 
forestation sites can be seen in Table 3. In total there are 67 forestation sites used in the analysis with diverse sizes, 
timespans and species. However as can be seen from the description in Appendix A, all projects have social project goals 
and include a number of tree species. 

Table 3. Overview of forestation projects

Organization Project Nr. of sites 
(included)

Start year End year

Weforest Amhara 31 2017 n.a.
Seret 1 2018 n.a.
Desa’a 1 2017 n.a.

Eden Projects Rift Valley 1 2004 2014

Sidama Highlands 3 2004 2014
Shalobele 3 2004 2014

United Nations Lake Tanu 1 2014 n.a.
Sheka 6 2012 n.a.
Yayu 4 2010 n.a.
Majang 5 2017 n.a.
Kafa 5 2010 n.a.

Farm Africa unnamed 1 n.a.
n.a. Gebradima 3 2000 n.a.

In order to use the reference forestation projects in the spatial analysis, they need to have a location description. A 
combination of area descriptions is used depending on the type of reporting of the projects. If available, a project map is 
projected in the GIS software through the georeference function in QGIS using either coordinate references or location 
(cities, villages, roads) references (Figure 6). If no map is available of the forestation site, the project coordinate description 
is turned into an area that can be used for analysis by creating a buffer surrounding the point location (creating an area 
of approximately 2,5 hectares).

2. Methodology

Figure 6. Mapping of a biosphere reserve map. Original map from Unesco (2018).
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2.2 Forestation suitability indicators
Several academic and grey literature sources are used to gather potential forestation suitability and priority factors that 
influence the success of forestation projects, as is discussed in sub-chapter 1.3. In order to quantify these factors, spatial 
data is found to represent the factors (the suitability indicators). Indicator data is gathered through a number of platforms; 
Data from the Google Earth Engine data catalog is used, as well as data from ISRIC, UN OCHA, NASA SEDAC and BioClim. 

This data is not an exact representation of the success factors but rather an indication of them. Depending on the 
availability of data on different topics, the indicators can be more or less closely related to the indicator. For example, 
no spatial data was available on land-tenure rights. However, it is found that these rights differ per district. Therefore, 
the districts themselves are used as categorical indicators in order to represent this success factor. If no related data is 
found, the factor is not included in the spatial analysis. From the resulting indicator data, a selection of final indicators is 
determined based on uniqueness and predicted importance. For example, for several indicators that are closely related, 
such as minimum and maximum rainfall, only one indicator is included in the analysis.

2.2.1 Preparing indicator data 
Before extracting the median indicator values per forestation site, some of the indicator data has to be adapted. For 
example, for solar radiation, the 12 raster files for each month of the year are averaged using raster calculator tool in QGIS. 
The indicator data has to be in a raster format in order to use zonal statistics to gather median values. Therefore, for the 
district data the vector file is turned into a raster file using the vector to raster tool by QGIS.

The factor data is extracted using the median per forestation site in order to limit the effect of possible faulty cells. The 
data is extracted in various ways depending on the type of indicator. For numeric data of factors that occur within the 
forestation site, such as rainfall, the median is taken of the project area. For numeric data of indicators that are relevant 
both inside and outside the forestation site, such as population or GDP, the median of a larger area that the project site 
is used. For these indicators, a buffer is created surrounding the forestation site of 4 km and the median of values within 
the area was extracted. For one indicator, nearest road, a nearest neighbor analysis is done of the road vector and the 
forestation site vector using the function NNJoin. For categorical indicators, the most occurring category per project site 
is used.

2.3 Forestation success assessment
The success of a forestation project is determined by measuring the change in vegetation density over the active project 
years. The vegetation density is measured using NDVI values, as has been done in exemplary studies (Takahashi & Todo, 
2012). NDVI is the most widely used measure to quantify vegetation (Lawley, Lewis, Clarke, & Ostendorf, 2016) through 
remote sensing methodologies. The Normalized Differenced Vegetation Index or NDVI is an indicator for vegetation 
growth based on two spectral bands. Whereas plants absorb visible light as they use it for photosynthesis, they reflect 
near infrared light, as can be seen in the spectral reflectance curves in Figure 8. NDVI makes use of this difference in order 
to determine the density of vegetation. Chlorophyll, which is present in plant leaves, strongy absorbs red light but the 
cell structure in leaves strongly reflects near-infrared light (NASA, 2000). Therefore, if an area reflects much more NIR 
than (red) visible light, the area is likely to have vegetation. The bigger this difference is, the more the vegetation is likely 
to be. The formula for NDVI is:  NDVI = (NIR — VIS)/ (NIR + VIS). Calculations of NDVI for a given pixel always result in 
a number that ranges from -1 to 1. A value of 0 indicates no vegetation and close to +1 (0.8 - 0.9) indicates the highest 
possible density of green leaves.

For the assessment of existing forestation projects the NDVI data is retrieved for the relevant project years over the 
different forestation areas. Per NDVI image, the median value is extracted for each project site for all available images 
within the selected time period. For each forestation site, the mean value per calendar year (or month, as is further 
explained in paragraph 2.3.1) is calculated. For the project’s active years, the mean improvement in NDVI is calculated. 
This mean improvement is used as the “success score” of the forestation project.

This approach to scoring the forestation site’s success holds a number of assumptions. First, the time-span of the reference 
forestation projects differs largely between project. However, the type of success depends on the timespan: whereas short 
term success can be seen as the successful initial planting phase (such as survival rate of seedling), long term success 
can be indicated by social factors such as socio-economic benefits for the community (Le, Smith, Herbohn, & Harrison, 

Figure 7. Adapting a vector shapefile to a raster file
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2012). Both recently started forestation projects and more established forestation projects are used because of the limited 
number of reference forestation projects available. Second, the assessment of the reference forestation projects was 
aimed to be done by comparing a number of different factors that could represent both ecological and social success. 
However, the social success factors of the project (people engaged, kg harvested products per ha, etc.) are not used as 
they were not available for all projects and the consistency of the data available could not be guaranteed. Therefore, in 
order to ensure the availability of data for the different projects, satellite imagery is used for the forestation assessment. 
This data only represents a small number of ecological indicators such as survival rate of seedlings and area planted. 
Concluding, because of data availability, for this study it is assumed that short term success can indicate long term success 
and that ecological success can indicate social success of forestation.

A dependent t-test is used to calculate the difference between forested areas before and after forestation projects.

2.3.1 NDVI improvement comparison
In order to better understand the NDVI improvement of the forestation sites, two iterations to the NDVI improvement 
analysis are explored; the satellite imagery of which the NDVI values are extracted and the timespan of which the NDVI 
values are extracted within a year. 

The first NDVI data that is used is the MODIS Combined 16-Day NDVI product. This index is not calculated from a single 
satellite image but rather composited of daily NDVI images which are atmosphere-corrected. The spatial resolution is 
250 meters and the temporal scale of the product is from 2000 to 2020. In addition to this MODIS data, a comparison is 
made using Sentinel-2 data. MODIS data is chosen because of the large temporal range and the publicly available 16-day 
composite NDVI product. However, the resolution of the MODIS imagery is relatively rough (250 m) in comparison to 
the scale of some of the project areas, as can be seen in Figure 9. Sentinel-2 data has a much higher resolution (10 m for 
the red and infrared bands) but has some disadvantages. Firstly, it is only available since 2015, which means that it does 
not cover much of the time-span of the forestation projects in the study. Additionally, Sentinel-2 has a global coverage 
every 10 days (since 2017 every 5 days). Because of this lower temporal resolution, for cloudy months such as September 
and August, there is no data available for the forestation sites.  Additionally, for the Sentinel-2 imagery there is no NDVI 
composite available. Therefore in this research the Sentinel-2 data is used without an extensive correction. The NDVI 
image is calculated from the Red and Infrared bands and a cloud-cover mask provided by Sentinel is used. Because of the 
limited temporal range, only WeForest Amhara sites are included in the Sentinel-2 data analysis.
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Initially, the yearly average NDVI value is taken in order to calculate the average increase in NDVI 
over the active project years. However, for many areas and types of vegetation, the NDVI value varies 
widely within a year. This can be seen in Figure 10, which shows a filmstrip of MODIS 16-day NDVI 
composite product for the year 2016 around the WeForest Amhara sites. Around July/September/
October, the vegetation is more dense and thus the images show a higher NDVI around these months. 
The forestation projects used in the analysis include decidious tree species such as Acacia polyacantha 
and Croton macrostachyus. In order to see their growth clearly in the success scores, an option is to only 
look at one or several months per year (instead of all 12 months) in which the most leaves, and thus the 
highest NDVI is expected. Therefore, as an iteration on the yearly average analysis, the average NDVI in 
October is calculated as well. October is chosen because July and September are part of the rain season 
in Ethiopia which results in high cloud-coverage for these months and consequently less chance of clear 
satellite imagery, especially for the lower temporal resolution and non-composited Sentinel imagery.

2.4 Finding possible relationship
The indicators can be divided into categorical indicators (district, project, land use) and numeric 
indicators (minimum rain, pH, Root Zone Moisture Content). For the different types of indicators, a 
different approach is used:

2.4.1.1 Numeric indicators
Scatter plots are made to explore the relationship between the numeric indicators and the yearly NDVI 
improvement.

2.4.1.2 Categoric indicators
Botplots are made to explore the average and range of the yearly average NDVI scores across the 
different categories of the categorical indicators. A categorical regression is done in R using the lm 
function.

Figure 11. An example of two project sites highlighted in pink and the relatively high resolution 
Sentinel NDVI image (visible light RGB image on the left)
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3.1 Forest-ecosystem suitability indicators 
From the various factors found (Sub-chapter 1.4), a selection is made to use in spatial analysis based on relevance, 
uniqueness, availability of representative data. The socio-economic factors were mostly limited by data availability and 
therefore no selection had to be done for these indicators. An overview of the final data used can be found in Table 4.

From the bio-physical factors, six factors are chosen:
• Soil texture is represented by the indicator silt percentage. As mentioned in sub-chapter 1.3, soils with a good 

balance of sand, silt and clay particles is suitable for a larger variety of vegetation. 
• The available groundwater is represented by the indicator Root Zone Moisture Content, which shows the volumetric 

percentage of water in the soil. As large parts of Ethiopia face droughts (Reliefweb, 2020), it is assumed a higher 
RZMC is associated with a higher NDVI increase. 

• The water pH of the soil is seen as an important factor in Ethiopia as Ethiopia contains highly acidic land (pH below 
5.5) (Gurmessa, 2020) as can be seen in Table 4. It is expected the optimum pH of the soil is in between 5,5 and 7 
(University of Vermont Department of Plant and Soil Science, n.d.).

• Minimum monthly rainfall is chosen because in most areas (determined by climate type) water limits plant growth 
(NASA, 2000)  and Ethiopia faces frequent longer periods of droughts (Reliefweb, 2020). 

• Solar radiation is chosen as an additional climatic indicator to represent availability of sunlight for the plant. 
• Elevation is added as an indicator as it is used in almost all examples of spatial analysis for forestation suitability 

analysis.
 
For socio-economic factors, five factors are determined;
• Road conditions are represented by the indicator distance to nearest road, which is calculated from a vector-file 

containing all roads in Ethiopia. 
• Population density is represented by the indicator population per pixel.
• Income is represented by GDP. 
• Land use is represented by the MODIS land cover classification, which uses satellite imagery to determine 17 land 

cover classes. 
• No spatial data is available on tenure rights. However, it is found that in Ethiopia Forest Management is determined 

by regional authorities. Because of this, tenure rights are represented by the first administration levels.

An overview of the suitability indicators per project site is provided in Appendix B.

3. Results
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Table 4. Bio-physical factors and indicator data overview showing the minimum and maximum value in Ethiopia

Factor Indicator Units Resolution Data source Min Max
Bio-physical factors
1 Soil texture Silt % 1 km ISRIC 7 42
2 Drainage Root Zone Moisture 

Content
% 1 km ISRIC 31 56

3 pH of soil pH soil water pH * 10 1 km ISRIC 49 88
4 Rain minimum monthly 

rainfall 
mm/month 30 sec = 1 

km
BioClim 
(WorldClim)

0 59

5 Solar radiation average solar radiation 
per year

kJ m-2 day-1 30 sec = 1 
km

WorldClim 17179 23037

6 Elevation Digital Elevation Model m 30 sec = 1 
km

NASA SEDAC -124 4291

Socio-economic factors
7 Road conditions Distance to nearest 

road
radial degrees vector UN OCHA n.a. n.a.

8 Population 
density

Population People per pixel 3 sec = 100 
m

Worldpop 0 516

9 Income GDP US dollars 1 km NASA SEDAC 0 18278
10 Land use Land cover 17 classifications 500 m MODIS n.a. n.a.
11 Tenure rights Regions/

administrations
12 different 
regions

vector -> 
1500 km

UN OCHA n.a. n.a.

Project factors
12 Project 

characteristics
Project 5 projects n.a. n.a. n.a.
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3.2 Forestation assessments

3.2.1 MODIS yearly-average NDVI improvement
As discussed in the methodology, the Normal Difference Vegetation Index (NDVI) is used in order to assess the forestation 
projects. The NDVI values from the MODIS product have a factor 0,001, meaning instead of 1 the NDVI shows 10,000. 
Additionally, the MODIS product does not include NDVI values lower than -0,2 (or -2000). Initially, the 16-day NDVI 
product by MODIS is used for the years 2000 to 2019 which results in a total of 817 images. For each reference forestation 
site (67 sites), the median NDVI is calculated per image. The yearly average NDVI was calculated for each project site. 

Figure 13 shows the yearly NDVI values combined for the different forestation organizations (so in this graph, the average 
NDVI’s are taken for all forestation sites combined per forestation organization instead of for each project site). The 
additional No project are not from an organization, but are selected sites in which no forestation project occurs (as is 
explained further in methodology). The forestation sites are grouped in order to make observations on the differences 
per forestation organization. First of all, it is clear that the forestation projects start at notably different NDVI values. 
Additionally, they do not increase or decrease a lot in almost 20 years. Furthermore, different projects behave similarly in 
certain ranges of time. For example, between 2006 and 2008 the Eden Project projects and the Farm Africa project behave 
similarly. Similarly, the United Nations projects, the Eden Project projects and the no projects sites all show a similar 
decrease in 2018 and increase in 2019. 

The yearly NDVI values per project site are used to calculate the average increase in NDVI over the active years. Figure 14 
shows a histogram of the average yearly NDVI improvements for the 67 reference forestation sites. The histogram shows 
a normal distribution for the NDVI improvement. The results are summarized in Table 5.  The NDVI improvement values 
range between -125 (so decrease in NDVI) and 425 and an average change of 46. 

Figure 16 and Figure 17 show the average yearly NDVI improvement for two different project organizations: WeForest 
and the United Nations biosphere reserves. The graphs show that the WeForest projects have a larger deviation, ranging 
from around -125 to 415, whereas the United Nations projects yearly average NDVI improvement range from around -45 
to 78.

Table 5. Summary NDVI improvement for all project sites

Average yearly NDVI change 
for active project years

average 45.84

maximum 415.10

minimum -124.98

standard deviation 85.19

average yearly improvement 
in % compared to year 
before start project

0.97

Gebradima
United Nations
No project
Eden projects
Farm Africa
WeForest

Figure 13. Median NDVI for forestation sites combined per organization from 2000 to 2019

MODIS median NDVI in forestation sites combined per project

Figure 14. Yearly average NDVI improvement histogram

MODIS

MODIS (yearly average)
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Figure 16. WeForest sites yearly average NDVI improvement Figure 17. UN Biosphere reserve sites yearly average NDVI improvement

In order to verify that there is an average increase in NDVI after the start of forestation practices, the NDVI values before 
and during the forestation projects are compared using a paired t-test. The t-test shows a p-value of 4.341 e-09, meaning 
the result is significant. It is found that during active project years, forestation areas have an NDVI value of 164 (on a scale 
to 10,000 or 0.016 on a scale to 1) higher than before forestation. The average NDVI value is 6696 so the improvement 
of 164 is a 2.44% total increase.

3.2.2 No-project areas and time-range comparisons
Seven sites outside of the forestation projects are selected in order to test the trend in NDVI change for areas without 
forestation efforts. These sites were selected to be in areas that could represent the reference forestation site; an area in 
Ethiopia with the same values of suitability indicators as are measured in the reference site is determined (the maximum 
and minimum values found in the reference forestation sites are taken). Within the found area, six random sites are drawn.  
In order to understand the effect of timespans on the yearly NDVI increase, a comparison of timespans is made using 
the non-forestation sites as well. Figure 15 shows the average NDVI improvement of sites that are not part of forestation 
projects, for different time spans which represent the time spans of the reference forestation projects. 

It is clear that the average NDVI increases for sites that are not part of a forestation project, whereas it was expected that 
forest areas outside of forestation projects either decline or be constant in vegetation. Additionally, it is clear that the 
average yearly NDVI increase largely depends on the timespans used. Especially the 2016-2019 average differs from the 
average value over a longer time period. This shows that the project timespan greatly influences the project improvement 
regardless of the quality of the forestation project. 

3.2.3 NDVI improvement comparison
In order to explore the NDVI improvement of the forestation sites, two different iterations are compared as is discussed 
in more detail in sub-chapter 2.3. Firstly, the average NDVI in October is taken in order to calculate the average yearly 
increase in NDVI. These same calculations (yearly average NDVI and October NDVI) are done using Sentinel-2 data for 
the WeForest-Amhara sites.

Figure 19 and Figure 20 show NDVI measurements of MODIS and Sentinel (the values of the MODIS product are a factor 
10.000 higher than that of Sentinel). The graphs show the change in NDVI measurements for the different WeForest Amhara 
sites over a year and the variance in measurements between the different reference sites. The Sentinel measurements 
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show less constant values than the MODIS measurements. The MODIS measurements show higher variability around the 
month of August as well. The Sentinel data for 2016 (the year before the start of the Amhara sites) only start from April. 
Therefore, for the yearly average comparison for Sentinel, only the months April - December are included. 

Figure 18 shows a comparison between the different methods of assessing the NDVI change (oct-yearly and MODIS-
Sentinel) for the WeForest Amhara sites. It is clear that the average value in October of Sentinel is the highest average 
increase in NDVI. MODIS yearly average NDVI shows the second highest and MODIS October NDVI the lowest. The 
Sentinel data shows a higher standard deviation than the MODIS data. All yearly values per site are provided in Appendix 
C (MODIS yearly), Appendix D (MODIS October), Appendix E (Sentinel yearly) and Appendix F (Sentinel October). A 
comparison summary is provided in Appendix G. 

Because the results vary, in addition to the MODIS yearly average values, Sentinel data will also be used for the relationship 
analysis. Because of the large variability in the yearly data, which might be caused by frequent cloud cover, the October 
average of Sentinel is used to compare to the suitability indicator data. Because of timerange of the Sentinel data, this is 

Figure 18. NDVI changes for different NDVI imagery (Sentinel and MODIS) and for different timespans within the compared 
years (yearly averages and October)
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Figure 19. WeForest Amhara sites NDVI values throughout the 
year 2016 (above) and 2017 (below) using Sentinel imagery

Figure 20. WeForest Amhara sites NDVI values throughout the year 
2016 (above) and 2017 (below) using MODIS 16-day NDVI product

3.3 Forestation success indicator correlations
In order to understand the relationship between the forest suitability indicators and the forest success scores, the NDVI 
values were mapped against the suitability indicators. If the results showed a possible relationship, a statistical analysis was 
done in order to understand if this relationship was significant. The indicators are analyzed separately for the categoric 
indicators and the numeric indicators as they required a different type of analysis.

3.3.1 Categoric indicators
In order to get a first understanding of the relationship between the categorical variables and the average yearly NDVI 
improvements (in the active project years), the categorical values were mapped in boxplots. 

MODIS Sentinel
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In the boxplot in Figure 23, the yearly average NDVI 
improvement of the project sites is divided per landcover 
class. The plot shows that all forestation projects fall within 
4 different landcover classes. The yearly average NDVI 
improvement is highest for projects within landcover class 10 
(grasslands).

In order to evaluate the significance of the different average 
values across the categorical indicators, a categorical 
regression was done using the lm function in R. The results 
can be seen in Table 5. No significant relation was found as 
no P value is below 0.05

Table 6. Categorical regression results

Estimate Std. Error t value Pr
Intercept -13.951 106.409 -0.131 0.896
Organization: Farm Africa -18.225 112.556 -0.162 0.872
Organization: Gebradima 13.431 66.463 0.202 0.841
Organization: United Nations 24.219  48.887 0.495 0.622
Organization: WeForest -56.685 110.678 -0.512 0.610
District 3: Amhara 64.750 55.705 1.162  0.250
Disrict 4: Oromia 1.933 98.910 0.020 0.984
District 7: SNNP -4.786 96.616 -0.050 0.961
District 9: Gambela/Oromia (border) -39.223 121.503 -0.323 0.748
District 12: Gambela 23.727 101.934  0.233 0.817
Landcover Class 9: Savannas: tree cover 10-30% (canopy >2m). -18.918 39.595 -0.478 0.635
Landcover Class 10: Grasslands: dominated by herbaceous 
annuals (<2m).

91.216 94.350 0.967 0.337

Landcover Class 11: Permanent Wetlands: permanently 
inundated lands with 30-60% water cover and >10% vegetated 
cover.

NA NA NA NA

Figure 21. yearly average NDVI improvement divided per district

MODIS (yearly average)

In the boxplot in Figure 21 the different districts show varying average yearly NDVI improvement. District 3 has the 
highest NDVI improvement and district 9.5 has the lowest NDVI improvement. In the boxplot in Figure 22 the yearly 
average NDVI improvement of the project sites is divided per organization. The graph shows that the average NDVI 
improvement is highest for WeForest projects and lowest for Eden Project projects.
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Figure 22. yearly average NDVI improvement divided per project
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Figure 23. yearly average NDVI improvement divided per 
Landcover Class of the project sites
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(rad)

(%)

Figure 24. The yearly average NDVI improvement mapped against 
the silt percentage of the soil per forestation site

Figure 25. The yearly average NDVI improvement mapped against 
the distance to the nearest road per forestation site

Figure 26. The yearly average NDVI improvement mapped against 
the number of people/km2 in a 4 km radius (approximate distances) 
per forestation site

/km²

3.3.2 Numeric indicators
In order to get a first understanding of the relationship 
between the NDVI improvement and the numeric 
forestation suitability indicators, the average yearly NDVI 
improvement is mapped against the median indicator 
value for each project site.

In Figure 24, the average NDVI improvement is plotted 
against the silt percentage of the soil per forestation site.  
From the graph, the silt percentage seems to have an 
optimum value around 27%, even though it was assumed a 
higher percentage of silt would create an increase in NDVI 
improvement.

Along the projects that are nearby a road, the NDVI 
improvement varies widely (Figure 25). As the projects 
get further away from the roads, the NDVI improvement 
slightly increases.

The number of people living near the forestation site (a 
buffer zone with a 4 km radius was used in order to retrieve 
this value) seemingly shows an optimum value at around 
two people per pixel (around 1 km²) (Figure 26).

The same is done for all numeric indicators (Figure 27). It 
is notable that all indicators seem to show peaks in NDVI 
values. This is therefore furter explored in the following 
paragraph.

MODIS (yearly average)
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Figure 27. Scatterplot with trendlines of average yearly NDVI improvement mapped against numeric suitability indicator averages

(m)

(mm/month)

(kJ/m2/day) (%)

($)

only used for the WeForest Amhara sites. 

MODIS (yearly average)
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(rad)

(/km²)

(%)
Figure 28. The yearly average NDVI improvement mapped against the 
silt percentage per site (colored per project/organization)

Figure 29. The yearly average NDVI improvement mapped against 
the minimum distance to a road per site (colored per project/
organization)

Figure 30. The yearly average NDVI improvement mapped against 
the median people per pixel in a 4 km radius (colored per project/
organization)
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United Nations
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In order to better understand the differences in results 
per projects, scatterplots were made that show how the 
different values are divided per project. As was already clear 
from the forestation assessment, the average yearly NDVI 
improvement of the WeForest projects are much more 
disperse than the values of the other projects. However, 
these different values of the WeForest sites for NDVI 
assessment are mostly quite close together in the suitability 
factor values. Because of this, the NDVI improvement 
shows a peak around the indicator value range of the 
WeForest projects are. For the indicators silt percentage, 
this is between 26 and 28 (Figure 28). For the indicator road 
distance, this is between 0.00 and 0.03 (Figure 29). For the 
indicator people per pixel, this is between 1 and 3.3 (Figure 
30). 

On the following page, the rest of the numeric indicators 
are mapped against the NDVI increase as well (Figure 31).

MODIS (yearly average)



28

(m)($)

Figure 31. Scatterplots of numeric indicators and average yearly NDVI improvement colored per project
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3.3.3 Sentinel imagery 
In addition to the MODIS NDVI values, the indicator scores 
are compared to the Sentinel NDVI improvement. Whereas 
for MODIS a yearly average was chosen, because of the 
irregularities in data, for Sentinel the  October NDVI values 
are used. Because of the temporal range of the Sentinel 
imagery, only WeForest Amhara sites are included in this 
analysis.

Figure 32 shows the yearly average NDVI improvement 
mapped against the silt percentage of the soil (%).  In 
comparison to the graph with the MODIS data, in which 
the NDVI increase seemed to peak around a silt percentage 
of 27%, in this graph the NDVI seems to decrease as the 
silt percentage increases. Again this goes against the 
assumption that a higher silt percentage would increase 
the NDVI improvement. 

The distance to the nearest road shows widely varying 
results in NDVI increase (Figure 33). There is a small overall 
trend of higher NDVI improvement as the distance to the 
road increases, however the variability is quite wide. 

The forestation sites taken into account seem to be divided 
between two ranges of values for the number of people 
living in a 4 km radius; between 10 and 17 and between 
22 and 25. There is no clear difference in NDVI increase 
between these two groups.

As for the MODIS data, the same plots for all numeric 
indicators can be seen on the next page (Figure 35). A linear 
regression analysis does not show significant relationships 
(Appendix I). As was the case for the MODIS data, the 
scatterplots do not show convincing relations that can help 
identify non-linear correlations.

(%)

Figure 32. The yearly average NDVI improvement mapped 
against the silt percentage of the soil per forestation site

(rad)

Figure 33. The yearly average NDVI improvement mapped 
against the distance to the nearest road per forestation site

Figure 34. The yearly average NDVI improvement mapped 
against the number of people/km2 in a 4 km radius (approximate 
distances) per forestation site

/km²

Sentinel (October average)
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Figure 35. Scatterplot of average NDVI improvement mapped against suitability indicator values for WeForest Amhara sites

(m)
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(kJ/m2/day) (%)

($)

Sentinel (October average)
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4. Discussion

Suitability indicators
The suitability indicators determined to represent suitability factors found in literature are: soil texture, drainage, pH of 
the soil, minimum monthly rain, solar radiation, elevation, distance to closest road, population, gross domestic product, 
land cover and district. 

Limitations were encountered in data collection. Whereas many factors that influence forestation suitability are described 
in literature, many of these factors, such as perception of local communities on forest importance, were not found in 
data. Whereas bio-physical data is globally available from satellite imagery, socio-economic data is less widely available. 
Because of this, socio-economic factors are more challenging to research. 

Forestation “success”
Vegetation increase in the form of NDVI was chosen as a measureof forest ecosystem success because more elaborate 
progress data about the forestation projects, such as people involved or product from forest sold, was difficult to gather. 
Although there were projects that were able to provide a lot of data on their project sites, this information could not be 
used the availability varied within and between organizations. 

From the NDVI results it is clear that the forestation sites show a small increase in vegetation during the active project 
years. Several observations can be made regarding the NDVI results:

A large diversity is seen between the forestation projects. First of all, the different projects have considerably different 
initial NDVI values; the WeForest areas start with an NDVI of 0.4, meaning there was very little vegetation in the beginning. 
The UN projects, however, started with a much higher NDVI of around 0.8. The Eden projects and the Farm Africa 
projects are somewhere in between these two extremes. This reflects the difference in approach and aims of the projects; 
whereas the UN projects aim to conserve existing forests, the WeForest projects aim to plant new forest. This difference 
is also reflected in the size of the projects. Conservation is done on a much larger scale than planting of new forest. 
This can hinder clear results; it can be expected that the NDVI increases quickly for forestation projects in relatively low-
vegetated areas. However, if the forestation activities occur within an already dense forest with a dense canopy cover 
and a high NDVI, the increase in green is less notable on satellite imagery as the reflected Red and Infrared light do not 
increase much. Additionally, the NDVI improvements of non-forestation sites suggest that it could be useful to separate 
the forestation projects based on time span when exploring the relation between the spatial indicators and the NDVI 
improvement. In order to test this, the WeForest projects were removed from the scatter plots (Appendix H). These did 
not show more clear relations either.

Forestation projects with a shorter timespan show more varying results. From the MODIS results it is shown that projects 
that have a longer timespan have less deviation in NDVI increase per year. This can be explained by the large yearly 
variability in NDVI across all projects. This indicates that a lot of the yearly change in NDVI is not caused by forest planting 
or management but rather by weather variability. Exceptional good or bad years have less influence on the average NDVI 
increase over a longer time span. Additionally, for both the MODIS and the Sentinel results it is clear that a number of 
forestation projects even show a decrease in NDVI in the first project years. This might be explained by the preparation 
of the ground for forestation, which decreases vegetation. In addition, for projects that are started with seedlings there 
might be a low seedling survival rate. For projects that have started with seeds rather than seedlings, the first project year 
can show little increase. In combination with the initial preparation of the ground and removal of initial vegetation, this 
can result in limited NDVI improvement for young projects. Because of this variability in the young projects, it is probable 
giving a reliable success score can only be done after the initial stage of the forestation project. 

The NDVI products represent a weigh-off between temporal scale, temporal scale and resolution or spatial resolution. 
Because of the long timespan of many of the forestation projects, the lower resolution MODIS data is used for most of 
the analysis. For more recent forestation projects the Sentinel-2 data has a much higher resolution and is therefore able 
to show a better NDVI for small forestation sites. However, because of the lower temporal resolution (every 5 days) of this 
data the higher resolution does not necessarily give a more accurate NDVI; cloud cover can hinder many of the images 
and, with less chance for correction, give incomplete insights. Because of the smaller size of many afforestation projects, 
this means that monitoring based on satellite imagery remains limited.

It can be concluded that the possibility of giving success scores based on satellite imagery depends on several aspects of 
the forestation projects and the data used;
• similarity between the different forestation sites - regarding starting NDVI values, method, size and time-span 
of the projects
• the years in which the project has been active – for younger projects the variability is very high and often 
negative NDVI values are seen, which could be caused by site-preparation and does not necessarily reflect a lack of 
success
• the temporal and spatial resolution and scale of the NDVI product compared to the size and the duration of the 
forestation projects and the accuracy of the NDVI product

It should be noted that even if the NDVI values had shown clear results, a higher increase in NDVI cannot be compared 
one-to-one to the success of the project. As forest ecosystem plantations have a wide range of goals, such as disaster 
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management, combatting soil degradation, engaging local communities and providing a source of income, their success 
cannot be expressed by increase in NDVI alone. 

Predicting success
From the categorical regression analysis and the multiple linear regression analysis, no significant relationship was found 
between the NDVI increase and the suitability indicators. This can be linked to the limitations in the NDVI increase 
measurements as are mentioned in the previous paragraph.
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5. Conclusion

This research aimed to understand the possibility of using socio-economic indicators in addition to bio-physical data in 
spatial analysis for forest ecosystem planning. This was done by analyzing the success (measured by change in NDVI) and 
socio-economic and bio-physical characteristics of refernce forestation sites. The results were used to explore possible 
relationships between these variables.

From all identified factors influencing forestation success, 11 indicators are chosen based on data availability and limiting 
overlap in effects. The suitability indicators determined are: soil texture, drainage, pH of the soil, minimum monthly rain, 
solar radiation, elevation, distance to closest road, population, gross domestic product, land cover and district. 

The study finds a small average statistical increase in NDVI for the forestation areas. However, numerous sites show a 
decrease in NDVI and the change in NDVI varies significantly when the analysis is done with different NDVI products. 

The analysis does not show significant relationships between the forestation success and the indicators. Whereas literature 
indicates that social factors play a large role in the success of forest ecosystem projects, this was not shown by the results. 
Similarly, a correlation was not found for widely accepted and used bio-physical factors such as rain. 

Limitations in the research method are the selection of forestation sites, the spatial and temporal resolution of the NDVI 
data and the use of NDVI as a measure of success for the projects.

The results show an attempt to find a relationship between forestation success and social indicators. However, what the 
results mostly show is the difficulties encountered in quantifying forestation success and social factors that influence it. 
They show the difficulty in the use of satellite data as an indication of conservation projects that reach far back in time as 
well as for forest ecosystem plantation projects that have been started recently which is used to the availability of data on 
social factors and because of the delay in physical results. Additionally, the data inquiry reflects the lack of standardized 
data availability for forestation projects. The results indicate a need for an increase of openness in monitoring of forestation 
success for expansion of knowledge in the field of forest ecosystem generation. More available data can contribute to 
understanding how social factors influence forestation success and therefore increase the effectiveness and efficiency of 
planted forest ecosystem projects.

Before moving further towards a more automated decision-making process in forestation projects for climate adaptation 
or community resilience, it is important to increase the availability of social data factors and forestation project assessments 
in order to find meaningful relationships. What can already be done as an addition to current practices is to include social 
factors based on literature and estimates of suitable values. In this case, it should remain clear that the areas selected are 
based on estimates rather than proven relations. 

Based on this study, recommendations for further research are to include a larger number of forestation projects that are 
similar in terms of aims, method, size and timespan. This could be achieved by combining projects from multiple similar 
(for example neighboring) countries. In addition, forestation success should be measured based on social success in 
addition to vegetation growth, based on data captured by the forestation project. 
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This appendix provides more in-depth explanation on the different forestation projects that are used as reference 
projects.

6.3.1 WeForest projects
The forestation areas from the WeForest project are part of one of three projects: the Amhara project, the Desa’a project 
and the Seret project. The WeForest projects are based on community involvement and are currently still active. Their 
locations are by tracing available online maps.

The Desa’a forest (in Tigray and Afar region) is a dry Afromontane forest that is exposed to desertification with a resulting 
loss of 74% of the natural forest cover. Forests are degraded because the large number of people living below the 
poverty line who are reliant on the forest for resources. The government views this area as a priority area and Weforest 
works together with the local Tigray government on this project (WeForest, n.d.-b). The restoration approaches reported 
for this area are assisted natural regeneration and framework planting. The species planted are: Juniperus procera, Olea 
europaea, Cadia purpurea, Carissa edulis, Dracaena ombet, Erica arborea L., Acacia abyssinica, Maytenus obscura, Rhus 
natalensis. 

The Amhara project is aimed at engaging the local communities. The project includes planting indigenous trees 
on community land, gullies, rever banks and farmlands. In total there are 654 restored hectares and the restoration 
approaches reported are ‘framework planting’, ‘assisted natural regeneration’ and ‘enrichment planting: agroforestry’. 
Species planted are Faidherbia albida, Juniperus procera, Moringa stelapolata, Olea Europea, Pinus patula, Podocarpus 
spp. For this project, 6 individual project sites are reported (WeForest, n.d.-a).
 
The Seret project by WeForest in the Tigray region consists of 56 hectares of framework planting and assisted natural 
regeneration. WeForest reports that currently only 1% of the Afromontane forests in Tigray are left because of cattle 
grazing, agricultural practices, timber production and illegal charcoal production. In the larger Tigray area the government, 
communities and NGO’s work together to improve local ecosystems.  Restoration for the Seret project is done in assigned 
areas, called exclosures, where cattle grazing is prohibited. A wide range of species is planted; Acacia abyssinica, Acacia 
etbaica, Cordia africana, Croton macrostachyus, Dodonaea angustifolia, Dovyalis abyssinica, Faidherbia albida, Grevillea 
robusta, Juniperus procera, Leucaena leucocephala, Olea europaea, Pennisetum pedicellatum, Ziziphus spina-christi

6.3.2 Eden projects
Like the WeForest projects, the 7 project sites from Eden forest can be divided into three forestation projects; Sidama 
highlands, Shalobele, Koksa and Rift valley. Eden projects reports that local sites were deforested in order to cultivate crops 
and produce charcoal for cooking and heating. The Eden projects in Ethiopia started in 2005 and uses a similar approach 
as WeForest by involving local communities in planting trees (Eden Projects, 2018). In 2014 the projects in Ethiopia were  
terminated as a result of fraudulent behavior on the part of local leaders. It is reported that in total 15,998,000 trees were 
planted in Ethiopia by Eden projects. The Udo 3 Hills Project site was completed in 2014 with 12,533,000 trees planted. 
Information on species planted is not available. Point locations of the forestation efforts were found through the web-
map provided (Eden Projects, n.d.).

6.3.3 Farm Africa – Sustainable Forestry
Farm Africa has worked on Participatory Forest Management work in the Bale forest region together with other forestation 
partners. Farm Africa reports that between 2012 and 2015, a total of 12,496 hectares of forest was saved (avoided 
deforestation) in the area of 333,924 hectares. The project aims to improve the lives of over 350.000 people living in the 
Bale area (Farm Africa, n.d.).

6.3.4 Gebradima Forest
The Gebradima forest site is an Afromontane forest in southwest Ethiopia with a moderately hot and humid climate. The 
total forest area is around 76.418 hectares (Tadesse, Woldetsadik, & Senbeta, 2016). The study forest is commonly known 
as moist evergreen Afromontane forest; and dominated by Albizia gummifera (J.F.Gumel.) C.Asm, Millittia ferruginea 
(Hochst.) Baker, Pouteria adolfi-friederici (Eng.) Baehni, Schefflera abyssinica (Hochst.ex.A.Rich.) Harms, Sapim ellipticum 
(Krauss) Pax, Ficus Sur Forssk, and Croton macrostachyus A.Rich (Tadesse et al., 2016). The Gebradima forest has been 
part of several forest management efforts starting as early as 2000. Farm Africa guided a participatory forest management 
project in this area together with the Oromia Forest and Wildlife Enterprise, which was active between 2010 and 2015. 
Around 29,901 ha of forest was managed in this project (Tadesse et al., 2016). 

6.3.5 UNESCO
The UN biosphere reserves are areas in which the UN actively supports sustainable development with a goal to find 
solutions to help with conservation of biodiversity through sustainable use of the landscape. Several biosphere reserves 
are found in Ethiopia.

6.3.5.1 Kafa Biosphere reserve
The Kafa Biosphere reserve is a large area of 540.631 hectares of Afromontane forest that has been assigned as a UNESCO 
biosphere reserve in 2010. It houses over 600.000 people and the local main economic activity is agriculture. The Kafa 
area is ‘the birthplace’ of Coffea Arabica and contains over 5000 varieties of this species. One of the key focus areas of 
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the reserve is the protection of genetic resources of this Coffea Arabica and its associated ecosystems. Between 2009 
and 2014 NABU’s Kafa Zones Department of Agricultural Development have established 59 tree nurseries at the Kafa 
Biosphere Reserve. More than 500 hectares of degraded forest have been reforested with indigenous tree species and 
almost 300 hectares of farm land have been planted with native multi-purpose agro forestry trees and crops, involving 
hundreds of people from local communities. The core zone extends over 41,391 hectares and consists of 11 Protected 
Forest Areas. (NABU, n.d.)

6.3.5.2 Yayu Biosphere reserve
The Yayu coffee forest biosphere reserve consists of an area of 167.021 hectares and was designated in 2010. It includes 
forest, agricultural land, wetland and grazing land. The forest is one of the last montane rainforests with wild Coffea 
arabica. The complete biosphere reserve houses around 154.500 residents. Most economic activity consists of agriculture. 
(UNESCO, 2010)

6.3.5.3 Sheka Forest Biosphere reserve
The Sheka forest biosphere reserve is part of the Afromontane rainforests in Ethiopia’s southwestern highlands. The forest 
is rich in plant life, including 300 species of plants of which 55 are endemic. The reserve contains a diverse area including 
forests, wetlands, agricultural lands and rural settlements and towns. The Sheka forest was designated in 2012 and covers 
an area of 238750 hectares. Timber, coffee, and medicinal plants are reported as important products from the forest.

UNESCO provides a list of species: Broadleaved tree species: Pouteria adolfi-friederici, Syzygium guineense, Polyscias fulva, 
Olea welwitschii, Diospyros abyssinica, Manilkara butugi and Cordia africana. smaller trees (less than 10 m): Allophylus 
abyssinicus, Chionanthus mildbraedii, Clausena anisata, Coffea arabica, Deinbollia kilimandischarica. And shrub: Acanthus 
eminens, Dracaena fragrans, Lobelia giberroa, Senecio gigas. 

6.3.5.4 Lake Tana Biosphere reserve
The lake Tana project site consists of the largest lake of Ethiopia (which alone is 50% of the total inland waters of the 
country). The lake is surrounded by wetlands which UNESCO describes to be important breeding nesting and feeding 
grounds for bird populations. The main economic activities include fishing, agriculture and sand mining. The Papyrus 
(cyperus papyrus) is an important product from the wetlands surrounding the lake. 

UNESCO provides a list of plant species in the area including many indigenous trees and indigenous agricultural crops:  
Sesa (Albizia gummifera), Birbira (Millettia ferryginea), Wanza (Cordia Africana) (Guizotia abyssinica), teff (Eragrostis tef). 
Wild coffee (Coffea arabica) occurs naturally in the area, especially in the Zegie Peninsula. 

6.3.5.5 Majang Forest biosphere reserve
The Majang forest is a part of Afromontane forest in Ethiopia which is severely threatened. The landscape of 225.490 
hectares is dissected by several small streams and includes wetlands and marshes. 52.000 people live in the biosphere 
reserve area (Unesco, 2018). UNESCO reports that the area is rich in biodiversity, including over 550 plant species including 
species providing products such as the ensete (ensete fentricosum) and yam (dioscoria bulbifera). Above an elevation of 
1000 meters the vegetation is dominated by ferns and bamboo and there can be relatively steep slopes, while lower areas 
are more covered with palm trees and are relatively flat. 
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Figure 36. WeForest Amhara forestation sites

Figure 37. Map of various forestation sites used in the study
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ED-01 ED AFOR 10 7 3.63 87.5 4.11 1918 64 20 45 25 20156 72.48
ED-02 ED AFOR 9 7 19.78 23 3.14 2789 58 32 46 31 19909 -1.72
ED-03 ED AFOR 9 7 19.96 23 3.13 2816 58 31.5 46 32 19903 -37.68
ED-04 ED AFOR 9 7 18.22 21.5 3.13 2789 58 32 46 31 19909 -31.04
ED-05 ED AFOR 9 4 10.90 26 3.33 2629 56 32 49 30 19752 -79.77
ED-06 ED AFOR 9 4 9.96 26 3.35 2629 56 32 49 30 19752 -3.44
ED-07 ED AFOR 9 4 8.41 26 3.40 2629 55.5 32 49 30 19752 -52.12
FA-01 FA CONS 10 4 68.13 3.5 0.41 3483 59 17 47 27 19068 60.97
GB-01 GB CONS 2 4 22.43 3 0.30 1731 52 34 50 26 18270 5.27
GB-02 GB CONS 2 7 28.68 6 0.50 1830 54 33 51 27 18070 -2.58
GB-03 GB CONS 2 4 16.23 3 0.41 1902 51 34 51 24.5 18061 -5.17
UN-KF-11 UN CONS 9 7 32.68 17 0.67 1776 53 42 51 28 18364 2.81

UN-KF-12 UN CONS 2 7 1.44 4 1.03 2106 50 32 50 25 18116 -47.60
UN-KF-13 UN CONS 2 7 8.33 9 0.94 2022 53 41 50 28 18093 27.62
UN-KF-14 UN CONS 2 7 89.15 3 0.43 1723 53.5 44 51 30 17616 41.68
UN-KF-15 UN CONS 2 7 48.92 3 0.55 1351 53.5 46 50 29 18599 33.66
UN-KF-16 UN CONS 2 7 65.81 11 0.90 3011 50 27 48 32 17954 20.48
UN-MJ-01 UN CONS 2 12 108.92 0 0.16 1259 54 26 49 28 17694 64.65
UN-MJ-02 UN CONS 2 12 50.74 0 0.14 1119 54.5 25 49 25 18030 26.03
UN-MJ-03 UN CONS 2 9.5 65.52 1 0.12 1235 53 28 49 25 17998 -28.95
UN-MJ-04 UN CONS 2 12 15.96 3 0.05 789 56 23 48 22 18201 26.22
UN-MJ-05 UN CONS 2 12 0.00 3 0.16 1113 55 33 49 25 18122 19.08
UN-SH-11 UN CONS 9 7 0.00 5 0.27 2571 52 35 48.5 32 17588 -17.50
UN-SH-11 UN CONS 9 7 0.00 7 0.68 2022 53 39 51 32 17598 -17.50
UN-SH-11 UN CONS 9 7 56.80 5 0.27 2571 52 35 48.5 32 17588 -17.50
UN-SH-11 UN CONS 9 7 56.80 7 0.68 2022 53 39 51 32 17598 -17.50
UN-SH-11 UN CONS 2 7 0.00 5 0.27 2571 52 35 48.5 32 17588 -17.50
UN-SH-11 UN CONS 2 7 0.00 7 0.68 2022 53 39 51 32 17598 -17.50
UN-SH-11 UN CONS 2 7 56.80 5 0.27 2571 52 35 48.5 32 17588 -17.50
UN-SH-11 UN CONS 2 7 56.80 7 0.68 2022 53 39 51 32 17598 -17.50
UN-SH-12 UN CONS 2 7 73.39 7 0.62 2291 51 41 48 31 17279 68.54
UN-SH-13 UN CONS 2 7 115.22 1 0.08 1049 54 29 48.5 30 17881 9.71
UN-SH-14 UN CONS 2 7 2.82 3.5 0.37 1909 52.5 40 50 32.5 17534 -54.42
UN-SH-15 UN CONS 2 7 32.73 5 0.33 1808 50 36 51 26 18312 -3.69
UN-TN-01 UN CONS 11 3 0.00 0 0.59 1786 60 3 51 25 19535 75.02
UN-YY-01 UN CONS 2 4 3.32 5 0.87 1599 56 18 51 28 18210 9.63
UN-YY-02 UN CONS 2 4 0.00 5 1.09 1486 56 18 50 27 18328 19.25
UN-YY-03 UN CONS 2 4 0.05 5 0.89 1405 55 19 49 27 18425 27.27
UN-YY-05 UN CONS 2 4 0.00 7 1.41 1492 56 21 50 27 18433 23.68
UN_YY-04 UN CONS 2 4 4.31 5 0.95 1459 56 22 49.5 27 18468 26.43
WF-AM-01 WF AFOR 10 3 31.57 6.5 1.26 2486 57 15 47 27 18277 137.74
WF-AM-02 WF AFOR 10 3 39.32 10 1.32 2487 55 15 48 27 18357 144.51
WF-AM-03 WF AFOR 10 3 25.48 7 1.28 2429 57.5 15 48.5 27.5 18313 -124.97
WF-AM-04 WF AFOR 10 3 17.39 7 1.27 2454 56 15 48 26 18328 -32.55
WF-AM-05 WF AFOR 10 3 0.73 7 1.00 2519 55 15.5 48 27 18297 16.84

Appendix B. Suitability indicators overview

Table 7. Overview suitability factors and NDVI increase per project site
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WF-AM-06 WF AFOR 10 3 12.72 6 1.46 2419 56 15 48 26.5 18389 -33.74
WF-AM-07 WF AFOR 10 3 1.05 8.5 2.41 2437 56 15 47.5 26.5 18417 107.94
WF-AM-08 WF AFOR 10 3 7.35 6 1.40 2406 54 15 48 26 18400 55.29
WF-AM-09 WF AFOR 10 3 17.06 6 1.32 2354 55 15 50 28.5 18422 -30.32
WF-AM-10 WF AFOR 10 3 2.28 10 2.49 2365 55 15 48 26 18457 181.01
WF-AM-11 WF AFOR 10 3 4.84 12 2.34 2355 55 15 48 26 18455 20.39
WF-AM-12 WF AFOR 10 3 0.75 12 2.14 2265 55 14 48.5 27 18506 -21.04
WF-AM-13 WF AFOR 10 3 2.40 5 1.11 2286 54.5 14 49 28 18418 17.06
WF-AM-14 WF AFOR 10 3 6.34 9 1.22 2106 56 13 49 29 18554 106.33
WF-AM-15 WF AFOR 10 3 17.29 13 1.30 2126 55 13 49 27.5 18581 121.54
WF-AM-16 WF AFOR 10 3 1.56 11 1.33 2227 53 14 49 26 18517 137.06
WF-AM-17 WF AFOR 10 3 8.23 12.5 1.48 2146 53 13 49 26 18552 146.71
WF-AM-18 WF AFOR 10 3 0.00 12 1.45 2207 54 14 50 26.5 18512 -8.42
WF-AM-19 WF AFOR 10 3 7.41 12 2.14 2149 55 13 49 28 18556 126.70
WF-AM-20 WF AFOR 10 3 1.72 9.5 2.19 2210 55 14 49 27.5 18516 71.29
WF-AM-21 WF AFOR 10 3 10.25 18.5 2.19 2143 53.5 13 49 26.5 18621 45.94

WF-AM-22 WF AFOR 10 3 4.72 13 1.67 2239 54 14 48 26 18576 -4.26
WF-AM-23 WF AFOR 10 3 9.65 9 1.28 2187 54 13.5 50 27 18616 145.81
WF-AM-24 WF AFOR 10 3 7.38 9 1.25 2173 54 14 49 27 18626 187.04
WF-AM-25 WF AFOR 10 3 10.28 10 1.43 2235 54.5 14 49 28 18585 76.16
WF-AM-26 WF AFOR 10 3 19.67 11.5 1.54 2231 55 14 49 27.5 18568 63.59
WF-AM-27 WF AFOR 10 3 21.63 8 1.00 2673 58 16 49 28 18093 64.36
WF-AM-28 WF AFOR 10 3 1.13 12 2.24 2277 55 14 48 27 18480 82.30
WF-AM-29 WF AFOR 10 3 0.78 11.5 2.25 2277 55 14 48 27 18480 150.88
WF-AM-30 WF AFOR 10 3 15.32 12 2.28 2339 54.5 14.5 48.5 27 18530 415.10
WF-AM-31 WF AFOR 10 3 7.31 14 3.33 2379 54.5 15 48 26.5 18504 278.93
WF-DS-01 WF AFOR 10 1 23.85 11 0.99 2629 68.5 8 45.5 23.5 22281 -55.59
WF-SR-01 WF AFOR 10 1 2.05 10 1.34 2447 69 2 43 27 21988 96.75
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Appendix C. MODIS - yearly NDVI values

Table 8. Yearly average NDVI values per project site from MODIS 16-day NDVI composite product (NDVI -1 to 1)
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ED-01 0.45 0.51 0.44 0.46 0.51 0.49 0.48 0.50 0.45 0.45 0.53 0.53 0.45 0.50 0.54 0.47 0.49 0.48 0.54 0.54

ED-02 0.60 0.67 0.66 0.64 0.65 0.66 0.59 0.66 0.61 0.66 0.67 0.67 0.63 0.62 0.64 0.66 0.73 0.68 0.63 0.69

ED-03 0.61 0.68 0.73 0.66 0.68 0.59 0.61 0.68 0.56 0.66 0.67 0.65 0.60 0.65 0.62 0.69 0.70 0.67 0.63 0.67

ED-04 0.60 0.67 0.66 0.68 0.65 0.66 0.59 0.66 0.61 0.66 0.67 0.67 0.64 0.62 0.64 0.66 0.73 0.68 0.63 0.69

ED-05 0.69 0.78 0.74 0.79 0.77 0.76 0.74 0.76 0.66 0.73 0.75 0.72 0.71 0.70 0.71 0.74 0.73 0.73 0.75 0.78

ED-06 0.71 0.79 0.77 0.79 0.75 0.79 0.75 0.82 0.68 0.77 0.79 0.74 0.71 0.71 0.79 0.76 0.77 0.75 0.77 0.79

ED-07 0.64 0.74 0.74 0.78 0.63 0.76 0.66 0.73 0.65 0.75 0.78 0.70 0.69 0.63 0.72 0.72 0.76 0.72 0.74 0.74

WF-AM-01 0.41 0.37 0.40 0.34 0.32 0.35 0.38 0.39 0.38 0.38 0.34 0.39 0.35 0.40 0.37 0.41 0.38 0.41 0.43 0.42

WF-AM-02 0.38 0.35 0.36 0.35 0.32 0.36 0.39 0.38 0.37 0.35 0.35 0.39 0.35 0.37 0.36 0.39 0.35 0.38 0.42 0.39

WF-AM-03 0.42 0.40 0.45 0.39 0.42 0.42 0.42 0.43 0.40 0.41 0.39 0.44 0.38 0.42 0.41 0.43 0.44 0.44 0.43 0.41

WF-AM-04 0.42 0.37 0.38 0.37 0.32 0.36 0.43 0.41 0.43 0.40 0.37 0.41 0.36 0.43 0.42 0.45 0.47 0.43 0.45 0.46

WF-AM-05 0.41 0.35 0.35 0.33 0.33 0.32 0.34 0.32 0.34 0.37 0.33 0.37 0.29 0.34 0.38 0.37 0.37 0.37 0.42 0.37

WF-AM-06 0.44 0.47 0.46 0.42 0.42 0.44 0.46 0.47 0.50 0.45 0.42 0.49 0.44 0.47 0.45 0.50 0.47 0.49 0.48 0.46

WF-AM-07 0.43 0.49 0.43 0.43 0.44 0.44 0.44 0.45 0.46 0.43 0.46 0.48 0.42 0.47 0.50 0.50 0.50 0.49 0.52 0.53

WF-AM-08 0.47 0.45 0.45 0.42 0.41 0.46 0.44 0.42 0.46 0.45 0.43 0.48 0.41 0.45 0.45 0.48 0.49 0.47 0.49 0.50

WF-AM-09 0.55 0.51 0.54 0.54 0.45 0.52 0.51 0.48 0.52 0.51 0.50 0.57 0.50 0.56 0.57 0.57 0.59 0.59 0.55 0.58

WF-AM-10 0.55 0.50 0.51 0.46 0.47 0.51 0.52 0.50 0.52 0.52 0.50 0.53 0.51 0.52 0.57 0.55 0.55 0.56 0.54 0.60

WF-AM-11 0.46 0.44 0.46 0.44 0.44 0.46 0.45 0.43 0.46 0.46 0.42 0.44 0.46 0.47 0.47 0.50 0.47 0.50 0.51 0.47

WF-AM-12 0.52 0.52 0.51 0.49 0.46 0.49 0.51 0.47 0.51 0.49 0.48 0.52 0.51 0.53 0.54 0.55 0.52 0.55 0.55 0.52

WF-AM-13 0.60 0.56 0.54 0.49 0.53 0.54 0.52 0.49 0.51 0.52 0.52 0.55 0.47 0.53 0.54 0.56 0.55 0.51 0.56 0.55

WF-AM-14 0.44 0.40 0.41 0.38 0.40 0.41 0.41 0.40 0.42 0.42 0.41 0.42 0.38 0.42 0.43 0.45 0.44 0.45 0.43 0.47

WF-AM-15 0.52 0.45 0.49 0.43 0.48 0.48 0.48 0.48 0.46 0.49 0.50 0.52 0.46 0.51 0.52 0.53 0.53 0.55 0.52 0.56

WF-AM-16 0.46 0.41 0.44 0.39 0.42 0.43 0.44 0.43 0.45 0.43 0.44 0.46 0.42 0.47 0.49 0.48 0.47 0.50 0.47 0.51

WF-AM-17 0.56 0.47 0.51 0.45 0.49 0.49 0.51 0.52 0.52 0.51 0.50 0.55 0.49 0.54 0.55 0.54 0.53 0.56 0.54 0.57

WF-AM-18 0.50 0.44 0.45 0.43 0.43 0.41 0.45 0.44 0.46 0.45 0.47 0.46 0.42 0.47 0.47 0.48 0.48 0.50 0.49 0.48

WF-AM-19 0.50 0.50 0.52 0.50 0.50 0.50 0.51 0.52 0.51 0.50 0.51 0.55 0.48 0.54 0.55 0.56 0.53 0.57 0.56 0.57

WF-AM-20 0.53 0.44 0.50 0.47 0.46 0.48 0.49 0.50 0.49 0.49 0.48 0.53 0.48 0.51 0.50 0.51 0.50 0.54 0.54 0.53

WF-AM-21 0.43 0.45 0.41 0.42 0.42 0.43 0.42 0.41 0.45 0.42 0.42 0.44 0.44 0.45 0.44 0.44 0.45 0.46 0.47 0.46

WF-AM-22 0.49 0.49 0.46 0.47 0.48 0.49 0.49 0.49 0.48 0.48 0.44 0.51 0.48 0.50 0.48 0.53 0.50 0.50 0.50 0.49

WF-AM-23 0.51 0.45 0.48 0.45 0.47 0.47 0.50 0.46 0.48 0.49 0.47 0.51 0.45 0.50 0.50 0.50 0.46 0.50 0.48 0.51

WF-AM-24 0.49 0.44 0.45 0.42 0.44 0.44 0.45 0.40 0.43 0.43 0.42 0.43 0.42 0.45 0.44 0.44 0.40 0.45 0.44 0.45

WF-AM-25 0.50 0.46 0.44 0.46 0.44 0.44 0.48 0.46 0.47 0.47 0.46 0.50 0.45 0.48 0.50 0.51 0.51 0.49 0.49 0.53

WF-AM-26 0.46 0.44 0.42 0.42 0.43 0.43 0.45 0.43 0.42 0.41 0.40 0.42 0.40 0.44 0.45 0.46 0.44 0.44 0.44 0.46

WF-AM-27 0.55 0.53 0.54 0.50 0.52 0.53 0.49 0.50 0.54 0.54 0.49 0.55 0.48 0.53 0.53 0.57 0.56 0.54 0.58 0.58

WF-AM-28 0.47 0.43 0.44 0.41 0.39 0.42 0.35 0.38 0.41 0.40 0.39 0.44 0.41 0.48 0.48 0.49 0.49 0.49 0.49 0.51

WF-AM-29 0.46 0.40 0.42 0.39 0.36 0.37 0.36 0.37 0.40 0.39 0.36 0.45 0.40 0.45 0.43 0.49 0.47 0.49 0.49 0.52

WF-AM-30 0.60 0.53 0.54 0.55 0.57 0.57 0.57 0.54 0.55 0.54 0.53 0.59 0.51 0.55 0.57 0.59 0.52 0.60 0.60 0.64

WF-AM-31 0.48 0.43 0.43 0.40 0.42 0.41 0.42 0.39 0.42 0.39 0.40 0.44 0.40 0.43 0.47 0.46 0.46 0.50 0.50 0.55

WF-DS-01 0.48 0.49 0.45 0.44 0.44 0.47 0.49 0.47 0.45 0.40 0.47 0.47 0.46 0.47 0.47 0.51 0.53 0.52 0.53 0.51

WF-SR-01 0.37 0.34 0.34 0.35 0.32 0.35 0.36 0.33 0.35 0.34 0.35 0.37 0.34 0.33 0.37 0.36 0.35 0.38 0.38 0.38

FA-01 0.46 0.49 0.52 0.46 0.47 0.49 0.49 0.55 0.47 0.45 0.54 0.49 0.48 0.56 0.54 0.52 0.54 0.55 0.60 0.53

GB-01 0.80 0.79 0.81 0.78 0.80 0.79 0.78 0.80 0.80 0.81 0.78 0.80 0.76 0.81 0.83 0.81 0.81 0.78 0.78 0.81

GB-02 0.80 0.69 0.81 0.78 0.78 0.79 0.69 0.76 0.73 0.78 0.77 0.80 0.71 0.76 0.76 0.77 0.74 0.73 0.76 0.79

GB-03 0.84 0.79 0.84 0.81 0.80 0.83 0.76 0.76 0.81 0.84 0.82 0.76 0.79 0.77 0.81 0.82 0.77 0.77 0.83 0.83

UN-KF-11 0.68 0.67 0.70 0.66 0.66 0.65 0.66 0.65 0.66 0.66 0.64 0.66 0.63 0.66 0.65 0.66 0.68 0.59 0.67 0.68

UN-KF-12 0.74 0.70 0.69 0.72 0.77 0.76 0.75 0.66 0.70 0.77 0.70 0.75 0.75 0.69 0.74 0.77 0.73 0.66 0.68 0.71

UN-KF-13 0.73 0.64 0.77 0.73 0.76 0.75 0.76 0.68 0.71 0.68 0.74 0.71 0.76 0.76 0.72 0.70 0.69 0.70 0.72 0.71

UN-KF-14 0.76 0.83 0.82 0.78 0.80 0.77 0.79 0.75 0.77 0.77 0.78 0.77 0.76 0.70 0.75 0.73 0.79 0.77 0.76 0.82

UN-KF-15 0.81 0.82 0.80 0.82 0.77 0.80 0.80 0.78 0.79 0.80 0.75 0.81 0.80 0.81 0.78 0.80 0.79 0.80 0.79 0.84

UN-KF-16 0.61 0.52 0.68 0.68 0.64 0.68 0.64 0.65 0.67 0.67 0.70 0.73 0.66 0.64 0.65 0.70 0.68 0.64 0.72 0.69
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UN-MJ-01 0.76 0.75 0.75 0.79 0.80 0.79 0.80 0.77 0.77 0.80 0.78 0.82 0.77 0.79 0.82 0.81 0.79 0.81 0.78 0.81

UN-MJ-02 0.79 0.77 0.79 0.78 0.81 0.77 0.81 0.79 0.79 0.80 0.80 0.80 0.79 0.79 0.81 0.81 0.81 0.81 0.80 0.82

UN-MJ-03 0.76 0.76 0.78 0.77 0.80 0.78 0.80 0.77 0.76 0.79 0.79 0.80 0.76 0.79 0.82 0.80 0.81 0.79 0.78 0.80

UN-MJ-04 0.79 0.77 0.77 0.78 0.80 0.76 0.80 0.81 0.81 0.80 0.78 0.79 0.79 0.80 0.82 0.80 0.80 0.80 0.81 0.81

UN-MJ-05 0.80 0.80 0.80 0.80 0.81 0.79 0.81 0.81 0.80 0.80 0.80 0.80 0.79 0.80 0.80 0.80 0.80 0.80 0.80 0.81

UN-SH-11 0.62 0.68 0.67 0.75 0.68 0.74 0.72 0.71 0.65 0.72 0.73 0.71 0.70 0.75 0.73 0.67 0.76 0.67 0.71 0.69

UN-SH-12 0.50 0.56 0.61 0.64 0.60 0.67 0.62 0.58 0.60 0.52 0.61 0.59 0.60 0.63 0.55 0.58 0.64 0.55 0.58 0.66

UN-SH-13 0.78 0.74 0.79 0.81 0.80 0.81 0.79 0.78 0.75 0.82 0.79 0.81 0.75 0.79 0.80 0.78 0.82 0.81 0.79 0.82

UN-SH-14 0.64 0.64 0.77 0.75 0.75 0.77 0.75 0.70 0.70 0.73 0.71 0.75 0.69 0.69 0.71 0.75 0.77 0.71 0.74 0.70

UN-SH-15 0.79 0.79 0.81 0.81 0.82 0.81 0.84 0.85 0.83 0.80 0.82 0.83 0.80 0.81 0.82 0.84 0.82 0.84 0.84 0.82

UN-TN-01 0.72 0.72 0.74 0.69 0.70 0.72 0.68 0.72 0.72 0.70 0.68 0.71 0.71 0.70 0.74 0.74 0.70 0.70 0.73 0.74

UN-YY-01 0.79 0.83 0.83 0.82 0.83 0.84 0.82 0.79 0.83 0.84 0.81 0.83 0.83 0.81 0.80 0.84 0.84 0.81 0.83 0.85

UN-YY-02 0.80 0.83 0.82 0.80 0.83 0.83 0.83 0.82 0.82 0.83 0.81 0.83 0.82 0.81 0.81 0.83 0.84 0.81 0.82 0.85

UN-YY-03 0.80 0.82 0.80 0.78 0.81 0.81 0.82 0.80 0.81 0.81 0.79 0.81 0.78 0.81 0.79 0.81 0.82 0.82 0.80 0.84

UN-YY-05 0.83 0.83 0.84 0.80 0.83 0.83 0.84 0.82 0.80 0.83 0.83 0.83 0.83 0.80 0.82 0.83 0.84 0.84 0.83 0.86

UN_YY-04 0.81 0.83 0.82 0.79 0.82 0.82 0.83 0.82 0.80 0.82 0.82 0.82 0.81 0.80 0.81 0.82 0.83 0.83 0.81 0.85
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Appendix D. MODIS - October NDVI values

Table 9. October NDVI values per project site from one selected MODIS 16-day NDVI composite image (NDVI -1 to 1)
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ED-01 0.47 0.66 0.48 0.54 0.49 0.66 0.57 0.59 0.56 0.53 0.57 0.58 0.50 0.59 0.61 0.60 0.59 0.56 0.62 0.63

ED-02 0.83 0.74 0.75 0.77 0.76 0.78 0.17 0.77 0.75 0.74 0.39 0.82 0.82 0.76 0.82 0.30 0.86 0.54 0.82 0.78

ED-03 0.84 0.74 0.73 0.79 0.68 0.34 0.58 0.75 0.75 0.76 0.22 0.80 0.77 0.73 0.79 0.71 0.38 0.24 0.85 0.78

ED-04 0.83 0.74 0.75 0.77 0.76 0.78 0.17 0.77 0.75 0.74 0.39 0.82 0.82 0.76 0.82 0.30 0.86 0.54 0.82 0.78

ED-05 0.87 0.86 0.83 0.85 0.85 0.86 0.77 0.84 0.82 0.79 0.38 0.86 0.84 0.84 0.57 0.85 0.85 0.84 0.85 0.87

ED-06 0.78 0.86 0.82 0.85 0.85 0.86 0.66 0.86 0.83 0.81 0.70 0.86 0.85 0.85 0.85 0.86 0.86 0.85 0.86 0.87

ED-07 0.85 0.81 0.81 0.81 0.80 0.83 0.28 0.82 0.83 0.80 0.83 0.86 0.85 0.80 0.85 0.78 0.84 0.84 0.84 0.86

WF-AM-01 0.62 0.66 0.56 0.58 0.50 0.51 0.47 0.47 0.51 0.61 0.52 0.46 0.47 0.58 0.53 0.59 0.56 0.59 0.55 0.57

WF-AM-02 0.58 0.65 0.49 0.56 0.48 0.48 0.52 0.45 0.45 0.57 0.50 0.43 0.46 0.53 0.48 0.58 0.48 0.54 0.48 0.57

WF-AM-03 0.66 0.69 0.57 0.64 0.57 0.58 0.53 0.53 0.55 0.62 0.55 0.55 0.47 0.60 0.58 0.65 0.61 0.64 0.58 0.59

WF-AM-04 0.67 0.58 0.58 0.56 0.50 0.55 0.65 0.53 0.60 0.74 0.55 0.57 0.59 0.64 0.58 0.67 0.62 0.65 0.61 0.61

WF-AM-05 0.62 0.63 0.56 0.55 0.51 0.51 0.50 0.44 0.52 0.61 0.53 0.44 0.43 0.54 0.48 0.59 0.60 0.58 0.60 0.53

WF-AM-06 0.66 0.69 0.59 0.67 0.56 0.60 0.60 0.53 0.97 0.66 0.62 0.59 0.56 0.63 0.60 0.63 0.64 0.63 0.59 0.56

WF-AM-07 0.65 0.61 0.55 0.58 0.54 0.55 0.56 0.54 0.52 0.61 0.62 0.53 0.55 0.62 0.62 0.66 0.64 0.69 0.66 0.60

WF-AM-08 0.63 0.59 0.52 0.57 0.62 0.63 0.54 0.44 0.60 0.67 0.54 0.54 0.55 0.60 0.57 0.62 0.60 0.65 0.67 0.60

WF-AM-09 0.70 0.70 0.68 0.75 0.73 0.67 0.67 0.58 0.67 0.71 0.68 0.62 0.60 0.66 0.66 0.71 0.68 0.72 0.72 0.65

WF-AM-10 0.72 0.64 0.54 0.75 0.65 0.66 0.71 0.67 0.67 0.72 0.70 0.66 0.71 0.75 0.67 0.68 0.74 0.74 0.71 0.73

WF-AM-11 0.72 0.65 0.58 0.72 0.67 0.71 0.66 0.57 0.69 0.73 0.64 0.59 0.71 0.68 0.63 0.66 0.67 0.70 0.67 0.68

WF-AM-12 0.74 0.69 0.65 0.75 0.67 0.70 0.65 0.56 0.67 0.75 0.67 0.61 0.67 0.67 0.66 0.65 0.68 0.71 0.71 0.65

WF-AM-13 0.75 0.75 0.66 0.66 0.72 0.73 0.64 0.64 0.62 0.70 0.64 0.64 0.63 0.64 0.65 0.68 0.69 0.72 0.68 0.65

WF-AM-14 0.62 0.58 0.50 0.55 0.60 0.60 0.55 0.53 0.59 0.64 0.53 0.52 0.47 0.55 0.52 0.61 0.56 0.63 0.56 0.59

WF-AM-15 0.68 0.66 0.56 0.61 0.70 0.70 0.48 0.57 0.65 0.72 0.64 0.62 0.56 0.68 0.64 0.70 0.64 0.69 0.68 0.67

WF-AM-16 0.67 0.64 0.53 0.70 0.62 0.64 0.60 0.55 0.63 0.69 0.62 0.60 0.52 0.65 0.61 0.66 0.65 0.67 0.61 0.66

WF-AM-17 0.67 0.68 0.58 0.63 0.63 0.67 0.65 0.55 0.68 0.71 0.62 0.62 0.55 0.63 0.60 0.66 0.63 0.69 0.68 0.60

WF-AM-18 0.69 0.67 0.56 0.74 0.66 0.65 0.62 0.51 0.65 0.73 0.60 0.54 0.53 0.64 0.57 0.69 0.62 0.67 0.63 0.61

WF-AM-19 0.67 0.72 0.60 0.77 0.67 0.69 0.68 0.57 0.68 0.74 0.67 0.60 0.55 0.68 0.62 0.71 0.69 0.70 0.69 0.64

WF-AM-20 0.71 0.70 0.61 0.69 0.68 0.71 0.68 0.64 0.70 0.75 0.64 0.62 0.58 0.67 0.65 0.72 0.69 0.72 0.69 0.69

WF-AM-21 0.67 0.62 0.54 0.62 0.65 0.65 0.61 0.51 0.70 0.74 0.61 0.56 0.57 0.65 0.62 0.62 0.65 0.72 0.64 0.61

WF-AM-22 0.67 0.68 0.60 0.77 0.67 0.71 0.69 0.58 0.69 0.76 0.62 0.61 0.59 0.67 0.64 0.64 0.68 0.69 0.67 0.66

WF-AM-23 0.72 0.71 0.66 0.70 0.70 0.70 0.66 0.60 0.65 0.77 0.64 0.60 0.69 0.70 0.64 0.67 0.70 0.70 0.72 0.63

WF-AM-24 0.73 0.68 0.66 0.67 0.71 0.69 0.65 0.56 0.66 0.74 0.61 0.60 0.68 0.68 0.64 0.62 0.64 0.71 0.68 0.62

WF-AM-25 0.71 0.69 0.54 0.72 0.70 0.71 0.64 0.62 0.69 0.77 0.65 0.66 0.72 0.69 0.65 0.66 0.69 0.75 0.68 0.71

WF-AM-26 0.61 0.63 0.53 0.65 0.59 0.60 0.65 0.56 0.62 0.65 0.58 0.52 0.63 0.60 0.59 0.58 0.61 0.62 0.55 0.58

WF-AM-27 0.67 0.78 0.67 0.74 0.73 0.74 0.67 0.70 0.75 0.81 0.74 0.71 0.68 0.79 0.71 0.79 0.80 0.78 0.79 0.76

WF-AM-28 0.63 0.53 0.50 0.69 0.47 0.55 0.41 0.33 0.42 0.59 0.46 0.43 0.51 0.61 0.56 0.59 0.58 0.60 0.62 0.56

WF-AM-29 0.59 0.53 0.48 0.60 0.41 0.52 0.37 0.32 0.42 0.59 0.43 0.43 0.47 0.58 0.53 0.56 0.58 0.63 0.61 0.59

WF-AM-30 0.74 0.70 0.66 0.82 0.77 0.78 0.71 0.69 0.71 0.81 0.74 0.61 0.77 0.80 0.72 0.71 0.73 0.73 0.76 0.72

WF-AM-31 0.70 0.65 0.52 0.65 0.61 0.61 0.58 0.54 0.56 0.68 0.63 0.48 0.57 0.61 0.57 0.62 0.61 0.66 0.64 0.66

WF-DS-01 0.62 0.66 0.51 0.52 0.47 0.57 0.57 0.59 0.53 0.53 0.58 0.58 0.48 0.53 0.58 0.51 0.61 0.55 0.62 0.63

WF-SR-01 0.47 0.37 0.31 0.35 0.35 0.40 0.40 0.36 0.39 0.37 0.42 0.40 0.39 0.41 0.48 0.36 0.43 0.41 0.44 0.47

FA-01 0.65 0.64 0.55 0.64 0.55 0.59 0.70 0.63 0.54 0.60 0.67 0.71 0.68 0.69 0.72 0.60 0.43 0.70 0.67 0.76

GB-01 0.85 0.84 0.82 0.85 0.84 0.85 0.84 0.84 0.82 0.83 0.84 0.86 0.85 0.84 0.81 0.85 0.85 0.83 0.63 0.95

GB-02 0.90 0.89 0.84 0.87 0.87 0.85 0.85 0.87 0.25 0.86 0.88 0.87 0.87 0.93 0.86 0.80 0.87 0.84 0.81 0.92

GB-03 0.85 0.85 0.81 0.85 0.85 0.83 0.35 0.85 0.67 0.82 0.79 0.87 0.87 0.86 0.90 0.61 0.88 0.85 0.85 0.75

UN-KF-11 0.69 0.71 0.74 0.71 0.69 0.74 0.74 0.69 0.78 0.64 0.75 0.74 0.68 0.68 0.67 0.71 0.69 0.76 0.74 0.79

UN-KF-12 0.87 0.78 0.86 0.79 0.84 0.85 0.72 0.85 0.86 0.87 0.85 0.81 0.86 0.86 0.86 0.86 0.87 0.88 0.86 0.88

UN-KF-13 0.86 0.78 0.84 0.87 0.87 0.85 0.72 0.87 0.86 0.87 0.87 0.86 0.87 0.85 0.85 0.88 0.89 0.81 0.82 0.92

UN-KF-14 0.91 0.89 0.86 0.89 0.87 0.89 0.29 0.88 0.83 0.87 0.84 0.85 0.87 0.83 0.88 0.69 0.23 0.85 0.88 0.65

UN-KF-15 0.83 0.83 0.81 0.80 0.81 0.81 0.82 0.84 0.84 0.82 0.80 0.81 0.83 0.80 0.82 0.87 0.85 0.85 0.86 0.85

UN-KF-16 0.84 0.84 0.86 0.80 0.83 0.85 0.77 0.83 0.82 0.86 0.83 0.85 0.86 0.82 0.80 0.85 0.83 0.85 0.82 0.82
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UN-MJ-01 0.79 0.82 0.84 0.86 0.85 0.85 0.86 0.83 0.81 0.87 0.86 0.86 0.85 0.85 0.85 0.87 0.87 0.84 0.86 0.76

UN-MJ-02 0.88 0.86 0.86 0.86 0.85 0.87 0.87 0.84 0.84 0.86 0.86 0.87 0.85 0.88 0.85 0.88 0.87 0.88 0.88 0.79

UN-MJ-03 0.85 0.86 0.84 0.84 0.83 0.85 0.85 0.84 0.82 0.85 0.85 0.86 0.84 0.87 0.85 0.87 0.86 0.87 0.85 0.78

UN-MJ-04 0.86 0.87 0.85 0.87 0.85 0.87 0.89 0.87 0.85 0.85 0.86 0.87 0.86 0.88 0.88 0.88 0.87 0.87 0.87 0.87

UN-MJ-05 0.83 0.85 0.85 0.86 0.85 0.86 0.87 0.87 0.84 0.85 0.85 0.86 0.85 0.85 0.85 0.85 0.86 0.87 0.86 0.85

UN-SH-11 0.91 0.41 0.84 0.88 0.86 0.86 0.74 0.88 0.84 0.86 0.87 0.87 0.87 0.89 0.86 0.88 0.89 0.87 0.88 0.64

UN-SH-12 0.19 0.60 0.86 0.81 0.84 0.20 0.32 0.31 0.75 0.71 0.78 0.00 0.85 0.81 0.87 0.55 0.00 0.24 0.70 0.36

UN-SH-13 0.69 0.90 0.89 0.84 0.81 0.87 0.88 0.87 0.84 0.87 0.87 0.88 0.86 0.88 0.84 0.89 0.88 0.88 0.88 0.83

UN-SH-14 0.12 0.93 0.82 0.83 0.87 0.82 0.71 0.54 0.87 0.89 0.67 0.75 0.81 0.80 0.79 0.60 0.65 0.21 0.88 0.58

UN-SH-15 0.78 0.86 0.82 0.86 0.86 0.84 0.79 0.86 0.85 0.85 0.86 0.87 0.86 0.86 0.74 0.88 0.86 0.85 0.87 0.72

UN-TN-01 0.80 0.80 0.80 0.79 0.80 0.80 0.81 0.78 0.80 0.82 0.79 0.78 0.81 0.81 0.81 0.80 0.74 0.82 0.82 0.82

UN-YY-01 0.87 0.88 0.86 0.87 0.88 0.88 0.89 0.88 0.86 0.87 0.83 0.88 0.87 0.86 0.87 0.87 0.87 0.88 0.88 0.87

UN-YY-02 0.87 0.88 0.87 0.86 0.87 0.88 0.88 0.87 0.85 0.88 0.84 0.87 0.86 0.86 0.85 0.87 0.86 0.87 0.88 0.90

UN-YY-03 0.85 0.85 0.85 0.85 0.85 0.87 0.87 0.86 0.84 0.85 0.84 0.86 0.86 0.85 0.86 0.85 0.85 0.86 0.86 0.87

UN-YY-05 0.87 0.87 0.87 0.86 0.86 0.88 0.87 0.87 0.85 0.87 0.86 0.87 0.87 0.87 0.85 0.87 0.86 0.88 0.87 0.90

UN_YY-04 0.86 0.87 0.87 0.85 0.86 0.88 0.87 0.87 0.85 0.86 0.85 0.87 0.86 0.86 0.86 0.86 0.86 0.88 0.87 0.90
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Appendix E. Sentinel - yearly NDVI values

Table 10. Sentinel yearly average for the months april untill december (NDVI -1 to 1)

2016 2017 2018 2019 Total 
improvement 

Average 
improvement

 % improvement 
compared to before start

WF-AM-01 0.35 0.34 0.37 0.32 -0.03 -0.01 -2.82

WF-AM-02 0.28 0.26 0.30 0.25 -0.03 -0.01 -4.11

WF-AM-03 0.37 0.40 0.39 0.37 0.01 0.00 0.46

WF-AM-04 0.34 0.35 0.37 0.37 0.03 0.01 3.33

WF-AM-05 0.28 0.24 0.31 0.28 -0.01 0.00 -0.83

WF-AM-06 0.38 0.43 0.44 0.43 0.05 0.02 4.58

WF-AM-07 0.42 0.42 0.47 0.46 0.04 0.01 3.53

WF-AM-08 0.36 0.39 0.45 0.44 0.08 0.03 7.25

WF-AM-09 0.47 0.43 0.55 0.52 0.06 0.02 4.06

WF-AM-10 0.54 0.59 0.61 0.51 -0.04 -0.01 -2.29

WF-AM-11 0.42 0.48 0.44 0.45 0.03 0.01 2.15

WF-AM-12 0.43 0.36 0.43 0.40 -0.03 -0.01 -2.35

WF-AM-13 0.51 0.49 0.50 0.53 0.02 0.01 1.59

WF-AM-14 0.39 0.34 0.37 0.37 -0.02 -0.01 -1.97

WF-AM-15 0.49 0.39 0.47 0.44 -0.04 -0.01 -2.96

WF-AM-16 0.38 0.34 0.38 0.38 0.00 0.00 0.19

WF-AM-17 0.50 0.43 0.50 0.52 0.02 0.01 1.23

WF-AM-18 0.45 0.41 0.46 0.45 -0.01 0.00 -0.42

WF-AM-19 0.51 0.45 0.52 0.50 -0.01 0.00 -0.71

WF-AM-20 0.48 0.37 0.45 0.34 -0.13 -0.04 -9.20

WF-AM-21 0.37 0.35 0.37 0.41 0.04 0.01 3.87

WF-AM-22 0.43 0.43 0.49 0.49 0.06 0.02 4.67

WF-AM-23 0.46 0.45 0.48 0.46 0.01 0.00 0.59

WF-AM-24 0.39 0.35 0.38 0.37 -0.03 -0.01 -2.18

WF-AM-25 0.50 0.42 0.48 0.39 -0.11 -0.04 -7.38

WF-AM-26 0.37 0.32 0.36 0.29 -0.09 -0.03 -7.68

WF-AM-27 0.54 0.52 0.52 0.52 -0.02 -0.01 -1.52

WF-AM-28 0.44 0.41 0.42 0.43 -0.01 0.00 -0.88

WF-AM-29 0.35 0.31 0.33 0.37 0.02 0.01 1.43

WF-AM-30 0.41 0.47 0.51 0.47 0.06 0.02 4.83

WF-AM-31 0.39 0.41 0.49 0.46 0.07 0.02 6.41
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Appendix F. Sentinel - October NDVI values

Table 11. Sentinel October average (NDVI -1 to 1)

oct 
2016

oct 
2017

oct 
2018

oct 
2019

Total October 
improvement 

Average 
October 
improvement

 % improvement 
October compared to 
before start

WF-AM-01 0.34 0.47 0.46 0.41 0.07 0.02 7.06

WF-AM-02 0.37 0.39 0.42 0.41 0.05 0.02 4.09

WF-AM-03 0.40 0.57 0.40 0.49 0.09 0.03 7.38

WF-AM-04 0.48 0.56 0.55 0.50 0.02 0.01 1.36

WF-AM-05 0.38 0.42 0.40 0.44 0.05 0.02 4.63

WF-AM-06 0.44 0.56 0.55 0.49 0.05 0.02 3.75

WF-AM-07 0.34 0.60 0.61 0.59 0.26 0.09 25.31

WF-AM-08 0.43 0.54 0.49 0.55 0.12 0.04 9.14

WF-AM-09 0.59 0.60 0.63 0.58 -0.01 0.00 -0.55

WF-AM-10 0.53 0.68 0.67 0.67 0.14 0.05 8.67

WF-AM-11 0.52 0.62 0.59 0.63 0.10 0.03 6.46

WF-AM-12 0.58 0.56 0.45 0.55 -0.03 -0.01 -1.68

WF-AM-13 0.64 0.63 0.65 0.62 -0.02 -0.01 -1.01

WF-AM-14 0.53 0.51 0.55 0.52 -0.01 0.00 -0.34

WF-AM-15 0.60 0.57 0.64 0.57 -0.03 -0.01 -1.46

WF-AM-16 0.54 0.54 0.55 0.56 0.02 0.01 1.16

WF-AM-17 0.58 0.58 0.62 0.56 -0.02 -0.01 -0.93

WF-AM-18 0.58 0.56 0.62 0.56 -0.02 -0.01 -1.19

WF-AM-19 0.63 0.62 0.66 0.60 -0.03 -0.01 -1.84

WF-AM-20 0.67 0.62 0.67 0.63 -0.05 -0.02 -2.25

WF-AM-21 0.53 0.57 0.47 0.59 0.06 0.02 3.49

WF-AM-22 0.60 0.61 0.45 0.63 0.04 0.01 2.02

WF-AM-23 0.58 0.60 0.46 0.60 0.01 0.00 0.81

WF-AM-24 0.53 0.60 0.59 0.61 0.08 0.03 4.82

WF-AM-25 0.69 0.65 0.24 0.68 -0.02 -0.01 -0.75

WF-AM-26 0.50 0.53 0.56 0.54 0.04 0.01 2.56

WF-AM-27 0.55 0.65 #DIV/0! 0.59 0.04 0.01 2.29

WF-AM-28 0.56 0.54 0.38 0.52 -0.04 -0.01 -2.49

WF-AM-29 0.45 0.43 0.32 0.43 -0.02 -0.01 -1.40

WF-AM-30 0.54 0.59 0.66 0.64 0.10 0.03 6.22

WF-AM-31 0.59 0.58 0.59 0.61 0.03 0.01 1.52
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Appendix G. NDVI increase/decrease comparison

Table 12. NDVI average yearly increase/decrease per active project year for the WeForest Amhara sites

Site-ID MODIS yearly 
average

MODIS 
October 
average

Sentinel yearly 
average  (apr-dec) 

Sentinel 
October average 

WF-AM-01 0.014 0.003 -0.010 0.024

WF-AM-02 0.014 0.028 -0.012 0.015

WF-AM-03 -0.012 -0.005 0.002 0.030

WF-AM-04 -0.003 -0.003 0.011 0.007

WF-AM-05 0.002 -0.025 -0.002 0.018

WF-AM-06 -0.003 -0.027 0.017 0.016

WF-AM-07 0.011 -0.013 0.015 0.086

WF-AM-08 0.006 0.002 0.026 0.040

WF-AM-09 -0.003 -0.010 0.019 -0.003

WF-AM-10 0.018 -0.002 -0.012 0.046

WF-AM-11 0.002 0.002 0.009 0.034

WF-AM-12 -0.002 -0.009 -0.010 -0.010

WF-AM-13 0.002 -0.011 0.008 -0.006

WF-AM-14 0.011 0.007 -0.008 -0.002

WF-AM-15 0.012 0.010 -0.014 -0.009

WF-AM-16 0.014 0.003 0.001 0.006

WF-AM-17 0.015 -0.012 0.006 -0.005

WF-AM-18 -0.001 -0.003 -0.002 -0.007

WF-AM-19 0.013 -0.016 -0.004 -0.012

WF-AM-20 0.007 0.002 -0.044 -0.015

WF-AM-21 0.005 -0.013 0.014 0.019

WF-AM-22 0.000 -0.007 0.020 0.012

WF-AM-23 0.015 -0.025 0.003 0.005

WF-AM-24 0.019 -0.008 -0.009 0.026

WF-AM-25 0.008 0.006 -0.037 -0.005

WF-AM-26 0.006 -0.012 -0.028 0.013

WF-AM-27 0.006 -0.013 -0.008 0.013

WF-AM-28 0.008 -0.007 -0.004 -0.014

WF-AM-29 0.015 0.005 0.005 -0.006

WF-AM-30 0.042 -0.002 0.020 0.033

WF-AM-31 0.028 0.016 0.025 0.009
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Figure 38. Graph with different NDVI improvement results for the same WeForest Amhara project sites.
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Appendix H. 
Scatterplot with trendlines of yearly average NDVI improvement excluding the WeForest projects
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Figure 39. Scatterplot with trendlines of numeric indicators with yearly average NDVI improvement 
excluding the WeForest projects
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Appendix I. 
Multiple linear regression results for Sentinel October average NDVI increase against the numeric suitability indicators 
for the WeForest Amhara sites.

Call:
lm(formula = NDVI ~ RZMC + minPrec + PH + DEM + RoadDistance + People + GDP, data = mlvr)

Residuals:
    Min      1Q  Median      3Q     Max 
-318.64 -109.10   -6.72  133.16  267.02 

Coefficients  Estimate  Std. Error  t value   Pr(>|t|)
(Intercept)   -1874.495    4332.410   -0.433      0.669
RZMC           53.441      67.144     0.796      0.435
minPrec        110.982     140.758    0.788      0.439
PH                3.578      41.820     0.086      0.933
DEM             -1.115       1.002    -1.112      0.278
RoadDistance   8.841       14.729     0.600      0.554
People      5023.881    4192.699    1.198      0.244
GDP           12.104      79.832     0.152      0.881

Residual standard error: 176.4 on 22 degrees of freedom
Multiple R-squared:  0.2276, Adjusted R-squared:  -0.0181 
F-statistic: 0.9264 on 7 and 22 DF,  p-value: 0.5058
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