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Abstract 

A topographic steering river meandering (TSRM) modei based on continuity of a simph­
fied flow field through bends is developed. The equilibrium coupHng between helical flow 
and sediment transport, as in Ikeda [1989] determines downstream variation of transverse 
bed slope. The model tests the hypothesis that meander development patterns can be cap­
tured under the assumptions: (a) bank shear stress arises from forces associated with topo­
graphically induced convective accelerations; (b) turbulent boundary layer dissipation of 
these forces at the banks is sufflcientiy represented by gaussian smoothing at a parameter­
ized scale; and (c) lateral migration of the channel is proportional to bank shear sti-ess. The 
resulting TSRM model produces realistic complex meander patterns and scroU bar-like 
topography. Model compound bend formation is compared to a field case and found to 
arise from the nonUnear interaction of bank roughness and channel hydraulics scales. 
When the latter is short relative to the former, maximum bank shear stress occurs early in 
the bend and leads to compound bend formation. New statistical stream sinuosity and spa­
tial coordinate variation measures are apphed to both nahiral and model streams and 
reveal secondary sinuosities arising from compound bend formation in both cases. Scroll 
bar topography and channel bank roughness are studied in the field to compare natiiral and 
model mechanisms. 

A channel-hiUslope integrated landscape development (CHILD) model incorporates the 
TSRM model. The CHILD model represents the landscape as an irregular, Delaunay tiian-
gulated mesh of landscape nodes that may be moved, deleted, or added to accommodate 
meandering channels that are in general discretized at different spatial resolution than the 
surrounding landscape. The interactions among meandering, bank erodibiHty's bank 
height dependence, and uplift rate in a detachment-limited river valley are examined. An 
equilibrium landscape adjusts to the onset of meandering and approaches a new dynamic 
equilibrium. For the detachment-limited case, the hypothesis that meandering is more 
active when uplift is quiescent is rejected. When bank erodibiHty's bank height depen­
dence is greater, bend scale sinuosity is smaller, but the tendency toward multi-bend loop 
formation is reinforced. 
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Chapter 1 

Introduction 

The original objective of this study was to model the transport and deposition of sediments 

in river basins in the context of landscape evolution. The new m.odel would employ tech­

niques developed in previous studies where possible, but new process models would be 

derived where the techniques of previous models were inadequate: in the freatment of mul­

tiple sediment sizes, lateral fluvial erosion, and floodplain deposition. The model study 

would attempt to answer the foUowing question: given an initial distribution of sedhnents 

in space and a climatic forcing in time, what is the söaicture of deposits after some thne 

interval? 

The initial objective of the present study was to develop a landscape evolution 

model (see review in Chapter 2) that would incorporate the new features hsted above. The 

problem of lateral fluvial erosion, or meandering, would not yield to a solution based on 

the traditional rectangular grid. Instead, I sought the simplest possible solution that stiU 

captured most of the physics of river meandering. The resuhs of the present study are new 

models of river meandering and landscape evolution. Another member of the research 

group took up the problem of multiple grain size sedhnent hansport, and the problem of 

floodplain deposition has not been addressed. I review the landscape evolution modeUng 

literature in Chapter 2. 
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An understanding of the process of river meandering is basic to an understanding 

of river processes in general. That general understanding is important for people whose 

work with rivers covers a broad range of spatial and temporal scales—from the erosion of 

pasture land from year to year, to the formation of alluvial terraces over millennia, to the 

evolution of a river basin over the geologic thne. I review the river meandering hterature in 

Chapter 2. 

From the hterature and through studies of rivers from maps and aerial photographs 

and in the field, I found that important aspects of meandering were not predicted by the 

state of the art of river meander modeling, nor has the impact of meandering on the land­

scape received much stody. I present a study of natural river meandering in Chapter 3. 

Field and experimental studies have shown that channel bed topography has a strong effect 

on the patterns of flow and sedhnent ttansport through a bend and, thus, on the meander­

ing process. In Chapter 4,1 explain a new model of river meandering based on the hypoth­

esis that "topographic steering" [Dietrich and Smith, 1983] is the major physical confrol 

on stream bank erosion. I show the model results and draw comparisons with the findings 

in Chapter 3. 

In Chapter 5,1 retum to the problem of landscape evolution modeling. The aim is 

to simulate the evolution of valleys and streams as long as several kilometers on the scale 

of millennia for alluvial streams or millions of years for bedrock sfreams. I explain a new 

landscape evolution model that incorporates the meandering model on an irregular, flexi­

ble grid and show some synthetic results of the integrated m.odel. 
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The present work leaves some questions unanswered relative to nature and the two 

new models. In Chapter 6,1 explore the dkections of future work and discuss possible 

improvements to the river meandering model. The landscape evolution model is under 

active development, and I address the dkection of that development and explore some 

interesting experiments, especiahy with regard to meandering, that could be done with the 

fuUy developed model. I also address the subject of model verification through field stiid-

ies. FinaUy, I discuss the knpUcations of the whole stiidy and conclude in Chapter 7. 
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Chapter 2 

Literature Review 

This chapter wih review previous work on the subjects of landscape evolution and river 

meandering. In my review of the landscape evolution literature, I will address some of the 

fundamental processes which remain unaddressed by the models. Specifically, I will 

address the treatment of geomorphic processes in the context of the fluvial-dominated 

landscape and review the hterature on the subject of river meandering. 

2.1 Landscape Evolution 

The study of landscape evolution has progressed rapidly within the past decade or so. 

Landscape evolution models have attained general acceptance only recently and can now 

model relatively large landscapes relatively quickly, but the suite of modeled processes has 

not changed much since Ahnert [1976], except for a few recent examples which I wiU 

highlight in the following review. In this review of landscape evolution modeling, I focus 

on previous models' capabilities to represent various landscape processes and give less 

attention to the scientific results of the model studies. 

Water, ice, wind, gravity and biogenic activity may all act as agents of, or forces 

behind, sediment ttansport and, thus, landscape evolution. Aside from glacial and related 

processes, ice is responsible for diffusional ttansport by frost heaving and physical weath­

ering by frost shattering. Wind is responsible for abrasion erosion, soü sttipping, loess 

deposition and diffusional ttansport on hillslopes by ttee throw. The biogenic activity of 
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burrowing mammals also produces diffiisional transport [Black and Montgomery, 1991]. 

Gravity transport in river basins includes soil creep and mass wasting processes such as 

rockfaU [Carson and Kirkby, 1972; McKean et al, 1993] and landsUding [Montgomery 

and Dietrich, 1994]. Fresh water transport in river basins may take several distinguishable 

forms: rainsplash, overland flow, groundwater sapping, and fluvial processes, including 

channel flow. Overland flow, sapping, and landsliding may cause erosion and initiate a 

channel [Dietrich et al, 1993; Montgom.ery and Dietrich, 1988, 1989, 1992]. 

Various studies of sediment transport miiTor greatiy disparate spatial and temporal 

scales of sedimentary processes. On the one hand, the finest spatial and temporal scales (< 

1mm, < 1 sec.) are required to study the entrainment and motion of sediments in turbulent 

flow (e.g., Tetzlajf and Harhaugh, 1988; Slingerland, etal, 1994). On the other hand, the 

evolution of fluvial landscapes and sedimentary basins takes place on domains as large as 

thousands of square kilometers and over periods as long as hundreds of millions of years 

[Young andMcDougaU, 1993]. 

Gilbert [1877] recognized that the simultaneous interaction of many processes 

form a landscape in dynamic equilibrium as opposed to Davis's [1909] geographic cycle 

of uplift and erosion. Gilbert [1909] saw that the local differences in form are due to dif­

fering process dominance. For example, he recognized that the change from convexity to 

concavity in the landscape was due to changes in process dominance from hiUslope diffu­

sional to advective fluvial processes. Later, Hack [1960] infroduced the concept of 

dynamic equilibrium as a steady state in which uplift exactly balances erosion such that 

elevations remain constant in time. In this work I use a less restrictive definition of 
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dynamic equilibrium such that elevations at a site may change, but on the scale of the land­

scape the processes building and eroding the landscape are in equilibrium. 

It was not until Smith and Bretherton [1972] that the issue of process dominance 

was addressed in a quantitative model. They found that perhirbations of an inclined plane 

introduced instabihties due to the convergence of flow. This instabihty aUowed advective 

transport to outpace diffusive ttansport and, thus, form a channel network. Their work was 

somewhat flawed, however, in that their results imphed an infinite dissection of the land­

scape. 

Kirkby [1971] and Carson and Kirkby [1972] inttoduced a simple profile model of 

hiUslopes in which the sediment flux per unit width is a function of the distance from the 

divide and the local slope: 

O C jc '"^" (2.1) 

where x is effectively a surrogate for discharge. Later profile studies have built 

upon the above simple model by adding functions for soil production and considering the 

effects of spatial and temporal variations in climatic forcing [Kirkby, 1989]. Subsequentiy, 

three-dimensional landscape evolution models have built upon the above equation by 

including two basic terms in a sediment flux equation dependent on drainage area (analo­

gous to X above) and local slope, one term for advective transport (m > 0 and n > 0) and 

one term for diffusive ttansport (m = 0 and n = 1). 

Vanguard am-ong landscape evolution models axe Ahnert [1976] and Cordova, et 

al. [1982]. Ahnert [1976] modeled regohth production and diffusional, mass wasting, and 
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advective transport processes, and Cordova, et al. [1982] modeled explicitly fluvial trans­

port processes, both on a two-dimensional grid. Ahnert [1976] modeled transport from a 

point to aU downhiU points according to the discharges and slopes in each direction, while 

Cordova, et al. [1982] collected flow and sediment from all upsfream points and sent flow 

and sedhnent to only the downstream point with the steepest slope. After these works, 

progress in the modeling of landscape evolution was hindered by the lack of a quantitative, 

field-based understanding of the processes shaping the landscape and, on a more practical 

note, sufficient computing power to model landscapes on grids larger than several points 

per side. 

Montgomery and Dietrich [1988] brought the issue of channel initiation into the 

general consciousness, Montgomery and Dietrich [1989] followed up on that earher 

work with a thorough field study of channel initiation processes, including overland flow, 

shallow landshding, and seepage erosion. Montgomery and Dietrich [1989] addressed the 

issue of what defines landscape scale and derived an alternative approach to defining 

drainage density in terms of channel head source basin length. 

Willgoose, et al. [1989, 1991] developed a landscape evolution model, SIBERIA, 

in which ttansport in channels had greater capacity than non-channel ttansport. Channels 

were exphcitly defined with an activator function. The channel activator was a separate 

governing partial differential equation which extended the channel network via headward 

growth according to the value of a threshold criterion dependent on the drainage area and 

local slope at a point. The latter slope dependence markedly distinguished the activator 

from the headward growth model of Howard [1971]. Montgomery and Dietrich [1992] 
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used mapped channel head locations to empirically define a topographic threshold similar 

in form to the activator function. 

Dietrich, et al. [1992] developed a graphical technique to define spatial variation in 

process dominance and divided the landscape into areas prone to channel instability due to 

runoff and stable areas dominated by diffusion processes. Tarboton, et al. [1991,1992] 

developed a similai" technique for differentiating channels and hillslopes in digital eleva­

tion models (DEMs), but the method v/as not tested against mapped channels. Ijjasz-

Vasquez, et al. [1992] used a saturation from below mechanism for channel initiation in 

the SIBERIA model. Dietrich, et al. [1993] addressed the question of whether thi-esholds 

for runoff generation or slope failure better defined the locations of known channel heads. 

They found that a threshold based on a critical shear stress due to saturation overland flow 

was better than one based on a threshold for landslide initiation at predicting channel head 

locations when applied to real landscapes. Montgomery and Dietrich [1994] derived and 

tested a model of pore pressure-induced shallow landsliding by combining the infinite 

slope stability model for shallow soils with a simple expression for subsurface flow in 

steady state. They were successful in predicting the locations of some mapped landslide 

scars. 

Howard [1994] compared the effects of different hiUslope processes, and Tucker 

and Bras [1998] recently incorporated many channel initiation and hiUslope processes in a 

landscape evolution model in order to examine the differences among landscapes pro­

duced by the various processes. Howard [1998] recentiy modeled a system in which resis­

tant bedrock is mantled by soft regolith which is in tum covered by resistant vegetation 
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and investigated gullying in response to disturbances in the vegetation layer. Moglen and 

Bras [1995] investigated the effect of a spatially heterogeneous erodibility and cahbrated 

the model to natural landscapes with a simple detachment-limited advection-diffusion 

model. They found that heterogeneity led to patterns of drainage aggregation that were 

more circuitous and more realistic than the model networks produced in the homogeneous 

case. Rosenbloom and Anderson [1994] used a landscape evolution model with diffusion 

limited by regolith production on hillslopes and detachment limited erosion in channels to 

model the formation of marine terraces and calibrated the model to a site in California. 

Tucker and Slingerland [1994, 1996, 1997] developed the Geologic, Orographic Land­

scape Evolution Model (GOLEM) with the above processes and both bedrock and alluvial 

channels to model escarpments, fold and thrust mountain belts, and the effects of climate 

change on drainage basins. 

Several other landscape evolution models are noteworthy here. Chase [1992] 

developed a "precipiton" model in which parcels of water are placed in random locations, 

routed downstream, and aUowed to erode or deposit sediment along the way. This model is 

similar to that of Beaumont, et al. [1992]. This model is really only valid if the governing 

equations for sediment transport are linear in discharge because flow cannot aggregate, 

i.e., only one pixel generates flow during a given iteration. Beaumont, et al. [1992] and 

Kooi and Beaumont [1994] also incorporated orogenic influences on rainfall and intro­

duced a reaction length scale such that entrainment and deposition as calculated at a single 

point are potentially spread over more than one point along the channel. Braun and Sam-

bridge [1997] developed a model on a triangulated irregular network (TIN). In this model, 

points can be added, e.g., to resolve steep slopes, and points can be moved according to 
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simple rules mimicking tectonic motion. Gasparini, et al. [1997] incorporated sediment 

with multiple grain sizes in a landscape evolution model by combining the sand and gravel 

ttansport model of Wilcock and McArdell [1993] with Tucker and Slingerland^ [1994] 

GOLEM. They found that even in dynamic equilibrium drainage basins exhibited down­

stteam fining and the changes in texture had a large effect on basin stteam profile concav­

ity. This effect was recognized long ago by Hack [1957]. Dunne and Aubrey [1986] 

attempted to model the effect of different grain sizes and reported qualitative agreement 

between model and experiment, but they abandoned the effort because they were unable to 

reproduce the experimental values of sediment ttansport due to the sensitivity of the 

model. 

Another group of landscape models takes a more rules-based approach. For exam­

ple, Rodriguez-Iturbe, et al. [1992] evolved topography and stteam networks according to 

optimality criteria. These opthnal channel networks, or OCNs, indicate that minimization 

of total network stream power is sufficient to produce networks resembling natural ones. 

This approach is essentially statistical mechanics applied to river basins, whereas the 

present approach addresses the mechanics of specific landscape processes. Rinaldo, et al. 

[1995] used a model with diffusive hiUslope ttansport and detachment-limited advection 

according to a critical shear stress threshold to study changes in drainage density with ch­

mate. They found that a lower threshold and constant diffusion sttength led to greater 

drainage density. 

As I wiU show in later chapters, lateral channel migration is an hnportant factor in 

the evolution of the landscape, but no landscape model has incorporated this fundamental 
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process. In fact, no one has even considered the quantitative effects of lateral migration on 

drainage basin form beyond the recognition that it can widen valley floors and produce 

characteristic forms such as terraces [Merritts, etal, 1994], bluffs, and slip-off slopes. A 

model incorporating lateral channel migration, or meandering, is requked to address the 

interaction of meandering and other landscape processes and is the major goal of the 

present work. 

2.2 River Meandering 

Schumm, et al [1987] illuminated some ofthe conditions necessary for the devel­

opment of stable meanders. They experimented with meandering in an initially curved, 

experimental "bedrock" channel. They found that clear water flow incised an inner chan­

nel at the inside of the bend. With the admixture of bedload sediment to the incoming 

flow, however, the channel migrated laterally and incision slowed. They observed that the 

bedload material formed a transversely sloped point bar which steered the experimental 

stream's erosive energy toward the outside bank. They concluded that point bar-forming 

bedload is a necessary condition for meandering in a channel with cohesive banks. 

Leopold and Wolman [1960] noted that meltwater rivulets on ice develop meanders in the 

absence of bedload, but they did not study the mechanism responsible for this develop­

ment. 

Another set of experiments by Schumm, et al [1987] revealed that an initially 

straight channel in cohesionless material formed a "meandering thalweg" pattern during a 

stage prior to the development of a braided pattern. However, when they mixed cohesive 

material with the inflow to the meandering thalweg channel, the deposition of the cohesive 
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material stabilized the point bars to form a floodplain, and the meandering thalweg 

became a stable meandering channel. They concluded that the conditions necessary for the 

development of a stable meander pattern, whether bedrock or alluvial, were: a) the pres­

ence of bedload ample enough to develop a point bar and to redirect a signiflcant portion 

of the stteam's energy toward the outside bank; and b) a mechanism or process providing 

bank stabihty, such as cohesive bank material, bank stabihzing vegetation, or a cohesive 

suspended load to deposit on and stabihze point bars. The recent experimental results of 

Smith [1998] support these conclusions. When the above conditions are met stable point 

bars may form that steer the high velocity flow to the outside bank. In the case of zero 

incision, such point bars accrete to form a floodplain which resists the formation of sec­

ondary channels or chutes that, in the extreme case, would lead to braiding. 

Dietrich and Smith [1983], Dietrich and Whiting [1989], and Nelson and Smith 

[1989b] showed that the flow and boundary shear stress fields in meander bends are 

strongly affected by the presence of point bars, a phenomenon they called topographic 

steering. Dietrich and Smith [1983] found that "[fjorces arising from topographically 

induced spatial accelerations are of the same order of magnitude as the downstream 

boundary shear stress and water surface slope force components." In fact, some of the 

results of Dietrich and Whiting [1989] showed that the forces arising from topographic 

steering were of greater magnitude than the water surface slope force component. Nelson 

and Smith [1989b] modeled flow and sediment transport in a channel bend with an ini­

tially flat bottom. Their modeling experiment showed, with the growth of the point bar, the 

corresponding development of a region of high boundary shear stress near the outside 

bank. 
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Many authors have modeled meandering [Ikeda, et al, 1981; Parker, et al, 1982; 

Parker, 1983; Parker, etal, 1983; Beck, 1983; Blondeaux and Seminara, 1985; Johannes­

son and Parker, 1985, 1989a, b, c; Parker and Andrews, 1986; Parker and Johannesson, 

1989; Crosato, 1990; Howard, 1992; Seminara and Tubino, 1992; Garcia, et al, 1994] by 

linearizing the equations of flow and sedhnent hansport such that they afford a tractable 

solution for the near-bank downstream flow velocity as a function of the downstteam 

coordinate. Higher velocity near the bank corresponds to larger bank shear sttess because 

that shear sttess is proportional to the lateral gradient of downstteam flow velocity near 

the bank; higher near-bank velocity means a greater velocity gradient. These models also 

assume that bank erosion is a detachment-limited process [Howard, 1994]. Models of river 

meandering based on the linearized flow equations (LFE models) produce reahstic mean­

der bends [Howard, 1992] and have proven useful in predicting channel migration in some 

cases [Johannesson and Parker, 1985] but with mixed resuhs in others [Garcia, etal, 

1994]. The models of Blondeaux and Seminara [1985] and Johannesson and Parker 

[1989a] revealed the existence of complex feedbacks between flow and bed topography. 

Other authors [Smith and McLean, 1984; Nelson and Smith, 1989a, b] have devel­

oped "two-plus"-dimensional channel flow and sediment ttansport models using depth-

averaged equations for the bedload ttansport and an assumed vertical velocity profile for 

the suspended load ttansport. These numerical models are more detailed than LFE models, 

and, as mentioned above, they show that topographic steering greatly affects flow and sed­

iment ttansport in bends. Nelson and Smith [1989b, p. 350] point out that, to deal with 

bank erosion and meandering, their model would need to include "both consideration of 
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the lateral diffusion of momentum [at the bank] by turbulence and the characterization of 

bank roughness." 

Howard [1992] noted four conshaints on the rate of bank erosion: 

These consteaitits are, or may be, sequentiaUy linked, so that 
the slowest among them controls the overaU rate. 

(1) The rate of deposition of the point bar. 

(2) The abihty of the stream to remove the bedload compo­
nent of the sediment eroded from the bank deposits via a net 
transport flux divergence. 

(3) The abihty of the stream to entrain sediment in situ or 
mass-wasted bank deposits. 

(4) The rate with which weathering acts to dkninish bank 
sedhnent cohesion to the point that particles may be 
entrained by the flow or bank slumping may occur. 

Howard [1992] developed an erosion law based on near-bank shear stress and con­

cluded that it was most apphcable in the detachment-limited erosion of cohesive banks 

(consh-aint 3). Such a law may also be apphcable in the case of bedrock, where the global 

rate of bank erosion may be limited by the weathering rate (conshaint 4) which may, in 

turn, be independent of other channel processes, while the bank erosion at a specific point 

may be dependent on the relative ability of the near-bank flow to detach bank material. 

Howard [1992] used the Johannesson and Parker [1989a] m.odel to shnulate the 

long-term evolution of meandering channels and floodplain topography. Following the 

reasoning of other authors [Beck, 1983; Johannesson and Parker, 1985; Crosato, 1990; 

Garcia, et al, 1994], Howard [1992] expressed the near-bank flow velocity and channel 

depth in terms of linear perturbations on the mean values; in the model, the rate of bank 

erosion is proportional to the velocity pertiirbation, and the initial floodplain elevation is 
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found from the depth perturbation. Howard [1992, 1996] developed this model further by 

including floodplain deposition as a diffusional process [Pizzuto, 1987] and chute forma­

tion as a stochastic process [Howard, 1996]. 

The above work has done much to further the understanding of the meandering 

process, but a key question is left unanswered; that is, how important is the effect of 

strongly nonlinear topographic steering to meander evolution in hght of the success of lin­

ear and weakly nonlinear models? The weakly nonhnear approach does address nonlinear 

effects but only for small curvature and within a small neighborhood of "resonance", or 

the meander wave number at which the hnear solution becomes unbounded. Despite much 

evidence that topographic effects are sttongly nonlinear, ahnost ah models use similar hn­

ear or weakly nonhnear approaches. Two recent exceptions are Droste [1996] and Imran 

and Parker [1997], but these models are still too computationally slow to model channel 

evolution over geologic time, especiahy in the context of an entire landscape. 

A new approach combining stiong nonlinearity and computational efficiency is 

called for to address nonlinear effects over long channel courses and times. Stiong nonlin­

earity is requh-ed in order that the model's apphcation is not limited to bends with smaU 

curvatiire and, therefore, after short times. Computational efficiency is required to incor­

porate the model in a landscape-scale model. To meet both of these requirements, I must 

determine the essential physics required to model meandering. Once the new meandering 

model is developed, I must address the proper coupling of the meandering channel and the 

landscape where they meet, at the channel bed and banks. For a fuU coupling, sediment 

input to the channel from the surrounding landscape should also be addressed, but a thor-
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ough treatment of this issue is beyond the scope of the present work. In order to provide 

bases for comparison of both the meandering and coupled models to natural streams and 

landscapes, I first investigate the morphology of the latter natural systems. 
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Chapter 3 

River Meandering in Nature 

In this chapter I report resuhs and observations from a study of natural meandering rivers. 

This study was motivated in part by the modeling study presented in the foUowing chap­

ters. I needed to ask the question: How do I judge the success or failure of a new river 

meandering model and its incorporation in a landscape evolution model; what questions 

remain unanswered? what phenomena unexplained? Included in this chapter are a field 

study in Maine and the Ozarks of Arkansas and Missouri and remote studies of the Missis­

sippi floodplain, the Schoharie Creek drainage basin in the CatskiUs of New York, and 

Alaskan meandering stream channel planforms. 

3.1 Introduction 

3.1.1 Meandering and the Landscape 

Meandering streams are familiar features of the landscape. Though the vaUeys of 

incising meanders may be quite narrow, meandering streams typically occupy relatively 

flat valley floors, as in the case of Schoharie Creek in New York, shown in figure 3.1. Lat­

eral channel migration may flatten the vaUey bottom by forming a strath surface if the 

channel erodes laterally but not vertically. Often meandering streams are characterized by 

net deposition and aggradation, and these alluvial deposits may partiaUy fill the valley, and 

their surface may form a relatively flat fill surface. 
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Meandering streams may also degrade and incise the landscape. If the migration 

rate is large with respect to the rate of incision, the stream may cut a flat-bottomed swath 

through the former fill or strath. Cycles of cutting and fiUing may create a series of cut and 

fill terraces. Cycles of cutting and strath formation may form a series of strath terraces. 

Often the two types of terraces are found in the same valley [Meritts, et al, 1994]. I f the 

migration rate is small relative to the incision rate, then the stream forms incising mean­

ders. As opposed to the point bars and cut banks form„ed on strath and fill surfaces, incis­

ing meanders have slip-off slopes and bluffs, respectively, as on the Buffalo River in 

Arkansas, shown in figure 3.2. 

0 

0) 
E 0 0 
10 

3600 meters' 

Figure 3.1: Surface with contours at 50 meter intervals of elevation from the 30 meter-
horizontal-resolution digital elevation model (DEM) of the Hunter, NY, 7.5' quadrangle. 
Shown is part of the Schoharie Creek basin along the main channel; view is downstream 
and to the west. 
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km I-
Figure 3.2: Visualization of Ponca, AR, 7.3" DbM. Elevation range of the DEM is 260¬
739 meters; horizontal resolution is 30 meters. 

Even in the absence of terraces, slip-off slopes, and bluffs, meandering stteams can 

form comphcated floodplain topographies. As channels erode at the outer banks of bends, 

they deposit material to form the point bar at the inner banks. Floods deposit not only fine 

sediments from suspension on the floodplain but also coarser sedhnents from bedload, 

often in floodplain channels. Such channels are scoured by flood flow. Thus, floodplain 

topography is the result of lateral and vertical accretion and scour in floodplain channels. 
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These floodplain channels may themselves meander. Channels migrate to form meander 

loops that eventually cut off to form oxbow lakes. Thus, the hydrauhcs of channel and 

flood flow can create a complex floodplain topography. 

Other feahires of meandering sheams are not as well understood as those 

described above. ScroU bar topography, or the series of concenttic curved ridges and 

swales on the floodplain, is as ubiquitous as are meander loops and oxbow lakes, but scroU 

bar topography is not explained by the shnple set of processes described above. An exam­

ple of scroll bar topography on the Mississippi River floodplain is shown in figure 3.3. 

Figure 3.3: Red Leaf, AR, 7.5' quadrangle DEM. Mississippi River (blue) flows toward 
observer. 

Several authors have noted the existence of compound bends, or bends with parts 

that have opposite curvature (see figure 3.4), as opposed to simple bends that have curva­

ture of the same sign throughout. Compound bends also have famihar, characteristic 

shapes, such as the bend shown in figure 3.4, and, therefore, are not likely the result of 

bank heterogeneity or some other stochastic process. 

Another important part of the meandering system is the eroding channel bank. The 

mechanisms of bank failure and the forms created by that failure affect the shape and size 
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of the meander bend by defining both the channel's migration pattern and the smaUer fea­

tures of the bank. 

Finally, I should reexamine the role of meandering in the landscape. Though the 

characteristic forms of flat vaUey floors and steep vaUey sides or slip-off slopes and bluffs 

are recognized, beyond that quahtative recognition the effect of meandering on the land­

scape is often ignored in the interpretation of the slope-area relationship, i.e., local slope 

plotted against contributing area at each point in a discretized drainage basin from a DEM. 

B 
HI 

Figure 3.4: Photograph from space of a fributary to the Amazon River, flow from top to 
bottom, channel highlighted. 

Also, the mechanism of downstteam valley width variation is not well understood. 

Faster channel migration with respect to the incision rate wiU lead to a wider, flatter vaUey 

bottom. But, what conttols these relative rates? Changes in valley width along a stream are 

commonly observed to correspond to changes in lithology. Valleys may be wider where 

the valley waUs are more erodible because greater bank erodibility wiU lead to faster 

migration for the same bank shear stress. It is also possible that changes in Uthology may 

lead to changes in the magnitude of that shear sttess. In Chapter 2,1 discussed topographic 

steering, or the role of bedload in forming bars that, in turn, steer the flow toward and, 

thus, increase the shear sttess at the bank. Differences in lithology may correspond to dif-
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ferences in bedload, e.g., in the amount or particle size distribution. In turn, different sizes 

and types of bedload may lead to different bar forms and, thus, magnitudes of topographic 

steering. An increase in the latter magnitude would increase the lateral channel migration 

rate and, possibly, the vahey width. 

In this chapter, I present a study addressing the above issues. The focus is on mor­

phologic, rather than hydrauhc, measurements and indicators of meandering process 

dynamics. The study includes rivers and streams in Alaska, Arkansas, Maine, Missouri, 

and New York, and uses both remote and field data. The objective is to develop both an 

understanding of the mechanisms active in meandermg streams and a methodology for 

measuring the morphologic effects of these mechanisms. In later chapters, I draw on the 

results of this chapter in order to assess the results of the new river meandering and land­

scape evolution models. 

3.1.2 Compound Bend Formation 

As noted parenthetically above, I define compound bends as bends that evolve 

from simple bends to develop a curvature reversal in the course of the bend. Brice [1974] 

documented the formation of compound bends on the White River, Indiana, though the 

above definition is slightly different from Brice's. He defined a simple meander loop as 

"[having] one segment of constant curvature whose length exceeds its radius" and a com­

pound loop as "[including] two or more shnple loops, whose curvature is commonly 

dfrected toward the same side of the river." Both definitions, his and the present one, usu­

ally agree and do involve some subjective judgment to distinguish between a compound 

bend and a series of simple bends. Brice [1974] noted that compound loops "demonstiably 
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evolve from simple loops," and the present definition of compound bends follows from 

this observation. 

Two mechanisms, cutting off and compound bend formation (see figure 3.5), aî e 

both important for the development of complex meandering stream patterns. Bends are cut 

off when the channel bypasses the bend by seeking a shorter path across the floodplain. As 

a resuh of cutoffs, the meander axis shifts to one side or another at different locations, and 

the channel course becomes erratic. Cutoffs also produce new smaller bends relative to the 

larger loops which remain (see figure 3.5(a)). 

Figure 3.5: Illusttation of two mechanisms which influence meander belt complexity: (a) 
cutoffs and (b) compound bend formation. 

As a rule, simple bends that become compound first develop a middle section of 

low curvature. Such bends might be compound under Brice's [1974] definition, but under 

the present definition the curvature must actually reverse, or change sign. Some distur­

bance initiated upstteam of the bend, such as that investigated in the following sections, 

leads to migration that reverses the curvature where it was smah (see figure 3.5(b)) and, 

therefore, makes the bend compound. An example of a typical compound bend shape from 

the Amazon River basin is shown in figure 3.4. In some cases, the section with reversed 

curvature may continue migrating in that reverse direction such that the compound bend 
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separates into three distinct smaU bends (see figure 3.5(b)). The result of such separations 

is that the size, shape, and orientation of bends becomes more irregular in general, as in 

figure 3.5(b). Note that the initial bends in figure 3.5(a) and (b) are differently shaped and 

that the different shapes are indicative of their different evolution. 

The bend separation that often follows from compound bend formation increases 

the time over which prior conditions are reflected in present forms. In the absence of com­

pound bend formation, bends grow until they cut off, either by chute formation or the 

breaching of the thin neck connecting the point bar to the rest of floodplain. These mecha­

nisms are known as chute and neck cutoffs, respectively [Howard, 1992]. Cutoffs essen-

tiaUy erase the old bend because the new channel bypasses the old bend completely. 

However, as explained above, bends may also become compound and separate 

rather than cutting off, and this process may be repeated in the bends resulting from the 

initial compound bend formation. In such cases, the shape of the first bend is reflected in 

the course of a large, multi-bend loop. This loop will eventually cut off, but the initial fonii 

will persist over the time it takes for each of the bends to grow and divide, much longer 

than the time for a single bend to grow and cut off in the absence of compound bend and 

multi-bend loop formation. I f the channel form persists for a longer time, it stands to rea­

son that parts of the floodplain also remain undisturbed more predictably and for a longer 

time than if the first bend had cut off rather than divided. 

Howard and Hemberger [1991] found that their model did not simulate "the com­

pound or cumuliform forms noted by Brice [1974] and Hickin [1974]" and reasoned that 

these forms might indicate the operation of "two distinct processes...caused by stream cur-
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vature...[and] the formation of ahemate bars." It is also possible that compound bend for­

mation is the result of strongly nonlinear dynamics which are not accounted for in their 

linear model formulation. I wih address the latter hypothesis in Chapter 4. This chapter 

wih address the evolution of compound bends from simple bends and the effect of com­

pound bend and multi-bend loop formation on meandering channel planforms over many 

bends. 

3.1.3 ScroU Bar Topography 

ScroU bar, or ridge and swale, topography is a familiar feature of meandering river 

floodplains, but the mechanism responsible for this phenomenon has been stiidied only 

rarely, as in McKenney, et al, [1995]. The latter sttidy determined that patterns of vegeta­

tion colonization led to observed ridges and swales on gravel bars in the Ozarks of Mis­

souri and Arkansas. However, these gravel bars are not typical of aU scroU bar topography. 

ScroU bar topography is such a common feature of meandering streams in a wide variety 

of climates that I wish to determine whether h is related to meandering process dynamics 

and, if so, how. 

Several hypotheses for the mechanism forming scroU bar topography exist in the 

literature. Parker [1996] proposes that "highly elongated, partially beached oblique 

dunes" form observed scroti bars, and this mechanism is consistent with experimental 

observations [P. Whiting, personal communication, 1996]. I have observed in the field that 

longitudinal dunes do form ridges on sandy point bars, but the ridges' wavelength is, in 

general, smaller than that of scroll bars observed on the floodplain, at least at the field sites 

I have visited. 
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Figure 3.6: Illustration of scroll bar hypothesis. Channel migrates in direction of arrow. 
Dark gray area with diagonal lines represents point bar deposits with former channel bed 
surfaces. Light gray area represents present channel cross-section; dashed rectangle repre­
sents the rectangular channel cross-section with respect to which the channel bed is 
sloped. 

Another hypothesis is that scroll bar topography is the result of alternating long 

stable (i.e., channel not migrating) periods during which natural levees form relative topo­

graphic maxima and brief unstable (i.e., channel migrating rapidly) periods during which 

levees do not have time to form and so result in topographic minima. Such a mechanism 

should produce scroll bars without a characteristic wavelength unless the rapid migration 

occurs over similar spatial durations from one occurrence to another, though such similar­

ity is not recognized in the literature. A related hypothesis is that episodic bank failure, 

i.e., a short period of rapid bank migration, leads to episodic point bar accretion. The large 

sediment load resulting from the bank erosion leads to a large amount of deposition during 

the point bar accretion such that the elevation of the new accretion is relatively high. 

I propose the hypothesis that scroll bar topography is the result of systematic spa-

tiotemporal variations in transverse bed slope, approximately proportional to local channel 

curvature [Dietrich and Smith, 1983; Ikeda, 1989]. Downstream variations in transverse 

bed slope are responsible for point bar-pool topography of meandering stream beds. This 

hypothesis is illustrated in figure 3.6. Leopold and Wolman [1960] observed floodplain 

stiatigraphy in a trench on Watts Branch, MD, and found that thett "observations 

[appeared] to confirm the.. .hypothesis that point-bar building is the primary process of 
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flood-plain development in flood plains of this type." According to the present hypothesis, 

the height of the point bar and, thus, the floodplain surface elevation are determined by the 

transverse bed slope. When the latter slope is large (or small), the point bar is high (or 

low), and the pool is deep (or shallow). As the channel migrates the channel curvature and, 

thus, point bar height may vary. If these variations are oscillatory and periodic or quasi-

periodic, then scroU bar topography may result from the lateral accretion of point bars of 

vaiying height. 

Kinoshita [1987] found stratigraphy resembling that ideahzed in figure 3.6 in a 

trench across the Teshio River, Japan, floodplain and perpendicular to the inner bank of 

the channel. According to Hasegawa [1989, pp. 220-221], 

Kinoshita.. .deduced that a scroU bar may be formed from 
an embryonic sand bar (at the core of each scroU bar). Each 
such sand bar is generated by the deposition of suspended 
sedhnent swept inward due to the action of large-scale, 
near-bank separation vortices sttetching downstream from 
the apex of an inner bank. 

Unfortianately, the latter study included neither assessments of channel migration rate and 

curvature where and when the deposits were made nor explanations of how the deposition 

mechanism was deduced. 

In this chapter, I report observations and measurements of natural scroU bar topog­

raphy. I found the spectial power density of scroU bar topography to determine whether it 

is periodic or merely quasi-periodic. A finding of periodicity would tend to contradict the 

hypothesis that scroU bar topography is the result of constant levee deposition and ran­

domly fluctiiating migration rates, or vice versa. The scroU bar topography spectta should 

also allow quantitative comparison of natural scroll bar topography and model resuhs. 
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McKenney, et al. [1995] found that deposition and scour during floods increased the relief 

on gravel floodplains of Ozark streams. I examined the stratigraphy of floodplain deposits 

on a sand-bedded stream to find whether fine flood deposits steepened or smoothened the 

relief of the deposits from lateral accretion. I also hoped that the stiatigraphy might help to 

reveal the mechanism of scroll bar topography formation. Finally, I measured vegetation 

stem and trunk diameters to ascertain relative rates of lateral point bar accretion. Detailed 

examination of scroU bar topography was limited to relatively low-energy, unconfined, 

single-thread meandering streams, but observations at some ofthe sites shjdied by McKen­

ney, et al. [1995] were also included to find any similarities or differences between the 

scroll bar topography on the floodplains of the different sti-eam types. 

3.1.4 Bank Failure and Roughness 

The mechanism of bank failure can have a large influence on channel planform 

because different mechanisms can lead to different patterns of bank retreat and, thus, 

channel migration. Field observations of macro-pores and slump blocks indicate that, in 

some cases, seepage erosion is the dominant mechanism of bank erosion. This process 

leads to faster bank retreat not where bank shear stiess is greater but, rather, where the 

groundwater head gradient is greater. Therefore, scour and seepage erosion, respectively, 

produce disshnilar channel planforms [Pederson and Cornwall, 1998]. Some models of 

meandering (e.g., Crosato, 1990) include a bank height-, or near-bank depth-dependent 

term in the equation for lateral channel migration under the hypothesis that the high banks 

bordering pools are more subject to seepage-induced failure foUowing decreases in flow 

stage. However, most models of river meandering assume that the bank migrates as a 

result of scour, i.e., the pattern of bank migration rate mimics the pattern of bank shear 
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stress or, in most models, the magnitude of the near-bank velocity, and several studies of 

bank erosion support this assumption (e.g., Hasegawa, 1989; and Pizzuto andMeckeln-

burg, 1989). 

The flow affects the form of the bank through scour, and the form of the bank in 

turn affects the flow through bank roughness. Thome and Furbish [1995] shidied the 

effect of bank roughness on the flow through a meandering channel bend. They found that, 

after removing vegetation and making the outer bank smooth, the high velocity flow core 

approached the outside bank more closely and made its closest approach further down­

stream. They found that bank roughness limited the approach of the core by increasing the 

width of the rough turbulent flow (RTF) boundary layer. The size of bank roughness ele­

ments determines the width of that boundary layer, the rate of turbulent energy dissipation, 

and the lengüi of bank over which that energy is dissipated through bank shear shess and 

erosion. In turn, bank erosion and the bank failure mechanism influence bank morphology, 

bank roughness element size, and meandering channel planform. Therefore, characteriz­

ing the bank is integral to understanding the meandering process. 

I made observations and measurements of bank roughness elements and the for­

ested bank in general on the outside bank of a meander bend to discover the relationships 

among bank failure, roughness scale, and their respective mechanisms. For a forested 

bank, I expected the trees to play an hnportant role but was unsure of the extent and nature 

of that role. I also made observations and measurements to find the controls on and mech-

anism ŝ behind an evolving neck cutoff. Partly, the latter observations address whether 

chute and neck cutoffs are fundamentally different or not. Chutes are formed by floodplain 
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scour. Are neck cutoffs formed by scouring flood or main channel flow, i.e., are they 

eroded from the top down or from the sides in? This question leads to another: What con­

ttols the lower limit on neck width? 

3.1.5 Study Sites 

To study compound bend formation, scroU bar topography, and bank roughness 

elements as part of meandering I studied the meandering process in isolation from other 

processes and landscape-hnposed conttols. On the other hand, I also wished to stiady the 

interaction of meandering and other landscape processes. For isolation, I studied uncon­

fined, actively meandering stteams. These include: the Mississippi River below its conflu­

ence with the Arkansas River; the Elhs River, a ttibutary to the Androscoggin River in 

western Maine (see location maps, figure 3.7); and several streams in Alaska. 1 conducted 

only remote analyses of the Mississippi River and the Alaskan stteams and both remote 

and field studies of the Ellis River. 

The Red Leaf, AR, quadrangle, shown in figure 3.3, is on the Mississippi River (in 

blue in figure 3.3) downstream of its confluence with the Arkansas River and covers part 

of the point bar surrounded by an oxbow lake formed by a neck cutoff on the Mississippi. 

The channel is approxhnately 1000 meters wide. This area is part of the Mississippi River 

delta and has relief of the same order of magnitiide as the channel depth, -15 meters. The 

floodplain covered by the Red Leaf, AR, quadrangle has scroU bar topography and some 

floodplain channels. The part of the floodplain surrounded by the oxbow lake is isolated 

from the main river channel by a manmade levee system visible in figure 3.3. The scroll 

bar topography has lower relief, -5 meters, than the levees, the main channel, and the 

floodplain channels. 
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Figure 3.7: Location maps of the EUis River, ME. 

The EIUs River forms both compound bends and multi-bend loops (see figure 3.8). 

Its valley has a wide, flat bottom and steep sides. Large parts of the floodplain are covered 

with mostly deciduous forest, though some areas are coniferous. The latter trees are gener­

ally on shghtiy higher ground than the deciduous ttees and larger than 20 cm in diameter. 

The bed material is mostly sand but has some fine gravel, rarely larger than pea-sized. The 

floodplain has hummocky, ridge-and-swale topography and many oxbows, some of which 

are connected to the main channel by tie channels. The floodplain surface is composed of 

sih and fine sand. Observations at the site ai-e consistent with httle or no floodplain scour. 

In the historical record and the field, I observed only neck cutoffs and no chute cutoffs. 

BankfuU discharge is approxhnately equal to the discharge with a rehirn period of 1.5 yrs, 

according to a 20-year gaging station record. This gaging station is located at the covered 

bridge visible in the photo of figure 3.8 (at the only road crossing the river in the photo). 

The bankfull hydraulic geometiy is shown in table 3.1. 
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gure 3.8: 1965 aerial photograph of the Ellis River, Maine. 
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Table 3.1: Ellis River bankfull hydraulic geometry' 

parameter 

discharge 

value 

cross-sectional area 

92 m /̂s 

88 m^ 

top width 

average flow depth 

average flow velocity 

channel slope'' 

valley slope 

26 m 

3.4 m 

1.0 m/s 

0.00020 ± 0.00007 

0.00029 ± 0.00010 

a. From USGS discharge measurement of April 4,1982. 
b. Slopes measured from topographic map. 

Channel and vahey slopes were esthnated from a 1:24,000 scale topographic map 

with a map wheel, though the main reach of the EUis crosses only one contour. 1 estimated 

the elevation at two tributary confluences by assuming the tributaries, each crossing two 

contours, have constant slope on the valley floor and, thus, calculated two values of chan­

nel slope and, by measuring sinuosity over the reach, also valley slope. The channel and 

valley slopes shown in table 3.1 are the means of the two estimates, and the stated uncer­

tainties are the differences between the estimates. These estimated slopes are not used in 

the present analysis and are shown only for reference. 

The Alaskan streams were digitized from topographic maps. Reaches were 

selected that are: (a) single-threaded, i.e., not braided; (b) intensely meandering; and (c) 

unconfined by terraces or valley walls. The stteams are hsted in table 3.2.1 measured 

channel widths from the maps with the digitizer at many points along each reach and hst 

the m-eans and standard deviations of these measurements in table 3.2. 
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Table 3.2: Meandering stream reaches 

reach 
mean channel length, 

quadrangle map(s) width +G, channel 
stream reach (all AK) meters widths 

Preacher Creek Ft. Yukon (A-2) 31.2 ±7.0 1300 

Takotna River Iditarod (C-2) 33.9 ± 12.0 650 

N. Fork Kuskokwim River, Mc. Mt. McKinlcy (D-6) 38.3 ±7.4 460 

Melozitna River Melozitna (B-3) 46.2 +16.0 990 

Teklanika River Fairbanks (B-5, B-6) 48.0 ±16.6 1100 

Dishna River Ophir (C-3) 50.4 ±13.7 510 

Bkch Creek Ft. Yukon (A-2) 57.7 ± 14.1 1160 

N. Fork Kuskokwim River, Me. Medfi-a (B-2, B-3) 95.5 ±24.1 380 

Innoko River Ophh- (C-3) 113. ±18. 370 

The Current River (and Jack's Fork of the Current River) in Missouri, the Buffalo 

River in Arkansas, and Schoharie Creek in New York serve to illustrate meandering in dif­

ferent settings and in interaction with other landscape processes. The first two streams are 

located in the Ozarks of Missouri and Arkansas, respectively (see location map, 

figure 3.9). The present study of these streams is limited to observations in the field and 

from DEMs and measurements from topographic maps. Schoharie Creek is located in the 

CatskiUs of New York. The present study of Schoharie Creek is limited to DEM analysis. 
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Figure 3.9: Location map of Ozark sites. 

The Buffalo River flows west to east in northern Arkansas (see figure 3.9) and is 

tributary to the White River. The Current River flows northwest to southeast in southern 

Missouri. Jack's Fork flows west to east, tributary to the Current River. The channels are 

often confined by bedrock, especially on the Buffalo, but migrate rapidly through alluvial 

deposits where unconfined. The incising meanders of the Buffalo are relatively sinuous 

(see figure 3.2). New floodplains on these rivers are mainly gravel and have many flood-

plain channels. Some characteristics of Jack's Fork and the Buffalo River are shown in 

table 3.3. 

Schoharie Creek flows west out of the CatskiUs of New York, then north to its con­

fluence with the Mohawk River, tributary to the Hudson River. The headwaters have been 

captared by the steep gorges of Kaaterskill Creek and other stteams flowing east down the 

Catskill escarpment to the Hudson River. Several sttidies have examined digital elevation 
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models of the Schoharie Creek basin, e.g., Tarboton, et al. [1991], Montgomery and Fou-

foula-Georgiou [1993], and Ijjasz-Vasquez and Bras [1995] 

Table 3.3: Characteristics of Jack's Fork at the Burnt Cabin site and the Buffalo 
River at the Shine-eye site" 

reach Jack's Fork Buffalo River 

contributing area, km^ 789 2150 

average bankfull channel width, meters 75 100 

average barJrfuU flow depth, meters 1.7 3.0 

1.5-year discharge, or bankfull, m /̂s 200 870'' 

channel slope 0.000667 0.00097 

valley slope 0.0015 0.0006 

geometric mean grain size of bed, mm 21.0 24.6 

a. Fmm McKenney, etal., 1995. 
b. Estimated assuming same Manning roughness as Jack's Fork. 

3.2 Methods 

In this section I describe the methods used to study the phenomena and mechanisms 

described in the Introduction. In general, I studied morphology to infer process dynamics. 

3.2.1 Compound Bend Formation 

To gam insight into the mechanisms which contribute to compound bend forma­

tion, I looked for examples of compound bend formation in the historical migration of the 

Elhs River by examining aerial photographs spanning the period between 1943 and 1992. 

I digitized the photos with a scanner, extracted the channels, and super-imposed them to 

show the time evolution. This exercise revealed two examples of compound bend forma­

tion, and observations on the ground at one of the sites corroborate and complement the 

remote observations. 
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To measure the hnportance of compound bend formation on channel planforms 

over many bends, I analyzed the planforms of the Alaskan streams. The channel center-

lines were digitized by hand, and, to elhninate errors and bias. The digitized planforms 

were corrected by visually comparing the digitized and mapped planforms and moving or 

deleting points as necessary. 

I developed several statistical functions with which to measure the importance and 

characteristics of compound bend formation in channel planform featares such as active 

meander belt width and channel sinuosity. These measures are generally useful for objec­

tive characterization of meandering channel planforms. The statistical functions are based 

on: (a) the relative width of the active meander beh expressed as the ratio of cross-valley to 

down-valley standard deviations of the channel centerhne coordinates; and (b) sinuosity of 

the channel centerhne. The measurements are made for aU possible channel reach lengths 

and expressed as functions of reach length. 

The variances of the x- (down-valley) and y- (cross-valley) components of stteam 

point coordinates are measures of how scattered those points are along each of the axes. 

The jc-axis is paraUel to the line fit to the reach's point coordinates by the least-squares 

method. The expected variances in x and y, respectively, are 

ö | ( / ) = < 
1 

X |A( .v . ) - | i^ ( .v , ,y + , v ' ) f ) (3.1) 
N{s, s + s')-\ 

Sj e ls,s + s'] 

o 2 ( . ' ) = { 
1 X [yis^)-\JiY(s,s + s')]^) (3.2) 

Nis,s + s')-l 
Sj e [s,s + s'] 
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where s' is the reach length; iLx(s, s+s') and [IY(S, S+S') are the expected values of x and y, 

respectively, for points on the channel between s and s+s', inclusive; N(s, s+s') is the num­

ber of sampled channel points from s to s+s'; and the angle brackets indicate the expected 

value over ah values of s. In practice, for the variances and the other measures defined 

below, the expected value indicated by the brackets is calculated for a small range of scales 

about s'. The relative width of the active meander belt is defined as 

If the cross-valley extent of the meander belt decreases relative to the down-valley extent 

as reach length increases, i.e., the meander belt is longer than it is wide, then the function 

W(s') WÜ1 decrease as s' increases. If the mean downsheam direction is independent of the 

down-valley direction, such as over smaller reach lengths, W(s') will be near unity. For 

longer reach lengths over which the down-valley and mean downstream dkections are 

similar, W(s') wUl decay and approach zero as vaUey length approaches infinity. The above 

measure does have the disadvantage that the orientation of the line fit to the digitized chan­

nel points is dependent on the chosen stream reach's length and location. 

The above analysis is shnilar to that of Matsushita and Ouchi [1989] and Ijjasz-

Vasquez, et al. [1993]. These authors used the relative power-law scahng with section 

length of the x- and variances of detiended sections of contour lines {Matsushita and 

Ouchi, 1989], river basin divides, and river courses {Ijjasz-Vasquez, et al, 1993] to deter­

mine fractal self-affinity, or lack of a characteristic scale of fluctuations. The present 

(3.3) 
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method differs from theks in that the x- and >'-axis orientations are fixed in equations (3.1), 

(3.2), and (3.3), i.e., the sections are not each deteended. 

Sinuosity is a commonly measured characteristic of channel planform and has tra­

ditionally been reported as a single value, but that value is not always reproducible. For the 

same stream, two measurements might yield different values depending on where and over 

what reach length they were made. Howard and Hemberger [1991] recognized that sinu­

osity could vary according to the reach length and location and divided the total sinuosity 

into three factors, the full-meander, half-meander and residual sinuosities. 

Measurements developed below characterize the distribution of sinuosity measure­

ments as a function of reach length. For a range of stteam lengths, I compute the mean and 

variance of sinuosities measured at that length range. Sinuosity is measured between every 

pair of points along the reach; the sinuosities for point pairs are binned according to the 

stteamwise distance between the points; and the mean and variance of the measurements 

in each bin are calculated. Thus, the sinuosity mean and variance are defined as functions 

of reach length: 

where s' is the length of the channel segment; r(s, s+s'} is the sttaight-line distance 

between the segment's end points at s and s+s'; and the angle brackets indicate the 

expected value for all values of s. 

r(s, s + s')' 
(3.4) 

(3.5) 
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Andrle [1994, 1996] developed the angle measure technique (AMT) to identify 

characteristic scales and features of meandering channel planforms. Like the measures 

inttoduced here, the AMT produces a function of reach length or scale rather than a single 

number. 

Figure 3.10: Illusttation of the angle measure technique of Andrle [1994, 1996]. 

The AMT is essentially a measure of average curvature at different streamwise 

scales. The method is illusttated in figure 3.10, where, at point s, for the three scales, s^, 

S2, and s^, the angles are 9j , 62, and 0 ,̂ respectively. For thi'ee points at equal intervals 

along the channel, the stteamwise length of that interval is the scale, e.g., S2 in figure 3.10, 

at which I measure the angle. I draw two straight lines connecting the first and second and 

the second and third points, respectively, e.g., r{s, S-S2) and r(s, S+S2). The supplement of 

the angle between those two lines is the angle measure, e.g., 02. The smaller the angle 

between the two lines, the larger the curvature and the angle measure. For example, the 

angle between the lines, r(s, S-S2) and r(s, S+S2), is smah, and, therefore, the angle mea­

sure, 02, at that scale, S2, is large at point s. The opposite is true for the scales, and sj. 
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such that the angle measures, and 0 ,̂ are smaU at point s. hi Andrle's [1994, 1996] orig­

inal method, for each scale he found the angle measures at 500 points, chosen at random, 

and averaged those measures to find the mean angle. In a modified version of the AMT, I 

measured angles for ah possible distances betvi'een discretized channel points (see 

figure 3.10) and locations along the channel. The angles were binned according to scale 

and averaged to find the mean angle as a function of the streamwise scale: 

Andrle [1996] found that, for the meandering stteams he tested, the mean angle 

was peaked at a certain scale. He reasoned that the magnihide of this peak was related to 

sinuosity and the scale at which it occurred was related to meander wavelength. He also 

found secondary peaks for manifestly underfit streams, i.e., where stream meanders are 

smaller than the meander-like valley bends, and inferred that the secondary peaks were 

indicative of the larger, valley-scale sinuosity. 

The stteams I measured are not restticted by the valley waUs. Therefore, the new 

measures and Andrle's [1996] should indicate the importance of compound bend forma­

tion by revealing the scales of multi-bend loops resulting from compound bend formation. 

If compound bend formation is absent or does not lead to multi-bend loop formation, then 

the measures wih have only the primary channel planform scale indicators corresponding 

to the meander bend length and no secondary channel planform scale indicators corre­

sponding to the length of multi-bend loops. 

\IQ(S') = (n- acos 
rjs, s - s')^ + r(s, s + s')^ - r{s -s\s + s') 

2r(s, s - s')r(s, s + s') 
(3.6) 
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3.2.2 Scroll Bar Topography 

At the Buffalo River and the Current River, including Jack's Fork, in the Ozarks of 

Arkansas and Missouri, respectively (see figure 3.9), I observed the scroll bar-like topog­

raphy documented by McKenney, et al. [1995]. The resuh of these observations is essen­

tially a corroboration of their results. 

For the Ellis and Mississippi Rivers, I calculated power spectra of floodplain cross-

sections ("transects"). For the Mississippi River floodplain, 1 used ERMapper (TM) GIS 

software to extract several ttansects of scroU bar topography from the Red Leaf, AR, DEM 

(see figure 3.3). On the Ellis River floodplain, I surveyed several transects of scroll bar 

topography on the floodplain, detrended each ttansect by subttacting from the data a linear 

least-squares fit to that data, and found the power spectta using the Lomb [1976] method 

[Press, et al, 1997] for specttal analysis of unevenly sampled data. The Mississippi 

transects are evenly sampled, but the Elhs ttansects are not, so I chose the Lomb method to 

use the same method for ah ttansects. The Lomb method produces a normalized peri-

odogram, or specttal power as a function of wave number, and significance levels of the 

specttal power with respect to the nuU hypothesis that the data are independent, Gaussian-

disttibuted random values. The significance level of a value is the probabihty that the 

value was produced by the above random process. The specttum is not smoothed. 

To examine the sttatigraphy of scroll bars on the floodplain, I sampled soU cores to 

a depth of one meter at some points on the Ellis ttansects. The cores were taken in six sec­

tions. Based on the look and feel of the samples, descriptions of the material in each sec­

tion of each core were recorded. For example, if the soil could be rolled into baUs, then it 
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was clayey. If it was gritty like sandpaper, then it was sandy. If it was powdery, then it was 

silty. I assigned each section a grain size class based on the descriptions recorded in the 

field and, by this method, determined to a reasonable degree of accuracy the relative tex­

tures of the sampled materials. 

Also on the Elhs, I measured shrub stem and tree trunk diameters along several 

sections perpendicular to the downstream direction to estimate the relative variation in 

space of lateral accretion rate on the point bar. The diameter data defines an upper bound 

on the vegetation age and, by proxy, the point bar age at a point. Where the gradient of 

diameters is large, the age change per distance is large and indicates a slow migration rate; 

the opposite is true where the gradient of diameters is smah. 

3.2.3 Bank Failure and Roughness 

I observed and measured bank features to determine the mechanisms and scales of 

bank erosion and roughness. To find the scale of the bank roughness elements, including 

slumped blocks and spaces left by slumps and failures, along the outer bank of a bend on 

the Elhs River, I measured: (a) the bank roughness elements' dimensions tn the cross- and 

downstream dkections; (b) the diameters of slumped hees; and (c), where the bank was 

undercut but had not failed, the depth (cross-stream) of undercutting. Observations 

included sketches and written descriptions of the bank roughness elements. For scale con­

text, I measured the dimensions of sand dunes on the bed. I also observed and measured 

the dimensions of a relatively new cutoff on the Elhs. 

3.2.4 Meandering and the Landscape 

To detect the interactions between the landscape and river meandering, I studied 

variations in valley width and the relationship between slope and contributing area. I 
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examined the Schoharie Creek vahey as represented by 30-meter horizontal resolution 

DEMs of the Hunter and Kaaterskill, NY, 7.5' USGS quadrangles. Tarboton, et al. [1991] 

pieced together these DEMs, filled the pits, calculated contributing areas by routing each 

pixel's conti-ibuting area downstream in the steepest single flow dkection. The steepest 

downhill slope for each pixel is plotted against conkibuting area. 1 also binned points 

according to log-area and plotted the average slope of points in each bin against the points' 

average contributing area. 

On the Buffalo, changes in valley width correspond to changes in hthology. The 

valley is narrow where the channel is on massive, Ordovician sandstone and wide where 

the channel is on cherty, Mississippian limestone. Conventional wisdom says that, where a 

vahey is wider, the bedrock is weaker, or more erodible. However, it is possible that, in the 

wider valley, the laterally eroding flow is more erosive by way of a mechanism that is 

independent of erodibility. Both of these formations can form cliffs, but the Boone lime­

stone has a large chert component which breaks up into relatively fine gravel. The Boone 

formation also has a well developed Karst system of caves and conduits. 

The main channel of a river, such as the Buffalo, that has been actively incising an 

uplifting plateau for sufficient thne should be at or approaching dynamic equilibrium. The 

fact that the Buffalo River basin has on the order of 300 meters of relief indicates that it 

has probably been incising for sufficient thne to approach dynamic equilibrium. If the con­

trols on channel incision, e.g., either detachment-limited or kansport capacity-limited, and 

the discharge are shnilar through different lithologies, then channels on more erodible or 

transportable lithologies wih have a lower slope (I address the detachment-limited case in 
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more detail in Chapter 5). Conversely, less erodible or transportable lithologies wiU have 

higher slopes at dynamic eqmlibrium. 

The controls on incision of the Buffalo are not weU estabhshed, but i f i assume, for 

adjacent reaches through valleys of varying width, that: (a) bank erosion is a detachment-

Ihnited process; (b) bank erosion equals lateral channel migration; (c) channel incision is 

detachment-hmited; (d) uplift and channel incision are, at least approximately, in dynamic 

equihbrium; (e) discharge is approximately constant with respect to distance downstream; 

and (f) vahey width corresponds to rock erodibüity; then channel slope should vary with 

rock erodibility and, therefore, be greater (or smaller) where the vahey is narrower (or 

wider). 

To test this hypothesis, I measured channel slopes from 1:24,000-scale topographic 

maps in the wide valley shown in figure 3.29 and the narrower valleys, i.e., more shnilar to 

the topography shown in figure 3.2, up- and downstteam of the wide-vahey reach. I f the 

rock forming the wide valley has greater erodibility, then, under my assumptions above, 

the slope through this reach would be lower than in surrounding narrow-valley reaches. 

3.3 Results 

3.3.1 Compound Bend Formation 

Compound bend formation is evident in the historical EUis River channel plan-

forms, extiacted from aerial photographs and overlain in figure 3.11. The 1943 (darkest 

gray) channel appears too wide in a loop, later cut off, at bends 1-7 due to the effect of 

direct glare in the photograph. Note the existence of multi-bend loops in the vicinity of 

bends 8-13. These loops indicate that compound bend formation is an active part of the 
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Ellis' channel planform evolution. In figure 3.12 two examples of compound bend forma­

tion on the Elhs River are enlarged to show these cases in greater detaü. 

In figure 3.12(a) the thne sequence illustrates compound bend formation following 

a cutoff and a subsequent wave of accelerated migration. According to other aerial photos 

not shown, bend 2 cut off between 1972 and 1981. Subsequentiy, the "new" bend 2 devel­

oped and migrated rapidly downstream. This migration pertiirbed bend 4 such that it is 

now compound. Upon inspection of the site, I discovered that the middle, reversed section 

of bend 4 has a cut bank at the inside and a small point bar at the outside of the bend, fea­

tures indicating that this part of the bend has started to migrate in the opposite dkection 

from the migration of the rest of the bend. This reach is unconfined by terraces or bedrock 

except for the downstteam end of bend 7, which is confined by bedrock. The whole area 

shown is forested. 

In figure 3.12(b), the rapid migration of the "new" bend 12 follows a cutoff of the 

"old" bend 12 before 1943. A wave of channel migration has propagated downstteam and 

led to a curvature reversal in the upstteam part or hmb of bend 13. The migration of bend 

12 may have been further accelerated following the cutoff at bend 8 and the subsequent 

rapid migration of bends 8-11 after 1965. The reach is wholly unconfined. Cut banks in 

this reach are generaUy unforested, though some have a thin line of riparian ttees, and 

bend lO's outside bank is forested at the downstteam end. 
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Figure 3.11: Ellis River chaimels extracted from aerial photos and super-imposed. 
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100m 

Figure 3.12: Close-ups of Ellis River, ME, channels from figure 3.11. Lighter gray is 
more recent. Bends are numbered for reference. Flow is from left to right in both (a) (north 
to south) and (b) (west to east). 

To assess the role of compound bend formation in the Alaskan streams, I applied 

the sinuosity and belt width measures and modified AMT to the planforms of the streams 

listed in table 3.2. The reaches are shown in figure 3.13. Normalized reach curvature is 

plotted against normalized downstream distance in figure 3.14. For normahzation, curva­

ture is multiplied by the channel width, and downstream distance is divided by channel 

width. The curvature shown is a moving average of local curvature at three points. 

Channel curvature in figure 3.14 is indicative of bend shape. If the channels were 

sine-generated curves, then the curvature function would be sinusoidal, but, in fact, the 

wave forms are quite jagged. Bends commonly have two pronounced curvature maxima at 

the beginning and end of the bend, respectively. In between, the curvature often drops to 
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nearly zero for a short distance and is nearly constant at an intermediate value for the 

remainder of the bend's length. In some bends, v/here the curvature becomes smah, it 

crosses zero, i.e., it reverses sign. Such bends are compound by the present definition, and 

figure 3.14 indicates that these compound bends are an end member of the continuum of 

typical bend shapes. As examples, a portion of the curvature plot for Bkch Creek is 

enlarged and inset in figure 3.14, and the part of the channel covered by the inset is out­

lined in figure 3.13. The seemingly minor details of bend shape described above are appar­

ently indicative of a mechanism that, as shown below, is important on the scale of channel 

reaches many times longer than a single bend. 

The sinuosity mean and variance, relative belt width, and mean angle are plotted 

against reach length normaUzed, again, by channel width (see table 3.2) in figure 3.15. 

The sinuosity means have large breaks in slope that correspond to peaks in the sinuosity 

variances, changes in slope of the belt width, and peaks in the mean angle. The mean angle 

peaks are consistently at lower values of reach length than the above features in the other 

plots. This is explained by referring to figure 3.10, where the large angle 63 corresponds to 

stteamwise distance, S2, and the large sinuosity between the two points s-S2 and s+S2 cor­

responds to a stteamwise distance of 2s2. Therefore, features of the sinuosity mean and 

variance and the belt width occur at a scale apparently twice the scale of the same features 

of the mean angle. There is no real difference in scale; they are simply measured differ­

ently. 
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Figure 3.13: Digitized meandering stream reaches from topographic maps. Outlined part 
of Birch Creek corresponds to inset in figure 3.14. 
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Figure 3.15: Sinuosity mean and variance, relative meander belt width, and mean angle 
plotted against normalized reach length (i.e., length divided by channel width) for the 
streams hsted in table 3.2 and shown in figure 3.13. 

The sm_allest scale at which levels off ([ig > 1), G / peaks, ^begins to decay, 

and [IQ peaks (collectively, channel planform scale indicators) is similar to a meander 

wavelength, and the level at which j i ^ finally levels off is the mean reach sinuosity. The 

first channel planform scale indicators occur at similar scales for ah of the stteams, m the 

range of 20-40 channel widths (20-40 b) for the first three measures. From the curvattire 
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plots of figure 3.14, it is apparent that this scale is actually the length of a single meander 

bend, or half the meander wavelength. 

For many of the streams, the sinuosity rises and levels in more than one step corre­

sponding to more than one peak in a / and \IQ and convex or straight-line decay of W (e.g., 

Takotna, N.F. Kusk. Mc, Melozitna, Innoko, especially). There is even some consistency 

in the scales of the second peaks in a / at -100 b. Takotna and Innoko have two large 

peaks bracketing the 100 b scale. These secondary channel planform scale indicators cor­

respond to the scales of multi-bend loops, or the length of several bends. Thek exact char­

acteristics may change over time and from stteam to stream. For example, on the Elhs 

River parts of two multi-bend loops cut off between 1965 and 1986, and such changes 

would be reflected in the magnitudes and scales of secondary channel planform scale indi­

cators. 

Multi-bend loops are different among the Alaska stteams. On Birch Creek they 

have kregular shapes, but the multi-bend loops of N.F. Kusk. Mc , Melozitna, and Innoko 

are more clearly composed of individual, regularly shaped bends. This difference is appar­

ent in the plots of figure 3.15. For the latter group of stteams, the secondary channel plan-

form scale indicators are separated from the primary channel planform scale indicators by 

a significant difference in scale, and jx^ for N.F. Kusk. Mc. and Innoko is flat between the 

primary and secondary channel planform scale indicators. The separations in scale may 

indicate that compound bends on these latter stteams are more likely to separate into dis­

tinct bends. That greater Itkehhood leads to repeated separations and, thus, multi-bend 
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loops. In comparison, compound bends on Birch Creek may separate into distinct bends 

less often. 

The measures contain more information than whether compound bend formation is 

important or not. They reveal the differences in the planforms, even among those where 

compound bend formation leads to multi-bend loops. 

Lateral elongation is apparent in the belt width plots. Most of the Ws start at then-

maximum value, near one, but some rise shghtly to a maximum at the first channel plan-

form scale indicator before decaying. This rise indicates lateral elongation at the scale of 

the meander bend length. This effect is strongest in the most sinuous stieams. Birch Creek 

and Innoko River. But, Melozitna is nearly as sinuous as Bkch Creek, and the effect is 

entkely absent. The effect is apparent in Dishna, Bkch, N.F. Kusk. Me., and Innoko. 

Mean angle is not an exact measure of sinuosity—magnitudes of [i^ and \XQ are not 

always consistent. The highest \IQ is for hmoko, which also has the greatest fx^, but not at 

the same scale. Melozitna's [IQ peak is much greater than N.F. Kusk. Mc.'s, but the latter 

has the higher first plateau in 11,5. Innoko and N.F. Kusk. Me. have sknilar first fx^ plateau 

magnitiides, but Innoko has much greater HQ. The magnitiides of the secondary [i^ increase 

and [XQ peak are also not similar. For example, compared to Innoko, the secondary increase 

in [lg for N.F. Kusk. Mc. is not large, but the secondary peaks in \IQ for the latter are as 

large or larger than the secondary HQ peaks for Innoko. Peak magnifiades of 0 / and 1X9 are 

not generally similar either, but I might expect the magnitudes of mean and variance to dif­

fer. For IXQ, the first peak is always the largest; not so, a/. 
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The mean angle appears closely related to belt width. Magnitude of \IQ corresponds 

to non-concavity of W: Where the angle is large, Wis straight or convex; otherwise, Wis 

concave. Comparing the plots for N.F. Kusk. Mc. with those of Melozitna, I find that the 

shapes of the [x^ and plots for the two are similar, though a / and the maximum \is are 

larger for Melozitna. The W and \1Q plots are quite different between the two sfreams, but, 

for each stream, W and [IQ are shnilar: for N.F. Kusk. Mc, the maxhna of both are small 

but relatively level through the secondary channel planform scale indicators; for Meloz­

itna, the maxima of both are large and decay to low values through the secondary channel 

planform scale indicators. These facts indicate that mean angle is related to both sinuosity 

and meander belt width but may be more closely related to the latter. Upon inspection of 

the channel planforms, I find that the apices of the longest bends on N.F. Kusk. Mc. tend to 

point upsfream, and this fact explains the low beh width at the bend scale. 

A useful observation derived from these plots is that stteams may have both pri­

mary and secondary sinuosities corresponding to the single bend and multi-bend loop 

scales, respectively. The mean sinuosity plots of figure 3.15 show that stteams may differ 

in both the primary and secondary sinuosities and that the magnitude of one does not nec­

essarily indicate the relative magnitude of the other. For example, the primary sinuosity of 

N.F. Kusk. Mc. is greater Üian that of Birch Creek, but the secondary sinuosity of the latter 

is greater than that of the former. Such inconsistencies suggest that mechanisms limiting 

sinuosity on the bend scale do not necessarily limit sinuosity at the multi-bend loop scale. 

I will revisit the subject of primary and secondary sinuosities in Chapter 5. 
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3.3.2 Scroll Bar Topography 

The locations of the Mississippi floodplain ttansects are shown in figure 3.16, and 

the ttansects themselves are shown as plots of elevation vs. distance in figure 3.17. The 

power spectra are shown in figure 3.18. These power spectra characterize the ttansects' 

relief in the wave number domain. In some cases, though, the spectta reveal the pitfalls of 

applying specttal analysis to a non-stationary signal. 

Al l of the spectta have peaks above the 0.1 significance level, i.e., the chance of 

peaks of that magnitude occurring by a Gaussian random process is one in ten, and many 

of the spectra have peaks which are significant to a much smaller level. Most of the peaks 

found in these spectta are hsted in table 3.4 with significance level, wave number, and 

wavelength. The total length of each ttansect is also shown. Some of the ttansects have 

large peaks at wavelengths at the same order of magnitude as the transect length. Such 

peaks, while large, should be viewed with suspicion because the ttansect cannot contain 

more than one or two complete waves. 

The transects have different lengths, and some of the ttansects cover substantially 

similar parts of other transects, e.g., transects 1, 5, 7, and 8 (see figure 3.16). However, the 

corresponding spectta are not necessarily similar because some of these ttansects are not 

stationary. The periodic forms evident in, e.g., the 0.00257 m"̂  peak of transect 7 are, 

upon inspection of the ttansects, apparent in ttansect 8, but the latter also contains non-

scroll bar topography such as levees and channels that have much greater relief and, there­

fore, specttal power than the scroll bars. Therefore, the specttum of ttansect 8 is domi­

nated by peaks at the lower wave numbers. 
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Figure 3.16: Plan view of Mississippi River floodplain on the Red Leaf DEM with eleva­
tion in grayscale and showing transect locations by number. 
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Figure 3.17: Mississippi floodplain transects (see figure 3.16); elevation exaggerated. 
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Figure 3.18: Power spectra of detrended Mississippi floodplain transects. Dashed lines 
indicate significance levels. 
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Table 3.4: Spectrum peak wave numbers, k (1/meters), wavelengths, L (meters), 
and significance levels, P, for Mississippi transects, total length shown. 

transect 1, 4860 m transect 2, 3170 nr transect 3, 3680 m transect 4, 2900 m 

k L P k L P k L P k L P 

3.60e-4 2780 6e-3 7.09e-4 1410 0.76 5.42e-4 1840 0.01 1.12e-3 893 2e-5 

6.7le-4 1490 2e-3 2.52e-3 396 0.14 9.52e-4 1050 2e-3 1.64e-3 611 0.71 

9.26e-4 1080 0.15 2.92e-3 342 9e-3 1.97e-3 507 0.49 2.50e-3 400 0.03 

1.23e-3 810 0.82 3.71e-3 269 7e-3 4.63e-3 216 0.86 

4.65e-3 215 0.79 

6.17e-3 162 0.68 

The scroU bai's' signal is especially evident in the spectra of transects 2 and 7. 

These transects do not extend beyond the area where the scroll bar topography is domi­

nant. Note that the peak wavelength for transect 7 is greater than either of the peak wave­

lengths of transect 2 because transect 7 is not as nearly perpendicular to the scroUs as is 

transect 2. Smaller amphtude peaks at similar wavelengths are evident in other transects, 

but some do not register as significant at even the 0.9 significance level. 

Table 3.4: (cont'd.) Spectrum peak wave numbers, k (1/nieters), wavelengths, L 
(meters), and significance levels, P, for Mississippi transects, total length shown. 

transect 5, 4780 ni transect 6, 5100 m transect 7,2610 m transect 8,13,500 m 

k L P k L P k L P k L P 

2.62e-4 3820 0.62 2.00e-4 5010 4e-4 1.24e-3 805 0.65 1.98e-4 5040 2e-13 

5.74e-4 1740 0.05 4.90e-4 2040 0.55 1.72e-3 581 0.65 5.18e-4 1930 le-3 

1.31e-3 764 0.02 1.67e-3 600 0.08 2.20e-3 455 0.17 8.33e-4 1200 4e-6 

2.93e-3 341 0.79 3.04e-3 329 0.27 2.58e-3 387 2e-3 1.15e-3 870 6e-3 

3.06e-3 327 0.06 1.57e-3 635 0.37 

3.53e-3 283 0.20 

4.78e-3 209 0.11 
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Figure 3.19: Ellis River survey sites super-imposed on 1992 aerial photograph. Non-
transect sites on bend 6 are projected onto axes showing their relief, and some sites on the 
projections are connected by hnes to their mapped locations. 
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Figure 3.20: Ellis River transects and one-meter soil core samples shown to vertical scale 
at sampling locations. Vertical scale is exaggerated. Bends 4 and 6 were sm-veyed with dif­
ferent benchmarks. 
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Figure 3.21: Power spectra of detrended Ellis River transects. Significance levels are 
shown with dashed hnes. For bend 4, transect 3, a second spectrum is shown for the por­
tion ofthe transect between 7 and 41 meters. For bend 6, transect 1, the spectrum is shown 
for the portion between 2 and 61 meters. 

Specttal analysis of the Mississippi floodplain, even when applied to relatively 

short ttansects with only scroll bar topography, such as 2 and 7, does not show more than 

quasi-periodicity. Some ttansects have peaks that are significant to a small level, but the 

peaks among the ttansects do not line up with one another. Furthermore, even for ttansects 

2 and 7, neither of the spectta contain a single, clearly dominant peak. 
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The survey sites on the Ellis River floodplain and thek east-north axes are overlain 

on the 1992 aerial photograph in figure 3.19. The kansects are shown with arrows indicat­

ing the (arbittary) dkection of increasing distance in the ttansect plots of figure 3.20. The 

soil core data are also shown in figure 3.20. 

The ttansect spectta are shown in figure 3.21, and the wave numbers, wavelengths, 

and significance levels of specttal peaks ai-e listed in table 3.5. Most of the spectta have 

peaks with significance levels less than 0.9 at 9-11 meter wavelengths. In general, the 

specttal peaks for these ttansects are not significant to as small a level as the Mississippi 

spectta (see figure 3.18) because the latter transects contained many more scroU bars than 

the Elhs River transects. 

Table 3.5: Spectrum peak wave numbers, k (1/m), wavelengths, L (m), and 
significance levels, P, for Ellis River transects, total length given. 

bend 4, transect bend 4, transect bend 4, transect 
1, 54.2 m 2, 31.5 m 3, 49.9 m 

k L P k L P k L P 

0.0599 16.7 0.13 0.0952 10.5 0.04 0.0251 39.9 0.48 

I attempted a more general mapping of the point bar of bend 6 to resolve features 

such as the emergent bar forming a back bar chute shown in figure 3.22 (sites connected 

by hnes to projection on north-elevation axes in figure 3.19) and the first point bar ridge 

adjacent to the channel (sites connected by hnes to projection on east-elevation axes in 

figure 3.19). It is possible that the morphology shown in figure 3.22 is the pre-cursor to 

scroll bar topography. Back bar chutes are a common feature of meander bends. In this 

case, it appears that the colonization of the bar by stabilizing vegetation may allow this 

morphology to persist and, in thne, add another ridge and swale to the point bar. However, 
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this bar traverses only a minor part of bend 6 at its upstream end, whereas the first point 

bar ridge borders the channel for most of the bend. Mid-channel bars and, more generaUy, 

topographic maxima bordering flat areas on point bars are commonly observed at the 

upstream ends of meander bends (see, e.g., Dietrich and Smith, 1984). 

Table 3.5: (cont'd.) Spectrum peak wave numbers, k (1/m), wavelengths, L (m), and 
significance levels, P, for Ellis River transects, total length given. 

bend 4, transect bend 4, transect bend 6, transect 
3 , 27.2 m 4,32.8 m 1, 58.1 m 

k L P k L P k L P 

0.0459 21.8 0.28 0.0662 15.1 0.81 0.0344 29.1 4e-4 

0.0917 10.9 0.47 0.107 9.37 0.80 0.0952 10.5 0.23 

0.412 2.43 0.88 

0.467 2.14 0.55 

Figure 3.22: View upstream from bend 6, survey site 13, of bar and back bar chute. 
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The grain size classes for each core section are shown by a number and a shade of 

gray according to the key shown in the upper right of figure 3.20. In figure 3.23,1 show 

sections 2-6, still in the coring tool, of the core marked with a star in figure 3.20. 

Figure 3.23: Sections 2-6 of core marked with star in figure 3.20. 

With few exceptions, I did not find soil classes 0-6 at the surface very far from the 

present channel, usually not beyond the first point bar ridge. On the floodplain, I typically 

found classes 7-13 to varying depths above classes 0-6. For bend 4, transects 1 and 3, and 

bend 6, transect 1, the layer of classes 7-13 is thicker toward the upstream end of the flood-

plain, and in parts of these transects, classes 7-13 extend to the fuU sampling depth of one 

meter. The layer of finer materials is thicker in the swales than on the ridges. 

The coarser classes are more likely laterally accreted point bar deposits, and the 

finer classes are more likely vertically accreted overbank deposhs. Therefore, the interface 

between the coarser and finer classes likely approximates the elevation of the top of the 

original point bar. The cores in figure 3.20 show that the elevation of the interface mimics 
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the topography in that highs and lows along the interface generally correspond to highs 

and lows on the surface and indicate that the vertical accretion of fines has lowered the 

relief of the original scroll bar topography. This result is consistent with those of Leopold 

and Wolman [I960]. 
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Figure 3.24: Vegetation stem/trunk diameter vs. distance Irom the top of the first point bar 
ridge, increasing away from the water's edge (site locations shown in figure 3.19). 

The vegetation diameter data are shown in figure 3.24. Distance on the horizontal 

axis of the plot is relative to the location of the top of the first point bar ridge (see 

figure 3.19). The vegetation on this ridge is rough and relatively homogeneous in size and 

type (see figure 3.25), though several maple saplings were measured. This rough vegeta­

tion is prevalent on the inside banks of bends throughout this reach. The locations of the 

measurement sites are indicated in figure 3.19. The data are too few and the apparent 

migration rates too similar to differentiate among the measurement sites. In figure 3.12(a) 

it appears that the reach bordering these measurements migrated uniformly with respect to 

the downstream dhection between 1965 and 1992. The vegetation diameter data corrobo­

rate this observation from the aerial photos. 
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Figure 3.25: Photo looking upstream ftom site 19 î bend 6) of flat point bar top and rough 
vegetation on first point bar ridge. Stadia rod in foreground is marked in tenths of a meter. 

The data do indicate differences in migration rate along the distance axis of the 

plot in figure 3.24. This spatial variation corresponds to temporal variation in migration 

rate because the data were taken along ttansects perpendicular to the channel, i.e., parallel 

to the migration direction. If the data provide adequate resolution, then they indicate that 

the first point bar ridge accreted more quickly than the swale behind it (in figure 3.20, 

bend 6, ttansect 1, the first point bar ridge is at ~4 meters distance, and the swale is at -10 

meters). If these data are typical of scroll bar topography on the floodplain, they hidicate 

that the lateral accretion rate of floodplain ridges is greater than for swales. This result is 
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conti-adictory to the hypothesis that scroll bar topography is due to a constant levee depo­

sition rate and variable lateral migration rate. Rather, the data indicate that levee deposi­

tion is more rapid when migration rate is greater. 

ridges/vegetation bands 

Figure 3.26: Bands of wihows at the Burnt Cabin site on Jack's Fork of the Current River, 
Missouri. Flow is from left to right and towards the observer. Vegetation bands are seen 
end-on. 

Figure 3.27: Band of young wiUows on a gravel bar on the Current River, Missouri. Flow 
is from left to right and away from the observer. 
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Figure 3.28: Gravel bar at Shine-Eye site on the Buffalo River, Arkansas. Arrow points to 
person standing on gravel ridge. Flow is from right to left and toward the observer. 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

Figure 3.29: Buffalo River at Jamison Creek confluence. Flow is toward the observer. 

My observations on the Buffalo and Current Rivers corroborate the conclusions of 

McKenney, et al. [1995]. They found that ridges on the point bar correspond to the loca­

tions of bands of same-age vegetation (see figure 3.26). Their conclusion was that the 

form of the vegetation was due to events of seed deposition along the water line followed 

by periods lacking flows great enough to remove the seeds or the young vegetation, e.g., 

the young band shown in figure 3.27. Once the bands of vegetation take hold, they lead to 
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zones of increased roughness and, therefore enhanced deposition of gravel along those 

bands. Conversely, flow concenttates m the areas between the bands and leads to enhanced 

scour there (see figure 3.26). At the Current River sites, these vegetation bands lead to 

scroll bars, or something very much like them. 

The same phenomenon is active on the Buffalo, but, as found by McKenney, et al. 

[1995], the bands tend to be less coherent, bigger, and fewer in number, and the channel is 

more constrained from lateral migration. The ridge and swale topography shown in 

figure 3.26 has relief of less than a half-meter. Ridges on the Buffalo, however, can exceed 

two meters in height (see, e.g., figure 3.28), and multiple bands, such as those in 

figure 3.26, are rare. Even where the vaUey is relatively wide, as in figure 3.29, floodplain 

gravel bars on the Buffalo tend to develop a maze of anabranchmg channels where the 

main channel may switch from year- to year. An example is shown in figure 3.29 where the 

main channel changes frequently. As recently as 1992,1 observed that the main channel 

course was in the middle of the vegetated gravel bar in figure 3.29. Now, the main channel 

is on the right-hand side of the photo. The floodplam channels form the topographic lows, 

while the spaces between them are vegetated and, in general, form the topographic highs, 

though these areas are often filigreed with smaller floodplain channels and do not form 

distinct series of bands similar to those observed on the Current River. 

3.3.3 Bank Failure and Roughness 

My observations and measurements on the EUis River indicate that bank failure 

occurs when the bank is undermined by scour rather than seepage erosion. The measure­

ment data are shown in table 3.6. 

88 



I observed that, at an outer bank location without slump blocks (visible in the 

background of figure 3.22), the roots of the bank vegetation formed a thick (~1 meter, see 

table 3.6) mat, and these roots were stripped of soü material and scoured such that they 

were smooth to the touch. This mat was undercut by more than half a meter on average 

(see table 3.6). There were only small (diameter < 10 cm) ttees near the bank at this loca­

tion. 

Table 3.6: Measurements taken on the outside bank of Ellis River bend 6 

standard number of 
measurement mean deviation measurements 

embedded log diameter 26 cm 4 cm 3 

slumped tree diameter 41 cm 9 cm 4 

slump block length (j-dir) 2.8 m 0.4 m 2 

slump block width (n-dir) 2.4 m 0.9 m 3 

slump block area 5.8 m^ 2.8 m^ 2 

scallop length (*-dir) 3.3 m 2.7 m 5 

scallop width (n-dir) 1.2 m 1.3 m 5 

scallop area 6.4 m 9.5 m 5 

depth (n-dir) of undercut 56.7 cm 15.9 cm 7 

vegetation mat thickness (z-dir) 90 cm N/A 1 

dune wavelength*^ 1.4 m N/A 1 

dune height 9 cm N/A 1 

a. Dunes not measured at bankfull stage. 

In general, where there are large ttees on the bank they greatly influence bank, bed 

and overall channel roughness. Where the root wads of larger trees have been undercut, 

the bank has slumped in blocks defined by these root wads. The slumps lead to a scaUoped 

bank and, thus, a bank roughness defined by their size (see table 3.6). Often, the ttees 

remain rooted on the slump blocks, even when they have slumped to a horizontal position, 

and, by remaining in the channel, contribute to bed and channel roughness. In one such 
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case, the trank of the tree spanned the pool, and the top of the tree rested on the point bar 

where it formed a small woody debris jam. A drawing of this slumped tree and a bank 

scahop is shown in figure 3.30. Trees spanning the pool increase the hydraulic roughness 

of the channel there, and debris jams increase bed and channel roughness. Other examples 

of woody debris associated with slumped ti-ees are visible along the outside bank of bend 6 

in figure 3.31, "top". 

On the channel bed, many dead logs lay partially buried or pinned by other logs, 

and at least some of them may remain on the bed indefinitely until covered by lateral 

floodplain accretion and later unearthed by bank erosion, as evidenced by three logs pro­

truding from the bank in bend 6. One such log, visible on the un-slumped bank in the 

background of figure 3.22, was embedded in the root mat and protruded 1.9 m from the 

bank. In general, the embedded log diameters were smaller than those of the slumped 

frees, but, given the observed variability in both groups and the small number of samples, 1 

cannot rule out the hypothesis that the embedded logs are from old slumped frees. Another 

possible explanation for the embedded logs is that they simply fell in the forest and have 

been buried by vertical floodplain accretion, but this explanation appears to be possible for 

only one of the three observed logs that was found at an elevation similar to the lower sur­

veyed floodplain elevations. The other two embedded logs were at elevations lower than 

any of the surveyed elevations. 
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Figure 3.30: Drawing of slumped tree at Ellis River bend 6. At top, s-, n-, and z-direc­
tional axes are shown 

When slump blocks are removed from the bank a scahop, or an inward undulation, 

is formed (e.g., see figure 3.30). The depth of the scahop depends on the size and orienta­

tion of the slump block prior to removal. If the tree has slumped to a nearly horizontal 

position, then the scahop depth wih be approximately equal to the thickness of the root 

wad. On the other hand, if the tree is more nearly vertical, then the scallop depth will be 

approximately equal to the width of the tiee's root wad. I observed some slump blocks 

which were covered only by herbaceous vegetation, and these blocks tend to be smaUer 

than those associated with ttees. The sizes of the slump blocks are less variable than the 

sizes of the scallops, some of which are as long (s-direction) as-two average sized slump 

blocks. Some slumped sites had more than one block. Removal of adjacent blocks is Ukely 

responsible for the larger observed bank scaUops. 
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Figure 3.31: Neck cutoff of Ellis River bend 7. Top: Flow toward observer on right and 
away on left. Bend 6 is visible on right. Bottom: Nearly bankfull stage, view from outside 
bank of downsfream limb of bend 7. Flow through cutoff is toward observer. Flow from 
right to left in foreground. Bend 6 is visible in background. 

From the data and observations at the Elhs River, it is apparent that: (a) riparian 

frees confrol the bank roughness scale; (b) slumped trees, by spanning the channel and 

forming small woody debris jams, sfrongly influence channel and bed roughness; (c) large 

woody debris tend to accumulate on the bed as more recently slumped frees hold previ­

ously deposited frees in place; (d) at least some of the accumulated large woody debris 

remains in place indefinitely even as the channel migrates; and (e) large woody debris bur-
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ied by lateral floodplain accretion may later be unearthed by bank erosion and again con­

tribute to bank and channel roughness. 

The mechanism behind and characteristic sizes of bank scallops are closely related 

to the formation of neck cutoffs. An actively evolving cutoff is shown in figure 3.31. The 

neck is 7 meters wide at the cutoff. The channel through the cutoff hself is 5 meters wide, 

except where the slump block visible on the right of the top photo in figure 3.31 constricts 

the upstream opening to 1.3 meters. That slump block is 3.1 meters long in the s-direction 

by 2.5 meters wide in the n-direction, and the slumping tree is 38 cm in diameter. At the 

flow stage of the top photo, only a small amount of seepage under debris and slump blocks 

contributes to flow through the cutoff. The debris and slumped bank material fiU the bot­

tom of the cutoff such that it is less than 2 meters deep below the neck surface. In the bot­

tom photo, at near bankfull stage, there is substantial flow through the cutoff channel. 

Between July, 1996, and October, 1997, the times of my first and latest visits to the site, 

respectively, the cutoff has not changed visibly. This lack of change is likely due to the fact 

that there is substantial flow through the cutoff only at relatively high and, therefore, infre­

quent stages. 

I observed the clear effects of scouring flood flow on the top of the neck (behind 

the observer in the top photo of figure 3.31). This scour produced small channels several 

centimeters wide and deep, and intact tiee roots spanned these small channels. The scour 

channels did not span the entire width of the neck. This neck is the only place I observed 

incontrovertible evidence of floodplain scour. 
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The cutoff channel dimensions are consistent with the hypothesis that (a) the cutoff 

was formed by adjacent slumping events, one on each side of the neck, and (b) the size of 

slump blocks places a lower Iknit on the width of necks before they cut off. Furthermore, 

the data are consistent with the hypothesis that floodplain scour does not form chutes of 

appreciable size even at the lower limit on neck width imposed by the slumping mecha­

nism: (a) the scoured channels visible on the floodplain surface are too small to undermine 

trees; (b) the lack of large trees slumped to fall across the cutoff channel indicates that a 

scoured channel did not lead to slumping of frees of size sufficient to create the cutoff 

channel opening; and (c) the orientation toward the main channel of an actively slumping 

large tree with a root wad of size comparable to the cutoff channel dimensions indicates 

that bank erosion on the main channel by channel flow undermined the ttees which 

slumped to form the cutoff. Subsequent to the cutoff formation, the banks of the cutoff 

channel have been undermined such that several smah ttees have slumped toward the cen­

ter of the cutoff channel (see figure 3.31). 

3.3.4 Meandering and the Landscape 

The Schoharie Creek valley (see figure 3.1) shows signs that lateral channel migra­

tion is or has been active. The valley floor is relatively wide and flat and has visible ter­

races. These features should have a m êasurable effect on a plot of slope vs. conttibuting 

area. 

The slope-area plot for the Schoharie Creek valley is shown in figure 3.32. The 

average slopes increase with area at low values of the latter, a pattern which is consistent 

with hiUslope diffusional processes. At larger areas, the average slope generally decreases 

with increasing area, indicative of fluvial processes, but the average slope is level near the 
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middle range of contributing area. There is a large amount of scatter in the slopes across 

the whole range of contributing area, nearly two orders of magnitude at low areas. The 

vertical resolution of the DEM is 1 meter such that the smallest non-zero slope possible is 

one meter drop per diagonal distance across a pixel, or 0.71 m/30 m. Zero slopes cannot be 

plotted on the log-log plot but do contribute to the plotted average. Note the visible dis­

cretization of contiibuting area at the lower end of the horizontal scale. 

1(^1 

1(f 

^^0° 10^ 1(f 1{^ ^(f ^CP 10^ 
contributing area, 900 pixels 

Figure 3.32: Slope vs. contributing area for the part of the Schoharie Creek basin shown 
in figure 3.1. The data for each pixel are shown with the gray dots. Average slope vs. aver­
age contributing area is shown with the dark circles. 

The tiend of the average slope at areas between 10 and 50 pixels is steeper than at 

areas larger than 200 pixels. This steepness indicates that the profiles of these smaUer 

streams have greater concavity than the larger stteams. Such concavity could be the resuh 

of the flattening of the valley floor by meandering. The slopes öf stteams entering the val­

ley may be affected by that flattening. Such flattening would influence the slopes of 

stteams over a range of contiibuting areas such that thek slopes would be essentially inde­

pendent of contiibuting area and could therefore be responsible for the nearly constant 

average slope at areas between 50 and 200 pixels. The findings of Ijjasz-Vasquez and Bras 

[1995] are consistent with the hypothesis that meandering leads to the featiires I have 
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noted in the slope-area relationship. Ijjasz-Vasquez and Bras [1995] observed this effect in 

the slope-area plots of many, but not all, river basins, and meandering is a common featiire 

of many, but not all, rivers. I would expect the prominence of the kink in the slope-area 

relationship to vary with the relative importance of meandering in river basins. These 

results do not, however, indicate why some rivers meander more, or why some valleys are 

wider, than others. The modeling stiidy of Tucker and Bras [1998] indicates that shallow 

landsliding m_ay be responsible for the slope-area featiires described above, but my obser­

vations in the field of the Schoharie Creek basin suggest that shallow landsliding is not the 

dominant hiUslope process. 

Table 3.7: Measured channel slopes of Buffalo River and corresponding strata" 

between 
elevations 

slope (feet) valley stratum 
0.00087 740-720 narrow Ordovician 
0.00082 720-680 narrow Ordovician 
0.0011 680-640 wide Ordovician, some Boone 

0.00093 640-600 wide Boone 
0.00085 600-560 wide Boone 
0.00062 560-540 narrow Ordovician 
0.00061 540-520 narrow Ordovician 
0.00053 520-500 narrow Ordovician 

a. Hrst measurement Is just downstream of the confluence with the 
Little Buffalo River; last two are downstream of the confluence with 
Bear Creek. 

In order to test hypotheses concerning the mechanism of vaUey widening, I mea­

sured Buffalo River channel slopes ftom topographic maps in the wide valley shown in 

figure 3.29 and the narrower valleys up- and downstteam, e.g., similar to figure 3.2. The 

results are shown in table 3.7 and show that the channel slope in the wider valley is com-
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parable to or greater than slopes through the narrower valleys. If my assumptions of the 

previous section are valid, then this result confradicts the hypothesis that the valley is 

wider because the rock is weaker. 

3.4 Discussion 

3.4.1 Channel Planform Characteristics and Evolution 

I examined two cases of compound bend formation on the Elhs River, and both 

arise from the same mechanism. This mechanism is related to characteristics of bend 

shape, and the phenomenon is reflected in measurements of channel planform. Plots of 

bend curvatiire show that bends often have curvatiire magnitiide maxhna at the beginning 

and end of bends and a curvature magnitude minimum in the middle. The minimum not 

only approaches zero but also crosses zero, i.e., changes sign, in compound bends. I have 

shown with the EUis River study that low-curvatiire reaches reverse curvatiire sign when 

migration rate at the beginning of the bend increases due to the propagation of rapid 

migration from upstream bends. 

I was motivated to find and/or derive measures of channel planform because so few 

objective measures exist in the Uteratiire. Probably the most often quoted measures of 

meandering channel planforms are sinuosity and meander wavelength [Leopold and Wol­

man, 1960; Schumm, 1967]. However, these measures are problematic because they are 

generally non-reproducible. Both numbers vary according to location, reach length, and 

method of measurement. For example, Brice [1974] showed two sets of measurements of 

meander wavelength for three reaches of the White River, Indiana, one calculated in his 

stiidy and the other set from a previous stiidy, and the numbers differed by as much as a 
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factor of two. Brice [1974] also attempted to quantify the meanders of the White River, IN, 

in terms of bend size and orientation. 

Howard and Hemberger [1991] performed a multivariate statistical analysis dis­

criminating among static sheam planform data and two models, the disturbed periodic 

model (DPM) [Ferguson, 1976] and the model of Howard and Knutson [1984] (HKM). 

The Howard and Hemberger [1991] analysis is objective and quantitative, but this type of 

analysis is designed to discriminate among given groups of a given data set, i.e., the exact 

form of the discriminant functions is determined by the data. Interpretation ofthe resulting 

functions is not entirely stiaightforward because so many statistics are combined to pro­

duce them. Howard and Hemberger [1991] did conclude that (1) the HKM sti-eams were 

more sinuous than the real ones; (2) the HKM bends were more asymmetric, with the 

point of maximum curvatiire near the bend entrance; and (3) "natural stieams have higher 

irregularity of planform at large scales and numerous, low-sinuosity short half-meanders, 

as weU as a wider range of half-meander sizes." Thek analysis did not address the issue of 

compound bend formation and ks effect on the channel planform, but compound bend for­

mation could lead to the many short half-meanders observed by Howard and Hemberger 

[1991]. 

The new measures presented here Andrle's [1996] show the effect of com­

pound bend formation on the reach scale. A stieam with a fuUy developed but simple 

meander pattern, i.e., one with no compound bends and a meander axis closely following 

the down-valley direction, wül have a steeply increasing fx^f^'j for s' smaller than the 

meander wavelength and a flat \x.s(s') for s' larger than the meander wavelength. 

98 



Compound bend formation leads to the secondary channel planform scale indica­

tors detected in the planform measurements. Repeated compound bend formation forms 

multi-bend loops observed in the digitized planforms and aerial photos and detected as 

secondary channel planform scale indicators, such as secondary increases in mean sinuos­

ity, peaks in sinuosity variance, convexity of relative belt width, and secondary peaks in 

mean angle. Not ah of the stieams have tiiese secondary features. Speciflcally, Dishna has 

one [Lg plateau, one peak, concave decay of W, and only a low-magnitude second [IQ 

peak at 100 b. Andrle [1996] found shnilar low-magnitude secondary peaks for rivers 

without multi-bend loops and concluded that they were simply an artifact. The lack of 

prominent secondary channel planform scale indicators indicates the lack of multi-bend 

loops. The Dishna has many compound bends, but, apparently, either compound bends do 

not initiate the formation of multi-bend loops or there were multi-bend loops that have cut 

off. I f the former, then the reason some compound bend formation leads to multi-bend 

loop formation and other compound bend formation does not is a question I cannot answer 

at this stage. The Dishna is laterahy unconstiained, as are all of the digitized channels. The 

answer must he elsewhere, with a mechanism not apparent from the topographic maps. 

Another question I would like to answer is whether multi-bend loop formation is neces­

sary for the channel planform scale indicators observed for the Alaska streams. I know 

compound bend formation is not sufficient and that multi-bend loop formation is, but I am 

not certain that a highly sinuous stieam with no multi-bend loop formation could not pro­

duce secondary channel planform scale indicators. I address the issue of compound bend 

and multi-bend loop formation with the meandering model in Chapter 4. 

99 



The measures reveal other differences among the streams, but I do not know what 

mechanisms are responsible for the differences. All of the measures give similar values for 

normahzed meander bend length, but the meanders of the different rivers have different 

characteristics. The measures tend to have distinctive features at similar scales, but they 

still measure different things. For example, Melozitna has one of the largest HQ peaks at a 

scale corresponding to large and Whut only moderate n^. Large Vindicates lateral 

elongation; large indicates great variation of sinuosity; and large \XQ indicates large 

curvature of three points along the stream but not necessarily close proximity of the end-

points of the angle-forming segments. Note that large sinuosity of a channel segment 

requires the endpoints to be close together. The measures all reflect the presence of sec­

ondary scales and reveal the various characteristics ofthe corresponding forms; e.g., N.F. 

Kusk. Mc. has large secondary jig peaks which correspond to convexity in W, but the sec­

ondary rise in [i^ and peak in o / are not relatively as great. Clearly, different meandering 

channels have some similar features which are not, however, universal. 

3.4.2 Floodplain Topography 

My discussion of floodplain topography addresses the various mechanisms which 

build the floodplain, including point bar accretion and overbank deposition, and the result­

ing forms, including scroll bar topography and the floodplain stratigraphy. 

I have shown two cases of scroll bar topography, on the Mississippi and Ellis 

floodplains. Spectra of transects of the scroll bar topography show that there is only a 

small probability that the elevations are the result of a normally distributed random pro­

cess. The probability is as small as 0.002 on the Mississippi and 0.04 on the Ellis for 
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wavelengths attiibutable to scroll bar topography. For the latter, observations on the 

ground indicate the scroll bar topography is not a product of floodplain scour. Levee for­

mation is a possible mechanism. 

Though the scroll bar topography spectra have significant peaks, these specha 

often have several significant peaks, and their wavelengths and relative power are not the 

same among different transects. Some variation of peak wave number among transects is 

expected because: (a) the transects are drawn at varying angles, not all perpendicular to 

the scrolls; and (b) wavelength may be related to migration rate such that parts of the bend 

with different migration rates have scroU bar topography with different wavelengths. The 

spectra may lack a clearly dominant peak because: (a) some swales may be widened by 

floodplain scour; or (b) as meander bends themselves have a characteristic scale but vary 

in length from bend to bend, scroU bar topography also has a characteristic scale, but it is 

not precisely periodic. 

A review of the data: The Mississippi channel is about 1000 m wide; the Elhs 

channel is about 26 m wide. The Mississippi bend length is approximately 19 b, or 19 

times the channel width; the length of bend 4 on the Ellis is approximately 12 b. For the 

Mississippi, the smaUest scroll bar topography wavelength corresponding to a specttal 

peak with significance level below 0.1 is 269 m (sig. level of 0.007), or 0.27 b and 0.014 of 

the bend length; for the Elhs, the smallest wavelength with significance level less than 0.1 

is 10.5 m (sig. level of 0.04), or 0.40 b and 0.034 of the bend length. In summary, the Mis­

sissippi scroh bars tend to have shorter wavelengths as a proportion of both channel width 

101 



and bend length than the Ellis scroll bars. As I do not know what the scroh bar topography 

mechanism is, it is even more difficult to explain this difference in scroU bar size. 

From the soil core observations it is apparent that, past the first point bar ridge, the 

major component of floodplain deposition is from fine particles falling out of suspension 

as the flood flow crosses the floodplain. Given the decreasing thickness of this fine mate­

rial with distance from the upstream end of the point bar, the fines probably faU out of sus­

pension at a high rate at the upsfream end where the shear stress gradient is negative and 

large, and that rate decreases downsfream as the flow is depleted of fines and the shear 

stress gradient is smaller. Given the greater thickness of fines in the swales, the fines prob­

ably fall out of suspension more quickly there because the increasing depth of flood flow 

leads to a flow deceleration and, thus, decreasing bottom shear sfress from the ridge to the 

swale. 

Because the sandy materials are usually found at the surface only near the channel, 

it is likely that they are carried prhnarily by the channel flow. The new accretions to the 

point bar are colonized by densely stenmied and, therefore, hydraulically rough vegetation 

[McKenney, et al., 1995]. This vegetation produces a large increase in hydrauhc roughness 

and, therefore, a large negative gradient of shear sfress from the main channel flow to the 

near-bank area such that fine sand is deposited in the area colonized by the vegetation. 

This deposition may form the observed ridges. 

The above reasoning does not adequately explain aU of the soil core observations. 

Sandy material is found below fines in the swales on the floodplain as well as on the 
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ridges. In all of the transects, the top of the first point bar ridge is the highest level at which 

sandy material of that coarseness is found on the transect. 

The measurements of stem and tmr\k diameters on the pomt bar do not yield an 

absolute lateral accretion rate, but, i f the rate of diameter increase is constant in time, then 

these results do indicate variation of lateral accretion rate over space. Curiously, the trend 

of the diameters is flat over the point bar ridge and steep in the swale. If the hypothesis is 

that slow migration equals more deposition per distance and, therefore, leads to a ridge; 

and fast migration equals less deposition per distance and, therefore, leads to a swale; then 

the vegetation diameter data contradict the hypothesis because they indicate that the oppo­

site pattern of migration rate applies—fast where high, slow where low. It is possible that 

the fast migration created a distiirbed area ideal for the vegetation colonizing the ridge, 

and the high roughness of that vegetation led to a high rate of sand deposition. It is also 

possible that the mechanism behind the accelerated migration is also associated with 

greater sediment flux. Clearly, bank erosion does input sediment to the channel, but I do 

not know if sediment from the bank ever enters the system rapidly enough to lead to the 

observed patterns of deposition. 

The formation of the first point bar ridge may be associated with the compound 

bend formation on bend 4. Aerial photographs indicate that bend 4 became compound 

between 1981 and 1986 but changed very httle between 1986 and 1992 (see 

figure 3.12(a)). The rapid migration leading to compound bend formation on bend 4 and 

the corresponding point bar accretion may have created the distiirbed point bar surface 

now colonized by rough, sediment ttapping vegetation, and the corresponding rapid bank 

103 



erosion may have caused pulses of sedhnent to move downstream and deposit on that 

newly accreted point bar to form a ridge. 

3.4.3 Bank Failure and Roughness 

Measurements of bank roughness elements indicate that the sizes of bank scaUops, 

or inward undulations, covered a wider range than the sizes of slump blocks. Also, the 

sizes of bank roughness elements are greater than the dune forms on the bed. Note that the 

size of dunes is stage dependent while the size of bank roughness elements is not. The 

bank roughness element size is determined by the sizes of trees on tiie bank and how far 

they can be undercut before their weight leads to bank failure. The bank has a typical 

roughness scale whose wavelength and amphtude are controUed by the length and width, 

respectively, of the slump blocks formed by the trees' root wads (see table 3.6). So, bank 

roughness elements have a characteristic scale which is largely independent of the bed 

roughness, though the collapsed trees also contribute to bed and general hydrauhc rough­

ness. The trees lead to bed roughness over the point bar and general hydraulic roughness 

where they span the pool (see figure 3.30). 

The slumping mechanism may also control the minimum thickness of meander 

necks and, to some degree, where they cut off. The neck shown in figure 3.31 is as wide as 

two slightly larger than average slump block widths, and the channel through the cutoff is 

as wide as one slightiy larger than average slump length. It is apparent, then, that the size 

of slump blocks controls how thin a neck can get before it is cut off, and the exact location 

of the cutoff is dependent on the locations of slumps on either side of the neck. 
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The bank scaUops on bend 6 lack vegetation and, therefore, appear to be relatively 

new. That observation and the fact that many of the slumped trees are stiU aUve may indi­

cate that these slumps and the new cutoff resulted from the same rapid erosion that led to 

compound bend formation on bend 4 and the high first point bar ridges observed on many 

point bars, including those of bends 4 and 6. 

3.4.4 Landscape-Meandering Interactions 

I hypothesize that scatter and deviations from scaling in the slope-area plot for 

Schoharie Creek may be due to meandering rather than some stochastic process. The 

DEM clearly shows bend-shaped scarps adjacent to a flat vaUey bottom. Such forms 

would surely lead to both steepening and shallowing of slopes relative to the mean behav­

ior. These forms could also be responsible for the observed deviations from mean slope-

area scaling. The flattening at moderate slopes apparent in figure 3.32 is often observed 

(e.g., Ijjasz-Vasquez and Bras, 1995; Tucker and Bras, 1998), and Tucker and Bras [1998] 

found that using pore-pressure-induced shaUow landsUding (e.g., Montgomery and 

Dietrich, 1989, 1994) in a landscape evolution model produced a similar flattening in the 

slope-area relationship. Given the ubiquity of this flattening, however, it may be poly-

genetic, and G.E. Tucker does not beheve that shallow landsliding is not the cause (per­

sonal comjnunication, 1998). It may be that valleys with wider bottoms exhibit this slope-

area effect more prominently. 

The pertinence to vaUey width of my measurements of Buffalo River channel 

slopes is contingent on several assumptions hsted in the Methods section. The conttols on 

the Buffalo River's incision, whether detachment- or ttansport capacity-limited, are not 

weU established. If the assumption of detachment-limited incision does not hold, i.e., i f 
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incision is transport capacity-limited or controls on incision change downstream, then 

channel slope and rock sttength might not be simply related. If the channel is unifomily 

ttansport capacity-limited and lithologies with greater ttansport capacity are also more 

erodible, then my reasoning still holds. However, i f more erodible lithologies are less 

transportable, or the greater lateral erosion that comes with greater erodibihty produces a 

greater quantity of sediment for the channel to carry, then my reasoning does not hold. 

In any case, the mechanism for valley widening is most likely related to what hap­

pens to the rock from the valley walls once it is detached. In general, if it breaks up into 

small-gravel bedload and, therefore, increases the topographic steering effect, the presence 

of the gravel may tend to make the valley wider by increasing lateral migration. On the 

other hand, there are at least two other reasons why the slope of the Buffalo, in particular, 

might become steeper through weaker rock. Fkst, the bedload component of the total sed­

iment load may be relatively larger because of the chert gravel such that the reach is ttans-

port-limited rather than detachment-limited. The river's slope may have adjusted to carry 

the large quantities of gravel bedload, but the valley side walls are not shielded by such 

bedload and are, therefore, vulnerable to erosion. Second, the river may lose a signiflcant 

amount of flow to Karst conduits through the limestone, and the slope may have adjusted 

to compensate for this lost erosive flow. 

3.5 Conclusions 

Most of my conclusions at this point are really questions. Can I explain compound bend 

formation and scroll bar topography? Can a new model of river meandering reproduce or 

explain these phenomena? How may I represent bank roughness in a new model? Can a 

new model shed light on the interactions between meandering and the landscape? Why 
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does compound bend formation lead to multi-bend loops in some cases and not in others? 

What mechanisms are responsible for the differences in the channel planform scale indica­

tors of the Alaskan streams? 

I have found that compound bend formation is fundamental to meandering. It is 

responsible for typical bend shapes and the multi-bend loops observed in the data. Com­

pound bend formation is more active in some streams than others, though the mechanism 

for this variation is beyond the scope of this chapter. 

My studies have raised some interesting questions regardmg scroh bar topography. 

Scroll bai- topography on gravel bed streams in the Ozarks is thoroughly explained by 

McKenney, et al [1995], who determined that vegetation plays the key role. My observa­

tions and measurements on the EUis River are less conclusive. They point to a possible 

role of vegetation, but an unexplained variation of migration rate may be the missing piece 

of the puzzle. The data indicate that the newest ridges on the point bar laterahy accreted 

rapidly relative to the lower areas behind these ridges. Therefore, it is unlikely that this 

topography may be explained by a combination of variable migration and steady deposi­

tion rates. Limited possibilities remain: 

1. Migration rates are quasi-periodic in space possibly due to episodic rapid migration 
following upstream cutoffs such as the rapid migration following the cutoff of bend 2. 
Where the point bar rapidly accretes laterally, rough vegetation colonizes the distiirbed 
area. That roughness leads to a high vertical accretion rate on the newly accreted portion 
of the point bar such that rapid vertical and lateral accretion coincide. Also, the rapid bank 
erosion may supply additional sediment to the stream such that the deposition rate on the 
point bar increases. 

2. The height of laterally accreting point bars is quasi-periodic in space due to system­
atically changmg secondary flow hydraulics in migrating channel bends. Vegetation may 
also play a role by favorably colonizing the higher and, therefore, drier parts of the point 
bar. 
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These proposed mechanisms do not explain why the most recent ridge on the Ellis 

floodplain is the highest and made entirely of sand or why the Mississippi bend has more 

scrolls on its floodplain than the Ellis, i.e., the wavelengths of the scroll bar topography on 

the Mississippi are smaller relative to both the channel width and the meander wavelength 

than the scroh bar topography on the Ellis. The Mississippi is also not as wide relative to 

the bend length. Are these observations generally the case? What characteristic of the 

meandering sti'eam determines the scroll bar topography wavelength? The new model 

developed in the next chapter can simulate floodplain topography only by variations in 

point bar height. The present stiidy of scroll bar topography indicates that modeling its for­

mation may require a detailed tieatment of processes beyond the scope of the modehng in 

the present work. 

I found that the scale of the bank roughness element is independent of the scale of 

bed forms, though the elements contiibuting to bank roughness, namely the trees, also 

contribute to bed and overall hydraulic roughness. It is possible that this vegetative rough­

ness is related to the scroll bar topography wavelength. I have found a likely role of rough, 

young vegetation in the formation of scroll bar topography, and the scale of this vegetation 

may also be related to scroll bar topography wavelength. A model of river meandering will 

likely need to model or parameterize bank and bed roughness independently in order to 

predict correctly both flow hydraulics and the scale of dissipation of turbulent energy at 

the bank. 

I have not shown conclusively that meandering affects the slope-area relationship. 

The two things, that the slope-area relationship is stepped and meandering has flattened 
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the vahey bottom and steepened some parts of the vaUey waUs, may be unrelated. How­

ever, I beheve that they are related, that the flat vahey bottom is responsible for the numer­

ous low-slope points at low areas, that the steepened valley wall points are responsible for 

some ofthe large slopes at shghtly larger areas, and that the flattening of the valley floor is 

responsible for the mean slopes' lack of area-dependence at even larger areas. 

1 have drawn into question the hypothesis that wider valleys are due to more erod­

ible vahey wahs, but, again, the evidence is not conclusive. The limestone walls of the 

wide valleys of the Buffalo probably are weaker than the sandstone forming the narrow 

valley walls. The surrounding area may be eroding more quickly and delivering a greater 

load such that the river has steepened to carry the extra load. But the smaher bedload grain 

size and larger bedload supply probably do increase the lateral migration rate more than 

can be explained by the greater erodibüity. 

The models presented in the following chapters will address some of the issues of 

compound bend formation, scroh bar topography, bank roughness and failure, and mean¬

dering-landscape interaction presented in this chapter. The present chapter addresses some 

of the morphologic features of meandering stieams and their surrounding landscapes. The 

model development in the next chapter focuses on the physical mechanisms necessary for 

meandering in general and whether they are sufficient to explain some of the above spe­

cific features. 
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Chapter 4 

The Topographic Steering River 
Meandering Model 

In this chapter, I present a simple nonhnear model of river meandering. This new model is 

based on the phenomenon known as topographic steering inttoduced in Chapter 2. For 

comparison with the nattiral channels of Chapter 3, I use the planform measurements 

developed there on the results of the new model and compare those results to the natural 

examples of compound bend formation. I also compare my new model to a meandering 

model from the hterature. The new model simulates meandering with compound bend for­

mation and predicts that the frequency of compound bend formation is sensitive to model 

parameters. For example, decreasing the mean bedload particle size increases compound 

bend and multi-bend loop formation frequency. 

4.1 Introduction 

The review of Chapter 2 suggests that topographic steering plays a key role in bank ero­

sion and meandering. Based on the these results, I reason that a positive feedback, similar 

to one described by Dietrich and Smith [1983], exists between point bar formation and 

bank erosion: a small point bar develops in a small bend; the small point bar steers the 

flow such that the outside bank is eroded; this bank migration makes the channel more 

curved; the point bar grows; and so on. The hypothesis is that this topographically induced 

lateral ttansfer of flow momentum provides the major part of the flow momentum lost to 

bank shear sttess. By modeling topographic steering, I can model meandering. 
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I develop a simple, nonlinear river meandering model to test the topographic steer­

ing hypothesis [Dietrich and Smith, 1983; Dietrich and Whiting, 1989]. The model is not 

based on a perturbation solution, linear or nonlinear, of the flow equations. Rather, in the 

topographic steering river meandering (TSRM) model I have sought to simphfy the phys­

ics of the problem such that it yields a solution which is both nonhnear and computation­

ally efficient. Efficiency is of interest because of the ultimate goal of integrating the 

meandering model with the landscape evolution model presented in Chapter 5. 

4.2 Model 

I assume, as a first approximation, that the downstieam flow velocity field is constant over 

a given channel cross-section and given by the Manning equation: 

where U is the downstieam flow velocity; R is the hydrauhc radius; Sf is the downstream 

friction slope measured over a long distance relative to the channel width; and is the 

Manning roughness coefficient. 1 assume that equation (4.1) adequately describes the 

effects of the total channel roughness and water surface slope on the average flow velocity 

over a length of several bends. Given U, 1 consider secondary flows: curvatiire-induced 

helical flow; and topographically induced lateral and vertical flows; and derive bed topog­

raphy and bank shear stiess resulting from these secondary flows, respectively. I assume 

that lateral migration rate is proportional to the bank shear sfress. 

4.2.1 Transverse Channel Bed Slope 

Several authors [Odgaard, 1986; Ikeda, 1989] have found the fransverse bed slope 

necessary to maintain equilibrium between the opposing forces due to gravity and curva-

(4.1) 
n in 
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ture-induced helical flow. These equilibrium models provide a good approximation of the 

bed topography, though others (e.g., Johannesson and Parker, 1989a; Nelson and Smith, 

1989a, b; Blondeaux and Seminara, 1985; Seminara and Tubino, 1989, 1992) provide a 

more detailed description by coupling the equations of flow and sediment transport to 

reveal the feedbacks between flow and bed topography. 

Figure 4.1: (a) Maximum pool depth is 2H, and the point bar may not break the water sur­
face, (b) Successive channel cross-sections defining directional axes, s, n, and z; channel 
width, b; average flow depth, H; and change in half-section area, dA^,, per change in dis­
tance downsh-eam, ds. (c) Flow momentum differential over a distance, dl, for lateral and 
vertical flow velocities, V and W, respectively, and unit discharges and q^, respectively, 
due to the change in half-section area, dA^,. (d) Rotational flow momentiim, q,.V,, pushes 
bed sediment inward while lateral flow momentiim, q^V, pushes sediment outward; the 
resulting flat-topped point bar is represented by a single transverse bed slope. 

The expression presented here is based on Ikeda's [1989] description of bed topog­

raphy as a function of local curvatiire and depth of flow. I modify his expression to account 

for bed form drag from dunes (see Appendix A) and solve for the fransverse slope, 5 ,̂ at 

the channel centeriine, where I assume that the depth is equal to the average depth, H: 

Sj^ = KHC (4.2) 

where C is channel centerhne curvature; and K is described by 

K - ^ J | l [ 0 . 5 7 0 I n ( l l ^ ) ^ 0 . 3 6 l ] 
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where W is dhnensionless (Shields) skin friction; ̂  is total Shields stress; is critical 

Shields stress; and d^o is median bed sedhnent grain size (see Appendix A for derivation). 

Lhnits on the bed topography are necessary such that the pool does not become 

arbitiaiily deep or the point bar arbitiarily high when Sj is large. The maximum possible 

elevation of the point bar is the water surface elevation (zero depth at the inside bank) and 

the maximum pool depth is twice the average depth (depth equals 2H at the outside bank) 

(see figure 4.1(a)). 

Table 4.1: Parameter values used in model simulations 
Dischaige, width, roughness, grain size, valley slope, and dissipation scale are held constant dur­
ing the simulation; depth, channel slope, and radius of curvature are given only for reference. 

Site: Muddy Cr., WY 

discharge, w?/s 1.6 

width, m 5.5 

average depth, m 0.5 

Manning roughness 0.036 

median grain size, mm 0.7 

channel slope 0.0014 

valley slope 0.0021 

radius of curvature, m 8.0 

dissipation scale, m 15. 

To test the bed topography model, I compare the results of equation (4.2) for the 

average curvatiire of a Muddy Creek bend (see table 4.1) to digitized channel sections 

[Dietrich and Smith, 1983; Dietrich and Whiting, 1989] (see figure 4.2). The prediction is 

good, and equation (4.3) is an improvement on Ikeda's [1989], which predicts slopes 

about twice as large. 
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section 14 
section 18 
section 19b 
section 20 
section 22 

n, meters 

Figure 4.2: Comparison of actual and predicted bed topograpliies for Muddy Creek. At 
top the predicted channel section is compared to several actual sections such that the cen­
terhnes and water surfaces of the predicted and measured sections coincide. In subsequent 
views, the actual and predicted sections are adjusted such that the bed topographies over­
lap at the channel centerline. All of the predicted sections shown are identical. 

There is an apparent "phase lag" [Zhou, et al, 1993] between curvature and bed 

slope in Muddy Creek; the maximum curvatiire in the bend is at section 14, while tiie max­

imum transverse slope is at section 22. Johannesson and Parker [1989a, 1989c] used an 

effective curvature with upstieam weighting in thek LFE model; however, A.D. Howard 

(personal communication, 1996) reports that the correction does not have a signiflcant 

effect on the model results. 

4.2.2 Lateral Flow Acceleration 

Convective accelerations due to the presence of the point bar cause a lateral dis­

placement of flow and a resulting ttansfer of momentum from the high velocity core to the 

outer bank, as described in Chapter 2 and the Inttoduction. The present approach to esti­

mating the magnitude and spatial pattern of that ttansfer is based on continuity of mass. 

Smith and McLean [1984] solved the continuity equation. 
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1 a a v h c 
Uh+^Vh--—-^0 (4.4) l-nCds dn l-nC 

where U is the depth-averaged downstream velocity; Vh the depth-averaged cross-stream 

velocity; h is the depth of flow; and s and n are the downstream and lateral coordinates, 

respectively (see figure 4.1(b)); for the lateral unit discharge. 

% = Vh. (4.5) 

Their expression is 

2 

I divide the channel cross-section into two half-sections and assume that the down­

stream flow velocity is uniform with respect to s and n, to solve equation (4.6) for the lat­

eral flow at the channel centerhne, n = 0: 

dA 
<ln - -U^'' (4.7) 

where is the cross-sectional area of the inside half channel, between the bank at n=-b/ 

2 and the centerhne at n=0.1 calculate A^^ from the bed geometry derived in the previous 

section; except for very large curvatures (see figure 4.1(a)), dA^/ds is proportional to 

dSj./ds and, therefore, dC/ds. For the planar bed described by equation (4.2), the verti­

cal unit discharge averaged over the outside half-channel, between n=0 and n=b/2, is 

approximately equal in magnitude to the lateral unit discharge at n=0, or 

q, = yV^ = -q,, (4.8) 
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where is the vertical unit discharge averaged over half the channel width; and Wis the 

vertical flow velocity, also averaged over half the channel width. Using equations (4.5), 

(4.7) and (4.8), I solve for the lateral and vertical flow velocities at the channel centerline, 

n=0, and in the outside half-channel, respectively: 

V = -f-r-^ (4.9) 
Hds 

W = U ~ ' ' (4.10) 
bds 

where h in equation (4.5) has been replaced by H, the average depth and, for the simplified 

bed topography, the depth at the channel centerhne. 

At a bend entrance, the increasing channel curvature implies an increase in trans­

verse bed slope. Therefore, the cross-sectional area of the inside half-channel (n<0) 

decreases, while the cross-sectional area of the outside half-channel (n>0) increases. 

Thus, flow is displaced away from the point bar (across the channel) and down into the 

pool. The unit discharges, q„ and q^, are the volume discharges per downstieam distance; 

therefore, the magnitudes of the vertical and lateral discharges are 

\Qz\= \Qn\ = u ds. (4.11) 
\ds 

I hypothesize that the momentiim transferred to the channel bank as shear stiess is the dif­

ference between the lateral and downward discharge momenta [Chow, 1959], or the 

change in momentum along the path in figure 4.1(c): 

dF^ = p{\Q,V\-\Q,W\) (4.12) 
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where p is water density. The lateral discharge momentum is greater than the vertical for 

half-width greater than depth (see equations (4.9) and (4.10)). Substituting equations (4.9), 

(4.10), and (4.11) in equation (4.12) yields 

where dF^ has units of force. It is the incremental lateral transfer of flow momentum due 

to topographic steering and dissipated by bank friction. I refer to dF^ as the "lateral 

momentiim transfer" or "bank shear force increment". Note that this "force" is felt at the 

bank as shear sti'ess, not as a normal force. 

In the model, the convective acceleration described by equation (4.13) is calcu­

lated only where the point bar is rising, i.e., the inside half-section area (A^ )̂ is decreasing 

downstieam (dA^/ds < 0), and not where the pool is becoming shallower. The lateral 

momentiim tiansfer, dF„, is largest at the bend enhance. Because dA^/ds is proportional 

to dC/ds (usually; see figure 4.1(a)), dF^^ oc {dC/ds)'^. Terms with similar dependence 

on dC/ds may be derived from the scaled, depth-averaged flow momentum equations 

under the assumption, based on the resuhs of Dietrich and Whiting [1989], that changes in 

the downstream (s) and lateral (n) directions are of similar magnitude and occur over sim­

ilar distances (see Appendix B). 

In Appendix C, I show that, for the special case of a sine-generated channel center-

line, dF^ and the integrated bottom shear stiess are of similar magnitude. For maximum 

flow direction angles, with respect to the down-valley direction, greater than 1.0 radian. 

(4.13) 
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the lateral force is somewhat larger than the bottom shear (see Appendix C). This resuh is 

consistent with the findings of Dietrich and Smith [1983]. 

1 have made several simphfying assumptions that influence the accuracy of 

equation (4.13). I assumed uniform downstream velocity with respect to the downstream 

and cross-stream directions. Dietrich and Smith [1983] showed that flow over the point bar 

decelerates as the high velocity core moves to the outside bank. Therefore, this assumption 

may lead to underprediction of lateral discharge. I assumed uniform transverse bed slope: 

using different slopes across the channel has an insignificant effect on the magnitude of 

the lateral momentiim transfer. I decouple the bed topography from the bed shear stresses 

associated with topographic steering; i.e., bed topography is determined by helical flow 

only (see figure 4.1(d)). My model, therefore, does not represent overdeepening and reso­

nance [Parker and Johannesson, 1989; Blondeaux and Seminara, 1985] and, according to 

figure 4.2, may overpredict the tiansverse bed slope and, therefore, the lateral flow near 

the bend enhance. The errors due to flow deceleration and overprediction of transverse 

bed slope near the bend enttance wih tend to cancel each other. 1 have neglected in 

equation (4.13) the effect of curvatiire on the vertical discharge. With large curvatiire, the 

outside half-channel has more volume per downstteam increment (at the centerline) than 

the inside half-channel, and vertical discharge is increased relative to lateral discharge 

such that dF^ is decreased. In the numerical model, I make a correction that decreases tiie 

effective dF„ in sharper bends by selecting the component of JF„ perpendicular to the flow 

direction at the downstteam end of a discrete channel segment (see figure 4.3(a)). An ear­

lier version of the model omitted this correction with littie difference in model resuhs. 
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Figure 4.3: (a) The lateral momentum transfer, rfF„, is adjusted to account for the differ­
ence in downstream dkection angle between successive points, (b) Conceptual diagram of 
lateral acceleration of the high velocity core and the resulting lateral profiles of near-bank 
downskeam flow velocity; the profile is steep where the core reaches the bank but 
becomes less steep downstream, though the position of the core is nearly constant, (c) The 
width, B, used in the lag function, L, is the distance between the inner and outer banks at a 
depth of H/2. (d) The vahey is conceptually infinite in the + and - 3;-dkections and "falls 
off ' at set values of x at either end of the valley; channels are cut off when they cross the 
end boundaries. 

4.2.3 Bank Shear Stress 

The bank shear stiess associated with the lateral momentum transfer is felt down­

stteam, where the high-velocity flow core reaches the bank (see figure 4.3(b)). I derive a 

shnple expression to describe this downstteam "lag". 

Neglecting curvafijre in the continuity equation (4.4), substitiiting with 

equation (4.5), and letting 

<ls = Uh (4.14) 

I get 
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I simplify equation (4.15) further to derive an esthnate of the downstteam distance 

between the convective acceleration of equation (4.13) over the point bar and shear sttess 

on the opposite bank. If 1 ignore changes in depth and integrate, equation (4.15) reduces to 

I replace dn with B, the effective, "depth-averaged" channel width (see figure 4.3(c)): 

The lag in equation (4.18) is analogous to a ttanslation of a shear force increment from the 

point bar to the opposite bank downstream and laterally at the downstteam and lateral flow 

velocities, respectively. The lag between lateral acceleration at the bend enttance and bank 

shear sttess clearly exists, otherwise bends would migrate upstteam. 

One possible improvement over equation (4.18) nnght be to foUow the incremental 

progress of the high-velocity core across the channel. Such a calculation could amount to 

solving the nonlinear flow equations for the cross-stteam variation of downstream flow 

velocity and would comphcate the model considerably and unnecessarily. 

(4.17) 

and dV with V and write the downstteam lag as 

(4.18) 
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The bank sheai- stress is proportional to the large lateral gradient of downsfream 

flow velocity that is created where the high velocity core approaches the outside bank. 

That gradient increases as the core approaches the bank and decreases downsfream due to 

bank friction and the development of a rough turbulent flow boundary layer between the 

core and bank (see figure 4.3(b)). I parameterize this downstteam boundary layer develop­

ment with a Gaussian bank shear sttess function. The bank roughness is parameterized by 

a constant dissipation scale. The bank shear- stress is the integral over upstteam points of 

the Gaussian-weighted and lag-offset dF„\: 

where s' is a dunmiy variable indicating points upstteam of s where the <iF„'s are gener­

ated; A, is the dissipation scale; and hjs) is the depth at the deepest part of the channel sec­

tion. 

In LFE models, dissipation of fiarbulent energy m the downstteam direction is 

erned by the bed friction factor, Cf. Johannesson and Parker [1985] used as the calibra­

tion parameter and found that the calibrated values were larger than the calculated values. 

Similarly, the dissipation scale, X, is the calibration parameter for the TSRM 

model. The value of X is not well consttained by theory or existing data. This scale is 

(4.19) 

modeled by an exponential decay term (see Appendix D), and the rate of decay is gov-

It is likely that the larger calibrated Cƒ reflects bank friction. 

related to the scale of bank roughness elements, such as fallen tiees or herbaceous vegeta-
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tion clumps, but I have not attempted a derivation of the value of X from observations of 

bank roughness such as those in Chapter 3. In general, greater relative bank roughness 

should result in smaller values of X and, therefore, shorter meander bends. 

In equation (4.19) I have parameterized the frictional dissipation of the bank shear 

sttess at the bank, but, as the flow depths are different over the point bar and in the pool, 

the effect of bed friction is also different near the different banks. The effect of bed friction 

is likely smah where the channel is deep but may be large over the point bar where the 

channel is shallow. Therefore, an effective "bank" area parameter lumping the effects of 

bed and bank friction would be large not only in the pool, where the actiial bank area is 

large, but also over the point bar, where the effect of bed friction becomes large though the 

actual bank area is small. This parameter would have a minimum at intermediate values of 

actual bank height, i.e., where the channel is approxhnately rectangular. In the present 

model, this parameter is hjs) (see equation (4.19)), the outside bank depth. Using the out­

side bank depth where the channel is actiially shaUow reflects the larger bed friction there. 

4.2.4 Implementation 

In the model, bank migration rate, ^, is proportional to bank shear stress, (posi­

tive on the left bank, negative on the right), and perpendicular to the downstieam flow 

direction: 

C = (£ • xjn (4.20) 

where E is the bank erodibiUty coefficient; and n is the lateral unit vector (see 

figure 4.1(b)). 
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The expression for bank shear stress, equation (4.19), does not yield an analytical 

solution. Instead I discretize the equations and solve them numericaUy at points along a 

discretized channel. The model results may be sensitive to the scale of that discretization 

(as in, e.g., numerical solutions of the diffusion equation) because of the dependence of 

dF,i on the downstream rate of change of channel curvature and, thus, the inverse of the 

downstieam distance increment. I assume that cross- and downstream changes occur over 

comparable distances and, therefore, use a default channel discretization which yields an 

average of As=b; i.e., one channel width. When two adjacent channel points are farther 

apart than twice the default As, a new point is added between them. 

In the simulations of this chapter, the model's initial condition is a noisy sfraight 

hne (see Howard and Knutson, 1984, or Howard, 1992). The model boundary conditions 

represent an infinitely wide vaUey floor with a uniform slope and tiimcated at both the 

upstteam and downstteam ends (see figure 4.3(d)). Neck cutoffs occur when two channel 

segments come close enough to one another that the channel cross-sections would overlap. 

I do not model chute cutolfs. 

To visualize the model's evolution, the channel is super-imposed on a regular grid 

discretized at one-thkd of the channel widtii. Before each iteration, grid points at the out­

side bank, channel centerline, and inside bank are set to the bed elevations corresponding 

to those locations, respectively. After channel movement, all channel grid point elevations 

are reset to the average bed elevation. Pixels that are abandoned by the channel during the 

iteration retain thett previously set elevations. Finally, I may impose "uplift" or "incision" 

by adding elevation to all grid elevations except for channel points. Thus, as a channel 
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erodes at the outside bank (next to the pool), a floodplain is buiU by abandonment of 

points at the inside bank (next to the point bar). Inside bank pixels are assigned a deposit 

thickness, h^gp. 

Kep - ^pb-Zcl (4.21) 

where Zpb is the elevation of the point bar at the inside bank; and Zd is the elevation of the 

bed at the channel centerline, or the average bed elevation for the channel section; and h^^p 

is restiicted to positive or zero values (h^^p > 0). I must emphasize that in these rules "ero­

sion" and "deposition" are only conceptual and are not governed by mass balance calcula­

tion. 

4.3 Results 

In the foUowing sections, I report the results of two groups of shnulations with the Muddy 

Creek parameters (see table 4.1). I simulate streams in spatial domains much longer than 

the length of a single bend (L^^lley > ^ ^bend^ stteams and topography over a 

shorter domain (L^alley > 10 ^bend^ ^° visualize the model resuhs in three dimensions. 

First, I briefly explain the model parameter set. Next, I break up the results into three sec­

tions focusing on the forms and evolution of meander bends, the floodplain, and the mean­

der belt, respectively. These sections progress from detaUs to the bigger pictiire to show 

how the former is reflected in the latter. Inevitably, there is some overlap of themes among 

sections. For comparison with the Topographic Steering River Meandering (TSRM) 

model, I draw on both examples from the field (see Chapter 3) and resuhs from a model 
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based on Johannesson and Parker's [1989c] LFE model (see Appendix D). Finally, I 

investigate the TSRM model's parameter sensitivities. 

4.3.1 Parameters 

Parameters were obtained from pubhshed data, shown in table 4.1 [Dietrich and 

Smith, \98'i; Dietrich and Whiting, 1989]. 

The dissipation scale was varied to cahbrate the model channel bend size to the 

size of the Muddy Creek bend stijdied by Dietrich and Smith [1983] (the "stiidy bend"). 

Also, from Dietrich and Smith's [1983] detailed map of the stiidy bend, 1 measured the 

distance from the locus of maximum bank erosion to the ends, both upsfream and down­

sfream, of the cut bank on that bend. Both cut bank measurements and the calibrated value 

of X (see table 4.1) are aU approximately equal. 

4.3.2 Meander Bends 

meters distance 

Figure 4.4: Meander model evolution over long domain with Muddy Creek parameters. 
Display every t = 5000 arbifrary model thne units, except magenta, at t = 250 umts; cyan is 
at t = 5500. units; red is at t = 10,500 units; green is at t = 15,500 units; blue is at t = 
20,500 units. The meander belt, or the area swept by the channel in ah time shces, includ­
ing many not shown, prior to and including t = 15,500 units is outiined and filled with a 
speckled pattern. There is little ttansgression from this area during the last 5000 umts. 

Several time shces from the long domain TSRM model simulations are shown in 

figure 4.4. The model produces realistic, complicated meander patterns. Individual bend 
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forms vary among many "typical" shapes, and tiie great variety of these shapes gives the 

appearance of irregularity, hi figure 4.5,1 compare a short section of model channel from 

the shnulation of figure 4.4 to a digitized natiiral river channel, the Kuskokwim River, 

Alaska (see figure 3.13). 

Figure 4.5: Comparison of Kuskokwim River, AK, and a TSRM model channel, (a) Digi­
tized nahiral channel centerline (see Chapter 3). (b) Model channel segment from the shn­
ulation of figure 4.4. 

The channel segments shown in figure 4.5 illustiate some of the similarities and 

differences between natiiral and TSRM model channels. The comparison illustiates that 

the model reproduces many of the types of forms found in real channels, such as com­

pound bends, loops that point upstteam, relatively sttaight reaches, and some pecuhar yet 

characteristic forms which defy nomenclatiire. Some of the natiiral shapes are kregular in 

comparison with the ideal shapes simulated by the model. In other cases, the natiiral 

shapes are even smoother than the simulated. 
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Figure 4.6: Model channels (drawn in solid black) superimposed with the predicted bank 
shear sti'ess (drawn in dashed gray at a distance proportional to its magnitude from and 
perpendicular to the corresponding channel segment) to show evolution. Flow is from left 
to right. Frame numbers are from an anhnation of the channel evolution where frames are 
drawn every t = 10.0 units. 

A TSRM model time series from a short domain simulation that illustrates some of 

the possible channel forms and how they evolve over time is shown in figure 4.6. Note that 

the fi-ames in figure 4.6 are not chosen at equal time intervals but are, rather, chosen to 

exhibit the detaUs of the model evolution. An interesting result shown in figure 4.6 is the 

model's formation of compound bends. Frame #101 shows the channel prior to an hnmi-

nent cutoff at x=150m. In frame #123 the cutoff has developed into a new, downstieam 

migrating bend. In frame #125 the latter bend has "pushed" into the downstream bend and 

led to an instability and large shear sfress on the inner bank of the bend at x=200m; the lat­

ter bend is now compound, defined as such by the small curvatiire reversal at x=200m. In 

frame #137 the compound bend has separated into three "daughter" bends; tiie middle of 

the three is migrating quickly and eroding into the inner bank of the thfrd; the migration of 

the latter, in tum, has led to compound bend formation at x=225m; the bend at x=100m 

has recently cut off. In frame #143 the bends at x=200m and 225m have become relatively 

stable; the compound bend at x=225m has not separated to form daughter bends; and, the 
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new bend at x=100m has initiated another "wave" of rapid channel migration downstteam. 

In frame #154, as a resuh of that wave, a bend at x=150m is now compound and the bends 

downstteam have changed. In frame #163 two more cutoffs, at x=150m and 225m, have 

initiated two waves, respectively, of accelerated channel migration. Finally, in frame #179 

the bend at x=100m has formed a series of bends resembhng the "daughter" bends at 

x=200m in frame #154, though the two mechanisms are different. These frames show that, 

in general, bends first migrate downstieam when they are small, grow laterally when they 

are of medium length, and finally grow upstteam when they are long. This resuh is consis­

tent with the decreasing "phase shift" with increasing bend length found by Odgaard 

[1987] and predicted by Furbish [1991]. 

The model produces compound bends shnilar, both in form and evolution, to those 

observed in the field. The "dog-leg" bend at the bottom of frame #154, at x=150m is char­

acteristic of a shape often produced by the model and found in natiire. I showed an exam­

ple from the Amazon River basin in figure 3.4. hi figure 3.121 showed two examples of 

compound bend formation on the Elhs River, ME, which formed by a mechanism similar 

to that described above and shown in figure 4.6. 

4.3.3 The Floodplain 

I emphasize again: in these "floodplain" resuhs I do not calculate the sediment 

mass balance. Thus, when, in the context of the model visualization, I use terms such as 

deposition, incision, and uplift, I mean them figuratively. 

Two time slices of the figure 4.6 shnulation with uniform uplift are shown in 

figure 4.7, one slice at an early stage of the simulation and the other slice at a tune 
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(between frames #137 and #143 of figure 4.6) much greater than the time for the channel 

to rework most of the meander belt. Both elevation and aUuvial thickness shadings are 

shown. If there were no uplift in the simulation, the surfaces with non-zero deposit thick­

nesses (alluvial shading other than white) would be floodplain surfaces higher than the 

average channel bed elevation. 

The time of figure 4.7(c) and (d) is chosen to show the early development of the 

compound bend at the center of the domain; this is the same compound bend as that shown 

in frame #123 of figure 4.6. The blue shading of the new point bar- indicates that the bend 

is growing rapidly compared to bends without blue-shaded point bars. As shown above, 

waves of accelerated migration, such as often foUow cutoffs, lead to a punctuated evolu­

tion of alternating slow and rapid channel migration. This punctuated evolution is evident 

from the variations in topographic slope on the modeled point bars (detail shown in 

figure 4.7(e) and (f)). The uphft rate is constant; therefore, topography wih be steeper 

when channel migration is slower. Flatter surfaces indicate locations of more rapid chan­

nel migration. 

Sloughs (see Howard, 1992) form on the point bars of bends (marked by arrows in 

figure 4.7) which are short enough that the lateral momentum tiansfer at the bend entrance 

leads to shear stress which carries over into the next bend (e.g., see frame #137 in 

figure 4.6) and erodes the point bar of that downsfream bend. Where the point bar is 

eroded, the channel moves away from the pool, rather than from the point bar as is more 

usual, and points which were last occupied by the pool form a slough which resembles 

those observed in the field and in the modehng of Howard [1992]. 
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Figure 4.7: Visualizations of "incised" meanders, (a), (b) Time = 300 units, (c), (d), (e), 
(f) Time = 12,490 units, (a), (c), and (e) Elevation shading, low to high: blue, tan, brown, 
light and dark greens; sketched at low elevations, (b), (d), (f) Alluvial shading, -0-0.5 
meters: white; yellow; yeUow, green and dark grays; hght and dark browns, (e), (f) Detaü 
of point bar, (e) elevation and (f) alluvial shading. 
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Figure 4.8: Visualization of model evolution without uplift to show floodplain topogra­
phy. Elevation shading is similar to that of figure 4.7 except that here greater elevations 
are stietched to show scroh bar topography. A close-up perspective view of the ckcled 
area is inset. Flow is from left to right, and I have removed the valley's downward eleva­
tion trend. 

Deposit thicknesses appear as bands of alternating hght and dark in many locations 

(some examples are ckcled in figure 4.7). These bands of contiasting deposit thickness are 

similar to scroll bars observed in the field (see figures 3.3 and 3.16) and are not formed by 

other models (e.g. Howard, 1992). In the simulation without uphft, shown in figure 4.8, 

the scroll bar-like topography is more evident. These model scroU bars are the result of 

osciUating channel curvature—which determines point bar height through equations (4.2) 

and (4.21)—during the evolution of the meandering channel. 

132 



To better understand this mechanism and others, it is useful to compare TSRM and 

LFE model bends. In figure 4.9,1 plot the shape, curvatare, and shear sttess for bends typ­

ical of each model: smah bends and the same bends just prior to cutoff. Note that no LFE 

model parameters were calibrated. The plots of curvatare and bank shear sttess as func­

tions of downstteam distance are normahzed by the maximum curvatares and shear 

sttesses and the bend lengths, respectively, for the smah bends. These normahzation val­

ues are hsted in table 4.2, along with the shnilar quantities from the Muddy Creek sttidy 

bend. 

Table 4.2: Bend characteristics for both models and Muddy Creek study bend 

L F E model TSRM model Muddy Creek 

bend length, m 42.1 25.2 25.2 

max. curvatare, m-l 0-0902 0.136 0.13 

From equation (4.20), the bank migration rate, t, = 40 cmJyr, measured at the 

Muddy Creek stady bend, and the TSRM model-predicted maximum bank shear sttess, i^ 

= 1.1 N/n?, the bank erodibihty predicted by the TSRM model is 

E = ^ / T , , = 0.36 m^/N • yr. 

Shear sttess disttibutions in the small bends are fakly similar, but subtle differ­

ences become more pronounced in the long bends. The different mechanisms driving bank 

shear stiess in the two models are evident in the different bend shapes and shear sttess dis­

tributions. The reader should refer to figure 4.9 in the following explanatory paragraphs. 
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Figure 4.9: Comparison of tlie LFE and TSRM models, (a), (b), (c), and (d) plot channel 
centerline curvature (sohd black) with bank shear (dashed gray); (e), (f), (g), and (h) show 
the channel planforms (sohd black) with bank shear (dashed gray), where its magnitude is 
proportional to the perpendicular distance from the channel, (a) and (e) show small bends 
from the LFE model, and (b) and (f) show the same bends near cutoff. Shnilarly, (c) and 
(g) show small bends fi-om the TSRM model, and (d) and (h) show the same bends near 
cutoff. The curvature and shear plots, (a), (b), (c), and (d), have normahzed axes; the hori­
zontal axes are normalized by the lengths of the smah bends (arrows) of each model; the 
vertical axes are normahzed by the maximum values of curvature and shear in the same 
smah bends. Both cases use the Muddy Creek parameter set. 

In the LFE model, the effective bank shear sfress is hnearly dependent on a 

weighted integral of local and upstream curvahire (see equation (D.0.1)). The curvature 

function peaks shortly downsfream of the crossover between bends and decays through the 

bend, and the bank shear sfress function has a similar shape peaked downsfream of the 

curvature. The curvature and shear stress functions and channel planfonns are quite regu­

lar from bend to bend, and the curvahire changes gradually through the bend. The bends 

tend to "lean" upstream but continue to elongate laterally because the loci of maximum 

shear stress are at the bend apices. 

In the TSRM model, bank shear sfress is nonlinearly dependent on the downsfream 

rate of change of curvahire. Curvahire peaks twice, at the beginning and end of each bend. 

134 



In between, the curvature is nearly constant for much of the bend and, for a small part near 

the end of the long bends, approaches zero. These curvature changes occur over short dis­

tances. The model bend curvature is strikingly similar to some of the natural channels' 

curvatare plotted in figure 3.14. 

The bank shear sttess function peaks early in the bend, downstteam of the first 

peak in the curvatare function, and may drop to nearly zero due to the nearly constant or 

decreasing curvatare through the middle of the bend. Thus, the direction of maximum 

channel migration shifts away from the down-valley or lateral directions toward the up­

valley direction. This tendency for long bends to "point" upstteam limits the bend's lateral 

elongation and is commonly observed in the field (see, e.g., figures 4.5(a) and 3.4). Bank 

shear sttess due to the second curvatare peak carries into the next bend and somewhat 

counteracts the shear stress from the opposite lateral momentam fransfer at the beginning 

of that next bend. Note that I do not explicitly model the flow field; that said, the latter 

counteraction effect is similar to what happens to the flow field in the fransition between 

bends. At a bend entiance, if the high velocity core is accelerating toward the inside bank, 

it takes some force to reverse that acceleration and steer it towards the opposite bank, force 

which might otherwise be expended as shear sfress. 

The spatiotemporal coevolution of curvatare and bank shear sttess forms scroll 

bars, as shown in figures 4.7 and 4.8. This phenomenon bears some discussion here. In the 

two long bends in figure 4.9(d) and (h), smaller curvatare peaks at the crossover and 

beginning of the first bend lead to a longer downstteam lag than in the second bend, where 

the curvatare peaks are larger. In the latter bend, bank shear sttess is concenttated in a rel-
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atively high curvatare reach such that high points are left behind by the migrating channel; 

in the former bend, bank shear stress is peaked where curvatare is small such that low 

points are left behind as the channel migrates. Such differences in the downstream lag 

exist among bends and over thne in the same bend. As the lag changes over thne, the step­

like natare of the curvatare function leads to shnilarly abrupt differences m floodplain ele­

vation. Two other simple mechanisms also come into play: (a) where bank migration is 

locahzed, curvatare at that locus increases; and (b), in loci of less bank migration, local 

curvatare decreases. 

I further examine the model scroh bars by repeating the specttal analysis of Chap­

ter 3 for ttansects extracted by scan line conversion of hne segments between specified 

endpoints onto the model grid (see figure 4.10). This is the same method used to superim­

pose the TSRM model channel segments onto the grids in figures 4.7 and 4.8. The num­

bered ttansects from figure 4.10 are shown in figure 4.11. 

1 employed the same specfral technique used for the natural channels in Chapter 3 

to find the power specfra of the fransects (see figure 4.12). Many of the fransect spectta do 

not have peaks with confidence levels smaller than 0.5, and none of the specttal peaks 

have confidence levels smaller than 0.1 (see table 4.3). This resuh indicates that the model 

scroll bar topography is only quasi-periodic, though many of the spectta have peaks at 

similar wave numbers. The mean peak wavelength, excluding ttansects 4, 15, and 20, is 

9.6 m. The results of the model specttal analysis are not dissimilar to the results of the 

Ellis River specttal analysis (see Chapter 3, especiahy figure 3.21) which also did not have 

many peaks at confidence levels smaller than 0.1. Neither the EUis nor the model ttansects 
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are long enough to contain many oscihations at the peak wavelength because thek point 

bars contain few scroUs, but even the Mississippi scroU bars analyzed in Chapter 3 were 

only quasi-periodic. 

Some of the peak wavelengths are close to twice the channel discretization. Ani­

mations of the formation of these scroh features indicate that some of them result from the 

channel discretization where the channel runs perpendicular to the ridges. Much of the 

model scroti bar topography, however, is indeed produced as the curvatiire through several 

channel points osciUates as the bend migrates. Note that transects 4 and 12 are practically 

on top of one another but have different maximal peaks, testimony to the lack of a donti-

nant periodicity in the model topography. 

50 

0 50 100 150 200 250 300 350 
meters distance 

Figure 4.10: Gray scale image of the model simulation of figure 4.8 with locations of 
transects. Numbered transects are drawn with a thicker line than the rest. 
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Figure 4.11: Elevation plotted vs. distance for the numbered transects shown in 
figure 4.10. Note that the grid point spacing is 1.83 meters in both the x- and y-directions. 
Therefore, the minimum possible transect increment is 1.83 m. 
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Figure 4.12: Power spectra of the numbered transects shown in figures 4.10 and 4.11. The 
plots show power vs. wave number. Only those spectra with maximum power above the 
0.50 confidence level are shown. The confidence levels of the maxima are as follows: 
0.19, 0.20, 0.40, 0.27, 0.17, 0.30, 0.37, 0.22, 0.10, and 0.33 for spectra of transects 2, 4, 7, 
8, 10,12, 14, 15, 16, and 20, respectively. 
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Table 4.3: Confidence levels of spectral peaks' 

transect peak wave number, m peak wavelength, m confidence level 

2 0.10 9.6 0.19 

4 0.033 30. 0.20 

7 0.12 8.5 0.40 

8 0.091 11. 0.27 

10 0.091 11. 0.17 

12 0.12 8.3 0.30 

14 0.11 9.1 0.37 

15 0.18 5.6 0.22 

16 0.11 9.4 0.10 

20 0.063 16. 0.33 

a. Grid discretization is 1.83 m; channel discretization is variable, on average 5.5 m, or one 
channel width. 

4.3.4 The Meander Belt 

The meander belt according to one definition is drawn in figure 4.4. In figures 4.7 

and 4.8, the meander belt consists of points visited at least once by the channel. Areas 

completely surrounded by "visited" points could also qualify and are visible in figures 4.7 

and 4.8 but are not represented in the following statistics. When past channel location is 

not recorded, the meander belt is defined by the present channel. 

Cumulative distribution functions (CDFs) of meander belt age and the time devel­

opment of meander belt width are shown in figure 4.13 for the simulation of figure 4.7. 

The CDFs show that most of the material in the meander belt is relatively new; i.e., the 

channel reworks ~70% of the meander belt every ~3000 model time units. But the distri­

bution has a tail which grows longer through time and indicates that the probability of 

finding older surfaces remains relatively high for times much longer than 3000 units; e.g., 

after 13,100 units, the probability of finding a surface older than 10,000 units is greater 
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than 10% (see figure 4.13). The meander belt reaches a stable maximum width 

(figure 4.13(b)) after 3000-5000 time units, though the channel often approaches the belt 

edges (see figure 4.7). Lathrap [1968] found the oldest of his archaeological sites on the 

Rio Ucayah, Peru, on the edge of the meander belt. 

0 1310 2620 3930 5240 6550 7860 9170 1048011790 13100 

0 2000 4000 6000 8000 10000 12000 14000 
T, model time units 

Figure 4.13: Cumulative distributions of floodplain age and maximum meander belt 
width. Time (horizontal) axes are of approximately equivalent scale. Results are from the 
simulation shown in figure 4.7. (a) Cumulative distributions of ages of meander belt mate­
rial are shown for several times after meander belt widening has nearly ceased; only loca­
tions which have been visited at least once by the channel are included in the distiibutions. 
(b) Maximum meander belt width vs. time. Maximum meander belt width is defined by 
the longest row (i.e., cross-vahey) of grid points which have been visited by the channel 
(see figure 4.7). 

Meander belt stability is also illustiated in figure 4.14, where the normalized prob­

ability density and non-normalized frequency distributions of the y-coordinate values of 

channel points are shown for the long domain simulation time slices of figure 4.4. 

Between the first and second times, the number of points and the meander belt width 

increase dramatically; after t = 5500. units, the number of points and the meander belt 
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width increase little, but the likelihood of a channel point lying near the edge of the mean­

der belt increases greatly. The last time slice in figure 4.14 shows that the channel pattern 

eventually loses its "memory" of the initial channel location and that, in so doing, the y-

coordinate values of disparate parts of the meander belt become uncorrelated. This de-cor­

relation leads to the bimodal distribution of y-coordinate values for the last time slice in 

figure 4.14. But, even as different sections of the channel occupy different regions on the 

y-axis, the major part of the channel remains within a range whose width is relatively con­

stant throughout the simulated channel's evolution. Note that these plots are not meant to 

predict patterns of deposition, which could affect meander belt location, width and stabil­

ity. The finding that meander belt width remains nearly constant after some time contrasts 

with Howard's [1996] finding that his meander model produced logarithmic growth of the 

meander belt width with time. 

-400 -200 0 200 400 -400 -200 0 200 400 
y, meters 

Figure 4.14: Distributions of y-coordinates of simulated channels from figure 4.4. Solid 
light gray, t = 250. units; dashed hght medium gray, t = 5500. units; dot-dashed dark 
medium gray, t = 10,500. units.; dot-dot-dashed dark gray, t = 15,500. units; dotted black, 
t = 20, 500. units, (a) Normalized sample distributions of probability of finding a channel 
point at a given y-coordinate; (b) non-normalized sample distributions. 

In figure 4.15,1 show the results of applying the measures (sinuosity mean and 

variance, meander belt width, and mean angle) developed in Chapter 3 to the model chan­

nels at several times during the simulation of figure 4.4. First, note that the characteristic 
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features change over thne. The first shce has a single plateau and single peak in \Xg and 

o ƒ , respectively. W decreases monotonically with a convexo-concave profile; convex at 

the peak of o^^ and where (x̂  is increasing, concave where [i^ is level, p-g has a single 

peak, though a subtle bump is apparent after the peak. In ah subsequent time slices, o^^ 

has more than one peak corresponding to more than one step in p.̂  and convexity of W. 

Correspondence to peaks in pg is also apparent though less consistent. The number of 

channel planform scale indicators is not monotonically increasing through thne, and the 

primary sinuosity remains nearly constant. The secondary sinuosity, however, varies. If 

secondary features correspond to large multi-bend loops, then the cutoff of such forms 

will eliminate corresponding channel planform scale indicators. Apparently, there was at 

least one major cutoff event between times 5450 and 10,450. Similar forms have become 

reestablished as of time 15,450. The scale of the primary channel planform scale indica­

tors is nearly constant in time at ~20-30 b. Secondary channel planform scale indicators 

are also at similar scales over time, at ~ 100 b. These characteristics and scales are similar 

to those of the natural channels in Chapter 3. 

For comparison, I show several time slices from the LFE model simulation over a 

domain the same length as the TSRM model simulation of figure 4.4 in figure 4.16 and the 

results of my planform measures in figure 4.17.1 have already pointed out some of the dif­

ferences in form in figure 4.9. Note the different model times bearing no correspondence 

to times of the TSRM model simulations shown. The LFE model simulation has complex 

forms but lacks multi-bend loops and other forms typical of compound bend formation, 

such as that in figure 3.4. Computation time for the simulation shown was an order of 
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magnitude longer than that of figure 4.4, and the LFE simulation time corresponds to 

much less tkne than in figure 4.4 in terms of the lifetime of a simple bend. This version of 

the LFE model needed a much finer discretization than the TSRM model, and the corre­

spondingly greater number of channel points led to much of that longer computation time. 

Others, e.g., Howard [1992] use a channel discretization comparable to that used here for 

the TSRM model. 
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Figure 4.15: Sinuosity mean and variance, relative meander belt width, and mean angle 
vs. normalized reach length for the TSRM model simulation of figure 4.4. 
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Figure 4,16: Meandering channels simulated with the LFE model and shown at several 
thnes. Magenta, cyan, red, green, and blue are after 20, 40, 60, 80, and 100 time units, 
respectively. 

There are some interesting differences in the planform measures of the LFE model 

simulations. The shapes of the G / ' S are most strikingly different. The integral or mass of 

for the LFE model simulation is smaller and more closely distributed around the peak 

value. There are secondary peaks, but they are hmited to spikes, i.e., they are not associ­

ated with much of the G / mass, and they look more like noise. Similarly, p^ does not have 
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distinct secondary steps. Peak values of W are larger than for either natural or TSRM 

model streams. Two shces (excluding noise) are not monotonically decreasing and are 

peaked at the scale of the peak in . I observed this peak in Wfor TSRM model simula­

tions not shown, but it appears to be less common and may vary with parameters. There 

are no signiflcant secondary \XQ peaks. The scale of channel planform scale indicators is 

approximately constant over time at ~20-40 b, though there is some increase over thne 

which may or may not be significant. I observed that LFE model bend growth is bounded 

only by spatial limitations, whereas the TSRM model bends tend to become compound. 

By the last time shce, the maximum W has decreased to a value similar to that typical of 

the TSRM model. 

t = 20 t = 40 t = 60 t = 80 t = 100 
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reach length / channel width 

Figure 4.17: Sinuosity mean and variance, relative meander belt width, and mean angle 
vs. normalized reach length for the LFE model simulation of figure 4.16. The steep rises in 
mean angle for scales approaching 1000 channel widths at t = 60 and t = 80 are artifacts of 
the measure. 

4.3.5 Model Sensitivity to Parameters 

I have analyzed the model's sensitivities by running simulations varying each 

parameter, and I show some of the more interesting cases in this section. Parameter 
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changes can have comphcated effects due to the interplay among the various model com­

ponents described in the previous section. 

The dissipation scale is the major control on the size of the shnulated meander 

bends. Smaller (or larger) dissipation scales lead to smaller (or larger) bends. The relation­

ship between dissipation scale and bend length is linear. The dissipation scale was the cal­

ibration parameter because it most dhectly contiols meander bend length. 

Pai-ameter changes that increase the difference between the lateral and vertical 

momenta in equation (4.12) usually result in increased migration rate. Such changes 

include increasing channel width (see figure 4.18) and slope and, counter-intiiitively, 

decreasing discharge; when channel width is held constant, a decrease in discharge also 

decreases the depth such that the width-to-depth ratio and, therefore, the difference 

between the lateral and vertical momenta, also increase (see equation (4.13)). However, 

discharge and width do not, in general, vary independently in natural channels. 

0 100 200 300 400 
meters distance 

Figure 4.18: lUustiation of the model's sensitivity to channel width. In (a), shnulation 
witii default channel width, b = 5.5 m; in (b), simulation with b = 10. m. Both simulations 
are shown after and for equal times. Earliest times shown in bold black; latest times in 
bold medium gray; intervening times, from early to late, shown in thin light gray to black. 
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Figure 4.19: Illustration of the model's sensitivity to median grain diameter. In (a), simu­
lation with d^o = 2 mm; in (b), simulation with d^g = 0.4 mm. Both simulations are shown 
after and for equal times. Earliest times shown in bold black; latest times in bold medium 
gray; intervening times, from early to late, shown in thin light gray to black. 

Changes in grain size affect both the rate and style of channel migration (see 

figure 4.19). Decreasing the grain size can have a dramatic effect because of the transverse 

bed slope's dependence on grain size (see equation (4.3) and equations (A. 1.4) and 

(A.2.10)). Smaller grain size corresponds to greater transverse bed slope and, thus, larger 

3A^^/3s. The lateral momentum ttansfer increases as (3A^^/3s)2 (see equation (4.13)), 

and the downstteam lag decreases as the inverse of dA^/ds (see equation (4.18)). Migra­

tion rate increases with lateral momentum ttansfer. Shorter downstream lags, relative to 

the dissipation scale, promote more compound bend formation, such as in the run of 

figure 4.19(b), because the bank shear stress is applied earher in the course of the bend. I 

showed in Chapter 3 that bends of the Elhs River became compound when the channel at 

the beginning of the bend migrated rapidly (Aside: note the marked similarity, in both 

shape and evolution, between the bend at the bottom of figure 4.19(b), aix = 250 meters, 

and the Elhs River bend #13 in figure 3.12(b).). Thus, parts of the channel migrate in the 
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same direction as, and elaborate on the patterns of, earher bends to form sinuous, "puzzle-

piece" patterns. This type of pattern is prevalent, for example, on the Melozitna and 

Innoko Rivers, Alaska (see figure 3.13). 

4.4 Discussion 

The model suggests answers to some of the past riddles concerning the evolution of mean­

dering channels and the effect of that meandering on floodplain and meander belt geomor­

phology. 

4.4.1 Conditions for meandering and channel stability 

It has been suggested [Schumm, et al, 1987; Howard, 1992] that cohesive bank 

material and mobile bedload are necessary for meandering. My model supports the neces­

sity of the latter and, implicitly, the former conditions. 

Without stabihzation by cohesive materials and vegetation, the floodplain and 

channel banks are eroded untU the stieam is fully braided, as shown in the expermients of 

Schumm, et al [1987] and my own held observations in the Missouri Ozarks (see Chapter 

3). The TSRM model assumes that the channel banks and floodplain are stabihzed by 

some mechanism though I do not model that mechanism exphcitly. The bed topography 

model assumes that the bed is composed of mobile bedload material. Therefore, mobüe 

bedload is necessary in the TSRM model, and experimental observations also support the 

necessity of bedload for meandering [Schumm, et al, 1987; Smith, 1998]. 

Bend migration may become small under several conditions, as indicated in the 

results. The model predicts a punctiiated evolution, fast when bends are small and slow 

when bends are either long or "incoherent", i.e., lacking a consistent scale, such as in the 
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period just following a cutoff. The latter phenomenon is apparent ftom the long thne 

between the flrst two frames of flgure 4.6. Changes in bedload material may also affect 

channel stability, as shown in figure 4.19. If the bedload source for a meandering channel 

were to coarsen and that coarsening were the only change, then, according to the model, 

the channel migration rate would decrease as fransverse bed slopes and, thus, lateral 

momentiim ttansfers became smaller. Deeper, narrower channels should also migrate less 

quickly. 

On the other hand, I have shown several situations in which migration rate is par­

ticularly large. Of course, increases in parameters which reflect the available energy, such 

as discharge and vahey slope, lead to increases in migration rate. This sensitivity to slope 

is consistent with Schumm's [1993] observations and Schumm, et al.'s [1987] experimental 

results. But, the model also predicts some less obvious sensitivities. In the model, wider 

channels with smaller bedload migrate more rapidly, as shown in figures 4.18 and 4.19, 

and smah bends migrate quickly and lead to rapid migration tn bends downsfream. 

I , and others, have observed that meandering channels occur only in vaheys of low 

slope. According to equations (4.3) and (4.13), migration should be more rapid when val­

ley slope is larger because larger bottom shear stress due to the slope increase leads to 

greater ttansverse bed slope. However, flow on the floodplain wih also be swifter, and 

deposition of stabihzing fines and seeding of stabUizing vegetation wül be less likely. 

Therefore, such stteams are more often braided, as per the discussion above. 

Dietiich and others (personal communication, 1995), Howard [1992], and Smith 

[1998] have observed that some sinuous, low-slope channels do not migrate at ah. As 
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noted above, my model suggests that migration should decrease with lower channel slope. 

If there is a critical shear sttess for bank erosion, migration could cease entirely when 

channel slope is small enough. I experhnented with a critical shear sttess for bank erosion 

and modeled some cases in which migration stopped after the sinuosity increased, and 

thus the channel slope decreased, beyond a threshold value. 

4.4.2 Meander bend shape and evolution 

The present resuhs indicate that details of meander bend shape may have profound 

imphcations for the meander belt as a whole. Most of the differences in bend shape 

between the TSRM and LFE models are due to thett dissimilar dependencies on channel 

curvature, as explained in the results section. 

In the LFE model, the channel migration rate's linear dependence on channel cur­

vature discourages, and may even disallow, compound bend formation. Howard [1992] 

noted the absence of compound bends in his LFE model simulations. In the LFE model, 

bends remain stable with respect to variations in curvature as long as the curvature does 

not change sign, even as these bends become quite long. Such bends never develop more 

than one pronounced curvature maxhnum (see figure 4.9). Howard [1992] conjectiired 

that un-modeled secondary processes, such as migrating alternate bars, or conditions, such 

as heterogeneous bank erodibihty, are responsible for compound bend formation. 

Seminara and Tubino [1992] reasoned "that strongly nonhnear effects may play a 

non-negligible role for fairly small values of channel curvature." The TSRM model is 

sttongly nonlinear, and this nonlinearity plays an important role in meander evolution. In 

the results, I showed how bank shear sttess may approach zero (see figure 4.9) in longer 
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bends. In such cases, the model's nonhnearity promotes planform instabihty due to rela­

tively smaU variations in curvature. The bank shear sttess dissipation scale determines the 

length over which such variations are smoothed out and bends remain stable. For bends 

longer than that stable length, smah increases in curvahire promote instabihty which in 

ttirn promote the formation of compound bends. The lateral momentiim ttansfer's nonhn­

ear dependence on changing curvature is both necessary and sufficient for compound bend 

formation. 

The sensitivity analysis suggests, and I have observed, that compound bend forma­

tion is more hkely when the downstream lag is smah relative to the dissipation parameter, 

%. The lag is smaller with smaller channel width (see equation (4.18)) and greater lateral 

flow velocity relative to the downstteam velocity (see equation (4.9)). Greater lateral flow 

velocity is generally due to greater ttansverse bed slope, e.g., for small grain diameter. 

Greater downstteam slope leads to an increase in ttansverse bed slope, a decrease in flow 

depth, and, therefore, a disproportionate increase in lateral flow velocity relative to down­

stream flow velocity (V ~ Sj-^^, U ~ S^-^) because lateral velocity increases with both 

ttansverse bed slope and the inverse of flow depth (see equation (4.9)), the latter decreas­

ing with greater channel slope (see equation (4.1)). Therefore, the lag decreases with 

increasing slope (L ~ Sj^-^^), and the lateral momentiim ttansfer increases linearly with 

slope (c/F„~5ƒ). 

4.4.3 Meander belt and floodplain evolution 

It is apparent from the model resuhs that the style or mechanism of bend evolution 

has a signiflcant impact on the meander beh as a whole. Compound bend formation pro-
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motes planform complexity, which is reflected in stream sinuosity. When bends cut off, a 

simpler, less sinuous channel pattern replaces the original. When bends divide, however, a 

more complex and sinuous channel pattern replaces the original. 

This type of complexity enhances system memory, deflned as the time over and 

extent to which current form reflects prior conditions, as discussed in Chapter 3. As shown 

in the Results, compound bend formation leads to puzzle piece channel planforms. These 

puzzle pieces enclose significant areas of the meander belt without encroaching on them. 

Such areas may contain remnants of the point bar of the original bend on which the puzzle 

piece is an elaboration. In this case, the lifetime of that point bar remnant is extended by 

the several bend lifethnes over which the original bend has divided and re-divided. This 

lifetune extension is one mechanism by which floodplam surface remnants may persist for 

times much greater than the time the channel takes to re-work most of the floodplain, as 

evident in the long tails of the CDFs of floodplain age shown in figure 4.13 and by the 

unvisited surface remnant visible in figure 4.7(c). 

This result is consistent with field observations. T. Abbe [personal communication, 

1996] has found fees whose age greatly exceeds the esthnated, or expected, period 

between channel occupations on alluviated floodplains in the Queets River watershed on 

the Olympic Peninsula of Washington. 

The relative importance to the planform of compound bend formation is apparent 

in the planform measures as secondary channel planform scale indicators. Both the natiiral 

channels from Chapter 3 and tiie TSRM model channels exhibit these secondary channel 

planform scale indicators, but the LFE model, which lacks compound bend formation. 
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also lacks secondary channel planform scale indicators, though the LFE and TSRM model 

channels have shnilar total sinuosity at the last times measured (see figures 4.15 and 4.17). 

Thus, not only does the new model reproduce a natiiral phenomenon not captured by pre­

vious models, but also the new statistical measures of channel planform distinguish 

between the presence and absence of that phenomenon in model and natiiral channels. 

The model resuhs have imphcations with respect to the meander belt width. Model 

bends develop such that thek apices point more nearly upstteam/up-vahey as they grow 

longer, e.g., in the last frame of figure 4.6. This detaü of bend development knplies that, in 

the absence of net aggradation, which could cause the channel to avulse, the meander belt 

width may be self-hmiting and, thus, narrower in the TSRM model than in, e.g., the LFE 

model, where bends are more laterally elongated. However, one impUcation of enhanced 

system memory from compound bend formation is that channels wih continue to nkgrate 

in the dkection of a prior bend. Such migration tends to increase the meander beh width 

(see figure 4.19). In aggrading systems, channel avulsions may also widen the meander 

beh. 

The most surprising model result is the formation of scroU bar-like topography. 

Traditionally, scroti bars have been thought to result from alternating periods of slow levee 

formation and rapid bank erosion. Such a mechanism is consistent with the experimental 

observations of CE. Smith [personal communication, 1998], who developed non-dune, 

unvegetated scroU bars under experimental, steady flow conditions. As shown m the 

present results, the TSRM model channels do not evolve at a steady rate, and the alternat­

ing periods of slower and faster migration are visible as bands of steeper and more gradual 
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slope, respectively, in figure 4.7(a), (c), and (e). Migration rate and deposit depth at a point 

are not correlated, but, given that the locus of bank erosion is distal from the point of lat­

eral momentum transfer, this lack of correlation does not necessarily imply independence. 

My observations and analyses of natural channels and point bars do not rale out the 

hypothesis that scroll bar topography is produced by a mechanism similar to that of the 

model scroll bars. Like the natural scroll bar topography, the model scroll bar topography 

is only quasi-periodic. Many of the model tiansects have a maximum peak at a wavelength 

that is close to a multiple of the average channel discretization, and I cannot rale out a grid 

effect as the mechanism responsible for the model scroh bar topography in some cases. 

From the field investigation of scroh bar topography on the Elhs River in Chapter 

3,1 favor the hypothesis that scroh bar topography is related to episodic rapid channel 

migration due to the occurrence of upstream cutoffs. The TSRM model channel migration 

is characterized by episodic rapid channel migration. From figure 4.6 and an anhnation of 

the model, it is evident that the episodic migration in the TSRM model is due to the occur­

rence of cutoffs. 

4.4.4 Other Model Verification Methods 

Some authors (e.g., Johannesson and Parker, 1985; Garcia, etal, 1994; Howard 

and Knutson, 1984) have evaluated the capabUity of models to predict observed channel 

evolution. Others (e.g., Johannesson and Parker, 1989a; Nelson and Smith, 1989a, b) have 

compared details of the flow and bed topography of models and natiire. Howard and Hem­

berger [1991] developed a multivariate statistical channel planform analysis. 
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It is nearly impossible to use the model to predict specific, observed migration 

from an observed initial condition because the TSRM model is strongly nonlinear and sen­

sitive to initial conditions. The stability of LFE models may allovi' them to better predict 

short-term channel migration. As noted previously, the TSRM model is not designed to 

predict details of flow and bed topography. I have, however, shown striking similarities 

between model and natural channel planform and evolution styles. 

4.5 Conclusions 

The TSRM model simulates meandering channel evolution and produces realistic channel 

patterns and floodplain topography, including scroll bars and sloughs. The model's suc­

cessful simulation of meandering supports the topographic steering hypothesis, i.e., that 

bank shear stiess arises mainly Itom forces associated with topographically induced con­

vective accelerations. More generally, the bank shear sttess' dependence on the down­

stteam rate of channel curvature change is probably sufficient to produce meandering. The 

nonlinearity of that dependence is certainly sufficient and may be necessary for compound 

bend formation. 

I have derived an expression for ttansverse bed slope of sand-bedded channels. 

The modification of Ikeda's [1989] formula permits accuracy in sand-bedded channels 

because the modified version accounts for the effect of form, drag associated with dunes. 

Unlike most models of river meandering, the TSRM model is sttongly nonlinear, 

as noted above. The simplified physics makes such nonlinearity approachable not only 

conceptually but also computationally. The model's computational efficiency allows 

observation of the long-term, complex, and often surprising model results in great detail 

over short valley domains, as in the incising meander simulations, and less detail over long 
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domains. The model formulation's conceptual "modularity" allows ready identification of 

modeled phenomena and their attribution to specific mechanisms. 

The present approach apparently captures physics that other models do not. Unlike 

most meander models, the TSRM model forms compound bends and allows prediction of 

the sensitivity of compound bend formation frequency to model parameters that affect the 

ttansverse bed slope. Specifically, the model predicts that, all other parameters remaining 

constant, a decrease in bed material grain size increases not only the rate of channel 

migration but also the prevalence of compound bend formation. With greater migration 

rate, the rate at which the meander belt widens is, of course, greater. I have also shown that 

a meander belt with more compound bend formation is wider than one with less com­

pound bend formation. Thus, a decrease in grain size has a disproportionate effect on the 

rate of valley widening. Another result of more compound bend formation is the increased 

likelihood that parts of the valley floor will remain untouched for longer periods of time. 

This result may have profound implications for archaeology in alluvial valleys. The 

model's sensitivity to grain size also suggests a mechanism for observed downstteam 

changes in vahey width on the Buffalo River. The valley is wider where the river crosses a 

cherty Ihnestone unit that produces relatively small gravel bedload; the vahey is narrower 

where the river crosses a massive sandstone unit that produces cobble-size bedload. 

The model predicts a heretofore unrecognized mechanism behind the formation of 

scroll bar topography. As the model channel migrates, curvature and, thus, point bar height 

change. These changes are sudden and systematic in space and tkne such that, as a mean­

der bend evolves, the varying point bar heights form ridges and swales, or scroll bars. I 
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have not verified tliis prediction, but neither do my studies of natural channels falsify it. 

The model results are consistent with another scroh bar formation theory based on the epi­

sodic nature of channel migration. TSRM model channel migration rate fluctuates, visible 

in the "incising" meanders (see figure 4.7) as banded areas of alternating gradual and steep 

slope reflecting fast and slow migration, respectively. These bands are consistent with the 

Elhs River measurements indicating that alternating periods of fast and slow lateral pomt 

bar accretion correspond to fast and slow vertical point bar accretion, respectively. Also, 

given a constant rate of levee deposition, this handedness would be expressed as ridge and 

swale topography. 

The new quantitative channel planform analytical methods can detect that the natu­

ral and TSRM model channels form compound bends and the LFE model channels do not. 

These measures also detect variations in the prevalence of multi-bend loops in the evolv­

ing planform over time. Such time variations could be responsible for the lack of second­

ary channel planform scale indicators for channels which do have many visible compound 

bends. 

The TSRM model is incorporated in a new channel-hiflslope integrated landscape 

development (CHILD) model in Chapter 5. The TSRM model is efficient enough to keep 

the larger computational burden of the coupled models well within the range of feasibility. 
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Chapter 5 

The Channel-Hillslope Integrated 
Landscape Development Model 

In this chapter, I present the channel-hiUslope integrated landscape development (CHILD) 

model. The model integrates the TSRM model from Chapter 4 and a landscape evolution 

model including hülslope and channel sedhnent transport. The integrated model is the 

result of a team effort including Nicole Gasparini, Gregory Tucker, and Rafael Bras. We 

have developed the model so that it may be used for a wide variety of apphcations, includ­

ing distributed hydrologie and plate tectonic modeling. 

5.1 Introduction 

The model shnulates landscape evolution, but its components are flexible enough to serve 

a number of ends. The CHILD model is written in the C-t-+ computer language, and we 

have attempted to take advantage of hs feahires, including data hiding, the use of template 

and inherited classes, and a fully object-oriented design. We sought a new approach to 

enable modeling of the interaction of a variety of processes. In this chapter I show the 

development of the model to examine, among other things, the interactions between a lat­

erally migrating channel and the surrounding landscape. The CHILD model was designed, 

in a group effort, to address a wider range of issues than I can address in the present work, 

and I wih describe some of those wider capabihties even though thek application is 

beyond the present scope. 
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5.1.1 Channel-Hillslope Interaction 

I reviewed some approaches to modeling the coupled system of channels and hihs-

lopes in the landscape in Chapter 2. Such approaches are, however, Ihnited to channels 

that do not migrate laterally. In Chapter 3,1 showed that lateral channel migration affects 

topographic slopes outside of the main channel. Also in Chapter 3,1 discussed the ways 

that lithologic properties might control lateral channel migration and, in Chapter 4, 

showed the effect of different bedload grain sizes and controls on channel width and dis­

cussed the effects of varying slope and other factors. In Chapter 3 I discussed the possible 

effects of the interactions between the channel and the surrounding landscape on channel 

transport regimes and slope. 

The CHILD model was designed to model aU of the above effects, but a fuU treat­

ment of all of them is beyond the scope of this chapter. Here, I have focussed on the inter­

actions among uplift, bank (or bluff) height, and lateral channel migration because even 

these relatively shnple interactions have not been addressed in previous studies and must 

be addressed before more comphcated cases. As reviewed in Chapter 2, Howard [1992] 

discussed the constiaints on bank erodibihty and modeled the effect of confining vahey 

walls by super-imposing the meandering model channel and a grid with two possible val­

ues of bank erodibility, one "floodplain" value for pixels previously visited by the channel 

and another, higher "valley wall" value for unvisited pixels. In the long term, however, the 

interaction of the migrating stream and the valley walls wih depend on both the uplift rate 

and the bank erodibihty's bank height dependence. The latter, as discussed by Howard 

[1992], is a comphcated problem in itself, and the present model includes only a shnple 

parameterization of bank erodibihty's bank height dependence. This parameterization 
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should be sufficient to test the hypothesis that meandering is more active during periods of 

quiescent uphft. More specificaUy, I wiU test this hypothesis for the case of meandering 

stteam incision in a detachment-lhnited system. In Chapter 41 showed that the channel 

slope and the shear force increment have an approxhnately hnear relationship. This resuh 

indicates that, i f larger channel slopes result from greater uplift, then the latter may actu­

ally increase the lateral migration rate if the effect is not cancelled out or reversed by the 

effect of uplift on bank height. 

Also, the valley form should be affected by compound bend formation. The valleys 

simulated by Howard [1992] were, relatively, sttaight and of constant width. In Chapters 3 

and 4 that greater frequency of compound bend and multi-bend loop formation led to 

channels with a large secondary sinuosity. In an incising system multi-bend loop forma­

tion might lead to a sinuous valley formation because, as discussed in Chapter 3, multi-

bend loop formation tends to leave some parts of the floodplain for longer times between 

vishs by the migrating channel. If the stteam is incising, then these less fi-equently visited 

points would be uplifted for a longer thne between channel visits. I f the bank erodibihty is 

dependent on bank height, then these uplifted areas would tend to resist lateral channel 

migration and reinforce the tendency for the channel to form sinuous valleys. Depending 

on the exact form those valleys took, the multi-bend loop formation might even cause such 

streams to appear to be underfit, i.e., appear to have valley bends that were formed in the 

past when flows were greater and the channel was larger, hi Chapter 41 showed that the 

channel slope and the downstteam lag between shear force mcrement generation and bank 

shear sttess are inversely, though weakly, related (L ~ 5 ƒ-̂ ,̂ where L is downstteam lag 
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and 5yis channel slope). That smaUer downstream lag leads to greater frequency of com­

pound bend and multi-bend loop formation. The model experhnents in this chapter should 

ahow examination of the role of compound bend and multi-bend loop formation in incis­

ing river valley formation. 

5.1.2 Model Requirements 

Most previous landscape evolution models have mapped elevations—and other 

properties—on a rectangular grid (e.g., Ahnert, 1976; Kirkby, 1986; Willgoose, et al, 

1989; Chase, 1992; Howard, 1994; Tucker and Slingerland, 1994; Moglen and Bras, 

1995; Tucker and Bras, 1998). Such a grid is similar to that used in DEMs, sufficient to 

represent the modeled processes, and convenient for progranmiing. We were, therefore, 

reluctant to abandon this format. However, in order to incorporate the TSRM model, the 

new model needed the capabhity to represent: (a) channel point locations with real-num­

ber coordinates; (b) lateral channel migration; and (c) different landscape processes at 

their appropriate, often different scales. Superimposing the meandering model on a rectan­

gular grid, as in Chapter 4, was a possible approach. Howard [1996] used a grid of erod-

ibihties to represent meandering in a confining vahey and with resistant clay plugs, and 

the latter situation was modeled by Sun, et al [1996] using a similar but more finely dis­

cretized grid. The latter grid is much too finely discretized to be practical for modeling an 

entire landscape and would not be suitable for simultaneously modeling channels of 

widely varying size because the necessary discretization is dependent on the size of the 

channel. Howard's [1992] coarser grid discretization was also dependent on channel size 

and would, therefore, be similarly problematic. 
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In order to represent channel point locations, it was necessary to model the land­

scape on an irregular mesh. Braun and Sambridge [1997] developed a landscape evolution 

model using a Delaunay triangulated kregular network (TIN) of points. The Delaunay k i -

angulation is the unique set of triangles that connect a given set of points such that a circle 

passing through the three points of any kiangle contains no other points. Though the 

Braun and Sambridge [1997] model has the capability of adding and moving points in the 

landscape, thek model was not sufficient for the CHILD model. Thek model typically 

adds points to resolve steep slopes, and their rules for movement of points were designed 

to model the tectonic motion of crustal plates, where moving landscape "nodes" wih tend 

to deflect one another. The CHILD model needed to represent channel migration such that 

nodes are deleted from the eroding bank and added to the accreting point bar. 

We were also concerned that the model's useful lifetime should not end with the 

completion of the current project. Therefore, we designed the model as a set of objects, or 

classes—in C++ an object is the set of data and functions which deflne a particular thing, 

e.g., a "window" exists to the computer as a something with properties, hke height and 

width, and functionality, like opening and closing. Some of the objects written for the 

CHILD model are general enough to be used in any apphcation which uses a network of 

points in two-dimensional space, e.g., distiibuted hydrologie or plate tectonic modeling. 

This object-oriented approach enables the CHILD model to function as a modeling tool 

box in which the individual objects are the tools which may be used as needed by tiie indi­

vidual user. 
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In this chapter I present the CHILD model development and capabihties and the 

model objects, or algorithms and data sfructures, as logical outcomes of the model's con­

ceptual parts. I then describe a set of simulations to address uplift-bank-meandering inter­

actions. These shnulations speciflcally address the landscape-scale hnportance of bank 

erodibihty's bank height dependence at the channel scale and compound bend/multi-bend 

loop formation at the bend scale. Beyond the visible morphologic features, the relation­

ships between topographic slope and contributmg area for the simulated landscapes enable 

comparisons to the Schoharie Creek valley stiidied in Chapter 3. 

5.2 Model Conceptualization 

The CHILD model design allows simulation of any combination of a lai-ge number of geo­

morphic and hydrologie processes, mechanisms, and influences, including: 

1. stochastic rainfall; 

2. runoff generation; 
3. flow routing; 

4. fluvial erosion and deposition (vertical); 

5. tiansport and stratigraphic representation of multiple sediment clasts; 
6. lateral channel migration, or meandering; 
7. floodplain deposition; 
8. diffusive and other hillslope tiansport processes; 
9. weathering/soil development; 
10. vegetation; and 
11. uphft. 
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Figure 5.1: Flow chart showing the implementation of the basic processes in the CHILD 
model. In the chart, "diffusion" might include other hihslope processes. 

Implementation of the more basic processes is shown as a flow chart in figure 5.1; this 

chart leaves out some of the processes enumerated above. 

5.2.1 The Grid 

The grid is the basic infrasttuchire of flie model. In the CHILD model, what I call a 

grid is actually a fiiangulated irregular network (TIN) of points, or nodes, at which model 
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processes are calculated. The nodes are connected by edges which define the connectivity 

of and distances between points on the grid for finite difference calculations (see 

figure 5.2). With a standard rectangular grid, the distances are uniform, and finite differ­

ences ai-e calculated for a standard set of neighbors, e.g., the eight neighbors of a grid cell. 

With a TIN, the nodes are, in general, kregularly spaced and located, and the edges are, in 

general, unique. The connectivity of the kregular mesh is non-trivial and is only known 

after finding the Delaunay kiangulation. With a rectangular grid, the ai'ea associated with 

each node is rectangular, and its determination is, again, trivial. With the TIN, the ai-ea 

associated with each node is defined by the mesh's Voronoi diagram, the inverse of the 

Delaunay triangulation (see figure 5.2). Hereafter, I will often refer to the TIN as the grid. 

Points (nodi 

Figure 5.2: Schematic illuskation of model grid components. 

A Voronoi diagram defines the Voronoi areas, or nearest neighborhoods, of each 

node in the grid. The Voronoi area of a node is the locus of points in two-dimensional 

space which are closest to that node. For a set of rain gauges, the Voronoi diagram is the 

same as the Thiessen diagram [Bras, 1990]. The Voronoi area of a node is the intersection 

of the half-spaces defined by the perpendicular bisectors of the spoke edges. This area is a 

polygon whose sides are connected by the vertices at the intersections of those bisectors 

or, equivalently, the circumcenters of the kiangles defined by the node and ks neighbors. 

The Voronoi diagram is the inverse of the Delaunay kiangulation. 
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5.2.2 Hydrology 

Hydrology in the model mcludes storm and runoff generation and flow routing. As 

in most landscape evolution models, the CHILD model may use uniform rainfaU and run­

off generation. But, unlUce most other models (a recent exception is Tucker and Bras, 

1998), the CHILD model has the capability of using more complex hydrology. 

The model has the capabihty of generating storms stochastically according to the 

Eagleson [1978] model. In this model, rainfaU intensity, storm duration, and time between 

storms are all exponentially distiibuted random variables. 

For uniform runoff generation, runoff is simply the difference between the rainfaU 

and infllttation rates. Discharge at a point is calculated by muhiplying the point's drainage 

area, or the area for which that point is the outlet for flow, by the runoff rate. The model 

may also generate saturation overland flow, also known as partial-area runoff to distin­

guish it fi-om uniform runoff (Beven and Kirkby, 1979; O'Loughlin, 1986). In this model, 

accumulated flow at a point is compared to the capacity of the soU layer to tiansmit that 

flow. If the accumulated flow exceeds that capacity, then the excess flow contributes to 

surface runoff or discharge: 

where P is precipitation rate; A is area contiibuting to flow; Tis tiansmissivity; and b^ is 

the length of the Voronoi ceU edge associated with the flow edge. This method allows spa­

tio-temporal variations in soil layer material properties and depths to be reflected in runoff 

generation through the transmissivity, the product of hydrauhc conductivity and depth. 

PA - TbJ, PA > TbS. 
(5.1) 
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5.2.3 Vertical Erosion and Deposition 

The model is designed for both erosion and deposition of multiple sediment clasts, 

although the capability for handhng multiple grain sizes is still under development by 

another group member at this writing. In general, the thne rate of change of elevations is 

described by the sum of uplift and the sedhnent flux divergence: 

| = ^ + V , , (5.2) 

where U is uplift with dhnensions of LIT (T is thne, L is length); and is unit sediment 

flux with dimensions of L^/T. The model uses a combination of detachm.ent-limited ero­

sion and capacity-lhnited tiansport sknilar to that of Howard [1994], Tucker and Slinger­

land [1994, 1996, 1997], and Lancaster and Bras [1995]. I prefer tiie term "capacity-

Iknited" to the more tiaditional term "tiansport-limited" because the former is more pre­

cise in denoting the limitation on the sediment carrying capacity of the transporting 

medium. 

Many models treat all materials as cohesionless and model erosion and deposition 

as the result of capacity-lknited sediment kansport, often as bedload. Such an approach 

has two major problems. Fkst, in general, all materials present some resistance to erosion, 

whether due to cementation, cohesion, vegetation, or some other mechanism. Second, the 

treatment of ah material as bedload ignores that, in many sitiiations, bedload is a minor 

component of the total volume excavated by erosion, and suspended load is the major 

component. A signiflcant portion of the load may also be material in solution. 
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In this study, the model simulates only detachment-limited erosion of a homoge­

neous substrate, i.e., everything that is eroded, or detached, is carried out of the system by 

flow with enough capacity to carry anything that is detached. The following equation for 

the time rate of elevation change represents these processes: 

^ = - Kj^Q^'S'' + Kj^V\ + U, KjjVh < 0 (5.3) 

where Kg is the erodibihty coefficient with dimensions of 7^«-̂ /L '̂»-̂ ; Q is water volume 

discharge with dhnensions of L^/T; S is the greatest downward-positive slope of tiie spoke 

edges and is dhnensionless; KD is tiie diffusion constant with dimensions of L /T; and z is 

elevation. The model described by equation (5.3) is essentially identical to that of Moglen 

and Bras [1994,1995] except that the latter had spatially heterogeneous erodibility and 

diffusion coefficients. The first term on the right-hand side of equation (5.3) describes ero­

sion by running water both on hiUslopes and in channels. The second term describes diffu­

sive hillslope processes such as transport by tiee throw, burrowing anhnals [Black and 

Montgomery, 1991], frost heave, and soil creep. This diffusion is detachment-lhnited in 

the sense that, in equation (5.3), it is assumed that any diffusive mfilhng, e.g., of vaUeys 

and channels, is carried away by advective processes such that positive changes in eleva­

tion by diftusion are disaUowed [Moglen and Bras, 1994]. The tlihd term describes the 

input of material at a point by uplift, assumed positive and constant. The detachment-lim­

ited model is well suited to modeUng stieam incision into bedrock in a landscape undergo­

ing active uplift, which enables the stream to reach whatever slope is necessary to erode 

the material input by that uplift. Howard [1994] noted that a detachment-limited model is 

most appropriate to clayey badlands topography. 
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5.2.4 Meandering 

The CHILD model uses an kregular, dynamic grid in order to incorporate lateral 

channel migration. Otherwise, the model could employ a regular, static grid. To ade­

quately represent meandering, nodes must be removed from the eroding channel bank, 

moved with the migrating channel, and added to the accreting point bar. 

Moving nodes is complicated because of the complicated connectivity of nodes in 

the grid and the nature of the thing being moved. Our model may be a successor to the 

Braun and Sambridge [1994, 1997] (BS) model, but the latter dealt only with relatively 

simple point movement issues. In the BS model, a moving node represented a part of the 

earth's crust in tectonic motion, and, when that node approached another, the two repelled 

one another as in a strike-slip fault. In the CHILD model the movement of a node does not 

represent movement of the land itself but, rather, the location of the channel moving over 

that land, eroding its banks, and leaving behind a point bar. Recording sfratigraphy is not 

necessary n the detachment-limited version of the CHILD model. More complicated 

model cases, however, will requke that, when a channel moves, the channel node acqukes 

the subsurface characteristics of the location to which it is moving and leaves behind 

nodes with the subsurface characteristics of the location it is leaving. 

Removing nodes where the channel is eroding the bank is complicated by consid­

eration of not only the moving nodes but also the moving channels, i.e., the edges between 

channel nodes. A bank node's proximity to moving nodes, as in Braun and Sambridge 

[1994], is not a sufficient criterion for removal. Rather, proximity to the channel, i.e., the 

channel nodes and the edge between them, is the proper criterion because, otherwise, the 
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bank node could slip between migrating channel nodes and escape removal as i f a piece of 

the bank were to escape erosion as the channel passed. Other issues, such as the preserva­

tion of the channel edge and Delaunay-ness when it is close to a bank node, have also 

become apparent in the process of model development, and, in general, the model must be 

designed to deal with ah potential, even unlikely, scenarios. 

The addition of nodes presents its own suite of issues in terms of not only the addi­

tion of a node to the grid but also the characteristics of the added node and the time and 

place of addition. The BS model added nodes to increase the resolution of steep slopes, but 

adding those nodes was not strictiy necessary. The CHILD model, on the other hand, must 

add nodes to represent the channel at the fine discretization required by the TSRM model 

and not leave gaps in the mesh as the channel migrates. 

Only grid nodes with discharge greater than a critical value are subject to the 

meandering process. Granted, meandering may be active over a broad range of scales 

including some excluded by the discharge threshold criterion. Practically, however, mod­

els cannot resolve every process to the smallest level and must, therefore, employ some 

size cutoff criterion. 

The TSRM m.odel is described in detail in Chapter 4. Here, I address only the issue 

specific to the incorporation of the TSRM model into the CHILD model, the issue of bank 

erodibility. As explained in Chapter 4, a TSRM model channel point's migration is pro­

portional to the shear stress on the bank and the bank's erodibility (see equation (4.20)), 

but the absence of a surrounding landscape precluded further examination of the role of 

bank erodibility because the landscape's characteristics determine the bank's erodibility. 
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Bank erodibility is dependent on bank material properties and, possibly, bank height. In 

the most simple case, all banks have similar material properties, bank erosion is purely 

detachment-hmited, and all undermined bank material is also detached by that undermin­

ing (see Howard, 1992, section 2.2, and flgure 5.3(a)). In this case, channel migration rate 

is simply proportional to bank shear stress because bank erodibihty is mdependent of bank 

height. 

—s-An-*-

Figure 5.3: Conceptual drawing of spectrum of bank erodibihty's dependence on bank 
height, (a) Bank erodibility is independent of bank height, (b) Bank erodibility is fully 
dependent on bank height, (c) Bank erodibihty is partially dependent on bank height. 

On the other end of the spectium, none of the undermined material is detached (see 

flgure 5.3(b)). The volume rate of material excavated per unit distance downstream is 

Tl = EQX^H (5.4) 

where EQ is the nominal bank material erodibility; x^^ is the bank shear sttess; and H is the 

average channel depth. I f is the height of the bank above water level, then the bank 

migration rate is 

172 



and the bank height-dependent erodibility is 

H 
^ ^ = I f Ï ^ ) ^ 0 . ^ ^ > 0 (5.6) 

where enforcing a minimum erodibihty of the nominal value ensures that EQ does not 

become arbitrarily large. 

The situation in most natural systems where seepage-induced failure is not an 

important mechanism is probably somewhere between these two extremes, as ülustrated 

in figure 5.3(c) where part of the undermined material is detached. The size of that part is 

determined in the model by a parameter, Pjj, such that the effective bank erodibility is a 

weighted average of the two extreme cases: 

^. jy = ^ A + (1 - ) ^ 0 ' ^ ^ P H ^ ^ (5-7) 

where Pfj is the fraction of bank material that does not behave as detachment-limited. Sub­

stituting with equation (5.6), equation (5.7) reduces to 

,hg>0 (5.8) 

= EQ,hs<0. 

Finally, the nominal bank and bed erodibilities may not be the same even for iden­

tical materials. Even in a detachment-limited system, bedload may often shield the bed 

from erosion. The bank, on the other hand, is never shielded. Therefore, the bank's effec-
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tive erodibility will be larger. To address this issue I have introduced a parameter,//^j, that 

is the ratio of the bank and bed erodibihties. This parameter allows control of the relative 

strengths of lateral erosion and vertical incision. 

5.3 Model Implementation 

In this section I describe the data structures and algorithms used to implement the con­

cepts of the previous section. Except where noted, that implementation is new and origi­

nal. 

5.3.1 The Grid Object 

The model grid exists as both a conceptual geometric entity and a C-i-i- object. The 

object consists of three linked lists of nodes, edges, and triangles, respectively, and a set of 

functions used to consttuct, change, and determine the properties of the grid. The nodes 

are the basic landscape units and contain data pertaining to location coordinates, Voronoi 

area, geomorphic characteristics, and connectivity. The major issue addressed by the grid's 

data structure is the connectivity of its parts. 

The first basic issue is the connectivity of a particular node to other nodes on the 

grid. This connectivity is stored as a linked list of edges which are dual and directed; i.e., 

for each line segment connecting two nodes there are two edges, one pointing from the 

first node to the second, the other pointing from the second to the first (see figure 5.4). 

This dual edge data stiucture is derived from the QuadEdge data structure of Guibas and 

Stolfi [1985]. Each node is explicitly associated with a set of edges that originate at that 

node and connect it to its neighbors. 
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A.êdge = AB 
AB.ccwedge = AC 
AB.vvertex = a 

B.edge = BA 
BA.ccwedge = BD 
BA.vvertex = b 

Figure 5.4: Illustration of the dual edge data structure, showing friangular lattice (black) 
and corresponding Voronoi diagram (gray), (a) Directed edge AB, its right-hand Voronoi 
vertex a, next counterclockwise edge AC, and its right-hand Voronoi vertex b. (b) Com­
plementary directed edge BA, its right-hand Voronoi vertex b, next counterclockwise edge 
BD, and its right-hand Voronoi vertex a. 

In order to accommodate different programming styles, this connectivity is accom­

plished in two ways. First, each node contains as a data member a spoke list, a linked hst 

of pointers to the edges originating at the node in counter-clockwise order. The spoke list 

takes advantage of the generic linked pointer list class' functionality for navigation, 

manipulation, and data protection. Second, each node contains the first edge pointer of the 

spoke list, and each edge contains a pointer to the next counter-clockwise edge. This struc­

ture uses less memory but does not have the built in functionality of the generic linked 

pointer list. A regular grid would not require explicit inclusion of edges in the data struc­

ture because the connectivity is trivial. 

As explained in the previous section, the vertices of the Voronoi diagram are 

defined by the circumcenters of the hiangles. In the data sttucture, each directed edge 

holds the coordinates of the Voronoi vertex on its right-hand side (see figure 5.4). As the 

spoke edges around a node are accessed in counter-clockwise order, the Voronoi edge 
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crossing that spoke edge is defined by the right-hand vertex coordinates held by that spoke 

and the next. The Voronoi vertices' positions are calculated in the context of the kiangles. 

For each kiangle, the ckcumcenter is found and assigned to each of the clockwise edges of 

the triangle (see figure 5.5). As mentioned in the previous section, these ckcumcenters are 

the vertices of the Voronoi diagram. 

Figure 5.5: Illustration of triangle data structure, including numbering of nodes, adjacent 
triangles, and clockwise edges. Nodes and edges are hsted in counter-clockwise order; tri­
angles are listed in clockwise order and correspond to node at opposite vertex. 

The triangle data stiucture is also used to locate on the grid an arbitrary point in 

space. In order to add a node at a particular location, an algorithm finds the nodes to which 

the new node wih be connected. The CHILD model employs a dkected search algorithm, 

shown in figures 5.6 and 5.7, similar to that of Braun and Sambridge [1997]. For each tri­

angle checked, the algorithm loops through its edges and finds whether the point lies on 

the right- or left-hand side of each edge. If the point hes on the left-hand side of the edge, 

the algorithm proceeds to check the neighbor kiangle on the other side of that edge; e.g., 

in figure 5.5, if the algorithm checks edge eO and finds that the point is on its left side, the 

algorithm will next search the neighbor kiangle T1. 
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SEARCH WITH 
FIRST 

TRIANGLE 

LOOK AT FIRST 

G O T O 
TRIANGLE ON 

OTHER SIDE 
OF E D G E 

GO TO NEXT 
E D G E IN 

TRIANGLE 

Figure 5.6: Flow chart of the directed search algorithm, which returns either a pointer to a 
triangle or a null value. The latter indicates that the point lies outside the grid. 

Figure 5.7: Illusttation of the sequence of ttiangles checked by the directed search algo­
rithm. 

Whenever a node is moved, added, or removed, the triangulation must be checked 

and, if necessary, corrected. The Delaunay ttiangulation of the mesh is maintained by 
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exploiting the fact that, by definition, if each triangle is locally Delaunay, i.e., Delaunay 

with respect to its neighbor triangles, then the mesh is globally Delaunay by the definition 

stated in the Introduction. A triangle's Delaunay-ness is ensured by checking whether any 

of the edges between the friangle and its neighbors need to be flipped to satisfy the 

Delaunay condition (see flgure 5.8). The criterion for flipping is from D M [1996] and is 

illustrated in figure 5.8. 

common nodes 

Figure 5.8: Illusttation of flip-checking between two ttiangles. The edge between the 
common nodes is flipped to connect the opposite nodes if 02 > Qj [Du, 1996]. This crite­
rion is equivalent to checking whether the node associated with 02 in the left-hand ttiangle 
falls within the ckcle defined by the nodes of the right-hand ttiangle. 

The flip-checking algorithm is smülar to that used by Braun and Sambridge 

[1994], but our implementation of the algorithm is new. In this algorithm (see flgure 5.9), 

triangles to check, e.g., the new triangles created by the addition of a node or triangles 

containing moving nodes, are added to a temporary list. Each ttiangle is removed from the 

front of the temporary list and checked for local Delaunay-ness (flip-checked) against 

each of its neighbors. If this check results in an edge-flip, the two ttiangles on either side 

of the edge and the edge patt are deleted from the main list, two new ttiangles and an edge 

patt connecting the formerly opposite nodes are added to the main hst, and the two new 

triangles are added to the end of the temporary list. The procedure repeats until no trian­

gles remain on the temporary list. This procedure guarantees local and, by definition, glo-
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bal Delaunay-ness, and using a list eliminates the need for recursion or repeated scans of 

the ti-iangle Ust, as in Braun and Sambridge [1994]. 

PUT 
TRIANGLES TO 

C H E C K IN 
TEMPORARY 

LIST 

GO TO FIRST 
TRIANGLE IN 

LIST 

GO TO FIRST 

TRIANGLE 

GO TO NEXT 

TRIANGLE 

PUT NEW 
TRIANGLES IN 

LIST 

TRIANGLE 
FROM LIST 

Figure 5.9: Flow chart showing the iterative flip-checking algorithm. 

Both the directed search and flip-checking algorithms are used when a node is 

added to the grid. When adding a node, the triangle in which it falls is located with the 
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directed search algorithm. That triangle is deleted, and three new triangles and edge pairs 

are added connecting the new node to the three vertices of the old triangle (see 

figure 5.10(a)). Then, the new triangles are given to the flip-checking algorithm. 

Figure 5.10: Illustrations of (a) point addition and edge flipping; (b) point deletion; (c) 
point movement within local polygon; (d) point movement to neighboring triangle; and (e) 
point movement outside of local neighborhood. The small arrows on either side of an edge 
indicate the edge is to be flipped in the direction indicated by the arrows. 

Node deletion is conceptually simple and uses some of the same basic routines as 

node addition. The node to be removed and all of the edges connecting it to its neighbors 

are deleted, and the resulting hole in the mesh is filled with new Delaunay triangles (see 

figure 5.10(b)) that are, in turn, given to the flip-checking routine. However, implicit in 

both addition and deletion of nodes is not only the addition and deletion of edges and tri­

angles but also the adjustment of the various relationships among data members (see fig­

ures 5.4 and 5.5). These relationships are the key to the functionahty of the model. When a 

node is deleted, edges and triangles must also be deleted in order to extricate the node 

from the grid data structure. The procedure is shown as a flow chart in figure 5.11. This 

procedure may be entered at any of the "begin" points, and the extrication and deletion 
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routines below that point in the flow chart are caUed from the higher routine to ensure the 

integrity of the data structure. Thus, a node cannot be deleted without also deleting the 

associated edges, and the edges may not be deleted without also deleting the associated hi­

angles. 

Node movement may resuh in three possible scenarios, shown in figure 5.10(c), 

(d), and (e) in order of increasing computational cost. In the first, the node moves within 

the polygon defined by the node's neighbors, and the flip-checking algorithm is sufficient 

to maintain the mesh. In the second, the node leaves that polygon but faUs within one of 

the triangles neighboring the polygon, and the side between the polygon and the neighbor­

ing triangle is flipped before the mesh is flip-checked. In the third case, the node leaves the 

polygon and does not fall within one of the neighbor triangles, and the node is deleted and 

added again in its new location before flip-checking die mesh. Braun and Sambridge 

[1994] considered only the flrst scenario. 

Any tkne the mesh is changed, whether by addition, deletion, or movement, the 

basic characteristics of the mesh must be updated (see figure 5.1). This procedure, illus­

trated in figure 5.12, corrects each node's neighborhood properties, i.e., the distance to the 

node's neighbors and its Voronoi area. 

181 



^BEGIN D E L E T E 
V NODE 

D E L E T E NODE 
FROM MAIN LIST 

TRIANGULATE 
H NODES IN 

NEIGHBOR LIST 

END D E L E T E 
NODE 

GO TO NEXT 
SPOKE E D G E 

EXTRICATE 
NODE 

PUT 

NODE IN 
LIST 

£ 
BEGIN D E L E T E 

E D G E 
D E L E T E E D G E S 
FROM MAIN LIST 

EXTRICATE 
NODE 

END D E L E T E 

I EXTRICATED 

E D G E AND 
ITS COMPLE­
MENT FROM 

SPOKE 
LISTS OF 

NODE AND 
ITS 

FIND TRIANGLE 
CONTAINING POINTER 

TO E D G E COMPLEMENT 

FIND 
TRIANGLE 
CONTAIN­

ING 
POINTER 
TO E D G E 

BEGIN D E L E T E 
TRIANGLE 

J 

D E L E T E TRIANGLE 
FROM MAIN LIST 

END D E L E T E 
TRIANGLE 

END 
I EXTRICATE \ 

EXTRICATE W NEIGHBOR 
T R I A N G L E / TRIANGLE 

END 
EXTRICATE \ 
TRIANGLE/ 

POINTER TO 
TRIANGLE AND 
S E T IT TO ZERO 

Figure 5.11: Flow chart illustrating the node deletion procedure. 
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(BEGIN^ 

S E T 
COUNTER-CALCULATE 

E D G E H CLOCKWISE H HAND H 
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POINTERS VERTICES 
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VORONOI 
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AREAS 

(END) 

Figure 5.12: Flow chart iUustrating the mesh updating procedure. 

5.3.2 The Storm and Stream Network Objects 

The storm object generates storms as defined by precipitation intensity and dura­

tion and interstorm duration, or the time unth the next storm. These quantities can be 

either constant or stochastically generated. In the stochastic option, all three quantities are 

exponentially distributed [Eagleson, 1978], though the object could be modified to accom­

modate any probability distribution. The storm object could also be modified to read storm 

information from data. 

The storm information is used to define the sfream network properties. The stream 

network in the model is an object consisting mainly of functions for runoff generation and 

flow routing but also pointers to the grid and storm objects and runoff parameters, such as 

the fransmissivity for equation (5.1). The functions are generally called together to update 

the network after the grid has changed. This updating procedure is shown as a flow chart 

in figure 5.13. 

( B E G I N > 

FIND ROUTE 
FIND CALCULATE S T E E P E S T FLOW 

RAINFALL E D G E *• DESCENT DIRECTIONS 
RATE S L O P E S FLOW THROUGH 

DIRECTIONS L A K E S 

FIND 

AREAS 

CONTR BUTING • G E N E R A T E ^ CALCULATE r^^^) 
CONTRIBUTING RUNOFF M DISCHARGES rV T̂fEi DISCHARGES 

Figure 5.13: Fiow chart showing the stream network updating procedure. 
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The surface discharge at each node is computed as a function of the upstream con­

tributing area and the runoff at each of those contributing nodes. Each node is assigned a 

drainage direction along the steepest downhih slope (edge) toward one of its neighboring 

nodes. The area contributing flow to a node is the sum of the Voronoi areas of all nodes 

whose paths to the outlet pass through that node and the Voronoi area of the node itself. 

In some cases a node may form a local depression, with no neighbors lower than 

itself. This case can be handled in one of two ways in the model. The simplest method 

assumes that all water entering a "sink" evaporates at that point and forms a discontinuity 

in the network, i.e., not all nodes contribute flow to an outlet. Alternatively, an outlet can 

be found for each sink using the "lake filling" algorithm. The lake filling algorithm starts 

by creating a list of contiguous flooded nodes that initially contains just the sink itself. The 

perimeter of the flooded region ("lake") is then iteratively searched to identify the lowest 

node along the perimeter. If this node can drain downhill to a location other than the lake 

itself, it is flagged as the ouflet point for ah nodes in the list. If not, it is added to the hst. If 

a node is encountered that is part of a pre-existing lake (one initiated at a different sink), it 

is also added to the list. Finally, flow directions are arbitrarily assigned to the lake nodes 

such that each node in the grid "drains" to one of its neighbors. Except for this final step, 

the lake filhng algorithm is essentially identical to that employed in the model of Tucker 

and Slingerland [1994]. The algorithm is robust enough to handle any arbitrary initial con­

dition and is useful for modeling a rising base level or the damming of water and sediment 

behind an uphfting block. 
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For a mesh with numerous sinks, the lake fllhng algorithm is probably slower than 

the "cascade" algorithm of Braun and Sambridge [1997]. However, in the more typical 

case of a few isolated sinks, the lake filling algorithm is probably faster than the cascade 

algorithm. The number of iterations needed by the lake filling algorithm depends on the 

number of flooded points, whereas the cascade algorithm requires a number of iterations 

equal to the maximum number of segments along any continuous stream regardless of the 

number or depth of sinks. Typically, the lake filhng algorithm is employed to route flow 

past a low or high point along the main channel, where these anomalies usually arise from 

numerical instabihty. 

The simulations shown later in this chapter use only a subset of the model's hydro-

logic capabihties: uniform, steady rainfall; uniform runoff production; and lake tilling. 

5.3.3 The Sediment Transport and Uplift Objects 

These objects together calculate the finite-difference solution to equation (5.3) for 

"vertically acting" processes: stream erosion, hillslope diffusion, and uplift. In this study 1 

use detachment-limited erosion, but the sediment tiansport object also contains options for 

capacity-limited erosion/deposition and the combined detachment- and capacity-hmited 

transport described in the previous section. 

The advective erosion term, the first term on the right-hand side of equation (5.3), 

contains a channel slope dependence, but this erosion term applies to the landscape scale, 

i.e., over channel reaches long enough that water surface slope is adequately represented 

by topographic slope. This approximation is reasonable over a distance of many channel 

widths but, of course, breaks down over smaller distances approaching a single channel 
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width. But, some channels wih be discretized at approximately one channel width to sat­

isfy the TSRM model's requkements. This scale discrepancy is resolved by averaging the 

slope for finely discretized channels over a distance of ten channel widths (flow dkections 

are still determined by slopes to nearest neighbors). 

5.3.4 The Stream Meandering Object 
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Figure 5.14: Flow chart showing the implementation of meandering. 

In flgure 5.14 shows a flow chart of the CHILD model's implementation of the 

TSRM model in the stieam meandering object. Fkst, the network is updated (see 
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flgure 5.13). Then, the meandering nodes are identified. A node is designated as a mean­

dering node if it: (a) has discharge greater than a critical value; (b) is not "flooded", i.e., in 

a lake; and (c) is not a boundary node. 

5.3.4.1 Meandering Channel Reaches 

Meandering nodes are next organized as meandering reaches (see flgure 5.15) 

because the meandering model requires a list of points along the channel ordered from 

upstream to downstream (see section 4.2.4, "Implementation", on page 123). For each 

meandering node, if none of the neighbors flowing to it are also meandering nodes, then 

the node is a reach "head", i.e., the node is at the upstream-most extent of a meandering 

stream reach. For each reach head, i f the node downstieam is: (a) a meandering node; and 

(b) not already a member of a reach; then the downstream node is added to the present 

reach and marked as a "reach member", and these criteria are applied iteratively down­

stieam until they fail. At the downstream end of each reach, if the downstream nodes are 

also meandering nodes, then nodes for a distance of ten of the last reach node's channel 

widths are added to the reach as "taü" nodes. RecaU from Chapter 4 that the bank shear 

stiess at a point is generally generated by lateral momentum transfers at points upstieam. 

Thus, bank shear increments generated at the end of a reach will be applied as bank shear 

sttess at points in the downstteam reach. The distance of ten channel widths is arbittary. 
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Figure 5.15: Flow chart ihustraling meandering reach construction. 

Once the reaches have been deflned, distances between reach nodes are compared 

to a nominal downstteam increment on the order of one channel width, the discretization 

requtted by the meandering model. I f any distance is greater than twice that nominal incre­

ment, the reach segment is interpolated by adding one node or, i f the distance is larger than 

three times the nominal increment, two or more nodes at intervals approximately equal to 

the nominal increment. In order to avoid exact colinearity, which can cause the ttiangula­

tion algorithm to faü, a smah amount of noise is added to the interpolation. In the case of 
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adding more than one node, the nodes are added by generating a random walk with uni­

form spacing along the original channel segment and random steps perpendicular to the 

line: 

nj = n-_^+Anj (5.9) 

where An,- is 

An. = Axe'^^'^'-^^^AsQ (5.10) 

where x is uniformly distributed from -0.5 to 0.5 (x ~ f/[-0.5,0.5]); A is some small num­

ber; and ASQ is the nominal increment for the uniform spacing paraUel to the line. The 

nominal increment is used to scale the amplitude of the noise to the discretization scale of 

particular channel. 

The inverse exponential ensures, or at least makes it likely, that the random walk's 

deviation from the original hne will not become arbitrarily large at any point and, most 

importantly, at the last interpolation point. A large deviation at that point could, in effect, 

reinforce the original grid spacing by adding a large step and, therefore, high curvature, at 

the regular intervals of the original uninterpolated mesh. Note that equation (5.10) does 

not result in exponentially disti-ibuted random steps but, rather, represents a random walk 

through a potential energy well in which steps away from the line become more damped 

and steps toward the line more amplified when the step originates at a greater distance 

from the line and the step magnitude is greater. Conversely, small steps close to the line 

are damped and amplified by only a smah amount. 
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Figure 5.16: Ihustralion of meandering channel interpolation. Note that two tributary 
channels take a shorter route to the main channel after interpolation. 

As shown in figure 5.15, after the discretization of the initial reaches is checked, if 

any interpolated nodes are added, then the procedure iterates: it updates the network (see 

figure 5.16), redefines the meandering nodes, constiucts new reaches, and again checks 

the discretization. The iteration of this loop proceeds until the discretization check results 

in no addition of nodes. Several iterations may be required the first time the procedure is 

called to add many points to a coarse mesh (see figure 5.16), but subsequent calls should 

require interpolation infrequently and, then, only to add one point between two channel 

points that have spread apart as the channel has lengthened and become more sinuous, as 

in Chapter 4. 

When the reaches are complete, the CHILD model, written in C++, must caU the 

TSRM model, written in Forti'an, to calculate the lateral migration of the channel 

nodes.The CHILD model calls the TSRM model as a function/subroutine through a 

"wrapper" function. The meandering reaches are consttucted as a list of hsts of pointers to 

meandering nodes. As evident from above, nodes in each of the latter pointer lists are 

arranged in upstream-to-downsfream order. The wrapper function takes each pointer list in 

turn and constructs one-dimensional arrays for each node data member requtted by the 
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TSRM model, e.g., arrays for jc-coordinates, y-coordinates, discharge, channel slope and 

bank erodibilities. The TSRM model passes back arrays of displacements which are sub­

sequently scaled by the time step determined in the wrapper function. This time step is set 

such that the greatest displacement does not exceed an arbitrary fraction of the channel 

width, typically one-tenth, for stabihty. 

5.3.4.2 Channel Bank Erodibility 

To find the bank erodibility at a particular channel node, the bank nodes must be 

identified. The identification procedure is illustiated in figure 5.17. With respect to the hne 

perpendicular to the channel node's flow edge, the line remainder and perpendicular dis­

tance are calculated for each channel node neighbor's position. For example, for a point at 

(XQ, yo) and a line deflned hy ax + by + c = 0, the remainder, i?/,„g, is 

^/me = «^0 + ^>'0 + ^ (5.11) 

and has opposite sign for points on opposite sides of the line. Starting with the channel 

node's downstieam neighbor, the algorithm proceeds through the neighbors in counter­

clockwise order and finds the two pairs of consecutive neighbors which have remainders 

of opposite sign, i.e., the neighbors in a pair are on opposite sides of the line. The first pair 

found constitute the left bank and the second pair constitute the right bank. In figure 5.17, 

node A's right bank nodes are nodes C and D at distances dj and d2, respectively, from the 

line perpendicular to node A's flow edge, edge AB. The effective erodibüity of each node 

is found with equation (5.8), and the erodibility of that bank is an average, weighted by 

distance, of the two nodes' erodibilities: 
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E hank (5.12) 

where Ej and E2 are the effective erodibilities of the two neighbor nodes, respectively. 

Figure 5.17: Illustration of right bank erodibility determination for node A. C and D are 
right bank nodes of A at distances r// and 02 from the line perpendicular to A's flow edge, 
AB. Delaunay triangulation is in thin lines; Voronoi diagram is in dashed lines; and flow 
edges are in heavy black. 

As the channel approaches the grid boundary, the bank erodibility is set to zero. 

Thus, the boundary presents an inerodible barrier such that a channel node may not 

approach to within one-half channel width of a boundary edge. 

5.3.4.3 Channel Bank Erosion 

Once the new positions of the channel nodes are known, the triangulation must be 

prepared for the change by removing nodes from the channel's projected path, i.e., nodes 

that have been eroded by the migrating channel. The criteria for removall are ihusfrated in 

figure 5.18. 

flow direction 
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Figure 5.18: Illustrations of criteria for removing points from the path of the migrating 
channel. Heavy lines are flow edges; heavy black arrows are flow dkections; gray ovals 
are channel segment neighborhoods; letters a, b, and c are nodes to be deleted. 

First, a bank node is deleted if k fahs within a channel segment's neighborhood, 

defined by an ellipse with foci at the ends of the segment and perpendicular distance ftom 

the segment at the upstieam node of one-half the hydraulic width; i.e., for a given node, 

the sum of the distances to the segment endpoints, D, must satisfy 

where Ay is the length of the channel segment. In figure 5.18, point a fahs within the 

neighborhood of a channel segment. 

The latter criterion, equation (5.13), should prevent most potential problems. How­

ever, to ensure the robustness of the channel migration under any and all conditions, nodes 

are tested to eliminate the possibihty of two more scenarios. 

First, nodes are deleted if they have been crossed by a channel segment, e.g., i f two 

channel nodes moved distances greater than one hydraulic width in an iteration, that chan­

nel segment could pass over a point such that its distance from the channel would satisfy 

(5.13) 
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equation (5.13) both before and after the movement (e.g., node b in figure 5.18) even 

though, conceptually, the node should have been eroded by the channel. If, after move­

ment, any triangle's nodes are clockwise and two vertices are connected by a flow edge, 

and either a spoke of the third vertex intersects the flow edge or more than one neighbor 

triangle has also become clockwise, then the third vertex node is deleted i f it is neither: (a) 

a meandering node with greater discharge than either of the other two vertex nodes; nor 

(b) a boundary node. Failing the latter condition, then either or both of the other two nodes 

are returned to their original coordinates, i.e., before movement, if their new coordinates 

were outside the mesh. Faihng the former condition, then the more upstream of the other 

two nodes is deleted instead. In flgure 5.18, node b has been crossed by the migrating 

channel segment indicated by the gray arrows denoting the approximate direction of 

migration in the previous step. The tiiangle formed by node b and its two meandering 

neighbors has become clockwise, and one of node b's spoke edges intersects the flow 

edge. Node b is neither a meandering node nor a boundary node and will, therefore, be 

deleted. 

The final test for node removal ensures that the integrity of the flow edges between 

meandering nodes is preserved. That integrity could be compromised if a point were close 

enough to the flow edge that, under flip-checking, the flow edge would be flipped. In 

figure 5.18, node c would be deleted to preserve the flow edge separating nodes c and d 

where, to satisfy Delaunay-ness, the flow edge would be flipped to connect nodes c and d; 

deleting the closer node, c, allows the flow edge to remain intact following re-tiiangula-

tion. 
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5.3.4.4 Point Bar Accretion 

As the channel migrates and nodes are removed from its path to simulate bank ero­

sion, nodes are left in the channel's wake to resolve the point bar, as in the simulations 

superknposed on the regular grid in Chapter 4. The algorithm used to "drop" new points is 

illustrated in figure 5.19. In summary, this algorithm essentially keeps track of a channel 

node's location where it last dropped a node. When the channel node is half of a hydraulic 

width away from these old coordinates, the algorithm updates them by finding the exact 

position on the bed at the water's edge on that side of the channel, i.e., the point on the bed 

at half of a hydraulic width away and on the hne perpendicular to the flow edge. Depend­

ing on the desired discretization, the algorithm either immediately places a new point at 

the determined coordinates or waits to do so until the channel node has moved some addi­

tional distance. In the latter case, the algorithm checks to make sure the old coordinates 

have remained on the same side of the channel and do not fall within any channel seg­

ments as deflned by equation (5.13). 

In more detail, each meandering node contains a four-member array with coordi­

nates in three dimensions and a flag indicating the side of the channel, right or left, where 

those coordinates lie. When a node is recognized as a meandering node, its x and y coordi­

nates are stored in the array as the "old" coordinates; the value of z is left undetermined 

and the fourth member of the array is set to zero as a flag to signify that the old coordinates 

have not been flnally determined. 
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Figure 5.19: Schematic diagram illustrating the point-dropping algorithm. The nodes with 
dashed gray boundaries presently occupy the "old" coordinates, i.e., the old coordinates 
are initialized to the present coordinates. 

Before migrating nodes are moved, if the flag is zero, the distance to the old coor­

dinates is measured. If that distance equals or exceeds half the hydraulic width, the algo­

rithm determines the side of the channel where the old x and y coordinates he and updates 

the old coordinates to the position of the bank on that side. The elevation of the bed at that 

bank is recorded as the old z coordinate. The channel side determined above is recorded as 

plus or minus one for the left or right sides of the channel, respectively. 

After node migration, the horizontal distance to the old coordinates is measured 

again. If that distance exceeds a set fraction (or multiple) of the hydraulic width and the 

old coordinates are (a) not in the channel, and (b) still on the same side of the channel, 

then a node is added at the old coordinates. The above fraction of the width must be 

greater than or equal to half the hydraulic width; in flgure 5.19, the value equals half the 

hydraulic width, and nodes are dropped as soon as the final old x, y, and z values are deter-
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mined. In flgure 5.19, this final determination is signified by the dashed gray hnes drawn 

perpendicular to the node's flow dkection at the time of the determination. Note that these 

coordinates at which the new nodes are dropped do not necessarily lie in the migrating 

node's path because they are the coordinates at the bank, whereas the node's coordinates 

are on the channel centerhne. Implicit in the procedure described above is that the discret­

ization of the point bar is limited by the hydraulic width, i.e., the procedure would not 

allow a discretization finer than half the hydrauhc width, coarser than the regular grid used 

in Chapter 4. 

5.4 Simulations 

With the CHILD model, I ran simulations of meandering in landscapes with varying 

strengths of bank erodibihty's bank height dependence and rates of uplift to examine the 

effects of these variations both on the meandering and the landscape. The simulations 

reported here are relatively simple because, in working with the potentially comphcated 

CHILD model, it is necessary to understand the simplest case before consideration of 

more complex cases. I began with a vertically incising river flowing through a valley. At 

one end of the domain is a single inlet, and at the other end the whole side is an open 

boundary. I ran the model with detachment limited erosion until the valley was at dynamic 

equilibrium and, then, tiirned on meandering. These sknulations show the effects of mean­

dering with the different parameter sets on the same initial vahey. 

The case of dynamic equihbrium is a particularly useful reference because I know 

what the channel slope should be. For dz/dt = 0, discharge proportional to contributing 

area, or Q = PA, and where advective channel processes are dominant over diffusive 

processes, equation (5.3) reduces to the following expression for channel slope: 
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S . f ^ Y ^ " A - / " . (5.14) 

After the incising channel reached dynamic equilibrium, meandering started with 

flat - and ran for thkty thousand years. The result is the initial condition for the 

remaining simulations. For the latter simulations, I increased the relative strength of mean­

dering by using = 1000. Each shnulation ran for ten thousand years and another 

100,000 years for examination of the transient and long term responses, respectively, of 

the landscape to the meandering. In the long term, the system as a whole may approach 

dynamic equilibrium, though the simple idea of no elevations changing at any point cannot 

apply because of the laterally migrating channel. The simulations and their parameters are 

listed in table 5.1. Note that the times are model years, which are uncalibrated with respect 

to real thne. Because discharge in the advective erosion term of equation (5.3) is usually 

expressed in units of volume per second, the conversion to elevation change per year is 

contained in Kg (see, e.g., table 5.1). 

The first task was to address the issue of bank height and erodibility for an incising 

stream. The dependence of bank erodibility on bank height is a first order problem which 

is not weU understood, in part, because no landscape evolution model has incorporated 

meandering. This incorporation is necessary in order to examine the interactions between 

the migrating, incising river and the surrounding landscape. 

In the simulations hsted in table 5.1, the main purpose was to address the 

responses to varying both bank erodibihty's bank height dependence, P^, and uplift, U, 

after the onset of meandering. I also show the short term effect of varying median grain 
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diameter, d^g, but this is more of a parameter adjustment than a sensitivity analysis. The 

sensitivity of the TSRM model to d^g was addressed in Chapter 4. 

Table 5.1: Simulations and variable parameter values' 

initial ^50 u hotal 
lation condition (cm) (m/yr) PH flat (k-yrs) 

A noise NA 0.001 NA NA 320 '̂ 

B A 0.5 0.0 100 30 

C B 11 1000 10 

D B 1.0 I I 10 

E B n 0.5 10 

F E t l I I 100 

G B M 1.0 10 

H G M I I 100 

I B I I 0.002 0.5 10 

J I I I t l 100 

K B I I 1.0 10 

L K I I I I 100 

a. Other parameters are constant: A,„/g,=:10^ m^; P=]0"^ m/s; 
KB=Qm\6 m^'^ sl'2/yr.; «5=0.5; «B=1.0; Ko=Qm m^/yr 
b. Landscape is at dynamic equilibrium. 

AU simulations employed the lake filling algorithm and used a minimum discharge 

for meandering such that only nodes downstream of the inlet, i.e., points along the main 

channel, were meandering nodes. 

The initial condition for simulation A was a flat plane with minor elevation pertur­

bations. The nodes were arranged in offset rows such that the polygon around each node is 

a hexagon, as is the Voronoi area. Nodes on the same row were spaced 100 meters apart. 

5.5 Results 

The results reveal dramatic differences between the transient and long term responses of 
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the model meandering river valley and the landscapes resulting from different sttengths of 

bank erodibihty's bank height dependence as vi'ell as subtie but important differences due 

to the different uplift rates. These results also reveal the important, varying roles of com­

pound bend and muhi-bend loop formation in the model river valley forms. 

For each of the simulations listed in table 5.1, figures 5.20-5.31 each show three 

perspective views of the simulated landscape. The first view maps color according to ele­

vation and shows the landscape as a surface at a low enough angle to appreciate the shape 

of the relief. The second view uses the same elevation color map as the first and shows a 

"wire" mesh of the model grid at a large viewing angle in order to show ah of the nodes, 

edges, and ttiangles. The thttd view maps color according to discharge and shows the 

landscape as a surface at a large viewing angle in order to best show the model stteam net­

work and, especially, the main channel down the center of the valley. 

Plots of slope vs. contributing area are shown in figure 5.32. The slopes of the indi­

vidual nodes are plotted vs. area as gray dots. Also on the slope-area plots I have drawn 

hnes described by equation (5.14); in the simulations with increased uphft, the original 

dynamic equilibrium line is sohd gray and the new dynamic equilibrium is dashed gray. I 

binned slope according to increments of log-area and plotted bin average slope vs. bin 

average area. These average slopes are shown with black rectangles. Note that each node 

in the mesh has one point in the slope-area plot, but the nodes do not have equal Voronoi 

areas. Therefore, nodes with smaUer areas are effectively over-weighted in the averages 

because the averages are not weighted by Voronoi area. 

200 



r r 

Figure 5.20: Perspective views at end of simulation A. 

Tlie slope-area plots allow a quantitative assessment of the effect of meandering on 

slopes in the landscape. The fact that meandering, by steepening valley waUs and flatten­

ing the valley bottom, creates topographic slopes independent of conttibuting area should 

be visible in the plots in flgure 5.32. 
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Figure 5.21: Simulation B. 

Areas of the grid which have been visited by the channel are more finely dis­

cretized than the nominal discretization. This is visible as a dense mesh in the wire plots 

and darker reds in the discharge map—only these nodes with small Voronoi areas can have 

discharge values low enough to reach into the dark red end of the color map. The migrat­

ing nodes drop new nodes when they are 0.7 b (seven-tenths of a channel width) from the 

old coordinates. The channel is 30 meters wide. 
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The vahey at dynamic equilibrium, or shnulation A, is shown in flgure 5.20. The 

channels, constrained to foUow the regular network of edges, have an unrealistic, angular 

appearance, an effect common to most landscape evolution models. The points in the 

slope-area plot (see figure 5.32) closely follow the power law describing dynamic equilib­

rium (see equation (5.14)). 

Simulation A was the initial condition for simulation B. The latter ran with rela­

tively weak meandering, ovfi^i much lower than for the fohowing simulations, until the 

initial channel lost its angularity and formed meander loops, and the simulation ended 

before any major cutoffs occurred. The resulting landscape is shown in figure 5.21. The 

weak meandering produced some scatter in the slope-area plot and added a number of 

nodes with contributing area smaller than any of the nodes in simulation A and many more 

channel nodes with large contributing area because of the channel interpolation (see 

figure 5.32). For the latter channel nodes, slopes are quite scattered. For the meandering 

nodes the slopes plotted were averaged over a distance of ten channel widths, and the 

points along the channel are spaced at approximately one channel width (in these simula­

tions with constant rainfaU, the channel and hydrauhc widths are identical). Note that 

slopes have been scattered both ways: some slopes are steeper, e.g., nodes along the outer 

bank of meander bends, whUe some slopes are more gradual. Most of the latter have smaU 

contributing areas and, therefore, must lie in the area of the main valley swept by the 

migrating channel. Mean slopes at lower contributing areas, below about 5x10̂ ^ m-̂ , reflect 

the influence of meandering and are nearly independent of area. The resuh of simulation B 

was the initial condition for simulations C, D, E, G, I, and K, while simulations F, H, J, 

and L are continuations of E, G, I, and K, respectively. 
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Simulations C and D, shown in figures 5.22 and 5.23, shnulate meandering with 

P f j = ^ aiid varying d^g-1 did not run long shnulations with P f j ^ 0 because it would 

not have been very interesting because of the minimal interaction between the migration 

of the channel with the surrounding topography, but they are interesting as ti-ansients. The 

vahey width is more variable for the larger grain size, and the total area visited by the 

channel is larger for the smaher grain size. Both of these results may be due to the larger 

lateral migration rates associated with smaller grain size. The vaUey for the larger grain 

size widened appreciably only at the location of a sharp bend in the initial condition. The 

major result of these first runs is that the model grid represents meandering as intended, 

i.e., that bank nodes are deleted and point bar nodes added. Note the several isolated nodes 

which were not eroded by the main channel. 

Not surprisingly, the slope-area plots (see figure 5.32) show that a large number of 

nodes, those on the valley floor, have slopes much lower than they would at dynamic equi­

librium and some nodes, those on the valley sides, have steeper slopes. These slope 

changes have dramatically changed the mean slope trends. The effect for smaller areas is 

similar to, though more pronounced than, the effect noted above for simulation B. For 

larger areas, the mean channel concavity is greater, especially for shnulation C, because 

the slopes of tributaries close to the main channel were determined by the migrating chan­

nel such that the mean slope near 10^ m^ is nearly identical to the slope of the main chan­

nel. 
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Figure 5.22: Simulation C. 
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Figure 5.23: Simulation D. 

The remaining simulations form a more controlled and systematic experiment 

examining the four possible combinations of two different values for each of two parame­

ters, uplift, U, and the bank erodibihty's bank height dependence, P^j (see table 5.1). 

In figure 5.241 show simulation E, the result of setting Pjj = 0.5 and running for 

10,000 model years. The migrating channel swept out a relatively flat valley floor, but, at 
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its widest, tiie valley floor is significantly narrower than the widest parts of the valley floor 

in simulations C and D (see figures 5.22 and 5.23) due to the non-zero P^. The slope-area 

plot for simulation E is quite similar to that of simulation D (see figure 5.32): the initial 

increase in mean slope is due not to the transition from diffusion to advection dominance 

but, rather, to the low valley floor slopes at the smallest areas and the steep valley wall 

slopes at slightly greater areas. This effect is common to all of the transient cases. 

Figure 5.24: Simulation E. 
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The resuhs of simulation F, the continuation of simulation E, are shown in 

figure 5.25. Roughly half of the model domain was visited by the migrating channel and 

is, therefore, finely discretized. The main valley narrowed considerably since the time of 

simulation E. Nodes once visited by the channel are now on hillslopes or in small ttibutar-

ies. The point bars in simulation F have greater slope and rehef than in simulation E. This 

greater slope indicates that the channel migrated more slowly at the thne of shnulation F. 

Figure 5.25: Simulation F. 
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Recall from the "incising" stream simulations with the TSRM model on a rectan­

gular grid in Chapter 4 that a grid cell's topographic slope indicated the migration rate at 

the time the channel left that cell (see section 4.3.3, "The Floodplain", on page 129). Slope 

is similarly indicative here, though CHILD model nodes, once left by the migrating chan­

nel, are modified by not only uplift but also diffusive and erosive processes. 

Figure 5.26: Simulation G. 
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Figure 5.27: Simulation H. 

The slope-area plot for simulation F confirms that a lower proportion of the nodes 

have shallow slopes. The plot more closely resembles what I would expect in the absence 

of lateral migration, though the points are stiU relatively scattered. The number of nodes 

with over-steepened slopes is not markedly different than in simulation E. The mean slope 

fahs below the fluvial eqmlibrium line for contributing areas less than approximately 

210 



2x10^ m^. In simulation A the slopes at only the lowest areas fall just below the line due to 

the infiuence of diffusion at these points. Therefore, discounting the effect of meandering 

on slopes in this basin and considering only the processes in equation (5.3) to be impor­

tant, I would overestimate the shength of diffusion. 

The results of simulation G, identical to simulation E except that P// = 1.0 in the 

former, are shown in flgure 5.26. Many of the resuhs of simulation G are similar to those 

of simulation E. The vahey is, on average, narrower than the valley of simulation E due to 

the larger Pfj in G. As in D and E, the vahey width varies greatly and in places is nearly 

indistinguishable from the valley without lateral channel migration. 

The slope-area plot for simulation G is quite interesting. The initial increasing 

mean slope trend, evident in the other transient cases, is particularly steep in simulation G. 

And, at areas between lO'̂  and 10^ m^ there is essentially no mean slope tiend with 

increasing area because of the numerous shallow, valley bottom slopes and few steep, val­

ley wall slopes. Meandering, in this ti-ansient case, altered slopes such that the mean slope-

area relationship resembles that of Schoharie Creek (see figure 3.32) in that both have a 

region of nearly constant mean slope at areas larger than that of the peak mean slope. 

Sknulation H, in figure 5.27, is the continuation of simulation G. As in the latter, 

the greater Pfj led to less channel migration than in the simulation, F, with lower Pfj. As in 

F, the valley nan-owed considerably and migration slowed during the time after G as the 

system adjusted to the meandering. 
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The slope-area plot is even less scattered than that of F and, thus, reflects the 

greater ability of the system to adjust due to the greater couphng betvî een migration and 

topography through greater Pjj. Only a few nodes outside the main channel have slopes 

lower than about 0.05. Fewer nodes have over-steep slopes, and those few have lower 

slopes than in F. In F, there are many points with slopes greater than 1.0, but, in H, only 

two nodes have slopes greater than 1.0. The mean slopes in H fall below the dynamic equi­

librium hne only for contiibuting areas less than 10"̂  m^, but a kink in the mean slopes is 

visible at that area. The higher mean slopes at areas above 10"̂  m^ reflect a greater balance 

between the numbers of lowered and steepened slopes, respectively, in simulation H. As 

opposed to F, fewer smah channels in H follow former main channel courses left by cut­

offs. Partly the lack of cutoffs in H is due to the lower migration rate, but the more funda­

mental mechanism is the difference in forms taken by multi-bend loops in the two cases. 

Multi-bend loops in F more closely resemble those in the unconflned meanders of Chapter 

4, whereas the multi-bend loops in H are larger and less sinuous at the bend scale. 

The results of shnulation I , where Pjj = 0.5, and uplift has doubled, fi-om 0.001 ml 

yr at dynamic equilibrium to 0.002 m/yr. (see table 5.1), are shown after 10 ka in 

figure 5.28. The vahey floor is relatively flat in the sense that points across the valley have 

similar elevations, but the vaUey is steeper in the downstieam dkection, as shown by the 

wider range of colors along the main valley in the views with color mapped to elevation. 

This wide valley bottom is shnilar to, but wider than, that of shnulation E {Pjj = 0.5, U = 

0.001 m/yr). The channel of I visited a greater portion of the model domain. 
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Figure 5.28: Simulation I. 

The slope-area plot is similar to that of E but has greater scatter in the slopes. 

Some of that additional scatter is from slopes steepening due to the increase in uphft. This 

plot resembles that of Schoharie Creek more closely than does that of G in that both 

Schoharie Creek and I have a low-area dip in mean slope before the peak in mean slope at, 

in the case of I , 10"̂  m^. 
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Figure 5.29: Simulation J. 

The results of shnulation J, the continuation of simulation I , are shown after 100 

ka in figure 5.29. It appears that meandering affected this landscape more than any of the 

others. The channel visited most of the right two-thirds of the domain, and the left one-

third was not visited at all. This tendency to migrate in one direction is characteristic of 

channels with greater frequencies of compound bend and multi-bend loop formation, as 
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shown in Chapter 4. The channel also visited a somewhat greater portion of the model 

domain than the channel in simulation F. It appears, then, that some of the effects of 

increased uphft nearly canceUed each other, that the increase in bank shear stresses due to 

the greater charmel slope was partially damped by greater valley waU steepening. 

Figure 5.30: Simulation K. 
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On the other hand, the increase in compound bend/multi-bend loop formation fre­

quency due to greater channel slope is readily apparent. Parts of the landscape visited by 

the channel look fundamentally different than unvisited areas. Examination of the dis­

charge color map reveals clearly the persistence of cut off meander loops now occupied by 

tributaries, as in sknulation F, but the effect is even more pronounced in J than in F. Note 

that none of these kibutary channels were meandering at the end of the simulation because 

thek flow was too low. 

In flie slope-ai-ea plot for J, the points are more scattered than for simulation F 

(smaller uphft), and many slopes have increased to faU on the new dynamic equilibrium 

power law, where slopes are greater by a factor of two for the same area. As in F, mean 

slopes in J tend to faU below the hne of dynamic equihbrium. 

The results of sknulation K, where P// = 1.0 and uplift has been increased as in 

simulations I and J, are shown in flgure 5.30. Points visited by the channel in simulation 

K have greater relief than visited points in any of the other 10 ka simulations. SmaU parts 

of the vaUey are flat, but the channel evidently became enttenched more quickly than in 

the other simulations. Even so, the channel visited a larger part of the domain than the 

channel of sknulation G. The latter fact and the early enttenchment indicate that migration 

at the beginning of the simulation was much faster than in simulation G due to the 

increased channel slope from greater uplift but that the same greater uplift led to a faster 

adjustment to the migration by the vaUey system. 
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Figure 5.31: Simulation L. 

The slope-area plot reflects the channel enttenchment in that the lowest mean 

slopes at the smallest areas are greater than for simulation G. In simulations C, D, E, G, 

and, to a Ihnited extent, I , there is a visible separation between the cluster of low slope and 

area points and point near the line of the power law, but this separation is not apparent in 
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the slope-area plot of G. Also unlUce the other 10 ka simulations, mean slopes at areas 

between 10"̂  and 10^ have a clearly decreasing trend. 

10'-̂  I • I 
10' 10' io" 10' 10' 10' io'' 10' 

contributing area, 

Figure 5.32: Slope vs. contributing area for the simulations listed in table 5.1. The gray 
lines indicate the fluvial dynamic equilibrium power law, equation (5.14). 

Finahy, the results of sknulation L, the continuation of simulation K for 100 ka, 

are shown in flgure 5.31. In simulation L, the effect of meandering on the landscape is 

clear and dramatic. This sknulation is stiiking for the large multi-bend loop in the center 

of the domain and, thus, also shows the clear effect of multi-bend loop formation. The 

channel visited a greater part of the domain than the channel of H but, unlike the channel 

in H, did not cut off. The channel of simulation L also has greater sinuosity on the bend 

scale than H's. 
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Figure 5.32: (Continued.) Slope vs. contributing area for the simulations listed in 
table 5.1. 

As in simulation H, the slope-area plot is less scattered than at the time of simula­

tion K, and it has a shape similar to the plot for H. As in J, the line has moved up to reflect 

the increased uplift. The plot has more scatter than that of H, both above and below the 

line, but exhibits shnilar balance between scatter above and below the dynamic equilib­

rium line. 
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Figure 5.32: (Continued.) Slope vs. contributing area for the simulations listed in 
table 5.1. The dashed gray line indicates fluvial dynamic equilibrium with the greater 
uplift. 

5.6 Discussion 

The resuhs touch on a number of ai'eas, and I discuss them in turn: (a) the general interac­

tion of meandering and the landscape in the model; (b) the quite different results of the 

ttansient and long term cases; (c) the role of bank erodibihty's bank height dependence in 

the meandering patterns and landscape forms; and (d) the effect of uplift on the incising 

meandering stream. 

5.6.1 Meandering and the Landscape 

The CHILD model represents the flrst opportunity to study the interaction of two 

systems with complex dynamics. The model resuhs should give some clue as to how to 
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interpret landscape forms resulting from incising meandering stteams. The slope-area 

relationship allows quanthative comparison of the simulated valleys in this chapter and the 

natural valley in Chapter 3. 

Points scattered toward greater slopes and slightiy smaller areas have been eroded 

by the migrating channel. As the channel erodes part of a bank node's Voronoi ceU, that 

node's conttibuting area decreases shghtly by the amount eroded, and the slope to the 

channel becomes steeper as the latter approaches the node's coordinates. These nodes on 

the valley wah belong to the original, regular grid and are, therefore, stiU clustered accord­

ing to contributing area at multiples of lO"̂  m^. Similar over-steepened points persist even 

at later times as long as some of these original, previously unvisited points remain. 

In several of the slope-area plots in figure 5.32, especially those for the ttansient 

cases, many nodes with low contiibuting areas have been added in the vaUey, and these 

new nodes are responsible for the trend of increasing mean slope at low areas in the slope-

area plot. Previous stiidies have assumed that shnilar ttends in plots from DEMs are due to 

the convexity of the hillslopes (e.g., Tarboton, et al, 1991,1992), but the resuhs of the 

present study caU this assumption into question. From visual inspection of the Schoharie 

Creek DEM (see figure 3.1), it appears that most of the points with the smallest slopes are 

in the flat valley bottom rather than at the tops of hiUslopes. In the slope-area plots for the 

fransient cases in figure 5.32, mean slope increases sharply from the shallow valley bottom 

slopes at low contributing areas to the steepened valley wall points, decreases sharply, lev­

els briefly, then continues on the line of dynamic eqmlibrium. This is a subtle effect, but it 

does resemble the slope-area plot for Schoharie Creek in this mean behavior (see 
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figure 3.32) and does raise the possibihty that meandering is responsible for some ofthe 

observed trends in slope vs. area, though some of the specific feahires of the Schoharie 

Creek slope-area relationship may arise from effects not present in the simulations, such 

as the alluviated vahey floor and the captiire of its headwaters by fributaries to the Hudson 

River. The hypothesis that the observed slope-area trends described above are due to 

meandering, as illustiated in figure 5.33, is supported by Tucker's [1996] finding that, for a 

small watershed in Pennsylvania, the low-ai'ea increasing, decreasing, and level ti-ends in 

slope vs. area as derived from a high-resolution DEM correspond to contiibuting areas 

smaher than those of the channel heads observed in the field. 

mean slope for 
transient case with 

log(area) 

Figure 5.33: lUusfration of possible effect of meandering on slope-area relationship. 

5.6.2 Time Scales 

I did not expect such a dramatic difference between the fransient and long-term 

responses. At the onset of meandering, or, more precisely, after meandering had been run­

ning for some time but an order of magnitiide more slowly (I wül not make this lengthy 
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caveat from here on), the channels migrated at a great rate and carved out relatively flat 

valleys. But, later on, the valleys became narrow again. It is also interesting that the chan­

nel in many of the 10 ka simulations carved valleys of highly variable width, from rela­

tively wide to gorge-like. If one were to observe this topography in the field, one would 

lUcely suspect that hthologic variations were responsible for the variations in valley width. 

But, the model domains are homogeneous. 

At the end of simulation B, the spurs and fributaries encounter the main channel at 

a relatively low slope such that the banks are relatively low and ahow the channel to 

migrate rapidly. After some thne, the sides of the valley become much steeper and confine 

the channel more effectively. This adjustment is apparent from the reverting of points to a 

tight cluster in the slope-area plots for the 100 ka simulations. This effect also leads to 

variable valley width because the channels preferentially migrate up the tributary mouths 

and into the basins draining into the main channel. 

In the transient cases, the lower slopes at smah confributing areas are comparable 

to the slope of the main channel. These points are distinctly grouped apart from the points 

lying on or near the line. This cluster also appears to have, on average, decreasing slopes 

with increasing area; i.e., the longitudinal profiles of these channels are, on average, con­

cave. Points in this lower cluster are new, valley bottom points. Therefore, they are either 

former channel points, i.e., oxbows, or points left in the wake of the channel on the slip-off 

slope. The oxbows become tributary channels with low-slope, weakly concave longitiidi-

nal profiles. Points on the slip-off slope have low confributing area because they are smah 

and disconnected from the network, and thett slope is controlled more by the lateral 
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migration rate, relative to the uphft rate, than by diffusion or fluvial erosion. With time, all 

of these points move up to steeper slopes on the slope-area plots and join the main point 

cluster as thek slopes adjust to thek smah discharge. 

At longer tknes, the lateral migration rate decreases from its initially large value. 

The landscape has adjusted such that migration is smaller relative to uplift/incision and, 

thus, the slip-off slopes now fah closer to the line of dynamic equilibrium. The flrst rapid 

stage of lateral migration exploits the tributary confluences because of thek low relative 

elevation and, therefore, high erodibility. EventaaUy, as the channel migrates further into 

the tributary basins it encounters valley waUs of increasing height and, in some cases, the 

domain boundary, and the migrations slows or, at the boundary, stops. With slower migra­

tion relative to uphft, steeper slip-off slopes are formed. Thus, the uplifting system adjusts 

toward dynamic equilibrium even with lateral channel migration because the bank erod­

ibility is dependent on bank height, which can grow through uplift. The larger tributaries 

in the adjusted system typicaUy have narrower valleys and steeper valley walls adjacent to 

the main stream than the tributaries in simulation A such that the tributary mouth is nar­

rower and, therefore, affects the erodibüity of a smaller part of the bank. 

The model simulations represent an ideahzed case in which there is no alluvium in 

the valley. Nataral stieams are Ukely to have some alluvial deposits in the valley, and these 

deposits have a greater erodibility than the bedrock valley walls 

5.6.3 Bank ErodibiHty's Bank Height Dependence 

The different values of Pjj produce quite different landscapes. The simulations 

with PH=1-0 look more reahstic or, at least, more like the Buffalo River DEM (see 
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figure 3.2). One question I migiit ask about the Buffalo is, how long has the incising mean­

dering process combination been active with respect to typical lateral migration rates? 

Does the Buffalo more closely resemble simulation B, where meandering has been active 

only a short time, or simulations H and L, where meandering has been active much 

longer? An interesting result of this modeling is that, given the system's adjustment to 

meandering, the only obvious difference between simulations B and, e.g., H is due to the 

finer discretization of some areas in simulation H. The slope-area plots are also shnilar 

(see figure 5.32). 

The larger tributaries tend to sknt the areas visited by the channel in the long term 

simulations with P// = 1, i.e., simulations H and L. The new points tend to slip off toward 

the valley walls because that is how the migrating channel has left them. So, especially 

where there has been a major cutoff, the middle of the vahey has been left at relatively 

high elevations such that the ti-ibutaries tend to flow between these new topographic highs 

and the steep vahey waUs. These locations also correspond to the position of the channel 

before it was cut off. 

The long term shnulations with PH = 0.5, i.e., shnulations F and J, produced land­

scapes that are quite different from those landscapes produced by shnulations with = 1, 

i.e., shnulations H and L. In the simulations with P^ = 0.5, the system does not adjust as 

quickly or, possibly, as weh because the migration rate is less dependent on the topogra­

phy and, therefore, less influenced by adjustment through uplift. The channel, therefore, 

migrates more quickly, sweeps out a greater area, and cuts off more often. As a result, sev-
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eral cutoffs are left with much less flow than before, and the resulting channels have an 

abnormally low slope where they follow the old cutoffs. 

One reason for the different appearances of landscapes simulated with different 

Pff's is the greater prhnary sinuosity of the sfreams with low P f j and the similarity of the 

the bend and drainage spacing scales. Where primary sinuosity is large, meandering is the 

dominant influence on hillslope form because the slip-off slopes form in hillslope units too 

smah to be dissected: thek size is similar to the spacing of small fributaries along the main 

stream. Where prhnary sinuosity is small, however, the slip-off slopes form in hillslope 

umts the size of the multi-loop bends, and these slopes are then large enough to undergo 

signiflcant dissection by smah tiibutaiies. 

5.6.4 Uplift and Meandering 

Increasing bank erodibihty's bank height dependence, P^, slows lateral migration 

because the channel must erode more to move the same distance laterally. Increasing the 

uphft rate leads to greater channel and valley slopes, but the effects on the meandering are 

less clear. I might expect that greater uplift would lead to greater main channel slope and, 

therefore, lateral erosivity (see section 4.4.2, "Meander bend shape and evolution", on 

page 150). Conversely, I might also expect that greater uplift would ahow the system to 

adjust more quickly to the channel migration, i.e., faster uplift leads to faster steepening of 

the valley wahs. In the shnulations, it appears that the total area swept out by the channel 

was slightly larger in the cases with greater uplift but much less than the two-fold increase 

that would be expected from the increase in lateral erosivity alone. So, greater uphft 
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should lead to only shghtly greater lateral migration rate of an incising stream because 

greater lateral erosivity is partially balanced by valley wah steepening. 

The effect of the slope increase on the frequency of compound bend/multi-bend 

loop formation is marked. In the long term simulations with greater uplift, the channels 

migrate all the way to the boundary as they form multi-bend loops. Compound bend/ 

muhi-bend loop formation is not inhibited by the steepening banks. 

5.7 Conclusions 

The CHILD model described in this chapter succeeds in coupling models of channel 

meandering and landscape evolution. Because the CHILD model is the first to achieve it, 

this coupling represents a major advance in the state of the art of landscape evolution mod­

eling. 

This chapter's results may be summarized as foUows: 

1. Coupling channel migration to the landscape through bank erodibihty's bank height 
dependence, P^, allows the system to adjust toward a new dynamic equilibrium. 

2. Increased uplift leads to steepening channel slope and, therefore, greater bank shear 
sttesses, but the effect on migration rate is muted because increased uplift also leads to 
steeper channel banks. 

3. Steepening channel slope also leads to more compound bend/multi-bend loop for­
mation, and this effect is not muted by the steeper banks. 

4. Larger leads to lower primary sinuosity and slower migration such that the shn­
ulated landscapes with greater P^'s are less chaotic in appearance because the hiUslope-
scale landscape featiires are shaped mainly by "vertical" processes. 

5. Large uphft and Pfj combine to increase multi-bend loop formation and decrease 
bend-scale sinuosity, respectively, such that the channel course resembles that of an 
"underfit" stteam. 

6. The simulations with P^ = 1 have a more reahstic appearance than those with PH = 
0.5. This resuh may indicate that Pj^ = 1 is a more realistic value for channels incising into 
bedrock, though the similar scales of the bend length and the incisional hollow spacing 
may lead to the unreahstic appearance of the simulations with Pjj = 0.5. 
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The modehng experhnents in this chapter are the flrst to address the combined 

interactions of channel migration, bank erodibihty's bank height dependence, and uplift. 

The results of increasing uphft cah into question the conventional hypothesis that mean­

dering is more active during periods of quiescent uplift (e.g., from Lobeck [1939, p. 227]: 

"Young rivers actively cutting downward do not meander."). The simulations produced the 

opposite result: meandering is more active when the uphft rate is greater because greater 

uplift leads to greater slopes and, therefore, greater lateral accelerations in channel bends. 

Of course, I have not considered other changes possibly resulting from greater uplift. It is 

possible that greater uplift could increase the channel slope enough to signihcantly reduce 

the residence time ofthe point bar-forming bedload required to produce lateral accelera­

tions and migration, hi that case, the lateral migration rate might be reduced. Also, I have 

not considered the effect of alluvial deposhs and the contiasts in bank erodibihty such 

deposits would cause. The model results are consistent with Schumm's [1993] and 

Schumm etaVs [1987] findings in the field and from experiments, respectively, that 

increased vahey slope led to increased sinuosity in meandering alluvial channels. 

The model results suggest a new hypothesis concerning observed slope-area rela­

tionships from DEMs. It is possible that the prevalence of a flat part in the slope-area rela­

tionship, as discussed above, is due to the prevalence of meandering in natural streams. If 

this hypothesis is tine, then I would only need to increase the relative stiength of diffusive 

processes in the model to see the effect more clearly in the simulations' slope-area rela­

tionships. The model results presented here have relatively weak diffusion and could cor­

respond to the upper set of curves in figure 5.33. 
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Chapter 6 

Future Directions 

At the conclusion of this stady, many questions remain unanswered, many areas unex­

plored. The TSRM model takes a fundamentally different approach to the meandering 

problem and opens up a whole range of new modehng possibihties. Shnilarly, I have only 

begun to explore the CHILD model's capabihties, some of which I introduced in Chapter 

5 but did not employ. My investigations of meandering in the field served to narrow the 

range of possible answers to some questions, but more thorough stadies are needed in 

order to satisfactorily answer these questions. Also, there are several loose ends left by the 

present work, and I discuss how I might resolve them. 

6.1 T S R M Model Extensions 

I am aware that the assumptions, approximations, and parameterizations inherent to the 

TSRM model are somewhat limiting, and I discuss ways in which the model could be 

improved. The TSRM model is different from other models of stream behavior. It is more 

rules-based than most LFE models (e.g., Johannesson and Parker, 1989a) and two-dimen­

sional flow models (e.g.. Nelson and Smith, 1989a) tend to be, but h is more physically 

and mathematically based tiian some rules-based models, such as the cellular braided 

stieam model of Murray and Paola [1994]. Many variations on the TSRM model are pos­

sible with my approach. Also, I have not thoroughly examined the model's parameter 

space, e.g., with some kind of Monte Carlo scheme. 
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It would be interesting to more fully explore the model parameter space and to see 

the effect in the measures I introduced in Chapter 3. For example, I saw that compound 

bends show up as prominent secondary channel planform scale indicators; i f I make grain 

size smaller and, thus, increase the frequency of compound bend formation, do the sec­

ondary channel planform scale indicators become more prominent? Can I elhninate the 

secondary channel planform scale indicators by increasing the grain size? One problem 

with investigating the model's parameter space is that there are so many parameters. Some 

parameter combinations are unrealistic and could be excluded, but defining the criteria for 

such exclusions is not sfraightforward. Another problem is that I lack shnple measure­

ments with which to characterize the model's performance as a function of some indepen­

dent variable. For example, how do I characterize the prevalence and importance of 

compound bend formation? For example, I could design an algorithm to look for second­

ary peaks in a / , but it would be difficult to distinguish important, thick peaks fi-om the 

noisy, thin peaks I see for the LFE model. 

The bank shear stiess smoothing is perhaps the most parameterized aspect of the 

model, and it would be useful to investigate alternatives. I could try other functions, e.g., 

exponential and ganoma functions. I could allow shape to vary with lag, where the front 

end of the function is tied to the point of lateral momentiim fi-ansfer, and spread is stiU a 

constant parameter, i.e., i f lag is zero, the function is exponential, longer it is gamma, even 

longer gamma approaches a normal distiibution. 

I should explore the physical basis for the smoothing function. My measurements 

of bank roughness elements on the Elhs River are a first step in this direction. Does the 
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physics tell me what the smoothing function should be? Can I use my bank measurements 

to calculate a bank drag coefficient in a way similar to Hopson and Smith [1997]? 

The model behavior becomes problematic with some parameter sets. For example, 

if the lag is long relative to the roughness scale, forces in one direction may not be coun­

teracted by the next forcing in the opposite dkection. Instead, the first force wih be applied 

as shear sti-ess downstream of the second forcing and before the shear stress from the latter 

forcing. Clearly, this phenomenon is not physical and represents a case where the model's 

assumptions and approximations are not valid. Is there a better, still simple way to model 

the lag mechanism? What can I get fi-om the flow equations? Alternatively, is there a sim­

ple way to tiack the position of the flow core such that the above phenomenon cannot 

occur? 

Some of the detahs of the lateral momentum transfer formulation bear some scru­

tiny. Can I use special cases of the scaled flow equations (see appendix B) to get a better, 

still simple expression? Could the same equations also yield a simple solution, i.e., 

another way to derive a shnple, fast, nonlinear model, as was my goal with the TSRM 

model? 

I would like to investigate further the conditions necessaiy for compound bend and 

multi-bend loop formation. Under what conditions do compound bends become multi-

bend loops, and why? 

6.2 C H I L D Model Extensions 

I have dealt with only a smah part of the CHILD model's present and near-futiire capabih­

ties. Unfortimately, I was unable to address many of the issues of channel-landscape inter-
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action, sucli as the issue of varying vaUey width, that I discussed in Chapter 3. Here, I 

outhne some possible future model experhnents. 

The flrst next step is to try out more of the model's existing capabihties, hsted in 

Chapter 5. The most basic next step is to run the meandering model with capacity-limited 

or detachment- and capacity-limited sediment tiansport. Then, investigate the more 

advanced runoff generation mechanisms, e.g., satiiration overland flow. Next, investigate 

the different erosion limitations with stochastic rainfah and advanced hydrology. These 

experhnents could be done with the valley scenaiio presented in Chapter 5, but I should 

also look at meandering and the other processes mentioned above in the context of a drain­

age basin. Even for the detachment-limited case with uniform runoff, it would be interest­

ing to examine the effect of meandering on the stieam network. Lateral migration could 

have something like an opthnization effect on the network similar to evolving a network 

with the optimal channel network (OCN) model [Rodriguez-Iturbe, etal, 1992], where 

the network is optimized by randomly changing the paths of network links and keeping 

only the changes which reduce the network's energy dissipation. Over the long term, lat­

eral channel migration could produce a similar result by providing the mechanism by 

which network hnks might change thek course. The process dynamics and interactions, 

rather than an optimization rule, would create the criteria for "keeping" the changes. 

As 1 showed in Chapter 4, the meandering model is sensitive to bed material grain 

size. In the TSRM model sensitivity analysis of Chapter 4and the CHILD model sknula­

tions of Chapter 5, grain size is a free parameter. However, to effectively test process inter­

actions in a drainage basin the grain size should be determined by the system dynamics. 

The most important incomplete CHILD model component is the capabihty to erode, trans-
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port, and deposit sediment witti multiple grain sizes. I will not deal with all of the issues 

here; Gasparini, et al [1997,1998] combined a multiple grain size transport model {Wil­

cock and McArdell, 1993] and a sediment layering scheme with GOLEM, the rectangular-

grid landscape evolution model by Tucker [1996] (see also: Tucker and Slingerland, 1994, 

1996,1997; and Tucker and Bras, 1998). In the CHILD model, treatment of multiple grain 

sizes must include source materials, transport, and layered deposits in the context of a 

moving channel on a dynamic, kregular grid. 

In Chapter 3,1 raised the question of the effect of different source materials on the 

rate of lateral channel migration for the Buffalo River, AR. 1 proposed the hypothesis that 

changes in source material texhire, rather than rock strength, could be the mechanism 

behind the corresponding valley width and hthology changes. In Chapters 4 and 5 I 

showed that modeled rate and style of lateral channel migration is sensitive to bed material 

grain size, and the mechanism by which this happens is physically reasonable. The latter 

findings tend to support the above hypothesis, but k could be more thoroughly tested with 

the CHILD model with meandering and multiple grain sizes. 

Gasparim, et al [1997, 1998] showed that clhnate change can have a dramatic 

effect on channel bed material texture throughout a drainage basin, especially in the short 

term. SpecificaUy, they found that, following an increase in rainfall rate, a "wave" of fin­

ing propagated from the source areas through the channel system before the bed material 

throughout the basin became generaUy coarser. I showed in Chapter 5 the dramatic ttan­

sient effect of "tiirning on" meandering in a river valley previously in dynamic equilib­

rium. A similar change might occur given a fining of bed material or an increased rate of 
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bar-forming sediment input. I could examine the dynamics of these interactions with the 

complete CHILD model. 

The CHILD model was designed, in part, to examine hillslope-channel interaction 

and possible feedbacks in that interaction. For example, does the channel have a positive 

or negative feedback effect on hillslope erosion? If the latter increases, do the actions of 

the former act to moderate and dampen or aggravate and force further hillslope erosion? 

An argument for a dampening effect is the foUowing: hillslope erosion increases sedhnent 

delivery to the channels which respond with aggradation which increases the base level of 

the hillslopes and decreases their slope and, therefore, thett erosion rate. An argument for 

a forcing effect is: hiUslope erosion increases sedhnent delivery to the channels which 

respond by forming point bars and increasing thett lateral erosion rate which erodes the 

toes of and, therefore, steepens the hillslopes and leads to greater hiUslope erosion. 

In Chapter 5 I raised the question: Does greater lateral channel migration accom­

pany periods of quiescent or active uplift? Conventional wisdom says the former (e.g., 

Lobeck, 1939), but my results say that increasing the uplift rate also increases the lateral 

migration rate. However, I noted that my modeling did not account for the effect of uplift 

on bed material. Streams with a higher incision rate are more likely to flow on bedrock, 

while slower incision may lead to aggradation, the formation of point bars, and, thus, 

increased lateral migration. On the other hand, accelerated incision would hkely increase 

channel slope, therefore, bedload sediment flux, and, as the nickpoint moves upstteam, 

hülslope erosion. The resulting increase of bedload sedhnent could promote the formation 
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of point bars even as the increase in channel slope increases hs erosive energy, and the two 

effects could combine to increase lateral migration rates. 

The CHILD model should include a mechanism for overbank deposition. Howard 

[1992] modeled overbank deposition rate as a function of elevation and distance fi-om the 

channel: 

where z,nax the upper elevation limit on overbank deposition; v is the position indepen­

dent fine sedhnent deposition rate; p is the deposition rate of coarser sedhnent by over-

bank diffusion; r is the shortest distance to the channel; and X,̂  is the length scale of the 

deposition rate decay with distance ftom the channel [Pizzuto, 1987]. Howard [1996] 

pointed out that the choice of z,nax was arbittary and proposed a modified form of the 

equation with exponential elevation dependence. He argued that such a form was better for 

modeling the cumulative effect of aU flood events. In the CHILD model, I may stochasti­

cally generate storms whose magnittxde is exponentially disttibuted. Once I flgure out how 

to determine maxhnum flood stage, z^ax^ based on discharge magnitiide, the cumulative 

effect of equation (6.1) with stochastically generated storms may be similar to the modi-

fled expression of Howard [1996]. 

The recent work of Mertes [1997], my resuhs fiom the Elhs River, and other field 

stiidies (R. Jacobson, personal communication, 1995) indicate that such a model may be 

too shnple to produce reahstic floodplain deposition. For example, my Elhs River flood-

plain coring shows that the tiiickness of fine deposhs generally increases toward the 

(6.1) 
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upstream end of individual point bars on the floodplain (see figure 3.20). The Howard 

[1992] model may produce shnilar patterns in some cases, but 1 must wonder whether it 

does so for the right reasons. Nevertheless, a model along the lines of equation (6.1) pro­

vides at least a first approximation of the overbank deposition process. 

Finally, I cah attention to some of the loose ends in the CHILD modeling stiidy. In 

the slope-area plots, I should weight the slopes in the bin averages by the Voronoi areas of 

the corresponding points in order to get a more accurate picture of the trends in mean 

slope. I should examine the CHILD model channels with the planform measures intio-

duced in Chapter 3 and investigate the sensitivity of the model results to parameter 

changes through these measures. 

6.3 Studies of Natural Streams 

The field stiidies of Chapter 3 serve to illuminate how many questions are unanswered. In 

that chapter, I scratched the surface of what needs to be done in order to begin verifying 

the modehng of this work. 

I would like to conduct a more thorough study of scroll bar topography in order to 

determine its mechanism. Issues include the following: 

1. What are the scaling properties of scroll bars in terms of thek wavelength, amph-
tiide, curvahire, and length relative to channel properties such as width, depth, meander 
wavelength, and migration rate? 

2. What is the role of vegetation? Are only some scroU bars formed as a result of sys­
tematic variations in vegetation roughness? If so, how do different forms relate to different 
mechanisms? 

3. Is elevation on the floodplain correlated with migration rate at the time of lateral 
accretion? If so, are topographic highs associated with fast or slow migration rates? My 
Elhs River study suggests that highs are associated with fast rates; is this a spurious resuh? 

4. Is elevation on the floodplain correlated with channel curvature at the time of accre­
tion as in the TSRM model? 
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I would like to study the effects on lateral channel migration of gravel inputs, sud­

den changes in bed texture or grain size, and changes from bedrock to alluvial streams. I 

may be able to conduct such a stody in the Oregon Coast Range. A large storm event in 

1996 initiated a large number of landslides, and, thus, large quantities of sediment were 

ind-oduced into the channel network. Much of that sediment has since moved through the 

system, but its movement has been slowed at some locations and created gravelly alluvial 

reaches. Does this gravel initiate lateral channel migration? On Knowles Creek in the Ore­

gon Coast Range I observed a site where the gravel has formed what appear to be smah 

point bars, and there is evidence of lateral erosion in the form of undercut banks. These 

observations lend support to the topographic steering hypothesis. Further monitoring and 

stody at this site might reveal whether this lateral migration initiates a positive feedback 

effect in which bank failures maintain the gravel supply such that the migration continues; 

or whether the gravel eventoally gets flushed from the system such that the long term 

effect is small. 

Can 1 determine in the held what Pjj is for a particular site? Is it a function of 

material, rate, or both? could simply be a function of the fraction of coarse material in 

the bank material, where tine materials are detachment-lknited and coarse materials must 

be re-eroded. Or it could be the other way around. I f the migration rate is slow enough that 

the input of sediment from bank erosion is small relative to the sediment flux in the chan­

nel, then coarse materials which lack cohesion may behave as detachment-limited because 

they crumble when undermined and represent an insignificant addition to the channel's 

bedload. Fine, cohesive materials, on the other hand, remain intact as slump blocks when 

undermined and must be eroded dfrectly by the channel flow. If the migration rate is fast 
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enough that the input of sediment from bank erosion is large relative to the sediment flux 

in the channel, then the removal of coarse materials from the bank may be limited by the 

transport capacity of the channel flow. Fine materials, if thek proportion is smah may sim­

ply wash away. 

I should be able to quantify bank roughness in terms of dissipation of turbulent 

energy through boundary layer development. In the case of the Elhs River, bend 6,1 was 

able to find the average dimensions of the bank roughness elements. Such information 

should enable me to calculate a bank drag coefficient and, thus, turbulent energy dissipa­

tion rate and scale; i.e., calculate the TSRM model bank roughness scale, X. 

My work on the Elhs River brought the role of large woody debris (LWD) to my 

attention. Does LWD simply enhance channel roughness? Is it more hnportant on the bank 

or the bed? Does it behave differently in meandering and non-meanderkig channels? I 

found evidence on the Ellis River that the LWD may stay in place and be covered over by 

the accreting point bar. If so, then there would be a Ihnit to how much could accumulate in 

the channel. In a non-meandering channel, LWD accumulates and stays in the channel 

unth it is tiansported out, whereas LWD in the meandering channel may just get covered 

up after a time. How old were the logs I saw in the Ellis River channel? Were they all from 

relatively recent bank failure, or were some of them left over from the last time the chan­

nel migrated through that area and uncovered by recent channel migration? If the latter, 

then the accumulation of LWD might eventtiaUy reach some critical state in which it is 

either moved or dams up the reach. Or, the LWD may just eventually rot underground. Or 

it may not, in general, get covered over after all but, rather, be tiansported relatively 
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quickly. In the case of sheams in the Oregon Coast Range, does the LWD characteristic of 

old growth roughen the channel such that the residence thne of gravel and, thus, the activ­

ity of lateral erosion is greater? Does the absence of old growth fundamentally change pat­

terns of process dominance and dynamics? 

One advantage of the Howard and Hemberger [1991] analysis is the ability to 

place many streams, both model and nahiral, together on a plot. It would be useful i f I 

could use my own measurements to compare different channel planforms on the same 

plot, as in Howard and Hemberger [1991]; e.g., does the first plateau in mean sinuosity 

correlate meaningfully with relative meander belt width at the lower length scale of that 

plateau? By plotting the sti-eams together, I could see the ranges of characteristics of natii­

ral and model stteams and the relative effects of model parameter changes. It is not clear at 

this time how I could use the present measurements to create such a plot. Its development 

might require the derivation of additional new measures. 

Murray and Paola [1996] developed a dynamical systems approach to measuring 

the behavior of braided stteams. Thett method utihzed measurements of total channel 

width and is, therefore, not dttectly apphcable to the TSRM model, which assumes a con­

stant width. However, I might be able to use another variable, such as flow dttection or 

curvatiire, to develop a sinülar "state-space" plot characterizing meandering streams. 

For the measures that already exist, I need to better understand what they reveal 

about channel planform. One way to gain such understanding would be to apply the mea­

sures to idealized planforms in order to infer what the measures of natiiral planforms 

mean. 
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There are several loose ends remaining with respect to the signature of the mean­

dering process in the slope-area relationship. I should map pixels on the DEM, and even 

nodes on the CHILD model mesh, to points on the slope-area plot in order to ascertain the 

impact of the various valley feahires on the plot. How does DEM pit fiUing affect the 

slope-area relationship in the vahey? I f the artifacts of pit filhng are significant, it might be 

useful to obtain a high-resolution DEM of a meandering channel valley in order to find the 

slope-area relationship more accurately. I should also look at the slope-area relationship 

for different meandering stieams, such as the Buffalo River, to see how the plots are 

affected by valley width and form. 

Another issue brought up in my examination of Buffalo River valley width is the 

foUowing: How can I teU whether specific reaches are capacity- or detachment-limited? 

Does the presence of bedload always hnply capacity Ihnitation? I may ultimately find that 

these cases are merely end members. 
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Chapter 7 

Discussion and Conclusion 

This chapter summarizes the previous chapters and discusses some imphcations of the 

broader work that were addressed in those chapters. Finally, I draw some specific conclu­

sions. 

Chapter 2 intioduced the topic of landscape evolution modeling. The main thrust 

of the review was to motivate the inclusion of processes usually ignored in these models 

and, in particular, lateral channel migration. Chapter 2 also introduced the topic of river 

meandering and the importance of topographic steering in that process. 

Chapter 3 addressed meandering in natiiral stteams and, specifically, compound 

bend formation, scroll bar topography, bank failure and roughness, and meandering-land¬

scape interaction. A major finding was that compound bends on the Elhs River, Maine, 

develop from shnple bends during periods of rapid channel migration initiated by 

upstteam cutoffs and that compound bends somethnes separate to form multi-bend loops. 

I developed several measures of meandering channel planform which can and did detect 

the presence and hnportance of multi-bend loop formation in channel planforms of mean­

dering Alaskan stteams. 

On the Ellis River, lateral accretion of the point bar was fast where the ridges had 

formed and slow in the swales. It foUows that the rapid migration following a cutoff led 
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not only to the formation of a compound bend but also to the rapid accretion of these new­

est ridges. I concluded that rough vegetation on the point bar probably contributed to the 

ridge formation by trapping sediment. In this respect, vegetation plays similar roles on the 

EUis River and on the Current River, Missouri. Spectral analysis showed that the scroll bar 

topography on the Ellis and Mississippi River floodplains was not clearly periodic but 

only quasi-periodic. 

On the Ellis River, I found that banks were undermined by scour and faUed in 

clumps defined by tree root wads. The typical size of these root wads also places a lower 

limit on the width of a meander loop's neck before it cuts off. 

I examined the role of meandering in the landscape by looking at the slope-area 

relationship for Schoharie Creek, New York, and the relationships among vahey width, 

lithology, and channel slope on the Buffalo River, Arkansas. For the Schoharie Creek val­

ley, low slopes on flat valley bottoms and high slopes on vaUey sides are independent of 

contiibuting area and may lead to a commonly observed but previously not understood 

featiire of natiiral slope-area relationships. For the Buffalo River, valley width is probably 

dependent on the size of bedload particles and theti amount as much as or more than the 

stiength ofthe rock forming the valley walls. It may be that, in this case, bedrock incision 

is transport- rather than detachment-limited. 

Chapter 4 intioduced the topographic steering river meandering (TSRM) model. 

This model takes a different approach to the problem of river meandering. In this 

approach, some of the physics may appear relatively crude compared to the mathemati­

cally precise derivations of LFE models but really only represent a different way of 
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approximating tlie behavior of the active physical processes. Within the consttaints 

imposed by the model assumptions, such approximations may not be any less accurate 

than those made in LFE models. In fact, the TSRM model approach captiires hnportant 

physics and mechanisms, particularly compound bend formation, that other models lack. 

The approach was immersion in the literatiire of field and experhnental stiidies of mean­

dering, breaking the process physics down into shnple, easily understood pieces, and put­

ting those pieces back together in a new model. I determined the hnportance of various 

processes and mechanisms based on empirical evidence. The stiidies at Muddy Creek by 

W.E. Dietiich and his co-authors in particular provided much of the information needed to 

determine what the pieces were and which to include. Along the sepai-ate but complimen­

tary line of investigation taken by J.D. Smith and co-authors, I eventiially found that scal­

ing the flow equations according to a shghtiy different set of assumptions yielded terms 

resembhng my expression for lateral momentiim tiansfer (see Appendix B). 

Perhaps the most important lesson from the TSRM model is the answer to this 

question: What must a meandering model include to reasonably, approximately describe 

the meandering process? Evidence from the literatiire indicates the importance of the bed 

topography and that a reasonable assumption is that the topography is due solely to the 

curvature-induced, helical part of the secondary flow. This assumption is further supported 

by the finding that, in the special case of large but gradually changing curvahire, the scaled 

flow equations reduce to two terms, both in the lateral momentiim equation: the lateral 

shear sttess at the bed and the curvattire-induced lateral flow acceleration (see Appendix 

B, equation (B.5.4)). So, both empttical and theoretical evidence indicates that the 

assumptions concerning bed topography are reasonable. 
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The topographic steering calculation does not describe how and where the shear 

stress is applied to the bank. The topographic steering effect is strongest where curvahire 

is changing most rapidly, at the bend entrance, but meander bends, at least smah ones, 

migrate downstream. In simplifying the problem, I had not described how a force at the 

bend enhance leads to shear sttess on the bank downstteam. The simplest way to project 

the effect of the force downstteam worked well—better, in fact, than the more comphcated 

methods devised later and discarded. Numerical stabihty and common sense said that this 

force would not all be spent at one point, that I needed to describe the turbulent dissipation 

of that force along the bank as shear stress. A shnple Gaussian smoothing was a sufficient 

parameterization of that turbulent dissipation. 

Topographic steering is of sufficient magnitude to cause the bank shear sttess, and 

this expression, in combination with the other parts of the model, produces reahstic results 

and simulates the previously unexplained phenomenon of compound bend formation. The 

magnittide of the predicted topographic steering force is similar to that of the total bed 

shear stress, and this result is in Ime witii observations. In the special case of smah but 

quickly changing curvatiire in the scaled flow equations, the topographic steering terms 

are dominant (see Appendix B, equations (B.5.1), (B.5.2), and (B.5.3)). So, again, both 

empttical and theoretical results support the formulation, though I acknowledge that the 

derivation of topographic steering is far from perfect and might bear some modiflcation 

guided by the scaled flow equations. 

The model yielded results pertinent to the findings of Chapter 3. The model pro­

duced compound bends much as they were formed on the Elhs River and multi-bend loops 
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that produced both primary and secondary channel planform scale indicators, as found for 

the Alaskan streams in Chapter 3. Also, the frequency of compound bend formation was 

sensitive to model parameters that affected the location in the bend of maximum bank 

shear stress. Parameter changes, such as decreasing median bedload grain diameter or 

increasing channel slope, that caused that location to shift toward the beginning of the 

bend produced more compound bend and multi-bend loop formation. More multi-bend 

loop formation leads to wider valleys and greater variation in valley floor age. The land­

scape is, of course, the source of discharge and bedload and determines channel slope. 

Thus, characteristics of the landscape influence compound bend and multi-bend loop for­

mation and, in turn, determine the effect of meandering on that landscape. Also, bank 

roughness and compound bend formation are related. The bank roughness parameter is the 

major control on bend size, and hs size relative to the downstteam lag influences bend 

shape and compound bend formation. For example, decreasing the bank roughness corre­

sponds to increasing the smoothing scale and the bend size with respect to the downstream 

lag; smaller downstream lag with respect to the bend size increases the frequency of com­

pound bend formation; therefore, decreasing bank roughness would lead to a greater fre­

quency of compound bend formation. 

The model also formed floodplain topography resembhng scroh bar topography 

through the spatio-temporal variation of channel curvatiire, proportional to point bar 

height in the model. This model scroU bar topography was, like the Elhs and Mississippi 

scroll bar topography, quasi-periodic. The model also formed bands of alternating fast and 

slow channel migration related to the occurrence of upstieam cutoffs. This mechanism is 

more likely related to the mechanism forming scroh bar topography in nature. 
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Chapter 5 introduced the channel-hiUslope integrated landscape development 

(CfflLD) model. Building the CHILD model requked devising a new way to represent the 

migration of a channel in the landscape and a new set of rules to govern and describe that 

migration. The CHILD model uses a dynamic, kregular mesh to represent the landscape 

and incorporates the TSRM model as a component landscape process. The development of 

this model involved some additional conceptual modeling, such as the parameterization of 

bank erodibihty's bank height dependence, but for the most part presented knplementation 

problems related to the data stiucture and the movement of channel nodes in the model 

landscape mesh. SpecificaUy, I developed new algorithm's and rules to deal with finding 

bank nodes, removal of nodes from eroding banks, and addition of nodes to accreting 

point bars. 

The landscape and channel forms produced by the model were quite sensitive to 

the magnitude of bank erodibihty's bank height dependence. As expected, the latter affects 

the channel's migration rate. Larger bank height dependence leads to greater interaction 

between the channel and the landscape and, thus, faster and more thorough adjustment of 

the system toward a new dynamic equiUbrium through valley waU steepening. Prior to this 

adjustment, the initially low banks led to transient states in which the valley floor was flat­

tened by rapid lateral channel nkgration. Migrating channels for which bank erodibility's 

bank height dependence is larger have lower bend-scale sinuosity but still form multi-bend 

loops. The slope-area relationships of the tiansient cases were affected by meandering 

such that the plots are similar to the slope-area plot for the Schoharie Creek vaUey in 

Chapter 3 and, thus, support the hypothesis that, in nature, meandering is responsible for 

the "step" in the mean slope's trend. 
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Increasmg the uphft rate led to both greater bank shear sttess by increasing chan­

nel slope and lower bank erodibihty by increasing bank height such that migration rate 

increased by a small amount. Thus, the channel migration rate is only weakly sensitive to 

uphft rate. The frequency of compound bend and multi-bend loop formation increased 

with greater uphft and, therefore, channel slope. The steepening of the valley sides may 

even reinforce the tendency to form multi-bend loops. 

The CHILD model wih ahow investigation of many aspects of river basin evolu­

tion. In the present work, I have focussed on the interaction between a meandering channel 

and its valley, but future studies will address the interaction between landshding and chan­

nel evolution. 

In conclusion, the modeling studies benefited greatiy from previous field stiidies 

and, in tiirn, motivated new field studies by making testable predictions. I expect future 

work to involve a similar close coupling of modeling and field studies. 

I cannot rule out the possibihty that scroh bar topography is associated with chang­

ing channel curvatiire, but the data from the EUis River suggest that scroll bars are associ­

ated with large variations in channel migration rate. 

Compound bend formation is an integral and important part of the meandering 

process. It leads to multi-bend loo formation and, thus a secondary sinuosity. The models 

reproduce this effect to a degree that is sinsitive to model parameters such as bed material 

grain size, channel slope, and bank roughness. Unlike migration rate, this effect is not sup­

pressed byb steeper banks when uplift rate increases. 
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Channel banks are an important part of the couphng between channel migration 

and the landscape. By thek roughness, they mfluence the size of meander bends and the 

frequency of compound bend formation. By thek height, they influence bank erodibüity 

and, thus, the channel migration rate such that the steepening banks associated with more 

rapid uplift dampen the effect of increasing bank shear skesses associated with the corre­

sponding increase in channel slope. Variations in bank erodibility's bank height depen­

dence affect the appearance of the landscape when the bend length and channel spacing 

are of similar magnitude. Channel bank steepening is the mechanism by which the drain­

age system adjusts to the onset of meandering and approaches a new dynamic equilibrium. 
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Appendix A 

Derivation of the Transverse Bed Slope 

A . l Neglecting Bedforms 

This derivation is similar to that of Ikeda [1989]; the reader is referred to that work for 

explanation of some ofthe assumptions and reasoning imphch in the following derivation. 

The lateral force balance for a bed grain particle is 

where M is the particle mass; m is the fluid mass; (j) is the ti-ansverse bed slope angle; p is 

the dynamic Coulomb friction coefficient; Lfis the lif t force; Vp is the particle velocity; 

Vpy is the radial component of the particle velocity; and D,. is the radial component of the 

drag force: 

where D is the total drag force on the particle; Uf, is the fluid velocity at the bed; and 17̂ ,. 

is the radial component ofthe fluid velocity at the bed. In this derivation I shnplify the 

assumptions made by Ikeda [1989] and extiapolate my simplified resuU to apply under the 

more complicated set of assumptions. Specifically, in the following derivation I assume 

that, at the equilibrium bed slope, the radial component of the particle velocity is zero 

(V ^ = 0). Under this assumption, I get 

+ (M-m)gsin(!)- (A.1.1) 

(A. 1.3) 
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where *F is the dhnensionless shear shess, or "Shields stress", 

Ikeda's formula accounting for the critical shear stress for the initiation of particle motion 

IS 

dh _ f r f h rvfO.2278 „ ,A 

which is the solution when the total shear stiess, form drag plus skin friction, determines 

the fransverse bed slope. I have skipped many steps in the derivation of equation (A. 1.3) 

because a more complete derivation exists in the literatiire [Ikeda, 1989] and it is similar 

the derivation which follows below. 

A.2 Including Bedforms 

To find the fransverse bed slope caused by skin friction, 1 need to take the derivation a step 

further because the radial component of the near-bed velocity at the sand grains is less 

than what I have derived for the total shear. Let U;,,. be the radial component of the flow 

velocity at the top of the form drag roughness layer and U' be the average velocity within 

that roughness layer; i.e., the average velocity in the layer affected by skin friction. 1 

assume that the wavelength of the bedforms is related to the depth of flow: 

Kf = 27r/j (A.2.1) 

and let the height of the dunes, h^, be related to the bedform wavelength, Xj^p by 

= jQ^f^ (A.2.2) 

The skin friction drag force (see equation (A. 1.1)) is 
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D' = ^ p Q 7 t d 2 ( [ / ; - y p 2 (A.2.3) 

and its radial component is 

Assuming a log-profile for flow velocity and the Nikuradse equivalent sand grain 

roughness equal to the particle diameter, I solve for the average velocity between the bed 

and the dune height, h^, as the velocity at height h^e: 

1 k\ f^^-^h 
U' = t !Lin[ (A.2.5) 

KA/ p V « / 

where x' is the skin friction [Oie Madsen, class notes, 1996]. 

If I assume that the near-bottom boundary-layer radial velocity is related to the 

average boundary-layer velocity in a way similar to the relation neglecting the effect of 

skin friction (see Ikeda, 1989), then I can solve for the skin friction factor, 

C / = (A2.6) 

In 11.0-^ 
V a) 

and the radial component of the near-bed (elevation above the bed goes to zero) skin fric­

tion roughness layer velocity: 

UJ = 0.349-

/ïr/iF-1.00-I-3.00Infl 1.0 , ,, 
A/p L V d Jj 

'br - — ^2^2 

The relationship between the near-bed velocity, U^', and the particle velocity is \Ikeda, 

1989]: 

(A.2.7) 
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lllis-l)gd 
" C^(l + a|i) 

Substituting for f/^,', Vp„ [/^', and Vp,Iget 

D ; = J3K ^ 
1 + 31n 11.0-^1 

Finally, I define the dimensionless skin friction as 

p(s-l)gd 

Table A . l : IVansverse bedslope dimensionless parameters 

parameter symbol value 

drag coefiicient Cd 0.4 

dynamic Coulomb friction It 0.43 
coefficient 

It 

ratio of lift and drag coeffi­ a 0.85 
cients 

von Karman's constant K 0.4 

particle sphericity P 1.0 

ratio of sediment and water S 2.65 
densities 

(A.2.8) 

(A.2.9) 

(A.2.10) 

Let e be the tiansverse bed slope angle due to skin friction. I solve the force bal­

ance (equation (A. 1.1) with "primes") for 

sine = - f ^ f l T * 7 4 ^ f o . 9 1 1 n m - 0 . 8 3 -
K^pVl -I- apv^y L \dj 

Or, from table A . l , equation (A.2.6), and equation (A.2.2), 

(A.2.11) 

sinG 
\RJ r 

h. df 2.6 
-2.2 (A.2.12) 
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which is nearly identical to equation (A. 1.3) except for dependence on the skhi friction 

Shields parameter and friction factor and the ratio of skin friction roughness layer depth to 

total depth, which is just 

(A.2.13) 
h T 

Assuming that the necessary modification of equation (A.2.12) to account for the thresh­

old of particle motion is similar to the modification of equation (A. 1.3) to get 

equation (A. 1.5) and using table A . l and equation (A.2.13), I have 

dh 

dr 

•0:2278^^^^^^^,_0.3606 
K \ dW 

(A.2.14) 

1 define the fransverse slope, S f , as equation (A.2.14) evaluated at the channel centerline, 

where r=R and h=H. The radius of curvatiire, R, is just the inverse of the curvatiire, C. So, 

lhave 

K = 

iSy — KHC 

0 . 5 6 9 5 1 n ( l l | ^ 1-0.3606 

(A.2.15) 

(A.2.16) 

which is identical to equation (4.3). In the above derivation I assume that ah references to 

grain diameter, d, refer to the median grain size, d^g- The appropriate quantile of grain size 

in equation (A.2.5) is actiially but, because this term is inside the logarithm, the use of 

d^O does not infroduce much error. 
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Appendix B 

Scaling the Depth-Averaged Flow Equations 

B. l Scaling Parameters for NondimensionaHzation 

I begin by identifying the spatial scales I am interested in. Other authors (e.g., Johannes­

son and Parker, 1989) have typically used the meander wavelength to scale downstteam 

distances though they are modeling accelerations over much shorter distances. 

Dietrich and Whiting [1989] showed that sttong convective accelerations may 

occur over downstteam distances much shorter than the meander wavelength and even 

shorter than the channel width. Therefore, it is appropriate to scale down- and cross-

stteam distances with the same value, in this case the channel width. 1 scale vertical dis­

tances by the average channel depth. Thus I define the non-dimensional coordinates, 

5 = 7 (B.1.1) 
b 

h = j (B.1.2) 
b 

? = A (B.1.3) 

where s, n, and z are the downstteam, cross-stteam, and vertical dttections, respectively; b 

is the channel width; and H is the average channel depth. Likewise, I scale curvattire, flow 

depth, and bed elevation: 

C = Cb (B.1.4) 

tl 
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H (B.1.6) 

I have scaled the curvahire with the channel width, shrdlar to the inverse of down-

ally be smaller than terms proportional to 1/3* and \/dn because, while l/ds and 

l / a « are usually greater than the channel width, b, curvahire, C, is always less than b. In 

places where curvahire is small, terms proportional to curvahire will be much smaller than 

terms proportional to \/ds and l/dn as long as the downsfream rate of change of curva­

ture, dC/ds, is large. 

Dietrich and Smith [1983] found that lateral flow velocities may be comparable to 

downsfream velocity over short distances. Therefore, I scale both downsfream and lateral 

velocities by the average downsfream velocity, UQ. 

^ 0 

Though I am not dfrectly concerned with vertical velocity, I wih need it to scale 

shear sfresses: 

stream and cross-sfream coordmates. However, terms proportional to curvahire wiU gener-

(B.1.7) 

(B.1.8) 

w 
w = — 

W 
(B.1.9) 

where Wis a typical vertical velocity, where W«U( 
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Changes in water surface elevation are generally not comparable to those in water 

depth and bed elevation. The average water surface slope is related to the friction factor 

and flow velocity: 

And I deflne the non-dhnensional water surface elevation: 

CfUlb 

B.2 Downstream Momentum Conservation Equation 

I use the depth averaged equations used by Smith and McLean [1984]. In the downsfream, 

or s, dkection, I write: 

• • • + 1 ; " " * - r ^ ' " ' " ^ * r ^ ' " ' 1 , , „ 

Applying the scahng relations of the previous section and cancehng hke terms, I 

have: 

1 H^. 9 ^ ^ ^ ^ 3 ^ ^ 

(B.2.2) 
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I now assign values of e to small numbers of 0(1/10): 

Substituting e in equation (B.2.3), dropping terms of 0(e), and switching back to dimen­

sional terms, I have: 

ï ^ è ^ ' * ' é " " " - - ^ T ^ ^ " ' " ^ = - - „ I , (B.2.4) 

I do note, however, that the thkd and sixth terms on the right hand side of equation (B .2.1) 

will be large near the banks. 

B-3 Cross-Stream Momentum Conservation Equation 

I write the depth-averaged conservation of momentum in the cross-stream, or n, dkection: 

' ' (B.3.1) 

Substitiiting the scahng relations of the first section and canceling hke terms, I have: 

- 1 | 9 ^ t > ^ + ^ 3 t>2^ ï - ^ f ( C / 2 _ t > 2 ) ^ C = -C/h^l 
-fiCbds bón l~nCb ' f dh 

(B.3.2) 
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As in tiie previous section, I tln-ow out terms of O(e^), tiiougli I note again tiiat tlie third 

and sixth terms on the right hand side of equation (B.3.1) wih be large near the banks. 

Reverting to dimensional coordinates, I have: 

P 9 c/y/, + p^v^h - j-^iU^ - V^)hC = - x , „ (B.3.3) 

B.4 Continuity of Mass Equation 

1 write the depth-averaged equation for continuity of mass: 

1 | . f / / , . , 3 ^ / , - J ^ = 0 (B.4.1) 
\-nCds dn l-nC 

Without carrying through the steps, I note that ah terms are of 0(E) such that I retain all 

terms. 

B.5 Special Cases 

It is worthwhile at this point to examine some special cases alluded to in the previous sec­

tions. 

In the sttaight section, or cross-over, between meander bends and other ttansitions 

from small to large curvature, curvatiire is small, but the downstteam rate of change of 

curvatiire and, therefore, the lateral flow velocity are large. In such cases, it is appropriate 

to drop all terms and parts of terms proportional to curvatiire. Thus, I have, for down­

stteam momentum conservation. 

p^U^h + p^UVh = - X , , (B.5.1) 
^3* dn ^ 

for cross-stteam momentum conservation. 
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and for continuity, 

^ W ^ V A = 0 3.5.3, 

In tliis case, the convective acceleration terms are dominant. 

On the other hand, within bends where curvahire is large but approximately con­

stant, convective accelerations and terms proportional to lateral flow velocity will be 

smah, and I am left with only the centrifugal force term in the lateral momentum equation: 

r ^ ' ' ' * C = (B.5.4, 

Therefore, the bed topography depends only on curvature and prhnary hydrauhc proper­

ties of the flow. 

Recall the caveat I made about the terms proportional to lateral changes in depth 

and bed elevation, that these terms are large near the banks in general and, especially, near 

the outside bank (i.e., next to the pool). Adding back these terms, I have, for the down­

stream momentum equation. 

1-nCds l-nC zs ^ dn '^' n^ridn ^ ' 

for the lateral momentum equation. 

and the continuity equation is unchanged. 
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Using tlie chain rule, I break down these "bank" terms: 

3 , _ A l . dh 
(B.5.7) 

at the bank, the second term on the right hand side of equation (B.5.7) is dominant. Thus, I 

have 

dh 

'2 "2 

Similarly, from the lateral momentum equation, I have 

(B.5.8) 

= ( ^ ) 
J««3n, 

(B.5.9) 

"2 "^2 

I may now re-write the downstream and lateral momentum equations to include the bank 

terms: 

_ p _ 3 _ 
l - n C 3 5 

U^h + pluVh--^UVhC = -x^^ +U„,f-] + k ^1 (B.5.10) 

+ 
dh 
dn 

I M 

(B.5.11) 
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Appendix C 

Magnitude of Lateral Momentum Transfer 

To assess the magnitude of the lateral momentum ttansfer, I compare it to the bed shear 

sttess for the special case of a channel foUowing a sine-generated curve, 

= « s i n ^ (C.O.l) 

where (j) is the downstteam dttection angle; ro is the maximum angle; and M is the meander 

wavelength. 

The average bottom stiess integrated over the channel width and an incremental 

downstteam distance is 

dF^ = pCj:U^bds (C.0.2) 

Then, from equations (C.0.2) and (4.13), the ratio of the cross-stteam and bottom "forces" 

IS 

'n \H bf M dF 
ZlJl = — — (C.0.3) 

dF^ M^Cf 

where the ttansverse slope parameter, K, is derived from equation (A.1.5) (here I neglect 

the effect of form drag; seelkeda, 1989, and equation (A.1.5)). 1 then find the leading term 

of the series expansion of this force ratio at the point of maximum lateral momentum 

tiansfer, s=M/4, to get, neglecting higher order terms. 

dF^ T'^^CJM^ 
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I now assign the value, 8, to smah numbers of sknilar magnitude: H/b, b/M, T'̂ ,/*?; and 8^ 

to Cf. Then the ratio in equation (C.0.4) is Ofco^j. 
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Appendix D 

River Meandering Model Based on Linearized Flow 
Equations 

The hnearized flow equation (LFE) model assumes bank shear stress and channel migra­

tion are proportional to the near-bank flow velocity pertarbation. The form of the velocity 

perturbation in Johannesson and Parker [1989c] is: 

= X . o ^ ^ C ( . ) . ^ [ x 2 o ( , % . 2 ) - l ] . - £ C ( . > - ds' 

c m z ^ f ^ 

H jQ 
(D.0.1) 

,2' - 1 

x i U a '̂  5 15)' (t+m+J-] 

U2 360 504; 

U , ^ 2v 2\ 0.077 ^ 0.077 1 
(D.0.3) 0.077 .. 0.077 1 

My version of the LFE uses equation (D.0.1), where I have made one simplification. To 

make the LFE model more directly comparable to the TSRM model, which uses local cur­

vature to determine the bed topography, I substihited local curvature, C, for the effective 

curvatiire integral in Johannesson and Parker [1989c]. A.D. Howard [personal communi­

cation, 1996] reports that the use of this integral has an insignificant effect on model 

behavior. 

265 



( 

266 



References 

Ahnert, F., 1976. Brief description of a comprehensive three-dimensional process-response 
model of landform development, in Quantitative Slope Models, ed. by F Ahnert, Z. 
Geomorph., Supp. 25, p. 29. 

Andrews, E.D., 1981. Measurement and computation of bed-material discharge in a 
shaUow sand-bed stieam. Muddy Creek, Wyoming, Water Resour. Res., 17(1), 131¬
141. 

Andrews, E.D., 1982. Bank stabUity and channel width adjustment. East Fork River, 
Wyoming, Water Resour. Res., 18(4), 1184-1192. 

Andrle, R., 1994. The angle measure technique: A new method for characterizing the 
complexity of geomorphic lines. Mathematical Geol, 26, 83-97. 

Andrle, R. 1996. Measuring channel planform of meandering rivers. Physical Geog., 17(3), 
270-281. 

Beaumont, C, P. FuUsack, and J. Hanülton, 1992. Erosional control of active 
compressional orogens, in Thrust Tectonics, ed. by McClay, K.R., New York, 
Chapman and HaU, pp. 1-18. 

Beauvais, A.A., and D.R. Montgomery, 1996. Influence of vaUey type on the scaling 
properties of river planforms. Water Resour. Res., 32(5), 1441-1448. 

Beck, S., 1983. Mathematical modeling of meander interaction, in River Meandering, 
Proceedings ofthe conference rivers 1983, ASCE, New Orieans, Oct. 24-26, pp. 932¬
941. 

Begin, Z.B., 1981. Stream curvatiire and bank erosion: A model based on the momentiim 
equation, J. Geol, 89, 497-504. 

Beven, K.J., and M.J. Kkkby, 1979. A physically-based variable contiibuting area model 
of basin hydrology, Hydrol ScL Bull, 24(1), 43-69.Black, T., and D.R. Montgomery, 
1991. Sediment transport by burrowing mammals, Marin County, California, Earth 
Sutf. Proc. Landf., 16, 163-172. 

Black, T.A., and D.R. Montgomery, 1991. Sediment transport by burrowing mammals, 
Marin County, California, Earth Surf. Proc. and Landf., 16(2), 163-172. 

Blondeaux, P., and G. Seminara, 1985. A unified bar-bend theory of river meanders, J. 
Fluid Mech., 157,449-470. 

Brakenridge, G.R., J.C. Knox, E.D. Paylor I I , and F.J. Magilligan, 1994. Radar remote 
sensing aids stiidy ofthe Great Flood of 1993, EOS, Trans. A.G.U., 75(45), 521-527. 

Bras, R.L., 1990. Hydrology: An Introduction to Hydrologie Science, Addison-Wesley 
Pubhshing Co., Inc., Reading, Mass. 

Braun, J., and M. Sambridge, 1994. Dynamical Lagrangian Remeshing (DLR): A new 

267 



algorithm for solving large shain deformation problems and hs application to fault-
propagation folding, Earth and Plan. Sci. Let, 124(1/4), 211-. 

Braun, J., and M. Sambridge, 1997. Modelhng landscape evolution on geological thne 
scales: a new method based on kregular spatial discretization. Basin Research 9(1) 
27-52. 

Brice, J., 1974. Meandering pattern of the White River in Indiana-an analysis, in Fluvial 
Geomorphology, ed. by M. Morisawa, S.U.N.Y., Binghamton, pp. 178-200. 

Brown, P. J.C, 1995. Three examples of incremental Delaunay triangulation algorithms for 
terrain modelhng, http://www. cl. cam. ac. uk/users/pjcb2/Publications/ 
delaunaysurvey/delaunaysurvey.html. 

Bruinsma, R., 1990. The statistical mechanics of meandering. /. Phys. France 51(9) 829¬
845. 

Carson, M.A., and M.J. Kkkby, 1972, Hillslope Form and Process, Cambridge University 
Press, 475 pp. 

Chase, CO., 1992. Fluvial landsculpting and the fractal dimension of topography, 
Geomorphology, 5, 39-57. 

Chow, V.T., 1959. Open-Channel Hydraulics, McGraw-Hih Book Company, New York, 
680 pp. 

Cordova, J.R., I . Rodriguez-Iturbe, and P. Vaca, 1982. On the development of drainage 
networks, in Recent developments in the explanation and prediction of erosion and 
sediment yield, ed. by D.E. Wallkigs, Exeter, U.K., 19-30. 

Crosato, A., 1990. Simulation of meandering river processes. Communications on 
hydrauhc and geotechnical engineering. Rep. no. 90-3, Delft U. of Tech, 104 pp. 

Davis, W.M., 1909. Geographical Essays, Ginn, Boston, 777 pp. 

Dietiich, W. E., and J. D. Smith, 1983. Influence of the point bar on flow through curved 
channels. Water Resour. Res., 19(5), 1173-1192. 

Dietrich, W. E., and J. D. Smith, 1984. Bed load tiansport in a river meander, Water Resour. 
Res., 20(10), 1355-1380. 

Dietiich, W. E., and P. Whiting, 1989. Boundary shear stiess and sedhnent transport in 
river meanders of sand and gravel, in River Meandering, ed. by S. Ikeda and G. 
Parker (Water resources monograph: 12), Am. Geophys. Union, Washington, pp. 1¬
50. 

Dietrich, W.E., C.J. Wüson, D.R. Montgomery, and J. McKean, 1993. Analysis of erosion 
thresholds, channel networks, and landscape morphology using a digital terrain 
model, /. Geol, 101, 259-278. 

Diekich, W.E., Wilson, C.J., Montgomery, D.R., McKean, J., and Bauer, R., 1992. Erosion 
thresholds and land surface morphology. Geology, 20, 675-679. 

Droste, C, 1996. Observabüity of parameters in meander migration models, American 
Geophysical Union 1996 Spring Meeting. 

268 



Du, C, 1996. An algorithm for automatic Delaunay triangulation of arbiti-ary planar 
domains, AÉ?V. Eng. Software, 27(1-2), 21-26. 

Dunne, T., and B.F. Aubry, 1986. Evaluation of Horton's theory of sheetwash and r i l l 
erosion on the basis of field experiments, in Hillslope Processes, ed. by A.D. 
Abrahams, Allen & Unwin, Boston, 31-53. 

Eagleson, P.S., 1978. Climate, soil, and vegetation: 2. The distiibution of annual 
precipitation derived from observed storm sequences. Water Resour. Res., 14, 713¬
721 . 

Engelund, F., and F. Hansen, 1967. A monograph on sediment transport in alluvial stieams, 
in Teknisk Verlag: Copenhagen, Denmark, Technical University of Denmark, 63 pp. 

Ferguson, R.L, 1976. Disturbed periodic model for river meanders. Earth Swf. Proc, 1, 
337-347, summarized in Howard and Hemberger [1991] . 

( Ferguson, R.L, P.E. Ashmore, P.L Ashworth, C. Paola, and K.L. Prestegaard, 1992. 
Measurements in a braided river chute and lobe 1. Flow pattern, sedhnent ti-ansport, 
and channel change, Water Resour. Res., 28(7), 1877-1886. 

Furbish, D.J., 1991. Spatial autoregressive stiuctiire in meander evolution, Geol. Soc. of 
Am. SM//., 103, 1576-1589. 

Garcia, M. H., L. Bittner, and Y. Nino, 1994. Mathematical modeling of meandering 
stteams in Illinois: A tool for stteam management and engineering. Civ. Eng. Stiidies 
Hydrauhc Engineering Series No. 43, Urbana, IL, 49 pp. 

Gasparini, N.M., G.E. Tucker, R.L. Bras, and S.T. Lancaster, 1997. Downstteam fining: A 
drainage basin perspective, American Geophysical Union 1997 Fall Meeting 
(absttact). 

Gasparini, N.M., G.E. Tucker, and R.L. Bras, 1998. Modeling transport of multiple grain 
sizes in the landscape. Master's Thesis, Dept. of Civil and Environmental 
Engineering, Massachusetts Institute of Technology. 

Gilbert, G.K., 1877. Report on the Geology ofthe Henry Mountains, U.S. Geographical and 
^ GeologicalSurvey, Washington, D.C, 160 pp. 

Gilbert, G.K., 1909. The convexity of hilltops, /. Geology, 17, 344-350. 

Gilley, I.E., W.J. Elliot, J.M. Laflen, and LR. Shnanton, 1993. Critical shear stiess and 
critical flow rates for initiation of rilling, / . Hydrology, 142, 251-271. 

Gomez, B., 1993. Roughness of stable, armored gravel beds. Water Resour. Res., 29(11), 

3631-3642. 

Gomez, B., 1994. Effects of particle shape and mobihty on stable armor development. 
Water Resour. Res., 30(7), 2229-2239. 

Covers, G., 1992. Evaluation of transporting capacity formulae for overland flow, in 
Overland Flow, ed. by A.J. Parsons and A.D. Abrahams, Chapman & Hah, New 
York, 243-273. 

Guibas, L.J., and J. Stolfi, 1985. Primitives for the manipulation of general subdivisions 

269 



and the computation of Voronoi diagrams, ACM Trans, on Graphics, 4(2), 74-123. 

Hack, J.T., 1957. Studies of longitudinal stream profiles in Virginia and Maryland, 
U.S.G.S. Prof. Paper 294-B. 

Hack, J.T., 1960. Interpretation of erosional topography in humid temperature regions. Am. 
J. Sci.,258-A, 80-97. 

Hasegawa, K., 1989. Studies on quahtative and quantitative prediction of meander channel 
shift, in River Meandering, ed. by G. Parker and S. Ikeda (Water resources 
monograph: 12), Am. Geophys. Union, Washington, pp. 215-235. 

Hey, R.D., and C.R. Thorne, 1986. Stable channels with mobile gravel beds, /. Hydraul. 
Eng., 112(8), 671-689. 

Hickin, E.J., 1974. The development of meanders in natural river-channels. Am. J. Sci., 
274(4), 414-442. 

Hickin, E.J., 1984. Vegetation and river channel dynamics, Canadian Geog., 28(2), 111¬
126. 

Hoey, T.B., and R. Ferguson, 1994. Numerical simulation of downstream fining by 
selective transport in gravel bed rivers: Model development and ihustiation. Water 
Resour. Res., 30(7), 2251-2260. 

Hooke, J.M., 1995. River channel adjustment to meander cutoffs on the River BoUin and 
River Dane, northwest England, Geomorphology, 14(3), 235-253. 

Hooke, R. Le B., 1975. Distribution of sediment transport and shear stress in a meander 
bend, J. Geol, 83(5), 543-565. 

Hopson, T., and J.D. Smith, 1997. Bank erosion in meandering rivers, American 
Geophysical Union FaU 1997 Meeting, San Francisco. 

Howard, A.D., 1971. Shnulation model of stream networks by headward growth and 
branching. Geographical Analysis, 3(10), 29-50. 

Howard, A.D., 1990. Theoretical model of opthnal drainage networks. Water Resour. Res., 
26,2107-2117. 

Howard, A.D., 1992. Modelling channel migration and floodplain development in 
meandering streams. In: Lowland Floodplain Rivers (P.A. Carling and G.E. Petts, 
eds.), Chichester, John Wiley & Sons, p. 1-42. 

Howard, A.D., 1994. A detachment-hmited model of drainage basin evolution. Water 
Resour. Res., 30(7), 2261-2285. 

Howard, A.D., 1996. Modelling channel evolution and floodplain morphology. In: 
Floodplain Processes, ed. by M. G. Anderson, D. E. Walling, and P. D. Bates, John 
Wiley and Sons, Ltd., Chichester, pp. 16-62. 

Howard, A.D., 1997. Shnulation of gully erosion and bistable landforms. Proceedings of 
the Conference on Landscapes Disturbed by Channel Incision, in press. 

Howard, A.D., 1998. Modeling gully development due to vegetation disturbance, 
American Geophysical Union Spring 1998 Meeting, Boston. 

270 



Howard, A.D., and A.T. Hemberger, 1991. Multivariate characterization of meandering, 
Geomorphology, 4, 161-186. 

Howard, A.D., and T.R. Knutson, 1984. Sufficient conditions for river meandering: A 
simulation approach. Water Resour. Res., 20(11), 1659-1667. 

Howard, A.D., and C.F. McLane, 111, 1988. Erosion of cohesionless sediment by 
groundwater seepage. Water Resour. Res., 24(10), 1659-1674. 

Ijjasz-Vasquez, E.J., R.L. Bras, and G.E. Moglen, 1992. Sensitivity of a basin evolution 
model to the nature of runoff production and to initial conditions. Water Resour. Res., 
28, 2733-2741. 

Ijjasz-Vasquez, E.J., R.L. Bras, and I . Rodriguez-Iturbe, 1993. Form, scales and optimality 
in the basin landscape and its channel network, Ralph M. Parsons Lab. Rep. no. 339, 
M.I.T. Dept. of Civ. & Env. Eng., Cambridge, 181 pp. 

( Ijjasz-Vasquez, E., and R.L. Bras, 1995. Scaling regimes of local slope versus contributing 
area in digital elevation models, Geomorphology, 12(4), 299-311. 

Ikeda, S., 1989. Sediment tiansport and sorting at bends, in River Meandering, ed. by S. 
Ikeda and G. Parker (Water resources monograph: 12), Am. Geophys. Union, 
Washington, pp. 103-126. 

Ikeda, S., G. Parker, and K. Sawai, 1981. Bend theory of river meanders. Part 1. Linear 
development,/. Fluid Meek, 112, 363-377. 

Ikeda, S., M. Yamasaka, and M. Chiyoda, 1987. Bed topography and sorting in bends, / . 
Hydraul. Eng., 113(2), 190-206. 

Imran, J., and G. Parker, 1997. Flow in meandering submarine and subaerial channels, 
American Geophysical Union 1997 Fah Meeting. 

Johannesson, H., and G. Parker, 1985. Computer simulated migration of meandering rivers 
in Minnesota, Project Report No. 242, St. Anthony Falls Hydraulic Laboratory, 
Minneapolis, MN, 82 pp. 

Johannesson, H., and G. Parker, 1989a. Linear theory of river meanders, in River 
Meandering, ed. by S. Ikeda and G. Parker (Water resources monograph: 12), Am. 
Geophys. Union, Washington, pp. 181-214. 

Johannesson, H., and G. Parker, 1989b. Secondary flow in mildly sinuous channel, J. 
Hydraul. Eng., 115(3), 289-308. 

Johannesson, H., and G. Parker, 1989c. Velocity redistiibution in meandering rivers, /. 
Hydraul. Eng., 115(8), 1019-1039. 

Johnson, W., and B. Logan, 1990. Geoarchaeology of the Kansas River basin, cential Great 
Plains, in Archaeological Geology of North America, ed. by N.P. Lasca and J. 
Donahue, Geological Society of America, Centennial Special Volume 4, Boulder, 
267-299. 

Julien, P.Y., and M. Frenette, 1985. Modeling of rainfall erosion, /. Hydraul. Eng., 
111(10), 1344-1359. 

271 



Kinoshita, R., 1987. Investigation on alluvial actions in a flood and experimental study on 
an optimum designed channel with complex cross section. Report for "Studies on 
control of flood flows in alluvial rivers and improvement of the safety for river 
training", Grant-in-Aid for Developmental Scientific Research of MESG (Principal 
Investigator Tsutomu Kishi), in Japanese, summarized in Hasegawa [1989]. 

PQrkby, M.J., 1971. Hillslope process-response models based on the continuity equation, in 
Slopes, Forms and Processes, Institute of British Geographers, Special Publication 
No. 3. 

Kirkby, M.J., 1986. A two-dimensional simulation model for slope and stieam evolution, 
in Hillslope Processes, ed. by A.D. Abrahams, Winchester, Mass., Allen and Unwin, 
pp. 203-222. 

Kirkby, M.J., 1989. A model to estimate the impact of climatic change on hiUslope and 
regolith form. Working Pap. 522, School of Geography, University of Leeds, Leeds, 
36 pp. and figures. 

Kirkby, M.J., 1994. Thresholds and instability in stieam head hollows: A model of 
magnitude and frequency for wash processes, in Process Models and Theoretical 
Geomorphology, ed. by M.J. Kirkby, New York, John Wiley and Sons, Inc., pp. 295¬
314. 

Koltermann, C.E., and S.M. Gorelick, 1992. Paleoclimatic signature in terrestrial flood 
deposits. Science, 256, 1775-1782. 

Komar, P.D., 1987a. Selective gravel entiainment and the empirical evaluation of flow 
competence, Sedimentology, 34, 1165-1176. 

Komar, P.D., 1987b. Selective entiainment by a cun-ent from a bed of mixed sizes-a 
reanalysis, J. Sed. Petrology, 57(2), 203-211. 

Kooi, H., and C. Beaumont, 1994. Escarpment evolution on high-elevation rifted margins; 
insights derived from a surface processes model that combines diffusion, advection, 
and reaction, J. Geophys. Res., 99, 12,191-12,209. 

Laguna, A., and J.V. Gfraldez, 1993. The description of soil erosion through a kinematic 
wave model, J. Hydrol, 145(1-2), 65-82. 

Lancaster, S.T. and R.L. Bras, 1995. Modeling alluvial sedimentation with a landscape 
evolution model, American Geophysical Union 1995 Spring Meeting, Baltimore. 

Lancaster, S.T., R.L. Bras, and K.X. Whipple, 1996. Simulation of river meandering over 
long distances and times: A physically based model, American Geophysical Union 
Spring 1996 Meeting, Baltimore. 

Langbein, W.B., and L.B. Leopold, 1966, River meanders—theory of minimum variance, 
U. S. Geol Surv. Prof. Pap. 422-H, 15pp. 

Lathrap, D.W., 1968. Aboriginal occupation and changes in river channel on the cenfral 
Ucayali, Peru, American Antiquity, 33(1), 62-79. 

Leopold, L.B., and T. Maddock, Jr.,1953. The hydraulic geomefry of sfream channels and 
some physiographic implications, U.S. Geol Surv. Prof. Pap., 252, 57pp. 

272 



Leopold, L.B., and M.G. Wolman, 1957, River channel patterns: Braided, meandering and 
sh-aight, U.S. Geol. Suty. Prof. Pap., 282-B, 85pp. 

Leopold, L.B., and M.G. Wolman, 1960. River meanders. Bull. Geol. Soc. Am., 71, 769¬
794. 

Leopold, L.B., M.G. Wolman, and J.P. Miller, 1964. Fluvial Processes in Geomorphology, 
W. H. Freeman and Co., San Francisco, 522 pp. 

Lobeck, A.K., 1939. Geomorphology: An Introduction to the Study of Landscapes, 
McGraw-HiU Book Co., Inc., New York, 731 pp. 

Lomb, N.R., 1976. Astrophysics and Space Science, 39, 447-462, cited in Press, et al. 
[1997], pp. 569-577. 

Lorenz, E.N., 1963. Deterministic nonperiodic flow, /. Atmos. Sci., 20,130-141. 

Masek, J.G., and D.L. Turcotte, 1993. A diffusion-hmited aggregation model for the 
evolution of drainage networks. Earth and Plan. Sci. Lett, 119(3), 379-386. 

Matsushita, M. , and S. Ouchi, 1989. On the self-affinity of various curves, Physica D, 38, 
246-251. 

McCuen, R. H., 1985, Statistical Methods for Engineers, Prentice-HaU, Englewood Cliffs, 
NJ, 439 pp. 

McKean, J.A., W.E. Dietiich, R.C. Finled, LR. Southon, and M.W. Caffee, 1993. 
Quantification of soil production and downslope creep rates from cosmogenic ^°Be 
accumulations on a hillslope profile, Geol, 21, 343-346. 

McKenney, R., R.B. Jacobson, and R.C. Wertheimer, 1995. Woody vegetation and channel 
morphogenesis in low-gradient, gravel-bed sti-eams in the Ozarks Region, Missouri 
and Arkansas, Geomorphology, 13, 175-198. 

Meritts, D.J., K.R. Vincent, and E.E. Wohl, 1994. Long river profiles, tectonism, and 
eustasy: A guide to interpreting fluvial terraces, J. Geophys. Res., 99(B7), 14,031¬
14,050. 

Mertes, Leal A.K., 1997. Documentation and significance of the perirheic zone on 
inundated floodplains. Water Resour. Res., 33(7), 1749-1762. 

Moglen, G., and R.L. Bras, 1994. Simulation of observed topography using a physically-
based basin evolution model, Ralph M. Parsons Lab. Tech. Rep. No. 340, (Ph.D. 
thesis) M.I.T. Dept. of Civ. & Env. Eng., Cambridge, 227 pp. 

Moglen, G., and R.L. Bras, 1995. The effect of spatial heterogeneities on geomorphic 
expression in a model of basin evolution. Water Resour. Res., 31(10), 2613-2623. 

Montgomery, D.R., 1994. VaUey incision and the uplift of mountain peaks, /. Geophys. 
Res.,99(B7), 13,913-13,921. 

Montgomery, D.R., and W.E. Diettich, 1988. Where do channels begin? Nature, 336, 232¬
234. 

Montgomery, D.R. and W.E. Diettich, 1989. Source areas, drainage density, and channel 

273 



initiation, Water Resour. Res., 25(8), 1907-1918. 

Montgomery, D.R. and W.E. Dieti-ich, 1992. Channel initiation and the problem of 
landscape scale. Science, 255, p. 826. 

Montgomery, D.R., and W.E. Dietrich, 1994. A physically based model for the topographic 
control on shallow landsliding. Water Resour. Res., 30(4), 1153-1171. 

Montgomery, D.R., and E. Foufoula-Georgiou, 1993. Channel network source 
representation using digital elevation models. Water Resour. Res., 29(12), 3925¬
3934. 

Mosselman, E., 1995. A review of mathematical models of river planform changes. Earth 
Sutf. Proc. and Landforms, 20, 661-670. 

Murray, A.B, and C. Paola, 1994. A cellular model of braided rivers. Nature, 371(6492), 
54-57. 

Murray, A.B., and C. Paola, 1996. A new quantitative test of geomorphic models, apphed 
to a model of braided streams. Water Resour. Res., 32(8), 2579-2587. 

Nanson, G.C., and E.J. Hickin, 1983. Channel migration and incision on the Beatton River, 
J. Hydraul. Eng., 109, 327-337. 

Nanson, G.C., and E.J. Hickin, 1986. A statistical analysis of bank erosion and channel 
migration in Western Canada, GSA Bull, 97(4), 497-504. 

Nelson, J.M., and J.D. Smith, 1989a. Flow in meandering channels with natural 
topography, in River Meandering, ed. by S. Ikeda and G. Parker (Water resources 
monograph: 12), Am. Geophys. Union, Washington, pp. 69-102. 

Nelson, J.M., and J.D. Smith, 1989b. Evolution and stabihty of erodible channel beds, in 
River Meandering, ed. by S. Ikeda and G. Parker (Water resources monograph: 12), 
Am. Geophys. Union, Washington, pp. 321-378. 

Odgaard, A. J., 1982. Bed characteristics in alluvial channel bends, J. Hydraul Div., 
ASCE, 108(HY11), 1268-1281. 

Odgaard, A. J., 1986. Meander flow model. I : Development, / . Hydraul Eng., 112(12), 
1117-1136. 

Odgaard, A.J., 1987. Stteambank erosion along two rivers in Iowa, Water Resour. Res., 23, 
1225-1236. 

O'Loughlin, E.M., 1986. Prediction of surface saturation zones in natural catchments. 
Water Resour. Res., 22, 794-804. 

Paola, C, P.L. Hellert, and C.L. Angevine, 1992. The large-scale dynamics of grain-size 
variation in alluvial basins, 1: Theory, Basin Res., 4, 73-90. 

Parker, G., 1983. Theory of meander bend deformation, in River Meandering, Proceedings 
ofthe conference rivers 1983, ASCE, New Orleans, Oct. 24-26, pp. 722-733. 

Parker, G., 1990. Surface-based bedload tiansport relation for gravel rivers, / . Hydraul 
28(4), 417-436. 

274 



Parker, G., 1996. Some speculations on the relation between channel morphology and 
channel-scale flow structures, in Coherent Flow Structures in Open Channels, ed. by 
P.J. Ashworth and J.L. Bennet, John Whey and Sons, pp. 429-432. 

Parker, G., and E. D. Andrews, 1986. On the time development of meander bends, J. Fluid 
Mech., 162,139-156. 

Parker, G., P. Diplas, and J. Akiyama, 1983. Meander bends of high amphtude, J. Hydraul. 
Eng., 109(10), 1323-1337. 

Parker, G., and H. Johannesson, 1989. Observations on several recent theories of resonance 
and overdeepening in meandering channels, in River Meandering, ed. by S. Ikeda and 
G. Parker (Water resources monograph: 12), Am. Geophys. Union, Washington, pp. 
379-416. 

Parker, G., K. Sawai, and S. Ikeda, 1982. Bend theory of river meanders. Part 2. Nonhnear 
deformation of finite-amplitiide bends, /. Fluid Mech., 115, 303-314. 

Parsons, A.J., A.D. Abrahams, and J.W. Wainwright, 1994, On determining resistance to 
interrill overland flow. Water Resour. Res., 30(12), 3515-3521. 

Pederson, D.T., and J.F. Cornwall, 1998. The role of groundwater sapping in river channel 
evolution, American Geophysical Union Spring 1998 Meeting, Boston. 

Pizzuto, J.E., 1987. Sediment diffusion during overbank flows, Sedimentology, 34(2), 301¬
317. 

Pizzuto, J.E., and T.S. Meckelnburg, 1989. Evaluation of a hnear bank erosion equation. 
Water Resour. Res., 25,1005-1013. 

Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, 1997. Numerical Recipes 
in Fortran 77: The Art of Scientific Computing, Second Edition (Vol. 1 of Fortran 
Numerical Recipes), Cambridge University Press, New York, 940 pp. 

Prestegaai-d, K.L., 1983, Variables influencing water-surface slopes in gravel-bed streams 
at bankfuU stage, Geol. Soc. Am. Bull, 94, 673-678. 

Quinn, P., K. Bevin, P. ChevalUer, and O. Planchon, 1991. The prediction of hillslope 
flowpaths for distributed hydrological modelhng using digital terrain models, in 
Advances in Hydrological Processes, Terrain Analysis and Distributed Modelling in 
Hydrology, ed. by K.J. Bevin and LD. Moore, John Whey and Sons, New York, 63¬
83. 

Rinaldo, A., W.E. Dietiich, R. Rigon, G.K. Vogel, and I . Rodriguez-Itiirbe, 1995. 
Geomorphological signatures of varying chmate. Nature, 374(6523), 632-635. 

Rodriguez-Iturbe, I . ; A. Rinaldo; R. Rigon; R.L. Bras; A. Marani; and E. Ijjasz-Vasquez; 
1992. Energy dissipation, runoff production, and the three-dimensional structure of 
river basins. Water Resour. Res., 28(4) 1095-1103. 

Rosenbloom, N.A., and R.S. Anderson, 1994. HiUslope and channel evolution in a marine 
terraced landscape, Santa Cruz, CaUfornia,/. Geophys. Res., 99(B1), 14,013-14,029. 

Schumm, S.A., 1967. Meander wavelength of alluvial rivers. Science, 157,1549-1550. 

275 



Schumm, S.A., 1993. River response to baselevel change: Implications for sequence 
stratigraphy, /. Geology, 101, 279-294. 

Schumm, S.A., M.P. Mosley, and W.E. Weaver, 1987. Experimental Fluvial 
Geomorphology, John Wiley & Sons, New York, 412 pp. 

Scott and Gravlee, 1968. Flood surge on the Rubicon River, Cahfornia-hydrology, 
hydraulics, and boulder transport, USGS Prof. Pap. 422-M. 

Seminara, G., and M. Tubino, 1989. Alternate bars and meandering: Free, forced and mixed 
interactions, in River Meandering, ed. by S. Ikeda and G. Parker (Water resources 
monograph: 12), Am. Geophys. Union, Washington, pp. 267-320. 

Seminara, G., and M. Tubino, 1992. Weakly nonlinear theory of regular meanders, /. Fluid 
Mech., 244, 257-288. 

Singh, V.P., and R.R. Regl, 1983. Analytical solutions of kinematic equations for erosion 
on a plane 1. Rainfall of indefinite duration. Adv. Wat Resour., 6, 2-10. 

Slingerland, R., J.W. Harbaugh, and K. Furlong, 1994. Simulating Clastic Sedimentary 
Basins, PTR Prentice HaU, Englewood Cliffs, 220 pp. and diskette. 

Smith, C.E., 1998. Modeling high sinuosity meanders in a smah flume, Geomorphology, in 
press. 

Smith, J.D., and S.R. McLean, 1984. A model for flow in meandering stieams. Water 
Resour. Res., 20(9), 1301-1315. 

Smith, T.R., and F.P. Bretherton, 1972. Stability and the conservation of mass in drainage 
basin evolution. Water Resour. Res., 8,1506-1529. 

St0lum, H.-H., 1996. River meandering as a self-organization process. Science, 271,1710¬
1713. 

Sun, T., P. Meakin, T. J0ssang, and K. Schwarz, 1996. A simulation model for meandering 
rivers. Water Resour. Res., 32(9), 2937-2954. 

Tarboton, D.G., R.L. Bras, and 1. Rodriguez-Iturbe, 1991. On the exti-action of channel 
networks from digital elevation data. Hydrol. Processes 5, 81-100. 

Tarboton, D.G., R.L. Bras, and I . Rodriguez-Iturbe, 1992. A physical basis for drainage 
density, Geomorphology, 5, 59-76. 

Tetzlaff, D.M., and J.W. Harbaugh, 1989. Simulating Clastic Sedimentation, Van Nostrand 
Rheinhold, New York, 202 pp. 

Thorne, S.D., and D.J. Furbish, 1995. Influences of coarse bank roughness on flow within 
a sharply curved river bend, in Predicting Process from Form, ed. by P.J. Whiting 
and D.J. Furbish, spec, issue of Geomorphology, 12(3), 241-257. 

Tucker, G.E., 1996. Modeling the large-scale interaction of climate, tectonics, and 
topography, Pennsylvania State University Earth System Science Center Technical 
Report no. 96-003, University Pait, PA. 

Tucker, G.E., and R.L. Slingerland, 1994. Erosional dynamics, flexural isostasy, and long-
lived escarpments: a numerical modeling study, J. Geophys. Res., 99,12,229-12,243. 

276 



Tucker, G.E., and R.L. Slingerland, 1996. Predicting sediment flux from fold and thrust 
behs. Basin Research, 8, 329-349. 

Tucker, G.E., and R.L. Slingerland, 1997. Drainage basin response to climate change. 
Water Resour. Res., 33(8), 2031-2047. 

Tucker, G.E., and R.L. Bras, 1998. Hülslope processes, dramage density, and landscape 
morphology. Water Resour. Res. in press. 

Weldon, R.J., 1994. The nahire of fluvial terraces and thefr use in clhnate and tectonic 
shidies, G.S.A., Abstracts with Programs, 26(7), 1994, p. A-239. 

Whiting, P.L, and W.E. Diefrich, 1993a. Experhnental consfraints on bar migration through 
bends: Implications for meander wavelength selection. Water Resour. Res., 29(4), 
1091-1102. 

Whiting, P.J., and W.E. Dietrich, 1993b. Experhnental studies of bed topography and low 
patterns in large-amplihide meanders 1. Observations, Water Resour. Res., 29(11), 
3605-3614. 

Wniting, P. L, and W. E. Diefrich, 1993c. Experimental studies of bed topography and flow 
patterns in large-amplitude meanders 2. Mechanisms, Water Resour. Res., 29(11), 
3615-3622. 

Wilcock, P.R., and B.W. McArdeh, 1993. Surface-based fractional fransport rates: 
Mobilization thresholds and partial ttansport of a sand-gravel sediment, Water 
Resour. Res., 29(4), 1297-1312. 

Willgoose, G., R.L. Bras, and I . Rodriguez-Ittirbe, 1989, A physically based channel 
network and catchment evolution model, Ralph M. Parsons Lab. Tech Rep. No. 322, 
M.I.T. Dept. of Civ. & Env. Eng., Cambridge, 464 pp. 

Wülgoose, G., R.L. Bras, and I . Rodriguez-Ittirbe, 1991. A physically based coupled 
network growth and hiUslope evolution model, 1, theory. Water Resour. Res., 27, 
1671-1684. 

Yang, C.T., and CCS. Song, 1979a. Theory of minhnum rate of energy dissipation, J. 
Hydraul. Div., ASCE, 105(HY7), 769-784. 

Yang, C.T., and CCS. Song, 1979b. Dynamic adjustments of alluvial channels, in 
Adjustments ofthe Fluvial System, ed. by D.D. Rhodes and G.P. WilUams, Proc, 10th 
Ann. Bing. Geomorphology Symp., Kendall/Hunt Pub. Co., Dubuque, pp. 55-67. 

Yen, C, and S. Ho, 1990. Bed evolution in channel bends, J. Hydraul. Eng., 116(4), 544¬
562. 

Young, R., and I . McDougaU, 1993. Long-term landscape evolution: Early Miocene and 
Modern rivers in southern New South Wales, Austiaha, J. Geol, 101, 35-49. 

Zhou, L, H.H. Chang, and D. Stow, 1993. A model for phase lag of secondary flow in river 
meanders, /. Hydrol, 146(1-4), 73-88. 

277 




