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A B S T R A C T

As with many tasks in engineering, structural design frequently involves navigating complex and
computationally expensive problems. A prime example is the weight optimization of laminated
composite materials, which to this day remains a formidable task, due to an exponentially
large configuration space and non-linear constraints. The rapidly developing field of quantum
computation may offer novel approaches for addressing these intricate problems. However,
before applying any quantum algorithm to a given problem, it must be translated into a
form that is compatible with the underlying operations on a quantum computer. Our work
specifically targets stacking sequence retrieval with lamination parameters, which is typically
the second phase in a common bi-level optimization procedure for minimizing the weight of
composite structures. To adapt stacking sequence retrieval for quantum computational methods,
we map the possible stacking sequences onto a quantum state space. We further derive a linear
operator, the Hamiltonian, within this state space that encapsulates the loss function inherent
to the stacking sequence retrieval problem. Additionally, we demonstrate the incorporation
of manufacturing constraints on stacking sequences as penalty terms in the Hamiltonian. This
quantum representation is suitable for a variety of classical and quantum algorithms for finding
the ground state of a quantum Hamiltonian. For a practical demonstration, we performed
numerical state-vector simulations of two variational quantum algorithms and additionally
chose a classical tensor network algorithm, the DMRG algorithm, to numerically validate our
approach. For the DMRG algorithm, we derived a matrix product operator representation of the
loss function Hamiltonian and the penalty terms. Although this work primarily concentrates
on quantum computation, the application of tensor network algorithms presents a novel
quantum-inspired approach for stacking sequence retrieval.

1. Introduction

Across various engineering disciplines, researchers and practitioners regularly encounter complex and computationally intensive
problems [1–3]. The rapidly evolving field of quantum computing could offer crucial breakthroughs in addressing these issues
and exceed the capabilities of conventional methods [4–9]. As this technology continues to mature, the potential benefits it offers
to complex engineering problems are becoming more apparent [10–23]. However, the challenge lies in accurately identifying
those scenarios where quantum computing holds an advantage and in crafting algorithms to harness this potential. To address
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this, initiating the development of quantum algorithms for engineering applications now – in parallel with quantum hardware
advancements – is essential. Such an approach positions us to immediately harness the full capabilities of quantum computing in
engineering as soon as it becomes available.

The design of laminated composite materials [24,25] is an example of a complex engineering challenge which could benefit from
quantum-based approach. These materials are extensively used in aerospace applications for their high strength-to-weight ratio.

urthermore, these materials consist of many configurable layers, each impacting the overall stiffness. The stiffness characteristics
f the whole material can therefore be tailored to the specific requirements of a structure [26,27]. However, determining the
ptimal arrangement for specific applications from the exponentially large configuration space is a significant challenge, positioning
aminated composites as a suitable candidate for quantum computing applications [28,29].

A widely used method in designing composite structures involves a bi-level optimization procedure [30–36]. The initial phase
ocuses on optimizing the material’s thickness and stiffness characteristics, expressed through lamination parameters [37,38].
ubsequently, the second phase involves finding a feasible stacking sequence that aligns with the lamination parameters determined
arlier. While the first phase typically employs continuous gradient descent methods, the second stage, stacking sequence retrieval,
onstitutes an intricate combinatorial optimization problem, particularly when incorporating manufacturing considerations [39–42].

Optimizing stacking sequences for constant stiffness structures has been addressed through various methods, including layer-wise
ptimization [43,44], branch-and-bound [36,45–47] and beam search [48] techniques. The complexity increases substantially for
tructures that necessitate variable stiffness, often achieved by dividing the structure into distinct panels [49,50], each requiring a
pecific stacking sequence and stiffness. Ensuring structural integrity by matching the stacking sequences across different panels,
n accordance with blending rules [51–54], adds a further layer of complexity, and adapting the previously mentioned methods to
his multi-panel scenario is challenging. Given this complexity, often intensified by the curse of dimensionality, current methods
enerally rely on meta-heuristics such as genetic algorithms [31–33,35,36,55–57] or particle swarm optimization [57–59], which
re frequently used in conjunction with problem-specific methods like stacking sequence tables [60,61] to address these challenges.
espite this progress, the quest for more efficient solutions in stacking sequence retrieval remains a pivotal area of research,

ndicating the necessity for novel approaches in this complex domain. Quantum computing may offer a unique approach to manage
hese complex, high dimensional scenarios effectively. The formulation of these algorithms however and their implementation on
ontemporary quantum hardware remain a challenging tasks. Before tackling complex multi-panel cases, it is essential to gain
deeper understanding of simpler scenarios, where the limitations of existing technology are less constraining. Therefore, and

espite the existence of effective stacking sequence retrieval algorithms for single constant-stiffness panels, the foundational work
or quantum algorithms must also begin with this simpler case.

In this work, we explore the adaptation of the stacking sequence retrieval problem (SSR) with lamination parameters for constant
stiffness panels to quantum algorithms. Initially, we formalize the problem as an integer-optimization problem, suitable for
translation into a quantum mechanics framework. This involves representing variable configurations of the problem as states in a
Hilbert space and deriving a Hamiltonian to embody the problem’s loss function. The objective then becomes identifying the ground-
state of the Hamiltonian, a task addressable by various quantum algorithms [6,11,62–72]. We also present how manufacturing
constraints can be incorporated as penalty terms within the Hamiltonian. As a demonstration of our formalism, we selected
two variational quantum algorithms, the quantum approximate optimization algorithm (QAOA) [65,73] and a hardware efficient
approach, for which we perform state-vector simulations. Additionally, we chose the density matrix renormalization group algorithm
(DMRG), a classical tensor network method effective in finding ground states of many-body systems [74–79]. For this purpose, the
Hamiltonian must first be expressed in terms of a matrix product operator (MPO), which is a particular tensor network structure. This
enables us to optimize systems as large as 200 plies, by controlling the bond dimension of the states’ MPS. For all three algorithms,
we conducted tests under various conditions dependent on the algorithm at hand. The optimization results successfully approximated
the optimal solutions, validating our Hamiltonian construction and confirming the efficacy of our approach. Furthermore, the
notable performance of the DMRG algorithm points to the potential of tensor network methods as a quantum-inspired alternative
to conventional stacking sequence retrieval methods.

Following this introduction, Section 2 begins with an overview of laminated composite materials and concludes with the
formulation of the specific integer-optimization problem that we employ in the remainder of this work. In Section 3, we map the
problem to a quantum state space, and construct the Hamiltonian corresponding to the problem’s loss function. We additionally show
how to integrate manufacturing constraints as penalty terms in the Hamiltonian. In Section 4, we discuss the algorithms that we
selected for numerical demonstrations. In particular, this section discusses how the Hamiltonian must be adapted for QAOA and the
DMRG algorithm. The numerical demonstration can be found in Section 5. The paper concludes with Section 6, and summarizes our
findings, as well as ramifications for the field of quantum computing in the context of engineering and materials science applications.

2. Stacking sequence retrieval as an optimization problem

2.1. Laminated composite materials

Fiber-reinforced composite materials are heterogeneous materials consisting of fibers incorporated in a supportive matrix, which
gives rise to an orthotropic material with distinct stiffness characteristics along the longitudinal and the orthogonal fiber-
directions [80]. Laminated composites are formed by stacking multiple layers of this material, for which the anisotropic stiffness

characteristics can be tailored to the unique strength requirements of a structure by adjusting the orientation of each ply (Fig. 1 a).
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Fig. 1. (a) Diagram of a laminated composite material, which consists of multiple layers that are oriented in different directions. (b) A representation of the
stress resultants �⃗� , which for isotropic materials result in in-plane deformations 𝜀 0. (c) A pictographical representation of the moment resultants �⃗� , which
for isotropic materials result in out-of-plane bending �⃗�. Non-diagonal elements in the 𝐀𝐁𝐃-matrix allow for coupling between all possible stress and moment
resultants on the one hand, and all in- and out-of-plane deformations on the other hand.

For laminated composites, the mechanical behavior, to a first-order approximation, is typically characterized using a variation
of Hooke’s law [81–83]:

[

�⃗�
�⃗�

]

=
[

𝐀 𝐁
𝐁 𝐃

] [

𝜀 0

�⃗�

]

. (1)

ere, the stress and moment resultants, �⃗� and �⃗� , represent the loadings within the structure. The deformations are characterized
y 𝜀 0 (in-plane bending) and �⃗� (out-of-plane bending). Figs. 1 b and c illustrate the stress and moment resultants, along with the
eformations, visually demonstrating their effects on the laminate. The 𝐀𝐁𝐃-matrix analogously functions as the stiffness tensor.

Specifically, 𝐀 and 𝐃 define the in-plane and out-of-plane stiffness, respectively. A non-zero 𝐁 indicates a coupling between them,
meaning in-plane stresses can result from out-of-plane bending and vice versa. Both vectors �⃗� and �⃗� along with 𝜀 0 and �⃗� consist
of three components. Furthermore, matrices 𝐀, 𝐁 and 𝐃 are of dimensions 3 × 3.

For a laminate defined by a specific stacking sequence, the 𝐀𝐁𝐃-matrix is completely determined by the thickness of the material,
the angles of the individual plies, and the inherent properties of the selected composite material. Furthermore, these dependencies
separate when introducing lamination parameters, which distill the complete ply-angle dependence of the 𝐀𝐁𝐃-matrix into exactly 12
real values 𝑣𝐴𝑙 , 𝑣

𝐵
𝑙 , 𝑣

𝐷
𝑙 with 𝑙 = 1, 2, 3, 4 [37,38]. Denoting the laminate thickness with ℎ, the 𝐀𝐁𝐃-matrix is determined by [42,84]:

𝐀 = ℎ
(

𝜞 0 + 𝜞 1𝑣
𝐴
1 + 𝜞 2𝑣

𝐴
2 + 𝜞 3𝑣

𝐴
3 + 𝜞 4𝑣

𝐴
4
)

, (2)

𝐁 = ℎ2

4
(

𝜞 0 + 𝜞 1𝑣
𝐵
1 + 𝜞 2𝑣

𝐵
2 + 𝜞 3𝑣

𝐵
3 + 𝜞 4𝑣

𝐵
4
)

,

𝐃 = ℎ3

12
(

𝜞 0 + 𝜞 1𝑣
𝐷
1 + 𝜞 2𝑣

𝐷
2 + 𝜞 3𝑣

𝐷
3 + 𝜞 4𝑣

𝐷
4
)

,

here the intrinsic material properties enter the equation in form of the matrices 𝛤𝑙 with 𝑙 = 0, 1, 2, 3, 4. For a stacking sequence
comprising 𝑁 plies of equal thickness and ply angles 𝜙1,… , 𝜙𝑁 ∈ (−𝜋∕2, 𝜋∕2], and the distance of ply 𝑛 from the mid-plane captured
in 𝑧𝑛 = −𝑁∕2 + 𝑛, the lamination parameters read:

(𝑣𝐴1 , 𝑣
𝐴
2 , 𝑣

𝐴
3 , 𝑣

𝐴
4 ) =

1
𝑁

𝑁
∑

𝑛=1

(

𝑧𝑛 − 𝑧𝑛−1
)(

cos
(

2𝜙𝑛
)

, sin
(

2𝜙𝑛
)

, cos
(

4𝜙𝑛
)

, sin
(

4𝜙𝑛
))

, (3)

(𝑣𝐵1 , 𝑣
𝐵
2 , 𝑣

𝐵
3 , 𝑣

𝐵
4 ) =

2
𝑁2

𝑁
∑

𝑛=1

(

𝑧2𝑛 − 𝑧
2
𝑛−1

)(

cos
(

2𝜙𝑛
)

, sin
(

2𝜙𝑛
)

, cos
(

4𝜙𝑛
)

, sin
(

4𝜙𝑛
))

,

(𝑣𝐷1 , 𝑣
𝐷
2 , 𝑣

𝐷
3 , 𝑣

𝐷
4 ) =

4
𝑁3

𝑁
∑

𝑛=1

(

𝑧3𝑛 − 𝑧
3
𝑛−1

)(

cos
(

2𝜙𝑛
)

, sin
(

2𝜙𝑛
)

, cos
(

4𝜙𝑛
)

, sin
(

4𝜙𝑛
))

.

The matrices 𝜞 𝑘 are constructed with the Tsai–Pagano material invariants 𝑈1,… , 𝑈5 ∈ R [37]:

𝜞 0 =
⎡

⎢

⎢

𝑈1 𝑈4 0
𝑈4 𝑈1 0

⎤

⎥

⎥

, 𝜞 1 =
⎡

⎢

⎢

𝑈2 0 0
0 −𝑈2 0

⎤

⎥

⎥

, 𝜞 2 =
⎡

⎢

⎢

0 0 𝑈2∕2
0 0 𝑈2∕2

⎤

⎥

⎥

(4)

⎣ 0 0 𝑈5⎦ ⎣ 0 0 0⎦ ⎣𝑈2∕2 𝑈2∕2 0 ⎦
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𝜞 3 =
⎡

⎢

⎢

⎣

𝑈3 −𝑈3 0
−𝑈3 𝑈3 0
0 0 −𝑈3

⎤

⎥

⎥

⎦

, 𝜞 4 =
⎡

⎢

⎢

⎣

0 0 𝑈3
0 0 −𝑈3
𝑈3 −𝑈3 0

⎤

⎥

⎥

⎦

.

These material invariants depend only on the longitudinal, transverse, and shear moduli, as well as the Poisson’s ratio of the
composite.

In numerous applications, particularly in aerospace structural design, materials are required to be as lightweight as possible
while simultaneously possessing the strength to withstand forces and stresses under a variety of expected loading conditions. A
typical objective involves minimizing the thickness or, equivalently, the number of plies in composite materials. This minimization
is constrained by the expected stress and moment resultants �⃗� and �⃗� , alongside predefined failure criteria expressed through
inequalities involving stresses, deformations, or the 𝐀𝐁𝐃-matrix. The optimization process becomes highly complex due to the non-
linear relationship between the laminate’s structural behavior and the ply angles, which serve as design variables in the optimization
and typically range from tens to hundreds in number [84]. To effectively navigate this complexity, a bi-level design strategy is
commonly employed for laminated composite materials, involving two distinct phases of optimization [30–36]. The first phase
optimizes for the laminate thickness ℎ and the stiffness characteristics, represented by lamination parameters 𝑣𝐴𝑙 , 𝑣𝐵𝑙 and 𝑣𝐷𝑙 , such
hat they meet predefined strength criteria. These design variables are typically assumed to be continuous, such that gradient descent
ethods can be employed effectively. The subsequent phase, termed stacking sequence retrieval (SSR), seeks a ply-angle sequence

hat approximates the lamination parameters derived from the first phase. The laminate thickness ℎ is incorporated into the second
hase as the total number of plies 𝑁 in the laminate. In this work, we will focus on this second phase of stacking sequence retrieval.

Manufacturing constraints typically dictate the allowed ply-angle sequences in a laminate. Primary among these is the con-
inement of ply angles to a discrete set, with a common selection being {0◦,+45◦, 90◦,−45◦}. Alternatives can also be found, with
ivisions of the interval (−90◦, 90◦] at intervals of 22.5◦ or 15◦. It is worth noting that fiber orientations, and consequently the
amination parameters, demonstrate a periodicity of 180◦. Other prevalent manufacturing constraints include [39–42]:

• Symmetric laminates: The laminate exhibits symmetry about its midplane. Hence, plies 𝑛 and 𝑁 − 𝑛 + 1 share the same ply
angle, leading to null coupling lamination parameters 𝑣𝐵𝑘 and stiffness matrix 𝐁.

• Disorientation constraint: The angular difference between adjacent plies is limited, often to 45◦.
• Balanced laminates: Except for ply-angles 0◦ or 90◦, the number of plies with angles 𝜃 and −𝜃 are equal. This has the effect,

that 𝑣𝐴2 and 𝑣𝐴4 vanish.
• Contiguity constraint: The number of consecutive same-angle plies is limited, for instance to 5 plies with the same orientation.
• 10%-rule: Specific ply angles must constitute a minimum of 10% of the laminate. This rule is frequently applied to angles of
0◦, 90◦ and ±45◦.

For a laminate consisting of 𝑁 plies and a set of 𝑑 discrete angles, the solution space encompasses 𝑑𝑁 potential configurations.
his exponential explosion renders direct search or enumeration methods computationally prohibitive. Moreover, the imposition of
anufacturing constraints further complicates the search landscape. Various strategies have been advanced to navigate this complex

pace [24,26,48,85], however, the optimization of more complicated structures remains a formidable challenge.
Lately, there has been a spotlight on breakthroughs in quantum computing, a technology that might offer new tools to address

his complexity [5,7,86–88]. However, one must map the presently-described problem to a representation amenable to quantum
nformation-theoretic methods. We start with formulating stacking sequence retrieval as an integer-optimization problem.

.2. Formulating stacking sequence retrieval as an integer-optimization problem

In general, it is advantageous for optimization algorithms to be presented with a version of the problem that abstracts away all
ut the essential information. For our purposes, this level of abstraction is necessary to adapt the problem for quantum computing
rchitectures. In this section, we present our redefinition of the problem that forms the basis for our analysis in this work.

The discrete nature of the ply angles in laminated composites is well-suited to be represented in terms of integer design variables,
method commonly employed in various stacking sequence retrieval methods [36,56,89]. Accordingly, we define the 𝑑 discrete

ngles 𝛩 = {𝜃1, 𝜃2,… , 𝜃𝑑}, allowing each angle 𝜃𝑠 to be represented by its corresponding label 𝑠 ∈ {1,… , 𝑑}, effectively using these
abels as integer design variables. Consequently, we can identify the ply angle sequence 𝜃 = (𝜃𝑠1 , 𝜃𝑠2 ,… , 𝜃𝑠𝑁 ) with an ordered list
f integers 𝑠 = (𝑠1, 𝑠2,… , 𝑠𝑁 ). Here we use 𝜃 instead of the 𝜙 from Eq. (3), to convey that we now explicitly choose the ply angles
rom the discrete set 𝛩. In the following, we denote the set of all possible stacking sequences as  = {1,… , 𝑑}𝑁 , such that 𝑠 ∈ .
onsidering Eq. (3), the lamination parameters can then be written in a common general form:

𝑣𝑋𝑙 (𝑠1,… , 𝑠𝑁 ) =
𝑁
∑

𝑛=1
𝛼𝑋𝑛 𝑓𝑙(𝑠𝑛), (5)

here 𝑋 = 𝐴,𝐵,𝐷 and 𝑙 = 1, 2, 3, 4, and the functions 𝑓𝑙 ∶ {1,… , 𝑑} → [−1, 1] defined as:

𝑓1(𝑠) = cos
(

2𝜃𝑠
)

, 𝑓2(𝑠) = sin
(

2𝜃𝑠
)

, (6)
𝑓3(𝑠) = cos

(

4𝜃𝑠
)

, 𝑓4(𝑠) = sin
(

4𝜃𝑠
)

.

In this framework, a manufacturing constraint can be realized as a Boolean function 𝑐 ∶  → {True,False} on the lists of integers,
here 𝑐(𝑠) = True exactly when ply-angle sequence 𝜃 = (𝜃 ,… , 𝜃 ) satisfies the constraint. The optimization towards target
𝑠1 𝑠𝑁
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lamination parameters can then be written as an integer-optimization problem. We choose an abstracted formulation of the problem
that does not include the ply angles 𝜃𝑠 but assumes their impact on the loss function to be encoded in the functions 𝑓𝑙 that are defined
on the according indices 𝑠 = {1,… , 𝑑}:

Stacking sequence retrieval problem (SSR): Given

• Positive integers 𝑁, 𝑑 ∈ N,
• The set of stacking sequences  = {1,… , 𝑑}𝑁 ,
• Sets of weights {𝛼𝑋𝑛 }𝑛 for 𝑛 = 1,… , 𝑁 and 𝑋 = 1,… , 𝑁𝛼 for some 𝑁𝛼 ∈ N,
• Functions 𝑓𝑙 ∶ {1,… , 𝑑} → R for 𝑙 = 1,… , 𝑁𝑓 for some 𝑁𝑓 ∈ N,
• A set of constraints  =

{

𝑐𝑘 ∶  → {True,False}
}

on the solution space, where 𝑘 enumerates the constraints,
• Target values 𝜉 ∈ R𝑁𝛼𝑁𝑓 ,

find a stacking sequence 𝑠 = (𝑠1,… , 𝑠𝑁 ) ∈  with 𝑐(𝑠) = True for all 𝑐 ∈  that minimizes the loss function:

𝐻(𝑠1,… , 𝑠𝑁 ) =
∑

𝑋,𝑙

( 𝑁
∑

𝑛=1
𝛼𝑋𝑛 𝑓𝑙(𝑠𝑛) − 𝜉

𝑋
𝑙

)2

. (7)

Note, that for the loss function, we use the mean-square-error (MSE) rather than the root-mean-square-error (RMSE), due to its
natural implementation in the quantum context. Nevertheless, the RMSE can prove useful to evaluate the quality of solutions, as
it represents the Euclidean distance of the solution to the target parameters in lamination parameter space. The defined integer-
optimization problem is more general than the original stacking sequence retrieval problem, and most of the following discussion
does not depend on explicit definitions of 𝛼𝑋𝑛 , 𝑁𝛼 , 𝑓𝑙 and 𝑁𝑓 . However, we will generally assume the previously defined case of
𝑁𝑓 = 4, 𝑋 = 𝐴,𝐵,𝐷 such that 𝑁𝛼 = 3, and 𝛼𝑋𝑛 and 𝑓𝑙 defined according to the lamination parameters in Eq. (3).

3. A formulation of the SSR problem in a quantum state space

In this section, we discuss how the stacking sequence retrieval problem can be represented with linear algebra concepts inline
with quantum information theoretic methods. In particular, we represent stacking sequences as vectors in a complex-valued Hilbert
space, and treat functions acting on stacking sequences, such as the loss function or constraints, as Hermitian operators on this space.
The presented approach is applicable to various prevalent quantum computing methods, such as variational quantum algorithms
(VQA) [64–67] and quantum annealing [68–70,90–92]. For readers unfamiliar with quantum computation, we recommend the
book [7].

3.1. SSR in terms of quantum states and operators

In the defined integer optimization problem in Section 2.2, the three primary elements are the stacking sequences 𝑠 ∈ , the
oss function 𝐻(𝑠) in Eq. (7), and the constraints 𝑐 ∈ . Initially, we focus on the stacking sequences and loss function, and address
he constraints later on.

We encode stacking sequences 𝑠 ∈  using a basis-encoding within a composite complex-valued Hilbert space  =
⨂𝑁

𝑛=1 𝑛.
Here, each subsystem 𝑛 with dimension dim(𝑛) = 𝑑 represents a single ply, and consequently the composite system for the entire
tacking sequence has dimension dim() = 𝑑𝑁 . Accordingly, each basis vector |

|

𝑠
⟩

∈  represents an individual stacking sequence
𝑠 ∈ . These vectors are orthonormal, meaning for any two distinct sequences 𝑠, �⃗� ∈ , their inner product satisfies:

⟨

𝑠 ||
|

�⃗�
⟩

= 𝛿𝑠,�⃗�. (8)

To model the loss function 𝐻(𝑠) mentioned in Eq. (7), we introduce a Hermitian operator �̂� in Hilbert space , termed the loss
unction Hamiltonian. This Hamiltonian is defined to be diagonal in the basis of stacking sequences with eigenvalues corresponding
o the loss function evaluations �̂� |

|

𝑠
⟩

= 𝐻(𝑠) |
|

𝑠
⟩

:

�̂� =
∑

𝑠∈
𝐻(𝑠) |𝑠⟩⟨𝑠| . (9)

hus, finding the solution to the integer optimization problem is equivalent to identifying the ground state of this Hamiltonian,
gnoring any additional constraints 𝑐 ∈  for the moment.

Due to its generality, the basis-state encoding together with the loss function Hamiltonian is applicable to various quantum
ethods. However, the specific form of the Hamiltonian and its application in quantum algorithms significantly influence the
ractical implementation. As we will discuss for the QAOA algorithm in Section 4.1.2, some algorithms require implementing the
xponential of the Hamiltonian using the available gates on the quantum computer [65]. For feasible implementation with a limited
umber of quantum gates, the Hamiltonian should exhibit a low-degree polynomial expansion in terms of local operators on each
ubsystem. As a further example, quantum annealing requires the polynomial expansion of the Hamiltonian to be quadratic, since
he individual terms are implemented as interactions between pairs of subsystems [68–70]. The choice of mean-square-error for the
5 
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loss function 𝐻(𝑠) in Eq. (7) naturally results in a quadratic expression in the single-ply functions 𝑓𝑙 ∶ {1,… , 𝑑} → R, aligning with
algorithmic requirements.

To make the polynomial expansion of the loss function and the according Hamiltonian explicit, as well as for later convenience,
we absorb the target parameters 𝜉𝑋𝑙 into the sum over the ply indices 𝑛, such that the loss function takes the form:

𝐻(𝑠) =
∑

𝑋,𝑙

( 𝑁
∑

𝑛=1
𝐻 [𝑛]
𝑋,𝑙(𝑠𝑛)

)2

. (10)

where the target parameters are incorporated into the ply-angle-dependent terms 𝐻 [𝑛]
𝑋,𝑙 ∶ {1,… , 𝑑} → R. For the lamination

parameters 𝑋 = 𝐴,𝐵,𝐷, the summation over the absolute values of the weights is ∑𝑁
𝑛=1 ()|𝛼

𝑋
𝑛 | = 1. Therefore, a natural choice

for the terms 𝐻 [𝑛]
𝑋,𝑙 distributes the target parameters according to the weights:

𝐻 [𝑛]
𝑋,𝑙(𝑠) = 𝛼𝑋𝑛

(

𝑓𝑙(𝑠) − sign(𝛼𝑋𝑛 )𝜉
𝑋
𝑙
)

. (11)

For 𝑋 = 𝐴,𝐷, the sign function is redundant since all weights 𝛼𝐴𝑛 , 𝛼𝐷𝑛 > 0 are positive for all ply-indices 𝑛.
Accordingly, the full loss function Hamiltonian is formulated to be quadratic in local operators �̂� [𝑛]

𝑋,𝑙 on the individual subsystems
𝑛:

�̂� =
∑

𝑋,𝑙

( 𝑁
∑

𝑛=1
�̂� [𝑛]
𝑋,𝑙

)2

, (12)

where the local operators defined through the local functions 𝐻 [𝑛]
𝑋,𝑙(𝑠) as:

�̂� [𝑛]
𝑋,𝑙 =

𝑑
∑

𝑡=1
𝐻 [𝑛]
𝑋,𝑙(𝑡) |𝑡⟩⟨𝑡|𝑛 . (13)

Here, |𝑡⟩⟨𝑡|𝑛 denotes the outer product of state |𝑡⟩ ∈ 𝑛 and satisfies
(

|𝑡⟩⟨𝑡|𝑛
)

|

|

𝑠
⟩

= 𝛿𝑡,𝑠𝑛
|

|

𝑠
⟩

.

3.2. Enforcing manufacturing constraints

In addition to optimizing for the target lamination parameters, the stacking sequences must also adhere to manufacturing
constraints, such as the ones listed in Section 2. Here, we examine how these constraints, generalized to larger classes of constraints,
can be enforced.

Some constraints can be directly incorporated into the representation of the stacking sequences. For instance, to enforce symmetry
around the midplane in a laminate, 𝑠𝑛 = 𝑠𝑁−𝑛+1, it suffices to model half of the stack and then implicitly mirror this to the other half.
Due to the symmetry of the weights, the 𝐴 and 𝐷 lamination parameters in Eq. (3) can be adapted to this case, by only summing
the upper half 𝑛 = 𝑁∕2 + 1,… , 𝑁 of the stack and doubling the result. For a more convenient expression, we can reassign the ply
indices 𝑛 to start at the midplane by substituting 𝑛 → 𝑛 −𝑁∕2, such that 𝑧𝑛 = 𝑛. We also redefine the ply number 𝑁 to just count
half of the stack 𝑁∕2 → 𝑁 . The reformulated lamination parameters only differ from Eq. (3) by the definition of 𝑧𝑛 and the factor
4 preceding the summation in the 𝐷-parameters:

(𝑣𝐴1 , 𝑣
𝐴
2 , 𝑣

𝐴
3 , 𝑣

𝐴
4 ) =

1
𝑁

𝑁
∑

𝑛=1
(𝑧𝑛 − 𝑧𝑛−1)

(

cos
(

2𝜃𝑛
)

, sin
(

2𝜃𝑛
)

, cos
(

4𝜃𝑛
)

, sin
(

4𝜃𝑛
))

(14)

(𝑣𝐷1 , 𝑣
𝐷
2 , 𝑣

𝐷
3 , 𝑣

𝐷
4 ) =

1
𝑁3

𝑁
∑

𝑘=1
(𝑧3𝑛 − 𝑧

3
𝑛−1)

(

cos
(

2𝜃𝑛
)

, sin
(

2𝜃𝑛
)

, cos
(

4𝜃𝑛
)

, sin
(

4𝜃𝑛
))

𝑧𝑛 = 𝑛

s before, the weights:

𝛼𝐴𝑛 = 1
𝑁
, 𝛼𝐷𝑛 =

𝑛3 − (𝑛 − 1)3

𝑁3
(15)

sum to 1. The 𝐵-parameters vanish for symmetric laminates and can thus be neglected.
Enforcing the remaining constraints 𝑐 ∶  → {True,False} in Section 2 can be achieved by incorporating a penalty function

𝐻𝑐 ∶  → R≥0 into the loss function:

𝐻total(𝑠) = 𝐻(𝑠) +𝐻𝑐 (𝑠), (16)

where 𝐻𝑐 (𝑠) > 0 if the constraint is violated for stacking sequence 𝑠, 𝑐(𝑠) = False, and 𝐻penalty(𝑠) = 0 for valid states, 𝑐(𝑠) = True.
This effectively turns the constraint optimization problem with loss function 𝐻 into an unconstrained optimization problem with
loss function 𝐻total [93–95]. Often, a scalar factor is multiplied to the penalty function 𝐻𝑐 , in order to control the magnitude of
the penalty. However, this factor can also be regarded as part of the definition of the penalty function 𝐻𝑐 . Accordingly, we include
tunable parameters in the definition of the following penalty functions that we define for the different constraints in section Section 2.
6 
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As with the loss function 𝐻 , the penalty function 𝐻𝑐 is also transformed into a linear operator �̂�𝑐 :

�̂�𝑐 =
∑

�⃗�∈

𝐻𝑐 (�⃗�)
|

|

|

�⃗�
⟩⟨

�⃗�||
|

(17)

for its quantum representation. Consequently, the total Hamiltonian takes the form

�̂�total = �̂� + �̂�𝑐 . (18)

As discussed for the Hamiltonian �̂� , the interactions between subsystems in �̂�𝑐 significantly influence the performance of various
quantum algorithms. In the following, we explore possible penalty terms for the remaining manufacturing constraints apart from
the symmetry constraint in Section 2. For this purpose, we examine general categories of constraints that encompass the listed
constraints.

3.2.1. The disorientation constraint as nearest-neighbor coupling
The simplest constraint listed in Section 2 is the disorientation constraint, which limits the ply angle difference between

neighboring plies. In general, a constraint with nearest neighbor coupling can be enforced with a penalty function 𝜂 ∶ {1,… , 𝑑}2 →
R≥0 on each pair of neighboring subsystems 𝑛 and 𝑛 + 1:

𝜂(𝑠𝑛, 𝑠𝑛+1) =

{

𝛾, if (𝑠𝑛, 𝑠𝑛+1) violates the constraint,
0, else,

(19)

where the adjustable parameter 𝛾 > 0 is the added penalty for a single constraint violation. The function 𝜂 is used to define an
operator:

�̂� [𝑛,𝑛+1]
nn =

𝑑
∑

𝑡,𝑡′=1
𝜂(𝑡, 𝑡′) |

|

𝑡𝑡′
⟩⟨

𝑡𝑡′|
|𝑛,𝑛+1 . (20)

As before, the indices of |

|

𝑡𝑡′⟩⟨𝑡𝑡′|
|𝑛,𝑛+1 signify the local action of the operator on subsystems 𝑛 and 𝑛+1. Subsequently, these

operators are summed over all nearest-neighbor pairs to yield the total penalty:

�̂�nn =
𝑁−1
∑

𝑛=1
�̂� [𝑛,𝑛+1]

nn . (21)

The penalty operator exhibits strong parallels with quantum systems that feature nearest-neighbor coupling, such as spin lattice
systems, and extensive research has been conducted on these systems [6,68,91,96–102].

3.2.2. The contiguity constraint as 𝑘-local coupling
The contiguity constraint restricts the number of consecutive same-angle plies to be equal or less than some small integer 𝑁same.

A suitable penalty function evaluates 𝑁same+1 neighboring plies, and adds a penalty, if all plies have the same angle. The contiguity
constraint is therefore a special case of a 𝑘-local constraint with 𝑘 = 𝑁same + 1, that encompasses interactions in a neighborhood of
𝑘 subsystems in a linear chain. The treatment of nearest-neighbor interactions above can be extended to accommodate this case, by
defining:

𝜂(𝑠𝑛, 𝑠𝑛+1,… , 𝑠𝑛+𝑘−1) =

{

𝛾, if (𝑠𝑛, 𝑠𝑛+1,… , 𝑠𝑛+𝑘−1) violates the constraint,
0, else,

(22)

on 𝑘 consecutive subsystems. As before, the parameter 𝛾 controls the magnitude of the added penalty. The corresponding 𝑘-local
operator is given by:

�̂� [𝑛,…,𝑛+𝑘−1]
𝑘-local =

𝑑
∑

𝑡1 ,…,𝑡𝑘=1
𝜂(𝑡1,… , 𝑡𝑘) ||𝑡1 ⋯ 𝑡𝑘⟩⟨𝑡1 ⋯ 𝑡𝑘||𝑛,…,𝑛+𝑘−1 . (23)

The total penalty takes the form:

�̂�𝑘-local =
𝑁−𝑘+1
∑

𝑛=1
�̂� [𝑛,…,𝑛+𝑘−1]
𝑘-local . (24)

As discussed before, algorithms such as QAOA (Section 4.1.2) or quantum phase estimation (QPE) [71,72] require the implemen-
tation of interactions as operations. These higher-order terms typically require decomposition into two-qubit operations, leading
to a significant increase in the total number of operations. Similarly, quantum annealers, which inherently support only second-
order interactions, necessitate the transformation of higher-order terms into quadratic forms [68–70,90–92]. This often involves the
introduction of auxiliary qubits as additional variables [103–106]. Nonetheless, with advancements in quantum technology, future
devices could be capable of managing these heightened operational demands, especially if 𝑘 remains within a manageable range.
7 
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3.2.3. Balanced laminates and ensuring the same ply count for two distinct states
The constraint for balanced laminates requires that the ply angle sequence contains an equal number of plies with angle +𝜃 and

ngle −𝜃, provided 𝜃 is neither 0◦ nor 90◦. This represents a special case of constraints where two states, denoted with 𝑡 and 𝑡′,
ppear an equal number of times in the stacking sequence:

𝑁
∑

𝑛=1
𝛿𝑠𝑛 ,𝑡 =

𝑁
∑

𝑛=1
𝛿𝑠𝑛 ,𝑡′ . (25)

o implement such a penalty function, we can take the squared difference, similar to the loss function of the lamination parameters
n Eq. (7):

𝐻balanced(𝑠) = 𝛾

( 𝑁
∑

𝑛=1
𝛿𝑠𝑛 ,𝑡 −

𝑁
∑

𝑛=1
𝛿𝑠𝑛 ,𝑡′

)2

= 𝛾

( 𝑁
∑

𝑛=1

(

𝛿𝑠𝑛 ,𝑡 − 𝛿𝑠𝑛 ,𝑡′
)

)2

. (26)

s before, the magnitude of the penalty can be adjusted with the parameter 𝛾 ∈ R>0. In order to define the corresponding operator,
we replace a Kronecker delta 𝛿𝑠𝑛 ,𝑡 with the dyadic product |𝑡⟩⟨𝑡|𝑛 on subsystem 𝑛, which turns the classical penalty function into
an operator:

�̂�balanced = 𝛾

( 𝑁
∑

𝑛=1

(

|𝑡⟩⟨𝑡|𝑛 − |

|

𝑡′
⟩⟨

𝑡′|
|𝑛
)

)2

, (27)

where |𝑡⟩⟨𝑡|𝑛 − |

|

𝑡′⟩⟨𝑡′|
|𝑛 is a local operator acting on subsystem 𝑛. This leads to a structure analogous to the Hamiltonian in Eq. (12)

for the lamination parameters, featuring interactions between each pair of subsystems. Consequently, the earlier considerations
regarding quantum algorithms are also relevant here.

3.2.4. The 10%-rule and constraints on the ply count for a given state
The last manufacturing constraint listed in Section 2 is the 10%-rule, which necessitates that certain ply angles, typically 0◦, 90◦

or ±45◦, make up at least 10% of the plies. This constitutes a special case of constraints that, for some state 𝑡, require at least 𝑁𝑡
plies to be in state 𝑡. A suitable penalty function can be defined as:

𝐻10%-rule(𝑠) =

⎧

⎪

⎨

⎪

⎩

0, if ∑𝑁
𝑛=1 𝛿𝑠𝑛 ,𝑡 ≥ 𝑁𝑡,

𝑝
(

𝑁𝑡 −
∑𝑁
𝑛=1 𝛿𝑠𝑛 ,𝑡

)

, else,
(28)

where the function 𝑝(𝑥) characterizes the behavior for constraint violations. Examples include constant, 𝑝(𝑥) = 𝛾, linear 𝑝(𝑥) = 𝛾𝑥 or
power-law 𝑝(𝑥) = 𝛾𝑥𝛼 behavior for some 𝛼, 𝛾 > 0. The according operator is defined as:

�̂�10%-rule =
∑

�⃗�∈

𝐻10%-rule(�⃗�)
|

|

|

�⃗�
⟩⟨

�⃗�||
|

(29)

As before, decomposing the operator into local operators provides insight into dependencies between individual subsystems. As we
show in the appendix A.1, any penalty operator suitable for the 10%-rule contains terms of order 𝑁 −𝑁𝑡 +1 or larger. For the 10%-
ule specifically, 𝑁𝑡 = 0.1𝑁 , the operator contains terms that include roughly 90% of all subsystems. These high-order interactions
resent a notable challenge for many algorithms. Further investigation is vital to determine if and how these interactions can be
fficiently managed in quantum algorithms.

. Selected algorithms in the context SSR

In the previous section, we discussed the representation of the stacking sequence retrieval problem using a basis-state encoding,
long with a Hamiltonian that encodes the loss function and penalties. This approach is general and applicable to a broad range
f algorithms. This is especially true for variational quantum algorithms (VQA) [64–67,88] and quantum annealing [68–70,90–92],
hich are anticipated to be among the first methods to find real-world applications on near-term quantum hardware. Especially VQA
re a diverse family of algorithms with various state-space parametrization, measurement and optimization strategies [66,67,88],
ith ongoing research rapidly extending the amount of available methods. Identifying the optimal strategy for stacking sequence

etrieval and integrating novel approaches will be crucial for demonstrating the effectiveness of quantum computation in this area.
ere, we restrict the discussion to basic standard algorithms in order to illustrate how the presented quantum representation can
e utilized for quantum computation. Specifically, we selected two different VQA for which we conduct state-vector simulations: a
ardware efficient approach and the standard quantum approximate optimization algorithm (QAOA) [65,73]. Additionally, we utilize
tensor-network algorithm, the density matrix renormalization group (DMRG) algorithm [74–79,107], which is a classical variational
lgorithm closely related to one of the VQAs under investigation.

What all these variational algorithms share is a common objective: to minimize the expectation value of the Hamiltonian:
|

|𝜓opt
⟩

= arg min
⟨

𝜓|�̂�|𝜓
⟩

. (30)

|

|𝜓⟩∈
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The resulting state |

|

|

𝜓opt
⟩

represents either the basis state corresponding to the optimal solution or – in cases of multiple optimal
configurations with identical minimal loss – a potential superposition of optimal basis states. Although this objective unifies
variational algorithms, they are differentiated by the specific strategies used to traverse the state space and achieve minimization.

In our demonstrations, we employ the four commonly used angles:

𝜃1 = 0◦, 𝜃2 = +45◦, 𝜃3 = 90◦, 𝜃4 = −45◦. (31)

ssuming a symmetric laminate, we utilize the corresponding lamination parameters as detailed in Eq. (14). This section explores the
mplications of various constraints outlined in Section 3.2 within the context of these algorithms. For our numerical demonstrations
n Section 5, we include a disorientation constraint that limits the ply-angle difference between adjacent plies to 45◦ or less. This
onstraint is breached when neighboring plies are 𝜃1 and 𝜃3, or 𝜃2 and 𝜃4, and is enforced via a penalty term as discussed in
ection 3.2.1.

In the remainder of this section, we delve into algorithm-specific considerations. To conclude, we discuss the similarities between
he chosen hardware-efficient approach and DMRG, in contrast to QAOA. The results of our numerical demonstrations are detailed
n the following Section 5.

.1. Variational quantum algorithms

Variational quantum algorithms (VQA) employ parameterized quantum circuits to define a subspace of the Hilbert space  using
eal, continuous parameters [66,67]. By configuring a quantum circuit with 𝑁𝑝 parameters 𝑝 ∈ R𝑁𝑝 , we can prepare the state
|

|

𝜓(𝑝)
⟩

∈  on a quantum computer. This setup enables the repeated preparation and measurement of this state to estimate
the Hamiltonian’s expectation value, ⟨�̂�⟩𝜓 (𝑝) =

⟨

𝜓(𝑝)|�̂�|𝜓(𝑝)
⟩

. The minimization itself is carried out by a classical optimizer,
which iteratively selects parameters 𝑝 and executes calls to the function ⟨�̂�⟩𝜓 (𝑝) based on its specific strategy. Leveraging limited
quantum resources for essential computations while relying on classical systems for optimization makes VQAs particularly suitable
for near-term quantum devices.

Most contemporary quantum computers are based on qubits, which are characterized by two basis states |

|

|

0𝑞
⟩

and |

|

|

1𝑞
⟩

. To
istinguish the qubit states from the ply states, we apply a subscript 𝑞 to denote qubit states. The basis states |

|

𝑠
⟩

∈  therefore
eed to be represented in terms of qubit states. In the case of the above mentioned 4 ply-angles, a subspace 𝑛 can be implemented
s 2 qubits using a binary encoding, which we specifically choose to be:

|1⟩ ≡ |

|

|

00𝑞
⟩

|2⟩ ≡ |

|

|

01𝑞
⟩

|3⟩ ≡ |

|

|

11𝑞
⟩

|4⟩ ≡ |

|

|

10𝑞
⟩

. (32)

n this ply-state encoding, flipping one of the qubits corresponds to a ply-angle change of +45◦ or −45◦, while changing both qubits
esults in a 90◦ rotation.

For a general non-diagonal Hamiltonian, the expectation value is typically determined by expressing the Hamiltonian using Pauli
perators �̂�, 𝑌 , and �̂� applied to the qubits:

�̂� = |

|

|

0𝑞
⟩⟨

1𝑞
|

|

|

+ |

|

|

1𝑞
⟩⟨

0𝑞
|

|

|

𝑌 = 𝑖 (||
|

0𝑞
⟩⟨

1𝑞
|

|

|

− |

|

|

1𝑞
⟩⟨

0𝑞
|

|

|

) 𝑍 = |

|

|

0𝑞
⟩⟨

0𝑞
|

|

|

− |

|

|

1𝑞
⟩⟨

1𝑞
|

|

|

. (33)

he expectation value for individual terms is measured using appropriate basis rotations. Due to linearity, the total expectation value
quates to the sum of these individual contributions. In our specific scenario, however, the Hamiltonian is diagonal in the basis
f stacking sequences and, by extension, in the qubit basis. This configuration allows for straightforward repeated measurements
f a state and aggregation of loss function values from individual outcomes, divided by the total number of counts. Although
his simplifies the measurement process, formulating the Hamiltonian in terms of Pauli operators remains a necessity for specific
lgorithms, as demonstrated for QAOA in Section 4.1.2.

As mentioned earlier, VQAs exhibit significant variability in state preparation circuits – ranging from problem-inspired [64,65,
08–110] to hardware efficient [111,112] – but also in state measurements and optimization strategies. Recent developments in-
ludes adaptive approaches to enhance the performance of the algorithm [113–118], and identifying VQAs that are optimally suited
or problems like stacking sequence retrieval will necessitate extensive research and will likely hinge on ongoing advancements in
his dynamic field. In this work, we focus on demonstrating our methodology using two specific standard VQAs: a hardware-efficient
pproach and the standard QAOA.

.1.1. A hardware-efficient approach
Among variational quantum algorithms, hardware-efficient approaches are distinguished by their utilization of short-depth

uantum circuits. These circuits efficiently utilize available gates within a specific quantum computing architecture to parameterize a
ubstantial portion of the state space. In this study, we employ a state preparation circuit, as illustrated in Fig. 2, which incorporates
̂𝑦(𝑝) single-qubit rotations to facilitate dependency on the continuous parameters 𝑝, and CNOT gates to generate entanglement
mong the qubits. Typically, in hardware-efficient approaches, the state preparation circuit features a block of gates that is repeated
certain number of times. Adjusting the number of repetitions modulates the number of parameters, enabling exploration of a

arger subspace at the cost of increasing the complexity of optimization. A particular feature of our selected state preparation circuit
s the exclusive connection of neighboring qubits by the CNOT gates. This particular state preparation circuit has previously been
mployed, for instance in [116].

A significant obstacle in hardware-efficient VQA is the optimization of a large number of parameters [119] and several strategies

ave been developed to tackle this issue. These include techniques that optimize only a subset of parameters at a time, such as

9 
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Fig. 2. Parameterized quantum circuit for hardware-efficient approach.

optimizing different segments of the parameterized circuit sequentially [120–122]. In our approach, we adopt an optimization
strategy that sequentially optimizes two neighboring qubits at a time, starting either from the qubits corresponding to plies 𝑛 = 1 or
𝑛 = 𝑁 . This sequence progresses one qubit at a time, culminating after 𝑁 − 1 pairwise optimizations. The process involves multiple
sweeps of local optimizations across the entire stack until the optimization converges. This method bears notable similarities to the
DMRG algorithm, which we discuss subsequent to the QAOA.

4.1.2. QAOA
The most recognized variational quantum algorithm for combinatorial optimization is the quantum approximate optimization

algorithm (QAOA) [65,123], which employs two distinct types of operators in its state preparation circuit. The problem unitary
is defined by the exponential of the Hamiltonian:

𝑈𝐶 (𝛾) = exp
(

−𝑖𝛾�̂�
)

, (34)

and the mixer unitary is articulated through the exponential of �̂� operators applied to all 𝑁𝑞 = 2𝑁 qubits:

𝑈𝑀 (𝛽) = exp
⎛

⎜

⎜

⎝

−𝑖𝛽
𝑁𝑞
∑

𝑗=1
�̂�𝑗

⎞

⎟

⎟

⎠

, (35)

where �̂�𝑗 represents the operator �̂� on qubit 𝑗. Each operator introduces a single parameter – 𝛽 ∈ R or 𝛾 ∈ R – into the circuit.
The entire circuit begins by applying single-qubit rotations to each qubit to prepare the state |+⟩⊗𝑁𝑞 , where |+⟩ = 1

√

2
(||
|

0𝑞
⟩

+ |

|

|

1𝑞
⟩

).
ubsequently, a defined number of 𝑁𝑟 repetitions of the problem and mixer unitaries are alternately executed on this initial state:

|

|

|

𝜓(𝛽, 𝛾)
⟩

= 𝑈𝑀 (𝛽𝑁𝑟 )𝑈𝐶 (𝛾𝑁𝑟 )…𝑈𝑀 (𝛽1)𝑈𝐶 (𝛾1) |+⟩
⊗𝑁𝑞 . (36)

hus, the complete quantum circuit that prepares |

|

|

𝜓(𝛽, 𝛾)
⟩

comprises 2𝑁𝑟 continuous parameters that need optimization.
To implement the state preparation circuit on a quantum computer, the problem and mixer unitaries must be converted into

sequence of available gates. As common practice, we focus on the single-qubits rotations �̂�𝑥, �̂�𝑦 and �̂�𝑧, and the CNOT gate.
Given that shorter circuits are quicker to evaluate and less susceptible to errors, the total number of gates in the decomposition
significantly influences the performance of the algorithm. The mixer unitary, which is always the same for standard QAOA, is
typically decomposed into a layer of parallel single-qubit rotations and therefore only has a minor impact on the circuit depth.

Conversely, the specific form of the Hamiltonian significantly affects the gate count required for the problem unitary. Initially,
we analyze the loss function Hamiltonian in Eq. (12), which is expanded to take the form:

�̂� =
∑

𝑁
∑

�̂� [𝑛]
𝑋,𝑙�̂�

[𝑛′]
𝑋,𝑙 . (37)
𝑋,𝑙 𝑛,𝑛′=1

10 
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Furthermore, we can substitute the definition of the local matrices in Eq. (13) to obtain:

�̂� =
∑

𝑋,𝑙

𝑁
∑

𝑛,𝑛′=1

𝑑
∑

𝑡,𝑡′=1
�̂�𝑋,𝑙(𝑡𝑛)�̂�𝑋,𝑙(𝑡′𝑛′ )

|

|

𝑡𝑡′
⟩⟨

𝑡𝑡′|
|𝑛𝑛′ . (38)

The operators |

|

𝑡𝑡′⟩⟨𝑡𝑡′|
|𝑛𝑛′ = |𝑡⟩⟨𝑡|𝑛 ||𝑡

′
⟩⟨𝑡′|

|𝑛′ act on subsystems 𝑛 and 𝑛′. Following the encoding in Eq. (32), we express an operator
|𝑠⟩⟨𝑠| on a single subsystem with qubit operators as follows:

|1⟩⟨1| ≡ |

|

|

00𝑞
⟩⟨

00𝑞
|

|

|

= 1
4
(

𝐼 ⊗ 𝐼 + 𝐼 ⊗ �̂� + �̂� ⊗ �̂� + �̂� ⊗ 𝐼
)

, (39)

|2⟩⟨2| ≡ |

|

|

01𝑞
⟩⟨

01𝑞
|

|

|

= 1
4
(

𝐼 ⊗ 𝐼 − 𝐼 ⊗ �̂� − �̂� ⊗ �̂� + �̂� ⊗ 𝐼
)

,

|3⟩⟨3| ≡ |

|

|

11𝑞
⟩⟨

11𝑞
|

|

|

= 1
4
(

𝐼 ⊗ 𝐼 − 𝐼 ⊗ �̂� + �̂� ⊗ �̂� − �̂� ⊗ 𝐼
)

,

|4⟩⟨4| ≡ |

|

|

10𝑞
⟩⟨

10𝑞
|

|

|

= 1
4
(

𝐼 ⊗ 𝐼 + 𝐼 ⊗ �̂� − �̂� ⊗ �̂� − �̂� ⊗ 𝐼
)

.

Consequently, an operator |

|

𝑡𝑡′⟩⟨𝑡𝑡′|
|𝑛𝑛′ contains terms with up to 𝑑 = 4 �̂�-operators. After this substitution, all terms in the

Hamiltonian with the same operators can be collected.
Given that terms of the Hamiltonian �̂� only contain �̂�-operators, they all commute. The exponential function in the problem

unitary 𝑈𝐶 in Eq. (34) can therefore be separated into the exponential function of the individual terms. The number of terms
therefore has a direct impact on the depth of the decomposed circuit. Furthermore, the exponential function of a term comprising
only identity operators and a number of 𝑁𝑍 Pauli-�̂� operators can be implemented with 2𝑁𝑍 CNOT-gates and a single-qubit �̂�𝑧
rotation [7]. It is therefore favorable to only have low-order terms. Due to its construction and the chosen qubit-encoding, the loss
function Hamiltonian only contains terms up to fourth order. The expansion also includes a scalar term, only consisting of identity
operators, which merely adds a phase to the exponential and can thus be ignored.

We can calculate the number of possible terms by examining the different scenarios: There are 2𝑁 ways to place a single �̂�
operator. For second-order terms, there are 𝑁 ways to place �̂� on a pair of qubits corresponding to one ply and 4𝑁(𝑁 −1) ways to
lace two �̂� operators on different plies. For third-order terms, there are 2𝑁(𝑁−1) ways to place a pair of �̂� operators on one ply and
single one on another ply. Lastly, there are 𝑁(𝑁 −1) possible fourth-order terms resulting from placing two pairs on two different
lies. Consequently, the unitary 𝑈𝐶 contains at most 2𝑁 terms with one, 4𝑁2−3𝑁 terms with two, 2𝑁(𝑁 −1) terms with three, and
(𝑁 − 1) terms with four �̂� operators. The quadratic nature of the Hamiltonian results in an 𝑂(𝑁2) behavior in both the number

f terms and the required number of two-qubit gates in the problem unitary 𝑈𝐶 . Given that this circuit is executed 𝑁𝑟 times, the
omplexity can significantly increase with a larger number of plies 𝑁 , potentially exceeding the capabilities of near-future quantum
evices. Nevertheless, the quadratic scaling and the lower order of the terms are generally viewed as favorable when compared to
he potential complexity of terms in a general Hamiltonian.

We can similarly analyze the penalty operators described in Section 3.2. The nearest-neighbor constraint, detailed in Eq. (21),
omprises solely second-order terms. Once the qubit encoding is applied, these terms yield at most four �̂� operators. Since
hese operators are already incorporated into the loss function Hamiltonian, the integration of the penalty terms and subsequent
implification of the Hamiltonian do not increase the number of terms or their order. Consequently, the circuit depth remains
nchanged upon adding the penalty term. Similarly, the penalty for balanced laminates, as specified in Eq. (27), is quadratic and
an be added to the Hamiltonian without increasing the gate count.

The situation changes when considering the penalty operators for the 𝑘-local constraint in Eq. (24). These terms involve operators
n 𝑘 consecutive plies, and after encoding, the number of �̂� operators can escalate to 2𝑘, necessitating up to 4𝑘 two-qubit gates per
erm. However, since the operators in a term are restricted to consecutive plies, the total number of possible terms scales as 𝑂(𝑁),
ssuming 𝑘 remains constant. Thus, if 𝑘 is not excessively large, the gate count required to implement this operator might still be
anageable on near-term quantum computers.

As previously discussed in Section 3.2.4, any expansion of the penalty operator for the 10%-rule, as delineated in Eq. (29),
ntroduces high-order terms that scale with the number of plies 𝑁 . Implementing the exponential function of these high-order
erms presents a significant challenge to enforcing the 10%-rule in QAOA using a penalty term.

In our demonstrations in section Section 5, we focus exclusively on implementing the disorientation constraint as a nearest-
eighbor constraint.

.2. DMRG

The hardware-efficient approach, along with the selected optimization procedure, shares many similarities with a specific
ensor network method known as the density matrix renormalization group (DMRG) algorithm [74–79,107]. A principal challenge
n simulating quantum-based calculations on classical computers is the exponentially large state space, making it impractical to
epresent a state by storing all its components. Tensor networks address this challenge by enabling the representation of high-
rder tensors through a network of interconnected low-order tensors [124–131]. Although these methods have limitations and
re unlikely to efficiently simulate full-scale fault-tolerant quantum computations, they have proven highly effective in studying
any-body quantum mechanics and simulating quantum circuits. Remarkably, some quantum-computing experiments that claimed

o demonstrate quantum advantage were later classically simulated with tensor network methods [6,132–134] and [135–137].
11 
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The DMRG algorithm is a specialized tensor network method designed to identify the ground state of one-dimensional many-body
uantum systems. It employs specific tensor network structures – matrix product states (MPS) and matrix product operators (MPO)
to represent quantum states and operators, respectively. The optimization procedure of the DMRG algorithm mirrors that of our
ardware-efficient approach described in Section 4.1.1. Specifically, much like only adjacent qubits are interconnected by CNOT
ates in our approach, the MPS configuration connects local tensors across neighboring subsystems. Moreover, the optimization
n DMRG involves local optimizations on neighboring subsystem pairs, which is akin to the localized pairwise optimization of
djacent qubits used in our hardware-efficient strategy. In fact, and as we discuss later on, the hardware-efficient circuit can easily be
onverted into an MPS. A key distinction from the quantum algorithms is that MPS and MPO representations are defined directly on
he ply-subsystems 𝑛, eliminating the need for qubit decomposition. Thus, optimizations are conducted on neighboring subsystems
ather than qubits.

The main challenge of applying the DMRG algorithm to the SSR problem is finding an MPO representation of the loss function
amiltonian and the penalty operators. We begin our discussion by developing an MPO representation for the loss function, followed
y an examination of the various penalty operators in Section 3.2.

.2.1. An MPO representation of the loss function Hamiltonian
In this section, we construct an MPO representation of the loss function Hamiltonian �̂� in Eq. (12). As we discuss further below,

summation of matrix product operators can straightforwardly implemented in MPO form. Thus, we initially concentrate on a single
erm �̂�𝑋,𝑙, corresponding to the lamination parameter 𝑣𝑋𝑙 :

�̂� =
∑

𝑋,𝑙
�̂�𝑋,𝑙 , �̂�𝑋,𝑙 =

( 𝑁
∑

𝑛=1
�̂� [𝑛]
𝑋,𝑙

)2

. (40)

or clarity, we define the matrix elements for states |

|

𝑠
⟩

, ||
|

𝑠′
⟩

∈  of the diagonal operator �̂�𝑋,𝑙 as:

ℎ𝑠,𝑠′ ∶=
⟨

𝑠|
|

�̂�𝑋,𝑙
|

|

𝑠′
⟩

= 𝛿𝑠,𝑠′ℎ𝑠, ℎ𝑠 =
⟨

𝑠|
|

�̂�|

|

𝑠
⟩

, (41)

mplying:

�̂�𝑋,𝑙 =
∑

�⃗�,�⃗�′∈

ℎ�⃗�,�⃗�′
|

|

|

�⃗�
⟩⟨

�⃗�′||
|

=
∑

�⃗�∈

ℎ�⃗�
|

|

|

�⃗�
⟩⟨

�⃗�||
|

. (42)

imilarly, we denote the eigenvalues of the local operators �̂� [𝑛]
𝑋,𝑙 as:

ℎ[𝑛]𝑠𝑛 =
⟨

𝑠𝑛|�̂�
[𝑛]
𝑋,𝑙|𝑠𝑛

⟩

= 𝐻 [𝑛]
𝑋,𝑙(𝑠𝑛), (43)

where, according to the definition of the loss function, we have:

ℎ𝑠 =

(

∑

𝑛=1
ℎ[𝑛]𝑠𝑛

)2

. (44)

To construct the MPO representation, we aim to define a tensor 𝑊 [1] sized 𝑑 × 𝑑 × 𝑏1, a tensor 𝑊 [𝑁] sized 𝑑 × 𝑑 × 𝑏𝑁−1, and
tensors 𝑊 [𝑛] for 1 < 𝑛 < 𝑁 sized 𝑑 × 𝑑 × 𝑏𝑛−1 × 𝑏𝑛, such that:

ℎ𝑠,𝑠′ = 𝑊 [1]
𝑠1𝑠′1

𝑊 [2]
𝑠2𝑠′2

⋯𝑊 [𝑁−1]
𝑠𝑁−1𝑠′𝑁−1

𝑊 [𝑁]
𝑠𝑁 𝑠′𝑁

, (45)

where the bond dimensions 𝑏1,… , 𝑏𝑁−1 are parameters yet to be determined based on the specific MPO representation required.
Note, that for specific 𝑠, 𝑠′ ∈ , the matrices 𝑊 [𝑛]

𝑠𝑛 ,𝑠′𝑛
are multiplied with matrix multiplication, with the ones for 𝑛 = 1 and 𝑛 = 𝑁

taken as a row and column vector respectively. Given that the Hamiltonian is diagonal, the tensors 𝑊 [𝑛] are also assumed diagonal
in the indices 𝑠𝑛 and 𝑠′𝑛:

𝑊 [𝑛]
𝑠𝑛𝑠′𝑛

= 𝛿𝑠𝑛𝑠′𝑛𝑊
[𝑛]
𝑠𝑛
, 𝑊 [𝑛]

𝑠𝑛
∶= 𝑊 [𝑛]

𝑠𝑛𝑠𝑛
. (46)

Thus, to reflect Eq. (44), matrices 𝑊 [𝑛]
𝑠𝑛 must be defined such that:

(

∑

𝑛=1
ℎ[𝑛]𝑠𝑛

)2

= 𝑊 [1]
𝑠1
𝑊 [2]
𝑠2

⋯𝑊 [𝑁]
𝑠𝑁

, (47)

and the entire MPO representation for the matrix elements ℎ𝑠,𝑠′ can be realized by multiplying a Kronecker delta 𝛿𝑠𝑛 ,𝑠′𝑛 with the
resulting matrices 𝑊 [𝑛]

𝑠𝑛 .
Our approach decomposes ℎ𝑠 using a matrix whose repeated multiplication yields ℎ𝑠 as the top-right element. Specifically, we

define:

𝑀(𝑥) =

⎡

⎢

⎢

⎢

1
√

2𝑥 𝑥2

0 1
√

2𝑥

⎤

⎥

⎥

⎥

, (48)
⎣

0 0 1
⎦
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which follows the multiplication rule:

𝑀(𝑥)𝑀(𝑦) =𝑀(𝑥 + 𝑦). (49)

By induction, multiplying 𝑁 of these matrices, each associated with the eigenvalues ℎ[𝑛]𝑠𝑛 , results in:

𝑁
∏

𝑛=1
𝑀(ℎ[𝑛]𝑠𝑛 ) =𝑀

(

∑

𝑛
ℎ[𝑛]𝑠𝑛

)

=

⎡

⎢

⎢

⎢

⎢

⎣

1
√

2
(

∑

𝑛 ℎ
[𝑛]
𝑠𝑛

) (

∑

𝑛 ℎ
[𝑛]
𝑠𝑛

)2

0 1
√

2
(

∑

𝑛 ℎ
[𝑛]
𝑠𝑛

)

0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (50)

n MPO representation of �̂�𝑋,𝑙 as in Eq. (45) can thus be obtained by breaking it down into these matrices:

𝑊 [𝑛]
𝑠𝑛𝑠′𝑛

= 𝛿𝑠𝑛𝑠′𝑛𝑀(ℎ[𝑛]𝑠𝑛 ) (51)

or 1 < 𝑛 < 𝑁 , with the first row and third column of the first and last matrix selected to yield
(

∑

𝑛 ℎ
[𝑛]
𝑠𝑛

)2
:

𝑊 [1]
𝑠1𝑠′1

=
[

1 0 0
]

𝛿𝑠1𝑠′1𝑀(ℎ[1]𝑠1 ), (52)

𝑊 [𝑁]
𝑠𝑁 𝑠′𝑁

= 𝛿𝑠𝑁 𝑠′𝑁𝑀(ℎ[𝑁]
𝑠𝑁

)
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

.

The total loss function Hamiltonian in Eq. (12) compiles �̂�𝑋,𝑙 for all lamination parameters 𝑋 = 𝐴,𝐵,𝐷 and 𝑙 = 1, 2, 3, 4, excluding
= 𝐵 for symmetric laminates. This sum of matrix product operators (MPOs) can theoretically be realized by stacking the matrices
[𝑛]
𝑠𝑛𝑠′𝑛

for each 𝑛 into block-diagonal matrices. However, thanks to the linearity of the expectation value
⟨

𝜓|�̂�|𝜓
⟩

, the DMRG method
an efficiently iterate over each term individually by calculating an environment tensor for each term and subsequently summing
hese tensors element-wise to construct the overall environment tensor.

.2.2. An MPO representation for nearest-neighbor constraints
As discussed in Section 3.2, we can implement nearest-neighbor constraints as penalty functions, which can be expressed as

perators and added to the Hamiltonian. The sum of the operators in Eq. (21) effectively counts the constraint violations. There,
e defined the added penalty for one constraint violation to be

𝜂(𝑠𝑛, 𝑠𝑛+1) =

{

𝛾, if (𝑠𝑛, 𝑠𝑛+1) violates constraint,
0, else,

(53)

here 𝛾 > 0 is the penalty for a single constraint violation. Similar to other terms in the Hamiltonian, the penalty function needs
o be represented as an MPO. As before, we construct a matrix that calculates the desired result, which is the count of constraint
iolations, in the top-right corner. For this purpose, we represent the function 𝜂(𝑠𝑛, 𝑠𝑛+1) as the dot product of two vectors 𝑝(𝑠𝑛) and
(⃗𝑠𝑛+1), both of dimension 𝑑:

𝜂(𝑠𝑛, 𝑠𝑛+1) = 𝑝(𝑠𝑛) ⋅ 𝑞(𝑠𝑛+1) =
𝑑
∑

𝑘=1
𝑝𝑘(𝑠𝑛)𝑞𝑘(𝑠𝑛+1). (54)

e achieve this by using 𝑝(𝑠𝑛) as an indicator for the state 𝑠𝑛, and 𝑞(𝑠𝑛+1) to indicate which neighboring ply of state 𝑠𝑛 leads to a
onstraint violation:

𝑝𝑘(𝑠𝑛) = 𝛿𝑘,𝑠𝑛 , 𝑞𝑘(𝑠𝑛+1) = 𝜂(𝑘, 𝑠𝑛+1). (55)

f we define a matrix 𝑀(𝑠) based on 𝑝 and 𝑞 as:

𝑀(𝑠) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 𝑝1(𝑠) ⋯ 𝑝𝑑 (𝑠) 0
0 0 ⋯ 0 𝑞1(𝑠)
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 𝑞𝑑 (𝑠)
0 0 ⋯ 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (56)

t can be shown by induction that the product of these matrices yields the count of constraint violations in the top-right corner of
he resulting matrix:

[

1 0 0
]

( 𝑁
∏

𝑛=1
𝑀(𝑠𝑛)

)

⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

=
𝑁−1
∑

𝑛=1
𝜂(𝑠𝑛, 𝑠𝑛+1). (57)

his matrix form is similar to the treatment of operators in [138,139]. To retrieve the penalty in MPO form, we can add Kronecker

eltas analogously to before.
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In the particular case of a disorientation constraint of 45◦, the constraint is violated when neighboring plies are 𝜃1 and 𝜃3, or 𝜃2
and 𝜃4. In this case, we can define the vectors 𝑝(𝑠) and 𝑞(𝑠) for the MPO representation of the penalty as:

𝑝𝑘(𝑠) = 𝛿𝑘,𝑠, 𝑞𝑘(𝑠) = 𝛾(𝛿𝑘,𝑠+2 + 𝛿𝑘,𝑠−2), (58)

where 𝛾 represents the penalty added for a single constraint violation.

4.2.3. An MPO representation for the contiguity constraint
For the contiguity constraint, we extend the approach for nearest-neighbor constraints to 𝑘-local constraints. This extension

involves modifying the penalty function, which is now defined for a sequence of 𝑘 subsystems. Specifically, the penalty function
𝜂(𝑠𝑛, 𝑠𝑛+1,… , 𝑠𝑛+𝑘−1) assigns a penalty of 𝛾 if the sequence (𝑠𝑛, 𝑠𝑛+1,… , 𝑠𝑛+𝑘−1) violates the constraint, and 0 otherwise. To represent
this penalty function, we seek 𝑘 vectors 𝑝(1)(𝑠),… , 𝑝(𝑘)(𝑠) ∈ C𝑑 for each ply angle 𝑠 ∈ {1,… , 𝑑} such that:

𝜂(𝑠𝑛, 𝑠𝑛+1,… , 𝑠𝑛+𝑘−1) =
𝑑
∑

𝑗=1
𝑝(1)𝑗 (𝑠𝑛) 𝑝

(2)
𝑗 (𝑠𝑛+1)⋯ 𝑝(𝑘)𝑗 (𝑠𝑛+𝑘−1). (59)

Here, 𝑑 is the number of allowed ply angles, and 𝑑, a positive integer, denotes the size of these vectors. For the specific case of the
contiguity constraint, which penalizes 𝑘 consecutive plies with the same ply-angle, we find an effective representation with 𝑑 = 𝑑.
The vectors are defined as:

𝑝(1)𝑗 (𝑠) = ⋯ = 𝑝(𝑘−1)𝑗 (𝑠) = 𝛿𝑗𝑠, 𝑝(𝑘)𝑗 (𝑠) = 𝛾𝛿𝑗𝑠, (60)

where we chose 𝛾 to included 𝑝(𝑘)𝑗 (𝑠). Other possibilities include multiplying 𝛾 to another vector or distribute it by multiplying 𝛾
1
𝑘

to each of the vector.
We extend the definition of the matrix 𝑀(𝑠), as outlined in Eq. (56), to adapt it for the 𝑘-local scenario. This adaptation involves

constructing a square matrix of dimension 𝑑(𝑘 − 1) + 2. The vectors 𝑝(1)(𝑠) and 𝑝(𝑘)(𝑠) are incorporated in the first row and last
column respectively, similar to Eq. (56). However, to cater to the 𝑘-local aspect, we integrate additional columns and rows. These
new elements form a diagonal matrix diag

(

𝑝(2)(𝑠),… , 𝑝(𝑘−1)(𝑠)
)

of dimension 𝑑(𝑘− 2), with the elements of vectors 𝑝(2)(𝑠) to 𝑝(𝑘−1)(𝑠)
listed sequentially along the diagonal. The resulting matrix 𝑀(𝑠) for the 𝑘-local case can thus be represented in block-matrix form
as:

𝑀(𝑠) =

⎡

⎢

⎢

⎢

⎢

⎣

1
(

𝑝(1)(𝑠)
)T 𝟎 0

𝟎 𝟎 diag
(

𝑝(2)(𝑠),… , 𝑝(𝑘−1)(𝑠)
)

𝟎
𝟎 𝟎 𝟎 𝑝(𝑘)(𝑠)
𝟎 𝟎 𝟎 1

⎤

⎥

⎥

⎥

⎥

⎦

. (61)

In this matrix,
(

𝑝(1)(𝑠)
)T is a row vector and 𝑝(𝑘)(𝑠) is a column vector, both of size 𝑑. The matrices 𝟎 contain only zeros and are

sized appropriately. Single-element matrices containing 0 or 1 are denoted in regular font weight. As in Section 4.2.2, a product of
matrices 𝑀(𝑠1)⋯𝑀(𝑠𝑁 ) counts the penalties for constraint violations in the top right corner:

[

1 0 ⋯ 0
]

𝑀(𝑠1)⋯𝑀(𝑠𝑁 )

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎦

=
𝑁−𝑘+1
∑

𝑛=1
𝜂(𝑠𝑛,… , 𝑠𝑛+𝑘−1), (62)

where the vectors surrounding the product select for the first row and last column. Following, the element-wise (or Hadamard)
product of two vectors, 𝑎 and �⃗�, is denoted by 𝑎 ⊙ �⃗�, and is defined as:

(𝑎 ⊙ �⃗�)𝑗 = 𝑎𝑗𝑏𝑗 . (63)

To illustrate this, consider the action of a single matrix 𝑀(𝑠) on a vector. For an arbitrary complex number 𝑎 ∈ C and vectors
�⃗�(𝑗) ∈ C𝑑 for 𝑗 = 1,… , 𝑘 − 1, the matrix operation is given by:

𝑀(𝑠)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎
�⃗�(1)

�⃗�(2)

⋮
�⃗�(𝑘−2)

�⃗�(𝑘−1)

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎 + 𝑝(1)(𝑠) ⋅ �⃗�(1)

𝑝(2)(𝑠)⊙ �⃗�(2)

𝑝(3)(𝑠)⊙ �⃗�(3)

⋮
𝑝(𝑘−1)(𝑠)⊙ �⃗�(𝑘−1)

𝑝(𝑘)(𝑠)
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (64)

In this operation, each vector �⃗�(𝑗) is elevated one position and then multiplied element-wise with the corresponding vector 𝑝(𝑗)(𝑠).
⃗(1) (1) (𝑘)
The top vector 𝑏 undergoes a dot product with 𝑝 (𝑠), which is added to the scalar 𝑎. The vector 𝑝 (𝑠) is inserted into the bottom
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slot that becomes vacant. Consequently, when the matrices in Eq. (62) are multiplied from right to left, we observe the sequential
accumulation and elevation of the vectors 𝑝(𝑘). This is depicted in the following process:

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎦

𝑀(𝑠𝑁 )⋅
⟶

⎡

⎢

⎢

⎢

⎢

⎣

0
𝟎𝑑(𝑘−2)
𝑝(𝑘)(𝑠𝑁 )

1

⎤

⎥

⎥

⎥

⎥

⎦

𝑀(𝑠𝑁−1)⋅
⟶

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
𝟎𝑑(𝑘−3)

𝑝(𝑘−1)(𝑠𝑁−1)⊙ 𝑝(𝑘)(𝑠𝑁 )
𝑝(𝑘)(𝑠𝑁−1)

1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑀(𝑠𝑁−2)⋅
⟶ ⋯ (65)

𝑀(𝑠𝑁−𝑘+2)⋅
⟶

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
𝑝(2)(𝑠𝑁−𝑘+2)⊙⋯⊙ 𝑝(𝑘)(𝑠𝑁 )

⋮
𝑝(𝑘−1)(𝑠𝑁−𝑘+2)⊙ 𝑝(𝑘)(𝑠𝑁−𝑘+3)

𝑝(𝑘)(𝑠𝑁−𝑘+2)
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑀(𝑠𝑁−𝑘+1)⋅
⟶

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜂(𝑠𝑁−𝑘+1,… , 𝑠𝑁 )
𝑝(2)(𝑠𝑁−𝑘+1)⊙⋯⊙ 𝑝(𝑘)(𝑠𝑁−1)

⋮
𝑝(𝑘−1)(𝑠𝑁−𝑘+1)⊙ 𝑝(𝑘)(𝑠𝑁−𝑘+2)

𝑝(𝑘)(𝑠𝑁−𝑘+1)
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

n this sequence, the suffixes of the matrices 𝟎 indicate their size. Upon integrating the matrix 𝑀(𝑠𝑁−𝑘+1), the accurate penalty for
he last 𝑘 subsystems, from 𝑁 − 𝑘 + 1 to 𝑁 , is added to the first row. The elements below are positioned to include the correct
enalty for the subsystems from 𝑁 − 𝑘 to 𝑁 − 1 when the subsequent matrix 𝑀(𝑠𝑁−𝑘) is integrated into the product. By continuing
his process for all matrices and then selecting the first row, the correct penalty for the entire stacking sequence 𝑠 is computed,
alidating Eq. (62).

The matrices resulting from this formulation, each having a dimension of 𝑑(𝑘− 1) + 2, are notably larger compared to the other
POs we have previously discussed. However, as this only effects tensor contractions and not the much more costly eigenvalue

earch in the DMRG algorithm, the impact on the runtime remains manageable. Nevertheless, it remains to be seen how DMRG will
avigate these intricate constraints and what implications they may have on the solution’s accuracy.

.2.4. An MPO representation for balanced laminates
As outlined in Section 3.2, the constraint for balanced laminates, as well as generalized constraints where two states, 𝑠 and 𝑡,

ppear an equal number of times in a stacking sequence, can be expressed using a penalty operator:

�̂�balanced = 𝛾

( 𝑁
∑

𝑛=1
�̂� [𝑛]

)2

, (66)

here the local operators �̂� [𝑛] are defined for each subsystem 𝑛 as:

�̂� [𝑛] = |𝑠⟩⟨𝑠|𝑛 − |𝑡⟩⟨𝑡|𝑛 =
𝑑
∑

𝑠𝑛=1

(

𝛿𝑠𝑛 ,𝑠 − 𝛿𝑠𝑛 ,𝑡
)

|

|

𝑠𝑛⟩⟨𝑠𝑛||𝑛 . (67)

iven that the penalty operator bears similarity to the Hamiltonian form for the lamination parameters, as seen in Eq. (40), the
ame methodology discussed in Section 4.2.1 can be applied. For this, we set the eigenvalues ℎ[𝑛]𝑠𝑛 of the system to:

ℎ[𝑛]𝑠𝑛 = 𝛿𝑠𝑛 ,𝑠 − 𝛿𝑠𝑛 ,𝑡, (68)

ielding a representation of the penalty operator �̂� (balanced)
penalty in MPO form. The factor 𝛾 can be included by multiplying it to any one

f the local tensors.

.2.5. An MPO representation for the 10%-rule
As detailed in Section 3.2, constraints such as the 10%-rule require a minimum of 𝑁𝑠 plies to be in a specific state 𝑠. For this

onstraint, we implement a linear penalty function:

𝐻10%-rule(𝑠) =

⎧

⎪

⎨

⎪

⎩

0, if ∑𝑁
𝑛=1 𝛿𝑠𝑛 ,𝑠 ≥ 𝑁𝑠,

𝛾
(

𝑁𝑠 −
∑𝑁
𝑛=1 𝛿𝑠𝑛 ,𝑠

)

, else,
(69)

here the parameter 𝛾 > 0 controls the magnitude of the added penalty. While an expansion of the according operator into
ingle-site operators is more intricate, as discussed in Section 3.2, a straightforward representation as an MPO can be found via
he decomposition:

𝐻10%-rule(𝑠) =
[

1 0 ⋯ 0
]

𝑀(𝑠1)⋯𝑀(𝑠𝑁 )

⎡

⎢

⎢

⎢

⎢

𝛾𝑁𝑠
−𝛾
⋮

⎤

⎥

⎥

⎥

⎥

, (70)
⎣

−𝛾
⎦
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where each 𝑀(𝑠𝑛) is a square matrix of dimension 𝑁𝑠 + 1. For 𝑠𝑛 = 𝑠, 𝑀(𝑠) is defined as:

𝑀(𝑠) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 0 1
0 0 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (71)

nd for 𝑠𝑛 ≠ 𝑠, it is equivalent to the identity matrix:

𝑀(𝑠𝑛) = 𝐈𝑁𝑠+1 for 𝑠𝑛 ≠ 𝑛. (72)

onsequently, multiplying 𝑀(𝑠𝑛) with a vector 𝑎 ∈ C𝑁𝑠+1 leaves 𝑎 unchanged if 𝑠𝑛 ≠ 𝑠. However, for 𝑠𝑛 = 𝑠, it shifts all elements
elow the first row up by one position, combines the first two elements in the first row, and appends a zero at the end:

𝑀(𝑠)

⎡

⎢

⎢

⎢

⎢

⎣

𝑎1
𝑎2
⋮

𝑎𝑁𝑠+1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎1 + 𝑎2
𝑎3
⋮

𝑎𝑁𝑠+1
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (73)

hus, applying this matrix to the column vector in Eq. (70) cumulatively adds −𝛾 for each occurrence of 𝑠𝑛 = 𝑠, effectively subtracting
rom the penalty. If the constraint is satisfied for 𝑠, the penalty becomes zero after 𝑁𝑠 such additions. Meanwhile, the remaining
lements of the vector are now also 0, such that multiplying any further matrices leave the vector unchanged. Conversely, if the
onstraint is not met, the penalty remains non-zero, reflecting the penalty function 𝐻10%-rule(𝑠). This justifies the decomposition in
q. (70), which can be used to construct the MPO similarly to previously discussed cases.

Similar to the contiguity constraint, these matrices are significantly larger than those of the other encountered MPOs. As discussed
arlier, this should have a comparatively minor impact on the runtime, while the influence on the accuracy remains to be explored.

.3. The connection between the hardware-efficient approach and DMRG

In this section, we highlight the similarities between the hardware-efficient approach and the DMRG algorithm, and contrasting
hese with the properties of QAOA. From an implementation perspective, both QAOA and the hardware-efficient approach involve
ncoding states in the Hilbert space on qubits, performing state-vector simulations with a designated number of repetitions 𝑁𝑟 of a
arameterized quantum circuit, and extracting the Hamiltonian’s expectation value. A classical optimizer is then employed to search
or parameters that minimize this value. However, the specific state preparation circuits and optimization procedures lead to different
andscapes for the Hamiltonian expectation value. Specifically, QAOA utilizes operators 𝑈𝐶 and 𝑈𝑀 that act simultaneously on all
ubits with a single parameter per operator, allowing for the simultaneous optimization of a relatively small number of parameters.
n contrast, the hardware-efficient approach optimizes only the parameters affecting neighboring qubits, much like how DMRG
ptimizes subsystems for neighboring plies.

Furthermore, the connection between the hardware-efficient approach and DMRG extends deeper [140–143]. Viewing the gates
n a quantum circuit as matrices naturally leads to a tensor network representation of the circuit. The initial qubit states |0⟩ can
e included in vector form to form a tensor network representing the states prepared by the circuit. In the hardware-efficient
ircuit, where two-qubit gates act only on neighboring qubits, performing singular value decompositions (SVD) on these gates and
ontracting all tensors associated with individual qubits effectively yields an MPS representation of the prepared states. This results
n open indices for individual qubits, but by grouping the qubits associated with one ply, we can also achieve an MPS representation
imilar to those used in DMRG. This conceptualization allows us to view the hardware-efficient approach as a qubit implementation
f a specifically parameterized MPS.

The bond dimension of this MPS can be inferred from the SVD of the CNOT gate. Typically, the CNOT is represented as a matrix
ith non-zero elements 𝐶𝑞1𝑞2 ,𝑞′1𝑞′2 ∶=

⟨

𝑞1𝑞2
|

|

|

CNOT||
|

𝑞′1𝑞
′
2
⟩

:

𝐶00,00 = 𝐶01,01 = 𝐶10,11 = 𝐶11,10 = 1,

hich are applied to the current two-qubit state and return the state after the application of the gate. However, performing an
VD on this matrix would split the matrix along the time direction, and not separate the qubits. We therefore reorder the indices
̃𝑞1𝑞′1 ,𝑞2𝑞′2 = 𝐶𝑞1𝑞2 ,𝑞′1𝑞′2 to obtain non-zero elements:

�̃�00,00 = �̃�00,11 = �̃�11,01 = �̃�11,10 = 1.

otably, the CNOT gate does not alter the control qubit, leading to a rank-2 matrix representation. Consequently, the SVD yields only
non-zero singular values, implying that each CNOT gate between two qubits doubles the bond dimension of the corresponding MPS.
s each repetition in the hardware-efficient circuit introduces an additional CNOT gate between two qubits, the bond dimension
f the MPS grows exponentially with 2𝑁𝑟 . With this result, we can compare this hardware-efficient circuit directly to an MPS of a
pecific bond-dimension that is utilized in DMRG. Conversely, QAOA uses numerous CNOT gates per repetition on non-neighboring

ubits, stemming from the many terms in the Hamiltonian. Consequently, the tensor-network representation of the circuit has a
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significantly more complicated form than a simple MPS. We can therefore expect the hardware-efficient approach and DMRG to
have comparable behaviors, while QAOA will likely perform very differently.

However, there are key differences between the hardware-efficient approach and DMRG. The hardware-efficient approach
ptimizes neighboring qubits, whereas DMRG directly operates on the ply subsystems 𝑛. In principle, the optimization in the

hardware-efficient approach could also be performed by simultaneously optimizing the 4 qubits corresponding to 2 plies, which
introduces the challenge of handling more parameters concurrently. Moreover, while the hardware-efficient approach utilizes a
parameterized MPS with a classical optimizer, DMRG conducts optimization through eigendecomposition of an environment tensor
followed by SVD to optimize local tensors. This method also impacts the control of bond dimensions, since this procedure naturally
increases the bond-dimension and offers tools for its controlled reduction, unlike in the hardware-efficient approach where the bond
dimension remains fixed and a method to reduce the number of repetitions 𝑁𝑟 is not readily available. This analysis underscores
how the exploration of tensor-network methods like DMRG can provide valuable insights into specific quantum algorithms such as
our hardware-efficient approach.

5. Numerical demonstration

We performed numerical simulations of the algorithms outlined in Section 4 to demonstrate our quantum formulation of stacking
sequence retrieval as presented in Section 3. Specifically, we conducted state-vector simulations for the two quantum algorithms
discussed in Section 4.1: QAOA and the previously described hardware-efficient approach. As DMRG is a classical algorithm, it did
not require simulation on quantum computing hardware and was implemented directly.

Given the limitations of simulating quantum computing on classical hardware, particularly with a large number of qubits, we
limited our simulations to a symmetric laminate comprising a small number of 𝑁 = 6 plies in one half of the stack, corresponding
to a total of 12 simulated qubits. However, the MPO and MPS representations used in DMRG allow for a more efficient management
of the state space compared to the direct simulation of subsystems, enabling DMRG to efficiently handle a much larger number of
subsystems. Consequently, we also conducted DMRG simulations for a substantially larger configuration of 𝑁 = 200 plies.

All simulations were performed both with and without the inclusion of a disorientation constraint of 45◦.

5.1. Setup

The numerical calculations were carried out on a laptop equipped with an Intel Core i7-1185G7 processor (4 cores, 3.00 GHz),
16 GB RAM, running Windows 10 Professional. The complete code for these experiments is available at [144]. The algorithm was
executed on the CPU without using parallelization techniques like multi-threading. All files generated from our experiments are
available in HDF5 format at [145].

The quantum simulations were performed in Python in version 3.11 using the Qiskit library in version 1.0.2 [146]. This library
facilitated the construction and simplification of the loss function and penalty Hamiltonian in expanded Pauli operator form, as
detailed in Section 4.1.2. Additionally, the state preparation circuits for QAOA and the hardware-efficient approach were generated
as quantum circuits, which Qiskit converts into an instance of a state vector class. This class provides a function for calculating the
xpectation value of operators such as the Hamiltonian. Optimization was conducted using the Scipy library in version 1.12.0 [147],

employing the BFGS method as the optimizer.
The numerical implementation and trials were executed in the programming language Julia, version 1.8.4. The MPS and MPO

were implemented using the ITensors.jl library, version 0.3.22 [148,149], which also includes an implementation of the DMRG
lgorithm. As this implementation supports only alternating sweeping directions, we modified the algorithm to allow for custom
weeping sequences. Additional functionality for recording data during the optimization was also integrated. Aside from the support
or custom sweeping directions, the optimization process remains consistent with the original implementation provided by ITensors.

For all numerical trials, we selected the four commonly used angles 0◦,+45◦, 90◦,−45◦, as discussed in Section 4. In the quantum
imulations, these angles were encoded using binary encoding as described in section Section 4.1. We applied all three algorithms
o a symmetric laminate with 𝑁 = 6 plies in one half of the stack and optionally included a disorientation constraint. For this
onstraint, we applied a penalty of 𝛾 = 0.25 per constraint violation (sections Section 3.2.1 and Section 4.2.2). Additionally, we
erformed DMRG on a larger scale with 𝑁 = 200 plies in half the stack, assigning a penalty of 𝛾 = 0.005. All trials were conducted
ith and without the disorientation constraint.

To select a well-justified set of target lamination parameters, we considered two key factors. Firstly, we chose target parameters
hat correspond to exact solutions of feasible stacking sequences. This approach ensures that the loss function serves as an effective
uality measure for any obtained solution, since an optimal solution with a minimal loss function value of 0 always exists. Suitable
arget parameters can be obtained from generated stacking sequences that comply with the constraints, such that these sequences
lso act as known optimal solutions for the target parameters.

Secondly, it is crucial that the target lamination parameters represent a diverse cross-section of potential lamination parameters.
or 𝑁 = 6 layers, we achieved this by considering symmetry transformations of the constraint. As we discuss further in Appendix A.2,
e anticipate that the algorithms will exhibit similar behavior in cases that transform into each other under transformations that
ap valid states to valid states and constraint-violating states to constraint-violating states. For the disorientation constraint, these

ymmetry transformations are generated by rotations that shift all states by the same number and one reflection that swaps 0 and 2,

r equivalently 1 and 3. To explore a broad range of potential behaviors, we generated 15 stacking sequences that do not transform
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into each other under these symmetry transformations, resulting in a set of 15 distinct target lamination parameters for our trials
with 𝑁 = 6 plies.

For𝑁 = 200, the total number of valid stacking sequences is vastly greater than for𝑁 = 6 plies, necessitating a different approach.
ommon methods for generating random stacking sequences often result in density variations within the corresponding point cloud

n the 8-dimensional lamination parameter space, typically due to the specifics of the sequence generation method. To mitigate
otential biases from our random generation method, we compiled a large dataset of 500,000 stacking sequences that comply with
he disorientation constraint, subsequently converting these into an equivalent number of points in lamination parameter space. We
hen applied a kernel density estimator to evaluate the point density at each location [150–152]. Finally, we used the inverses of
hese densities as weights to randomly select points in a manner that more closely approximates a uniform distribution across the
amination parameter space. Employing this method, we sampled a set of 50 target lamination parameters for all our trials with
= 200 plies.
For the QAOA trials, we conducted simulations for 𝑁𝑟 = 1, 2, 3, 4, 6, 8 repetitions of the problem and mixer unitaries in the state

reparation circuit. For each number of repetitions 𝑁𝑟, we generated 6 random sets of initial parameters, 𝛽 and 𝛾, which were used
across all 15 target lamination parameters.

In the hardware-efficient approach, we performed optimizations for 𝑁𝑟 = 0, 1, 2, 3, 4, 5, 6 repetitions in the state preparation
circuit. For each repetition count, we generated 5 random sets of initial parameters. Additionally, for each combination of repetition
number, initial parameters, and target, we conducted the optimization twice: once sweeping outward (from 𝑛 = 1 to 𝑛 = 𝑁) and
once sweeping inward (from 𝑛 = 𝑁 to 𝑛 = 1). Multiple sweeps were performed consecutively until convergence was achieved.

For DMRG, we conducted optimizations for maximum bond dimensions of 2, 4, 8, 16, and 32. We performed optimizations using
alternating sweeps, as is customary in DMRG, as well as only inward and only outward sweeps. In the final stages of optimization,
we applied a technique to enforce a basis state corresponding to a single stacking sequence, which involved progressively halving the
maximum bond dimension during the last few sweeps, ultimately achieving a bond dimension of 1 in the penultimate sweep. In the
final sweep, we applied a truncation criterion that discarded singular values below 0.5 during the dimension reduction, effectively
enforcing the representation of a basis state.

For 𝑁 = 6, we based the number of sweeps for DMRG on the quick convergence observed in the hardware-efficient approach, as
discussed in the following section Section 5.2. Ensuring sufficient sweeps to both grow and reduce the bond dimension as described
above, we executed DMRG with a total of 10 sweeps. For 𝑁 = 200, to better observe the optimization progression over a more
extended series of sweeps, we opted for 69 sweeps, yielding a total of 70 data points per trial when including the initial state.

For each target lamination parameter, we generated 5 initial MPS with a bond dimension of 2. These initial MPS were consistently
used across all trials, irrespective of bond dimension and sweep sequence. Given that the initial bond dimension was lower than
most of the chosen maximum bond dimensions, the bond dimension of the MPS increased quickly during the initial sweeps of
optimization until it reached the predetermined maximum. Therefore, the majority of the sweeps were conducted at this maximum
bond dimension.

5.2. Results

The general concept of QAOA is to exploit quantum interference to suppress the amplitude of states associated with high losses
and enhance the probability of measuring states with lower losses. Accordingly, our trials with QAOA did not yield a specific basis
state corresponding to a particular stacking sequence, but resulted in a superposition of states encompassing a range of losses.
For each set of resulting QAOA parameters 𝛽 and 𝛾, we calculated the loss function expectation value of the state and assessed the
probability of obtaining the exact solution from the corresponding component of the state. The results are presented in Fig. 3, where
we display the Hamiltonian expectation values and the probabilities of obtaining the exact state separately, comparing results with
and without the inclusion of the penalty operator. In each plot, we display the overall average for each number of repetitions 𝑁𝑟 as

ell as individual traces for each of the 15 targets, averaging only over the 6 runs with different initial parameters. The figure also
ncludes the stacking sequences corresponding to the target lamination parameters. Additionally, we calculated the expectation value
f the penalty operator for the disorientation constraint, setting the penalty factor to 𝛾 = 1, thus the recorded expectation values
epresent the average number of constraint violations in the stack. For 𝑁𝑟 = 1 repetition in the QAOA circuit, we found an average
xpectation value of 0.309 constraint violations without the penalty operator, and 0.261 with it. As the number of repetitions 𝑁𝑟

increased, these values decreased, with 0.184 and 0.085 recorded for 𝑁𝑟 = 8 repetitions, respectively, without and with the penalty
operator.

For the hardware-efficient approach, the behavior observed was markedly different from that of QAOA. Specifically, the
hardware-efficient approach effectively produced a basis state after the initial sweep, with subsequent sweeps primarily filtering
out remnants of other states. The results are depicted in Fig. 4a, where we show the average RMSE to the target parameters for
the final stacking sequences and the percentage that coincided with the optimal state. Additionally, we present results for sweeping
inward and sweeping outward in separate plots. No clear trend emerged for different target lamination parameters; thus, we only
show the average of all results for a specific number of repetitions 𝑁𝑟, with and without the constraint included in the same plot.
We also tracked the number of resulting stacking sequences that violated the disorientation constraint. Without the penalty, inward
sweeps at 𝑁𝑟 = 0 repetitions resulted in 65% constraint-violating stacks, while subsequent repetitions yielded between 24% and
39% constraint-violating stacks without a discernible trend with increasing repetitions. Similarly, outward sweeps resulted in 40%
constraint violations at 𝑁𝑟 = 0 and values between 24% and 39% for other numbers of repetitions, also without showing a clear

correlation to the inward sweep values. Including the penalty, we observed 29% and 27% constraint violations for inward and
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Fig. 3. Results from the simulations of QAOA. The top row shows the average Hamiltonian expectation value while the bottom row shows the average probability
of obtaining the exact solution when measuring the final state. Shown are the average of the 6 trails for each individual set of target parameters (blue and green
solid lines) and the average over all 15 sets of target parameters (dashed red lines). On the right, the stacking sequences corresponding to the exact solutions
are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

outward sweeps respectively at 𝑁𝑟 = 0. However, with an increase in repetitions 𝑁𝑟, the percentage of constraint-violating stacks
rapidly decreased, dropping below 1.5% at 𝑁𝑟 = 2 and 𝑁𝑟 = 3 for inward and outward sweeps respectively.

The reduction of the maximum bond dimension for the final sweeps in our implementation of DMRG is designed to enforce
a basis state as a result. For 𝑁 = 6, we display the results for DMRG in Fig. 4b in a similar fashion as for the hardware efficient
pproach. The main difference is, that we now have three different sweeping configurations: inward, outward and alternating sweeps.
s before, we also counted the states containing constraint violations. Without the penalty, inward and alternating sweeps yielded
9% and 17% constraint violating stacks respectively for bond-dimension 2, which reduced to 12% in both cases for bond-dimension
2. Outward sweeps showed higher values, with 28% for bond-dimension 2 and 24% for bond-dimension 32. When including the
enalty, we only observed a single constraint-violating stack for alternating sweeps and a single one for outward sweeps, both at
ond-dimension 2, which equates to 1.3%.

For DMRG trials with 𝑁 = 200 plies, we offer a more comprehensive overview of performance. Firstly, we confirmed that all
esulting stacking sequences were free of constraint violations when the disorientation constraint was included. Without the penalty,
very combination of maximum bond dimension and sweeping direction yielded at least 96% constraint-violating stacks, indicating
hat nearly all resulting stacks violated the disorientation constraint.

Additionally, we documented the expectation value of the loss function Hamiltonian after each sweep in all trials. Fig. 5a shows
he average across all target lamination parameters as a function of the number of sweeps. Each trace corresponds to a different
onfiguration regarding bond dimension, sweeping direction, and whether or not the disorientation constraint was included. For a
ore detailed discussion on the distribution of the obtained solutions, Fig. 5b provides a histogram of the Root Mean Square Error

RMSE) across all samples for the most effective configuration (bond dimension 32 and sweeping left), both with and without the
isorientation constraint. The bin size of the histograms is set to 0.002. A comprehensive overview of the results from all individual
rials for DMRG with 𝑁 = 200 plies is available in Fig. 6 in Appendix A.3.

We also monitored the time duration of each sweep. Fig. 5c illustrates the average sweep duration as a function of the bond
imension, with separate traces to distinguish between different sweeping directions and comparisons of cases with and without
he disorientation constraint. For calculating the averages and standard deviations, the first and last 10 sweeps were excluded. To
inimize the impact of background processes on the operating system on the duration of isolated sweeps, the lowest and highest
0% of times for all considered sweeps were also excluded. In the DMRG algorithm, the most computationally intensive step involves
inding the eigenvector with the lowest eigenvalue of a matrix, which is a critical component of the local optimizations of the site
ensors. The computational complexity for solving the eigenvalue problem generally scales as 𝑂(𝑏3), where 𝑏 is the bond dimension.

his scaling behavior is consistent with that of the Lanczos algorithm used for the eigenvalue computations, assuming the number
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Fig. 4. Results for the hardware-efficient approach (a) and DMRG (b). In both cases, the top row shows the average RMSE for the final results, and the bottom
ow shows the ratio of resulting stacks that coincided with the exact solution. The averages are taking over the results from all 15 sets of target lamination
arameters with 5 trials performed for each.

f non-zero matrix elements scales proportionally to the overall size of the matrix. However, due to the limited number of data
oints for different bond dimensions, definitive assertions about the actual observed scaling behavior are not possible. Nonetheless,
or illustrative purposes, a third-order polynomial fit has been included in the figure to facilitate easier comparison of the different
onfigurations.

.3. Discussion

We will first discuss and compare the chosen methods for 𝑁 = 6 plies, then provide a more detailed analysis of DMRG for
= 200 plies.
With 𝑁 = 6 plies, we observed for all three algorithms that increasing the number of repetitions 𝑁𝑟 in the state-preparation

circuit or raising the bond dimension in DMRG generally leads to better outcomes in terms of loss or RMSE, and the likelihood of
20 
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Fig. 5. Results from DMRG with 𝑁 = 200 plies. (a) Traces of expectation values of the loss function Hamiltonian, averaged over all samples and measurements
fter each sweep. Each line corresponds to a different bond dimension, denoted at the end of each trace. Red lines represent trials excluding the disorientation
onstraint and blue lines correspond to trials including the constraint. Solid lines represent the optimization phase with a constant maximum bond dimension.
he successive reduction of the bond dimension at the final phase of the optimization is indicated by dotted lines that can be found at the right-hand end
f each trace. (b) Histogram of the RMSE of the solutions for maximum bond-dimension 32 and inward direction. Counted were the points from all target
amination parameters and initial MPS. The bin-size is 0.002. The ranges of RMSE for the bottom half of the points, and up to the average RMSE are shown in
oth plots. Left: Without the disorientation constraint. Right: With the disorientation constraint. (c) Average sweep duration as a function of bond dimension.

Left and right plots respectively correspond to scenarios without and with the disorientation constraint. Each sweep direction is represented by distinct points
in different colors. A third-order polynomial fit is included as dashed lines, to easier distinguish trends for different configurations. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

obtaining the exact state. Comparing Figs. 3 and 4, the hardware-efficient approach and DMRG appear to significantly outperform
QAOA. Furthermore, QAOA is considerably more expensive to execute due to its substantially larger circuit depth. However, as
the hardware-efficient approach and DMRG generally end up in a basis state, which often has insufficient accuracy according
to the large standard deviations in Fig. 4, multiple trials with different initial parameters may be necessary to obtain a good
solution [73,153–155]. Conversely, the final superposition of states in QAOA generally includes good solutions, which can be
found with a sufficient number of measurements of the final superposition, making it less expensive than multiple trials of the
entire optimization. Nevertheless, QAOA faces well-known issues like barren plateaus that may still require multiple trials and
optimized strategies [114,115,117,156]. Additionally, we chose basic VQA examples for our demonstrations, and as more advanced
methods are developed, further research will determine which strategies yield the best results when scaling up the number of plies
to industry-relevant levels.

It is also important to note that we used exact state-vector simulation for the quantum algorithms. However, unlike DMRG, which
is a classical algorithm, executing quantum algorithms on quantum hardware introduces various errors such as state-preparation and
measurement (SPAM) errors and various noise channels during the execution of a quantum circuit [157]. Investigating strategies
to manage these noise factors is a major research area, and future studies must address how these errors and mitigation strategies
impact the design and effectiveness of quantum algorithms for the SSR problem.
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We continue with a discussion of the results for 𝑁 = 200 plies. For 𝑁 = 6 plies, the solution space consists of 𝑑𝑁 = 4096
onfigurations, making it feasible to find the optimal solution. However, for larger numbers of plies, the configuration space expands
xponentially, shifting the focus from identifying the optimal solution to finding a highly accurate solution. While current quantum
ardware and quantum simulations are generally limited by the system size over which algorithms can be effectively executed.
he scalable DMRG algorithm however can provide insights that are applicable to some VQA like the chosen hardware-efficient
pproach.

As shown in Fig. 5a, the high number of sweeps allow for studying the progression of the Hamiltonian expectation value during
he optimization. In all configurations, there is a rapid decrease in the expectation value during the initial sweeps, followed by a
ignificant slowdown in the optimization rate. The reduction in bond dimension, indicated by the dotted lines at the end of each
race in Fig. 5a, leads to a pronounced reduction in the expectation value of the loss function. This indicates that just before this
eduction, the MPS represents a superposition of basis states that includes less optimal states, which are then filtered out during the
ond dimension reduction.

While the averaged traces provide an overview, they do not reveal the actual distribution of all resulting lamination parameters
or each specific configuration. The histograms in Fig. 5b and Fig. 6 demonstrate how the majority of the trial significantly
utperform the worst. Furthermore, Fig. 6 shows that the performance does not necessarily correlate between different configurations
n initial MPS, bond-dimension and sweeping direction. Consequently, warm-starting and multiple trials with various configurations
an potentially enhance the accuracy of the result significantly.

Comparing the loss function expectation values of the results together with the duration of a sweep in Fig. 5c for distinct
ond dimensions shows a clear trade-off between accuracy and runtime. The main contributor to the runtime is the eigen-
ecomposition, which has a cubic dependence on the bond dimension. This increase makes DMRG impractically demanding for
igh bond dimensions. In contrast, we only need a logarithmic increase in the circuit depth 𝑁𝑟 in the hardware-efficient circuit
o grow the effective bond dimension. However, this does not yet consider the optimization procedure, and the large number of
arameters to be optimized might counteract this gain.

Considering the practical aspects of our research approach, it is crucial to highlight that our numerical trials were conducted using
he DMRG method, based on the implementation provided by the ITensors.jl library, on a CPU without optimizing for performance.
mplementing parallelization techniques, GPU support, sparse matrix optimizations, or problem-specific methods could lead to
ubstantial performance enhancements. Additionally, adjusting other DMRG settings, such as hyperparameters in the eigenvalue
olver, might further impact performance. Furthermore, to take advantage of the varying performance of different operational
onfigurations, techniques like warm-starting can potentially reduce the requirements for finding a good solution in the majority of
ases [158].

In conclusion, our study lays the groundwork for further investigation into the potential of DMRG as a viable alternative for
tacking sequence retrieval. To achieve this, it is essential to incorporate the specific manufacturing constraints discussed earlier,
uch as the contiguity constraint and the 10%-rule, which are crucial for real-world applications [39–41]. Alongside these additions,
mplementing performance enhancements such as parallelization, GPU support, and optimization of algorithm settings is critical
or this method to be competitive with existing stacking sequence retrieval techniques. Nevertheless, the results from our study
ffer encouraging signs that tensor networks and quantum algorithms could play a significant role in advancing quantum and
uantum-inspired methods for laminate design.

. Conclusions and outlook

In this work, we have developed novel approaches based on quantum computing and DMRG to tackle the stacking sequence
etrieval problem, a notable challenge in the field of laminated composite design.

We initiated our study by developing a quantum representation of the SSR problem, adapting it for quantum computing methods.
nitially, the problem was formalized as an integer optimization problem, where ply-angle sequences were represented as a list
f integers, and the loss function was defined to quantify the mean square error between the lamination parameters of a given
onfiguration and the target parameters. These stacking sequences were subsequently embedded in a Hilbert space, with each basis
tate corresponding to a distinct stacking sequence, alongside a Hamiltonian that encapsulated the loss function as a Hermitian
perator. Various manufacturing constraints and their implementation as penalty terms in the loss function were also examined.
he translation of these penalty terms into Hamiltonian operators revealed diverse forms of subsystem interactions across individual
lies.

We then proceeded to validate our approach through numerical simulations. For this purpose, we selected two variational
uantum algorithms, QAOA and a hardware-efficient approach for which we performed state-vector simulations. The latter shares
imilarities with the classical DMRG algorithm which we selected as a third algorithm for out study. We explored relevant concepts
egarding the implementation of these algorithms and assessed their impact on algorithm performance. Simulations were conducted
or a modest number of 𝑁 = 6 plies, which exhibited distinct behaviors between QAOA and notable similarities between the
ardware-efficient approach and DMRG. The efficient implementation of DMRG further facilitated simulations for a larger laminate
ith 𝑁 = 200 plies. Each algorithm demonstrated varying degrees of success in identifying good solutions, affirming that our
uantum formulation of the SSR problem is a viable approach.

While our study on a single panel was conducted with the future goal of addressing more complex scenarios involving multiple
anels, the results from employing the well-known DMRG algorithm in this new scenario are promising even for a single panel.

owever, to establish its competitiveness, several key aspects need to be addressed in future work. A critical aspect is the integration
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of additional manufacturing constraints, which are vital for real-world applications, and evaluating whether the DMRG algorithm
can efficiently manage these complexities. Moreover, implementing performance optimizations will be crucial in assessing whether
this approach can rival existing classical methods in efficacy.

A thorough comparison with existing state-of-the-art algorithms will determine whether DMRG is a serious contender. Such
omparisons might also reveal advantages of DMRG’s heuristic nature that could benefit specialized SSR strategies. For example,
mploying MPS as in DMRG allows for efficiently representing a superposition of stacking sequences, which could enable novel
pecialized strategies for multi-panel designs. An MPS consisting of approximate solutions can be obtained, for instance, by
topping the DMRG algorithm early before convergence. Future approaches might also explore more sophisticated tensor network
onfigurations for multi-panel laminates, making tensor network methods a contender to quantum algorithms in these complex
ases. Conversely, a collaborative exploration of tensor networks and quantum algorithms may unveil new insights, propelling
dvancements that leverage the strengths of both methodologies.

The quantum algorithms selected for our simulations, though basic, are valuable for validating our approach and represent
ust two examples within a broad spectrum of existing and potential quantum computing methods, with new specialized strategies
eing developed rapidly. Therefore, our simulations offer only a limited view of the future potential of quantum methods for SSR.
evertheless, a key motivation of this work is to establish it as a promising candidate for industry-relevant applications of quantum
omputation. By presenting our findings to the broader community, we aim to stimulate the development of quantum algorithms
ailored to industry-relevant problems, thereby fostering real-world impact.

Our exploration into the application of quantum computing for stacking sequence retrieval, particularly the process of selecting
ptimal sequences from a set of discrete choices, may have implications beyond laminated composite design. For example, the
efinition of the lamination parameters in Section 2.2 resembles the weighted-sum model in multi-criteria decision making, which
s employed in a variety of applications [159–161]. This suggests that the methodologies and insights gained from our study
an potentially inform approaches to quantum computing in other domains, thereby contributing to the progress in the practical
pplication of quantum computational methods.

In conclusion, this research establishes a foundation for a further exploration into the utility of quantum algorithms for stacking
equence retrieval and laminate design, by developing a quantum representation of the problem. Moreover, we introduced tensor
etworks as a potential quantum-inspired approach. Importantly, our numerical results substantiate the efficacy of our methods, and
rovide valuable insights into benefits and drawbacks of quantum and quantum-inspired methods for stacking sequence retrieval.
ontinued research is crucial to fully understand the role these advanced computational techniques might play in the future of

aminate design.
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Appendix A

A.1. Terms in the penalty for the 10%-rule

In this section, we have a closer look into penalties to ensure the 10%-rule, as discussed in Section 3.2. There, in Eq. (28), we
efined a possible penalty function to depend on the number of missing plies to satisfy the constraint:

𝐻10%-rule(𝑠) =

⎧

⎪

⎨

⎪

⎩

0, if ∑𝑁
𝑛=1 𝛿𝑠𝑛 ,𝑡 ≥ 𝑁𝑡,

𝑝
(

𝑁𝑡 −
∑𝑁
𝑛=1 𝛿𝑠𝑛 ,𝑡

)

, else,
(74)

where 𝑁𝑡 is the minimum required number of plies with state 𝑡.
An intuitive approach to construct a suitable penalty function stems from the following realization: If the constraint is violated,

then there exists at least one subset with 𝑁 −𝑁𝑡 + 1 plies, that does not include any plies of state 𝑡. We can therefore simply define
a suitable penalty function by checking all subsets of 𝑁 −𝑁𝑡 + 1 plies and add a penalty, if no plies with state 𝑡 are present. For
example, if we denote the set of all 𝑘-element subsets of {1,… , 𝑁} with 𝐶(𝑁, 𝑘), we can define the penalty function as:

𝐻10%-rule(𝑠) =
∑

𝛬∈𝐶(𝑁,𝑁−𝑁𝑡+1)

∏

𝑛∈𝛬
(1 − 𝛿𝑠𝑛 ,𝑡). (75)

Here, (1 − 𝛿𝑠𝑛 ,𝑡) = 1 exactly if ply 𝑛 is not in state 𝑡, 𝑠𝑛 ≠ 𝑡, and otherwise the expression is 0. For the terms, we thus add a penalty
∏

𝑛∈𝛬(1 − 𝛿𝑠𝑛 ,𝑡) = 1, exactly if for all plies 𝑛 ∈ 𝛬 we have 𝑠𝑛 ≠ 𝑡. Since this definition is symmetric under permutations of the plies,
and therefore the result only depends on the difference in the number of current and required plies in state 𝑡, it represents a concrete
example of the penalty function in Eq. (28). Furthermore, the individual terms translate to operators on 𝑁 −𝑁𝑡 + 1 subsystems in
the quantum representation.

As discussed in Section 3.2, these high-order operators can act unfavorably in certain quantum algorithms, especially those that
require implementing the Hamiltonian as operations on the qubits. The question now is: Can we do better? As we show in this
section, this is unfortunately not the case.

First, we will show, that a penalty function, as defined in Eq. (28), will necessarily lead to terms of order 𝑁−𝑁𝑡+1. However, this
definition is already somewhat restrictive, as it only allows penalty functions, that are symmetric under the permutation of the plies.
From an optimization point of view, it makes sense that states with the same discrepancy to satisfying the constraint produce the
same penalty. However, there might be penalty functions, that are not symmetric under permutation, but might be implementable
with lower-order operators. In the final part of this section, we will show that any suitable operator for the 10%-rule will require
operators acting on at least 𝑁 −𝑁𝑡 + 1 subsystem, regardless of symmetry considerations.

A.1.1. Using the defined penalty function in eq. (28)
In this section, we show, that a decomposition into local operators of the penalty function for the 10%-rule, as defined in Eq. (28)

in Section 3.2:

𝐻10%-rule
penalty (𝑠) =

⎧

⎪

⎨

⎪

⎩

0, if ∑𝑁
𝑛=1 𝛿𝑠𝑛 ,𝑡 ≥ 𝑁𝑡,

𝑝
(

𝑁𝑡 −
∑𝑁
𝑛=1 𝛿𝑠𝑛 ,𝑡

)

, else,
(76)

always includes terms of order 𝑁 −𝑁𝑡 + 1.
For this purpose, we extend the definition of 𝑝(𝑥) also for valid states, where 𝑥 ≥ 𝑁𝑡. If we write 𝑝(𝑥) as a polynomial:

𝑝(𝑥) =
deg 𝑝
∑

𝑘=0
𝑎𝑘𝑥

𝑘, (77)

– any other form would immediately yield a Taylor expansion up to infinite order – then each 𝑥 ∈ {𝑁𝑡, 𝑁𝑡 + 1,… , 𝑁} must be a
root of the polynomial:

𝑝(𝑥) = 0. (78)

Thus, since 𝑝(𝑥) has at least 𝑁 −𝑁𝑡 + 1 roots, it must have at least an equivalent degree:

deg 𝑝 ≥ 𝑁 −𝑁𝑡 + 1. (79)

For a state 𝑠 ∈ , we have:

𝑥 = 𝑁𝑡 −
𝑁
∑

𝑛=1
𝛿𝑠𝑛 ,𝑡, (80)

such that a power 𝑥𝑘 yields:
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𝑥𝑘 =

(

𝑁𝑡 −
𝑁
∑

𝑛=1
𝛿𝑠𝑛 ,𝑡

)𝑘

(81)

= (−1)𝑘
( 𝑁
∑

𝑛=1
𝛿𝑠𝑛 ,𝑡

)𝑘

+ (−1)𝑘−1𝑘𝑁𝑡

( 𝑁
∑

𝑛=1
𝛿𝑠𝑛 ,𝑡

)𝑘−1

+ (−1)𝑘−2 1
2
(𝑘 − 1)𝑘𝑁2

𝑡

( 𝑁
∑

𝑛=1
𝛿𝑠𝑛 ,𝑡

)𝑘−2

+⋯ . (82)

urthermore:
( 𝑁
∑

𝑛=1
𝛿𝑠𝑛 ,𝑡

)𝑘

=
𝑁
∑

𝑛1 ,…,𝑛𝑘=1
𝛿𝑠𝑛1 ,𝑡𝛿𝑠𝑛2 ,𝑡⋯ 𝛿𝑠𝑛𝑘 ,𝑡. (83)

Since 𝑝(𝑥) contains terms with 𝑘 = 𝑁−𝑁𝑡+1, the penalty function includes terms with 𝛿𝑠𝑛1 ,𝑡𝛿𝑠𝑛2 ,𝑡⋯ 𝛿𝑠𝑛𝑘 ,𝑡, which translate to operators
|𝑡𝑡⋯ 𝑡⟩⟨𝑡𝑡⋯ 𝑡|𝑛1𝑛2⋯𝑛𝑘 . Therefore, the according Hamiltonian will have terms of order 𝑁 −𝑁𝑡 + 1.

A.1.2. Any penalty function will include high-order terms
Above, we showed that the specified penalty function in Eq. (28) leads to terms of order 𝑁 − 𝑁𝑡 + 1. However, the penalty

function is inherently symmetric under permutations of the elements in a state 𝑠 ∈ . Here, we show that indeed any penalty
function, regardless of symmetry considerations, must include terms of order 𝑁 −𝑁𝑡 + 1 or larger.

First, we note that non-diagonal local operators produce off-diagonal elements when combined to higher operators. We can
therefore focus on diagonal operators. Furthermore, these diagonal operators directly translate to Kronecker-deltas in the classical
penalty function, as can be seen from the matrix element of the operator:

⟨𝑠|

( 𝑑
∑

𝑟=1
𝑐𝑟 |𝑟⟩⟨𝑟|

)

|𝑠⟩ = 𝑐𝑠 =
𝑑
∑

𝑟=1
𝑐𝑟𝛿𝑟,𝑠 (84)

where 𝑟, 𝑠 ∈ {1,… , 𝑑} are states on a single subsystems. We can therefore focus on expansions of the classical penalty function in
terms of Kronecker-deltas.

In order to demonstrate that any penalty function for the 10%-rule requires at least 𝑁 −𝑁𝑡 + 1-order terms, we show that any
penalty function with lower order will be insufficient. We accomplish this by considering a function that only includes terms of
order up to 𝑘 = 𝑁 −𝑁𝑡:

𝑍(𝑠) =
∑

𝛬∈𝑘(𝑁)

∑

𝑎∈{1,…,𝑑}|𝛬|
𝜁𝛬,𝑎 𝛿𝑠[𝛬],𝑎, (85)

where 𝜁𝛬,𝑎 ∈ R are the coefficients of the expansion. Here we used the following notation: 𝑘(𝑁) is the power set of {1,… , 𝑁}, up
to cardinality 𝑘:

𝑘(𝑁) = {𝛬 ⊆ {1,… , 𝑁} ∶ |𝛬| ≤ 𝑘}. (86)

We use subsets 𝛬 ∈ 𝑘(𝑁) to select subsequence of elements 𝑠𝑛 of the state 𝑠 for 𝑛 ∈ {1,… , 𝑁}, which we denote with:

𝑠[𝛬] = (𝑠𝑛1 , 𝑠𝑛2 ,… , 𝑠𝑛
|𝛬|
) ∈ {1,… , 𝑁}|𝛬|, (87)

where 𝛬 = {𝑛1, 𝑛2,… , 𝑛
|𝛬|} and 𝑛1 < 𝑛2 <⋯ < 𝑛

|𝛬|. With the Kronecker-delta:

𝛿𝑠[𝛬],𝑎 = 𝛿𝑠𝑛1 ,𝑎1𝛿𝑠𝑛2 ,𝑎2 ⋯ 𝛿𝑠𝑛
|

𝛬| ,𝑎|𝛬| , (88)

we match the selected states of 𝑠 to a defined vector 𝑎 ∈ {1,… , 𝑑}|𝛬|. In an operator representation, these Kronecker-deltas are
converted into operators |

|

|

𝑎1𝑎2 ⋯ 𝑎
|𝛬|

⟩⟨

𝑎1𝑎2 ⋯ 𝑎
|𝛬|

|

|

|𝑛1𝑛2⋯𝑛|𝛬|
. For our proof, we show that if this function 𝑍(𝑠) has roots on all valid

states, it will necessarily also have roots for at least one constraint-violating state, which makes it unsuitable as a penalty function.
Before we continue, we first note, that:

𝛿𝑠𝑛 ,𝛼 = 𝛿𝑠𝑛 ,𝛼
𝑑
∑

𝛽=1
𝛿𝑠𝑛′ ,𝛽 =

𝑑
∑

𝛽=1
𝛿𝑠𝑛 ,𝛼𝛿𝑠𝑛′ ,𝛽 , (89)

from which follows, that terms with lower order can be converted into terms with higher order. Therefore, instead of allowing terms
with up to order 𝑘 in 𝑍(𝑠), we can focus on 𝑍(𝑠) containing only terms of exactly order 𝑘:

𝑍(𝑠) =
∑

𝛬∈𝐶(𝑁,𝑘)

∑

𝑎∈{1,…,𝑑}|𝛬|
𝜁𝛬,𝑎 𝛿𝑠[𝛬],𝑎, (90)

where 𝐶(𝑁, 𝑘) denotes the set of all combinations of 𝑘 object from {1,… , 𝑁} without replacement:

𝐶(𝑁, 𝑘) = {𝛬 ∈ (𝑁) ∶ |𝛬| = 𝑘}. (91)

The valid states 𝑠, with:
𝑁
∑

𝛿𝑠𝑛𝑡 ≥ 𝑁𝑡 = 𝑁 − 𝑘, (92)

𝑛=1
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must not add a penalty:

𝑍(𝑠) = 0, (93)

which defines a system of linear equations in 𝜁𝛬,𝑎 in Eq. (90), for which the rows of the according matrix are given by the 𝛿𝑠[𝛬],𝑎.
We will show, that there exists a state 𝑟 ∈  with less than 𝑁𝑡 occurrences of state 𝑡, and thus should add penalty, but evaluates to
𝑍(𝑟) = 0. We do so, by showing, that 𝛿𝑟[𝛬],𝑎 can be written as a linear combination of 𝛿𝑠[𝛬],𝑎 with valid states 𝑠.

For this purpose, we define vectors �⃗�(𝛤 ) ∈  containing only state 𝑡 and another state 𝑢 ∈ {1,… , 𝑑} with 𝑢 ≠ 𝑡, where the last
𝑁 − 𝑘 − 1 elements are all 𝑡:

�⃗�(𝛤 ) = �⃗�(𝛤 ) ⊕ (𝑡,… , 𝑡). (94)

Here, 𝛤 ∈ (𝑘 + 1) is a subset of {1,… , 𝑘 + 1} and �⃗�(𝛤 ) ∈ {𝑡, 𝑢}𝑘+1 is defined by:

𝑥(𝛤 )𝑛 =

{

𝑡, if 𝑛 ∈ 𝛤 ,
𝑢, if 𝑛 ∉ 𝛤 .

(95)

We will show that 𝛿𝑟[𝛬],𝑎 for:

𝑟 = �⃗�(∅) = (𝑢,… , 𝑢, 𝑡,… , 𝑡), (96)

which contains 𝑁 − 𝑘 − 1 = 𝑁𝑡 − 1 occurrences of 𝑡, is a linear combination of 𝛿�⃗�(𝛤 )[𝛬],𝑎 with 𝛤 ≠ ∅, such that �⃗�(𝛤 ) constraints at
least 𝑁 − 𝑘 = 𝑁𝑡 occurrences of 𝑡.

For a given 𝛬 = {𝑛1, 𝑛2,… , 𝑛𝑘} ∈ 𝐶(𝑁, 𝑘) and 𝑎 ∈ {1,… , 𝑑}|𝛬|, we assume that 𝑛1,… , 𝑛𝑚 ≤ 𝑘 + 1 and 𝑛𝑚+1,… , 𝑛𝑘 > 𝑘 + 1. Then
for any 𝛤 ∈ (𝑘 + 1):

𝛿�⃗�(𝛤 )[𝛬],𝑎 = 𝛿𝑥(𝛤 )𝑛1
,𝑎1
𝛿𝑥(𝛤 )𝑛2

,𝑎2
⋯ 𝛿𝑥(𝛤 )𝑛𝑚 ,𝑎𝑚

𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘 . (97)

Note that for 𝑟, where 𝛤 = ∅, we get:

𝛿𝑟[𝛬],𝑎 = 𝛿𝑢,𝑎1 ⋯ 𝛿𝑢,𝑎𝑚 𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘 . (98)

If we sum the Kronecker-deltas for all �⃗�(𝛤 ) with the same number 𝛼 = |𝛤 | of 𝑡, we obtain:
∑

𝛤∈𝐶(𝑘+1,𝛼)
𝛿�⃗�(𝛤 )[𝛬],𝑎 = 𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘

∑

𝛤∈𝐶(𝑘+1,𝛼)
𝛿𝑥(𝛤 )𝑛1

,𝑎1
𝛿𝑥(𝛤 )𝑛2

,𝑎2
⋯ 𝛿𝑥(𝛤 )𝑛𝑚 ,𝑎𝑚

. (99)

We can evaluate the sum on the right site, by considering that �⃗�(𝛤 ), which has length 𝑘 + 1, has to match 𝑎 on the sites defined by
𝑛1,… , 𝑛𝑚, and that 𝛾 = count

(

𝑡, (𝑎1,… , 𝑎𝑚)
)

occurrences of 𝑡 are already bound in 𝑎. Therefore, we need to count all combinations,
where we place 𝛼 − 𝛾 instances of 𝑡 on the remaining (𝑘 + 1) − 𝑚 sites:

∑

𝛤∈𝐶(𝑘+1,𝛼)
𝛿�⃗�(𝛤 )[𝛬],𝑎 = 𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘

(

(𝑘 + 1) − 𝑚
𝛼 − 𝛾

)

, (100)

where the brackets on the right side denote the binomial coefficient.
Now, we calculate the sum of all these expressions for 𝛼 = 1, 2,… , 𝑘 + 1 with alternating signs:

𝑘+1
∑

𝛼=1
(−1)𝛼−1

∑

𝛤∈𝐶(𝑘+1,𝛼)
𝛿�⃗�(𝛤 )[𝛬],𝑎 (101)

= 𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘

𝑘+1
∑

𝛼=1
(−1)𝛼−1

(

(𝑘 + 1) − 𝑚
𝛼 − 𝛾

)

= 𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘

𝑘+1−𝛾
∑

𝛼=1−𝛾
(−1)𝛼+𝛾−1

(

(𝑘 + 1) − 𝑚
𝛼

)

= 𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘 (−1)
𝛾−1

𝑘+1−𝑚
∑

𝛼=max(0,1−𝛾)
(−1)𝛼

(

(𝑘 + 1) − 𝑚
𝛼

)

,

where in the second line, we shifted the index 𝛼 and in the third line, we trimmed to index 𝛼 to reflect, that the binomial coefficient
vanishes for 𝛼 < 0 or 𝛼 > (𝑘 + 1) − 𝑚. We distinguish two cases: If the number of 𝑡 in (𝑎1,… , 𝑎𝑚) is non-zero, then the expression
vanishes:

𝑘+1
∑

𝛼=1
(−1)𝛼−1

∑

𝛤∈𝐶(𝑘+1,𝛼)
𝛿�⃗�(𝛤 )[𝛬],𝑎 (102)

= 𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘 (−1)
𝛾−1

𝑘+1−𝑚
∑

𝛼=0
(−1)𝛼

(

(𝑘 + 1) − 𝑚
𝛼

)

= 0,
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where we used the identity ∑𝑛
𝑗=1(−1)

𝑗(𝑛
𝑗

)

= 0. If (𝑎1,… , 𝑎𝑚) does not contain any 𝑡, then we need to make sure to include the term
𝛼 = 0, in order to use this identity:

𝑘+1
∑

𝛼=1
(−1)𝛼−1

∑

𝛤∈𝐶(𝑘+1,𝛼)
𝛿�⃗�(𝛤 )[𝛬],𝑎 (103)

= 𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘 (−1)
𝛾−1

𝑘+1−𝑚
∑

𝛼=1
(−1)𝛼

(

(𝑘 + 1) − 𝑚
𝛼

)

,

= 𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘 (−1)
𝛾−1

(𝑘+1−𝑚
∑

𝛼=0
(−1)𝛼

(

(𝑘 + 1) − 𝑚
𝛼

)

− (−1)0
(

(𝑘 + 1) − 𝑚
0

)

)

= 𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘 ,

here in the last line, we included that the number of 𝑡 in (𝑎1,… , 𝑎𝑚) vanishes in this case, 𝛾 = 0 and thus (−1)𝛾−1 = −1. We can
summarize the results for the two cases as:

𝑘+1
∑

𝛼=1
(−1)𝛼−1

∑

𝛤∈𝐶(𝑘+1,𝛼)
𝛿�⃗�(𝛤 )[𝛬],𝑎 = 𝛿𝑢,𝑎1 ⋯ 𝛿𝑢,𝑎𝑚 𝛿𝑡,𝑎𝑚+1 ⋯ 𝛿𝑡,𝑎𝑘 , (104)

which is exactly 𝛿𝑟[𝛬],𝑎 in Eq. (98):

𝛿𝑟[𝛬],𝑎 =
𝑘+1
∑

𝛼=1
(−1)𝛼−1

∑

𝛤∈𝐶(𝑘+1,𝛼)
𝛿�⃗�(𝛤 )[𝛬],𝑎. (105)

herefore 𝛿𝑟[𝛬],𝑎 is linear combination of 𝛿�⃗�[𝛬](𝛤 ) ,𝑎. As a consequence, if we choose 𝜁𝛬,𝑎 in Eq. (90), such that 𝑍(�⃗�(𝛤 )) = 0 for all valid
tates with 𝛤 ≠ ∅, then 𝑍(𝑟) = 0 for the constraint violating state 𝑟. Thus, a suitable penalty function 𝑍(𝑠) cannot be constructed
ith only terms of order less then 𝑁 −𝑁𝑡 + 1. As a consequence, any penalty Hamiltonian will contain terms of order 𝑁 −𝑁𝑡 + 1
r more.

.2. Symmetries of stacking sequences with respect to lamination parameters and constraints

In Section 5, we selected target lamination parameters for 𝑁 = 6 plies that correspond to stacking sequences which cannot be
ransformed into each other through symmetry transformations of the lamination parameters and the disorientation constraint. In
his section, we explore these symmetry transformations and their impact on SSR.

Given their definition, the set of lamination parameters is symmetric under specific rotations and reflections of the space. As long
s an SSR algorithm inherently treats all ply-angles equally, it can be expected to perform similarly for target lamination parameters
hat can be transformed into each other through these symmetry transformations. For numerical trials of the algorithm, it therefore
akes sense to choose target parameters that are distinctly invariant to ensure a broad representation of potential behaviors. We

egin by examining the symmetries of the lamination parameter space with arbitrary continuous ply-angles and then discuss the
cenario with discrete parameters.

The 4-dimensional rotation:

𝑅(𝜒) =

⎛

⎜

⎜

⎜

⎜

⎝

cos (2𝜒) − sin (2𝜒) 0 0
sin (2𝜒) cos (2𝜒) 0 0

0 0 cos (4𝜒) − sin (4𝜒)
0 0 sin (4𝜒) cos (4𝜒)

⎞

⎟

⎟

⎟

⎟

⎠

(106)

applied to the set of lamination parameters of a ply-angle sequence 𝜙 = (𝜙1,… , 𝜙𝑁 ) for a specific 𝑋 = 𝐴,𝐵,𝐷:

⎛

⎜

⎜

⎜

⎜

⎝

𝑣𝑋1
𝑣𝑋2
𝑣𝑋3
𝑣𝑋4

⎞

⎟

⎟

⎟

⎟

⎠

=
𝑁
∑

𝑛=1
𝛼𝑋

⎛

⎜

⎜

⎜

⎜

⎝

cos
(

2𝜙𝑛
)

sin
(

2𝜙𝑛
)

cos
(

4𝜙𝑛
)

sin
(

4𝜙𝑛
)

⎞

⎟

⎟

⎟

⎟

⎠

(107)

produces a constant shift of 𝜒 for all ply angles 𝜙𝑛:

𝑅(𝜒)

⎛

⎜

⎜

⎜

⎜

⎝

𝑣𝑋1
𝑣𝑋2
𝑣𝑋3
𝑣𝑋4

⎞

⎟

⎟

⎟

⎟

⎠

=
𝑁
∑

𝑛=1
𝛼𝑋

⎛

⎜

⎜

⎜

⎜

⎝

cos
(

2(𝜙𝑛 + 𝜒)
)

sin
(

2(𝜙𝑛 + 𝜒)
)

cos
(

4(𝜙𝑛 + 𝜒)
)

sin
(

4(𝜙𝑛 + 𝜒)
)

⎞

⎟

⎟

⎟

⎟

⎠

. (108)

As the shifted angle sequence (𝜙1+𝜒,… , 𝜙𝑁 +𝜒) remains a valid ply angle sequence, the set of lamination parameters is symmetric

under performing rotation 𝑅(𝜒) on all 𝑋 = 𝐴,𝐵,𝐷 simultaneously with the same angle 𝜒 .
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Fig. 6. Summary of all DMRG samples organized in a tabular format. Rows correspond to different sweep directions (inward, alternating, outward) and columns
represent the bond dimensions ranging from 2 to 32. For each sample, the best, worst, and average results are shown. The samples are sorted by the average
values for bond dimension 32 and sweep direction left, without the constraint (top right).

Additionally, the set of lamination parameters possesses mirror symmetry by applying the reflection:

𝑇 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎠

(109)

o all 𝑋 = 𝐴,𝐵,𝐷 simultaneously, which coincides with changing the sign of the ply angles:

𝑇

⎛

⎜

⎜

⎜

⎜

⎝

𝑣𝑋1
𝑣𝑋2
𝑣𝑋3
𝑣𝑋4

⎞

⎟

⎟

⎟

⎟

⎠

=
𝑁
∑

𝑛=1
𝛼𝑋

⎛

⎜

⎜

⎜

⎜

⎝

cos
(

−2𝜙𝑛
)

sin
(

−2𝜙𝑛
)

cos
(

−4𝜙𝑛
)

sin
(

−4𝜙𝑛
)

⎞

⎟

⎟

⎟

⎟

⎠

(110)

iven that for 𝜒 ∈ (90◦, 90◦] the rotations 𝑅(𝜒) are distinct, the group generated by the rotations 𝑅(𝜒) and the reflection 𝑇 is
somorphic to the orthogonal group 𝑂(2). Note that here the rotations have a periodicity of 180◦.

Next, we examine the case of 𝑑 evenly-spaced discrete angles 𝛩 = {0◦, 𝛥𝜃, 2𝛥𝜃,… , 180◦ − 𝛥𝜃} where 𝛥𝜃 = 180◦
𝑑 . This includes

the commonly used four angles {0◦,+45◦, 90◦,−45◦}, with −45◦ being equivalent to 135◦. In this setting, the shift 𝜒 induced by a
rotation 𝑅(𝜒) must also produce a valid ply-angle sequence, thus 𝜒 is restricted to the set 𝛩. The reflection 𝑇 continues to be a
symmetry transformation of the lamination parameters. With these restrictions, the group generated by the permissible rotations
and the reflection forms a subgroup of the previous group, isomorphic to the dihedral group 𝐷𝑑 , which is the symmetry group of a
olygon with 𝑑 vertices.

The symmetry transformations may be further constrained by manufacturing requirements. For the disorientation constraint,
hifting all ply-angles does not alter the ply-angle difference between two plies; thus, a valid ply-angle sequence remains valid under
hese transformations, while a constraint-violating state remains invalid. However, this is not generally the case for the balanced
aminates constraint. For instance, requiring an equal number of +45◦ and −45◦ plies, a rotation of 45◦ swaps these angles with 0◦

nd 90◦, which may result in a ply-angle sequence alternating between valid and invalid states. Consequently, an SSR algorithm
ay perform differently under transformations that are not symmetries of the constraint.

In our simulations involving the four angles 𝜃1 = 0◦, 𝜃2 = +45◦, 𝜃3 = 90◦, 𝜃4 = −45◦ and only a disorientation constraint, the
ransformations of stacking sequences 𝑠 = (𝑠1,… , 𝑠𝑁 ) ∈  corresponding to allowed rotations can be expressed as adding an
nteger modulo 4 to all ply-states 𝑠𝑛. Possible reflections include swapping states 1 and 3, or states 2 and 4. For the selected target
amination parameters for 𝑁 = 6, these stacking sequences cannot be transformed into each other using any combination of these
ransformations.

At the beginning of this section, we noted that an SSR algorithm is expected to behave similarly for target parameters that are
quivalent under these symmetry transformations, provided it does not discriminate between different ply angles. This is certainly
he case for the DMRG algorithm, which directly operates on the ply-states. For the QAOA algorithm and the hardware-efficient
28 
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approach, consideration must be given to the qubit-encoding, the parameterized quantum circuit, and its optimization. In our state-
vector simulations, qubit states |0⟩ and |1⟩ are considered interchangeable, but on actual quantum hardware, these states often do not
exhibit completely symmetric behavior. For instance, one of these states may be a higher energy state prone to erroneously falling
into the lower energy state (𝑇1 decay), potentially leading to performance differences between encodings that involve different
durations of the qubits being in the higher energy state.

Moreover, even within state-vector simulations, performance differences may occur for equivalent target parameters. The QAOA
algorithm applies operations to all qubits simultaneously and implements eigenvalue-dependent phases, which should make it
less susceptible to encoding-specific features. However, the local optimizations in the hardware-efficient approach may exhibit a
dependency on the encoding, potentially resulting in distinct behaviors for target parameters that can be transformed into each
other. For this reason, we have attempted to incorporate the rotational symmetries into our encoding at least partially. In this
encoding, for the qubits representing one ply, flipping one qubit results in a rotation of +45◦ or −45◦, while flipping both qubits
esults in a rotation of 90◦. This remains consistent even under the aforementioned symmetry transformations.

.3. Diagram of all measured samples for DMRG with 𝑁 = 200 plies

Fig. 6 offers a tabular depiction of the outcomes of all measured samples. The rows and columns respectively represent different
weep directions and diverse bond dimensions. Here, the rows signify different sweep directions, and the columns represent the
iverse bond dimensions, ranging from 2 to 32. The samples are sorted by the average values for bond dimension 32 and sweep
irection left, without the constraint.
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