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Abstract

Meditation is a contemplative practice that is believed to entail attentional and emotional
regulation. One of the biggest challenges in developing personalized, accessible healthcare
options with meditation is finding understandable features that signify whether someone is
meditating. Specifically, there is no consensus on a feature resulting from the electroencephalo-
gram (EEG) in the current body of literature on meditation.

In this thesis, I propose a dynamic systems analysis on EEG data to obtain a dynamic
feature capable of distinguishing meditation from an eyes-closed resting baseline. I gathered
the EEG data at TNO (Dutch Organisation for Applied Scientific Research) from twenty-two
participants during a sixteen-minute loving-kindness meditation and two two-minute base-
lines. The proposed methodology characterizes temporal and spatial characteristics of the
EEG simultaneously by approximating the EEG dynamics with a linear model on short
time windows. I assess changes among three features: the frequency and magnitude of the
oscillatory dynamics and the corresponding active electrodes.

The analysis can identify changes in EEG dynamics for each individual. Across all partic-
ipants, regions associated with vision and language processing were active throughout the
experiment. Notably, attention-related regions were more involved during meditation than
rest. Moreover, the results show a shift in active regions throughout the meditation and the
baselines for several participants.

Moreover, the thesis investigates the sensitivity of the analytical approach to changes in
the electrode subset used for the analysis. For each participant, I constructed a subset
of electrodes that were most involved in the changing EEG dynamics. The personalized
subset was most sensitive to changes between meditation and rest, compared to other subsets
based on commercial wearable EEG headsets. Finally, I compare the findings of the dynamic
systems approach to a conventional analytical approach, and the participants’ emotional
ratings inquired in subjective questionnaires. Unfortunately, from the current data, there
appears to be no relationship between the proposed features and the conventional measures
or the subjective questionnaires.
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Chapter 1

Introduction

Meditation is a contemplative practice that involves monitoring and regulating attention
and emotion [1]. Meditation originates from religious and philosophical systems, such as
Buddhism and Christianity [2]. Over the past two decades, there has been considerable
interest in the neural basis of meditative practices [3]. An increasing body of research suggests
that meditation is associated with improved mental health by reducing feelings of anxiety and
depression and helping patients deal with chronic pain or illness [4, 5]. Increased evidence and
acceptance have led to the secularization of meditation and increased accessibility through
the development of meditation apps, instruction videos, and online courses. Despite the
popularity of meditation, it is still unknown what factors make meditation effective.

One of the biggest challenges in assessing effective meditation is finding a feature that
signifies whether someone is meditating. Studies going back to the 1970s have used the
electroencephalogram (EEG) to quantify changes in neural activity [6]. EEG is a non-invasive
neuroscientific measure that records voltage fluctuations over time with electrodes on different
locations on the scalp [7]. The potential differences relative to a reference provide an objective
method to judge what conditions affect neural activity during meditation. Thus, the EEG
can quantify changes in neural activity.

Some commercial devices claim to monitor meditation with only a few EEG sensors built
into a headset. Figure 1-1 shows one example, the Muse headset [8]. The device provides the
user with real-time feedback through auditory stimuli and develops a personalized meditation
schedule on an app on the user’s phone. Wearable devices like Muse are more accessible than
professional EEG systems and easier to use. In addition, the app provides an understandable
interface that could help individuals identify what factors increase the effectiveness of their
meditation and thus contribute to their mental health. However, it is unknown how the device
assesses the efficacy of a particular meditation session.

A common approach to characterize EEG signals is with spectral bandwidth analysis. Spectral
bandwidth analysis expresses the power of one signal contributed by different frequencies.
Section 2-2 explains spectral bandwidth analysis in more detail. Studies quantify changes
between states with the difference in the average power contributed by frequencies in a
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2 Introduction

particular bandwidth. For example, several studies propose that the power of the EEG signal
increases during meditation compared to rest in the frequency range 8 to 12 Hz, referred to
as the alpha bandwidth [6, 9, 10, 11]. Generally, increased power in the alpha bandwidth is
associated with a relaxed state. However, other research reports contradicting results, such
as a decrease in alpha power, an increase in the theta bandwidth power, 4 to 8 Hz, or no
systematic change during meditation [6, 9].

Spectral bandwidth analysis considers the signal of each EEG electrode separately. Due to
varying results per electrode, studies usually compute the average power per bandwidth of
particular regions or across all electrodes to examine a participant’s state. A few studies looked
at the electrode-specific effects of meditation. Most notably, Dunn et al. [12] found that the
alpha power in parietal electrodes was higher during mindfulness meditation compared to a
concentration exercise and rest. Figure 1-2 shows the location of the parietal lobe in the brain.
While some studies corroborate that meditation increases parietal alpha power, other studies
find that alpha power increases in the occipital region or reduces in the parietal or occipital
region [11]. Consequently, there seems to be no consensus on a feature that distinguishes
meditation from rest resulting from spectral analysis.

Other neuroimaging methods can identify active brain areas during meditation, such as
functional magnetic resonance imaging (fMRI) and positron emission tomography (PET).
fMRI and PET scans generally have a better spatial resolution than EEG, meaning they can
identify areas of interest more precisely. In a meta-analysis of 78 functional neuroimaging
studies, Fox et al. [14] found that several areas were activated consistently across different
types of meditation. Moreover, they identified areas specific to the most common meditation
types. For example, during loving-kindness meditation, areas linked to sensory processing and
bodily awareness (somatosensory cortices and insula) were active. However, fMRI and PET
scans are not as widely accessible as EEG and are limited in temporal resolution. Generally,
studies can consider only one or a few scans during meditation per participant.

Figure 1-1: The Muse headband [8].
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Dynamic systems analysis is a method that assesses both spatial and temporal characteristics
of neural activity by locally approximating the dynamics as a linear system. Two studies ap-
plied dynamic systems analysis to electrocochleography (ECoG) data [15, 16]. ECoG electrodes
are placed directly on the cortex rather than on the scalp as EEG electrodes. ECoG recordings
have better spatial resolution than EEG and typically measure higher voltages than EEG,
around several hundreds of microvolts compared to several tens the EEG records [17, 18].
Because the human skull acts as a low-pass filter, ECoG can record more high-frequency
neural activity, up to 10 kHz [17]. The downside of ECoG measurements is that the electrodes
have to be placed on the subject’s cortex, making it an invasive measure.

Solovey et al. [15] applied dynamic system analysis to characterize differences between the
conscious and unconscious brain. They provided a novel measure to distinguish the neural
activity of four monkeys before, during and after anesthesia. The research study by Ashour-
van et al. [16] monitored 21 subjects during 94 seizures with ECoG recordings. They were
able to characterize the spatiotemporal dynamics of seizures subject-specifically. Works [15]
and [16] provide evidence that dynamic system analysis can identify features that characterize
loss of consciousness and seizures based on neural data.

Proposed study In the current body of literature on meditation, there has yet to be a
consensus on a feature signifying meditation. Currently, there is no objective measure to tell
whether someone is in a meditative state. The lack of understanding limits the development of
meditation as an accessible, low-cost, personalized healthcare option. Several studies aim to
identify either temporal or spatial characteristics of the EEG, but in the context of meditation,
very few assess both simultaneously.

Accordingly, I propose a dynamic systems approach to assess changes in EEG data during
a meditation session compared to eyes-closed, resting baseline measurements. Section 2-3

Figure 1-2: The human brain divided into four regions, or lobes: lobes: frontal, parietal, temporal
and occipital [13].
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4 Introduction

further explains dynamic systems analysis. Dynamical systems analysis successfully identified
characteristic features for both loss of consciousness and seizures on ECoG data. EEG cannot
capture the same high-frequency spectrum as ECoG but based on the literature, the range of
interest lies in the theta and alpha bandwidth (4-12 Hz), which the EEG can capture well.
Since the method was successful for processes related to consciousness, a dynamical systems
approach could provide features for distinguishing meditation. By extension, a model that
captures spatiotemporal changes during meditation could help to obtain knowledge about the
neural mechanisms underlying meditation.
In this thesis, I seek to explore the hypothesis that a dynamic feature distinguishes meditation
from a resting baseline. I gathered an EEG dataset for this thesis at TNO in the context of
a broader mental state monitoring experiment. In the experiment, twenty-two participants
performed a sixteen-minute audio-guided loving-kindness meditation. Before and after the
meditation, I asked the participants to rate their current emotions and recorded a two-minute
eyes-closed resting baseline.
During analysis, I model the EEG data as a linear system on short time windows and compute
three features for each window that result from the dynamic system model, discussed in
Section 3-1. Next, I assess the differences in the feature distributions during meditation
compared to the baselines to validate the hypothesis. Additionally, I explore the sensitivity
of the analysis to using different subsets of electrodes rather than the complete set. I explore
using a personalized headset and a subset of electrodes based on available wearable EEGs.
The EEG in this experiment uses a saline solution between the electrodes and the scalp,
whereas wearable EEGs usually use a dry technology. Therefore, the analysis serves as a
theoretical experiment to investigate the impact of the locations of the EEG electrodes.

Contributions The experimental work presented in this thesis provides the first application
of dynamic systems analysis on EEG data in the context of meditation. The approach
combines the analysis of temporal and spatial characteristics of EEG signals. The analysis
shows that the EEG dynamics change for every participant in the experiment conducted for
this thesis. Furthermore, it identifies the most active regions corresponding to the changing
dynamics, both subject-specific and across all participants. Finally, shifts in the active regions
may suggest changing neural dynamics underlying meditation.

Outline thesis Chapter 2 provides background information on the concepts discussed in
this thesis. It explains the workings of the EEG and the challenges when working with EEG
signals. Furthermore, it highlights the conventionally applied spectral bandwidth analysis.
Finally, it introduces eigenvalue-eigenvector decomposition and stability analysis. Chapter 3
discusses the protocol of the experiment at TNO. Moreover, it explains the dynamical systems
approach, the data processing steps, and the evaluation metrics of the analysis.
In Chapter 4, I first show the results of a stationarity analysis to choose the appropriate
model parameters for the linear model. Second, it discusses the results of the dynamic
systems analysis. In addition, I discuss the scenario in which only a subset of the sensors is
available, such as the Muse headset or a personalized subset, and display the corresponding
results. Finally, the chapter shows the results of the subjective questionnaires the participants
answered before and after meditation. To conclude, Chapter 5 discusses the results, evaluates
the study, and provides recommendations for future studies following this thesis.
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Chapter 2

Preliminaries

To quantify changes in the human mind that meditation brings about, we can use an elec-
troencephalogram (EEG) to measures the voltage fluctuations at different locations on the
scalp [7]. This chapter provides background information on important concepts discussed
in this thesis. Section 2-1 explains how the EEG can capture part of the neural activity.
Section 2-2 describes a conventional method to analyze the EEG data, the spectral bandwidth
analysis. Finally, Section 2-3 provides a more elaborate explanation of the eigendecomposition
and stability analysis of a linear system.

2-1 Neural basis of the EEG

Electric activity in the neuron Neurons, electrically excitable cells, can transmit electro-
chemical signals in the brain. Neurons transmit sensory inputs to the brain, carry signals
within the central nervous system, or send a message to target cells, such as muscles or
glands. To pass from one neuron to the next, the signal has to pass the synapse, a structure
that allows for the transmission of signals via chemical signaling or directly as an electrical
signal. Chemical signaling occurs through specific chemicals called neurotransmitters.

The neuron’s structure can roughly be divided into three parts: the dendrites, the cell body,
and the axon (see Figure 2-1). The dendrites receive signals from other neurons. If the sum of
input signals that lead to a change in the electrical potential reaches a certain threshold, the
cell body is triggered to send an impulse along the axon: the action potential. The neuron’s
resting membrane potential, the difference in potential between the inside and outside of the
cell, is typically −70 mV. The resting membrane potential differs per type of neuron, and
can lie between −80 and −40 mV. The threshold is usually −55 mV, and the action potential
typically causes the membrane potential to increase to +30 mV. The action potential causes a
brief local current lasting about 1-10 ms [7]. The action potential is a local trigger, propagating
throughout the axon by activating other local triggers, i.e. other action potentials.

Master of Science Thesis F. van Engen



6 Preliminaries

Figure 2-1: Structure of a neuron [19].

The action potential can propagate until it reaches the ends of the axon, the axon terminals.
The axon terminals can release neurotransmitters in the case of chemical signaling or pass
the electric signal directly to another neuron. When a neurotransmitter binds to a receptor
on the dendrites of another neuron, it can trigger a response, the postsynaptic potential. The
postsynaptic potential depolarizes the neuron receiving the neurotransmitter, making it more
likely to fire an action potential. Postsynaptic potentials typically last longer than action
potentials, lasting about 50-200 ms [7].

EEG measurements The EEG only captures the neural activity when the potential field
is large enough [7]. Since the postsynaptic potential lasts longer than the action potential,
the probability that multiple postsynaptic potentials happen synchronously is higher. Specif-
ically, neurons called pyramidal cells often behave similarly simultaneously. Moreover, their
dendrites lie parallelly, orienting their potential field in the same direction such that the sum
of their potentials does not cancel each other out. Contrarily, action potentials can go in
many directions relative to the surface of the cortex and are not synchronized. Postsynaptic
potentials of the pyramidal cells usually have a greater potential field and are considered the
main contributor to the EEG [7].

During the postsynaptic potential, the pyramidal cell has two oppositely charged poles sep-
arated by some distance, a dipole, emitting an electric field in almost every direction (see
Figure 2-2). We model many neighboring dipole sources as one dipole that can be oriented in
any direction. The electrical field causes currents to flow through the surrounding conductive
medium, such as the brain tissue and the scalp. This effect is called volume conduction. The
dipoles express the direction and the strength of the current flow. The polarity of the dipoles
can vary, and the conductivity of the biological tissue between the dipole and each electrode
is not uniform either. The voltage fluctuations measured at any electrode on the scalp are a
weighted sum of activities generated by many neural sources, known as spatial smearing. As
a consequence, the spatial resolution of EEG is limited [7].

F. van Engen Master of Science Thesis



2-2 Spectral bandwidth analysis 7

Figure 2-2: We model a group of neurons that behave similarly simultaneously as one dipole
that causes currents to flow through the surrounding conducting medium.

On the other hand, the temporal resolution of EEG measurements is very high, making it
possible to capture fast dynamics of processes in the brain (such as cognitive, motor and
emotional processes). Furthermore, EEG is a non-invasive measure, meaning that we place
the sensors on the outside of the head. EEG measurements do not require patients to have
electrodes implanted surgically. However, having the electrodes on the scalp rather than on
the brain introduces larger spatial smearing and more data processing challenges. Despite
these limitations, EEG is one of the most accessible and used mechanisms to quantify neural
activity.

2-2 Spectral bandwidth analysis

Spectral bandwidth analysis is one of the first and most frequently used methods to quantify
changes in EEG measurements in studies monitoring meditation [9]. An EEG recording
expresses the voltage potential of one channel compared to some reference for multiple
points in time. Spectral estimation transforms the signal from the time domain to the
frequency domain, expressing the signal’s power distribution as a function of the frequency. By
comparing the power contributed by different frequencies, the spectral analysis characterizes
the EEG signals in the frequency domain.

Fourier Transform The basis for the spectral estimation is the Fourier Transform. It
characterizes a time-series signal in the frequency domain by expressing the signal as a
composition of oscillations with different frequencies. For a discrete signal, we use the
Discrete-Time Fourier Transform (DTFT). Define the frequency as ω ∈ R in radians per

Master of Science Thesis F. van Engen



8 Preliminaries

second and sampling time T in seconds, then the DTFT is defined as [20]:

X(ejωT ) =
∞∑

k=−∞
x(k)e−jωkT . (2-1)

The DTFT exists only for signals for which the sum in Equation 2-1 converges. The condition
is met when the signal x(k) is absolutely summable: ||x||1 < ∞.

Note that to compute this signal transform, we need the signal to be defined on the time
interval (−∞, ∞). In practise, we only have a finite number of data samples. Therefore,
we use the Discrete Fourier Transform (DFT). Let x(k) be the signal in volt for time step
k ∈ Z = 0, 1, ...N − 1, where N is the total number of samples. ωn = 2πn/(NT ) in radians
per second for n ∈ Z = 0, 1, ...N − 1 and T ∈ R is the sampling time in seconds. The Discrete
Fourier Transform (DFT) of x(k) is given by [20]:

XN (ωn) =
N−1∑
k=0

x(k)e−jωnkT . (2-2)

The DFT transforms a time sequence of N samples into a sequence of complex numbers at N
different frequency points.

Power spectrum estimation To display the frequency content for a signal, the power-
spectral density function, or the power spectrum is used. The spectrum can be thought of
as the distribution of the signal’s energy over the whole frequency band. For discrete signals
with a finite number of samples, we can estimate the power spectrum with a periodogram. Let
ωn = 2πn/(NT ) in radians per second for n ∈ Z = 0, 1, ...N − 1, with N is the total number
of samples and T ∈ R is the sampling time in seconds. Then the periodogram is defined by
the following [7, 20]:

Φ̂x
N (ωn) = 1

N
|XN (ωn)|2. (2-3)

To reduce the periodogram’s variance, a well-known method is Welch’s [21]. Welch’s method
divides the data samples into data segments. First, the periodogram of each windowed data
segment is calculated. Then, the final spectral estimate is the average of each periodogram.
Welch’s method reduces the variance of the spectral estimate, assuming the variance of the
spectral content of the signal is less in a shorter time window.

The lower variance comes at the expense of decreasing the frequency resolution. The frequency
resolution is the fineness of detail that we can distinguish in a periodogram. For a sequence
of N samples the DFT defines frequency values at points 2πn/(NT ), n ∈ Z = 0, 1, ...N − 1.
In between these points there is no information available. Therefore, the frequency resolution
of the periodogram is defined as NT/(2π). Thus, the reduced variance means that we will
lose detail in the frequency spectrum.

F. van Engen Master of Science Thesis



2-2 Spectral bandwidth analysis 9

Spectral bandwidth analysis In the power spectrum, we can recognize peaks around specific
frequencies. In the context of EEG measurements, it is common to divide the frequency band-
width into several bandwidths: delta (1-4 Hz), theta 4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz)
and gamma (>30 Hz). However, the exact definitions of the bandwidths differ per study [6, 9].
In early EEG studies, specific characteristics were attributed to peaks in the different band-
widths, as shown in Figure 2-3. The most prominent peak in the spectrum roughly indicates
in what state someone is. For example, the spectrum of the EEG in Figure 2-3 shows a peak
in the alpha bandwidth, suggesting the person is in a relaxed state. The person was sitting
in a chair with their eyes closed so we could classify their state as relaxed. More recent
studies still adhere to these bandwidths by comparing the average power across a bandwidth
during different states. We can compute the average power of the frequency points within a
bandwidth for a discrete-time signal.

Figure 2-3: In the context of EEG measurements, the frequency spectrum is divided into smaller
frequency bandwidths. A peak in a certain bandwidth is typically associated with a particular
mental state. For this particular periodogram, the largest peak is in the alpha bandwidth,
associated with a relaxed state.
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10 Preliminaries

2-3 Eigendecomposition and stability analysis

The behaviour of many dynamic systems is modeled with linear systems, even when the
underlying mechanism behaves according to nonlinear dynamics. Linear systems can be
applied to a wide range of different physical domains and allow for a uniform set of tools
to analyse the system’s behaviour. Specifically, the responses of linear autonomous systems,
dynamic state-space systems without inputs and outputs, can be completely understood using
linear algebra.

Eigendecomposition For a state x ∈ Rn, the evolution matrix A ∈ Rn×n and time step k, a
discrete, autonomous linear system is described as:

x(k) = Ax(k − 1). (2-4)

For an initial condition x(0), we can express the response of the system at time step t in
terms of the evolution matrix as:

x(k) = Atx(0). (2-5)

An eigenvalue λ of A is a, possibly complex, zero of the characteristic polynomial of A,

det(λI − A) = 0. (2-6)

If λ is an eigenvalue of A, then any non-zero vector e ∈ Cn is a corresponding eigenvector if
it satisfies

(λI − A)v = 0, or equivalently Av = λv. (2-7)

Note that eigenvectors are not unique, and that for each eigenvalue there exist at most
n linearly independent eigenvectors (a basis of the null space of λI − A). For a matrix
A ∈ Rn×n we can find n eigenvalue-eigenvector pairs that completely characterize the linear
system’s behaviour, given the initial conditions.
Suppose that A has a complex-valued eigenvalue λ with a corresponding eigenvector v. Then
the complex conjugate of λ, λ̄, is also an eigenvalue of A and the complex conjugate of v,
v̄ is a corresponding eigenvector. Thus, complex eigenvalues and eigenvectors always exist in
pairs.
If the evolution matrix A has n linearly independent eigenvectors, then it can be decomposed
as:

A = V ΛV T , (2-8)
where matrix Λ ∈ Rn×n is a diagonal matrix containing the eigenvalues of A, the columns
of the matrix V ∈ Rn×n contain the corresponding eigenvectors, and V T is the transpose of
V . The decomposition of the evolution matrix into Λ and V , or equivalently into eigenvalue-
eigenvector pairs, is called the eigendecomposition or the eigenvalue decomposition of A.
We can express the state evolution after t time steps, starting at 0, as:

x(k) = Atx(0) = V ΛtV T x(0). (2-9)

F. van Engen Master of Science Thesis



2-3 Eigendecomposition and stability analysis 11

Stability We can analyze the stability of the dynamics with the absolute value, or the
magnitude, of the eigenvalues. The magnitude of the eigenvalue is associated with the
exponential growth or decay along the corresponding eigenvector. We can illustrate this idea
by considering the magnitude of the linear combination of the original data z(k) = V x(k).
Let zi(k) denote vT

i x(k), then its magnitude is expressed as:

|zi(k = t)| = |λi|t|zi(0)|. (2-10)

The stability of an autonomous linear system is examined with the asymptotic behaviour of
zi(k) as t → ∞ [15, 16]. There are three scenarios possible.

• If |λi| < 1 then |zi(k)| → 0, meaning any perturbation along the direction of the
eigenvector vi will vanish. We call the process asymptotically stable.

• For |λi| > 1 then |zi(k)| → ∞. The any perturbation along the corresponding eigenvec-
tor tends to explode, and we refer to the process as unstable.

• For |λi| = 1 then |zi(k)| = |zi(0)|. The dynamics of the linear system oscillate between
stability and instability. A linearization of a nonlinear system fails to classify the
stability of the process when |λi| = 1. In this case, the equilibrium point around
which the system is linearized could be asymptotically stable, stable or unstable [22].

Thus, the eigenvalue’s magnitude captures the growth or decay of an oscillation, and the
eigenvector specifies the direction of the oscillation. Figure 2-4 displays different eigenvalues
plotted in a complex plane to visualize the relationship between an eigenvalue’s magnitude
(|λ|) and frequency and the corresponding dynamics. The eigenvalue’s frequency is propor-
tional to the angle θ. The dynamics in the lower half of the plane mirror the upper half because
both eigenvalues in a complex conjugate pair have the same frequency and magnitude.
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Figure 2-4: The relationship between the complex eigenvalue and its magnitude |λ| and its
frequency, which is proportional to the angle θ.
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Chapter 3

Methodology

Various fields of natural and social science research employ dynamic system models. They can
describe oscillatory patterns and predict outcomes in complex systems. In Section 3-1 of this
chapter, we describe how dynamic systems modeling can describe the dynamic properties of a
complex system. The study to collect electroencephalogram (EEG) signals during meditation
is described in Section 3-2. Section 3-3 outlines the procedures for processing the data, and
Section 3-4 discusses the metrics for determining the statistical significance of the findings.

3-1 Dynamic systems analysis

Dynamic systems can locally approximate the dynamics of a variety of processes as an
autoregressive (AR) model [22]. Specifically, let x(k) ∈ Rn be the measurements at time
step k. Then, for time window K ∈ Z defined on the interval [k − τ, k + τ ], where τ is the
window size parameter, we obtain the following AR model of order 1, or AR(1), as a function
of the evolution matrix A(K) ∈ Rn×n and ε(k + 1) ∈ Rn the approximation error:

x(k + 1) = A(K)x(k) + ε(k + 1). (3-1)

The local linear approximation relies on the assumption that a linear model can adequately
describe the dynamics of the signal over a short time interval. The parameter τ must
be selected carefully because it must be small enough to ensure the validity of the linear
approximation. On the other hand, the frequency of the dynamics the model captures depends
on the time window selection. A time window that is too small will mainly model high-
frequency dynamics and noise because it cannot capture low-frequency dynamics. Depending
on the objective of the analysis, we must reach a balance for the selection of τ .

It’s important to recognize that this model cannot infer any underlying neural mechanisms
from the data. Rather, we can assess dynamic properties locally through the eigendecompo-
sition of evolution matrix A [16]. More specifically, the eigenvalue-eigenvector pairs capture
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linearly independent spatiotemporal dynamics. A complex eigenvalue specifies the oscillatory
dynamics for each spatiotemporal process. The eigenvector captures the relative involvement
of each EEG electrode for the corresponding dynamics. Thus, the analysis includes both the
EEG’s temporal and spatial aspects.

We can derive two dynamic features that characterize the EEG from the eigenvalues. Given
the sampling frequency fs in Hz, the angle θi corresponding to the ith complex eigenvalue in
polar coordinates provides a description of the frequency fi as the following [16]:

fi = θi

2π
fs. (3-2)

The second feature is the eigenvalue’s magnitude, or absolute value, associated with an
exponential growth or decay of the oscillations. This is also referred to as the stability
feature, because the magnitude characterizes the stability of the process when it is subject
to perturbations [15, 16]. Section 2-3 explains how the eigenvalues characterize different
stages of stability and shows the relationship between the magnitude, the frequency, and the
corresponding oscillations.

The eigenvectors express the direction of the dynamics of the corresponding eigenvalue. Every
entry in the eigenvector relates to an electrode and, accordingly, to a location on the scalp.
The eigenvector’s standardized values characterize the relative involvement of each electrode
per window. The three dynamic features, (i) the eigenvalues’ magnitude, (ii) the eigenvalues’
frequency, and (iii) the eigenvectors, characterize the dynamics of the EEG over time.

3-2 Experiment protocol

I conducted an experiment involving monitoring various mental states at TNO’s Human
Performance department. One of the experiment’s objectives was to monitor the effects of
meditation by physiological and self-reported measures. The participant completed several
exercises during the experiment. Figure 3-1 provides a timeline of the experiment. First,
the participant watched a selection of videos selected to evoke specific emotions. Next, the
Sing-a-Song Stress Test [23] unexpectedly asked subjects to sing a song to induce stress. Then,
the participants engaged in an audio-guided meditation session. Finally, following a video’s
instructions, they performed a set of breathing exercises. Between each section, we conducted
baseline measurements. During the experiment, we asked participants to sit still.

This thesis focuses on the meditation session and the surrounding baselines and question-
naires. During the baselines and the meditation, participants kept their eyes closed and
followed the audio-guided meditation. We used a loving-kindness meditation recited by Tara
Brach for this experiment [24]. The practice asks participants to focus on positive energy
within themselves and their surroundings. We monitor the participant’s emotional responses
on three dimensions using the Self-Assessment Manikin (SAM) scale (see Figure 3-2): valence,
arousal, and dominance [25]. The test asks participants to rate their current emotions based
on the illustrations provided.

Twenty-two people participated in the experiment (8 male and 14 female). Out of all
participants only three had previous experience with meditation. Participants ranged in
age from 22 to 79 years old. All participants were in generally good health, defined as not
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3-2 Experiment protocol 15

being under medical treatment for an illness or accident, having a physical or mental health
diagnosis, smoking, using drugs recreationally, or consuming more than 28 units of alcohol
per week.

We collected the EEG data with a 32-channel gel-based BioSemi Active 2 system [26] at a
sampling rate of 512 Hz. The electrodes were placed on the scalp according to the standard
10-20 electrode placement. The BioSemi uses one Common Mode Sense active electrode
for referencing and one Driven Right Leg passive electrode so that the recordings can be
re-referenced offline. During setup, we kept the impedance of each electrode between an
offset of -20 and 20 µV using the BioSemi ActiView software. The participants arrived
one hour prior to the start of the experiment to fill out a demographics questionnaire, receive
instructions, and have the EEG set up. After the experiment, we interviewed the participants
about their experiences.

Figure 3-1: The participants go through an experiment consisting of multiple parts.

Figure 3-2: The SAM test asks participants to rank their emotion on three dimensions: valence
(top), excitement (middle), and dominance (bottom).
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3-3 Data processing steps

We processed the data using MATLAB and EEGLAB software [27]. The data was filtered
using a high-pass filter at 1 Hz and a low-pass filter at 47 Hz, using a filter of order 1650.
The high-pass filter removes sensor drift. Klug et al. advise a high-pass filter with a cut-off
frequency of 1 Hz [28]. The low-pass filter filters the 50 Hz line noise and high-frequency
noise.

The Clean Rawdata plug-in in EEGLAB cleans the EEG data [29]. The function removes a
channel if it is flat for longer than 5 seconds, is insufficiently correlated to the other channels,
or if its standard deviation is too high compared to the other channels. Moreover, Clean
Rawdata divides the data into short time frames and removes the time frame if the data
portion has an unusually large variance. For subsequent analysis, it is convenient if the data
maintains its original size. Therefore the bad time frames and the removed channels are
reconstructed using spherical spline interpolation. Spherical spline interpolation projects all
electrodes onto a sphere, similar to the electrode locations on the head, and interpolates the
values measured at the good electrodes to the removed channels.

Next, we re-referenced the EEG data to the average of all electrodes. The final pre-processing
step is to run the Extended Infomax Independent Component Analysis (ICA) [30] to identify
and remove particular artifacts in the EEG data. ICA isolates various sources underlying the
EEG recordings and returns a number of ICA components equal to the data rank. Finally,
the IC Label algorithm [31] classifies the components as neural activity or as an artifact, such
as eye blinks, eye movement, and muscle activity, based on the source location and spectral
density.

We compute the power spectrum of each electrode using Welch’s algorithm, with EEGLAB’s
spectopo-function [27]. First, we compute the power spectrum during the baselines and
meditation. To find the alpha power per electrode, we compute the average value of the
spectral power at frequencies in the 8-12 Hz range. Next, the dynamic systems analysis uses
the ARfit algorithm [32] to fit the autoregressive model of the first order with a stepwise
least squares algorithm. Finally, MATLAB’s eig-function determines the eigenvalues and
eigenvectors for each time window.

3-4 Evaluation metrics

This section explains two methods we use to evaluate the results. First, we use a stationarity
test to evaluate the choice of the window size parameter τ . Second, the statistical analysis
assesses whether the distributions of the dynamic features during meditation compared to the
baseline are statistically significant.

Stationarity test For the dynamic systems approach, we determine the eigenvalues and
eigenvectors of the evaluation matrix A(K) ∈ Rn×n for each time window K ∈ Z. Let us
define the time interval as [K − τ, K + τ ], where τ is the parameter that determines the
window size. For time step k ∈ Z from 0 to N , where N is the total number of time steps
per window, and the data per time step x(k) ∈ Rn, where n is the dimension of the data, we
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obtain the following AR(1) model for each time window:

x(k + 1) = w(K) + A(K)x(k) + ε(k). (3-3)

The vector w(K) ∈ Rn allows for a nonzero mean of the time series. The vector ε(k) ∈ Rn is
the residual vector per time step. For an AR(1) model for a stationary time series, vectors ε(k)
are uncorrelated random vectors with mean zero and covariance matrix C ∈ Rn×n [32]. The
window size is the only adjustable parameter; by extension, τ is the only identifiable parameter
of this system.

To determine what window size is the most suitable for this application, we evaluate the
residuals ε(k) of the AR model. The assumption that underlies the evaluation metric is
that the time series of the residuals are stationary if the AR model completely captures the
signal’s dynamics. To test whether the residuals are stationary, we test whether the time
series has a unit root [33]. To illustrate the concept of a unit root, we model the time series
as an autoregressive (AR) model of order 1. Let yk be the residual at time step k, ε(k) an
uncorrelated process with zero mean and variance σ2, and ϕ the AR(1) coefficient, then we
model the time series as:

y(k) = ϕy(k − 1) + ε(k). (3-4)

If ϕ < 1, the time series does not contain a unit root, meaning that when a disturbance is
present, the time series will revert back to its mean over time. On the other hand, when
ϕ ≥ 1, the time series contains a unit root and is thus non-stationary.

We use the Augmented Dickey-Fuller test (ADF test) and the Kwiatkowski-Phillips-Schmidt-
Shin test (KPSS test) to test for the presence of a unit root [33]. The ADF test assesses the
null hypothesis that the time series is non-stationary and possesses a unit root (ϕ = 1), with
the alternative hypothesis that the time series is stationary (ϕ < 1). The KPSS test has the
null hypothesis that the time series does not have a unit root and thus is stationary, with the
alternative hypothesis that the time series is non-stationary. If the ADF test rejects the null
hypothesis and the KPSS test does not, that suggests our residual time series does not have
a unit root. Therefore, the tests suggest the residuals are stationary and do not contain any
dynamics we wish to capture in our AR model.

Statistical analysis After deciding on the time window parameter, we compute the dynamic
features for each time window. Then, we assess the dynamic features during baselines
and meditation to determine if their distribution is statistically significantly different. The
Kolmogorov-Smirnov test (KS test) is a nonparametric test to analyze if two sets of samples
are from the same distribution [34, 35]. The advantage of the KS test is that it does not
assume any particular underlying distribution.

Let X1, .., Xm and Y1, ..., Yn be independent random samples, respectively, from continuous
populations 1 and 2, where n is the number of samples in X, and m is the number of
samples in Y . The null hypothesis of the KS test is that there is no difference between
continuous populations 1 and 2. The alternative hypothesis is that the samples have a different
continuous population. The first step of the test is to find the empirical cumulative distribution
function (CDF) Fx(t) and Fy(t) for the samples of X and Y over range t, where Fx(t) is the
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proportion of X values less than or equal to t and Fy(t) is the proportion of Y values less
than or equal to t. Next, we determine the maximum distance D between the empirical
distribution functions,

D = max(|Fx(t) − Fy(t)|). (3-5)

Then calculate the KS test statistic Z as:

Z = D

√
m · n

m + n
. (3-6)

We use the test statistic Z to find the two-tailed probability estimate p, which is the prob-
ability that we observe a test statistic as extreme as the value we found or more extreme.
The Smirnov formula or standard tables give the p-value corresponding to a particular test
statistic [34]. Afterward, we compare p to a significance level α to determine if the two
samples are significantly different.

The research hypothesis is a two-sided, nondirectional hypothesis because we look at a
difference in test statistic D, but not in a particular direction. On the other hand, the
KS test can also be one-sided by considering the directional difference. Then the alternative
hypothesis is that the CDF of X is either larger or smaller than the CDF of Y . The maximum
distance D∗ between the CDFs is defined as either

D∗
larger = max(Fx(t) − Fy(t)), (3-7)

or
D∗

smaller = max(Fy(t) − Fx(t)). (3-8)
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Chapter 4

Results

4-1 Problem definition

The results in this chapter explore the research question:

Given electroencephalographic (EEG) data recorded during meditation and a baseline, can we
determine a dynamic feature to distinguish between meditation and baseline states?

First, Section 4-2 discusses the stationarity of the residuals of the fitted model for different
window sizes and determines the time window for further analysis. In Section 4-3-1, I use
the Kolmogorov-Smirnov test (KS test) to assess whether the eigenvalue’s magnitude and
frequency distributions change during meditation compared to the baselines. In addition,
Section 4-3-2 describes changes in eigenvectors during meditation.

Next, I investigate the sensitivity of the dynamic systems analysis to different subsets of EEG
electrodes in Section 4-4. First, I construct a personalized headset based on the electrodes
most involved with the changing dynamics. Second, I compare the results to subsets of
electrodes based on commercial, wearable EEG headsets.

Finally, Section 4-5 displays the conventional spectral bandwidth analysis results to explore
whether it relates to the dynamic system analysis. Moreover, Section 4-6 discusses the results
of the SAM questionnaire in order to evaluate the participants’ subjective ratings.

4-2 Assessing stationarity of the residuals for different window sizes

To assess the stationarity of the residuals of the fitted autoregressive (AR) model, we apply
two tests to the residuals for different window sizes. We divide the data into non-overlapping
windows of a certain size. Then, for every window we apply the Augmented Dickey-Fuller
test (ADF test) and the Kwiatkowski-Phillips-Schmidt-Shin test (KPSS test) on the residuals
of the obtained AR model per channel. Then, we calculate the ratio of rejections of the null

Master of Science Thesis F. van Engen



20 Results

hypothesis over the total number of tests for each window size,

rH0 = nr. of tests that reject H0
total nr. of tests

.

The ADF test has the null hypothesis H0: The time series is non-stationary (has a unit root),
with the alternative hypothesis that the time series is stationary. The KPSS test has the null
hypothesis H0: The time series is stationary, with the alternative hypothesis that the time
series has a unit root. Therefore, if rH0 = 1 for the ADF test and rH0 = 0 for the KPSS test,
both tests affirm the hypothesis that the time series is stationary in every time window. We
determine this ratio for different window sizes. For all time windows, we consider the same
number of samples. This means that the shortest time window limits the number of samples
we test for the larger time windows.

Figure 4-1a and Figure 4-1b display the results of the stationarity tests. For all participants,
the time series of the residuals appears to be stationary for a window size of 0.25 seconds
or smaller. For larger time windows, the tests do not affirm the hypothesis that the data is
stationary for every time window. The results suggest that for a window size of 0.3 seconds
or larger, the residuals contain a trend that the model does not capture.

We repeated the same test on a more precise scale to select an appropriate time window.
Figure 4-2a and Figure 4-2b show the results. Further results in this thesis use a time window
size of 0.24 seconds. We chose the largest window for which the residuals appear to be
stationary to prevent overfitting and reduce the computational load by reducing the total
number of windows.

4-3 Assessing the dynamic features

We computed the eigenvalues and eigenvectors for every window during the baselines and
meditation. This section assesses the changes in the three dynamic features: (i) the magni-
tude, (ii) the frequency of the eigenvalues, and (iii) the corresponding eigenvectors.

4-3-1 Eigenvalues: magnitude and frequency

We obtain each participant’s eigenvalues and eigenvectors for each time window. For each
participant, we can visualize the distribution of the eigenvalues obtained during meditation
and the baselines by plotting them on the complex plane. To illustrate the distribution of
eigenvalues, Figure 4-3 depicts the eigenvalues of participant 1. Upon visual inspection, the
distribution of the eigenvalues appears to be more spread out during meditation compared
to the baselines. Moreover, there is a small cluster around the origin. We observe a similar
cluster for all other participants. An eigenvalue with a magnitude close to zero signifies an
oscillation with a huge dampening factor; thus, the corresponding oscillation dies out very
quickly. Furthermore, several eigenvalues lie on the real axis, meaning their frequency equals
zero. A zero frequency represents a constant line in the EEG and thus does not describe any
oscillatory component of the signals.
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(a) ADF test on a larger time scale

(b) KPSS test on a larger time scale

Figure 4-1: Stationarity tests on a larger time scale for all participants.
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(a) ADF test on a smaller time scale

(b) KPSS test on a smaller time scale

Figure 4-2: Stationarity tests on a smaller time scale for all participants.
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To statistically verify whether the distribution of the eigenvalues changes during meditation
compared to the baseline, we use the two-sample Kolmogorov-Smirnov test (KS test). The null
hypothesis H0 is that the meditation eigenvalues are from the same continuous distribution as
the baselines’. We performed three KS tests. The first is a two-sided test with the alternative
hypothesis H1 that the underlying continuous distribution of the two samples is unequal.
The second and third tests are one-sided, assessing whether the meditation data’s empirical
cumulative distribution function (CDF) is smaller or larger than the baselines’ CDF. We
evaluate the three tests for the distribution of both the magnitude and the frequency of the
eigenvalues. Table 4-1 gives an overview of the six tests. We use bootstrapping, random
resampling with replacement, to compare the baseline and meditation data sets and run each
KS test 100 times. Finally, we compute the average test statistic and test result.

Table 4-2 displays the test results. Note that this test does not include the eigenvalues posi-
tioned around the origin and on the real axis since these do capture oscillatory characteristics
of the EEG signals. For each test and each participant, the table shows an h and a p-value.
The p-value is the probability that the samples from meditation and the baseline are from the
same underlying distribution. The h-value is the corresponding hypothesis test result: h = 1
indicates a rejection of the null hypothesis at a 0.05 significance level, and h = 0 indicates a
failure to reject the null hypothesis.

Figure 4-3: Eigenvalues during meditation and the baseline plotted in the complex plane.

Magnitude tests Frequency tests
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
Unequal Larger Smaller Unequal Larger Smaller

Table 4-1: An overview of the hypotheses H1 of every KS test. The null hypothesis H0 for
each test is defined as: The empirical CDF of the magnitude/frequency during meditation is
equal to the baselines. The alternative hypothesis H1 is defined as: The empirical CDF of the
magnitude/frequency during meditation is unequal/larger/smaller than the baselines.
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The magnitude of the eigenvalues is distributed significantly differently for seven participants,
out of whom the CDF of meditation is larger than the baseline CDF for five participants and
smaller for one. Participant 9’s distribution is significantly different but not consistently
smaller or larger. For participant 17, Test 3 suggests that the meditation CDF is larger than
the baseline CDF. However, Test 1 cannot reject the null hypothesis that the samples are from
the same distribution. Therefore, the tests do not suggest that the magnitude distribution
changes significantly for participant 17. The frequency distribution is significantly different
for only one participant, for whom the CDF during meditation is larger than the baselines’.

To further inspect the results, we want to assess if certain eigenvalues change significantly over
time. Therefore, we group eigenvalues over all time steps by sorting them based on magnitude
or frequency. For every time step, the eigenvalue with the highest magnitude or frequency
is called Mode 1, the second highest Mode 2, up until the final mode. Thus, we can assess
changes in a particular magnitude or frequency range over time. As an illustration, Figure 4-4
displays the frequency of participant 1’s eigenvalues over time, grouped by frequency. Note
that the frequency of a complex eigenvalue pair is the same, therefore the total number of
modes is 16 rather than 32.

We repeated the six KS tests in Table 4-1 on every mode, both sorted by magnitude and
sorted by frequency. This section highlights five groups that showed changes for the most
participants. The groups consider eigenvalues with the highest and the lowest magnitude,
as well as one group with a magnitude around 1. Moreover, two groups of eigenvalues are
included based on the frequency. One group consists of eigenvalues with the lowest and one
with the highest frequency, considering modes around 42-50 Hz and 1-8 Hz, respectively.

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5 h6 p6
1 0 9.1863E-02 0 1.1984E-01 0 1.3554E-01 0 3.0909E-01 0 3.4017E-01 0 3.3619E-01
2 0 6.6168E-02 0 1.6888E-01 0 1.1174E-01 0 1.8838E-01 0 1.1626E-01 0 6.4047E-01
3 1 2.5408E-02 1 1.4517E-02 0 4.5997E-01 0 3.0383E-01 0 2.8368E-01 0 3.4850E-01
4 1 3.1965E-02 1 3.2769E-02 0 1.3063E-01 0 1.3841E-01 0 5.0601E-01 0 7.4196E-02
5 0 1.0276E-01 0 1.0484E-01 0 2.6639E-01 0 1.9778E-01 0 1.1845E-01 0 4.7285E-01
6 0 8.3487E-02 0 6.4439E-02 0 4.5960E-01 0 1.8896E-01 0 2.3163E-01 0 2.3918E-01
7 0 5.5670E-02 0 5.1168E-02 0 1.1854E-01 0 2.3815E-01 0 2.6652E-01 0 2.3291E-01
8 0 9.3510E-02 0 3.2859E-01 0 6.3967E-02 0 2.3580E-01 0 3.8247E-01 0 1.4199E-01
9 1 4.4422E-02 0 9.1303E-02 0 1.0963E-01 0 8.1401E-02 1 4.0704E-02 0 7.6155E-01

10 0 1.1595E-01 0 3.7844E-01 0 6.4702E-02 0 1.4845E-01 0 1.4090E-01 0 2.8939E-01
11 0 8.3240E-02 0 1.2934E-01 0 1.5712E-01 0 1.7365E-01 0 2.0123E-01 0 2.1361E-01
12 1 1.7495E-03 1 8.7477E-04 0 3.8326E-01 0 1.9335E-01 0 2.7107E-01 0 2.3476E-01
13 0 1.3727E-01 0 3.0084E-01 0 1.1816E-01 0 1.9881E-01 0 2.5614E-01 0 2.3431E-01
14 1 4.7566E-02 1 3.1190E-02 0 1.8025E-01 1 4.6269E-02 1 3.4903E-02 0 5.7420E-01
15 0 1.0940E-01 0 9.9477E-02 0 2.1151E-01 0 1.8937E-01 0 1.7690E-01 0 3.1955E-01
16 0 1.2032E-01 0 1.0956E-01 0 3.7382E-01 0 1.5137E-01 0 7.2639E-01 0 8.9735E-02
17 0 6.5701E-02 0 5.5778E-01 1 4.0935E-02 0 1.4046E-01 0 3.3091E-01 0 9.5673E-02
18 1 3.7475E-02 0 5.8028E-01 1 2.0502E-02 0 2.1597E-01 0 1.9469E-01 0 4.5786E-01
19 0 6.4276E-02 0 2.8846E-01 0 7.3535E-02 0 1.2220E-01 0 1.0251E-01 0 2.0024E-01
20 0 9.7981E-02 0 6.0603E-02 0 5.8546E-01 0 1.6606E-01 0 1.2084E-01 0 2.5816E-01
21 1 1.6813E-03 1 9.8799E-04 0 2.7785E-01 0 2.1396E-01 0 1.3764E-01 0 5.4569E-01
22 0 1.0756E-01 0 2.5228E-01 0 1.1767E-01 0 2.5100E-01 0 1.7654E-01 0 4.6969E-01

Table 4-2: Results of the six KS tests comparing the eigenvalues during meditation with the
baselines for each participant.
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Figure 4-4: Frequency of participant 1’s eigenvalues over time, sorted by frequency.

The Appendix A-1 shows the groups of eigenvalues plotted on the complex plane and the
tables with the test results per participant. Table 4-3 provides an overview of the test results.
The table shows the number of participants for whom each test rejects the null hypothesis.
That is the number of participants whose distribution of eigenvalues is significantly different.
Moreover, the one-sided test results are only included if the two-sided test rejected the null
hypothesis that the distributions are the same.

For each participant at least one of the tests rejected the null hypothesis, suggesting that for
each participant the EEG dynamics change during meditation. However, the changes are not
consistent across all participants. We observe the largest number of changes in the frequency
distribution of the high frequency modes, which changes for eighteen out of the twenty-two
participants. The low magnitude modes show the largest number of changes in magnitude
distribution, for fifteen out of twenty-two participants.

The low frequency mode shows somewhat consistent changes; the magnitude CDF is larger
than the baseline for eight out of eleven participants for whom the magnitude changes. For
the seven participants for whom the frequency distribution changes, the CDF is larger for five
participants. A larger CDF corresponds to lower values. For example, if CDF A is consistently
larger than CDF B, the mean and median value of distribution A are smaller than mean and
median B. Therefore, this suggests that the oscillations around 1-8 Hz decrease in magnitude
and frequency during meditation.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
High magnitude 10 2 8 7 3 4

Middle magnitude 11 5 6 10 7 3
Low magnitude 15 7 8 9 7 2
High frequency 9 5 3 18 10 7
Low frequency 11 8 3 7 5 2

Table 4-3: Overview of the test results for different groups of eigenvalues.
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4-3-2 Eigenvectors

For each eigenvalue, one eigenvector corresponds to the same spatiotemporal process and
weighs the involvement of each EEG electrode per time step. For example, Figure 4-5
displays the magnitude and the frequency of eigenvalue 14 over time, with the corresponding
eigenvector. This mode captures the dynamics with a frequency of around 5 Hz. The
eigenvector’s entries are normalized to a value between 0 and 1 to indicate the relative
involvement of each electrode.

Every row in the plot corresponds to one EEG electrode on the scalp. Figure 4-6 displays
the placement of each electrode on the scalp. The figure is a top-down view of the scalp,
with the nose pointed towards the top of the page and the left and right ears, respectively,
at the left and right side of the illustration. The electrodes that appear to be most active are
numbers 14-18, corresponding to the occipital and parietal-occipital regions on the head.

The eigenvectors allow us to investigate whether a particular location is related to the changes
we observe in the dynamics. And if so, does this location differ during meditation and the
baselines? Moreover, we can explore how the eigenvectors differ across participants. Finally,
we can construct a personalized subset of electrodes to monitor changes during meditation
for each participant.

First, we assess whether there is a relation between the modes highlighted in Section 4-3-1
and the electrodes’ activity. We compute the average eigenvector over time per participant
for each mode. Next, we sort the electrodes based on their relative involvement. For each
participant, we can assess which electrodes were most active. Notably, there was a difference

Figure 4-5: Frequency of participant 1’s eigenvalues over time, sorted by frequency.
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Figure 4-6: Electrode placement of the electrodes according to the 10-20 electrode placement.
The figure is a top-down view of the scalp, with the nose pointed towards the top of the page
and the left and right ears, respectively, at the left and right side of the illustration.

when comparing the high and low-frequency eigenvectors. To illustrate, Figure 4-7 shows a
histogram of how often each electrode occurred in the set of the eight most active electrodes
of each participant. The eigenvectors corresponding to modes based on the magnitude of the
eigenvalue showed activity in the same regions but did not show clear differences in active
regions across the different magnitudes.

Particular regions are most involved during the experiment, and the regions associated with
high-frequency EEG oscillations appear to differ from the low-frequency regions. What stands
out is that electrodes 11, 14-18, and 20 are more involved in high-frequency than low-frequency
dynamics. The corresponding regions are the occipital and parietal-occipital area, located on
the back of the head. The occipital lobe is generally associated with visual processing, spatial
reasoning, and visual memory, whereas the parietal lobe is linked to sensory perception [36].

On the other hand, other areas are more involved in high-frequency dynamics. The pre-frontal
area, the location of electrodes 1 and 30, is often associated with attention, judgement and
restrain [37]. Electrodes in the frontal lobe (2, 4, 27, 28, 29) usually involve higher cognitive
functions, including emotional expression and regulation [36]. Electode 3 is linked to language
processing [37]. In addition, electrodes 7 and 24, the temporal regions, are more involved.
For most people, the left temporal lobe is associated with language processing, whereas the
right temporal lobe is linked to emotional memory [36].
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Figure 4-7: Number of times each electrode occurred in the most active electrode sets for the
high and low-frequency mode.

We detected the most changes in the eigenvalue distribution of the high-frequency modes. The
corresponding eigenvectors suggest that the changes are due to areas associated with language
processing, attention, and emotional regulation. To further investigate these changes, we can
look at the average eigenvector during the baselines and compare it to meditation. Figure 4-8
shows the most active electrodes for the high-frequency dynamics. Electrode 2 and 29 seem
to increase in activity during meditation.

Furthermore, we can investigate changes in involved regions on an individual level. Ap-
pendix A-2 shows the eigenvector for each participant, corresponding to the highest frequency
eigenvalue for each time step. We can see a shift from one region to another over time for
multiple participants. However, the changes do not necessarily occur when transitioning from
baseline to meditation. Nevertheless, on a subject-specific level, the eigenvectors could inform
us where changes occur during meditation and when. The particular electrodes associated
with particular functions suggest what changed in the neural activity.

For example, the pre-frontal electrode 30 is more active during meditation for participants 2,
16, 19, and 22. Since electrode 30 is commonly associated with attention [36], these findings
might suggest that the participants were paying attention to the audio-guided meditation or
focusing on the task. Similarly, the activity of electrodes 24, 25, or 28 changes throughout
the experiment for multiple participants. Studies have linked electrodes 24, 25, and 28
to emotional memory and emotional regulation [36]. Thus, activity changes could suggest
emotional changes during the experiment.

Finally, we want to identify each participant’s eight most active electrodes to monitor subject-
specific changes. Table 4-4 gives the results per participant. The electrodes are ordered from
left to right in decreasing order of involvement.

F. van Engen Master of Science Thesis



4-3 Assessing the dynamic features 29

Figure 4-8: Number of times each electrode occurred in the most active electrode sets for the
high frequency mode during meditation and baselines.

1 3 7 6 28 30 11 1 17
2 3 1 30 2 24 11 29 4
3 15 7 16 11 24 17 20 1
4 3 6 2 7 1 4 28 27
5 24 3 28 2 25 7 1 4
6 17 16 15 30 1 18 20 3
7 3 29 1 24 30 4 6 20
8 15 11 6 28 14 3 16 25
9 7 3 6 28 30 10 1 29
10 25 7 2 6 1 29 30 28
11 3 24 7 15 16 11 14 10
12 15 16 7 17 20 30 14 3
13 17 14 3 15 16 20 11 28
14 7 6 28 3 24 25 27 8
15 28 3 30 6 20 7 1 15
16 11 30 3 15 28 6 20 25
17 7 2 30 29 3 17 1 28
18 4 3 24 30 28 7 25 17
19 3 15 25 30 6 29 16 27
20 24 1 3 25 15 7 6 28
21 7 28 30 6 25 15 1 10
22 24 30 1 11 3 20 28 7

Table 4-4: Most active electrodes for each participant corresponding to the high frequency mode.
The electrodes are ordered from left to right in decreasing order of involvement.
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4-4 Dynamic system analysis using a subset of the sensors

The dynamic systems analysis findings suggest that the changes in EEG dynamics are subject-
specific. Therefore, we want to investigate whether a personalized subset of electrodes is more
sensitive to changes than the standard 32-electrode set. To test the effect of the selection of
electrodes, we perform the same analysis as before. However, instead of using all 32 electrodes,
we simulate the scenario in which we only have access to specific electrodes. We fit an AR(1)
system to the electrodes, which results in a smaller evolution matrix. For example, if we use
eight electrodes, A ∈ R8×8. Consequently, we will have eight eigenvalue-eigenvector pairs for
each time step rather than 32. We perform the same tests as before to check for changes in
the eigenvalue distribution.

Furthermore, we compare the changes detected by a personalized subset of electrodes to
subsets comparable to standard wearable EEG headsets. First, we would like to compare it
to Muse [8], a headset designed to monitor meditation. However, Muse does not use electrodes
from the standard 10-20 electrode configuration for 32 electrodes but contains sensors from
the configuration for 64 electrodes. Therefore, we selected four neighboring sensors to perform
the analysis. Second, we compare the analysis to three wearable EEG headsets by Emotiv [38]
by selecting the same electrodes used in their configuration. The three headsets contain two,
seven, and fourteen electrodes, respectively.

Figure 4-9 shows the four headsets and the electrode selection used in further analysis. For
Muse, the positions of the electrodes used in the headset are indicated with green circles.
Appendix B shows each subset’s eigenvalues distribution for participant 1 and the KS tests’
results. Table 4-5 provides an overview of the test results for each subset by indicating the
number of participants for whom the KS test recognizes a difference in the distribution for
each test.

The personalized headset can detect changes during meditation for nineteen out of the twenty-
two participants. Out of all the standard headsets, the electrode selection based on the
Muse headset is most sensitive to changes among participants for this particular analysis.
Notably, all subsets of electrodes detect changes for more participants than the complete set
of 32 electrodes. Each set appears to be more sensitive to the changes in neural activity
during meditation.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
Personalized headset 19 11 9 18 7 12

Muse 13 2 10 10 4 5
Emotiv 1 9 1 8 10 3 6
Emotiv 2 10 3 8 8 4 3
Emotiv 3 12 7 5 6 3 3

Table 4-5: Overview of the test results for different subsets of electrodes.
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Figure 4-9: The subset of electrodes used for analysis are circled in blue per wearable EEG
headset: a) Muse, the green circles indicate the positions of the original electrodes; b) Emotiv 1;
c) Emotiv 2; and d) Emotiv 3.
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4-5 Alpha power analysis

This section briefly highlights the results of the alpha power analysis. To assess changes during
meditation, we calculated the power spectrum for both baselines and the meditation. Then,
we determined the average power across the alpha bandwidth (8-12 Hz). Lastly, for each
participant, the alpha power is normalized to compare results among participants. Figure 4-
10 shows the alpha power difference (baselines - meditation) per electrode and for each
participant. The average difference across all participants is close to zero at all locations.
That is, the average absolute difference is smaller than 10−15). There is not one region that
shows apparent differences in alpha power for all participants.

To visualize the changes per participant, Figure 4-11 shows the same results grouped per
participant. For some participants, the alpha power seems to vary during meditation, whereas
the changes are minimal for others. For example, participant 21 shows a decrease for nearly
all electrodes. However, there are also participants for whom the change is mostly positive,
such as participants 13 and 20. Therefore, the alpha power analysis affirms that the changes
during meditation are personal and not uniform across all participants. However, groups of
participants with an increasing or decreasing alpha power do not necessarily have similar
changes in dynamics as assessed with the dynamic systems approach.

Figure 4-10: Difference in normalized alpha power per participant grouped per electrode.
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Figure 4-11: Difference in normalized alpha power per electrode grouped per participant.

4-6 SAM questionnaire

The final results section discusses the results of the questionnaires. Participants ranked their
emotions on the Self-Assessment Manikin (SAM) scale. Table 4-6 shows each participant’s
valance and arousal scores before and after meditation and the difference. Generally, partic-
ipants felt calmer after meditation. The majority of participants did not note a difference
in their valance scores. However, some participants noted either a positive or a negative
difference.

If we define effective meditation as feeling calmer, seventeen people benefited from this medita-
tion session. However, this definition fails to capture people who already felt very calm before
meditation and experienced little or no change, such as participants 7, 8, and 12. Additionally,
a definition of effective meditation could be an increase in valance score. Six out of twenty-two
participants ranked their emotions as more positive after meditation. With either definition,
participants 6, 9, and 22 did not appear to benefit from the meditation. Regarding the
different definitions, there appears to be no relationship between the meditation’s effectiveness
and the changes assessed with the dynamic systems approach.
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Pre-meditation Post-meditation Difference
Valance Arousal Valance Arousal Valance Arousal

1 6 4 6 1 0 -3
2 7 3 8 3 1 0
3 7 4 7 3 0 -1
4 8 3 8 2 0 -1
5 7 3 7 2 0 -1
6 6 3 4 3 -2 0
7 9 1 9 2 0 1
8 9 1 9 1 0 0
9 7 3 6 3 -1 0

10 7 7 5 6 -2 -1
11 7 2 7 1 0 -1
12 7 1 7 1 0 0
13 8 2 9 1 1 -1
14 7 3 8 2 1 -1
15 7 6 6 1 -1 -5
16 8 3 8 2 0 -1
17 5 2 9 1 4 -1
18 7 3 7 1 0 -2
19 7 3 7 1 0 -2
20 6 4 7 2 1 -2
21 4 6 7 2 3 -4
22 6 5 6 5 0 0

Table 4-6: Valance and arousal scores from the SAM questionnaire for each participant, pre-
meditation, post-meditation, and the difference.
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Chapter 5

Conclusions & discussion

This section lists the main findings of this thesis and several issues that limited the study,
both in the experiment design and data analysis. In addition, I provide recommendations for
future studies following this thesis.

Findings This thesis explored the hypothesis that a dynamic feature distinguishes medita-
tion from an eyes-closed resting baseline. The dynamic systems analysis found changes in
the eigenvalue distribution for each participant. However, the changes were not consistent
among participants. Across all participants, the (pre-)frontal, visual, and temporal regions
were the most involved in the changing dynamics. During meditation, activity increased
mainly in the (pre-)frontal electrodes 1, 2, 29, and 30. The corresponding area in the brain
is associated with attention [36]. Therefore, the changing activity pattern may indicate that
the participants were paying attention to the audio guide or focused on the task they had
to perform. Regulation of attention and emotion is a central component of meditation [6].
Therefore, the particular frontal activity may be specific to meditation and different from
other forms of concentration. On a subject-specific level, the eigenvectors capture shifts in
the active regions for some people. The particular electrodes involved might suggest personal
changes in neural dynamics, possibly due to the meditation.

Experiment design Several issues limited the experiment design of this thesis. First, the
participant group only consisted of twenty-two participants and was not an accurate represen-
tation of the population of people who could practice meditation. For example, the number
of men and women involved in the study was not balanced. Although the participants varied
in age, most participants were older than 60 or younger than 30 years old. In addition,
participants may have signed up because they were particularly enthusiastic or skeptical
about meditation and may have had previous biases that influenced the results. Therefore,
observations from this study might not generalize to other studies on meditation.

Secondly, the changes studied in this thesis were limited to differences between the meditation
and baselines. However, it is possible that a participant only meditated for a part of the
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meditation session or did not meditate. Inherent to studies concerning meditation is that it is
hard for a participant to define what meditation is, especially for people naive to meditation.
Instead, this study focussed on the effects of meditation by evaluating the participants’
emotions. Throughout the session, the participant could not indicate their emotion or whether
they were meditating. Therefore, any mood changes are attributed to changes throughout
the entire session.

Third, the observed dynamic changes are not necessarily due to meditation. The meditation
was audio-guided, whereas both baseline measurements were silent. Therefore, changes in
language processing areas could be due to spoken instructions. Besides, a circumstance we did
not monitor could influence the EEG measurements, such as if the participants were right or
left-handed. We cannot relate an imbalance in the activity of the left and right hemispheres to
left or right-handedness. Moreover, we cannot exclude the possibility that previous activities
affected this result, such as the Sing-a-Song stress test before the meditation. Even though
the activities did not happen right after each other, it could affect the initial arousal score.

Future studies that build upon this thesis could improve several experimental design factors.
First, a future study could design an experiment with a control condition in addition to rest to
compare the findings during meditation. For example, the participants could perform a control
exercise during which they follow an audio guide to perform a particular task. Such a setting
allows for comparing the attention-related changes during meditation and another control
task. On the other hand, the study could focus on an unguided meditation to reduce the
differences in language processing-related neural activity. Monitoring experienced meditators
might be more convenient in the case of unguided meditation.

Furthermore, a future study might explore different subjective ratings. An advantage of the
SAM questionnaire is that it is relatively easy to understand and, therefore, suitable for a
multifaceted study with participants naive to meditation. However, it does not explicitly
monitor meditation. Therefore, a specialized questionnaire might be better suited to capture
the effectiveness of meditation. Moreover, a future study might explore shorter meditation
sessions where the participant answers the questionnaire more frequently.

Data analysis Besides experimental limitations, the analytical approach affects the results.
We approximate the EEG data on a short time frame with a linear model, even though
the data is nonlinear. It should be noted that the analysis is purely an analytical tool to
monitor changes in a linear approximation of the data and cannot infer any information on
underlying neural dynamics. This application is one of the first to apply the dynamic systems
analysis to EEG data. To verify the validity of the approach, one could apply it to a more
elaborately studied data set. Thus, we could compare the dynamic systems analysis to a more
conventional approach with established results.

Finally, comparing different subsets of electrodes should only be regarded as a theoretical
experiment. First, the Muse headset does not use the same electrodes, and the algorithm
the Muse app uses to analyze the data is unknown. In addition, wearable EEG headsets
use different technologies than our experiment. For example, wearable devices use dry EEG
technology, whereas our experiment used a saline solution to connect the electrodes to the
scalp. Therefore, comparing their performance can only indicate the impact of the location
of the electrodes using the dynamic systems analysis. A future study could use the actual
headsets to collect the data and compare the results to Muse’s performance indicators.
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Eigenvalue-eigenvector decomposition

A-1 Eigenvalue distribution test results
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Figure A-1: High magnitude eigenvalues of participant 1 plotted on the complex plane.

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5 h6 p6
1 1 2.7965E-02 0 1.5566E-01 1 2.7881E-02 1 2.7465E-03 0 7.7144E-01 1 1.3732E-03
2 0 1.1146E-01 0 9.2315E-02 0 4.0430E-01 1 2.6974E-02 0 3.8436E-01 1 1.3487E-02
3 0 6.6407E-02 0 4.4305E-01 1 3.4034E-02 0 9.5304E-02 0 3.7580E-01 0 6.5292E-02
4 0 6.0884E-02 0 3.8780E-01 0 5.3393E-02 1 4.6412E-03 0 5.9723E-01 1 2.3206E-03
5 0 1.1655E-01 0 4.6984E-01 0 5.8289E-02 0 8.4951E-02 0 6.7449E-02 0 3.2891E-01
6 1 1.6068E-02 1 8.0342E-03 0 3.2136E-01 0 1.2058E-01 0 3.5708E-01 0 7.2051E-02
7 0 1.7135E-01 0 2.3133E-01 0 1.8996E-01 0 2.0300E-01 0 1.2095E-01 0 6.6668E-01
8 1 4.2982E-02 0 2.9331E-01 1 2.5473E-02 0 2.1997E-01 0 5.7270E-01 0 1.3032E-01
9 1 4.3325E-02 0 2.5355E-01 1 2.8009E-02 1 4.9064E-02 1 3.1039E-02 0 5.2963E-01

10 1 7.7986E-03 0 3.5054E-01 1 3.8993E-03 0 8.8167E-02 0 1.9663E-01 0 8.8404E-02
11 0 1.7650E-01 0 1.9643E-01 0 2.1749E-01 1 1.2301E-02 1 6.1506E-03 0 3.8594E-01
12 0 9.1253E-02 0 3.6255E-01 1 4.6504E-02 0 6.3969E-02 0 7.8078E-02 0 1.2561E-01
13 1 3.6978E-05 0 9.0152E-01 1 1.8489E-05 0 1.1532E-01 0 4.7129E-01 0 8.5643E-02
14 0 9.9056E-02 0 6.3433E-02 0 3.9121E-01 0 1.4171E-01 0 1.1159E-01 0 2.8014E-01
15 1 6.2094E-03 0 2.4816E-01 1 3.1047E-03 1 2.5464E-04 0 6.6949E-01 1 1.2732E-04
16 0 1.1684E-01 0 7.7378E-02 0 4.9280E-01 0 1.4885E-01 0 2.1958E-01 0 1.4470E-01
17 0 8.0675E-02 1 4.4244E-02 0 4.7923E-01 0 1.1315E-01 0 5.8848E-02 0 2.9201E-01
18 1 4.8893E-02 1 2.6869E-02 0 6.0924E-01 0 5.9270E-02 0 4.3430E-01 1 2.9636E-02
19 0 1.1336E-01 0 2.2830E-01 0 8.9249E-02 0 1.3857E-01 0 3.0915E-01 0 1.4961E-01
20 0 1.8786E-01 0 1.0804E-01 0 4.6849E-01 1 3.4816E-04 1 1.8752E-04 0 1.2325E-01
21 1 4.6761E-02 0 2.9207E-01 1 2.6556E-02 0 1.2626E-01 0 3.9164E-01 0 1.0369E-01
22 1 2.6315E-02 0 3.0820E-01 1 1.8164E-02 0 7.6829E-02 0 2.0277E-01 0 1.1948E-01

Table A-1: KS test results comparing the CDF of the magnitude and the frequency of the high
magnitude eigenvalues during meditation to the baseline eigenvalues.
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Figure A-2: Low magnitude eigenvalues of participant 1 plotted on the complex plane.

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5 h6 p6
1 0 9.6118E-02 0 9.2559E-02 0 2.5658E-01 0 1.9319E-01 0 2.0230E-01 0 2.5606E-01
2 1 1.2471E-02 0 3.8962E-01 1 6.2353E-03 0 7.4864E-02 1 4.2023E-02 0 5.0380E-01
3 0 5.4673E-02 1 3.2543E-02 0 5.6715E-01 0 1.2335E-01 0 2.6104E-01 0 1.0114E-01
4 1 2.7876E-02 1 2.4322E-02 0 1.3082E-01 0 1.6406E-01 0 2.7216E-01 0 1.9925E-01
5 1 9.3121E-03 0 7.5599E-01 1 4.6560E-03 1 5.4783E-03 1 2.9108E-03 0 1.2887E-01
6 1 2.7853E-02 0 1.3490E-01 1 3.7632E-02 1 4.6757E-03 1 2.3378E-03 0 7.7264E-01
7 1 6.1462E-03 1 3.0731E-03 0 6.1327E-01 1 2.7371E-03 0 3.8928E-01 1 1.5838E-03
8 1 2.0433E-03 1 1.1032E-03 0 3.7812E-01 0 1.3636E-01 0 2.2541E-01 0 1.9301E-01
9 1 1.2213E-02 0 3.2137E-01 1 6.7088E-03 1 9.7919E-03 1 5.0602E-03 0 5.1862E-01

10 0 1.6645E-01 0 2.0675E-01 0 1.8757E-01 0 9.0381E-02 0 7.8678E-02 0 1.6232E-01
11 0 2.1093E-01 0 2.3316E-01 0 2.2685E-01 0 1.7346E-01 0 3.8085E-01 0 1.6878E-01
12 1 1.2534E-02 0 3.7005E-01 1 6.7009E-03 0 5.1382E-02 0 6.3225E-02 0 1.8877E-01
13 1 3.3205E-02 1 1.8392E-02 0 3.9891E-01 0 1.7059E-01 0 2.6907E-01 0 2.2017E-01
14 1 2.6862E-02 0 6.6830E-01 1 1.3431E-02 1 1.1881E-02 1 5.9403E-03 0 5.0386E-01
15 1 2.4322E-02 1 1.2161E-02 0 6.0658E-01 1 4.6137E-02 1 3.0273E-02 0 1.5559E-01
16 1 4.1956E-02 1 2.2169E-02 0 7.5453E-01 1 2.1574E-02 0 7.6102E-01 1 1.2552E-02
17 0 2.4267E-01 0 5.4682E-01 0 1.8289E-01 0 6.8776E-02 1 4.1006E-02 0 5.0945E-01
18 0 7.1329E-02 0 8.3049E-01 1 3.5666E-02 0 1.3293E-01 0 8.0026E-02 0 4.4373E-01
19 1 1.7612E-02 0 5.4537E-01 1 8.8061E-03 1 1.5539E-02 1 8.5444E-03 0 2.7638E-01
20 1 4.0483E-02 1 2.0241E-02 0 7.3291E-01 1 1.2884E-03 1 6.4419E-04 0 6.0573E-01
21 0 7.6240E-02 0 4.6118E-01 0 5.0840E-02 0 1.0947E-01 0 8.5238E-02 0 4.1464E-01
22 1 5.8963E-03 0 4.9838E-01 1 2.9482E-03 0 1.8435E-01 0 3.0082E-01 0 2.9309E-01

Table A-2: KS test results comparing the CDF of the magnitude and the frequency of the low
magnitude eigenvalues during meditation to the baseline eigenvalues.
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Figure A-3: Middle magnitude eigenvalues of participant 1 plotted on the complex plane.

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5 h6 p6
1 1 2.7271E-02 0 4.8794E-01 1 1.3636E-02 1 3.9793E-03 0 4.3471E-01 1 1.9896E-03
2 0 1.4795E-01 0 2.4533E-01 0 1.6341E-01 0 7.7607E-02 0 2.7013E-01 0 5.2535E-02
3 1 1.6250E-02 1 1.4546E-02 0 2.1165E-01 1 3.2435E-04 1 1.6218E-04 0 9.0243E-01
4 1 2.4087E-02 1 1.4797E-02 0 2.7052E-01 0 1.3243E-01 0 1.1304E-01 0 3.3910E-01
5 1 3.2794E-02 1 1.6397E-02 0 6.7314E-01 0 1.8011E-01 0 1.1814E-01 0 4.3379E-01
6 0 1.9214E-01 0 2.6316E-01 0 1.8377E-01 1 1.8511E-03 1 9.2556E-04 0 9.4168E-01
7 0 1.1752E-01 0 9.5656E-02 0 4.2999E-01 0 7.0726E-02 0 6.0609E-02 0 1.8851E-01
8 1 2.0179E-02 0 8.1817E-01 1 1.0089E-02 0 7.4321E-02 0 5.4038E-01 1 4.4826E-02
9 0 2.1151E-01 0 3.8637E-01 0 1.9988E-01 0 2.0990E-01 0 1.9083E-01 0 2.6252E-01

10 1 2.7503E-02 0 5.4477E-01 1 1.4692E-02 1 1.1746E-02 0 3.9308E-01 1 6.0043E-03
11 0 3.1074E-01 0 3.1524E-01 0 4.0985E-01 1 1.5511E-02 1 7.7556E-03 0 8.4162E-01
12 0 1.3565E-01 0 8.2651E-02 0 6.0615E-01 1 1.3412E-02 0 6.1229E-01 1 6.7060E-03
13 0 2.2366E-01 0 4.9120E-01 0 1.6121E-01 1 3.6338E-04 1 1.8169E-04 0 8.2370E-01
14 1 1.4103E-02 1 1.0334E-02 0 2.6367E-01 0 1.5513E-01 0 4.0844E-01 0 8.6064E-02
15 0 1.2195E-01 0 5.6911E-01 0 7.4052E-02 0 5.5857E-02 1 3.2577E-02 0 5.0418E-01
16 0 5.6177E-02 0 1.3019E-01 0 6.7979E-02 1 1.4561E-03 1 8.1039E-04 0 2.1073E-01
17 1 6.5324E-03 0 5.6711E-01 1 3.6068E-03 0 5.5396E-02 0 1.6853E-01 0 5.1287E-02
18 1 1.3189E-02 0 1.6226E-01 1 1.1615E-02 1 4.3261E-02 1 2.9291E-02 0 3.0342E-01
19 1 1.7556E-02 0 7.2625E-01 1 8.7781E-03 1 3.8795E-02 1 4.1099E-02 0 7.1683E-02
20 0 1.0028E-01 0 7.2546E-02 0 3.1102E-01 0 1.3370E-01 0 3.8228E-01 0 9.2012E-02
21 1 4.1441E-04 1 2.0720E-04 0 8.5642E-01 0 2.9230E-01 0 2.1016E-01 0 5.3581E-01
22 0 1.6405E-01 0 3.0231E-01 0 2.2340E-01 0 8.3318E-02 0 2.2008E-01 0 5.9833E-02

Table A-3: KS test results comparing the CDF of the magnitude and the frequency of the middle
magnitude eigenvalues during meditation to the baseline eigenvalues.
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Figure A-4: High frequency eigenvalues of participant 1 plotted on the complex plane.

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5 h6 p6
1 0 7.6133E-02 0 7.3424E-01 1 3.9926E-02 1 3.4764E-02 0 1.3486E-01 0 5.2034E-02
2 1 2.1306E-02 1 1.2433E-02 0 2.5957E-01 1 7.7177E-03 1 3.8589E-03 0 9.3951E-01
3 1 2.1486E-02 1 1.2888E-02 0 4.6784E-01 1 2.4827E-02 1 1.8260E-02 0 3.0417E-01
4 0 8.4763E-02 0 1.2485E-01 0 1.5597E-01 0 1.4236E-01 0 1.0511E-01 0 3.0738E-01
5 1 6.5032E-03 1 3.2516E-03 0 6.1602E-01 1 5.0284E-03 1 2.5142E-03 0 4.9825E-01
6 0 1.4029E-01 0 1.2474E-01 0 3.7754E-01 1 1.7228E-02 0 1.3977E-01 1 1.2740E-02
7 1 2.9622E-02 1 1.5762E-02 0 4.2774E-01 0 1.5441E-01 0 2.6917E-01 0 1.9980E-01
8 0 1.3182E-01 0 3.2727E-01 0 9.1244E-02 1 2.4353E-03 0 4.1587E-01 1 1.2177E-03
9 1 1.0779E-04 0 3.8801E-01 1 5.3896E-05 1 3.2433E-02 0 6.9074E-02 0 1.1030E-01

10 1 2.1054E-04 1 1.0527E-04 0 3.8843E-01 0 7.1500E-02 0 2.6186E-01 1 3.7368E-02
11 0 1.5404E-01 0 1.5825E-01 0 2.9530E-01 1 2.8391E-04 1 1.4195E-04 0 5.0733E-01
12 0 1.0812E-01 0 8.2075E-02 0 2.6093E-01 0 8.7459E-02 0 3.1869E-01 1 4.6834E-02
13 1 5.9281E-03 0 5.4755E-01 1 2.9641E-03 1 4.8541E-02 0 4.1313E-01 1 3.6461E-02
14 1 4.9056E-02 0 3.9231E-01 1 2.5211E-02 1 3.3514E-03 1 1.6757E-03 0 9.0491E-01
15 0 1.1137E-01 0 7.1530E-02 0 5.1694E-01 1 1.3500E-03 1 6.7502E-04 0 2.8482E-01
16 0 7.1996E-02 1 4.0798E-02 0 6.9461E-01 1 3.3848E-02 0 8.4420E-01 1 1.6924E-02
17 0 1.0336E-01 0 1.1577E-01 0 2.1018E-01 1 1.6516E-02 1 8.4799E-03 0 3.0091E-01
18 0 5.1011E-02 1 2.5506E-02 0 4.1420E-01 1 1.0971E-03 1 5.4854E-04 0 5.3042E-01
19 1 3.0468E-02 0 7.9191E-02 0 5.7458E-02 1 2.2903E-05 1 1.1451E-05 0 2.5577E-01
20 0 6.6822E-02 1 3.7511E-02 0 6.1769E-01 1 6.0057E-05 0 1.3116E-01 1 3.0029E-05
21 0 1.5232E-01 0 2.4370E-01 0 3.2317E-01 1 2.0373E-02 0 3.3877E-01 1 1.4923E-02
22 0 8.5709E-02 0 6.7246E-02 0 3.1587E-01 1 1.1360E-02 1 1.2455E-02 1 4.7709E-02

Table A-4: K-S test results comparing the CDF of the magnitude and the frequency of the
eigenvalues during meditation to the baseline eigenvalues.
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Figure A-5: Low frequency eigenvalues of participant 1 plotted on the complex plane.

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5 h6 p6
1 1 3.4234E-02 1 1.7117E-02 0 4.1324E-01 0 1.3708E-01 0 5.0293E-01 0 9.0313E-02
2 1 1.5891E-05 1 7.9457E-06 0 9.7745E-01 0 1.7038E-01 0 5.5883E-01 0 9.7332E-02
3 1 2.2602E-02 1 3.5455E-02 0 5.3656E-02 0 8.8858E-02 0 5.3638E-02 0 3.8101E-01
4 1 4.9680E-02 1 3.9177E-02 0 4.9583E-01 0 6.1855E-02 0 1.8371E-01 0 1.0596E-01
5 1 2.0097E-02 0 1.2310E-01 1 1.4495E-02 1 1.1342E-04 1 5.6710E-05 0 8.5804E-01
6 1 6.4191E-03 1 3.2095E-03 0 4.4095E-01 0 2.5292E-01 0 1.7158E-01 0 4.3224E-01
7 0 1.3086E-01 0 2.6014E-01 0 2.1622E-01 0 5.0277E-02 0 3.3483E-01 1 4.6579E-02
8 0 1.0415E-01 0 2.4931E-01 0 1.4142E-01 0 1.6357E-01 0 2.8823E-01 0 1.7971E-01
9 0 5.8738E-02 0 2.8015E-01 1 4.3395E-02 0 7.7226E-02 0 1.8227E-01 0 9.0416E-02

10 0 7.8055E-02 0 1.0065E-01 0 1.2783E-01 1 9.8914E-04 1 4.9457E-04 0 8.0052E-01
11 0 1.0204E-01 0 4.0430E-01 0 7.0008E-02 0 1.4269E-01 0 4.7805E-01 0 9.1002E-02
12 0 1.2033E-01 0 1.1008E-01 0 2.9402E-01 0 7.1259E-02 1 4.9001E-02 0 3.4779E-01
13 1 1.5627E-02 0 4.6718E-01 1 9.4288E-03 0 9.2784E-02 0 1.0127E-01 0 2.2864E-01
14 0 1.3738E-01 0 9.2707E-02 0 5.4896E-01 0 1.0298E-01 0 6.3158E-02 0 4.2253E-01
15 0 1.0499E-01 0 1.0970E-01 0 3.6551E-01 1 3.8853E-02 0 2.8463E-01 1 1.9934E-02
16 0 6.0304E-02 0 7.3620E-02 0 1.7421E-01 0 1.2791E-01 0 3.4229E-01 0 1.3249E-01
17 1 2.5632E-02 1 1.2816E-02 0 6.3664E-01 1 1.1854E-02 0 1.8161E-01 1 8.8361E-03
18 1 2.5729E-03 0 8.0682E-01 1 1.2864E-03 1 4.6108E-02 1 2.3054E-02 0 8.1106E-01
19 1 4.2142E-02 1 2.1873E-02 0 4.2224E-01 0 8.7560E-02 1 4.7020E-02 0 6.2885E-01
20 0 1.0873E-01 0 2.0399E-01 0 9.0547E-02 1 4.0944E-02 1 4.3926E-02 0 2.1267E-01
21 1 2.8819E-04 1 1.4409E-04 0 7.7231E-01 1 8.7060E-03 1 4.3530E-03 0 3.1975E-01
22 0 8.1462E-02 1 4.0884E-02 0 5.3881E-01 0 6.6512E-02 1 3.9138E-02 0 3.1403E-01

Table A-5: K-S test results comparing the CDF of the magnitude and the frequency of the
eigenvalues during meditation to the baseline eigenvalues.
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A-2 Eigenvectors

Figure A-6: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 1.
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Figure A-7: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 2.

Figure A-8: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 3.

F. van Engen Master of Science Thesis



A-2 Eigenvectors 45

Figure A-9: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 4.

Figure A-10: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 5.
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Figure A-11: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 6.

Figure A-12: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 7.
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Figure A-13: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 8.

Figure A-14: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 9.
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Figure A-15: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 10.

Figure A-16: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 11.
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Figure A-17: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 12.

Figure A-18: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 13.
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Figure A-19: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 14.

Figure A-20: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 15.
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Figure A-21: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 16.

Figure A-22: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 17.
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Figure A-23: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 18.

Figure A-24: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 19.

F. van Engen Master of Science Thesis



A-2 Eigenvectors 53

Figure A-25: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 20.

Figure A-26: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 21.
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Figure A-27: Evolution of an eigenvector corresponding to a high frequency eigenvalue for
participant 22.
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Figure B-1: Eigenvalues of participant 1 for the personal subset of electrodes plotted on the
complex plane.

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5 h6 p6
1 1 1.2741E-10 0 9.6789E-01 1 6.3703E-11 1 1.0095E-04 1 5.0473E-05 0 5.8965E-01
2 1 1.7086E-21 1 8.5431E-22 0 9.9791E-01 1 1.1355E-07 0 8.7435E-01 1 5.6775E-08
3 1 5.1342E-08 0 9.8436E-01 1 2.5671E-08 1 2.9548E-06 1 1.4774E-06 0 8.6989E-01
4 1 6.7855E-59 1 3.3928E-59 0 9.9964E-01 1 4.9185E-39 0 9.9688E-01 1 2.4593E-39
5 1 3.5870E-68 1 1.7935E-68 0 9.8979E-01 1 1.4648E-05 0 3.8985E-01 1 7.3238E-06
6 0 7.7287E-02 0 6.0727E-02 0 1.6142E-01 1 1.3276E-02 0 1.9596E-01 1 8.0487E-03
7 1 1.6922E-08 0 8.5304E-01 1 8.4610E-09 1 4.1673E-05 1 2.0837E-05 0 7.4036E-01
8 1 2.4341E-22 1 1.2171E-22 0 9.9286E-01 1 1.3342E-14 0 9.1028E-01 1 6.6711E-15
9 1 3.1845E-52 0 9.9763E-01 1 1.5922E-52 1 9.4656E-23 1 4.7328E-23 0 3.9587E-01

10 0 7.5746E-02 0 5.9716E-02 0 3.0687E-01 1 1.9245E-03 0 1.1036E-01 1 9.6422E-04
11 1 7.4777E-05 0 5.8997E-01 1 3.7388E-05 0 8.2894E-02 0 9.4060E-02 0 1.5779E-01
12 1 5.6129E-03 1 1.1792E-02 1 3.8312E-02 1 1.3337E-02 1 1.9489E-02 1 2.8838E-02
13 1 3.3428E-07 1 1.6714E-07 0 8.2408E-01 1 7.4656E-03 0 7.5327E-01 1 3.7328E-03
14 1 3.6897E-02 1 1.9513E-02 0 5.6286E-01 0 1.2296E-01 0 1.3388E-01 0 1.6235E-01
15 1 1.5485E-19 1 7.7426E-20 0 9.9092E-01 1 2.5809E-09 0 8.7499E-01 1 1.2904E-09
16 1 1.7161E-03 0 8.5586E-01 1 8.5803E-04 1 9.3020E-03 0 8.1699E-01 1 4.6510E-03
17 1 5.4223E-15 1 2.7111E-15 0 9.9021E-01 1 4.2474E-04 0 1.9643E-01 1 2.1584E-04
18 1 6.9785E-07 1 3.4892E-07 0 8.7413E-01 1 2.1124E-05 0 9.1211E-01 1 1.0562E-05
19 1 1.9017E-08 0 9.2324E-01 1 9.5084E-09 1 2.5332E-05 1 1.2666E-05 0 8.6287E-01
20 1 3.4455E-07 1 1.7228E-07 0 9.9568E-01 1 1.7667E-13 1 8.8336E-14 0 7.2231E-01
21 0 1.3294E-01 0 3.7955E-01 0 9.7937E-02 0 1.0778E-01 0 7.7047E-02 0 4.5233E-01
22 1 6.3870E-05 0 7.4802E-01 1 3.1935E-05 0 6.0980E-02 1 3.0641E-02 0 6.2413E-01

Table B-1: KS test results for the personalized subset comparing the CDF of the magnitude and
the frequency of the eigenvalues during meditation to the baseline eigenvalues.
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B-2 Wearable EEG subsets

Figure B-2: Eigenvalues of participant 1 for the Muse headset plotted on the complex plane.

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5 h6 p6
1 1 2.0921E-02 0 7.0306E-02 0 7.9961E-02 1 2.4259E-02 0 5.2428E-01 1 1.3996E-02
2 0 5.5144E-02 0 1.0244E-01 0 2.3532E-01 1 3.3916E-04 0 4.4655E-01 1 1.6958E-04
3 1 3.6913E-02 0 3.4804E-01 1 3.1174E-02 0 6.5044E-02 0 2.6399E-01 0 5.0686E-02
4 1 4.4807E-03 0 5.9379E-01 1 2.2403E-03 0 9.0740E-02 0 1.3054E-01 0 1.2147E-01
5 0 1.4493E-01 0 3.0891E-01 0 1.4365E-01 0 1.2779E-01 0 2.1204E-01 0 1.1489E-01
6 0 9.3047E-02 0 8.3646E-02 0 3.0039E-01 0 1.6322E-01 0 4.8534E-01 0 9.1650E-02
7 1 3.4622E-02 0 4.1986E-01 1 2.0326E-02 0 8.0133E-02 0 4.3172E-01 0 5.0475E-02
8 1 2.6695E-02 0 6.2134E-01 1 1.3347E-02 1 4.1113E-02 0 1.8656E-01 1 4.1932E-02
9 1 1.9479E-02 1 2.6258E-02 0 5.1031E-02 1 3.6240E-02 1 1.8120E-02 0 5.4141E-01

10 1 4.3723E-03 0 1.6807E-01 1 3.5927E-03 0 1.6877E-01 0 1.0050E-01 0 4.3363E-01
11 0 6.7099E-02 1 4.2572E-02 0 4.2292E-01 1 3.6227E-03 1 1.8114E-03 0 1.8541E-01
12 1 1.4779E-02 0 5.3587E-02 1 1.6597E-02 0 1.5142E-01 0 3.8192E-01 0 1.3509E-01
13 1 2.1174E-03 0 9.1246E-01 1 1.0587E-03 0 1.2415E-01 0 3.9564E-01 0 7.1440E-02
14 0 1.4420E-01 0 1.0686E-01 0 3.9442E-01 1 3.6934E-02 0 7.3087E-02 0 7.8729E-02
15 1 7.7167E-03 0 4.5329E-01 1 4.1234E-03 1 3.6981E-02 0 7.5616E-02 1 4.8083E-02
16 0 1.0616E-01 0 1.0565E-01 0 3.0984E-01 0 8.4665E-02 0 1.6212E-01 0 1.3326E-01
17 0 5.1803E-02 0 1.0488E-01 0 6.8323E-02 0 8.0976E-02 1 4.4733E-02 0 4.7627E-01
18 1 3.1944E-02 0 1.1521E-01 1 3.1039E-02 0 1.3180E-01 0 7.1121E-02 0 4.6791E-01
19 0 8.9856E-02 0 1.8229E-01 0 1.5471E-01 0 1.1231E-01 0 1.9852E-01 0 7.2511E-02
20 1 2.8689E-02 1 1.4345E-02 0 6.8900E-01 1 7.3097E-05 1 3.6549E-05 0 4.0176E-01
21 0 8.0546E-02 0 8.5543E-02 0 1.2387E-01 1 2.6418E-02 1 2.0624E-02 0 2.0393E-01
22 1 4.3869E-02 0 2.2264E-01 1 2.3725E-02 1 4.4552E-02 0 4.5109E-01 1 2.6267E-02

Table B-2: KS test results for the Muse subset comparing the CDF of the magnitude and the
frequency of the eigenvalues during meditation to the baseline eigenvalues.
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Figure B-3: Eigenvalues of participant 1 for the Emotiv 1 headset plotted on the complex plane.

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5 h6 p6
1 1 3.6499E-02 0 1.3131E-01 1 3.3719E-02 1 5.4180E-03 0 5.8037E-01 1 3.0766E-03
2 0 1.3798E-01 0 1.3526E-01 0 2.1901E-01 1 1.5293E-02 0 5.1123E-01 1 7.6465E-03
3 1 2.4064E-02 0 5.5343E-01 1 1.2415E-02 0 1.1171E-01 0 4.0434E-01 0 7.7392E-02
4 0 9.9739E-02 0 2.7487E-01 0 7.0782E-02 1 3.0068E-03 0 7.2310E-01 1 1.5034E-03
5 0 8.0071E-02 0 3.8663E-01 1 4.5671E-02 0 9.0972E-02 0 8.9020E-02 0 2.4051E-01
6 1 3.5844E-02 1 2.0923E-02 0 4.0613E-01 1 4.6012E-02 0 6.8375E-01 1 2.3472E-02
7 0 2.1085E-01 0 3.8506E-01 0 1.6381E-01 0 2.9065E-01 0 2.1789E-01 0 4.0075E-01
8 0 5.1879E-02 0 2.0687E-01 1 3.8681E-02 0 2.9181E-01 0 4.4761E-01 0 1.7142E-01
9 1 3.8350E-02 0 2.4782E-01 1 2.9440E-02 1 2.0120E-02 1 1.0060E-02 0 6.2247E-01

10 1 6.3330E-03 0 3.1562E-01 1 3.4808E-03 0 5.9528E-02 0 2.1397E-01 1 3.7161E-02
11 0 1.1268E-01 0 2.2307E-01 0 1.1993E-01 1 9.3948E-03 1 4.6974E-03 0 4.5082E-01
12 1 4.3509E-02 0 4.0241E-01 1 2.1755E-02 1 4.9228E-02 0 7.3658E-02 0 9.6625E-02
13 1 3.5492E-05 0 8.9877E-01 1 1.7746E-05 0 1.2530E-01 0 4.1951E-01 0 8.1266E-02
14 0 1.5418E-01 0 8.8275E-02 0 3.2641E-01 0 1.0593E-01 0 8.7071E-02 0 3.2949E-01
15 1 5.6198E-03 0 3.8382E-01 1 2.8099E-03 1 4.9435E-04 0 5.4323E-01 1 2.4717E-04
16 0 1.0349E-01 0 6.0679E-02 0 4.7552E-01 0 1.1586E-01 0 4.3371E-01 0 9.7984E-02
17 0 9.9869E-02 0 5.6581E-02 0 4.3531E-01 0 1.1700E-01 0 6.8921E-02 0 3.9504E-01
18 0 5.6107E-02 1 3.6704E-02 0 5.6979E-01 1 4.4663E-02 0 3.8879E-01 1 2.2332E-02
19 0 1.4105E-01 0 2.8642E-01 0 9.8918E-02 0 1.2801E-01 0 2.9450E-01 0 1.7494E-01
20 0 1.4147E-01 0 8.6426E-02 0 4.4190E-01 1 2.3838E-04 1 1.1919E-04 0 1.4667E-01
21 0 5.6996E-02 0 2.7568E-01 1 3.8788E-02 0 1.6119E-01 0 4.2696E-01 0 1.1853E-01
22 1 2.3604E-02 0 2.8723E-01 1 1.3558E-02 0 7.9952E-02 0 2.2396E-01 0 1.1604E-01

Table B-3: KS test results for the Emotiv 1 subset comparing the CDF of the magnitude and
the frequency of the eigenvalues during meditation to the baseline eigenvalues.
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Figure B-4: Eigenvalues of participant 1 for the Emotiv 2 headset plotted on the complex plane.

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5 h6 p6
1 0 6.4238E-02 0 6.7511E-02 0 1.2097E-01 0 6.4663E-02 0 4.6008E-01 1 3.5015E-02
2 0 8.5873E-02 0 1.6349E-01 0 1.6320E-01 1 5.8372E-03 0 3.9556E-01 1 2.9186E-03
3 0 5.2831E-02 0 2.0463E-01 1 4.7027E-02 0 1.0713E-01 0 1.7531E-01 0 1.4216E-01
4 1 5.7895E-03 0 6.4200E-01 1 2.8947E-03 0 9.1733E-02 0 2.1938E-01 0 1.2068E-01
5 0 1.1051E-01 0 1.7998E-01 0 1.9426E-01 0 1.5172E-01 0 1.0563E-01 0 3.2537E-01
6 0 1.3452E-01 0 8.7073E-02 0 4.4165E-01 0 6.7542E-02 0 7.1490E-01 1 3.4208E-02
7 1 1.3859E-02 0 5.6613E-01 1 6.9294E-03 0 1.3545E-01 0 3.8396E-01 0 1.0200E-01
8 1 4.3968E-02 0 7.5560E-01 1 2.1984E-02 1 3.9398E-02 0 1.3607E-01 0 6.7290E-02
9 1 2.2551E-02 1 2.6140E-02 0 7.1319E-02 1 9.7616E-03 1 4.8808E-03 0 7.2948E-01

10 1 2.2354E-02 0 6.3964E-02 1 1.8371E-02 0 7.1382E-02 1 3.8445E-02 0 5.5734E-01
11 0 1.3233E-01 0 7.9152E-02 0 4.6395E-01 1 4.6951E-02 1 4.2772E-02 0 1.5250E-01
12 1 9.3571E-03 1 3.7580E-02 1 1.7968E-02 0 1.8654E-01 0 3.6866E-01 0 1.7624E-01
13 1 1.6095E-03 0 9.5095E-01 1 8.0477E-04 0 1.2952E-01 0 2.8771E-01 0 8.4007E-02
14 0 1.1189E-01 0 5.8614E-02 0 5.3645E-01 0 6.3134E-02 0 7.9354E-02 0 1.3410E-01
15 1 2.6833E-02 0 3.6621E-01 1 1.7361E-02 1 4.1566E-02 0 8.0406E-02 1 4.1187E-02
16 0 8.0855E-02 1 4.6946E-02 0 4.3471E-01 0 9.6381E-02 0 2.2485E-01 0 1.0523E-01
17 0 6.4095E-02 0 1.6481E-01 0 6.3807E-02 0 2.1275E-01 0 2.7480E-01 0 2.6946E-01
18 0 6.3108E-02 0 1.9735E-01 0 6.7149E-02 0 9.1310E-02 0 5.0634E-02 0 3.6325E-01
19 0 1.0399E-01 0 1.8688E-01 0 1.3420E-01 1 1.7447E-02 0 1.9652E-01 1 1.0388E-02
20 1 3.8130E-02 1 1.9065E-02 0 5.9293E-01 1 1.6342E-04 1 8.1709E-05 0 4.5304E-01
21 0 9.7692E-02 0 9.6984E-02 0 1.9198E-01 1 1.9260E-02 1 1.0129E-02 0 2.8164E-01
22 1 2.6385E-02 0 3.4416E-01 1 1.7162E-02 0 8.7953E-02 0 4.6623E-01 0 5.2815E-02

Table B-4: KS test results for the Emotiv 2 subset comparing the CDF of the magnitude and
the frequency of the eigenvalues during meditation to the baseline eigenvalues.
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Figure B-5: Eigenvalues of participant 1 for the Emotiv 3 headset plotted on the complex plane.

h1 p1 h2 p2 h3 p3 h4 p4 h5 p5 h6 p6
1 0 7.0265E-02 0 5.8088E-02 0 1.0634E-01 0 1.0373E-01 0 1.1173E-01 0 2.7953E-01
2 1 1.9222E-02 1 4.6163E-02 0 5.4484E-02 0 1.3659E-01 0 1.5039E-01 0 1.1701E-01
3 1 6.4849E-03 1 3.2425E-03 0 4.0725E-01 0 9.3901E-02 0 1.0534E-01 0 2.6804E-01
4 0 1.1407E-01 0 2.4824E-01 0 9.8168E-02 0 7.0127E-02 0 3.2098E-01 1 4.6639E-02
5 0 9.8186E-02 0 1.3913E-01 0 2.1660E-01 0 1.9865E-01 0 1.9935E-01 0 2.8924E-01
6 0 8.5264E-02 0 6.8012E-02 0 2.6635E-01 0 9.6066E-02 0 4.7620E-01 0 5.8402E-02
7 1 1.2653E-02 0 5.9192E-01 1 7.0219E-03 0 2.4814E-01 0 3.9257E-01 0 1.7208E-01
8 1 3.4204E-02 0 6.3869E-01 1 1.7102E-02 0 1.1051E-01 0 3.2051E-01 0 9.2040E-02
9 1 1.3783E-02 0 1.6915E-01 1 1.0848E-02 1 2.4765E-02 1 1.2382E-02 0 3.1235E-01

10 0 1.3791E-01 0 2.9010E-01 0 1.2390E-01 1 2.3439E-02 1 1.9118E-02 0 2.1407E-01
11 0 7.1454E-02 1 3.5728E-02 0 5.8499E-01 0 1.9983E-01 0 2.0268E-01 0 2.8620E-01
12 1 3.8501E-05 1 1.9250E-05 0 2.9463E-01 0 1.2475E-01 0 6.2389E-02 0 4.7595E-01
13 0 5.2506E-02 0 2.5803E-01 1 3.4525E-02 1 3.4560E-02 0 5.5045E-01 1 1.7807E-02
14 1 7.5630E-03 1 3.7815E-03 0 3.2927E-01 0 1.0068E-01 0 8.5980E-02 0 4.5351E-01
15 0 1.4340E-01 0 1.4041E-01 0 2.0786E-01 0 5.7266E-02 0 3.6118E-01 1 3.8720E-02
16 1 3.5296E-02 1 4.0790E-02 0 1.5239E-01 1 2.5108E-02 0 8.2795E-01 1 1.2554E-02
17 1 5.6685E-03 0 5.4049E-01 1 2.8343E-03 0 1.9938E-01 0 2.2827E-01 0 2.4770E-01
18 0 5.4593E-02 0 3.5665E-01 1 4.5214E-02 0 7.2938E-02 0 1.7955E-01 1 4.6054E-02
19 0 2.1317E-01 0 1.7144E-01 0 3.2487E-01 1 1.2291E-02 0 1.7164E-01 1 6.2281E-03
20 1 3.7022E-02 1 2.1691E-02 0 4.6003E-01 1 2.5685E-02 1 1.5184E-02 0 2.3801E-01
21 1 1.6744E-03 1 8.3720E-04 0 5.7919E-01 0 1.8749E-01 0 5.7236E-01 0 1.3339E-01
22 1 3.1589E-02 0 1.7206E-01 1 2.1625E-02 0 1.8220E-01 0 3.4142E-01 0 1.4354E-01

Table B-5: KS test results for the Emotiv 3 subset comparing the CDF of the magnitude and
the frequency of the eigenvalues during meditation to the baseline eigenvalues.
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Glossary

List of Acronyms

ADF test Augmented Dickey-Fuller test
AR autoregressive
CDF cumulative distribution function
DFT Discrete Fourier Transform
DTFT Discrete-Time Fourier Transform
ECoG electrocochleography
EEG electroencephalogram
fMRI functional magnetic resonance imaging
KPSS test Kwiatkowski-Phillips-Schmidt-Shin test
KS test Kolmogorov-Smirnov test
PET positron emission tomography
SAM Self-Assessment Manikin
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