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Abstract 

The emergence of social media offers unprecedented opportunities to map social 
unrest with high spatiotemporal resolution. This study leverages geolocated social 
media footage to analyze the spatiotemporal distribution of the 2023 ‘Nahel Merzouk’ 
riots in France. Using a fine-tuned computer vision model, we detect riot-related 
content in visual data and validate our approach by comparing the spatiotemporal 
patterns of detected posts with rioting events reported in the press. Our method yields 
a spatial resolution of 300 × 300 m, thereby facilitating a detailed analysis of riot distri-
butions at unprecedented scale. By applying density-based clustering, we map riots 
across seven French cities, revealing their highly localized and bursty dynamics. This 
study opens pathways for future research on the causes and dynamics of social unrest, 
enabling a deeper understanding of urban riots and their potential mitigation.

Keywords:  Riots, Computer vision, Transfer learning, Social media, Spatiotemporal 
analysis

Introduction
Riots are instances of agitated social unrest, typically spontaneous and violent, charac-
terized by vandalism, looting, and clashes with law enforcement [25, 52]. Often reflect-
ing latent societal tension, riots result in substantial economic, human, and social costs 
such as injuries, damage, and mass arrests [12, 24, 43]. Extensive research has been 
devoted to understanding riots, with two primary objectives: first, identifying the under-
lying causes to address social tensions and prevent future incidents; and second, analyz-
ing riot dynamics to develop effective crisis management strategies that limit social and 
material consequences [16, 21, 23, 28, 29, 52]. Such understanding necessitates reliable 
data that capture the spatiotemporal distribution of such events, highlighting where and 
when unrest started and how it evolves over time. Data sources commonly used in the 
literature, such as police records or press reports, suffer from poor spatiotemporal reso-
lution [7, 8, 11, 13]. For instance, the police records used in Bonnasse-Gahot et al. [11] 
provides the daily number of rioting events at the municipal level which does not allow 
to track how a single event escalated over time or spread in space.

The emergence of social media opens new opportunities for mapping riots, as they 
are massively used by urban residents to report incidents and provide data with a much 
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finer spatiotemporal resolution than traditional sources [1, 30, 33–35, 46, 49]. Previ-
ous research demonstrates the potential of social media data to complement traditional 
sources in mapping social unrest [3, 30, 53]. For instance, Alsaedi et al. [3] could trace 
the London 2011 riots from hashtags1 of geolocated tweets. These studies showcase the 
ability of social media data to trace events with substantial agreement with ground-truth 
datasets [3, 30, 53].

However, research that leverages social media to map riots has been constrained by 
a significant methodological limitation: the reliance on textual content and structured 
metadata rather than visual content. Previous studies have focused primarily on analyz-
ing tweets through hashtags, keywords, or post metadata [3, 20, 30, 53]. This approach 
overlooks rich visual information contained in footage that users extensively share dur-
ing riot events-content that often provides more direct and objective evidence of unrest 
than textual descriptions.

Addressing this methodological gap, we develop a computer vision approach capable 
of identifying riot-related posts from massive unstructured visual datasets. This primary 
contribution represents a significant departure from prior work by directly analyzing the 
visual content of social media posts rather than relying on textual or metadata cues. We 
train a computer vision model to classify photos and videos as riot-related using geolo-
cated footage collected during the 2023 ‘Nahel Merzouk’ riots in France, demonstrating 
the method’s effectiveness through validation against press reports.

As a secondary contribution, our approach enables fine-grained spatiotemporal analy-
sis that demonstrates the analytical potential unlocked by visual social media content. 
We showcase this capability by animating the evolution of riots across 7 French cities at 
300 × 300 m resolution and hourly intervals, revealing riot dynamics-such as their mani-
festation as discrete, localized bursts-that traditional data sources and text-based social 
media approaches cannot capture.

We organize the remainder of the paper as follows. Section “Case study and datasets” 
introduces the case study and the dataset employed, Sect. “Method” outlines the imple-
mented methodology,  Sect. “Results” presents the findings, and  Sect. “Discussion and 
conclusion” concludes the analysis.

Case study and datasets
We study the ‘Nahel Merzouk’ riots in France which took place in the summer of 2023 
(Sect. “Case study”). After collecting geolocated visual data from the social media plat-
form Snapchat during this period, we annotate and organize the dataset to train and 
evaluate our computer vision model (Sect.  “Social media data”). We use an external 
dataset documenting the spatiotemporal distribution of these riots from press reports to 
test the validity of model results (Sect. “Press data”).

Case study

Our analysis focuses on the ‘Nahel Merzouk’ riots, which took place across France 
between June 27th and July 5th, 2023 [43]. These riots were sparked by the fatal police 

1  Short textual tags attached to posts.
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shooting of Nahel Merzouk, a 17-year-old teenager of Moroccan and Algerian descent, 
in the Paris suburb of Nanterre. The incident occurred when Merzouk attempted to 
drive away from police officers who had stopped him for speeding in a bus lane. The 
incident, viewed as emblematic of latent discrimination in disadvantaged neighbor-
hoods, quickly ignited widespread outrage [10]. The riots initially broke out in several 
suburbs of Paris and quickly spread to cities and towns throughout the country. The 
unrest was marked by intense confrontations with the police, the burning of vehicles and 
buildings, and widespread acts of vandalism. Public infrastructure, including town halls, 
schools, and public transport facilities, as well as private properties, were severely dam-
aged. Looting also occurred in many areas, further exacerbating the social and economic 
impact of the unrest [43]. In response, French authorities deployed tens of thousands 
of police officers across affected areas and implemented emergency measures, includ-
ing curfews and restrictions on public gatherings. Social media played a pivotal role in 
documenting the riots, with users sharing footage about how the events unfolded. Our 
study demonstrates how these data can be used to draw the spatiotemporal distribution 
of events that are often difficult to capture with traditional data sources.

Social media data

We collected publicly available footage from the social media platform Snapchat taken 
in 7 French urban areas; namely Paris, Marseille, Lyon, Toulouse, Lille, Bordeaux, and 
Grenoble between June 25th and July 16th. We use the OECD definition of the urban 
core to delineate the study perimeter [15]. Map A in Fig. 1 shows the Paris urban core 
as delineated by the OECD. A critical constraint in our data collection was Snapchat’s 
ephemeral nature: posts on the platform automatically expire and become unavailable 
after 1 day to 1 week, depending on user settings and content type. We began system-
atic data collection on June 29th. Consequently, our dataset provides comprehensive 
coverage from June 29th onward, while data from earlier dates (June 25th–28th) may 
be incomplete due to posts that had already expired before our collection began. The 
data consist of around 107 thousand short videos (approximately 81%) and images (19%) 
posted publicly by users. A 300 × 300 m sampling grid was used for data collection. Map 
B in Fig. 1 shows the spatial distribution of the posts collected within the time period.

Fig. 1  A Paris urban core, as defined by Dijkstra et al. [15]. B Number of posts per 300 × 300 m grid cells
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We label by hand 3917 segments taken from 3234 short videos. A segment consists of 
a set of successive frames that either (1) represents a rioting event (positive label) or (2) 
does not represent such an event (negative label). In our annotation process, we specifi-
cally focus on violent riot activities including arson, looting, damage to public infrastruc-
ture, and confrontations with law enforcement, explicitly excluding peaceful gatherings, 
demonstrations, or protests without violent elements. We annotate the data conserva-
tively, meaning that ambiguous posts for a human annotator were classified as negative. 
A video can be composed of several segments with different labels. For instance, if the 
video scene switches from a car set on fire to the sidewalk, we manually separate the 
video into two segments, respectively labeled as positive and negative. A total of 257 
videos (8%) have at least one video segment relating to a riot in this annotated dataset.

Next, the data are divided into a training set, a validation set, and a test set contain-
ing, respectively, 40%, 30%, and 30% of the labeled videos. We ensure that each video is 
exclusively present in one of the three sets. We tune the weights of the model using the 
training set. The validation set serves to keep track of the model’s performance while 
training. The test set is a third independent dataset that is used to fairly assess the per-
formance of the model after training on unseen data (Sect. “Validation of the computer 
vision model”).

The implementation of the proposed approach involves major privacy considerations 
as we collect data from a social media platform. The data collection is non-discrimina-
tive, i.e. we cannot filter irrelevant posts prior to collecting data. The data may also con-
tain identifiable information in some cases as the identity of individuals can be revealed 
if their faces are included in the image or video. Sensitive personal data may therefore 
be exposed in case of a data breach. We reduce this risk in two stages. We first blur faces 
upon collection and destroy the raw data to limit identifiable details in the collected data 
(see Appendix). Then, we destroy the blurred footage after publication and publish pub-
licly the metadata which contains the time, the location of posts, as well as the label pre-
dicted by the computer vision model [41].

Press data

We validate the results of our approach by comparing them to a dataset listing all events 
reported by the local press [5]. This dataset was created by a group of researchers that 
listed all rioting events reported in the press, day by day, in every municipality. We merge 

Fig. 2  A Rioting events on the night of June 29th were reported in the press dataset. B Spatial resolution of 
the dataset
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these data with the geographic borders of municipalities, allowing us to map the spatial 
distribution of riots on a daily basis. For instance, map A in Fig. 2 displays the rioting 
events reported for the night of June 29th in the city of Paris and neighboring municipal-
ities. The dataset relates 576 events taking place in 408 French municipalities between 
June 27th and July 3rd. In this dataset, we observe a surge in rioting events between June 
28th and June 30th (76% of all registered events) followed a progressive return to normal 
between July 1st and July 3rd. We test the validity of our approach against this local press 
dataset by overlapping the spatiotemporal distribution of social media posts represent-
ing a riot with a map like map A in Fig. 2. Map B in Fig. 2 shows the typical spatial reso-
lution of the press dataset, using the spatial extent of Nanterre (12 km2) as an example, 
which is much coarser than our 300 × 300 m resolution.

Method
This section describes the training of the computer vision model that detects rioting 
events from visual social media content (Sect.  “Computer vision model”) and intro-
duces the tools used for the spatiotemporal analysis of the detected riot-related posts 
(Sect. “Spatiotemporal analysis”).

Computer vision model

This study proposes a model that detects rioting events from geolocated visual con-
tent. Due to the unstructured nature of footage data, the model needs to learn what in 
images pertains to the concept of riots based on a sample of hand-annotated pictures. 
We address this challenge by fine-tuning a computer vision model that extracts visual 
patterns relevant to our task and classifies images based on them. Section “Image clas-
sification” elaborates on the image classification task and on the model used for that 
purpose.  Section “Training procedure” discusses the training process. Section  “Deci-
sion threshold tuning” presents the decision threshold tuning for optimal classification 
performance.

Image classification

The task for the computer vision model is to predict the label of an image, a binary varia-
ble with a value of 1 if the image contains a riot and 0 otherwise. Training a deep learning 
model from scratch requires an extensive labeled dataset. In this work, we reduce dras-
tically the amount of data needed using transfer learning [51]. This approach involves 
using both the architecture and the weights of an existing model trained for a similar 
image classification task and retraining part of its layers to specialize it to another use 
case.

We choose an Efficientnet architecture as the base model for transfer learning that is 
both more efficient and performs better on benchmark datasets than most image clas-
sification models [44]. Vision transformers (ViT) demonstrate higher accuracy but do 
not justify the increased computational requirements [17]. We implement the smallest 
architecture ‘Efficientnet b0’, as our training set is limited and larger architectures did 
not show significantly better performance, using the weights trained on the ImageNet 2 
dataset, publicly available on the Pytorch library [36, 37].
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The base model efficientnet b0 is a deep neural network structured as follows: a classi-
fier suggests the class of the image based on the visual features identified by the feature 
extractor. We replace the base classifier by a custom multilayer perceptron, and optimize 
its architecture (depth and width) in a hyperparameter tuning step.

The Efficientnet b0 architecture constrains the data resolution. Our 480 × 852 images 
are resized to fit the 224 × 224 image resolution expected by the model [44]. Other alter-
natives to resizing are cropping and padding, but they resulted in lower performances 
on the validation set.2 Finally, we normalize the pixel colors to the same scale as the Ima-
geNet dataset, as it improves the performance.

Training procedure

Our training procedure includes data balancing, hard-example mining, and gradual 
unfreezing to improve the model’s performance. This subsection discusses these three 
elements. First, the social media dataset is highly imbalanced towards the negative class, 
which biases the model towards predicting this class more. We address this issue with 
data balancing. We sample a number of video segments from the negative class equal 
to the number of video segments from the positive class at each epoch. Second, some 
scenes from the negative class are harder to differentiate from a riot than others (e.g. 
a night concert). We implement hard-example mining in the sampling process, where 
misclassified video segments are more likely to be sampled. Each video segment is asso-
ciated with difficulty score based on cross-entropy loss, used as a weight in the sampling 
process. Third, transfer learning is subject to ‘catastrophic forgetting’, where the model 
discards patterns observed in the general dataset used for pretraining to capture pat-
terns observed in the training data. This is problematic when the model starts overfit-
ting certain visual details from the training data while discarding more general patterns 
observed in the pretraining data. Gradual unfreezing addresses this issue by focusing the 
training on the classifier part of the model (that is unrelated to the pretrained model), 
while preserving as much as possible the weights from the feature extractor [14]. In an 
initial phase, we train only the model’s classifier and later unfreeze layers from the fea-
ture extractor when the performance reaches a plateau on the validation set.

Decision threshold tuning

Once trained, the model produces the probability for an image to represent a riot. For 
videos in the dataset—composed of a series of still images (frames)—the probability 
of a video representing a riot is determined by aggregating probabilities across all its 
frames. We classify a post as representing a riot if the probability provided by the model 
is greater than a decision threshold. Given the dataset’s significant imbalance toward 
the negative class, the threshold is optimized by maximizing the f1-score rather than 
accuracy. We then evaluate how the decision threshold influences the f1-score (plot A 
in Fig. 3). The f1-score reaches its maximum (0.77) for a decision threshold of 0.42, pla-
teaus, and decreases when the threshold exceeds 0.6. The decision threshold yields the 
best results on the validation set within the range of 0.35 to 0.6.

2  The reader should note that this result is not generalizable to other case studies as all our images had the same initial 
dimensions and were therefore distorted in the same way. The model could have learned to compensate for the constant 
distortion.
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We conduct a precision-recall analysis to set the threshold to a value within the range 
0.35 to 0.6 (plot B in Fig.  3). Within the range of optimal F1-scores, precision is pri-
oritized over recall. In other words, we prioritize being confident in labeling posts as 
positive at the cost of missing some, rather than aiming to avoid misses at the risk of 
overshooting. We anticipate significant redundancy in the data, as multiple posts may 
pertain to the same rioting event. This redundancy reduces the risk of missing riots 
when mapping their spatiotemporal distribution. Conversely, misclassifying a negative 
post as representing a riot leads to the erroneous identification of a non-existent event 
in the spatiotemporal distribution of riots. Based on these considerations, the deci-
sion threshold is set to 0.54, which maximizes the precision while maintaining a good 
f1-score on the validation set (0.75).

Spatiotemporal analysis

Beyond developing the computer vision model, this paper showcases how the method 
can be applied to reveal riot dynamics at high spatiotemporal resolution. This subsection 
introduces the analytical tools for this demonstration. We employ two approaches: quan-
tifying clustering behavior using Ripley’s spatiotemporal K function to measure bursti-
ness, and applying density-based clustering to group posts into discrete rioting events. 
Section “Burst analysis” describes the burst analysis methodology. Section “Detection of 
riots” outlines the clustering approach for riot event detection.

Burst analysis

We quantify the burstiness of riot-related posts using Ripley’s spatiotemporal K function, 
often used in crime epidemiology [4, 19, 22, 39]. This function, expressed in Eq. 1, meas-
ures the average number of neighbors each post has within a spatiotemporal neighbor-
hood delimited by spatial neighborhood radius d and temporal neighborhood radius t, 
quantifying the density of neighboring posts within these radii. S is the spatial extent of the 
study region, T is the temporal extent, n is the total number of posts, dij and tij represent 
the spatial and temporal distances between posts i and j respectively, and 1condition is the 
indicator function. The factor wij corrects for edge effects that arise when spatiotemporal 

Fig. 3  A Effect of the decision threshold on the f1-score. B Trade-off between precision and recall in the 
validation set. Percentiles calculated using bootstrap resampling with 1000 iterations
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neighborhoods extend beyond the boundaries of the study region, see Gabriel [19] for more 
details.

The K function is commonly used to qualify a spatiotemporal process as bursty by com-
paring its value to a theoretical K function assuming random distribution across time 
and space. Values of K(d,  t) that exceed the expected under complete spatiotemporal 
randomness indicate clustering, while lower values suggest the presence of a regularity 
pattern. Social media posts are naturally highly clustered in space and time (users may 
upload several posts in the same location within short time intervals) and a random spa-
tiotemporal process is therefore not a good baseline. We measure the burstiness of riot-
related posts by comparing the K function to the K function of a baseline social media 
activity (non-riot-related posts).

We conduct separate analyses for each of the 7 cities included in our study, where the 
spatial extent S is defined by the geographical boundaries encompassing all posts within 
each urban area. The analysis is partitioned temporally on a day-by-day basis to capture 
daily patterns in riot activity. We measure the K function for riot-related posts during night-
time hours (6 p.m. to 6 a.m.) and non-riot-related posts during daytime hours (6 a.m. to 6 
p.m.), setting the temporal extent T to 12 h. We then compute the K function across a range 
of spatial radii d and temporal radii t to identify the characteristic scales at which riot events 
exhibit the strongest clustering. We then average the K function values across all cities and 
all days and calculate the ratio between the K function values for every pair of spatial and 
temporal radii.

Detection of riots

Rioting events cannot be readily derived from positive posts as (1) some posts may be mis-
classified and (2) several posts may represent the same event. We address these two issues 
using DBSCAN, a density-based cluster analysis, to group positive posts into rioting events 
[18]. This approach assigns positive posts that are close in space and time to rioting events 
while filtering out isolated posts. Several parameters govern the cluster analysis: the dis-
tance function, the distance threshold dth under which two posts are considered neigh-
bors, and the minimum number of neighboring posts ncore to form a cluster. The distance 
between two posts is calculated as the straight-line (Euclidean) distance between their spa-
tial locations, plus a weighted measure of their temporal separation (see Eq. 2). In this equa-
tion, xi and yi represent the spatial coordinates of post i in meters and ti is the instant at 
which the post is taken, in seconds. The parameter α relates temporal and spatial proximity. 
The parameters dth , α , and ncore are set based on the results of the burst analysis in “Cluster-
ing analysis” Section.

(1)K (d, t) =
S · T

n2

n
∑

i

n
∑

j, j �=i

1

wij
· 1dij≤d, tij≤t

(2)dij =

√

(xj − xi)2 + (yj − yi)2 + α|tj − ti|
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Results
This section validates our computer vision approach for detecting riot-related content 
in social media footage and demonstrates its application for mapping urban unrest. We 
first assess the performance of our computer vision model through quantitative analysis 
on a held-out test set, qualitative examination of misclassified cases, and cross-valida-
tion against an external press dataset (Sect. “Validation of the computer vision model”). 
We then showcase the analytical potential of our validated method by conducting fine-
grained spatiotemporal analysis of riot evolution (Sect.  “Spatiotemporal analysis of 
riots”), demonstrating capabilities that traditional data sources cannot provide.

Validation of the computer vision model

In the following, we demonstrate the performance of our method for identifying and 
mapping riots from user-generated footage. We analyze the performance of our com-
puter vision model in identifying riot-related posts quantitatively in  Sect. “Quan-
titative analysis of model performance” and assess misclassified posts qualitatively 
in  Sect. “Qualitative analysis of misclassified footage”. We then validate our approach 
by comparing the derived spatiotemporal distribution of riots with an external dataset 
(Sect. “Cross-validation with press data”).

Quantitative analysis of model performance

We assess the performance of the computer vision model on the test set, held out of 
the training procedure (see Sect. “Social media data” for more details). Our assessment 
combines quantitative analysis using key performance indicators (accuracy, precision, 
recall) with qualitative analysis of misclassified footage to identify edge cases and under-
stand classification errors. The test set contains 1176 pieces of footage, with 96 riot and 
1080 non-riot instances. Given this imbalanced dataset, we focus on precision and recall 

Fig. 4  Confusion matrix for the videos in the test set, normalized by true class
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metrics rather than accuracy, as a naive classifier would achieve 92% accuracy by simply 
predicting the majority class. We separate classified images into true negatives, true pos-
itives, false negatives, and false positives (see confusion matrix in Fig. 4). As desired, our 
model achieves high precision in riot classification, measured at 77% (95% CI 69–86%3) 
on the test set. The recall of 68% (95% CI 58–77%) indicates that while most riot clas-
sifications are correct, the model misses approximately one-third of actual riot footage.

Qualitative analysis of misclassified footage

We complement our quantitative analysis of the model’s performance with a qualitative 
analysis of misclassified images. The objective of the qualitative analysis is to examine 
misclassified images and assess potential impacts on the final results, particularly con-
cerning systematic biases that could affect riot distribution mapping. For instance, if 
the model consistently identifies nightclub scenes as riots, nightclubs may (incorrectly) 
appear as hot spots when drawing the spatiotemporal distribution of riots. Of the 31 
false negatives, the majority consist of looting scenes (14 instances), destruction events 
(13 instances), and fire-related incidents (4 instances). These misclassifications can be 
attributed to two primary factors. First, many videos contain only a few frames clearly 
depicting rioting activity, and when probabilities are averaged across all frames, the 
riot-related signal becomes diluted and falls below the classification threshold. Second, 
destruction and looting scenes are conceptually similar to non-riot activities from a vis-
ual perspective—people gathering or carrying objects—making them particularly chal-
lenging for the model to distinguish at the individual frame level, especially with limited 
training examples. The top row of Fig. 5 shows three three of such examples.

Fig. 5  Examples of ambiguous misclassified posts. A–C are false negatives, while D–F are false positives. 
The top left corner indicates the class probability for a riot (class 1) and “no riot” (class 0). Images have been 
transformed as they are when supplied to the model (vertical squeeze)

3  Confidence intervals calculated using bootstrap resampling with 1000 iterations.
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Similarly, of the 19 false positives, 9 are clearly negative, meaning they would have 
been correctly labeled by a human annotator. These clearly misclassified posts include 
four point-of-view driving scenes at night featuring bright halos from streetlights, two 
television screens displaying riot footage, two general nighttime scenes, and one daytime 
scene. The remaining 10 posts are ambiguous, as additional context would be needed 
to confidently classify these scenes as negative. We show three of these ambiguous false 
positives in the bottom row of Fig. 5. The analysis reveals no concerning patterns of mis-
classification that would significantly affect riot distribution mapping. Arguably, mis-
classified posts from the test set do not justify improving the model further, as they do 
not substantially affect the spatiotemporal distribution of riots. Since we do not observe 
any systematic bias in the test data, we have no reason to expect false positives to be 
non-randomly distributed across space; they would add white noise to the distribution. 
False negatives are less problematic as intense rioting events are likely to be reported by 
multiple posts.

Cross‑validation with press data

After assessing the performance on the test set, we infer the classes of all posts in the full 
dataset. This section validates the spatial distribution of riots constructed from positive 
posts by comparing it with the press dataset in the Paris agglomeration (see Sect. “Press 
data”). We investigate the extent to which both datasets overlap spatially between June 
27th and July 2nd in Fig. 6. For a given day, municipalities where riots were reported in 
the press dataset are highlighted in orange. Then, for each spatial unit, we measure the 
share of posts classified as riot-related among the unit’s total number of posts during 

Fig. 6  Spatial overlap between rioting events reported in the press and rioting events reported on social 
media night after night
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that given day. This share is shown in blue in Fig. 6. To provide a quantitative assessment 
of the correspondence between our approach and the press data, we calculate the Area 
Under the Receiver Operating Characteristic curve (AUROC) for each day. For each 
municipality and day, we compute the proportion of riot-related posts among all posts in 
that municipality as our predictor variable, with the binary outcome indicating whether 
the press dataset reported a riot event in that municipality on the given day (see Fig. 6).

The quantitative assessment using AUROC reveals variable correspondence between 
the datasets across different days. The correspondence is moderate to good throughout 
the full period (AUROC ranging from 0.70 to 0.94) except from June 29th, demonstrat-
ing that our approach can effectively discriminate between municipalities with and with-
out press-reported riots on several days. However, correspondence is weaker on June 
29th (AUROC = 0.58).

Several factors may explain the observed misalignment across different days. Our 
social media data collection faced incomplete coverage during early days (June 27th–
28th), which may have affected detection accuracy (see Sect. “Social media data”). Addi-
tionally, the press dataset involves two distinct interpretation layers that can introduce 
discrepancies compared to real-time social media documentation: (1) journalist cov-
erage decisions, where reporters make editorial choices about which events to cover 
based on perceived newsworthiness and (2) subsequent analyst data compilation, where 
researchers interpret and categorize press reports, potentially introducing additional fil-
tering or classification biases. For example, our approach captures smaller incidents that 
press outlets might not consider newsworthy enough to report, potentially leading to 
spatial mismatches. These editorial decisions are further complicated by the temporal 
evolution of newsworthiness throughout the crisis. The press often prioritizes covering 
unexpected events during their initial phases, when public interest and the newsworthi-
ness of the situation are at their peak. As a result, even relatively minor incidents may 
have been reported more extensively on June 27th, contributing to the higher coverage 
compared to subsequent days. From June 29th, the press reported fewer events than 
observed using our approach. This might indicate coverage fatigue by press outlets as the 
crisis progresses into its third day. Finally, temporal discrepancies also occur due to dif-
ferent conventions for dating events that happen after midnight. This temporal discrep-
ancy is evident in the southeastern area of our study region, where municipalities appear 
as orange (indicating riot activity) on July 2nd in the press dataset, while we report these 
same events as occurring in the night of July 1st.

Our results demonstrate the ability to identify hot spots in the spatial distribution of 
riot-related posts that align with press data, indicating that the false negative rate does 
not hinder the clear identification of rioting events. Moreover, false positives do not 
appear to generate spurious hot spots. When rioting events are, in fact, more scarce and 
less intense, towards the end of the crisis, we observe little hot spots in the constructed 
spatial distribution of riots (bottom right map of Fig. 6). False positives are not concen-
trated enough to appear as rioting events. We can conclude that the false negative (32%) 
and the false positive (23%) rates observed on the test set in Sect. “Quantitative analysis 
of model performance” do not impact substantially the subsequent spatial analysis.
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Spatiotemporal analysis of riots

With our computer vision approach validated, we demonstrate its analytical potential 
by mapping riot dynamics at 300 × 300 m spatial resolution and hourly temporal inter-
vals. We first conduct descriptive analysis of riot evolution during a high-intensity day 
(Sect. “Descriptive analysis”), then characterize the burstiness and spatiotemporal scales 
of riot activity (Sect.  “Burst analysis”), and finally regroup posts into discrete rioting 
events through clustering analysis (Sect. “Clustering analysis”).

Descriptive analysis

To demonstrate our approach’s effectiveness in mapping riot evolution, we examine 
the Paris agglomeration during the night of June 29–30, the period with the highest 
number of recorded rioting events according to public authorities [43]. The histogram 

Fig. 7  A Temporal distribution of riot-related and non riot-related posts in the Paris agglomeration between 
June 29th and June 30th. B Spatial distribution of riot-related posts in the Paris agglomeration between June 
29th and June 30th. C Zoom on a neighborhood in Nanterre

Fig. 8  Ratio f between the K function for riot-related posts and the K function for baseline social media 
activity (annotated K0 ) for several temporal and spatial scale
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A on Fig.  7 shows the hourly distribution of posts between June 29th midday and 
June 30th midday for the entire Paris agglomeration. The light green bars indicate 
the number of negative posts, while the blue bars reflect the number of riot-related 
posts. The number of negative posts increases in the morning from 5 a.m. to 10 a.m., 
reaches a peak between 10 a.m. and 7 p.m. and starts decreasing in the evening at 
8 p.m., following typical daily activity patterns. In contrast, posts classified as riot-
related exhibit a completely different temporal distribution. They occur at night, 
mostly between 8 p.m. and 3 a.m., peaking at 10 p.m., which is consistent with the 
rioting activities reported in the press [26, 27]. We also plot the spatial distribution of 
riot-related posts on the right maps of Fig. 7. With our data, we are able to draw the 
spatial extent and the intensity of riots across the night. This demonstrates one of the 
main advantages of our analysis compared to those relying on other data sources. It 
enables us to describe the evolution of riots hour by hour, at a 300 × 300 m resolution. 
Such data are instrumental in understanding the development and dynamics of riots, 
as they allow us to model the speed and direction in which events spread or compress.

Burst analysis

Throughout the period June 27th-July 2nd and across all 7 cities studied, riot-related 
posts reported on social media occur in short and localized bursts rather than in a 
smooth and progressive spatiotemporal distribution. We apply the spatiotemporal K 
function described in  Sect. “Burst analysis” to characterize the clustering behavior of 
riot-related posts across different temporal and spatial scales. Figure 8 shows the ratio 
noted f between the K function for riot-related content compared to the baseline social 
media activity K0 . For all combinations of spatial and temporal radii (d, t), the K function 
for riot-related posts is consistently larger than the baseline’s, implying that riot-related 
posts are spatially and temporally more concentrated than the benchmark.

Clustering analysis

We cluster social media posts into rioting events using the DBSCAN approach described 
in Sect. “Detection of riots”. We set the α parameter relating the temporal dimension to 
the spatial dimension in the distance metric to 0.25 based on a sensitivity analysis of the 
spatiotemporal K function. The maximum of f = K/K0 in Fig. 8 is reached for tmax=0.5 
h, and dmax=300  m., the partial derivative analysis shows that burstiness decays four 
times stronger with distance than with time4 ( ∂f /∂d

∂f /∂t
= 4 ). We want our clustering algo-

rithm to reflect this asymmetry by being more restrictive spatially than temporally. 
Therefore, we set α to 0.25 (see Eq. 4) to reduce the weight of the temporal dimension in 
our distance calculation. This allows posts separated by longer time intervals to be 
grouped into the same riot event while maintaining strict spatial proximity require-
ments. The distance threshold dth is set to 750, to match the function’s maximum (see 
Eq. 5). The minimum number of neighbors ncore to form a cluster is set to 3, which mini-
mizes the number of isolated points (points belonging to no clusters).

4  When time is expressed in seconds and space in meters.
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(3)f (d, t) = K (d, t)/K0(d, t)

(4)α =

∂f (d = dmax, t = tmax)/∂t

∂f (d = dmax, t = tmax)/∂d
= 1/4

Table 1  Characteristic spatial and temporal scale of rioting clusters across cities and days with more 
than 40 riot-related posts

City Date
(dd-mm)

Riot- 
related 
posts

Events 
detected

Median posts 
per event

Median surface 
of events (km2)

Median duration 
of events 
(hh:mm:ss)

Paris 27-06 170 19 5 0.141 00:25:07

Paris 28-06 1020 103 5 0.141 00:43:38

Paris 29-06 1370 146 5 0.114 00:38:24

Paris 30-06 491 65 4 0.141 00:16:36

Paris 01-07 203 16 4 0.212 00:42:02

Paris 02-07 52 6 4 0.071 00:05:13

Marseille 30-06 138 10 6 0.212 00:48:07

Marseille 01-07 122 4 6 0.706 02:09:27

Lyon 29-06 123 16 4 0.071 00:41:07

Lyon 30-06 116 17 4 0.071 00:30:21

Lyon 01-07 54 5 4 0.071 00:23:31

Lille 28-06 84 9 4 0.071 01:07:11

Lille 29-06 221 17 5 0.141 01:33:33

Lille 30-06 43 6 6 0.071 00:31:03

Toulouse 28-06 51 7 5 0.212 00:42:28

Fig. 9  1. Three bursts identified in the temporal (1.A) and spatial (1.B) distribution of riot-related posts in 
Évry-Courcouronnes in the night of June 29th. Bursts are labeled by a color and a number. 2. Temporal (2.A) 
and spatial (2.B) distribution of riot-related posts observed in the Old Port of Marseille in the night of July 1st. 
The number in map 2.B annotate the districts of Marseille
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Table  1 summarizes the results of the clustering analysis for the cities and days with 
more than 40 riot-related posts. The average spatial and temporal extent of the clusters 
confirms the short and localized burst trend observed in the analysis of the spatiotem-
poral K function. The vast majority (80%) of identified riot clusters last no more than 
50 min and remain confined to areas under 0.3 km2.

One possible explanation for this pattern is the decentralized organization of rioting 
behavior, where rioters operate in small groups with separate objectives, resulting in 
localized and short-lived events. Another contributing factor could be police interven-
tions; rapid and targeted actions may disperse a riot, prompting it to re-form at another 
location. The municipality of Évry-Courcouronnes on the night of June 29th illustrates 
the typical burst pattern observed throughout our dataset. We identify three intense 
bursts separated by spatiotemporal gaps of around 800 ms and 1 h (see histogram 1.A 
and map 1.B in Fig. 9). Yet, we do observe several exceptions such as a riot occurring in 
the neighborhood of the Old Port of Marseille on July 1st (see histogram 2.A and map 
2.B in Fig. 9 and Table 1). The distribution of positive posts is much more homogeneous 
in space and in time than in the other riots observed in our dataset. Here, rioters may all 
have shared the same target neighborhood, the Old Port, being central and commercial, 
overwhelming public authorities.

Discussion and conclusion
This study highlights the potential of social media data for mapping riot-related events 
at a high spatiotemporal resolution. By employing a computer vision approach, we ana-
lyze geolocated visual content at scale, moving beyond the textual data and structured 
metadata used in prior research. The results demonstrate strong alignment with press-
reported data, supporting the validity of our method and reinforcing the value of social 
media data in studying urban unrest.

In addition to demonstrating significant potential for understanding riot dynamics, 
our approach also gives rise to concerning possibilities for surveillance overreach and 
misuse beyond research contexts [32]. Real-time deployment could enable authorities 
to preemptively disperse peaceful protests before they escalate, potentially infringing on 
democratic rights to assembly. Beyond immediate deployment concerns, the potential 
identification of individuals through visual content becomes especially problematic if 
such frameworks target legitimate protests rather than violent unrest [40]. Additionally, 
historical riot mapping could justify disproportionate surveillance in specific neighbor-
hoods, perpetuating existing policing inequities through location-based profiling [2]. 
These dual-use implications highlight the critical need for responsible implementations 
of such research developments.

Our work presents several limitations due to the use of social media data. First, the 
data collection is highly dependent on social media platforms and public authorities. 
Platforms can limit access to their data, provide biased content by blocking or prioritiz-
ing certain posts, or even spread fake news [45, 50, 55]. Similarly, public authorities can 
also temporarily ban or restrict the usage of the platform [6]. In the case study, we suc-
cessfully collected geolocated social media posts and cross-validated them with press 

(5)dth = dmax + α · tmax
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data, though the applicability of this method in future studies will depend on continued 
data access from social media platforms. Second, user-generated data introduces sub-
jectivity [31]. Even visual posts, though generally more objective than text, may provide 
an incomplete representation of the scene. Third, platform usage varies geographically 
and demographically across populations, potentially limiting result generalizability [9]. 
Fourth, due to the sensitivity of the data used, the raw data cannot be shared openly. This 
hampers the replicability of the results [42]. Yet, we do share publicly the spatiotemporal 
distribution of the annotated posts [41].

While presenting notable challenges, our approach opens two promising avenues for 
further research: one for understanding the dynamics and another for investigating the 
causes of riots. First, the high-resolution data produced by our approach are instrumen-
tal for studies modeling the dynamics of riots [8, 11, 13]. For example, our data can help 
researchers understand how riots spread, how quickly they escalate, and how localized 
riots transform into large-scale uprisings, which is instrumental to designing effective 
crisis management strategies. In particular, agent-based modeling approaches could 
prove especially valuable in unraveling the microscopic behavioral rules-whether at indi-
vidual or small—group levels—that aggregate to produce the fragmented spatiotemporal 
patterns we observe. Second, the data can support studies investigating what motivates 
participation in riots. Spatial demographic analysis could examine whether rioting inten-
sity correlates with indicators of inequality or urban deprivation at the neighborhood 
or city level, leveraging our high-resolution data to align with granular socioeconomic 
datasets [21, 23, 29]. Additionally, investigating the relationship between online mobili-
zation and physical manifestations of unrest could reveal how digital engagement trans-
lates into real-world action. This could involve analyzing textual social media data from 
platforms like X to measure online support for causes and examining how such digital 
mobilization correlates with the intensity and geographic distribution of actual rioting 
events captured through our computer vision approach. Such insights are not only valu-
able for academic understanding but could ultimately inform more effective approaches 
to addressing and preventing social tensions in urban environments.

Appendix: Anonymization process
To minimize identifiable information in the data, we blur the faces of people appearing 
on the pictures and videos. We first use an object detection model to delineate boxes 
containing faces on an image. Then, we apply a Gaussian blur on each of the box. We 
have considered several methods for detecting faces: Haar cascade classifier, Multi-task 
Cascaded Convolutional Networks (MTCCN), and “You only look once” (YOLO) [38, 
48, 54]. Haar cascade is fast to run but the accuracy is too poor: for half of the videos 
tested, a face was missed in at least one frame. MTCCN showed acceptable accuracy but 
the computational time was too long to be used in our case study (around one second 
per frame). The YOLO model also showed high accuracy and the running time was small 
enough to be able to scale the approach to the entire dataset. We used the YOLOv8 
implementation by Ultralytics [47] finetuned for face detection. After detecting faces, we 
blur the bounding box of each detected face using a Gaussian blur.
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