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Skeleton-based Synthesis Flow for
Computation-In-Memory Architectures

Jintao Yu, Student Member, IEEE, Razvan Nane, Member, IEEE, Imran Ashraf, Member, IEEE,
Mottaqiallah Taouil, Member, IEEE, Said Hamdioui, Member, IEEE, Henk Corporaal, Member, IEEE,
and Koen Bertels, Member, IEEE

Abstract—Memristor-based Computation-in-Memory (CIM) is
one of the emerging architectures for next-generation Big Data
problems. Its design requires a radically new synthesis flow
because the memristor is a passive device that uses resistance
to encode its logic value. This article proposes a synthesis flow
for mapping parallel applications on memristor-based CIM ar-
chitecture. It employs solution templates that contain scheduling,
placement, and routing information to map multiple algorithms
with similar data flow graphs to memristor crossbhar; this
template is named skeleton. Complex algorithms that do not fit
any skeleton can be solved by nested skeletons. Therefore, this
approach can be applied to a wide range of applications with a
limited number of skeletons. It further improves the design when
spatial and temporal patterns exist in input data. To accelerate
simulation of generated SystemC models, we integrate MPI in
skeletons. The synthesis flow and its additional features are
verified with multiple applications, and the results are compared
against a multicore platform. These experiments demonstrate the
feasibility and the potential of this approach.

Index Terms—Memristor, algorithmic skeleton, SystemC.

I. INTRODUCTION

Big Data Analytics is becoming increasingly difficult to
solve using CMOS-based Von Neumann computer architec-
ture [1]. The reasons include, but are not limited to, the
access bottleneck between the processor and memory, energy
inefficiency [2], and the limited scalability of CMOS tech-
nology [3]. Memiristor [4], [5]-based Computation-in-Memory
(CIM) architectures [6]-[9] address the aforementioned prob-
lems by enabling in-memory processing using emerging non-
volatile technologies. Manually designed case studies revealed
their enormous potential by outperforming the state-of-the-art
with orders of magnitude [10]-[12]. Exploring the potential
of such architectures and appropriately evaluating their perfor-
mance and scalability for larger applications require automatic
flows and methods that efficiently map high-level algorithmic
description to low-level memristor crossbar configuration.

Existing Computer-Aided Design (CAD) flows for CMOS-
based VLSI (Very-Large-Scale Integration) are not applicable
to memristor-based CIM because of different signal propaga-
tion styles. In CMOS circuits, logic values are represented
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by the voltage. The voltage change of a source automatically
propagates to the sink along a dedicated wire within one clock
cycle [13]. However, in a memristor crossbar, logic values can
only propagate to other positions with the help of controllers,
because they are encoded by memristors’ resistance. The
controller transfers the data in one or multiple steps, each of
which is conducted along a vertical or horizontal nanowire
shared by many memristors. Therefore, the number of steps
equals to the number of turnings in the path between the source
and the sink [14]. In addition to computation, memristor-based
CIM needs extra clock cycles for communication, and the
communication latency is determined by the routing result.
In conventional VLSI CAD flows, placement and routing are
performed based on the High-Level Synthesis (HLS) schedul-
ing results [15]. However, it is not applicable for memristor-
based CIM since the routing result is required to schedule
communications. As a consequence, a new methodology is
needed to eliminate the cyclic dependency among scheduling,
placement, and routing.

In this work, we propose a synthesis flow that simultane-
ously performs scheduling, placement, and routing. This is
inspired by the skeleton concept used in parallel computing
domain [16]-[20]. A skeleton is a scheduling template for a
specific class of algorithms that share a similar Data Flow
Graph (DFG) in the sense of data dependency. A scheduling
template handles parallelism, synchronization, and commu-
nication among threads, regardless of their functionality. It
can be optimised according to the characteristic of DFG
structures, thus achieving better performance than generic
scheduling algorithms. FPGA developers extended this con-
cept into a hardware skeleton with placement information [21],
[22]. Routing is not included in hardware skeletons since
it is generated by FPGA back-end tools. Nevertheless, the
routing information is essential for mapping algorithms to
memristor crossbar. Hence, we further extend the hardware
skeleton concept with routing information and refer it as ' CIM
skeleton [23]. This skeleton can be configured with different
predesigned circuits for implementing corresponding algo-
rithms. Furthermore, complex algorithms can be implemented
via skeleton nesting. This article is built on our preliminary
work, where the main focus was laid on the general idea
of applying skeletons to CIM architecture design. Compared
to the preliminary work, we have made the following new
contributions:

ISkeletons refer to CIM skeletons in the rest of the paper.
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o We developed memristor-based computational units in-
cluding a 32-bit adder and a 16-bit multiplier. The adder
outperforms state-of-the-art memristor adder designs in
terms of delay.

o We specified a methodology that allows us to integrate
multiple computational units in the crossbar while main-
taining parallel computing.

« We considered data input and output processes and iden-
tified possible patterns in the input/output data.

o We provided new test cases. All the skeletons are covered
by the updated test cases.

The rest of the paper is organized as follows. First, Sec-
tion II presents our memristor-based designs and systems.
Subsequently, Section III presents the skeleton-based synthesis
flow. Section IV explains implementation details of its key
parts. Experimental results of three case studies are shown
in Section V. Finally, Section VI concludes the paper and
discusses future research directions.

II. HARDWARE PLATFORM

Section II-A presents the primitive circuits that we designed
for CIM, including a 32-bit adder and a 16-bit multiplier.
Subsequently, Section II-B presents the hardware organization
at the system level.

A. Primitive Circuits in CIM

In memristor-based CIM architectures, a primitive circuit
or a circuit in short, is a memristor circuit that performs a
computational operation in the crossbar, such as addition and
multiplication. These circuits can be implemented in various
manners. Some design styles may use shared controllers
where the applied voltages are data-independent. Examples are
material implication logic [24], Boolean logic [25], majority
logic [26], and MAGIC (Memristor-Aided loGIC) [27]. Other
designs cannot have a shared controller, such as CRS [28],
where the control signals are data-dependent. In this work,
we use MAGIC due to its simplicity. In principle, any of the
above logic schemes that support a shared controller can be
used.

CIM regards memristors as digital devices that have two
stable states. In MAGIC, logic ‘1’ is represented by low
resistance (ON) and ‘0’ by high resistance (OFF) [29]. The
operations that switch a memristor to ON/OFF states are
respectively called SET/RESET. They can be achieved by
applying positive or negative voltages that are larger than the
threshold voltages of the memristor [27].

In MAGIC, memristors are placed on a 2-dimensional grid,
where each memristor is connected to a horizontal and a
vertical nanowire [27] (see Fig. 1). Appropriate voltages are
applied to nanowires by the CMOS controlled voltage drivers.
The voltage drivers consist of a set of voltage sources and
switches as shown in Fig. 2. The voltage sources have different
voltage levels, and switches determine which supply voltages
are selected. MAGIC uses up to nine voltage levels, including
the three levels shown in the figure. Here, 1} is the execution
voltage, which works together with ground (GND) to execute
a logic operation. Vg is the isolation voltage and is applied
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Fig. 2: Voltage controller implementation in CIM.

to the columns where memristor states are intended to not
change. Examples of other voltages are SET, RESET and
READ voltages. The number of voltage levels is much more
than RRAMs, which typically require four voltage levels [30].

MAGIC supports only one logic operation in the crossbar,
an n-input NOR operation [27]. The input and output values
of the NOR operation are stored in memristors that share
the same row or column. Note that when n = 1, the
NOR operation functions as a NOT operation. As NOR is
functionally complete, we can use it to build various circuits.
Talati et al. presented a 1-bit full adder [27] using the red
memristors shown in Fig. 1. First, the inputs are copied to the
adder (step @). Then, several NOR operations are conducted
in the first row and the carry bit is obtained at the seventh
column step @). Subsequently, step @ and step @ are used
as intermediate computation steps. Finally, the sum bit S is
obtained from its complement S (step @). We designed an
n-bit adder based on this adder. The n-bit adder is also shown
in Fig. 1. Two main changes have been made. The first one
is that we inserted two steps ((6) and (7)) between step (2)
and @ to move the carry output bit to the carry input bit of
the next 1-bit adder. The second change is to conduct step @
horizontally (as shown by ) instead of vertically, to allow
parallel operation. We have listed the detailed control steps
in the supplementary material of this article. Talati et al. also
presented an m-bit adder in which multiple 1-bit adders are
linked together, with an overall latency as 10n + 3 [27]. We
have improved it to 8n 4 8 by leveraging the data parallelism
as indicated by the dashed box in Fig. 1. Our design is also
faster than the MAGIC-based design provided in [31].

We have also implemented a 16-bit multiplier, inspired by
the Carry-Save Add-Shift (CSAS) algorithm [32]. Fig. 3a
shows a 4-bit CSAS multiplier, which contains four AND gates
and three 1-bit full adders. For more details regarding this
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Fig. 3: CIM multiplier design.

TABLE I: Attributes of Primitive Circuits Used in the Article

Circuits Latency (CC) | Width | Height | Energy (pJ)
Adder 264 10 96 265.19
Multiplier 499 81 64 3084.53
3-input XOR 32 12 32 169.28

algorithm, we refer the reader to Gnanasekaran’s article [32].
CSAS algorithm suits a memristor implementation due to the
parallel AND and add operations. However, the shift operation
(required to shift the sum ;) might be a bottleneck. When no
dedicated hardware is provided for this shift operation, its time
complexity equals O(N), with N representing the amount of
bits to shift [33]. We try to accelerate the shift operation in
CIM using additional hardware as shown by Fig. 3b. The
left part (donated by Computation) contains all AND gates,
1-bit full adders, and intermediate results. The right part
(donated by Shift) contains four mirrors (M7 to My); a mirror
is a small square crossbar that only contains memristors on
diagonal positions and are used to link horizontal and vertical
nanowires [14]. Mirror M, is a special mirror in which its
memristors are located on a line parallel to the diagonal.
Therefore, this mirror shifts a signal by one position as shown
by the red and green lines. More details, including control
steps, can be found in the supplementary material.

The latency, area, and energy consumption of the primitive
circuits are listed in Table I. The latency, expressed in clock
cycles, is directly obtained from the number of cycles the
controller needs (see also the supplementary material). The
area, expressed in number of required memristors, is deter-
mined from the number of rows (Height) and columns (Width).
The energy is calculated from the number of operations per
cycle and the data width. We assume one memristor to be
written for each bit during each operation. Note that the
energy consumption is ideally input-depended. The cost to
write a memristor (SET/RESET) lies in the range 0.1fJ [34]
to 230£J [35]. We assume the worst case of 230 fJ. The static
power consumption is ignored here and will be part of the
future work.

B. Circuits Organization in CIM

When we assemble the primitive circuits into a large system,
we have two main targets. First, these circuits must operate in
parallel to achieve better performance, and second, they should
not conflict with each other during operation. Therefore, we
avoid placing input/output ports on the same rows or columns
and link them by using two or more mirrors. Fig. 4 shows for
example three primitive circuits A, B, and C. A exchanges

Fig. 4: The linkage of three primitive circuits.

CPU i
ﬁ $ Top
i RRAM CIM view
RRAM | CIM i Controller Controller |
H | ) H
I /-rc\-v\-v\— Nanowires;
e { ettt TFront |

(a) Overall structure (b) Communication between RRAM and CIM

Fig. 5: CIM/CPU heterogeneous computing.

data with B and C. The horizontal and vertical lines are col-
ored red and green respectively. Nanowires that are irrelevant
to the communication among A, B, and C' are omitted. In
CIM, we assume that all data words are 32-bit wide, and that
all the bits are transferred in parallel. When A transfers a word
to B, it is first copied to M 1, then to M 2, and finally to B. The
nanowires between M1 and B are removed, and barriers are
inserted in the gap to eliminate or reduce parasitic capacitance.
The barriers are shown as gray blocks. This allows A and B
to operate independently since they do not share nanowires
or memristors. Communication is conducted when A and B
are not operating. The negative affect of this solution is that
it slightly decreases the density of the crossbar and, more
importantly, increases the manufacturing complexity.

The latency of the communication described above equals to
the number of mirrors plus one. Therefore, it needs one more
cycle for A to transfer data to C' than to B in Fig. 4. This
feature has a significant influence on the design automation,
which will be analyzed in Section III-A.

Fig. 5 shows one of the CIM’s working scenarios [9], [23],
where Resistive Random Access Memory (RRAM) serves as
the main memory. It exchanges data with CPU and storage in
the same way as conventional technologies. Since the mem-
ristor crossbar is not continuous, we need to add additional
nanowires to transfer main inputs and outputs for internal
circuits. CIM works as an accelerator and is placed besides
RRAM. RRAM and CIM both have a memristor layer, and
a CMOS layer. The controller for both RRAM and CIM is
implemented in CMOS. CIM is connected to the RRAM via
nanowires in a dedicated layer as shown in the part of Fig. 5b.
Each nanowire creates a connection between RRAM and one
or more primitive circuits as shown in the front view. A
nanowire transfers at most a single data bit during each clock
cycle.

The controller’s area puts another constraint on the system
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design. We have synthesized the CMOS controller for the
32-bit adder with Cadence’s RTL Compiler and NanGate’s
15nm library [36]; the reported area is 30 um2. However,
International Technology Roadmap for Semiconductors 2.0
(ITRS 2.0) predicts that the density of memristor crossbar will
reach 2.38 x 10! bit/cm? in 2020 [37]. With this density,
a crossbar of 96 rows and 10 columns (i.e. the size of the
adder) is only 0.23 yum?. This means that the CMOS controller
is 130x larger than the memristor crossbar. If we assign a
dedicated a controller to every primitive circuit, then CMOS
controller’s area dominates the chip area and we cannot exploit
the high density of the crossbar. Therefore, the controller
must be shared between the logic circuits. Furthermore, this is
possible due to the nature of memristor logic as discussed in
Section II-A. Sharing the same controller requires the circuits
to operate synchronously. In Section V, we will show that the
controller can handle 10* to 10° circuits simultaneously. As a
result, the crossbar area becomes dominant. Due to the small
area of the controller, it will be ignored in the rest of this
paper.

RTL Compiler reports the power of the 32-bit adder to be
13.59uW with a frequency of 1 GHz. It leads to an energy
consumption of 3.588pJ for a time period of 264 ns as the
latency of the adder is 264 cycles. It is less than 2% compared
to the energy consumption in the memristor crossbar. When
the controller is shared with many primitive circuits, the
percentage will be even smaller. Therefore, we will also omit
the energy consumption of CMOS layer in the rest of the
article.

III. SKELETON-BASED SYNTHESIS FLOW

Section III-A motivates the reason why a radically new de-
sign flow is required. Subsequently, we introduce the skeleton-
based synthesis flow in Section III-B, III-C, and III-D.

A. Requirement for a New Flow

The communication characteristic of memristor crossbar
makes scheduling depend on routing results because com-
munication latency is decided by routing. Fig. 6a shows the
HLS flow used for CMOS circuit design. It consists of se-
quential processes, mainly are resource allocation, scheduling,
placement, and routing. Only when a process fails meeting
the performance or resource constraints, it goes back to
the previous process. It is worth noting that scheduling is
conducted before routing; hence, it is not applicable to CIM.

We can try to adapt the regular HLS flow to CIM, but these
variants all lead to unsatisfactory situations. Since routing
information is not available at scheduling phase, we can
assume all communication has a maximum latency, like six or
eight cycles. Based on this assumption, the operators can be
scheduled. Then, after the routing phase, the communication
latency is updated. Scheduling is conducted again to get a
more accurate design. This adapted flow is shown in Fig. 6b.
Placement and routing are time-consuming processes, so these
iterations are extremely time consuming. If we make a trade-
off between the quality of the solution and the execution time,

Allocation k3--,
Scheduling [,

Placement | -

(a) HLS flow for (b)Flow with communi- (c) Flow with adjusted se-
CMOS cation latency assump- quence
tion

Fig. 6: Regular HLS flow and its variants for CIM.

Allocation

Allocation k3--,
Scheduling [
[Placemen [

Routing

P

Scheduling

then the performance of the generated design will be only
suboptimal.

Fig. 6¢ shows an alternative variant, i.e. conducting place-
ment and routing before scheduling. In this scenario, the
scheduler has accurate information on communication latency.
The drawback of this flow is that we need to go through all
the processes before knowing whether the latency constraint is
met. Similarly to Fig. 6b, the long execution time of placement
and routing will impair either the productivity or the quality
of the design.

The fundamental problem of these adaptions is that they
cannot eliminate the cyclic dependence among scheduling,
placement, and routing. In a regular HLS flow, placement
and routing should be conducted based on the scheduling
result. However, in CIM architecture, the communication
mechanism makes scheduling depend on the routing result.
Therefore, a radically new approach is required. Different from
these adapted flows, we solve the scheduling, placement, and
routing altogether using CIM skeletons. The optimal solution
is guaranteed without the need of iteration. This methodology
is introduced in the next section.

B. Hardware/Software Partitioning

Figure 7 shows the overview of the complete CIM synthesis
flow, which consists of four components. At the application
level (Box 1), the user partitions the original program into
software and hardware, taking the hint given by the profiling
tool. The hardware part needs to be rewritten to fit prede-
fined skeletons. A skeleton contains scheduling, placement,
and routing algorithms for a specific type of DFG structure
(Box 2). The compilation at the kernel level (Box 3) is
to instantiate skeletons with Primitive Circuits, which are
predefined function units like adders and multipliers. The
design of the circuit level (Box 4) has been presented in
Section II-A In the flowing subsections, we will elaborate each
of the rest boxes.

Before the compilation at the kernel level, we need to
identify the favorable algorithms for hardware implementation.
The best candidates should meet the following criteria:

o They form a large percentage of the execution time. Ac-

cording to Amdahl’s law [38], accelerating such kernels
can generate a recognizable overall speedup.
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Fig. 7: Synthesis flow for memristor-based CIM architecture.

| [#define Tnputsize 8192 coe its percentage execution contribution, and the total number of
2 . .
2 | #define TAPS 64 éﬁB calls; e.g. FIR function consumes 99% of the overall execution
3 |int pre[TAPS], coe[TAPS], out: >0 MiB time and is called 8192 times. The rectangles represent objects,
‘5‘ V";‘Ill tFISH(l[‘)“i 6".){ - such as the pre and coe arrays in this case. The arrows
6 for (int j=TA1’>S—1; i>0; j—=1) 99%, 8192 represent the communication with the data amounts marked
7 pre[jl = pre[j—1]; okB  hsam near the lines. Dense communication is indicated by red
g ?;i([?[]l t:jlrz)i <TAPS: j+4) ‘ color (bold lines), and the rest is green. Clearly, the FIR
=Y 5 ou . . .
10 temp+=pre [TAPS—j —1]xcoe[] ]; 4B function consumes most of the execution time, and most of
1 out = temp; omislomip 2.0 kiB the communication is between it and arrays pre and coe. If we

g }\;oid main O { implement the FIR function in main memory using the CIM
@ 65.7KiB concept, then the data transfer between the processor and the

14 int i, total = O;

15 for (i=1; i<=InputSize; i++){ memory will be several orders of magnitudes smaller than the
ig ) FIR(i); total += out; 228 original version. In this example, the profiling is performed
18 printf(”total:%d\n”, total); e at the function level. By using markers, it is also possible to
19 obtain profiling information at lower granularity levels, such

Fig. 9: MCProf pro-  as the loop level.
Fig. 8: FIR filter source codes. filing result.

. ) C. CIM Skeletons
o They are coarse-grained, which means they do not change

a large quantity of data with other parts of the application. In this skeleton-based synthesis flow, targeting problems are
o They have inherent massive parallelism so that they have mapped to the crossbar by instantiating predefined solution
the potential to be accelerated. templates with primitive circuits. Each skeleton can map a

 Their structures are easy to be implemented by hardware.  specific class of problems that share a similar DFG structure.
In this paper, we generally follow the classification defined
by Campbell [43] and define four structures as shown in
Fig. 10. We chose this classification because it contains a
relatively small number of classes while covering a broad
range of problems. Each box in Fig. 10 represents an operation
or a DFG consisting of multiple operations, and boxes with
the same labels represent the same operation(s). The arrows
between them indicate data dependency. The four structures

In order to highlight the computing and memory intensity
parts of an application and to obtain the communication
among these parts, we utilize MCProf [39], [40]. MCProf
is a runtime memory and communication profiler based on
Intel Pin dynamic binary instrumentation framework [41].
MCProf takes the binary of an application as input to generate
profiling results in various formats. Based on the information
generated by MCProf, developers can partition the application

into software and hardware parts, as shown in Box 1 in Fig. 7. ¢

Later, the hardware part enters the kernel-level design flow ¢ Recursively partitioned. Problems are partitioned into a

which will be explained in Section III-C. small size, and they are solved separately. After that, the
To illustrate the utilization of MCProf to extract the required solutions are collected in a recursive style.

information from an application, let us consider the C program o Farm. The same function is applied potentially in parallel

of a Finite Impulse Response (FIR) filter modified based on to a list of independent jobs. The results are combined

LegUp’s [42] testbench as shown in Fig. 8. The initialization by a controlling process.

of the coefficient array coe is omitted for concision. MCProf « Systolic. It consists of processes that have data flowing

generates the output shown in Fig. 9. The functions are between them, and that may operate concurrently in a

represented by ovals, which contains the name of the function, pipelined fashion.
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Fig. 10: DFGs, scheduling, and parallel simulation support of fundamental skeletons.
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(a) Binary-tree layout pattern (b) 4 x 4 matrix multiply

Fig. 11: Binary tree layout pattern and its usage in matrix
multiplication.

e Crowd. Similar to the Systolic skeleton except for that
there is no data flow between the concurrently operating
processes.

Note that we are not using Campbell’s Task queue skeleton,
which is a generalized version of Farm as it is not suitable
for hardware implementation. It is also worth noting that
the sizes of these structures are unfixed. For example, a
Recursively Partitioned skeleton also suits problems with more
layers as long as the solutions are collected recursively. Other
classification, e.g. the one used in STAPL framework [17], can
also be adopted in the synthesis flow.

For each problem class, we specify the scheduling, place-
ment, and routing algorithms, and store them in a repository
as shown in Box 2 of Fig. 7. In the placement aspect,
primitive circuits and the hardware design they constituted are
represented by their bounding rectangles. These rectangles are
not allowed to overlap each other. We take Recursively Parti-
tioned skeleton as an example of the solution templates. The
placement algorithm specified in this skeleton places boxes a
and b following a binary-tree patternas shown in Fig. 11a. All
the intermediate data are transferred via two mirrors, which
are minimum number required (see Section II-B). Since the
communication cost is known as three cycles, the problem
can be scheduled as the expressions shown in Fig. 10a.
The expressions are the starting moments of corresponding
operations, in which T}, represents the latency of box z, e.g.,
T, means a’s latency. The dash-dot lines divide the DFG into
several regions. Boxes in each of them execute in parallel.
For other skeletons shown in Fig. 10, the scheduling results
are also marked in a similar way.

The skeleton can break the cyclic dependence of scheduling,
placement, and routing that we discussed in Section III-A. The
reason is that these algorithms are defined altogether instead

of separately. Limiting the problems’ DFG structures facilities
the development of these algorithms. For instance, the binary-
tree placement algorithm improves the performance for the
Recursively Fartitioned skeleton, but it cannot be applied to
other problems.

D. Skeleton Instantiation

A skeleton generates a hardware design after instantiated
with primitive circuits or other hardware designs. In the
latter case, we can solve complex problems that do not fit
any fundamental skeleton. One advantage of the skeleton-
based flow is that the users do not need to take care of
implementation details. Instead, they just need to analysis the
DFG and apply the right skeleton.

Suppose we intent to map the matrix multiply algorithm on

CIM:
AB = (@7 @ an (6 B b,)
@i-by di by i by,
aé . bl aé . b2 .« .. a‘é . bn
= . ) . ) ) (D
a, b} a, - b_é a, - b;;

where a@; is a row vector of matrix A, and b: is a column vector
of B. It is a complex algorithm that does not fit any skeleton.
However, we can see that it contains repetitive patterns. Each
element of the result matrix is an inner product of two vectors.
Thus, we can divide it into two levels. The top level is a
Crowd skeleton because there are no data flows between these
elements. The lower level is the vector inner product function.
This function suits a Recursively partitioned skeleton, with “a”
and “b” boxes in Figure 10 replaced as multipliers and adders.

To implement the matrix multiply, we need to build the
system bottom-up. First, we instantiate a Recursively parti-
tioned skeleton with the multiplier and the adder. After that,
we instantiate the Crowd skeleton with the inner product just
generated. We assume both matrices are 4 X 4, so the vector
size of the inner product is also 4. Figure 11b represents
the generated system. The symbols “x” and “+4” stand for
multipliers and adders while dashes between them are com-
munication paths. Each subsystem, as shown in the dashed
box, has a detailed layout following the binary-tree pattern. If
an application cannot fit any existing skeleton, it is necessary
to develop a new one. In this case, the skeleton repository
should be extended.

In a similar way, we can implement the FIR function
shown in Fig. 8. The for loop at line 9 and 10 suits the
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Fig. 12: DFGs, scheduling, and parallel simulation support of fundamental skeletons with hardware reuse.

Systolic skeleton, where “a” and “b” boxes are instantiated
with multipliers and adders. To further accelerate the program,
we instantiate the Crowd skeleton with the generated FIR
kernel to enable the high-level parallelism represented by the
for loop in the main function (line 15 and 16).

IV. CONSTRAINTS AND OPTIMIZATIONS

Next, we introduce more implementation details of CIM
synthesis flow. They improve the flow’s ability to support large
designs. First, we present the methods used for meeting area
constraints in Section IV-A. Then in Section IV-B, we analyze
the patterns existing in data transfer and use them to decrease
the bandwidth and optimize the design. Thereafter, the tool’s
feature of supporting parallel SystemC simulation to deal with
large designs is covered in Section IV-C.

A. Area Constraint and Hardware Reuse

Our skeleton-based flow supports user-defined area con-
straint, which represents the chip size or the area reserved for a
hardware design. When the design area exceeds the constraint,
we need to allocate less hardware and reuse it. We first adjust
the DFGs to preserve the functionality. Then, the scheduling,
placement, and routing algorithms are modified accordingly.

The modified DFGs are shown in Fig. 12. Boxes in these
DFGs execute n times instead of just once in Fig. 10. Loop-
backs are introduced to accumulate the result generated in
different iterations. Comparing Fig. 10a and Fig. 12a as
examples, we can find the box b at the lowest level both accepts
two inputs. In the former DFG, these two inputs come from
two sub-DFGs at higher levels simultaneously. In the latter
one, they are from the same sub-DFG sequentially. The result
would be the same as long as b is correctly initialized. For
instance, if b is an adder, its initial output should be set to
Zero.

The mapping and routing algorithms for these skeletons are
similar to the flattened designs, i.e. the skeletons without hard-
ware reuse. A demultiplexer, or a demux in short, is introduced
into each box that has a loop-back routing. The demux can
route the output signal to loop-back during computing, and
send it to the output port of the whole design at the final
stage. The scheduling results are also indicated in Fig. 12;
T; in these expressions means the largest latency among all
the boxes. It is usually called initiation interval, which is the
number of cycles that must elapse between two sets of inputs.

Fig. 13 shows the procedure of constructing designs with
hardware reuse. First, we build a flattened design without

Data: Area constraint A., problem size 5,
Result: A valid hardware design
Calculate flattened design’s area Ay;
if Ay < A, then return The flattened design ;
Ny = Sp,Ny 1 // Upper & lower bounds
while N;+1 < N, do // Search space > 1
N, + (N, + Np)/2; // Set reuse times
Build a design for problem size Ceil(S,/N.);
Calculate current design’s area A,;
if A, < A. then // Shrink search space
| Ny < N
else
‘ N; < Ng;
end

o X NN R W N =

[
L=l

—
(5]

end
return The design for problem size Ceil(S,/Ny);

-
B W

Fig. 13: Build designs under area constraint.

hardware reuse (line 1). If the area meets the constraint,
this design will be returned immediately (line 2). Otherwise,
hardware reuse is required. In this case, we use binary search
to decide how many times the hardware needs to be reused
(line 3 to line 13). The initial search space is between one and
the problem size S, (line 3), and the exit condition is that the
search space has shrunk to one (line 4). When the hardware
is reused for N, times, each time the hardware only needs to
process S, /N, inputs. We build a new hardware design for
this problem size (line 6) and calculate its area (line 7). Then
we update the upper or lower bounds depending on whether
the area meets the constraint (line 8 to line 12). The final
design is for problem size S,/N,, which has lowest latency
and meets the area constraint.

B. Data Transfer and Bandwidth Constraint

After building the hardware for computation following
previous sections, we need to consider their input/output data
transfer, which also has an important impact on the overall per-
formance. This section focuses on the communication between
RRAM and CIM (See Fig. 5). In this paper, we assume the data
has been stored in the RRAM. The communication between
RRAM and other components, such as CPU and storage, is
beyond the scope.

Before presenting our data transfer solution, let us examine
the patterns in the input/output data. In the FIR function shown
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(c) Offset

(d) Shift operation implementation

Fig. 14: Data transfer for spatial and temporal patterns and
shift operation.

in Fig. 8, line 9 and 10 specify the computation while line 6
to 8 describe the input data transfer. The computation part has
two input arrays named pre and coe. In each execution, pre
is shifted from the previous iteration (line 6 to 8). Similar
patterns are common in other programs. By leveraging these
patterns, the data can be transferred more efficiently. These
patterns can be either temporal or spatial. The temporal
patterns we recognized include:

o Constant. The data does not change in all/some itera-
tions, like the coe array in FIR function. (The initializa-
tion of coe array is omitted as shown in Fig. 8.)

« Shifted. The data should be shifted before it is applied to
different iterations. This is the case of pre array in FIR
function.

o New. No aforementioned temporal relations among the
data.

The spatial patterns are:

o Duplicated. The same data is used in different parts of
the design. E.g., a7 is the input array for all the inner
product in the first row of the matrix multiply as shown
in Formula 1.

o Offset. The original data and its shifted versions are
applied to different parts of the design. In Section III-D,
we introduced that the FIR function can be implemented
with the Crowd and the Systolic skeletons. It means
duplicated hardware work in parallel. In this case, the
pre array has an Offset pattern.

o Irrelevant. No aforementioned spatial relations among
the data.

Next, we will show the way to deal with the above patterns
in case of CIM design. Fig. 14 shows the data transfer
procedures for different patterns. The dotted box represents
CIM, and the boxes inside it are logic units. The rectangle on
the left symbolizes the input data arrays stored in RRAM. We
will not show the solution for the Constant pattern since the
data does not change. Other solutions are listed below.

« Shifted. As shown in Fig. 14a, first the original data A
is transferred to CIM. Then, it is shifted in RRAM. After

Data: Input matrices dimensions: m, n, and k

Result: Hardware design of matrix multiply A,,«, X Bnxk
1 SetAreaCon(leS5, 1e5);

Multiplier mul(a, b);

Adder add;

Recur_ske inner(mul, add, n)(NONE, NONE);

Crowd_ske row(inner, m, HORZ)(DUPL, NONE);

Crowd_ske mm(row, k£, VERT)(NONE, DUPL);

return mm.GenSystem();

N S R W N

Fig. 15: Pseudo codes of specifying matrix multiply in CIM
compiling flow.

one iteration of execution, the new data A’ is transferred
to CIM for the next iteration.

o New and Irrelevant. Data is transferred from RRAM to
CIM column by column.

o Duplicated. Data is simultaneously transferred to multi-
ple columns as shown by Fig. 14b, following the broad-
cast method proposed by Xie [14]. It is faster and more
energy efficient compared with column-by-column data
transfer.

o Offset. Similar to the solution for the Shifted pattern
except that the shifted data A’ is now transferred to other
parts of the design within the same iteration as A, as
illustrated by Fig. 14c.

The solutions for Offset and Shifted patterns both require the
shift operation. This is conducted by using two groups of
mirrors following the steps shown in Fig. 14d. First, the data
A is copied to mirrors D. Then, all the bits are shifted to
mirrors D’ in parallel. Finally, the data is copied back as A’,
which is the shifted version of A.

We use matrix multiply as an example to show the usage
of data patterns. Fig. 15 specifies the matrix multiply with
three skeletons. First, we set the area constraint (line 1), which
represents a crossbar with 10° x 10° memristors. Then we
define primitive circuits including the multiplier (line 2) and
the adder (line 3). After that, three skeletons are instantiated:
one Recursively Partitioned skeleton and two Crowd skeletons
(line 4 to line 6). This instantiation is based on primitive
circuits (such as mul and add), matrix parameters (such as m
and n), as well as other skeletons; e.g., the instantiation of row
makes use of inner (line 5), which is a Recursively Partitioned
skeleton. Note that Crowd skeleton make use of two constants,
HORZ and VERT, to specify the direction of duplicating
circuits. HORZ in line 5 indicates inner is duplicated and
placed in a horizontal direction (i.e., forming a row of inner).
On the other hand, VERT in line 6 indicates that the former
row of inner is duplicated and placed vertically, resulting in
a matrix of inner. The parameters in parenthesises indicate
the data patterns. Matrix multiply has two duplicated (DUPL)
patterns for rows and columns.

The communication bandwidth between RRAM and CIM
is also a significant constraint on the hardware design. The
product of the bandwidth and initiation interval indicates the
maximum data amount that can be transferred between two
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1 | void encrypt (unsignedx v, unsignedx k) {
2 unsigned vO=v[0], vl=v[1], sum=0, i;
. .o 3 unsigned delta=0x9e3779b9;//key schedule const
M Legend: Multiplier 2 for (i=0; i < 32; i++) {
Input port E Mirror 5 sum += delta;
VOutput port 6 vO += ((vl1<<d)+k[0]) "(vl+sum) "((vI>>5)+k[1]);
M iy ] 7 VI 4= ((vO<<4)+k[2]) “(vO+sum) *((vO>>5)1+k [3]) ;
Wiring Adder 8
9 v[0]=v0; v[l]=vl;
10
‘ ‘ ’ ‘ ’ ‘ Fig. 17: Tiny Encryption Algorithm source codes.
EI [+ki21] [ +s [+l [+ | Vi
(a) Inner product (b) FIR filter H
Fig. 16: Generated graphic output of study cases. B
L+k[o]] [ +s, II+k[11I|_| L+ [vo.,
N

pipelining stages. If the computation kernel expects more data,
it will stall. We can limit the size of hardware design to avoid
such stall, so that the same performance can be achieved with
a smaller area. The Duplicated pattern reliefs the bandwidth
constraint because it requires fewer data transfers from RRAM
to CIM. If no bandwidth constraint is specified by the user,
the theoretical maximum bandwidth is used. The theoretical
bandwidth is NV bits per Clock Cycle (CC), where N denotes
the number of nanowires across the interface.

C. Parallel Simulation Support

Our compiler integrates parallel SystemC simulation support
into skeletons’ specification for acceleration and enabling
large simulation scale. At the current development phase, the
compiler generates SystemC files for behavior verification.
However, the standard SystemC implementation [44] does
not support parallelism, which limits the performance and
scale of the simulation. Therefore, we replace some channels
with Message Passing Interface (MPI)-based communication.
Subsequently, we can distribute the simulation to multiple
machines.

Fig. 10 and Fig. 12 illustrate our parallel simulation support
for each skeleton. The parts surrounded with dotted boxes are
simulated in parallel by different threads (possibly on different
machines). The number and sizes of these boxes are decided
by the number of available threads, which is set by the user.

V. EXPERIMENTAL RESULTS

We conducted three sets of experiments to validate the
design flow. Section V-A uses inner product and matrix
multiply as case studies to show the source codes and graphic
outputs. After that, we analyze the scalability of the flow in
Section V-B while considering FIR filter. Parallel SystemC
simulation results will be presented in Section V-C. Finally, we
discuss the strength and limitations of the proposed synthesis
flow in Section V-D.

A. Case Studies

We use the inner product of vector size four (see Fig. 16a)
and FIR filter with tap size three (see Fig. 16b) as two

Fig. 18: Tiny Encryption Algorithm’s hardware implementa-
tion with the Farm and Systolic skeletons.

examples to show the generated graphic layout of the skeleton-
based synthesis flow. The large and small rectangles represent
multipliers and adders, respectively. Within them, the light
yellow and dark blue triangles denote the input and output
ports, and the light blue fields represent the area dedicated for
wiring. The figures clearly show the usage of the binary tree
and systolic patterns in these figures.

Next, we use a more complex case study, i.e. Tiny Encryp-
tion Algorithm (TEA), to show how the skeleton-based design
methods can be used to implement real-life applications. TEA
is a simple block cipher that uses a 128-bit key to encrypt
64-bit data blocks [45]. Fig. 17 shows its C implementation.
The function accesses the plaintext and the key with pointers
(line 1), and the ciphertext is also returned via a pointer
(line 9). A 32-bit constant (0x9e3379b9, line 3) is used to
prevent simple attacks based on the symmetry of the rounds.
The encryption process consists mainly of a loop of 32
iterations (line 4 to 8). Each iteration contains shift, addition,
and XOR operations (line 6 and 7).

We manually designed a hardware unit as shown in the right
part of Fig. 18 to implement one iteration of TEA. This unit
has eight adders and two 3-input XOR operators, represented
by rectangles with “+” and “*” symbols, respectively. As
shown in the source code (line 6 and 7 in Fig. 17), most
adders have one constant input. These constants are also
provided in Fig. 18. “S;” means variable sum’s value in the ith
iteration, which is available during compilation. The mirrors
are represented by black slashes. They link the horizontal and
vertical nanowires, which are illustrated by colored stripes.
Different colors are used to indicate different data. Polylines
(“/ ” and “ (") represent special mirrors whose memristors
are located in a line parallel to the diagonal. These special
mirrors are used to implement shift operations. Next, this
unit is duplicated using the Systolic skeleton as shown in the
bottom left part of Fig. 18. The resulting circuit (worker)
implements all the 32 iterations, thus representing an entire
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Fig. 19: Latency, energy, bandwidth, and area of scaling applications in CIM.
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Fig. 20: Latency and energy of scaling applications on the multicore platform.

TEA function. This circuit is further duplicated by the Farm
skeleton to speedup encrypting different parts of the plain text
in parallel. The Farm skeleton uses two helper circuits (mapper
and reduce) to split the plaintext and merge the ciphertext as
shown in the left part of Fig. 18.

B. System Scaling

In this section, we compare CIM’s performance against
a multicore system to show the quality of our compiler’s
generation. The targeted multicore system is Intel Xeon X7460
processor that consists of six cores on a die of 503 mm?,
running at 2.66 GHz each [46]. We assume the CIM chip to
be only 10% of the area of Xeon X7460, and only 10% of the
CIM chip is used for computation (the rest is used as RRAM,
see Fig. 5). Then, the computation part contains about 10*°
memristors according to the density predicted by ITRS [37].
Therefore, we add an area constraint 10° x 10° to the synthesis
flow.

We varied the problem sizes to evaluate the scaling capa-
bilities with area constraint and generated three cases: matrix
multiply, FIR filter, and TEA. We assume the matrices to
be square n x n. In the FIR application, the taps number is
fixed as 64, and input size changes; see Fig. 8. The problem
size of TEA can be valued by the plaintext size. We assume
CIM’s clock frequency is 1 GHz, considering the memristor

switching time is in the range of a hundred picoseconds [47].
The performance and the cost of generated designs are shown
in Fig. 19. In all three cases, the latency increases faster when
the area limit is reached. This indicates that the hardware is
reused to meet the area constraint. Whether the hardware is
reused or not, the energy consumption increases almost at the
same rate as it is determined by the total number of operations.
For matrix multiply and FIR, there is a positive correlation
between the bandwidth and the crossbar height, since the
data in different rows can be transferred in parallel (see
Section II-B). On the other hand, TEA’s bandwidth remains
constant, because it uses a mapper circuit to split sequential
inputs to the worker threads (see Fig. 18). In all three cases,
the width and the height do not increase when they approach
105, due to the area constraint we set.

To show the quality of the synthesized designs, we evaluated
the execution time and energy consumption of these applica-
tions on a multicore platform and compared the execution time
against CIM. This evaluation is conducted with Sniper [48],
and the energy consumption is reported by McPAT [49]. We
employed a simulator instead of using real hardware because
it benefits the reproducibility. The targeted hardware platform
is an Intel Xeon X7460 processor, which consists of six cores,
each running at 2.66 GHz. These cores have 64kB L1 cache
each and share a 16 MB L3 cache. Every two cores share an
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TABLE II: Comparison Between Design Methodologies

Application Design quality Development
Design methodologies Type Size Latency Area Efforts Execution time
Manual Regular Large Low Large Much -
Skeleton-based (this work) | Half-regular Large Low Large | Medium Short
Fully automated Trregular Medium | Slightly high | Small Little Long

TABLE III: Baselines of Parallel Simulation

Applications Size | Base (s)
Matrix multiply 64 1686
FIR filter 512 1036
TEA 4096 1859
[T T T T 1117 T T 11117
g0t E
= - .
3 = 1
2 X -| —@— Matrix multiply
| —<«— FIR filter
100 |- | —e— TEA
bl Ll N
100 10t MPI nodes

Fig. 21: Parallel simulation speedup.

L2 cache of 3 MB. The experimental results, including the
speedup of CIM over the multicore platform, are shown in
Fig. 20. The values of the speedup are marked beside the line.
The maximum speedup for matrix multiply, FIR filter, and
TEA is 1418x, 197.9x, and 83.5x, respectively. The energy
consumption of multicore is about one order of magnitude
larger than CIM for all the three cases.

C. Parallel Simulation

We enabled the parallel simulation support to examine its ef-
fect. These experiments are performed on a high-performance
computer with 20 Intel Xeon E5-2670 HT cores, running at
2.50 GHz each. First, we simulated the baselines which are
based on sequential simulations. Table III shows the sizes of
simulated applications and the corresponding simulation time.
After that, we fixed the system size and changed the number
of MPI nodes and generated eight configurations. For each of
these configurations, we performed the simulation ten times
and calculated the average execution time after removing the
maximum and minimum values. Figure 21 shows the speedup
of each configuration over the sequential simulation as the
baseline. The output data of all the parallel simulations are
verified and found to match those of the sequential one. When
MPI nodes are less than 16, the speedups are almost the
same as the thread number. When the nodes number increases
beyond 16, the speedup tends to saturation. It is understandable
since the cores in hardware are limited. This result shows a
good scalability.

D. Discussion

We compared the skeleton-based design flow, the manual
design flow, and a potential fully automated flow in Table II
to identify their characteristics. The fully automated flow

is similar to existing VLSI design flows that can map any
application to the hardware without using predefined solu-
tions. Such a flow is currently not available due to design
constraints of memristor-based CIM architectures that have
been discussed in Section II-B and III-A. In addition, existing
research on manual designs, such as [10], [50], have different
assumptions on primitive circuits, hardware platforms, and ap-
plications as compared to this work. Therefore, the comparison
is qualitative instead of quantitative. We first compare the
supported applications of these three design methodologies.
Manual designs can only handle regular applications such as
parallel addition [50] and matrix multiply [10] due to design
complexity. Skeleton-based flow requires the application to
be regular at the top level while it has no restriction for the
computational kernel at low level, as demonstrated in the TEA
case study. The fully automated flow is the most flexible one
with regard to the application type. However, the application
size supported by the automated flow is not as large as the
skeleton-based flow because the former has to explore the
compute design space. Secondly, with respect to the quality of
the generated designs, automated design flow cannot achieve
optimal communication cost as discussed in Section III-A.
However, since communication latency (typically 2-6 cycles)
is relatively small compared to computation latency (tens to
hundreds of cycles), the difference in performance between
optimal design and suboptimal one would be minor. From an
area point of view, the manual and skeleton-based flows have
large white space in the designs, and hence require a larger
design area than the automated flow. Finally, comparing their
design efforts, the automated flow would be the easiest one to
use. For the skeleton-based flow, the user is required to identify
the patterns in the application; hence, it needs more effort. A
skeleton-based synthesis tool executes quickly because it does
not require design space exploration.

The implementation of primitive circuits is a key factor
for memristor-based computation, including CIM. The latency
of the multiplier (499 CC) and the adder (264 CC) that we
used in the experiments is much greater than those operators
implemented with CMOS technology. We can still achieve
a notable speedup because of the massive parallelism CIM
provides. However, even greater performance improvement
can be obtained if these primitive circuits are implemented
in a better way. On the other hand, only a few arithmetic
operators have been implemented in memristor crossbars. It
limits the number of algorithms that we can map to CIM. Since
memristor-based computation is emerging, future researches
will produce more and better circuits designs, and they will
benefit CIM.

Endurance is a limit to memristor crossbar [6], [51]. Hence,
it also restricts the potential of memristor-based computation
and CIM. In this flow, we write memristors in a very high
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frequency. Currently, the largest number of allowed write/erase
operations on a memristor is only around 10'2 [52], [53], but
this number is believed to be able to reach 10'° [54] in the
future. On the other hand, CIM is an accelerator that does not
work as frequently as CPUs. Therefore, it also has a lower
requirement for endurance.

VI. CONCLUSION AND FUTURE WORK

Memristor-based CIM architecture requires a radically new
development flow due to the characteristics of the memris-
tor crossbar. We built a desirable synthesis flow for CIM
based on an extension of algorithmic skeletons. In this flow,
scheduling, placement, and routing algorithms are specified
according to problems’ DFG structures. We also investigated
data patterns existing in stream applications and combined
them with skeletons. To accelerate SystemC simulation, we
integrated it with MPIL. This work is verified using three
applications, and their latency is compared against a multicore
system. Primary results show the feasibility and potential of
the proposed approach.

In future work, we will further investigate the communica-
tion between the RRAM and other components, such as the
storage and the CPU. We are also developing a new Domain-
Specific Language (DSL) to better describe CIM skeletons,
especially with data patterns.
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