
surgical
 s

u
r

g
ic

a
l

 

Loubna Bouarfa

Lo
u

b
n

a
 B

o
u

a
r

fa



  

 



Recognizing surgical patterns

Loubna Bouarfa

Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 1



Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 2



Recognizing surgical
patterns

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op 30 mei 2012 om 12:30
uur
door

Loubna BOUARFA

Ingenieur in Media & Knowledge Engineering
geboren te Meknès, Marokko.

Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 3



Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. J. Dankelman
Prof. dr. ir. P.P Jonker

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. J. Dankelman Technische Universiteit Delft, promotor
Prof. dr. ir. P.P. Jonker Technische Universiteit Delft, promotor
Prof. dr. F.W. Jansen Leiden Universitair Medisch Centrum
Prof. dr. M. Neerincx Technische Universiteit Delft
Prof. dr. J. Klein Erasmus Universiteit Rotterdam
Prof. dr. N. Navab Technischen Universität München
Dr. T. Weijters Technische Universiteit Eindhoven
Prof. dr. ir. C.A. Grimbergen Academisch Medisch Centrum, reservelid

This research and the production of this thesis has been financially supported by
the Dutch grant organization STW, project number: 07320.

Copyright c© 2012 by L. Bouarfa

ISBN:978-94-6169-251-1

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage
and retrieval system, without the prior permission of the author.

Author email: loubna.bouarfa@gmail.com

Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 4



Contents in brief

1 Introduction 1

2 Pattern recognition: a new perspective for evidence based surgery 9

3 Preoperative: prediction of intra-operative complexity 29

4 Intraoperative: segmentation of workflow steps 47

5 Intraoperative: tracking of surgical instruments 67

6 Intraoperative: detection of surgical outliers 77

7 Postoperative: prediction of recovery time 85

8 Discussion and Conclusions 99

i

Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 5



Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 6



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Focus on laparoscopic surgery . . . . . . . . . . . . . . . . . . . . 2

1.3 Opportunities in laparoscopic surgery . . . . . . . . . . . . . . . 4

1.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Contributions & outline . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.1 List of Journal papers . . . . . . . . . . . . . . . . . . . . 6
1.6.2 List of conference papers and abstracts . . . . . . . . . . 6

2 Pattern recognition: a new perspective for evidence based surgery 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 The RCT framework . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Methodological challenges in surgery . . . . . . . . . . . . 11
2.1.3 Goal of the study . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Applying the RCT framework for surgery . . . . . . . . . . . . . 12
2.2.1 Data Collection: Limitations of satisfying RCT require-

ments in surgery . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Statistical analysis: Limitations of applying RCT hypo-

thesis testing in surgery . . . . . . . . . . . . . . . . . . . 14
2.2.3 Surgical RCTs in literature . . . . . . . . . . . . . . . . . 15

2.3 Pattern Recognition (PR) as a new perspective for EBS . . . . . 16
2.3.1 Introduction to PR for surgery . . . . . . . . . . . . . . . 16
2.3.2 Branches of PR in surgery . . . . . . . . . . . . . . . . . . 17

2.4 Perspectives of applying PR in surgery . . . . . . . . . . . . . . . 21
2.4.1 Prospects of using peri-operative data in surgery . . . . . 21
2.4.2 Measuring safety from peri-operative data . . . . . . . . . 22
2.4.3 Measuring effectiveness using peri-operative data . . . . . 24

iii

Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 7



iv CONTENTS

2.4.4 Measuring efficiency using peri-operative data . . . . . . . 25

2.5 Conclusion & Discussion . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Preoperative: prediction of intra-operative complexity 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 Why predict surgical complexity? . . . . . . . . . . . . . . 31
3.1.2 Complexity prediction for laparoscopic cholecystectomy: why

is it important? . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Goal and contributions . . . . . . . . . . . . . . . . . . . . 32

3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Binary classification problem . . . . . . . . . . . . . . . . 35
3.2.5 Classification performance criterion . . . . . . . . . . . . . 35

3.3 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Classifier evaluation results . . . . . . . . . . . . . . . . . 36
3.3.2 Feature selection evaluation results . . . . . . . . . . . . . 39

3.4 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Conformity of ranking results with the clinical literature . 42
3.4.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . 45

4 Intraoperative: segmentation of workflow steps 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 On inferring high-level tasks from low-level tasks . . . . . 49
4.2.2 On the description of Laparoscopic Cholesystectomy . . . 51

4.3 Conceptual Framework . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 LLT -inference . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 HLT -inference . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Pilot study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 LLT pre-processing . . . . . . . . . . . . . . . . . . . . . 54
4.4.3 HMM Training . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.1 How accurate can we predict HLTs using noise-free instru-

ment sensor data? . . . . . . . . . . . . . . . . . . . . . . 58
4.5.2 How does the accuracy of the system respond to common

sensor noise? . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 8



CONTENTS v

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Intraoperative: tracking of surgical instruments 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.2 Marker Segmentation . . . . . . . . . . . . . . . . . . . . 71
5.3.3 Instrument tracking via markers . . . . . . . . . . . . . . 72

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 73
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Intraoperative: detection of surgical outliers 77

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Generating process log from laparoscopic video . . . . . . . . . . 80

6.4 Workflow mining : Generating surgical consensus using multi-
alignment of individual process logs . . . . . . . . . . . . . . . . . 82

6.5 Outlier detection using global alignment . . . . . . . . . . . . . . 83

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Postoperative: prediction of recovery time 85

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3.1 Feature selection results . . . . . . . . . . . . . . . . . . . 92
7.3.2 Regression results . . . . . . . . . . . . . . . . . . . . . . 93

7.4 Conclusion & Discussion . . . . . . . . . . . . . . . . . . . . . . . 95

8 Discussion and Conclusions 99

8.1 Summary and discussion of results . . . . . . . . . . . . . . . . . 99

8.2 Future research directions . . . . . . . . . . . . . . . . . . . . . . 101

A Supplementary material for Chapter 2 103

B Supplementary material for Chapter 7 107

B.1 Pre-operative features . . . . . . . . . . . . . . . . . . . . . . . . 107

B.2 Intra-operative features . . . . . . . . . . . . . . . . . . . . . . . 108

Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 9



vi CONTENTS

B.3 Post-operative features . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 111

Summary 123

Samenvatting 127

Acknowledgements 131

Curriculum Vitae 135

Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 10



Chapter 1

Introduction

1.1 Motivation

The operating room (OR) is the most costly environment in healthcare [Jea10;
Hoz05], it requires expensive labour resources (surgeon, anaesthetists, nurses,
etc.), high-priced equipment and high daily maintenance.

In the Netherlands, each year more than 1700 patients die from preventable
surgical errors [DB07]. Medical errors are commonly referred to as Adverse
Events (AEs). Surgical AEs account for one-half to three-quarters of all AEs in
healthcare [Gri08]. The Dutch Patient Safety Research Program showed that
AEs affect 5.7% patients in Dutch hospitals and result in permanent disabilities,
morbidities and even mortalities. Forty per cent of these surgical AEs were judged
preventable by following established clinical practices [Zeg07]. Using an aggreg-
ated estimated cost of 1100 euro per hour for an OR, the cost of preventable,
surgical AEs in the Netherlands is estimated at 161 million euro in 2004 alone
[Hoo09]. Therefore preventing AEs can save costs as well as improve patient
safety.

Another aspect of OR management is the utilization rate of the OR. Both
under- and over-utilization of the operating room represent unnecessary (and
unstable) costs for hospitals [Car10b]. A benchmark study showed that the
average delay in surgery start times ranges from 25 to 103 minutes [Doe09]. This
is shown to be caused by the failure of commonly used planning tools which do
not account for the unpredictable time duration of surgery. Capacity problems
can also be reduced by avoiding unexpected events, like longer procedure times
because of complications [Hoo09]. In the Netherlands those lost hours add up to
2150 hours, equivalent to 2.3 million euro per year.

In production industry, standardization of the production processes is deployed
to both reduce errors and improve efficiency by allowing simpler planning. Sur-
gery is characterized by a peri-operative pipeline of pre-, intra- and post-operative
processes that can be instantiated with a workflow model. To both reduce errors

1
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2 INTRODUCTION 1.2

and improve efficiency, the workflow in the peri-operative pipeline should be de-
signed and planned as effectively as possible in terms of flow of patients and
allocation of scarce resources such as operating rooms, instruments and person-
nel [Neu06b; Neu08]. It is well known for pipeline systems, such as in industrial
production systems and traffic systems, that reduction in fluctuations within the
system parts has a positive effect on the throughput of the entire pipeline. The
peri-operative pipeline varies from country to country and even from hospital
to hospital (e.g. the number of ORs vs. PACUs may vary) and their surgical
workflow may vary as well. Moreover, the amount and quality of the data used
for planning varies. However, for all implementations the rule is that fluctu-
ations should be suppressed in all sub-processes of the pipeline to optimise the
throughput. If this goal is not feasible then at least the fluctuations should be
made predictable, so a planning system that covers the entire workflow of the
peri-operative pipeline can efficiently cope with the effects of those fluctuations.
A first step is to standardize the surgical workflow as is common in production
engineering, air traffic control and the military.

Standardization of surgery is, however, a very hard challenge because surgeons
vary in their experience in and ability to perform a surgical technique, there are
individual preferences in performing the procedure, and technical modifications
may occur as the procedure evolves [Wol07]. Furthermore, each patient has -to
a degree- a different anatomy and surgeons are trained to adapt their methods to
match those differences. When many surgeons, with different skill levels, perform
different procedures on patients, each with a different anatomy, they may agree
on the standardization of most critical aspects of the procedures, but it is almost
impossible to reach consensus on all aspects.

1.2 Focus on laparoscopic surgery
The work in this thesis focuses on laparoscopic surgery as it is used in a comparable
setup for different surgical specialities. Figure 1.1 illustrates the general setup of
laparoscopic surgery. The procedure is performed through small incisions in the
abdominal wall to gain access to the internal anatomy of the patient’s body.
To be able to work via these small incisions, specialised thin instruments and a
camera are used, as is illustrated in Figure 1.1. The main benefits of laparoscopic
surgery, when compared to traditional open surgery are: reduced inconvenience to
patients, reduced patient’s trauma, shortened hospitalisation, improved diagnostic
accuracy and improved therapeutic outcome. The downside to these benefits is
that laparoscopic surgery requires a high degree of manual dexterity from the
surgeon (or operator) as the instrument controls are more complex when compared
to open surgery.

Figure 1.2 illustrates a schematic diagram of different applications of laparo-
scopic techniques in surgery. The most common laparoscopic procedure performed
is laparoscopic cholecystectomy, which is illustrated in Figure 1.2 (a). Laparo-
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1.2 FOCUS ON LAPAROSCOPIC SURGERY 3

Figure 1.1: A schematic diagram from [Lo07] illustrating the basic setup of laparoscopic
surgery: small incisions are made on the abdomen and the laparoscopic instruments are
inserted using trocars. The surgeon performs the surgery by watching the feed from
the laparoscopic camera projected onto a video screen. (1) Laparoscopic incision, (2)
Laparoscopic instruments, (3) trocars, and (4) Laparoscopic camera.(Used by permission
from [Lo07])

scopy was first applied to gynaecology in 1960. The technique has now been
applied to a variety of specialties [Lo07]. In gynaecology the technique is ap-
plied to a variety of procedures such as laparoscopic hysterectomy, laparoscopic
supracervical hysterectomy, and laparoscopic vault suspension. Laparoscopic hys-
terectomy is illustrated in Figure1.2 (b). In urology, laparoscopy is used for the
treatment of kidney tumours and nephrectomies as is depicted in Figure1.2 (c).
In most of the laparoscopic procedures an organ is removed.

(a)(a) (b) (c)

11
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1

1

1

1
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Figure 1.2: A schematic diagram illustrating the setup of: (a) Laparoscopic cholecystec-
tomy, (b) Laparoscopic hysterectomy, (c) Laparoscopic nephrectomy. (1) Laparoscopic
instruments, (2) Laparoscopic camera, (3) Abdominal incisions and trocars, and (4) The
organ to be removed.(Used by permission from [Lo07])
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4 INTRODUCTION 1.4

1.3 Opportunities in laparoscopic surgery
Generally, in the entire peri-operative process (pre-, intra- and post-operative)
data is gathered that can be used to minimize AEs and boost efficiency by en-
hancing the predictability and standardization of laparoscopic surgery.

Before the start of surgery, pre-operative data is collected; including clin-
ical history of the patients, current and past medication, measured vital signs,
laboratory data, radiology examination, nursing records and operation records.
Moreover, pre-operative imaging is occasionally used to plan the surgical strategy
for localization and size assessment purposes.

During surgery, the growing availability of measurement devices used in the
OR enables the collection of a large volume of intra-operative data about the
course of surgery and the state of the patient during surgery. All procedures com-
bined produce many hours of endoscopic video each day. Moreover, the patient’s
blood pressure, heart rate, cardiac rhythm, expired CO2 and body temperature
is routinely measured. After surgery, patients are transferred to the Post An-
aesthesia Care Unit (PACU) or the Intensive Care Unit (ICU) to recover. Here
post-operative data is collected. Sophisticated monitoring equipment performs
measurements of multiple physiological parameters on a high frequency. Those
measurements require timely -and context sensitive- analysis in order to sustain
effective decision support [Sam06]. Because so much data could be available, it
is important to identify those parameters most important to predicting adverse
events and increasing the efficiency of the OR and its related resources.

1.4 Objective
The goal of this thesis is to show how off- and on-line acquired peri-operative data
can be analysed with pattern recognition techniques to reduce adverse events and
improve efficiency of surgical procedures. The most important questions addressed
are:

• How to use available prior knowledge to improve operative safety?

• How to measure surgical workflows (i.e. standards) regardless of the level
of variance of its execution by different surgeons and for different patients?

• How to automatically acquire surgical workflow data?

• How to automatically detect possible adverse events during surgical inter-
ventions?

• How to use peri-operative data to support peri-operative planning?

The work in this thesis focuses on processing pre-, inter- and post-operative
data using pattern recognition techniques to predict safety and efficiency para-
meters in surgery. To the best of the author’s knowledge the use of pattern
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1.5 CONTRIBUTIONS & OUTLINE 5

recognition techniques with surgical data is limited in the literature to imaging
applications. Surgical data is currently processed using common clinical statistical
tools. We expect, however, that future studies in surgery will employ advanced
pattern recognition tools in processing surgical data to improve safety and effi-
ciency of surgeries. The research presented in this thesis is a first step towards
that direction.

1.5 Contributions & outline
The work in this thesis is focused on logging and predicting events from data
available before or in the OR. Pattern recognition (PR) techniques are used as
they can accommodate less strict data collection (i.e. especially when compared
to Randomized controlled trials). PR techniques provide mathematical tools to
either manage shortcomings of surgical data (e.g. bias, limited samples) and can
provide the best possible results with the given data. The contributions of this
thesis are divided in the following chapters:

• Chapter 2 Explores the limitations of using Randomized Controlled Trials
in surgery and the feasibility of using pattern recognition to measure safety,
effectiveness and efficiency of surgical treatments. This work was presented
in [Bou12b].

• Chapter 3 Pre-operative patient data is used in this chapter to train a clas-
sifier and to identify the interesting features for predicting intra-operative
complexity. This work was presented in [Bou11c].

• Chapter 4 Presents a framework for recognizing high-level surgical tasks
from low-level sensors in the operating room. We further show how to use
this framework to detect surgical activities from instrument signals using
laparoscopic video as input. This work was presented in [Bou11b].

• Chapter 5 Instrument signals used in the previous chapter were manually
annotated from the laparoscopic video. This chapter presents a tracking
system to detect and track instruments in laparoscopic video using biocom-
patible colour markers. This work was presented in [Bou11a].

• Chapter 6 Presents a new approach for deriving surgical consensus from
running surgeries. The derived consensus is proven to conform the main
steps of laparoscopic cholecystectomy as defined in best practices. The
paper also shows how outliers can be detected from process logs using the
derived consensus [Bou12a].

• Chapter 7 Peri-operative data is used in this chapter to predict the length
of stay of patients in the Post Anaesthesia Care Unit (PACU). This work
was presented in [Bou12c].

Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 15



6 INTRODUCTION 1.6

• Chapter 8 Discussions, conclusions and future research directions are given
here.

1.6 Publication List

1.6.1 List of Journal papers
The following papers, written by the author of this thesis, have been published
or are currently under peer review:

1. L.Bouarfa, D. Tax and J. Dankelman, “Pattern recognition: a new perspect-
ive for evidence based surgery”, Submitted article (Reference [Bou12b])
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and J. Dankelman, “Prediction of intraoperative complexity from preoper-
ative patient data for laparoscopic cholecystectomy”, Journal of Artificial
Intelligence in Medicine, vol. 52, pp.169-176, 2011 (Reference [Bou11c])

3. L. Bouarfa,P.P. Jonker, and J. Dankelman, “Discovery of high-level tasks
in the operating room”, Journal of Biomedical Informatics, vol.44, pp. 455-
462, 2011 (Reference [Bou11b])
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vivo real-time tracking of surgical instruments in endoscopic video”, Minim-
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of Stay in the Post Anaesthesia Care Unit - Can it be estimated?”, Submit-
ted article (Reference [Bou12c])

1.6.2 List of conference papers and abstracts
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10 PATTERN RECOGNITION: A NEW PERSPECTIVE FOR EVIDENCE BASED
SURGERY 2.0

abstract
Evidence-based medicine aims to utilize the best available evidence to support
clinical decision making. To obtain the strongest evidence, usually Randomized
Controlled Trials (RCTs) are used to measure the safety and efficacy parameters of
new treatments. However, RCTs have many limitations when applied to surgery.
There are issues related to the feasibility of randomization and blinding in surgery,
ethical issues, standardization of the procedure, variations in surgical performance
and variations among patients.

The method of assessing outcome in surgery needs to be tailored to each pa-
tient and generalization of the results is therefore difficult for surgery. Pattern
Recognition (PR) provides tools for the assessment of surgical outcome for in-
dividual patients, and it allows for handling of outliers and individual patients
and does not set the same restrictions on the data collection procedure as the
RCT framework. PR could therefore provide a pragmatic next step towards data
intensive operating room with evidence based support for surgeries.
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2.1 INTRODUCTION 11

2.1 Introduction
Evidence-based medicine (EBM) is a scientifically validated methodology de-
veloped to help clinicians make decisions based on scientifically valid evidence
and results [Dex05]. Randomized Controlled trials (RCTs) [Ree07] is the most
commonly used form of EBM. RCTs are a collective study design which allows re-
searchers to scientifically measure safety and efficacy parameters of specific treat-
ments (e.g. drug, diagnostic, device, and therapy protocols) within a group of
patients. The safety of a treatment is determined by the observed adverse effects
of a specific treatment during the trial. The efficacy is the ability of a treatment
to reproduce a (hopefully desired) effect within the test subject group under con-
trolled (RCT) conditions. The effectiveness is the ability of the treatment to
produce the same effect in the real world; under less controlled or completely free
conditions [Dex05; Mur04].

2.1.1 The RCT framework
In RCTs, a group of patients with specific symptoms, but otherwise healthy, are
randomly split into two groups: an experimental group and a control group [Per08;
Sol95]. The experimental group actually receives the treatment under investig-
ation, whereas the control group receives the placebo (fake) treatment or the
conventional treatment. Safety and efficacy data is gathered from patients within
a predefined period. This data can include vital signs, concentration of the drug
in the blood, and the improvement of the health of the patient. To ensure scien-
tifically valid results, strict requirements on the trial design and data collection
need to be fulfilled. As will be discussed throughout this paper, those require-
ments are not practical for all types of clinical treatments [Joh94], especially for
invasive treatments.

2.1.2 Methodological challenges in surgery
It is hard for invasive treatments to conform to all requirements for RCTs, which
include randomization, (double) blinding and placebo-control [Chu99; Mar03;
Sch09; Far10]. Consequently, RCTs are very seldom applied to surgery [Kra05].
Fortunately there are outcome indicators for the performance of surgery available
(e.g. injuries or infections after surgery), which can be used to evaluate the
safety and efficiency of surgical procedures [Rev90]. If surgical research questions
cannot be effectively addressed in a RCT study design, a study design should be
used to allow for evidence-based decision support in surgery from the available
perioperative data [Mar03; Bro08; Sch09].

To measure the safety and effectiveness of medical treatments, new individu-
alized methods, while not yet widely used, are proposed to advance the field of
clinical trial design [Far10; Dui07a; Tib96]. Some of the approaches build on prior
knowledge, such as the Bayesian approach [Per08], rather than viewing each trial
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in isolation as is the case in RCT studies. These methods also aim to avoid incor-
rect results, using advanced tools to compensate for biased data. Furthermore,
they require fewer samples -and thus costs- and lead to rapid results.

2.1.3 Goal of the study

The objectives of this study are to examine the limitations of applying the RCT
framework in surgery, and to investigate the feasibility of using Pattern Recog-
nition (PR) as new approach for building evidence in surgery from -preferably
available- perioperative data. After presenting the limitations of RCTs, this pa-
per examines how surgeons can be supported in making decisions for individual
patients based on historical data (i.e. prior knowledge). It is explained how data
can be processed to support the surgical team in its decision making using PR
techniques.

2.2 Applying the RCT framework for surgery

Although RCTs are a very powerful framework to improve the safety and ef-
fectiveness of clinical treatments, they have major limitations when applied in
surgery [Chu99; Mar03; Sch09; Dui07a; Tib96; Far10]. This Section discusses
the limitations of applying RCT in surgery for both the data collection process
2.2.1 and the statistical analysis 2.2.2. Finally, Section 2.2.3 discusses how these
limitations are reflected in literature on surgical RCTs.

2.2.1 Data Collection: Limitations of satisfying RCT requirements in sur-
gery

An invasive procedure (i.e. surgery) is not easily reproducible over a large pop-
ulation of patients. Unlike other treatments (e.g. drugs), invasive procedures
can be (and usually are) adjusted to the specific situation of the patient. Even
if the intention is to execute the procedure identically for all patients, there are
sometimes external factors that introduce bias in the results of the study: the
surgeon’s expertise, the patient status, the anaesthetic, and the surgical team.
Finally, it is expensive to repeat invasive procedures over a large population of
patients making any study very expensive.

In order to apply RCT for surgery, one should either find a surgeon to perform
all the procedures or assume that surgical skills do not significantly contribute to
the surgical outcome. The latter is unfortunately not always a valid assumption
[H.00]. Also, patients must be randomized and blinded to either the experimental
or control treatment. This Section discusses the limitations of applying these
constraints in surgery, assuming that within a surgical RCT a single surgeon (and
in fact only one surgical team) performs all procedures:
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2.2 APPLYING THE RCT FRAMEWORK FOR SURGERY 13

• Randomization: It is much more difficult to randomly assign test subjects
to 2 surgical interventions than 2 drugs, as both patients and surgeons most
likely will have a preferred choice. Also surgical procedures are almost al-
ways permanent. This point may be of particular concern if a medical
therapy is being compared to a surgical procedure or when two surgical
procedures differ in magnitude or invasiveness (e.g. open vs. laparoscopic
surgery). Here any null hypothesis (the null hypothesis is usually: no sig-
nificant difference in clinical results) will be rejected on a priori grounds.
In many cases, surgical RCTs are performed to compare conventional and
new surgical techniques. However, a randomized trial may be impossible in
many surgical scenarios for ethical reasons, because of the impact and risk of
a surgical procedure for even healthy test subjects. It is most unlikely that
any ethics committee would sanction the random allocation of test subjects
to cardiac transplantation [Bla96].

• Blinding: Blinding is particularly difficult in surgery. The constraint of
blinding is often overwhelmingly hard to overcome in surgical trials. It
is much easier for patients to be oblivious to which medication was given
to them than to not know which type of surgery has been performed on
them [Nor03]. Double blinding is a larger challenge yet. Therefore one
must assume that both patients and surgeons will know which surgery they
are allocated to. The lack of blinding may be minimized by choosing a
“hard” outcome indicator, such as mortality or morbidity [Sol95], which
cannot be influenced by personal bias. On the other hand, if the outcome
indicator is largely subjective (e.g. a change in symptoms or quality of life),
lack of blinding will most likely bias the results. In this case blinding can
sometimes be realized by an independent assessor who is unaware of the
patient’s treatment group.

• Placebo (sham) surgery: is a faked surgery performed in the control pop-
ulation to assess the effect of the intervention under study. Many ethicists
reject sham-surgery [Dek01; Mac99], other maintain that such trials are eth-
ically acceptable but should conform to certain restrictions that puts very
strict requirements on the trial [Alb02; Mil03]. Such restrictions include
that the research question cannot be answered by any other form of trial or
study and that the risk of such procedure can be kept to a minimum.

• Equipoise: One of the major factors limiting surgical trials is the lack of
community equipoise in surgery. Clinical equipoise is an ethical dilemma
introduced by Freedman [Fre87], which can be paraphrased as: ”genuine
uncertainty within the expert medical community on the optimal approach
for a certain medical condition”. Equipoise allows clinical investigators to
continue a trial until they have enough statistical evidence to convince other
experts of the validity of their results, without a loss of ethical integrity on
the part of the investigators. If more than 70% of the medical experts
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favored one of the treatment options, we considered that community equi-
poise was lacking 70% [Sol95]. Johnson et al. [GHO08] proposes to apply
equipoise in a retrospective way to patients where there was disagreement
over their treatment.

• Timing: The issue of timing of trials is difficult. Most surgeons agree
that new surgical techniques would change significantly within first few
years [Sol95]. In any surgical procedure there exist a learning curve and
modifications to the new surgical technique are made frequently. By includ-
ing these early patients, one would almost certainly bias the results against
the new procedure. The introduction of laparoscopic cholecystectomy and
the initially high rate of common bile duct injuries is a good example of this
[Mur04]. On the other hand, it may be difficult and quite unnecessary to
initiate a trial when the procedure is widely accepted by both the patient
and the surgical community.

• Multi-centre: Frequently, surgical trials rely on results from single insti-
tutions or from multiple centres within one health area or organization.
However, there may be inherent selection biases in referral patterns to the
institution (’centre effect’) and study participation; as well as limitations
posed by sample size and completeness of data [Hal05]. Please note that
this constraint is contradictory to the earlier assumption of using an identical
surgical team for all procedures.

2.2.2 Statistical analysis: Limitations of applying RCT hypothesis testing
in surgery

After a RCT is conducted, the data is statistically analysed, mostly by means
of hypothesis testing [Per08]. For each collected parameter, a research question
is formulated in the form of two hypotheses which are mutually exclusive, i.e.
if one is true, the other must be false. These are often characterised as the
null hypothesis H0 and the alternate hypothesis Ha. Typically H0 is chosen
to reflect the situation that there is no statistically significant difference in a
single parameter (i.e. representing safety or efficiency) between the control and
experimental groups [Wal11]. For example, the null hypothesis could state that
there is no difference in death rate between patients who took aspirin daily and
those who did not, the alternate hypothesis would automatically state that there
is a difference [Dex05; Per08].

To perform hypothesis testing, the probability density function (pdf) of the
control group has to be approximated. Often the pdf is approximated by a stand-
ard normal distribution with µ = 0. This approximation is justified using the
Central Limit Theorem (CLT) [Eck10], which states that when you have many,
small, independent, random variables, then their sum is distributed as a bell-curve
(i.e. normal distribution). In order to use the CLT, the data must be collected
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within the requirements of Section 2.2.1. Assuming the data is collected in line
with the requirements of Section 2.2.1, there are still limitations of applying the
RCT hypothesis testing in surgery:

• Outliers in surgery: An outlier is an observation that does not follow the
pattern of the majority of the data [Tax98]. Fitting a normal distribu-
tion on the data emphasizes the effect of average patients and understates
outliers [Bla96]. This is of no concern if one is interested in the ordinary
behaviour of a therapy. However, in surgery the information about outliers
(specific individual patients) is also very relevant. Outliers such as complic-
ations and adverse events define directly the negative outcome of surgical
interventions. Those outliers are often clinically important and may cor-
respond to surgical errors; hence they are worthwhile to be flagged and
analysed, especially in surgery where complications are very common and
hard to predict [DB07; Gri08].

• Factor-dependency in surgery: Many measurements seem to fit a normal
distribution, especially when enough data is used as the case is in the RCTs
of most medical treatments. Because this assumption tends to work well
most of the time, it is usually taken for granted in many domains. A major
reason why CLT fails is that the individual factors of a given study are
not independent and therfore correlated [Tal11; Bla96]. In this case the
data will not fit a normal distribution well. Surgery is one of those domains
where variables may not be independent and other factors may influence
the outcome (e.g. surgical skills) which result in considerable bias when
evaluated in such a strict hypothesis testing framework [Dui07a; Tib96;
Far10]. To avoid bias in surgical RCTs, a very high sample size is needed,
resulting in much larger scale RCTs than the case in other disciplines of
medicine.

2.2.3 Surgical RCTs in literature
Even if the above challenges could be overcome, 60% of the surgical questions
cannot be addressed in an RCT trial [Noc10]. Most of “surgical” RCTs eval-
uated drugs in a surgical setting, less than 25% of the published trials involve
a surgical procedure in the trial [Chu99]. Nevertheless, in some surgical fields,
surgeons conducted a number of surgical RCTs. For example: in the published
RCTs related to digestive surgery, 84% evaluated the core surgical procedure by
comparing surgery versus drug, two different surgical strategies or a changed im-
portant step of the procedure (e.g. anastomosis, drainage) [Chu99]. Problems
with RCTs in surgery are related to very different patients, feasibility of random-
ization and blinding, the learning curve, standardization of the procedure and
patients’ and surgeons’ equipoise [McL99]. Furthermore, as surgical procedures
are often much more expensive and risky to perform, especially in comparison to
drug treatments, large scale RCT studies are much harder to perform.
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The number of RCTs in surgery is, given the above constraints, understand-
ably rather limited. Only 3.4% to 7% of the publications in leading surgical
journals are randomized trials [Tib96]. Of these trials, only 20% to 50% deals
with the comparison of 2 or more interventions. Despite the fact that clinical
surgical trials are mainly based on nonrandomized studies, however, there is no
agreement on good alternatives to RCTs in surgery [Chu99].

2.3 Pattern Recognition (PR) as a new perspective for EBS
In order to use EBM in surgery, new techniques need to be found to deal with the
individual nature of surgeries. This section proposes PR to measure safety and
effectiveness parameters in surgery. The need for randomization and blinding hold
for any statistical approach including PR. However, PR provides an alternative for
building classifiers, based on historical samples from other patients or from other
clinical trials, to support surgeons in decision making for individual patients.

2.3.1 Introduction to PR for surgery

Pattern Recognition (PR) enables, through classification of pre-, intra- and post-
operative data, the prediction of surgical outcome. This prediction (i.e. classific-
ation) is based on historical patient data. This predicted outcome can support
the surgeon in making evidence based decisions for new patients. The data is
pre-processed into specific data-points, which are known as feature vectors and
serve as input for the classification algorithm (i.e. classifier), that assigns the
sample to one of the given classes [Tes99; Fuk90]. The classes are all possible
surgical outcomes (e.g. occurrence of complications: injured, inflamed, infected,
none). In order for PR to classify a patient, the patient must first be described
in a way that the PR algorithm can understand [Tes99]. Given a new patient to
analyse, a PR system must first generate a description of it in terms of a vector
of P features (i.e. the pattern) x = (x1, ..., xP ). When the patient is known to
belong to one of C classes, an additional class label y ∈ {1, ..., C} is defined.

PR aims at constructing a classifier f(x) that can predict the class based
on the input features. In order to construct a classifier, a labelled training set
X = {(xi, yi), i = 1, ..., N} is needed to train the classifier. With this training set,
the decision rule(s) within the classifier are defined such that the probability of
misclassifying any x is minimized. After evaluating the classifier, it can be used
in a clinical setting to classify features representing new patients and predict the
most likely class for this patient.

To illustrate the PR framework, consider laparoscopic cholecystectomy as the
intervention. Patient demographic data can be used as features to predict occur-
rence of major bile duct injury (i.e. the occurrence of the injury is the first class,
the second class is its absence). From available patient data, a classifier can be
trained to classify laparoscopic cholecystectomy patients into class y = 1 (major
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bile duct injury) or class y = 2 (no major bile duct injury). Once the classifier is
trained and shows a good performance, it can be used in a pre-operative setting
to predict the most likely outcome for new patients. Predicting the occurrence
of complications before surgery can aid surgeons do decide whether to proceed
with a minimally invasive approach, to perform an open procedure or to make a
referral to a more experienced surgeon [Bou11c].

2.3.2 Branches of PR in surgery
PR in surgery (and equally for other application domains) can be deployed in
three levels.

• Basic PR: A classifier that classifies instances into a pre-defined class

• Branch 1:Basic PR plus the detection of outliers that do not belong to a
pre-defined class

• Branch 2: Basic PR plus the ability to cope with features evolving over time
(i.e. non-stationary features)

Basic PR: Classification into a pre-defined class

A classifier is constructed from the training dataset X. This classifier is used to
classify new feature vectors which represent new patient cases into one of the pre-
defined classes. At this level, it is assumed that all instances belong to one of the
initially defined classes. Further, it is assumed that the feature set is derived from
stationary data sources (i.e. the features do not evolve over time). An example is
to predict wound infection by patients after ventral hernia repair using features
such as demographics, perioperative risk factors and operative characteristics.
For any classification task we need data from two or more classes, in this case a
group of patients with no wound infection after surgery (class 1) and the group
of patients with wound infection after surgery (class 2).

Once the classifier is trained with the available labelled data, the most likely
class for new patient cases can be predicted. The decision boundary between
the two classes is formed by the feature vectors that are equally likely to belong
to either class. New patient cases are classified according to which side of this
decision boundary they are located, as is illustrated in figure 2.1. Different types
of classifiers can be used, ranging from simple classifiers such as Linear Discrim-
inant Classifier (LDA) and nearest-neighbour classifiers (NN), to more complex
classifiers such as Support Vector Machines (SVM).

Under-fitting and over-fitting are important issues for any classifier. Figure
2.2 illustrates the problems of over-fitting and under-fitting. Assuming sufficient
samples of training instances are available to train the classifier from both groups,
the challenge is to construct a classifier that fits the data correctly. Using a simple,
non-flexible classifier for complex data can lead to under-fitting, as illustrated in
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Figure 2.1: Classification by means of separating surfaces between two classes

Figure 2.2(a). The classifier is incapable of following the intricate optimal decision
boundary, resulting in suboptimal classification performance. On the other hand,
using a too complex, too flexible classifier with small amounts of data, may lead
to over-fitting. Here the classifier adapts to the noise and to the structure in
the data that may not represent the class. This results in a poor classification
performance for new patient cases, as illustrated in Figure 2.2(b). The trade-off
is obviously somewhere in between, a classifier that adjusts just enough to the
data, without over-fitting or under-fitting to the details of the data as illustrated
in Figure 2.2(c).
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Figure 2.2: Under-fitting and Over-fitting
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Although the classifier can show very good performance for all patients in the
training dataset, this is no guarantee that the classifier will perform well for new
datapoints. Thus the performance of the classifiers needs to be evaluated with
new datapoints. Appendix A explains how to evaluate the performance of the
trained classifiers using the available data.

Branch 1: Detecting outliers

The assumption that all data (training as well as new data) belong to one of
the pre-defined classes, is often not true. When patients have developed atypical
features for their class, or have been selected erroneously, the classification per-
formance will be adversely affected. Note that this assumption is always made in
RCTs. In figure 2.3 an example of an outlier is shown. A classifier is constructed
that can correctly classify most of the instances correctly. However, the outlier
in the lower right corner will be incorrectly classified as a positive instance (e.g.
infected patient). In such a case we want the classifier to reject this object and
label it as an outlier [Bis95; Hod04a].
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Figure 2.3: Example of an outlier

In PR, there are different approaches that can be used to detect outliers with
respect to one of the predefined classes [Hod04b]. One approach is to approximate
a single (multi-dimensional) probability density function (pdf) per class, using for
instance a normal distribution. Applying an arbitrary cut-off threshold, outliers
can be identified. A more sophisticated approach is to represent the class pdf as
a (weighted) sum of densities. A sum of multiple normal density functions can
be represented in a Gaussian Mixture Model which is used to represent density
functions where the CLT does not apply, and that need more complex density
functions [Bis94]. As with the single pdf approach an outlier is detected when
it has a lower probability of occurring than a predetermined threshold. Other
approaches measure the distance between features within a class to detect outliers.
Tax et al. [Tax98] compared the distance between nearest neighbours within the
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same class to detect outliers. Those approximation-free approaches are more
flexible and reliable to apply with less heterogeneous data such as surgical data.

Branch 2: Classifying time series

Teh basic PR assumes a stationary feature set: the data is independent of time
and can thus be processed disregarding any temporal relationships. However, in
many cases the feature set is a non-stationary process derived from data evolving
over time. Many patient characteristics are time series of measurements such as
blood pressure, heart rate, cardiac rhythm, expired CO2 and laparoscopic video.
Time series are commonly used to classify critical events during interventions.
Note that, in case of time series we deviate from the classical PR framework.
There are not two or more distinct classes for the entire procedure, instead there
are many time events taking place that need to be classified. For example, using
laparoscopic video, we want to detect the common bile duct transection (cut-
ting across the wrong duct) during laparoscopic cholecystectomy. To detect the
common bile duct transection, first we need to detect the clipping step during
the intervention. For this classification task we need to use non-stationary data
(video frames) to detect the clipping step.

Techniques for interpreting non-stationary sources of data are not as de-
veloped, nor as established, as those for a classical static problem [Bis95]. There
are, however, two approaches to deal with the stationary nature of the feature set
in a classification problem.

The first approach divides the time series into separate, smaller series of suc-
cessive features, to enable the use of analysis tools developed for stationary signals
such as classification [The09]. Each window consists of a finite number N of fea-
tures (e.g. 25 frames = 1 second of video). During this short time interval, the
signal is assumed to be stationary. Choosing the right length of windows is a cru-
cial step and problem-dependent. The window must be long enough to capture
the necessary information for the classification task and short enough to guaran-
tee the (approximate) stationary of the signal. After choosing the window, the
classical classification in the approaches described above can be applied for each
window. Consider that we want to detect the clipping step during a laparoscopic
cholecystectomy using laparoscopic video by tracking surgical tools, this approach
classifies each window separately whether it is a clipping step or not. Note that
in the clipping step different tools are used: clip tang, dissecting device and scis-
sor. Those tools can also be used in other steps of surgery. The fact that at the
window level two different surgical steps are composed out of the same elements
(i.e. surgical tools) can make them indistinguishable when using this approach.

The second approach makes use of Hidden Markov Models (HMM) which
encompasses the idea of the first approach and uses not only the class-specific
characteristics (e.g. surgical tools), but also their relative order (e.g. first dis-
section, then clip placement, then cutting). This model allows representing time
series as a series of transitions from one state to another (e.g. surgical steps)
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by means of a transition matrix, and in the meantime also learn the state model
that best represents each discovered state [Bou11b]. Using this approach the sur-
geon is provided with more detailed information on the likelihood of occurrence
of complications. By monitoring the data during surgery the system might even
be able to warn in case of imminent complications or significant deterioration of
the condition of the patient.

2.4 Perspectives of applying PR in surgery
To avoid medical errors in surgery, PR can be used to support surgeons in making
evidence-based decision tailored to individual patients. PR can provide tools
to predict outcome indicators from historical patient data about the safety and
effectiveness of the surgery. This Section discusses the prospects and challenges
for using PR in surgery.

2.4.1 Prospects of using peri-operative data in surgery

Today’s operating rooms (OR), post anaesthesia care units (PACU) and intensive
care units (ICU) generate vast quantities of data. Sophisticated monitoring equip-
ment performs continuous measurements of multiple physiological parameters, on
a high frequency, that require timely and context sensitive analysis in order to
sustain effective decision support [Sam06]. There is lot of unexploited data about
surgical interventions that can be used (e.g. for adverse event prediction). This
data is not collected in line with RCT requirements and is currently only very
seldom exploited for evidence building.

Before the start of the surgery, patient data is already being collected. It can
include demographic information, clinical history of the patient, current and past
medication, measured vital signs, laboratory data, radiology examinations and
nursing records. During surgery it has become routine to measure the patient’s
blood pressure, heart rate, cardiac rhythm, expired CO2 and temperature. In
laparoscopic surgery, the laparoscopic video can be used to track surgical tasks
during the intervention. After the surgery patients are transferred to the PACU
or the ICU units, O2 information and much other information can be recorded.
Because so much data is available, it is important to identify those variables most
important to predicting adverse (i.e. safety) and favourable (i.e. effectiveness)
outcomes. Searching for meaningful predictors of adverse and favourable outcomes
is an important challenge to improve surgical treatment for patients.

pre-operative data: During pre-operative planning demographics and co-
morbidities are collected daily from patient’s pre-operative history and phys-
ical examinations. Pre-operative data can also include recent laboratory values.
Moreover, pre-operative imaging is occasionally used to plan the surgical strategy
for localization and size assessment purposes. This data is usually not used for
EBM because it does not satisfy the RCT requirements. There is a large op-
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portunity to use this readily available pre-operative data to predict intra- and
post-operative outcomes using PR.

intra-operative data: The growing availability of measurement devices in
the operating room (OR) enables the collection of intra-operative data on the
surgical workflow and the condition of the patient during surgery. Many hours of
endoscopic video are produced that can be used to log surgical events. Moreover,
physiological data about the patient’s blood pressure, heart rate, cardiac rhythm,
expired CO2 and temperature can be recorded. Also anaesthesia records are kept.
Furthermore for robotic surgery data is recorded about the motion of instruments
and their interaction with human tissue. Most of this data is not used, also
because it does not satisfy RCT requirements. Intra-operative data is best suited
for time series analysis to predict significant events during surgery.

post-operative data: Directly after surgery, patients are usually transferred
to the post anaesthesia care unit (PACU), which is specifically designed to provide
care for patients recovering from anaesthesia. In the PACU, patients are mon-
itored continuously so that any difficulties that develop as they emerge from anaes-
thesia are quickly recognized. Many vital signs are monitored, like blood oxygen
saturation, level of consciousness, independence of breathing and ability to make
voluntary movements.

When patients are deemed too unstable for the PACU, they are transferred to
the intensive/invasive care unit (ICU) instead. The ICU is, like the OR, a very
data-rich environment. Monitors, as well as therapeutic devices (such as mechan-
ical ventilators, syringe- and infusion pumps for drug and fluid administration, or
renal replacement therapy machines), generate data on a continuous basis. Blood
samples for laboratory analysis are drawn several times a day, and microbiology
sampling occurs several times a week. Doctors and nurses write progress notes
several times a day. Drug prescription and delivery is changed and charted more
than daily.

2.4.2 Measuring safety from peri-operative data

Safety outcome indicators

Surgical safety depends heavily on the surgical speciality. What is considered a
safe surgery is highly dependent on the characteristics of the intervention: the type
of surgery, the seriousness of the condition it is aiming to treat, the experience of
the surgeon in performing this type of surgery and the condition of the patient.

Most safety indicators are related to intra-operative complications (i.e. ad-
verse events during surgery). Table 2.1 describes possible intraoperative com-
plications after different laparoscopic interventions as described by Perugubu
et al [Per01]. The most serious intra-operative complication for laparoscopic
cholecystectomy is biliary injury. For laparoscopic hernia repair, bladder injury is
an example of intra-operative complications. For patients undergoing laparoscopic
colectomy, intra-operative complications include enterotomy, mesenteric bleeding
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and ureteric injury.

Table 2.1: Example of intraoperative complications from different laparoscopic proced-
ures

Laparoscopic speciality intra-operative complica-
tions

Cholecystectomy major bile duct injury

Antireflux surgery
perforation of either eso-
phagus or stomach
splenectomy
pneumothorax

Inguinal hernia repair
enterotomy
mesenteric bleeding
ureteric injury

Measuring safety

Measuring safety is a challenging task in surgery. One of the main barriers in
measuring safety in surgery is the lack of standardization. Standardization is
difficult in the domain of surgery because surgeons may vary in their experience
with and ability to perform a surgical technique, there can be individual prefer-
ences in performing the procedure, and technical modifications may occur as the
procedure evolves. Moreover, differences in perioperative and postoperative care
may also impact the outcome [Wol07].

The first issue (who performs the procedure) is analogous to assessing compli-
ance in a medical trial. It would be appropriate not to limit surgical participation
to expert surgeons from the same school. When surgeons from different schools
perform the same procedure they need at least to agree on the how to perform the
procedure (i.e. consensus). It may not be necessary that there is agreement con-
cerning all the technical aspects, but there should be consensus on those details
deemed to be important [Nor03]. Hence, evidence-based studies for surgery need
to allow the detection of the surgical consensus regardless of how it is executed
by different surgeons.

Consensus in surgery exists generally only on a high level, and it often dis-
appears when one closer examines the procedure. Due to the high amount of
uncertainty in surgical decision making, surgical tasks show large amount of vari-
ations on a low level in performing a procedure. Therefore, measuring only the
consensus of surgeries cannot help in solving difficult and rare surgical situations
(i.e. outliers) [Dui07a]. Those outlier situations are very important but do not
produce sufficient samples for any formal EBM study. Therefore, we need to
detect and understand the nature of outliers during surgical interventions.
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Finally, any surgeon has his own learning curve in mastering novel surgical
techniques (e.g. new instruments or a robot). As the surgical technique is novel,
modifications are made to it more frequently than conventional techniques. It is
important to continuously measure this learning curve by following early patients.

We summarize the challenges for measuring surgical safety as follow:

• Challenge 1: Predict intra-operative complications from readily available
pre-operative patient data.

• Challenge 2: Measuring the execution of surgical consensus (or critical steps)
during interventions regardless of the level of variance of its execution by
different surgeons and for different patients

• Challenge 3: Measuring bias in executing the same surgical consensus (or
critical steps) by different surgeons

• Challenge 4: Detecting outliers (e.g. adverse events) during surgical inter-
ventions as a first step towards formal outlier management

• Challenge 5: Monitoring the learning curve and the effectiveness of new
surgical procedures

2.4.3 Measuring effectiveness using peri-operative data

Effectiveness outcome indicators

Measuring effectiveness is particularly hard in surgery. For many surgeries the
outcome becomes apparent only years afterwards, for others the results may be
instantaneous. In general ”hard” outcome indicators such as mortality or mor-
bidity, a change of symptoms or quality of life will take years to be noticed. Such
outcome indicators can only be collected in long-term systematic initiatives and
focus mostly on high impact surgeries, such as heart bypass surgeries [UK12b].

Immediate post-operative outcomes, is an effectiveness indicator which can
be measured directly after surgery. It may either be general or specific to the
type of surgery undertaken, and should be managed considering the patient’s
history and the surgeon’s surgical expertise. Most of the post-operative complic-
ations become apparent between one and three days after surgery [UK12a] and
are related to both safety and effectiveness of the surgical intervention. General
post-operative complications include fever, wound infection, embolism, haemor-
rhage, respiratory complications, urinary problems, increase in blood pressure,
blood loss, nausea and vomiting. Infections are one of the main causes of mor-
bidity in abdominal surgery and can appear within the first weeks after surgery.
Specific post-operative complications are related to specific surgical procedures
and can include diathermy burns and thrombo-embolism.
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Measuring effectiveness

With a large amount of new instruments and devices introduced to surgery, sur-
geons frequently decide whether to adapt their surgical techniques to this new
technology. Therefore, it is crucial to compare the effectiveness (and also the
safety) of the new surgical technique with the conventional one. In order to have
sufficient data available to make this decision, it is important to follow patients
and log their post-operative outcomes, surgical consensus and any outliers.

Nevertheless, it is important to know what happened in the intra-operative
stage to retrieve the cause of the post-operative complication. Accordingly, it is
important to measure the surgical consensus as well as the outliers during surgical
interventions as described in Challenges 1 and 3. Hence, measuring effectives
shares the same challenges to measuring safety with the ability to:

• Challenge 6: Compare the effectiveness of new surgical techniques when
compared to conventional techniques.

• Challenge 7: Predict post-operative complications from readily available
(pre- and intra-operative) patient data.

2.4.4 Measuring efficiency using peri-operative data
For hospitals, excessive patient waiting times can create systemic bottlenecks
and ultimately menace patient safety. The most effective way to bring more
efficient care is the employment of EBM whenever possible [Ost10]. The goal
of surgical efficiency research is to minimize required resources and related costs,
while maintaining patient safety.

Various performance criteria are used to evaluate surgical efficiency. Cardoen
et al. [Car10b] distinguished different performance measures. Among the most
heard issues in surgery is the long waiting lists, which justifies many studies aiming
at decreasing waiting times between surgeries (i.e. OR idling time), surgeon’s
waiting time and operating room overtime. Hence, increasing the throughput of
the hospital by increasing the number of treated patients.

Another important parameter of effectiveness is the utilization of expensive
units such as the OR. The utilization rate of the OR has been the subject of differ-
ent studies. Both (under-) and (over-)utilization of the operating room represent
unnecessary and unstable costs for hospitals [Car10b]. Besides the operating room
itself, the occupancy of closely connect resources to the OR should be considered,
namely the PACU and the ICU. OR capacity problems can also be caused by
unexpected events in the PACU, the holding area or the ICU. When throughput
of the operating room is improved, closely connected resources must keep up, in
order to achieve an overall capacity benefit.

In most hospitals, patients move through their operative day in a predeter-
mined, linear way; they start at registration and finish in the recovery room. To
allow a dynamic scheduling of surgeries different statistical approaches can be
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used: offline approaches (i.e. before schedule execution) and online (i.e. dur-
ing schedule execution) [Car10a]. Using PR techniques dynamic schedules can
be developed that lead to smooth surgical resource utilization without peaks by
reducing intra-operative, flow-time, wait-time and operative time.

We summarize the challenges for measuring surgical efficiency as follow:

• Challenge 8: Efficient planning of surgical resources using pre-, intra-, and
post-operative data.

• Challenge 9: Offline prediction of surgical resource occupancies: surgical
time, recovery time, possible complications.

• Challenge 10: Online prediction of surgical resource occupancies: surgical
time, recovery time, possible complications.

2.5 Conclusion & Discussion

2.5.1 Discussion

Surgery is a skill-dependent, multistep procedure. This makes evidence based
studies in a traditional RCT framework difficult to be designed. However, evidence-
based justification of surgical practice is becoming increasingly relevant to avoid
adverse events. This paper proposed pattern recognition as an alternative ap-
proach which allows us to estimate the safety, the effectiveness and the efficiency
of a surgical treatment for individual patients, using the available biased, noisy
and incomplete data. Although it does not provide the same level of evidence as
an RCT, it allows for variations in surgical practice and patient anatomy. This
section discusses the characteristics of surgery, the qualifications of using PR for
evidence based surgery and the alternative of using observational studies for EBM.

On the characteristics of surgery

Surgical interventions are tailored to individual patients and surgical teams. RCTs
are, however, generalized models aimed to capture the average effect of the treat-
ment under study. Accordingly RCTs understate individual variations caused by,
for example, the patient’s history. This average effect is achieved by averaging
the effect of the same drug on a sufficiently large patient population.

The variations in surgery bring about another issue, which is the gap between
efficacy and efficiency. Although this gap can already be quite large for drugs and
other clinical treatments, it is especially prominent for surgery. This is caused by
need for reproducible treatments versus the real-world practice of surgery with
a wild variety in surgical team experience and expertise, different instruments,
anaesthetics, patient anatomy, etc.
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On the qualifications of applying PR vs. RCT to provide evidence based surgery

PR allows the prediction of surgical outcomes (especially when related to safety
and effectiveness) by classifying patients based on their individual characteristics
(i.e. features). It builds on prior knowledge, rather than viewing each trial in
isolation as is the case in a RCT. In PR, the surgical outcome forms the classes of
the classification problem. For example, when the surgical outcome under study
is surgical injury, we have a two-class problem: the null class contains the samples
of patients without surgical injury, and the alternate class contains the samples
of patients with surgical injury. The patient’s characteristics make up the feature
set which serves as the input to a classifier (i.e. set of decision rules) which assigns
the sample to one of the given classes.

PR also allows to perform hypothesis testing, without assumptions for the
distribution of the null class. Therefore, it is less tied to the requirements of
Section 2.2.1. PR can always be used, however the heterogeneity of the data is
a relevant factor in the overall result. These requirements are also important for
PR, they are, however, not required to start the analysis as is the case in RCT.

PR allows detection of outliers while RCT focuses on generalized cases. PR
makes no assumption about the distribution of the classes, instead any distribu-
tion of the classes can be used which allows outlier detection using approaches
discussed in Section 2.3.2

Finally, PR has no hard restrictions on the size of the data needed for building
a classifier, the analysis can be started with any reasonable sample size. Moreover,
through learning curve analysis one can assess if more samples will improve the
performance.

On the alternative: observational studies

Observational studies is another form of EBM study designs where isolated trial
studies are performed without using prior knowledge. It include cohort studies,
case-control studies and cross-sectional studies. In an observational study the
researcher only observes without performing any clinical intervention. This is
typically used when RCTs are deemed unethical, or if the treatment to be stud-
ied does not fit the strict requirements of an RCT. Cohort studies are used to
study incidents, causes, and prognosis. Because cohort studies consider events in
chronological order, they can be used to analyse cause and effect. Cross sectional
studies are used to determine prevalence. They are relatively quick and easy to
perform but lack distinction between cause and effect. Case controlled studies
compare groups retrospectively. They seek to identify possible predictors of out-
come and are useful for studying rare diseases or outcomes. Observational studies
usually provide (much) less compelling evidence than an RCT study.

Although observational studies are a realistic choice, particularly when an
RCT would be impractical, only the most basic statistical analysis tools are used
(e.g. ratio of probabilities: odd factor, relative risk) to draw conclusions from
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the observed data. In case of cohort studies, the relative risk is calculated as the
ratio of the probability of the event occurring in the experimental group, and the
control group. Considering the high amount of bias in observational data, due to
lack of randomization and other RCT requirements, the basic statistical analyses
are not sufficiently powerful to extract the best results from the observational
data. [Kno08; Gro07; Dex05; Mur04; Mar03; Bro08; Tib96]. Instead, PR provide
more advanced tools to extract prior knowledge from the complexe surgical data
and use it for future predictions. PR can also be used as a complement to standard
statistics in observational studies to cope with the limitations of its data, where
the number of variables, the size (number of data points), and the quality of the
data (missing data, inaccurate transcriptions) would make standard statistical
methods ineffective.

2.5.2 Conclusion
This paper discusses limitations of RCTs and the perspectives of using PR for
individualized evidence based surgery. There are factors that contribute to the
outcome in surgery which result in considerable bias when evaluated in a RCT
framework. Also other, less relevant issues are prevalent: ethical issues, lack of
standardization of the procedure, variations in surgical performance and vari-
ations among patients. This in combination with high costs and inherent risks of
surgery lead us to the conclusion that RCTs are not practical for the vast majority
of surgical procedures.

Fortunately Pattern Recognition (PR) techniques provide alternative tools for
evidence based surgery. PR can be used for small datasets, allows for handling
of outliers and individual patient cases and does not set the same restrictions on
the data collection procedure as the RCT framework. Unfortunately PR does not
provide the same quality of evidence as an RCT study, without setting the same
requirements as an RCT study. However less evidence is for many cases quite
acceptable given the individual and informal tradition of surgery. PR can provide
a pragmatic next step towards data intensive OR with evidence based support for
surgeries.
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abstract
Objective: Different reasons may cause difficult intra-operative surgical situ-
ations. This study aims to predict intra-operative complexity by classifying
and evaluating preoperative patient data. The basic prediction problem ad-
dressed in this paper involves the classification of preoperative data into two
classes: easy (Class 0) and complex (Class 1) surgeries.

Methods and material: preoperative patient data were collected from 337
patients admitted to the Klinkum Rechts de Isar hospital in Munich, Ger-
many for laparoscopic cholecystectomy (LAPCHOL) in the period of 2005-
2008. The data include the patient’s body mass index (BMI), sex, inflam-
mation, wall thickening, age and history of previous surgery, as well as the
name and level of experience of the operating surgeon. The operating sur-
geon was asked to label the intra-operative complexity after the surgery: ’0’
if the surgery was easy and ’1’ if it was complex.

For the classification task a set of classifiers was evaluated, including lin-
ear discriminant classifier (LDC), quadratic discriminant classifier (QDC),
Parzen and support vector machine (SVM). Moreover, Feature-selection was
applied to derive the optimal preoperative patient parameters for predicting
intra-operative complexity.

Results: Classification results indicate a preference for the LDC in terms
of classification error, although the SVM classifier is preferred in terms of
results concerning the area under the curve. The trained LDC or SVM clas-
sifier can therefore be used in preoperative settings to predict complexity
from preoperative patient data with classification error rates below 17%.
Moreover, feature-selection results identify bias in the process of labelling
surgical complexity, although this bias is irrelevant for patients with inflam-
mation, wall thickening, male sex and high BMI. These patients tend to be
at high risk for complex LAPCHOL surgeries, regardless of labelling bias.

Conclusions: intra-operative complexity can be predicted before surgery ac-
cording to preoperative data with accuracy up to 83% using an LDC or
SVM classifier. The set of features that are relevant for predicting complex-
ity includes inflammation, wall thickening, sex and BMI score.
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3.1 Introduction

Pattern recognition is gaining increasing attention in the medical domain, as it has
proven more effective than common clinical statistical tools in the prediction of
clinical outcomes. Pattern recognition has been used for decades for segmentation
purposes in medical imaging applications [Mai98]. Classification methods have
recently been used for decision support in computer-aided diagnosis. For example,
Lin et al. [Lin09] designed a diagnosis model for the treatment of liver disease
using classification and regression trees, and Lee et al. [Lee10] developed a
computer-aided diagnosis system for evaluating pulmonary nodules using feature
selection and a linear discriminant classifier (LDC).

The vast amount of preoperative patient data generated before surgery mo-
tivates the construction of pattern recognition tools that are able to improve
the accuracy of predictions regarding complexity factors that may occur during
surgery. Nevertheless, the use of surgical preoperative data for prediction has
been overlooked in the literature. This challenge has recently been addressed
by conventional clinical statistical approaches, which lack the power of pattern
recognition when using ranking and classification algorithms as prediction tools.

3.1.1 Why predict surgical complexity?

Surgical complications have been associated with increased inpatient hospital
costs [Dim04]. As a result, reducing complications has become a desirable object-
ive for quality-improvement initiatives aimed at improving efficiency and safety
in health care. Davenport et al. [Dav05] have shown that preoperative risk
factors and surgical procedure complexity are more effective predictors of hos-
pital costs than complications are. This dependence between risk and procedure
complexity is to be expected, as these measures were designed to predict com-
plications. Nevertheless, the use of raw preoperative patient data in predicting
complexity factors has been overlooked in the clinical literature. In most clin-
ical studies [Din04], complexity factors often are based on nothing more than
surgical expertise. Complexity factors are pre-designed and classified according
to the surgeon’s knowledge about possible complications of a specific procedure.
Moreover, in the clinical literature, surgical complexity is estimated in per pro-
cedure and not with regard to the relative ease or difficulty of a procedure for a
given patient [Dav05]. Nonetheless, the literature does contain a small number of
studies that assess the surgical complexity of individual procedures according to
readily available patient data. Jenkins et al. [Jen10] used patient demographics
to predict the operative time for ventral hernia repair. In most cases, however,
these approaches are statistical, concentrating only on evaluating the significance
of individual parameters as independent variables. They lack the power of pattern
recognition tools in performing classification and selecting a subset of parameters
for which the classification performance improves the most.
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3.1.2 Complexity prediction for laparoscopic cholecystectomy: why is it
important?

Laparoscopic cholecystectomy (LAPCHOL) is one of the most commonly per-
formed surgical procedures worldwide [Sod10]. LAPCHOL is accepted as the gold
standard in the treatment of symptomatic gallstones. Up to 700 000 LAPCHOL
procedures are performed in the US each year [Sod10]. The preoperative assess-
ment of complexity factors is needed for frequent procedures such as LAPCHOL
in order to avoid complications and delays and to guarantee an efficient course of
surgery.

This study aims to estimate the intra-operative complexity of LAPCHOL ac-
cording to readily available preoperative patient data. Resource planning is a
crucial topic in research on surgical efficiency. Tools are prepared in essentially
the same way for all surgeries. In many cases, however, surgeons need advanced
tools in case of complications. These tools can be prepared preoperatively for
surgeries that are predicted to be complex. Furthermore, any complex procedure
always involves the risk of conversion to an open procedure. This measure can be
taken preoperatively to avoid intra-operative delays during surgery. The members
of the surgical team can be considered another example of resources. If a surgery
is identified as complex, it can be assigned to a more experienced team (includ-
ing the surgeon, the surgeon-assistant or the operative-nurse), thereby allowing
for a safer and efficient surgical procedure. Moreover, although the average time
required for LAPCHOL is about 60 minutes, in practice, it may vary from 20
minutes to 5 hours, depending on the level of complexity [Dex06]. The vari-
ation in operative time is due to uncertainties regarding the complexity of the
LAPCHOL procedure across a diverse patient population [Jen10]. Estimating
the level of complexity beforehand may improve the flexibility and accuracy of
preoperative planning. The scheduled time can be increased for complex proced-
ures and decreased for easy ones, thus allowing flexible preoperative planning.

In complex surgical situations, the surgeon gets into dilemma weather to con-
tinue the intended operation, or to deviate from the planned procedure. Complex-
ity estimation before surgery can aid surgeons in decisions regarding whether to
proceed with a minimally invasive approach, perform an open procedure or make
a referral to a more experienced surgeon. It may also be useful as an informative
tool for communicating about details of the intervention with the patient and for
explaining the various risks of laparoscopic and open procedures.

3.1.3 Goal and contributions

This study aims to delineate the relevant demographic and sonographic patient
data that are predictive of the intra-operative complexity of LAPCHOL interven-
tions.

This work contributes in several ways. First, it introduces pattern recognition
tools for processing surgical data; in the medical literature, these data are usually
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processed using common clinical statistical tools. Second, this study provides an
evaluation of a number of classifiers based on a 337-patient dataset that was col-
lected in the period of 2005-2008. Third, it provides an analysis indicating which
set of preoperative features is effective for predicting intra-operative complexity,
thus filtering out insignificant features. The study also measures objectivity bias
in the assessment of surgical complexity by surgeons with various levels of ex-
perience. Finally, the study evaluates the conformity of the results with clinical
practice.

3.2 Materials and methods
The preoperative features used in the experiments were collected in the period of
2005-2008 from N = 337 patients who had been admitted for elective LAPCHOL
procedures, which involve removing the patient’s gallbladder in case of sympto-
matic gallstones.

3.2.1 Dataset
All patients had received one or more preoperative sonographic examinations of
the gallbladder. Table 3.1 presents the collected data, including patient demo-
graphics and sonographic features. Each feature is listed by name and data value,
as encoded in the dataset. Demographic features include sex, body mass index
(BMI) and previous surgeries. Sonographic features include wall thickening, size
calculi and the presence of inflammation. Data were collected from 23 different
surgeons, including their ID and level of experience as surgeons. To measure the
actual clinical situation, the operating surgeon was asked to provide a score of
intra-operative complexity following each surgical procedure: ‘0’ if the procedure
was easy and ‘1’ if it was complex.

3.2.2 Method
Two steps are considered for classifying preoperative data. In each of these steps,
the data are transformed through specific mapping. Section 3.2.3 discusses the
feature-selection algorithm, in which features of Table 3.1 are normalized and
mapped onto a simplified feature space. Section 3.2.4 discusses the classification
process, in which a classifier is used to map the features onto the set of class labels
(0− easy, 1− complex).

3.2.3 Feature selection
Feature selection is an important step in reducing a feature set to a low dimen-
sional space, thereby allowing for optimal performance of the classifier [Hei04].
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Table 3.1: Demographic and sonographic preoperative data collected from 337 patients
and by 23 surgeons in the period between 2005-2008 at the academic hospital klinikum
rechts der isar of the technical university of Munich

Feature Data value
Sex Binary value (male, female)
Body mass index (BMI) Index value in kg/m3

Age Value in years
Wall thickening gallbladder Binary value: 1 if (> 2mm) else 0
Number and size of bile calculi Ordinary 1: calculi < 5mm, ordinary

2: 5mm < calculi < 12, ordinary 3:
calculi > 12mm, or numerous smaller
stones, which requires packaging of gall-
bladder with stones

Inflammation Binary value
Previous surgeries in the upper
abdomen

Binary value

Surgeon experience Ordinary scale degrees (3, 2, 1) depend-
ing on the total number of performed
procedures

Surgeon 1-2-K binary coding: 23 different sur-
geons / 23 different binary features

The common assumption in pattern recognition is that any valid dataset is funda-
mentally low dimensional, even if it comes in a high-dimensional form. Moreover,
the omission of feature selection requires the use of complex classifiers, which
may waste considerable computational power in optimizing irrelevant corners of
the high-dimensional space. The goal of feature selection is therefore to choose a
subset Xs,n of the complete set Xp,n = {xi,j , i = 1, .., P ∨ j = 1, ..., N} of features
such that the subset can predict the output Y = {yi, i = 1, ..., N} with accuracy
comparable to, or better than, the performance of the complete input set X, and
with significant reduction in the costs of computation [Tax08].

Feature selection involves two basic requirements: a criterion function for
assessing the subset of features and a search algorithm for creating such a subset
[Hei04]. The criterion function used is the Mahalanobis distance, defined as:

Dmaha−s = (µ1 − µ2)T (

∑
1 +
∑

2

2
)(µ1 − µ2)

The Mahalanobis criterion measures the distance between class densities for each
feature. The distance measure is based on the distance between the two means
µ1 (feature values for Class 0) and µ2 (feature values for Class 1), which should
be large. Simultaneously, the covariance matrices

∑
1 and

∑
2 should be

small, indicating a small spread around the means [Hei04]. For high classification
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performance, the two class densities (0, 1) should be far apart. Hence, significant
features are characterized as having high Mahalanobis distance between the two
classes.

Dimensionality reduction is performed using a forward-search algorithm; by
evaluating each feature subset individually. Forward-feature selection starts with
the single most significant feature and adds the next most informative features in
an iterative greedy procedure. Its capacity to isolate efficient features is obvious.
The forward technique has several drawbacks for cases involving large feature sizes
or high interdependence between features. For our dataset, however, we expect
that forward feature selection may generate optimal feature subsets, given that
our pre-operative features are limited in both size and interdependency.

3.2.4 Binary classification problem

The basic problem addressed in this paper involves the binary classification of pre-
operative data into two classes: easy (Class 0) and complex (Class 1) surgeries.
The classification process has two stages: training and testing. Given a training
set of N patients: χ = {(xi, yi), i = 1, ..., N}, with xi ∈ Rp are p-dimensional
feature vectors, and y ∈ {0, 1} are class labels. The goal of the classification
process is to predict the class label of a given case within the test set [Tax08],
given its feature vector.

A number of classifiers are considered for evaluation, including the LDC, the
quadratic discriminant classifier (QDC), the Parzen classifier and the support
vector machine (SVM) classifier. We trained and tested the classifiers with our
dataset in order to identify the classifier that would yield the best classification
performance for this dataset, according to the criterion described in Section 3.2.5.
It was also necessary to know the number of samples required for the optimal
training of the classifiers. The experiments in Section 3.3 elaborate on those points
by analysing the classification errors, the AUCs: areas under the ROC(Receiver
operating curve) and the learning curves of the classifiers.

3.2.5 Classification performance criterion

Two criteria were used to measure classification performance: the classification
error and the area under an ROC curve (AUC). The classification error is often
used for classifier evaluation through the straightforward counting of the number
of misclassified records in a test set. For our binary classification problem, assume
that a classifier f is trained and evaluated on a test set χ = {(xi, yi), i = 1, ..., N},
with xi ∈ Rp as the p-dimensional feature vectors from Table 3.1 and y ∈ {ω+, ω−}
as class labels indicating whether surgeries are easy or complex. The classifica-
tion error is estimated by: ε = 1

N

∑N
i=1 I(f(x) 6= yi), where I(.) is the indicator

function that outputs 1 when the statement is true and 0 otherwise [Tax08]. One
disadvantage to this measure is that it is sensitive to class priors [Tax08].
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The AUC error is a natural criterion for measuring the classification per-
formance of a classifier. In basic terms, it estimates the probability that a
randomly selected positive (easy surgeries: 257 cases) is ranked before a ran-
domly selected negative (complex surgeries: 80 cases). It is a widely used meas-
ure of ranking performance. It can be calculated by E = 1 − AUC = 1 −

1
N+N−

∑N+
i=1

∑N−
j=1 I(f(xi) > f(xj)), where N+ and N− refer to the number of

objects from the positive and negative classes, respectively. For our dataset, where
N+ = 257 and N− = 80, the AUC error remains a relative measure independent
of those priors. Furthermore, the AUC tends to generate a more stable estimate
of performance than does the classification error [Tax08].

3.3 Experimental validation
To address the problem of predicting surgical complexity, Section 3.3.1 focuses on
the identification of the optimal classifier for the pre-operative dataset described
in Table 3.1 and the number of samples required for optimal training. Section
3.3.2 aims to identify which subsets of features allow the prediction of complexity
with accuracy comparable to, or better than, the complete set of features.

To answer these questions, we conducted both classification and feature se-
lection. For the experiments described in Section 3.3.1 and 3.3.2, we used the
statistical toolbox PRTools [Dui07b] to compare a set that is representative of
state-of-the-art classifiers: LDC, QDC, Parzen and SVM classifiers. The feature-
selection algorithm of Section 3.2.3 was also applied to the dataset described in
Table 3.1 in order to derive the optimal feature set.

3.3.1 Classifier evaluation results
The experiments described in this section were intended to classify surgeries into
two classes: complex and easy using features of Table 3.1. The subsets for both
training and testing were randomly selected from the dataset described in Table
3.1 with equal prior probabilities and equal sample size.

The first experiment explored the classification performance of state-of-the-art
classifiers using ten-fold cross validation. The data were divided into ten subsets
of equal size. The classifiers were trained ten times, each time omitting one of the
subsets from training, but using only the omitted subset to compute the required
errors, as defined in Section 3.2.5. Figure 3.1 illustrates both the classification
error and the AUC error using ten-fold cross validation for LDC, QDC, Parzen
and SVM classifiers on the dataset described in Table 3.1.

The experimental results reported in Figure 3.1 suggest that the LDC, SVM
and Parzen classifiers performed well for the dataset described in Table 3.1. Of all
classifiers, the SVM classifier showed the best AUC error (0.16) and the second
best classification error (0.17). On the other hand, the LDC classifier had a
lower classification error (0.16) but a higher AUC error (0.28), which was even
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higher than the QDC AUC error (0.26) and the Parzen AUC error (0.27). Both
the Parzen and the QDC classifiers showed higher classification error (0.19) when
compared to the LDC and SVM classifiers. With regard to classification error, the
LDC classifier outperformed the SVM, Parzen and QDC classifiers, thus yielding
the minimal classification error. Nonetheless, the AUC results demonstrate that
the SVM classifier performed well for classification.
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Figure 3.1: Estimated classification and AUC error by tenfold cross validation for
linear discriminant classifier LDC, Quadratic Discriminant Classifier QDC, Parzen and
support vector machine Classifier SVM on the pre-operative dataset of Table 3.1

The next experiment investigated the behaviour of the classifiers with regard
to the verification of training-set sizes. Both the training set and the test set were
randomly generated from the dataset described in Table 3.1, with equal prior
probabilities but varying sample sizes. The resulting curve, the ’learning curve’,
shows changes in the classification error for varying sizes. The learning curve
indicates the classifier that is more suitable for small training set sizes and which
has the most potential for performance improvement through the availability of
more data. For this experiment as well, we used both the classification error and
the AUC error.

Figure3.2 presents the learning curves of the LDC, QDC, Parzen and SVM
classifiers on the dataset contained in Table 3.1, using the classification error. The
size of the training set is a fraction of the total training size, ranging from 10%
to 99% (80 patients) and limited by the size of the smallest class (N− = 80). All
classifiers fit the training set perfectly. A flat learning curve (as with the QDC)
suggests that the classifier is already well trained, and more training data would
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not help the classifier much. In contrast, a steeply decreasing learning curve (as
with LDC, Parzen and SVM) suggests that better performance can be obtained
through the availability of more training data. The learning-curve results using
the classification error suggest the use of the LDC classifier, with a classification
converging to 0.14.
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Figure 3.2: Learning curve computed on the pre-operative dataset of Table 3.1 LDC,
QDC, Parzen and SVM using the classification error

Figure 3.3 illustrates the learning curves for the same classifiers on the same
training and test sets, as specified in Figure 3.2. Instead of the classification error,
however, the AUC error (1-AUC) is used. Notice that Figure 3.2 suggests that
the LDC and SVM classifiers perform similarly for N = 20. As suggested by
Figure 3.3, however, the SVM was clearly preferable for N = 20 in terms of AUC
error. Note also that, as suggested in Figure 3.2, the LDC was the best classifier
in terms of classification error and that the performance of the LDC, SVM and
Parzen classifiers increased informally with increasing training size. As suggested
in Figure 3.3, however, the SVM was the best classifier, and its performance in
terms of AUC error did not improve significantly beyond N = 40. This suggests
that the estimation of the SVM classifier was relatively reliable around N = 40.
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Figure 3.3: Learning curve computed on the pre-operative dataset of Table 3.1 for LDC,
QDC, Parzen and SVM using the AUC error

3.3.2 Feature selection evaluation results

The experiments described in this section were intended to define the feature
subset Xs,n of the complete set Xp,n = {xi,j , i = 1, .., P ∨j = 1, ..., N} of features,
such that the subset can predict the output Y = {yi, i = 1, ..., N} with an accuracy
comparable to, or better than, the performance of the complete input set X. The
feature-selection algorithm is explained in Section 3.2.3.

The first experiment was aimed at ranking the performance of individual fea-
tures contained in Table 3.1. The goal was to rank a set of pre-operative features
according to their contribution to the complexity of LAPCHOL surgery. Feature
ranking is useful for determining the clinically relevant features from amongst all
the available pre-operative parameters contained in Table 3.1. Ranking results
can also provide insight into the stability of the feature-selection mechanism.

Figure 3.4 presents the ranking results for 200 experiments. For each exper-
iment, 80% of the samples were randomly selected from the dataset and ranked
according to the steps described in Section 3.2.3. Note that the same features
could be ranked in different orders, depending upon the samples that were selec-
ted from the dataset. The general trend was for each rank level to be dominated
by a small number of features. The main exception to this trend appeared in
the higher levels (5 to 9), where the features were apparently less relevant for
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the classification task. Note that the feature set was dominated by the surgeon
from Level 5 through Level 9. This result reflects the effect of the labelling bias
of the surgeon on the ranking results. Hence, the surgeon also influences the
feature-selection mechanism for predicting operative complexity.

With regard to eliminating the effects of labelling bias on the results of fea-
ture ranking, the results shown in Figure 3.5 are similar to those shown in Figure
3.4 for only one surgeon with a high experience. Figures 3.4 and 3.5 show sim-
ilar feature subsets up to Level 4. The bias is thus irrelevant for patients with
inflammation, wall thickening, male sex and high BMI. These patients tend to
be at high risk for complex LAPCHOL surgeries, regardless of labelling bias.
The feature-selection mechanism is therefore considered stable for the subset of
features including inflammation, wall thickening, sex and the BMI score.
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Figure 3.4: Forward feature ranking for 200 experiments using the mahalanobis criteria
function

The next experiment used feature curves to investigate the relationship between
the classification error and the dimensionality of the feature space. Learning
curves typically report how large the training-set size should be in order to achieve
optimal classifier performance. In contrast, feature curves provide information
about the dimensionality of the feature space needed to achieve a low classifica-
tion error. Figures 3.6 and 3.7 represent the feature curves of the LDC and SVM
classifiers, respectively. Note that classification error was used as the criterion in
these curves, with the result that the feature curve for the SVM classifier show
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Figure 3.5: Forward feature ranking for 200 experiments using the mahalanobis criteria
function

higher error rates than did that of the LDC. Both feature curves flatten out after
the first four significant features. Moreover, the error increased with the use of
features in addition to the four ranked features. As shown in Figure 3.6, the LDC
achieved the lowest error rates when the first four ranked features were used. In
contrast, Figure 3.7 shows that the SVM achieved its lowest error rates when the
first three ranked features were used. We therefore conclude that the feature set
derived from Figure 3.4 (i.e. inflammation, wall thickening, sex and BMI score)
contains the optimal features for allowing the prediction of intra-operative com-
plexity, with errors even lower those produced when the classifier is trained with
the complete set of features contained in Table 3.1.

3.4 Discussion and conclusions
Intra-operative complexity can be predicted before surgery according to readily
available pre-operative data. The problem addressed in this paper involves the
classification of pre-operative data in two classes: Easy (Class 0) and Complex
(Class 1) surgeries. Learning-curve results indicated a preference for the LDC
classifier in terms of classification error, although the SVM classifier is preferable
in terms of AUC error.

Feature selection was used to identify the pre-operative features that are
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Figure 3.6: Feature curve computed on the pre-operative dataset of Table 3.1 for LDC
using the classification error

relevant for predicting surgical complexity. The stability of these features was
measured by repeating the selection experiment 200 times. The feature-selection
mechanism proved stable for the subset of features including inflammation, wall
thickening, sex and BMI score. Using learning curves, we demonstrated that these
features are optimal for classifications using the LDC and SVM classifiers, thereby
allowing the prediction of the complexity of surgeries. The performance achieved
in these experiments was improved further when the classifier was trained with
the complete set of pre-operative features.

Section 3.4.1 discusses the clinical relevance of the ranking results. Finally,
Section 3.4.2 discusses directions for future work.

3.4.1 Conformity of ranking results with the clinical literature
Feature selection on pre-operative data identifies features that can be assessed
preoperatively in order to determine operative complexity. Four pre-operative
features were identified as relevant to the prediction of operative complexity.
This section elaborates on the clinical relevance of the considered features and
its conformity with our results.

The feature-ranking results revealed bias in the process of labelling surgical
complexity. This indicates that surgeons have reasonable differences regarding
the concept of surgical complexity, depending upon their level of experience, al-
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Figure 3.7: Feature curve computed on the pre-operative dataset of Table 3.1 for support
vector machine SVM classifier using the classification error

though this bias is not relevant for the first four levels of the selection process.
Based on the first four significant features in our dataset, we can conclude that
subjectivity on the part of the surgeon when scoring complexity is reasonably
low. We therefore consider the achieved classification results independent of the
subjective opinions of surgeons regarding complexity.

The results of this study demonstrate that inflammation of the gallbladder is
the most relevant complication factor for LAPCHOL procedures. This conforms
to results from various clinical studies reporting that inflammation increases risks
and complications during LAPCHOL surgery. One common risk involves the
conversion from laparoscopic to open surgery. In a study involving 418 patients,
Cox et al. [Cox93] showed that the frequency of conversion was 55.4% for patients
with inflammation and 4% for patients with no inflammation. Another known risk
is bile-duct injury (BDI), which is caused by the narrowing of the bile duct during
the surgery. The narrow bile duct prevents the bile from draining, with the result
that it backs up in the liver and spills over into the blood, causing obstructive
jaundice. Based on a dataset of 2184 patients Georgiades et al. [Geo08] showed
that the risk of BDI was 3.5 times higher in patients with inflammation, and
they suggest that surgeons should not hesitate to convert to open surgery in the
presence of inflammation. Our findings confirm that patients with inflammation
tend to be at high risk for complex LAPCHOL surgery.
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The other complexity factor identified in this paper is wall thickening. A
thickened gallbladder wall makes it difficult for surgeons to detach the gallblad-
der from the liver bed. Dinkel et al. [Din00] considered wall thickening as the most
relevant indicator of technical difficulties during LAPCHOL. In their dataset of
75 patients, 19 had sonograms revealing gallbladder wall thickening (> 4mm).
Surgical preparation difficulties in 16 of these patients led to open surgery in
four patients. Our results showed that, regardless the type of complication (tech-
nical or anatomical), wall thickening is the second most prominent factor (after
inflammation) for complexity during LAPCHOL procedures.

In this article, the sex of the patient was also identified as a relevant factor
for complex LAPCHOL surgeries. The clinical literature indicates that adhesions
and obstacles in anatomical identification occur more frequently among male pa-
tients [Gab09]. Zisman et al. [Zis96] claim that the probability of conversion
is five times greater in males than it is in females. The reason for higher con-
version rates in male patients remains unexplained in recent clinical publications
[Gab09]. Even though [Zis96] reports that some male patients have thickened
gallbladder walls measuring above the upper limit of 3mm (3.4 + 1.5), the meas-
urements gallbladder walls in female patients did not exceed the normal rage (2.6
+ 1.3). Our results confirm that the complexity of LAPCHOL surgery is increased
significantly for male patients.

The last significant pre-operative feature that our study identified as relevant
for assessing intra-operative complexity is the BMI score. In the clinical literat-
ure, obesity is considered as a risk factor for laparoscopic procedures in general.
For LAPCHOL, Gabriel et al. [Gab09] found that the highest percentage of
conversion (28%) was observed in overweight patients. Our result confirm that,
after inflammation, wall thickening and sex, BMI is the fourth relevant factor that
contributes to the complexity of LAPCHOL surgeries.

According to our results, the complexity of LAPCHOL procedures seems to
be less influenced by the patient’s history of previous surgeries. This finding can
be attributed to the advanced entry technique used by the surgeons in our data-
set. This technique is known as the ’Hasson technique’, in which the abdominal
is incised under direct vision, in order to allow the insertion of the trocar. This
risk of vascular complications associated with this technique is minimal, and even
lower than that associated with the conventional blind approach [McK95]. Our
results confirm that the use of the Hasson technique compensates for the history
of abdominal surgery relative to the age of the patient, the history of previous
surgeries in the upper abdomen and the size of the calculi. Moreover, the age of
the patient apparently does not influence the course of surgery, although older
patients do require more time than younger patients do for the induction of an-
aesthesia patients [Lew06]. Although longer aesthesia time is associated with
prolonged surgical and recovery time, it is not associated with complex surgery.
We also included the history of previous surgery in our dataset, as many of the
complications associated with laparoscopic surgery arise from the creation of the
abdominal entry (the pneumoperitoneum). Finally, the size of the calculi has
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little influence on surgical complexity. Large gallstones may increase extraction
time during surgery, thereby resulting in increased complexity. It is commonly
believed that breaking large calculi inside the gallbladder in order to facilitate
their removal could be dangerous. It is therefore customary to extract large cal-
culi through large incisions, which facilitates removal in terms of both time and
complexity [Ada96]. This practice also explains the low ranking of this feature
in our dataset.

3.4.2 Future directions
This study shows that pre-operative data can be used to estimate surgical com-
plexity preoperatively. In previous work [Bou10], we monitored the surgical work-
flow of LAPCHOL intraoperatively. In future studies, we aim to combine both
pre-operative and intra-operative data in order to support both intra-operative
and post-operative processes.
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abstract
Detecting surgical high-level tasks during surgery is an important task for sur-
gical workflow analysis. Surgical high-level task recognition is also a challenging
task for context-aware applications because of the inherent uncertainty and the
complexity of the surgical environment. In this paper we present a framework for
recognizing high-level tasks from low-level noisy sensor data. Preliminary results,
on a noiseless dataset of ten surgical procedures, shows that it is possible to re-
cognize surgical high-level tasks with detection accuracies up to 90%. Introducing
missed and ghost errors to the sensor data results in a significant decrease of the
recognition accuracy. This supports our claim to use a cleaning algorithm before
the training step.
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4.1 Introduction

Recent years have seen a growing scientific and industrial interest in surgical
workflow analysis [Neu06a; Blu08]. Workflow analysis is widely used in the do-
main of business process modeling (BPM) to improve organizational performance
[Aal02]. Usually, the workflow follows a formal description of processes in the form
of flow-diagrams, showing directed flows between the process steps. However, sur-
gical tasks are hard to model with such a formal approach. Human abstraction
in surgery is impossible, because of the more complex tasks performed by the
surgeon, including aspects like cognition, uncertainty and skill [Sho06]. In this
case, the formal approach needs to be adapted to deal with the complexity and
uncertainty of the surgical environment.

To enable workflow modelling in surgery, surgical context information needs
to be considered [Neu06a]. Therefore we need an abstraction layer that provides
context data from sensing devices (e.g. sensors, video, etc.). Such a layer needs
to infer surgical context information from a set or series of observations. This
article aims to build upon already available context-aware techniques to recognize
high-level surgical tasks using low-level information available in the OR. We first
propose a conceptual framework to infer high-level tasks from low-level sensor
data. We then attempt to answer the following questions: (1) how accurate can
we predict high-level tasks using noise-free low-level instrument signals? and (2)
how does the accuracy of the system respond to common sensor noise?

This paper is organized as follows: Section 2 gives background information.
In Section 3 a conceptual framework for inferring high-level tasks from low-level
sensor data is introduced. To evaluate the clarity and the reliability of the con-
ceptual framework, ten surgical procedures are considered for the pilot study
represented in Section 4. The experimental evaluation of our framework is dis-
cussed in Section 5. Related work is discussed in Section 6.Finally, Section 7
concludes this paper and give recommendations for future research.

4.2 Background

4.2.1 On inferring high-level tasks from low-level tasks

The objective is to infer a specific high-level task (HLT ) from a set of observ-
able low-level tasks (LLT ). We considered that surgical workflow is composed
of a number of high-level tasks HLTs. Although two HLTs might be semantic-
ally identical, they can consist of different LLT sequences. We consider tasks
performed by surgeons in the OR as HLTs having the following characteristics:

• goal-oriented

• characterized by planning and manoeuvring protocols
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• not described by a single (LLT ) sequence, and thus may be performed in
various ways

The mapping gap

The problem of mapping LLTs to a specific HLT is known as the semantic gap.
The semantics of a specific task depend on the context in which it is regarded.
This requires transferring high-level tacit knowledge of human agents to explicit
knowledge, a process known as articulation [Pat99]. The LLTs that are most
interesting for deducing the underlying HLTs are those that:

• allow the discrimination over a large number of other LLT sets that corres-
pond to other HLTs

• are invariant to task distortion, i.e. when a specific HLT is performed in
different ways

• are compact in size. A small-set of LLTs is beneficial for complexity con-
straints, since otherwise a large number of LLT -sets need to be stored and
monitored in the environment. An excessively short representation, might
not be sufficient to discriminate among similar HLTs

• are easy to monitor. The monitoring of LLTs should not be complex. For
real-time performance, the system requires high computational efficiency for
both the monitoring of the LLT -sequence and the inference of the corres-
ponding HLT

system parameters

The parameters of a HLT recognition system should be chosen based on the
application and the cognitive environment or the context in which it is used.
They are useful to evaluate and compare different HLT recognition systems. A
number of these parameters include the following:

• Robustness/ invariance : ability to accurately infer a specific HLT regard-
less of the level of variance in task execution and the level of distortion in
the environment (e.g. unexpected situations)

• Discriminative power : the ability to discriminate between similar, but
different HLTs (i.e. not the same). This may be conflicting with other
requirements, such as robustness and complexity.

• Accuracy : the number of correct HLT inferences, missed inferences and
wrong inferences
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4.2.2 On the description of Laparoscopic Cholesystectomy

Laparoscopic cholystectomy (LapChol) is a highly standardized surgical proced-
ure, where a patient’s gallbladder is removed in case of inflammations. Cholecystec-
tomy is performed under general anesthesia. Initially, a small needle is inserted
into the peritoneal cavity for inflating the abdomen with carbon dioxide. This
provides room for easier viewing and for the surgical manipulations to be per-
formed.

To gain access to the gallbladder, four trocars are placed in the abdomen of a
patient. For the laparoscopic camera is inserted in a 10 mm trocar (T1) placed at
the umbilicus. The second 10 mm trocar is placed midway between the umbilicus
and the xiphoid process, 2 to 3 cm on the left of the midline. The third 5 mm
trocar (T3) is placed in the right iliac fossa. The fourth trocar (T4) is placed
under the right costal margin to retract the liver or under the left costal margin
to push the duodenum [Sli95].

First a retraction device is inserted in trocar T3. The right liver lobe is el-
evated. The laparoscopic camera is changed from trocar T2 to T1, to provide
sufficient view of the surgical field. Finally, a grasping forceps is inserted into
T4 and the dissection device in T2. The primary step of the surgical procedure
is to dissect the area which includes the bile duct and the cystic artery (Calot’s
triangle). This is done by blunt dissection with a forceps and cutting current. In
case of bleedings, coagulation current is used. If both structures are clearly vis-
ible, each of them is clipped with three clips, followed by cutting both structures
between the clips with laparoscopic scissors. The following step is dissection of the
gallbladder. In laparoscopic surgery, this is done by touching the areas between
gallbladder and liver and applying cutting current. To remove the dissected gall-
bladder a salvage bag is inserted into the abdomen. The gallbladder is packed
up into the bag and the bag is extracted together with trocar T1. In case of big
stones, the bag cannot be extracted through the trocar incision. In that case, the
calculi are extracted extra corporeally out of the salvage bag. Thus, the content
of the bag is adequately reduced to pull it out.

Finally, the surgical area is explored one last time to detect and stop any
bleedings. A drainage is inserted through a trocar hole and all instruments are
removed. The trocars are extracted under visual control and the incisions are
closed by sutures. During the procedure, in case of bleedings in the operation
field, a device which allows flushing and suction is used. Also controlling for
bleedings after extraction of the gallbladder is done with this device.

4.3 Conceptual Framework

To inferHLTs from sensor data, we present an embedded framework in Figure 4.1.
This framework allows for the cleaning of noisy sensor data by taking advantage
of Bayesian Networks to infer the correct LLT from faulty sensor readings and fill
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gaps in the dataset. The inferred LLTs are further used to infer the corresponding
HLTs using HMMs. This system allows the inference of a specific HLT based
not only on the available sensor data related to their LLTs, but also on their
previously inferred HLTs.

Figure 4.1: Conceptual framework: embedded Bayesian Hidden Markov Model

4.3.1 LLT -inference
To infer LLTs from sensor data we need a classifier that takes as input, the sensor
object (e.g. an RFID tag) << S, t > | < f1, f2, .., fn >>. Each fi is a feature
describing one characteristic of the object (e.g. tag) identified by the sensor S
at time t, and makes a prediction of the form << S, t >: O, conf >, where O is
binary value, if O = true the tracked object is detected, and conf is the prediction
confidence of the classifier [Gon07].

The process of inferring LLTs is known as the cleaning process of sensor
data [Dar07; Gon07]. Since sensor data is known to be noisy, a cleaning process
assumes there is a hidden process that determines the true signal of the sensor,
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such as presence of a tag in case of RFID, from a noisy and uncompleted set of
features. To cope with the incomplete set of sensor signals, we propose to use
Bayesian Networks to define the structure of the sensor signals that occur for a
specific LLT . In case of RFID, features may describe one or more characteristics
of the tag detected: the item to which the tag is attached, the location where the
reading took place or the reader with which the tag is detected.

4.3.2 HLT -inference

To infer HLTs from the observed LLTs a classifier is used that takes as input the
observed LLTs, << C, t >,< O1, O2, .., Ok >>. Each Oi is the observation at
time t, and makes a prediction of the form << C, t >: H, conf >, where H is the
value corresponding to the inferred HLT , and conf is the prediction confidence
of the classfier.

When the cognitive environment deals with a manoeuvring protocol, it is
necessary to include knowledge from previous HLT inferences. DBN allows the
representation of time constrained causality, i.e. when and if events occur and the
periodic nature of processes. It is normally assumed that the model parameters
(transition probabilities and model structure) of the temporal network do not
change, i.e. the model is invariant [Jen01]. A special category of DBN is HMM.
HMM is a strictly repetitive model with an extra assumption that the past has no
impact on the future given the present [Jen01]. This means that the next HLT
depends only on the current HLT . The HLTs represent the possible hidden
states of the HMM. The observable parameters of the HMM are the LLT nodes.

4.4 Pilot study

This pilot study was conducted to evaluate the clarity and reliability of the concep-
tual framework in recognizing surgical HLTs using noise-free low level instrument
signals. As such this study assumes perfect classification of sensor data, i.e. with
conf = 1.

4.4.1 Dataset

In this pilot study ten LapChol procedures were recorded using three cameras.
Three videos were recorded per procedure: an overview video of the OR, one
pointing at the surgical toolbox and the laparoscopic video (See Figure 4.2). These
video are synchronized and annotated using Elan software [Joh05].
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Figure 4.2: 3 video streams (overview, surgical table, laparoscopic view)

HLT−set

The HLTs are the laparoscopic surgical steps as described in the hospital’s
LapChol protocol1. In total the five laparoscopic surgical steps are considered
as HLTs, as illustrated in Table 4.1. Note that only laparoscopic HLTs are con-
sidered, open surgical steps like incision and suturing are excluded. The definition
of the surgical steps was verified with the co-operating surgeon2 . For each sur-

1) skeletonization of calot’s triangle
2) clipping and dissection
3) gallbladder removal
4) gallbladder packaging
5) cleaning

Table 4.1: surgical steps of laparoscopic cholecystectomy

gery HLT training samples are created from the annotated video as illustrated
in Figure 4.3. The HLTs are represented as discrete signals, each discrete level
(from 1-5) corresponds to one of the five surgical steps of table 4.1. This results
in the HLT -signals illustrated in Figure 4.3(a).

LLT-set

The LLTs are represented as binary signals corresponding to instrument utiliza-
tion; 1 if an instrument is in used, 0 if not in use. The resulting LLT -signals are
displayed in Figure 4.3(b).

4.4.2 LLT pre-processing
The pre-processing step should retain the maximum contextual relevant inform-
ation from the monitored LLTs. At this stage an invariant observation set
O = O1, O2, ..., On should be calculated from the observed LLTs. This obser-
vation set should allow the inference of similar HLTs regardless of the level of

1LapChol protocol of Reinier de Graaf Hospital (RdGG), Delft, The Netherlands
2Dr. L.P.S. Stassen, a head surgeon at RdGG hospital and author of the LapChol protocol
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Figure 4.3: Example of how training samples are created for (a) HLT−signals as a
discrete levels of each surgical step(b) LLT−signals as binary signals corresponding to
instrument utilization

variance in their execution. This is a consequence of the robustness requirement
from section 4.2.1. It should also allow the discrimination over a large number
of other observation sets that correspond to other HLTs. Note that this require-
ment is conflicting with the invariance requirement. Both the robustness and the
discriminating power are important for the evaluation of the system performance.

At this stage it is necessary to take the characteristics of the dataset in con-
sideration. In the LapChol procedure four trocars are inserted to introduce the
laparoscopic instruments in the patient’s body. Figure 4.4 illustrates the use of
the trocars.

• one main trocar (master), is maintained by the dominating hand of the
surgeon. It is mainly used to insert instruments like dissectors, scissors, to
remove the gallbladder
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• two other trocars (slaves), are maintained by the non-dominant hand of the
surgeon and highly correlated to the master trocar. They are mainly used
to insert gaspers to hold the gallbladder for removal

• one view trocar is used to insert the laparoscopic camera

Figure 4.4: Trocars inputs in Laparoscopic Cholestoctomy

In total, 10 instruments are used during the LapChol procedure, from which

3 can be used simultaneously, leading to

(
10
3

)
possible sets. To reduce the

observation set for training we consider two datasets:

• the first dataset is pre-processed for the LLT “taking instrument X from
the surgical toolbox”. The LLT -observation matrix is converted to the
observation-set Otoolbox = O1, O2, .., Ok with O being the label of the last
changed instrument value (both 0 and 1 are considered)

• the second dataset is pre-processed for the LLT “inserting instrument X
into the master trocar”. The LLT -observation matrix is converted to the
observation-set Otrocar = O1, O2, ..., On, with O being the label of the in-
strument inserted into the master trocar. Note that this LLT exploits the
high correlation between the slave and the master trocars.

In prior work, Padoy et al. [Pad08] used a dataset similar to Otoolbox, the
major difference is that we adopt an asynchronous processing by excluding the
time component in both datasets, by using the label of the last used instrument.
Instead, in [Pad08] they include all sample points in the training Ok,t = 1 if
instrument k is active at time t. In previous work [Bou09] we demonstrated that
the asynchronous approach of training outperforms the synchronous approach.

4.4.3 HMM Training

A HMM can be denoted as follows, λ = (π,A,B) where π described the initial
distribution, A is the transition matrix of the Markov process and B = bi(x) is the
emission matrix, indicting the probability of emission of symbol x from a hidden
state i.
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Training a HMM consists of estimating the transition matrix A and the emis-
sion matrix B according the observed sequences. Here, the Baum-Welch EM al-
gorithm is used on both observation-sets Otoolbox and Otrocar. The Baum-Welch
algorithm estimates model parameters (A and B) from the observed sequence
while maximizing the log-likelihood of the model. For inference of the surgical
steps, the Viterbi algorithm is used to calculate the most likely path of states (the
sequence of visited states), also called the Viterbi path. The Viterbi path relies
on global criteria, meaning that the low-level variation in the data is smoothed.
The use of Viterbi path reduces false rejections in the system.

HMM-Outputs

Given an observation-set O = O1, O2, .., On and a HMM, the most probable state
sequence is found using the Viterbi algorithm. This sequence was found for all the
ten cases using the trained HMM. Figure 4.5 shows an example of an HMM output
using the LLT -dataset Otrocar of a specific LapChol-procedure. The inferred

Figure 4.5: HMM outputs: True and inferred measurements

states HLTs by the HMM (red line) matches the true states of the system (black-
line) for the majority of the data-points. Moreover, the inferred states are more
sensitive to instrument transitions than the subjective ground truth states as
defined by the surgeon. In the next section, the performance of the system is
evaluated on both datasets in more detail.

4.5 Experimental Results
In this section we aim to answer several open questions that have not been ad-
dressed in previous research: (1) How accurate can we predict HLTs using noise-
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free instrument sensor data? and (2) How does the accuracy of the system respond
to common sensor noise?

4.5.1 How accurate can we predict HLTs using noise-free instrument
sensor data?

In this section we evaluate the performance of the HMM at predicting surgical
HLTs using the LLT -datasets described in Section 4.4.1. We performed a full
cross validation. Within a group of ten observations one set is used for validation
and the remaining nine sets are used for training. This is performed on each
possible combination of training and validation sets, and thus for a total of ten
times.

To evaluate the accuracy of the system in recognizing surgical steps, the fre-
quency error rate (FER) is calculated for each state as the percentage of time that
the surgical HLTs are correctly detected. Figure 4.6 illustrates the FER results
for both datasets. The system shows a total accuracy of 90% of detected states.
The result demonstrates that data from the master trocar alone lead to a more
robust inference mechanism for training. As expected, activities with higher ac-
curacies were generally those with more data points (i.e. more instruments used).
For the LapChol procedure, they were the “clipping” and the “removal” steps.
The lower performance of the “cleaning” step can be attributed to the relatively
few samples of this HLT in our dataset. Moreover, some instruments are highly
robust compared to others in indicating their corresponding surgical step. For
example, the “clip tang” is used only in the “clipping” step, and provides a ro-
bust and highly discriminative indication of this HLT . In this case, the HMM is
analogous to a weighted voting mechanism.

Dataset 1: All instruments Dataset 2: Master trocar
1 2 3 4 5

0

5

10

15

20

25

30

35

40

45

1
0

10

20

30

40

50

60

70

80

90

100
Total Frequency Error Rate (FER)

% calculated states
% true states
% by random test

1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

1
0

10

20

30

40

50

60

70

80

90

100
Total Frequency Error Rate (FER)

% calculated states
% true states
% by random test

Figure 4.6: frequency error rate (FER) of surgical HLT detection for, the red line is
the level of a random test.

Figure 4.7 shows the confusion matrices, whose row and column index indicate
the recognized and ground-truth surgical steps, respectively. Each element aij in
the confusion matrix indicates the percentage of data points On from a particular
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hidden state j that are assigned to another hidden state i by the HMM classifier.
E.g. the value “43” in the upper left cell of the matrix indicates that 43% of the
data points On from the hidden state 1 are assigned to the hidden state 1 by
the HMM classifier. Figure 4.7 also shows the precision and recall data for both
confusion matrices, which are defined as follows:

Precision =
tp

tp+ fp
(4.1)

Recall =
tp

tp+ fn
(4.2)

where tp is the number of positive samples in the input data that have been
correctly identified by the HMM classifier; fp is the number of negative samples
that have been incorrectly identified as positive by the classifier; fn is the number
of positive samples that have been identified as negative by the classifier.
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Figure 4.7: Confusion matrix, precision and recall

As shown in Figure 4.7, good results can be obtained from training with
both datasets. Cases for which there are a few samples tend to have poorer
performance. For example, for Dataset 1, Step 5 and 3 were confused, which
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results in an error rate of 50%(4.6, yellow area, Step 5, Dataset1). However, in
Dataset 2, Step 4 is classified with an accuracy of 37% (4.6, green area, Step 4,
Dataset 2), because of high confusion with Step 3. These errors can be attributed
to the relatively low number of training and test samples.

Considering the recall and precision characteristics, both datasets show good
results in a recall test. Accordingly, a state can be correctly inferred with high
probability (i.e. high robustness). However, recall alone is not sufficient, as
the number of wrong inferences should be as low as possible as well (i.e. high
precision). The precision values show that training with Dataset 1 results in
more false positives than Dataset 2. Hence, those categories with more samples
(data points), will result in an increase in false classifications, causing the HMM
classifier to misclassify new data. The conclusion regarding Figure 4.7 is that data
from the master trocar alone (Dataset 2) result in more discriminative power for
the HMM classifier.

To measure the similarity between the estimated HMMs, the Kullback-Leibler
Distance (KLD) is measured between each pair of Markov models λ1 and λ2. The
KLD is widely used as a distance measure between HMMs [Zen09]. The KLD is
computed in the literature using the Monte-Carlo approach as follows:

d(λ1, λ2) ≈ (1/T ) ∗ (log(p(O1|λ1))− (log(p(O1|λ2)))) (4.3)

where, O1 is a sequence generated by model λ1, and T is the sequence length. In
case of a stationary HMM (πt = πt−1 = πs), for a given sequence O = o1, o2...oT

P (O|λ) = Pr(o1)Pr(o2)...P r(oT ) (4.4)

where, Pr is the output distribution of HMM, and can be calculated as follows:

Pr(x) =
N∑
i=1

(πs,i) ∗ bi(x) (4.5)

where, N is the number of hidden states of HMM , πs,i is the stationary prob-
ability of state i, and bi(x) is the emission probability of symbol x from a hidden
state i. Hence, Eqn. 7.1 results in:

d(λ1, λ2) ≈ (1/T ) ∗ ((
T∑

i=1

logPr1(Oi))− (
T∑

i=1

logPr2(Oi)))

= (1/T ) ∗ ((

T∑
i=1

(logPr1(Oi))− logPr2(Oi)))

Where T = 5000, further the KLD is computed with the symmetric version as
follows:

dKL(λ1, λ2) = 1/2 ∗ (d(λ1, λ2) + d(λ2, λ1)) (4.6)
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Figure 4.8 shows a matrix plot of the KLD measured between all possible pairs of 6
HMMs. Each element dKL(i, j) in the KLD matrix indicates the KLD between the
pair HMMs λi and λj as defined in Eqn. 4.6. We can see that the KLD between
HMMs trained with the trocar dataset is smaller compared to Dataset 1 that
includes all surgical instruments. This confirms the results from the evaluation of
the recall and precision metrics that data from the master trocar alone (Dataset
2) result in more discriminative power for the trained HMM classifier.

Dataset1: All instrumens
mean: 24 e-6
variance: 3360.2 e-8

Dataset2: Master trocar
mean: 8.3 e-6
variance: 1.4 e-8
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Figure 4.8: Kullback Leibler Distance between all possible pair of 6 HMMs

4.5.2 How does the accuracy of the system respond to common sensor
noise?

Surgical instruments can be monitored using different kind of sensors. We consider
the use of state-change sensors like RFID tags to monitor the Otrocar signals.
These sensors allow easy and continuous data collection, however they suffer from
two main types of noise [Eng05]:

• Missed tag errors: results in no data, such as the identifier stored on the
tag, being collected from a tag by a specific tag reader.

• Ghost tag read errors: results in erroneous data, specifically an identifier
that is not stored on any tag within the reader’s field, being ”read” by a
reader and reported as correct data.

These two errors are simulated by increasing the missed rate and the ghost-error
rate of cross test-sets Otrocar. Further, a well trained HMM is used to test the
noisy sets. Figures 4.9, and 4.10 show the result of increasing the missed rate and
the ghost rate from 10% to 90%. Both errors results in significant degradation of
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recognition accuracy. Introducing ghost errors result in a linear decrease of the
recognition accuracy, while missed readings result in a non-linear degradation of
recognition accuracy. The non-linearity of the latter error is due to the significance
of the missed instrument in indicating the corresponding surgical step.

Figure 4.9: Missed tag errors

Figure 4.10: Ghost tag errors
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4.6 Related work
In context-aware applications, small and simple state-change sensors are used for
data collection. Vankipuram et al. [Vak09] used active RFID tags in a dynamic
medical environment for human and equipment tracking. Tapia et al. [Tap04]
used “tape on and forget” sensors to recognize activities in home setting, and
Pham et al. [Pha07] used ultrasonic sensors to classify trajectories of movement
of patients and elderly in indoor environments. Besides ubiquitous computing,
human activity recognition is studied in vision and media research. In the past
two decades, significant progress has been made in specific areas such as speech
recognition, face recognition and video surveillance [Rab89; Pan07].

Sensors allow continuous data collection on a large scale. However, there
are various problems which hinder the adoption of sensors in reliability critical
environments, such as noisy sensor outputs, missed readings and inferences. Ac-
cordingly, different data cleaning approaches are proposed in literature to al-
low correct interpretation and analysis of sensor data. Darcy et al. [Dar07] im-
proved the missed data restoration process of RFID tags using Bayesian Networks.
Vankipuram et al. [Vak09] found that the tag data is extremely noisy and used
Hidden Markov Models to improve the motion recognition accuracy. Gonzalez
et al. [Gon07] proposed a Dynamic Bayesian Networks (DBN) based cleaning
method of RFID data sets that takes tag readings as noisy observations of hidden
states and performs effective data cleaning.

To infer HLTs from sensor data, graphical probabilistic models are used with
the underlying assumption that there exist hidden states that represent theHLTs,
and that the hidden states are evolving. Graphical probabilistic models enable the
inference of hidden states from the observable LLTs up to temporal or causal rela-
tionships, for example Bayesian Networks (BN) [Tap04; Gon07], Hidden Markov
Models (HMM) [Pad08] and Conditional Random Field models (CRF) [Hu08].
For pre-selection of the observation set, Tapia et al. [Tap04; Gon07] used a feature
window per HLT by assuming that different HLTs have a different mean of their
length in time (duration). The features used for inference are then calculated
within the window size. This assumption is however not applicable to cognitive
environments with high time-variability of HLTs. Hu et al. [Hu08] used an
adapted version of the Conditional Random Field model to identify multiple-goal
behaviours, such as concurrent and interleaving activities.

Recognition of surgical events has been adressed in [Lo07; Lo03] visual cues
from endoscopic images for activity profilying is laparoscopic surgery. Blum et
al. [Blu10] used visual cues from laparoscopic video to segment surgical steps
using canonical correlation analysis. In [Jam07] information from an eye-gaze
tracking system is used to detect the clipping step of cholecystectomy. Aproaches
like Dynamic Time Warping are also used for segmenting surgical steps of surgery
using laparoscopic tool usage [Ahm06] and [Pad07]. Padoy et al. [Pad08; Pad10]
also used instruments signals to infer surgical HLTs. The signals were directly
processed by the inference engine in the form of a Hidden Markov Model (HMM).
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The fact that no pre-processing was used to filter robust LLTs, required extra
filtering in the inference phase by merging states of the HMM.

Instruments are valuable signals in the OR environment for surgical activity
recognition, as it is easy to monitor whether or not an instrument is in use, by
using RFID tags or applying image processing algorithms on laparoscopic video.
For an accurate recognition ofHLTs, this paper proposes an integrated framework
for inferring LLTs and HLTs from sensor data. The proposed framework is
used to show how accurately instrument signals can predict surgical HLTs, how
these signals can be pre-processed to obtain a more robust and discriminative
observation sequence for training, and how to use RFID tags and image processing
algorithms for an accurate and robust HLT recognition.

4.7 Discussion
In this paper, we proposed a framework to allow the inference of a specific high-
level task based not only on the available sensor data, but also on their previously
inferred high-level tasks. We posed two fundamental questions: (1) How accurate
can we predict high-level tasks using noise-free instrument sensor data? and
(2): How does the accuracy of the system respond to common sensor noise?
By performing experiments with data based on ten laparoscopic cholecystectomy
procedures, we showed that the system can predict 90% of the surgical high-level
tasks using noise-free instrument sensor data.

In this framework, we proposed to take advantage of Bayesian Networks to
clean noisy values of sensor readings and infer correct low-level task from faulty
sensor readings. As we did not have real-sensor data available for testing, we
empirically simulated the recognition accuracy by introducing missed readings
and ghost readings rating from 10 to 90% in our training-set. Both errors results
in significant degradation of recognition accuracy. This supports our claim to use
a cleaning algorithm before the training step.

In addition to the cleaning and the inference algorithm, the preprocessing of
sensor data is a crucial step. The preprocessing step should retain the maximum
relevant domain information from sensor data and reduce the number of possible
observations for training. Hence, we have demonstrated for the laparoscopic cho-
lestoctomy procedure that sensor data from the master trocar leads to a more
robust accurate and discriminative recognition compared to sensor data from the
surgical toolbox.

In our pilot, we used instrument signals as data for automatic task recognition.
This leads us to the question: can other sensor-friendly data be extracted from
the OR for high-level task recognition? In a real operating room, a number
of activities are performed by nurses, surgeons and surgeon-assistants. If the
(high-level) tasks of every staff-member could be automatically recognized and
the hierarchical relationships between these tasks could be derived, the output
can provide crucial additional information on the overall surgical workflow.
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In our experiments, we have shown that different recognition accuracies can be
achieved under different levels of sensor noise. Further validation of automatically
inferring the high-level tasks from real incomplete and/or noisy set of sensor data
using the proposed Bayesian cleaning algorithm is desired. This issue is also
related to the granularity requirement described in section 4.2.1. Hu et al. [Hu08]
showed that different recognition accuracies can be achieved under different levels
of granularities. For our application, it is very interesting to automatically set
the task granularity level from available (incomplete or noisy) sensor data. This
is important for applications in reliability environments, such as the OR, where a
certain accuracy of recognition need to be achieved before system intrusion. The
future challenge is to automatically set the level of granularity the system can
support with the available (noisy) sensor data, given the hard constraint of high
accuracy.
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abstract
Tracking instruments during surgery is becoming a useful acquisition tool for dif-
ferent applications. This article presents a tracking system to detect and track
instruments in endoscopic video using biocompatible colour markers. The sys-
tem tracks single or multiple instruments in the video. The originality of this
method is that it combines continuously adaptive shift algorithm with Kalman-
filter for real-time tracking of single and multiple surgical instruments during
surgery. Preliminary results show that the proposed method has a real-time per-
formance. Moreover it is robust to partial occlusion and smoke. The system
shows high sensitivity and specificity results for blue, green and yellow colours.
The achieved sensitivity and specificity results are sufficient to apply the system
for real-time automatic recoding of surgical workflow in-vivo during surgery.
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5.1 Introduction
Laparoscopy is a surgical technique in which real-time imaging is used during
the surgery. While laparoscopic surgery produces more and more videos, there is
limited work being done on extracting visual features for task automation. Yet
this would be a major clinical added value, since it would allow for automatic
measurement and assessment of surgical tasks.

Tracking surgical instruments offers interesting possibilities for different ap-
plications in surgery. In visual servoing applications, tracking surgical instruments
is used to guide robotic arms using visual feedback from a camera system. A
common scenario for visual servoing is the automatic guidance of the endoscopic
camera by an assistant robot arm. For visual servoing applications, it is enough
to retrieve the position of the tip of each instrument in the image; the camera
can then be centred on an instrument. Another application is image-guided sur-
gery (IGS) where optical tracking is commonly used to predict the position of
instrument tip in the patient body by tracking instrument markers on the outside
of the body. Another application of IGS is tracking marked instruments with
ultrasound scans allowing visual feedback of instruments’ position. During lap-
aroscopic surgery, surgeons’ gain most information, necessary to perform surgery,
from the visual feedback of cameras, there is, however, limited amount of research
performed on utilizing this visual information to guide autonomous information
systems.

A new generation surgical information systems commonly includes measure-
ment and assessment of surgical workflow. Measuring surgical workflow in laparo-
scopic surgery has been proven feasible by tracking surgical instruments [Bou10].
This would be of major clinical added value since it would allow to easily docu-
ment and index surgeries. Furthermore, tracking surgical instruments is shown,
in a lab setting, to be valuable to measure the surgical gestures and skills of
surgeons [Meg06a]. This article presents a tracking system to detect and track
instruments in laparoscopic video using biocompatible colour markers. It tracks
single or multiple instruments using the endoscopic video feed. The originality of
this method is the use of a continuously adaptive mean-shift algorithm, together
with Kalman-filtering, allowing for real-time, simultaneous tracking of multiple
surgical instruments during surgery.
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5.2 Related work
Previous work on instrument tracking is mainly related to visual servoing and
image-guided applications. Staub et al. [Sta10] proposes a switching servoing
scheme, using both position and image based servoing to drive the instrument into
the field view of the camera and to allow autonomous high precision positioning
of surgical instruments in a complex setup with four robots. By tracking the
instrument tip, Beasley et al. [Bea09] improved the motion accuracy of an
existing image-guided tele-operation scheme involving flexing instruments. Stoll
et al. [Sto06] used 3-dimensional ultrasound for visual servoing to guide a surgical
instrument to a tracked target location. Wang et al. [Wan09] ) used image
recognition for automated inspection and identification of surgical instruments
on the surgical table. Three types of surgical instrument of different size could
be inspected by the system. Research from Rivera et al. [Riv08] utilizes RFID
(Radio Frequency Identification) technology to aid in counting for all items used
during surgery. With the design of the Scrub Nurse Robot (SNR) system, which
is meant to replace a skilled human scrub nurse, Miyawaki et al. [Miy09] have
developed an automatic acquisition system of surgical-instrument information for
laparoscopic surgery by using RFID technology.

Tracking the position of instruments in endoscopic video is shown to be an im-
portant improvement for new generation surgical information systems. Real-time
monitoring of instruments usage is shown to be effective in segmenting surgical
workflow. In previous work [Bou10] we showed that surgical workflow activities
can be detected with high accuracies using a time-indexed dataset of instrument
utilization in a binary form (bit 1: in use, bit 0: not in use). Instrument binary
signals are used for training a Hidden Markov Model (HMM) to infer the corres-
ponding surgical activities. The surgical activities are detected using instrument
signals with detection accuracies up to 90% [Bou10]. Another interesting applic-
ation of instrument tracking is related to objective assessment of surgical skills.
Megali et al. [Meg06a; Meg06b] presented a method that detects surgical gestures
from kinematic data describing movements of surgical instruments in a simulated
setting. The defined gestures are measured from experts in simulated setting and
used to train a HMM [Meg06a; Meg06b]. The HMM is used as an expert model
to evaluate the performance of surgeons with different abilities objectively. The
model can efficiently be used to quantitively assess the surgical ability and to
discriminate between experienced and novice surgeons. Thus far, surgical work-
flow and surgical gesture research can be performed only in a simulated setting.
The big challenge is to measure both surgical workflow and surgical skills in-vivo
during real surgical practice.

In this paper we present an adequate real-time instrument tracking tool that
allows not only the detection of arbitrary instruments in endoscopic video but
also distinguishes the different instruments in this same video by exploiting the
preinstalled markers. Unfortunately, the natural visual features of the instru-
ment are not utilized since they are not discriminative enough to distinguish the
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different instruments in the current setup. Therefore, we propose the use of a
biocompatible colour marker on the instruments and show that with this marker,
we achieved fast, robust and discriminative instrument detection. We expect the
results of this study to allow workflow segmentation real-time during surgery, to
bring surgical skill assessment into the real surgical practice and to improve ex-
isting visual servoing and image-guided systems allowing the discrimination of
different instruments and simultaneous multiple instrument tracking.

5.3 Method

5.3.1 Overview
The system architecture described in this paper is illustrated in figure 5.1 and
the building blocks of the system are explained in detail in the following sections.
Initially, the colour markers placed on the instruments are segmented from the
background using colour information. Afterwards, the markers are tracked in the
segmented regions to extract their trajectories.

5.3.2 Marker Segmentation
Segmentation is an important step for tracking in cluttered and occluded en-
vironments. Correct segmentation eliminates background regions and therefore
improves the accuracy of the system (by providing to the rest of the system only
the relevant foreground regions). ”Foreground regions” can be defined as the re-
gions that the markers can be located. The foreground regions can be detected by
using the colour information available in the scene. Instruments can be segmented
using colour information.

Initially, the colour markers are selected by using a HSV (hue, saturation, and
value) colour map, such that they are positioned with maximum distance relative
to each other in the hue space. This maximizes the hue difference between the
markers and decreases possible confusion between the different markers.

A few images of a marker are captured under various illumination conditions
and marker regions are segmented manually from the background. Different parts
of the operation video are used to obtain different illumination conditions. Af-
terwards, these regions are utilized to build a marker-colour histogram S in hue-
saturation colour space. For a given pixel mi with hue-saturation values (hi, si),
the probability that mi is a pixel from a marker region is

P (marker|mi) =
S(hi, si)∑
k,l S(hk, sl)

(5.1)

The marker-colour histogram is updated by the new image histogram if P (skin|(h, s))
for a histogram bin (h, s) is greater than a predefined threshold

St+1(h, s) = wSt(h, s) + (1− w)Snew(h, s) (5.2)
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Figure 5.1: System architecture

Finally, a binary mask, Mc, is created by thresholding the pixel probabilities
P (skin|mi). Morphological closing (dilation) is performed on the resulting mask,
Mc to fill possible gaps in the masks and to extend the marker search region for
robustness.

5.3.3 Instrument tracking via markers

The tracking system is schematically presented in figure 5.2. As a first step blob
detection (connected component labelling) is performed on the mask, built in the
previous Marker Segmentation step, Mc, to group foreground pixels. This helps
to eliminate too small or too large regions that can be the result of camera noise.
Afterwards, the markers that are positioned inside the blobs are tracked using
the OpenCV implementation of a Continuously Adaptive Mean Shift (CAMShift)
algorithm [ope]. This algorithm combines the basic mean shift algorithm [Com02]
with an adaptive region sizing step. Markers can have different 2D sizes in the
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video, depending on their 3D motion with respect to the user. The adaptive
region sizing step of the algorithm can cope with the limitations originated from
the varying sizes. A separate tracker for each marker is used together with its
colour model. Also the models are continuously updated as long as the marker is
detected to increase robustness against changing lighting conditions.

Blob Detector

CamShift
Tracker

Kalman
Tracker

2D Spatial Veri�cation

Marker Tracker

Figure 5.2: Tracker overview

Finally, a Kalman filter [Wel95] is employed together with the CAMShift
tracker in order to cope with situations when the markers are not visible, lost due
to the image noise or occluded by other instruments or abdominal tissues. The
filters are updated with the measurements (detected 2D positions of the markers)
from the CAMShift tracker. When the CAMShift tracker fails to track markers,
Kalman predictions are used as the 2D positions of the markers for n frames. If
the CAMShift tracker cannot track the markers for n frames, then the marker
is labelled as ”lost” and all blobs in the mask are searched for the lost marker.
Finally, an ellipse is fit to the tracked markers and the center of it is used as the
position of the marker.

5.4 Results

5.4.1 Experimental Setup
Preoperatively, all instruments are marked with different colour markers. The
colour markers used are biocompatible and sterilization proof. This allows for
permanent use of these marked instruments in-vivo during surgeries. Different
colour markers were used (red-pink-yellow-blue-green) in three test scenarios as
illustrated in figure 5.3. In scenario 1, a single instrument with a single colour
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Single instrument -Single color Single instrument - Multi color Multi instrument -Multi color

Figure 5.3: Test scenarios

marker is tracked in the endoscopic video. In scenario 2, a single instrument with
a multi-colour marker is tracked in the endoscopic video. Finally, in scenario
3, multiple instruments marked with different single colours are tracked simul-
taneously in the endoscopic video. The goal of the experiments is to test the
feasibility of the tracker in real-time endoscopic video and the performance of the
different individual colours in the three scenarios described above.

Figure 5.4: Tracking results

The tracking system is used in real-time during animal trials. The tracking
results are shown in figure 5.4. Different segments of endoscopic video are col-
lected for the different test scenarios. Segments include various environmental
distortions, such as, smoke, camera motion and organ occlusions. The method is
tested on a total of 10 minutes of endoscopic video material. Ground truth data
is generated by manually labelling the instrument appearance in the endoscopic
video. For every frame of the video, a 1 is assigned if the instrument appears in
the frame and 0 if it does not appear.

5.4.2 Results
The classification results are shown in figure 5.5. The plots show the ROC curves
of the detection rates of different colours for the three scenarios. The general
results show that colours blue, green and yellow, show high sensitivity and spe-
cificity results, both for single and multi-instrument detection, however, pink and
red show bad performance as they are completely confused with the abdominal
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Figure 5.5: ROC curves.

background colours. For scenario 1, single colour tracking shows that colours blue
and green are the best suited for tracking with the highest sensitivity and spe-
cificity results; however, yellow shows less performance as it can be confused with
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body fat under specific environmental conditions. Scenario 2 results show that
the single instrument coded with multiple colours can be tracked; however the
performance is limited to the lowest performance of the colours used, in our case
yellow. Scenario 3 results show that simultaneous multi-instrument detection is
possible, however, as more colours are used, the confusion increases between those
colours, resulting in lower performance of close colours in the hue space such as
green and yellow. Furthermore, the results show that colour combinations relat-
ively far in the hue space show better performance than colours relatively close
in the hue space. Hence, it is preferred to use a combination of colours with
maximum distance in the hue space.

In general, the tracker shows similar performance under various environment
distortions as smoke, camera motion and organ occlusion, except for the yellow
colour which is sometimes confused with body fat. A typical tracking speed with a
single target, tested in a video with 640x480 resolutions, was 55.2 frames/second.
The time performance of the system is more than sufficient for a real-time use, and
therefore, this algorithm is a strong candidate for a real-time application in-vivo
during surgery.

5.5 Conclusions
We presented a real-time, multiple instrument tracker for in-vivo use during sur-
gery. This tracker is shown to cope with varying sizes of instruments, smoke,
camera motion and occlusion. Furthermore, the tracker shows a high processing
speed, which is sufficient for real-time use.

The marker colours green, yellow, and blue can be used for both single and
multiple instrument tracking. For single instrument tracking, the tracker achieves
an excellent performance for the colours blue and green. Yellow is, however, occa-
sionally confused with body fat under specific conditions. Multiple colours coding
of single instruments is feasible, however, the tracking performance is limited to
the lowest performance of the single colours used. Simultaneous multiple instru-
ment tracking is also feasible with the proposed tracker, however, as the colours
are closer in the hue space, the confusion increases between those colours. Fur-
thermore, for multiple instrument tracking, colour combinations far in the hue
space show better performance than colours close in the hue space. Hence, it is
preferred to use colours with maximum distance in the hue space. Red and pink
colours are completely confused with abdominal background tissues and cannot
be used for tracking in endoscopic video with this tracker.

Future work includes testing on different available biocompatible colours. Fur-
thermore, single and multiple colour coding schemes need to be designed and
tested to deal with a high number of different instruments under the strict con-
straint of high sensitivity and specificity of the tracker. Finally, we aim to test
the system feasibility in combination with a workflow information system for a
real-time use in-vivo during surgery.
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abstract
Purpose: The purpose of this work is twofold: (1) to derive a surgical
consensus workflow from multiple surgeries and (2) to detect outliers auto-
matically from a (running) surgery.

Methods: Workflow mining is used in this paper to derive a surgical con-
sensus from multiple surgery logs using tree guided multiple sequence align-
ment. A process log is directly derived for each surgery from laparoscopic
video using an already developed instrument tracking tool. In total 26 sur-
gery logs are used to derive the consensus for laparoscopic cholecystectomy.
Finally global pair-wise sequence alignment (Needleman-Wunsch) algorithm
is used to detect outliers for running surgeries.

Results: We showed that a generic consensus can be derived from surgical
process logs using tree guided multi-alignment. The derived consensus con-
forms the main steps of laparoscopic cholecystectomy as described in best
practices. Using global pair-wise alignment, we showed that outliers can be
detected using the consensus and the surgical process log.

Conclusion: We used tree guided alignment to derive surgical consensus and
to detect outliers from running surgeries. Detecting outliers in surgery is a
valuable tool to analyse the underlying cause and improve surgical practices.
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6.1 Introduction
Workflow mining is a technique which aims at improving the workflow modelling
process by providing tools for discovering, comparing, and conformance check-
ing of workflow process models [Aal03]. Conformance checking is crucial in
the domain of surgery to detect deviations (i.e. outliers) from surgical proto-
cols; detection of outliers after surgery can be used for early error prediction and
intra-operative alarming of the surgical team to avoid surgical errors. Moreover,
workflow mining is a tool to enrich and extend surgical protocols with frequently
occurring practices. Hence, workflow mining is a valuable tool for modelling sur-
gical workflow.

Workflow variability is inherent to the domain of surgery [GM10]; it is caused
by uncertainty in patient anatomy, unexpected complications, surgeon cognition
and situational awareness. Moreover, unlike organizational workflow, surgical
workflow lacks the direct human computer interaction, which makes automatic
activity logging a necessary step before modelling [Bou11b]. Therefore, workflow
activity monitoring in the OR is non-trivial. Implementing surgical workflow ana-
lysis requires an approach for dealing with variability and monitoring of surgical
activities.

In laparoscopic surgery, the surgeon inserts long and thin instruments in the
abdominal cavity through small incisions while an assistant holds the laparoscopic
camera. Because of the small incisions this is considered to be less traumatizing
for the patient than open surgery. The laparoscopic video is the main input and
feedback signal of the surgeon to execute the surgical task.

In our previous work Laparoscopic Cholecystectomy (LapChol) procedures are
considered for probabilistic workflow modelling [Bou11b]. LapChol is a highly
standardized surgical procedure in which a patient’s gallbladder is removed in case
of inflammations. The presented approach in [Bou11b] deals with the variabil-
ity of LapChol workflow using a probabilistic Markov-based approach to detect
the different surgical workflow steps. The high standardization of the LapChol
procedure, together with the achieved results with the probabilistic approach,
challenge us to test a framework for generating a consensus and detecting outliers
for LapChol surgeries using only workflow mining without prior knowledge of the
workflow itself.

This paper presents a workflow mining framework for offline utilization in the
OR intended for quantitative mining of laparoscopic surgical workflows. This
workflow mining framework is shown to allow for the variability of the surgical
procedures. The framework can be applied to any laparoscopic procedure, but is
currently only evaluated for laparoscopic cholecystectomy.

The general framework is presented in section 6.2. Section 6.3 shows how to
generate a process log from laparoscopic video. Section6.4 presents the workflow
mining algorithm for generating a consensus workflow and Section6.5 shows how
outliers can be detected using the consensus derived in section 6.3. Finally, section
6.6 concludes this paper and highlights our future work directions.
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6.2 General framework
The first goal is to generate a consensus workflow from multiple surgery logs.
Secondly, we aim to detect outliers from each surgery by comparing its activity
log to the general consensus workflow.

Figure 6.1 illustrates the framework of the workflow mining system for LapChol,
in the following steps:

1. The first step is to generate process logs form laparoscopic video using the
real-time tracking system already developed in our previous work [Bou11a].
The tracking system generates a process log as described in section 6.3 with
an entry for each time an instrument is used.

2. The second step in our framework is to make use of many process logs
of the same type of surgery to derive a surgical consensus. This step is
performed offline and uses many surgery logs. To generate the consensus a
multi-alignment algorithm is used as described in section 6.4

3. The final step is to detect outliers, also known as anomalies, during surgery.
This step takes place at the end of the surgery, when the process log as it
is generated by the tracking system, is compared to the consensus. This is
described in section 6.5.

Lapar.
video

Instrument 
tracking

Process
Log

Concensus

Sequences 
Multialignment

Global 
Alignement

Generating process Logs Work�ow mining Outlier detection

# 1

1

Outliers

Figure 6.1: General framework for workflow mining and outlier detection in surgery

6.3 Generating process log from laparoscopic video
Laparoscopic video is used in this section to generate the surgery log. There-
fore a tool is designed to detect and track single and multiple instruments in
laparoscopic video using biocompatible colour makers. Figure 6.2 illustrated the

Optima Grafische Communicatie -  77-84.pdf - April 27, 2012 - Page: 4



6.4 GENERATING PROCESS LOG FROM LAPAROSCOPIC VIDEO 81

tracking algorithm. Initially, the colour markers placed on the instruments are
segmented from the background using colour information. Afterwards, the mark-
ers are tracked in the segmented regions to extract their trajectories and produce
their process log.

For the segmentation step, the colour markers are selected by using a HSV
(hue, saturation and value) colour map such that they are positioned with max-
imum distance relative to each other in the hue space. To build a marker-colour
histogram in hue-saturation colour space different images are captured under vari-
ous illumination conditions and from different parts of the laparoscopic video.
Finally, a binary mask, is created by thresholding the pixel probabilities. Mor-
phological closing (dilation) is performed on the resulting mask to fill possible
gaps in the masks and to extend the marker search region for robustness.

Basic Mean 
Shift algorithm

Adaptive region
sizing step

process log: CUTAAARCAAARCRCRCYYGKTCUYG

A   Clip Tang
C   Dissecting forcep curved
G   Diathermic hook
T    Atraumatic grasper
U   Fenestrated clamp
R    Scissor
Y    Endobag
K    Suction deviceR

AA G

U
T

K

Figure 6.2: Instrument tracking tool to produce a surgical process log from laparoscopic
video

For the tracking step, first step blob is performed on the mask, built in the
previous marker segmentation step to group foreground pixels. Afterwards, the
markers that are positioned inside the blobs are tracked using the OpenCV imple-
mentation of a Continuously Adaptive Mean Shift (CAMShift) algorithm [ope].
A separate tracker for each marker is used together with its colour model. Finally,
a Kalman filter [Wel95] is employed together with the CAMShift tracker in order
to cope with situations when the markers are not visible, lost due to the image
noise or occluded by other instruments or abdominal tissues. At this final step,
an ellipse is fit to the tracked markers and the centre of it is used as the position
of the marker.

The output of the tracking tool is a process log file with the symbol of the
instrument used at each entry and the duration of its use as illustrated in figure
6.3. In this paper we discard time information from the analysis as it can always
be retrieved afterwards, and focus only on the process log with the instrument
symbols presented in the first column of fig 3.
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Figure 6.3: An example of a process log generated by the instrument tracking tool from
[Bou11a]

6.4 Workflow mining : Generating surgical consensus using
multi-alignment of individual process logs

A consensus workflow for a specific procedure can be constructed using expert
opinions, however this can require a lengthy debate, with no guarantee to reach a
final consensus. Another option is to automatically derive the consensus workflow
from multiple individual process logs. This has as advantage that the consensus
will most reflect the reality and that no expert opinion is required. In this section
an approach to the automatic derivation of consensus from individual process logs
is presented.

Sequence alignment is used in bioinformatics to find overlapping or similar
sequences of DNA, RNA, or proteins and to identify important relationships. It
deals with the problem of grouping together sets of sequences to identify regions of
similarity between the sequences. Gaps are inserted between the elements of the
sequence to align similar characters in successive columns. Taking inspiration from
biological sequence alignment, Jagadeesh et al. [JCB10] proposed to apply this
technique for process mining. To derive the consensus we performed progressive
multiple alignment for 26 surgical process logs guided by a scoring tree.

Figure 6.4 illustrates the multiple sequence alignment used to derive the sur-
gical consensus form 26 surgical process logs. To generate this alignment, first,
a distance-matrix is constructed by calculating pair-wise distances between all
process logs. This matrix is used to build a guide tree using a neighbour joining
algorithm. In the next step, the sequences are progressively aligned using the
guide tree that defines the order in which the sequences are aligned in the align-
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ment step. Finally, The consensus values are calculated from the aligned sequence
weighted using scoring matrix whose values are the average Euclidean distance
between the scored symbol and the M dimensional consensus value where M is
the size of the alphabet.

A   Clip Tang
C   Diss-forcep
G   Dia-hook
T   Grasper
U   Clamp
R    Scissor
Y    Endobag
K    Suction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

C U T CAAARCAAARC KCCYYG
Consensus 

Figure 6.4: Using tree guided multi-alignment to generate consensus from surgical
process logs

The derived consensus shows the main steps of LapChol workflow. The primary
step of the surgical procedure is to dissect the area which includes the bile duct
and the cystic artery (Calot’s triangle). The main instruments used in this step
are represented by the characters C and T. When both structures are clearly
visible, each of them is clipped with three clips, (AAA), followed by dissecting
and cutting both structures between the clips with laparoscopic scissors (RC).
The following step is dissection of the gallbladder using the dissection device(C).
During and after the dissection of the gallbladder, the surrounding abdomen area
is cleaned using the suction device (K). To remove the dissected gallbladder, a
salvage bag is inserted into the abdomen, the gallbladder is packed up into the
bag and the bag extracted together with trocar (represented by Y). Finally, the
surgical area is explored to detect and stop any bleedings. A drainage is inserted
through a trocar hole and all instruments are removed.

6.5 Outlier detection using global alignment
Given an arbitrary Lapchol process log, the deviation from the general consensus
is computed. The differences between the two sequences are calculated by a global
pair-wise sequence alignment (Needleman-Wunsch) algorithm.

As illustrated in figure 6.5, the algorithm inserts gaps into the process log
in order to align it to the consensus. Those gaps are deviations (i.e. outliers)
of the surgery from the consensus. Note that all surgeries from the previous
figure 6.4 contain outliers (i.e. are different from the consensus), which is to
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be expected given the variable nature of surgical workflow. Those outliers are
commonly simple variations in the execution of the surgical procedure, but can
also represent serious complications or errors. Figure 6.5 provides a description
of the outliers detected which helps to describe the surgery in more detail.

CUT-----------------------------  CAAARCAAARCC-----------------------------------  K C C Y Y G
 | |  |                                               |  |  |  |  |  |  |  |  | | | |                                                          :      | :  |  |
CUT----------------------   AAARCAAARCAAARCC-----------------------------RCRYYGTKCUYG

- Extra cutting and isolation of the cystic artery
- Endobag inserted, early temptation failed

AAAR - Extra Clipping and cutting of the cystic artery

RCRYY
K - Extra bleeding after removing the gallbladder

Figure 6.5: Using global alignment to detect outliers

6.6 Conclusion
In this paper, a new approach for deriving surgical consensus from real-life sur-
geries is proposed. Surgical logs can be derived real-time from surgeries using our
previously published tracking software [Bou11a]. We have showed how guided
multiple sequence alignment can be used to derive a workflow consensus that can
be used as the reference workflow for detecting outliers during surgery. The de-
rived consensus contains the major steps of the Lapchol surgery. We also showed
how outliers can be derived using pair wise global alignment. Although it is im-
portant to monitor the compliance of surgical workflow with the consensus, it is
also interesting to look at the outliers in the general workflow and the underlying
reasons, as they can represent patients with beneficial modifications in treatment.
Finally, time information about the outliers can be obtained from the original
process log.

The calculation of the consensus is sensitive to adding new surgical logs, for
future work, we recommend to use more data and to use more advanced sequences
clustering algorithms to deal with the variations in the logs. We also recommend
for future work the online computation of outliers during surgery and the clas-
sification of the detected outliers using prior knowledge structured in a decision
tree to allow for automated annotation of outliers in surgeries.
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abstract
Objective: The post anaesthesia care unit (PACU) is a costly but important
peri-operative healthcare necessity. Accurately predicting patients’ length
of stay (LOS) in the PACU may lead to cost savings and a number of
operational benefits.

Methods and material: After receiving the institutional review board (IRB)
approval, electronic data from a 10-year period were collected from the
peri-operative data warehouse at the Vanderbilt University Medical Centre.
Data included case demographics, intra-operative parameters, medications,
patient co-morbidities, and surgical factors. Cases with missing data were
removed from the analysis. A linear regression method was employed along
with ordinary least square regression and ‘least absolute shrinkage and se-
lection operator’ (LASSO-) regression that allowed data discretization. A
forward feature selection approach was then used to identify and rank factors
impacting PACU LOS.

Results: After pre-processing we used data from 53,464 patient encoun-
ters. The least square regression with forward feature selection provided
better performance than the LASSO technique, requiring only ten features
to provide a maximum average improvement of 12 minutes compared to
the mean baseline 1. This result is achieved without including the surgeons
and anaesthetists in the regression model. A 6-minute performance gain oc-
curred when surgeons and anaesthetists were added to the model, resulting
in a total improvement of 18 minutes from the mean baseline by using all
features.

Conclusions: PACU LOS can be predicted by peri-operative factors with
an improvement of 12-18 minutes compared to using the mean baseline. If
this prediction is updated with online information, mainly by monitoring
post-operative oxygen saturation, future work could lead to real-time LOS
algorithms based on peri-operative factors to predict, manage and possibly
intercept anticipated, prolonged PACU LOS.

1The mean baseline is the mean absolute deviation εb = 1
N

∑N
j=1(t(j) −

1
N

∑
j=1(t)) from

the total mean. It represents the average of all the distances between the measured PACU LOS
for each patient and the the average LOS of all patients
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7.1 Introduction
The post anaesthesia care unit (PACU) is a costly healthcare necessity. Pa-
tients of varying illness severity progress through anaesthetic and surgical recovery
phases at different paces after surgeries of varying complexity. Appropriate post-
operative care requires high staff-to-patient ratios, and staff salaries represent a
significant percentage of total cost to operate a PACU [Tes99].

Recovery at the PACU is an on-going process that begins when the intraoper-
ative period has ended and continues until the patient returns to their preoperative
physiological state. This process is divided into three phases. The early recovery
(Phase I) is the transition period from a totally anesthetized state to the recovery
state of the protective reflexes and motor functions. The intermediate recovery
(PhaseII) is the period during which the patient is prepared for self-care by fam-
ily members as intensive nursing care is no longer needed. Finally, in the late
recovery (Phase III) patients who require extended observation are monitored for
extra time (e.g. extra overnight, home monitoring) until the patient is back to
his preoperative functional status [Twe08].

PACU LOS (post anaesthesia care unit length of stay) is commonly defined as
“the number of minutes between the time the patient arrived in the PACU and the
time the patient departed the PACU” [Dex95a]. This time may include Phase 1,
2 and 3 of the recovery process. When PACU LOS for each patient increases, the
number of patients in the PACU increases, potentially requiring greater numbers
of staff. This can have a dramatic effect on healthcare delivery costs [Tes99].
Cost comparisons for 2 hours in a PACU are equivalent to a 24-hour stay in a
hospital ward [Dex95a; Wad98].

Macario et al. recognized the need for cost analysis as early as 1995 [Mac95].
Their work identified PACU costs, that are proportional to volume and related
specifically to patient care and variable direct costs, to be 32.7% +/- 0.1% of a
hospital stay. Dexter et al. showed that nearly all of this cost was labour expense
and that admission distribution could limit a hospital’s ability to reduce costs in
this area [Dex95b]. A time-study demonstrating that 72.5% of PACU nursing
time relates to direct patient care reveals the potential magnitude of this labour
[Coh99]. Translating a decrease in PACU LOS into definitive cost savings for a
facility has been a challenge. Dexter et al. has demonstrated that time savings
in the PACU is not enough. The pay structure for nursing staff [Dex99] and
the ability to decrease the number of nurses required to care for a peak number
of PACU patients [Dex95b] appears to be significant. The latter factor can be
affected by optimal case sequencing [Mar06; Dex05], efficient PACU discharges
[Dex95b], and by-passing Phase I recovery [Dex99]. This decreases the necessary
nurse to patient ratio from 1:2 to 1:3. Without considering all of these factors, the
expense required to decrease LOS does not generate the expected savings. The
ability to prospectively discriminate between a customary and prolonged patient
length of stay (LOS) in the PACU provides data that could allow peri-operative
managers to anticipate and allocate resources accordingly. In the event that
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resource constraints become a limiting factor, this information could be escalated
to other peri-operative managers to identify potential bottlenecks and attempt
to improve the flow of patients through the peri-operative process. This data
could be provided to front line managers through a notification system or through
electronic case boards.

Prolonged LOS studies have been previously performed at a variety of large,
small, and ambulatory facilities. Study types range from simulations based on
historical data, retrospective and prospective depending on the study hypotheses.
The previously identified causes for prolonged LOS are multifactorial. Patient-
centred reasons may include anaesthetic technique [Mur04] and type and length
of surgical procedure [Chu99], patient morbidities, and post-anaesthetic and
post-surgical factors [Mar03]. Post-operative adverse events also appear to pro-
long LOS [Coh99; Chu99; Sam06]. System-centred reasons relate to delays
in coordinating, synchronizing and mobilizing the multitude of resources ne-
cessary to qualify and physically move the patient to the next stage of care
[Tes99; Wad98; Mar03; Sam06; Bro08]. A review of the literature revealing defin-
itions for being appropriate for discharge and actual discharge have been used
to identify systemic-centred delays [Wad98; Mar03]. For the purpose of delays
entering the PACU, the LOS has also been defined as the number of minutes
from the time the PACU bed was requested until the time of PACU discharge
[Dex95a; Sch09].

The Vanderbilt University Medical Centre has collected recovery data for the
last 10 years. This study aims (1) to assess different regression models for predict-
ing the PACU LOS from pre- , intra- and post-operative patient data and identify
the best method for prediction, and (2) to identify and rank the significant para-
meters of a prolonged PACU LOS from a large sample of patients possessing a
variety of comorbidities and scheduled for a variety of surgical procedures.

7.2 Materials and methods
This study was conducted using data collected by the Vanderbilt’s peri-operative
information management system V PIMSTM , a point-of-care database that sup-
ports the care documentation, financial, and quality improvement processes of the
peri-operative enterprise.

7.2.1 Data

This data was collected from the Vanderbilt University Medical Centre, an 800+
bed tertiary-care hospital, at which approximately 65,000 anaesthetics are now
performed each year. PACU times for this study were limited to two main adult
PACU suites that are currently 11 and 35 rooms. PACU slots sum up to 46
beds. Per year, approximately 24,300 patients are admitted to Phase 1, and
the remainder are either admitted to Phase 2, Phase 3, or directly to the ICU.
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Using Vanderbilt’s peri-operative information management system, V PIMSTM ,
we collected PACU admission times, discharge ready times (appropriate for dis-
charge), and actual discharge times for the two PACUs between January 1, 2000
and September 30, 2010.

Pre-operative, intra-operative, and post-operative features included in this
study, described in Appendix B, were selected because of their significance or
consideration in prior studies, or they were deemed to be potentially relevant
with respect to the nature of the patient, anaesthetic, or surgery.

Pre-operative features include patient demographics (age, gender, and ASA
physical status classification), medical history (e.g. smoking history, diabetes, car-
diac failure, substance abuse) and anaesthetic data including providers, planned
type of anaesthetic, and elective vs. emergency surgery. Intra-operative features
include medications administered to the patient during surgery, room staff level of
training, invasive monitor use and blood administration. Post-operative features
include duration of surgery and anaesthesia. In the analysis, the features have
been considered as ordinal or binary variables. Binary features include most of
the features in the dataset. Ordinal features include age, Body Mass Index (BMI),
operative time, and duration of anaesthesia. The feature details are described in
the supplementary material of Appendix B.

The PACU LOS is measured as the time t from patient’s admission to the
PACU until the patient’s discharge from the PACU (i.e. including Phase I to III).
In this dataset the PACU LOS has an average of 190 minutes and a standard
deviation of 206 minutes. Within this period, a patient may be in Phase I, Phase
II or Phase III of discharge, representing their recovery progression and respective
nurse to patient care ratios required throughout their recovery process.

7.2.2 Statistical analysis
Statistical analysis to predict the response variable t, representing the PACU
LOS, is divided into three stages. 1) The pre-processing stage filtered the data
and mapped it to another scale (i.e. logarithmic) suitable for analysis. 2) The
regression stage assessed regression models to predict optimally the PACU LOS
from the available features. 3) The feature selection stage applied the regression
to identify the predictive features of PACU LOS. Both regression and feature
selection are performed using the statistical toolbox PRTools for matlab [Dui07a].

Preprocessing

Scatter plots of the data revealed the presence of significant biases. The first bias
is the patients in the PACU who remained as ’overnight stays’, generally due to
the unavailability of floor beds. These prolonged stays range from overnight to
two days. It is common practice at Vanderbilt to continue documenting their stay
in the PACU in the peri-operative electronic chart as a Phase III patient. The
second bias was a ’short stay’ bias due to the performance of outpatient surgeries
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requiring little more than a single set of vital signs to meet PACU discharge
criteria. Finally, many cases with missing values were present. To allow sound
regression analysis, the pre-processing excluded all these cases: Of the 311,374
patients included in the study, approximately 83% were excluded, leaving 53,464
patients in the final dataset.

The response variable t was then normalized. The distribution of the response
variable t in this dataset follows a lognormal distribution, shown in the Figure
7.1 left subplot. To fit the regression function, it is most convenient to use a
symmetric error, rescaling the response variable to a logarithmic scale. This avoids
the influence of large response values in the right hand tail of the distribution and
a high bias predicting the average PACU time. After logarithmic normalization,
the response variable distribution in the Figure 7.1 right subplot was obtained.
The distribution is close to normal, making it very suitable for fitting a (linear)
regressor using a symmetric error.

4 6 8 10 12
0

200

400

600

800

1000

1200

1400

1600

1800

Log(Pacu Los)

Fr
eq

ue
nc

y 
of

 o
cc

ur
en

ce

Normalfit
µ = 8.9432→
σ = 0.67229

(a) (b)

0 1 2 3 4 5 6

x 104

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Pacu Los in seconds

Fr
eq

ue
nc

y 
of

 o
cc

ur
en

ce

     Lognormalfit
← µ = 8.9432

σ = 0.67229

 x 104

Figure 7.1: (a) Distribution PACU LOS; (b) Distribution log (PACU LOS)

Feature selection

Feature selection was used to reduce the large feature set to a small subset allowing
for optimal regression performance and less noise sensitivity. The forward feature
selection was chosen because others become extremely time consuming with larger
feature sizes. Forward feature selection extends a preliminary subset of features
to that feature for which the performance improves most. Here, the mean square
error (MSE) criterion function was used to assess this subset of features. The
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MSE is defined by:

εmax =
1

N

N∑
j=1

(log(t(j))− log(t̂(j))2 (7.1)

The mean square error measures the average of the squares of the error between
the measured PACU LOS t(j) and its estimated value t̂(j).

Regression

Linear regression predicted the value of the PACU LOS t based on a linear com-
bination of feature values. The regression model used is: t̂ = w0 +w1x1 +w2x2 +
... + wpxp, where t̂ is the estimated PACU LOS, ~w = (w1, w2, ..., wp) are feature
values and x1..p are the weights. Weighting of features can be used to remove
irrelevant or redundant features and rank the remaining features.

Nonlinear regression is an alternative to linear regression. In general, nonlinear
regression is more flexible with more freedom to adapt to the data, but it also
requires more data to fit the parameters. As noisy features are abundant and
noisy, overfitting and reduced performance becomes problematic. Furthermore,
choosing the functional form of the nonlinearity is often not straightforward, and
there was no clear structure visible in this noisy data. Applying a nonlinear kernel
smoothing approach results in a higher error (mean absolute deviation) than the
linear model. Finally, while nonlinear regression assigns higher order weights to
features, they cannot be used to assess the importance of the different features.

Two linear regression techniques have been utilized in this study for estim-
ating PACU LOS t ; the ordinary least square regression and the least absolute
shrinkage and selection operator (LASSO) [Tib96]. Both approaches minimize a
different error on a given training set, consisting of N pairs of features and targets
(~xi, ti), i = 1, ..., N . In the ordinary least squares regression, weights are found by
minimizing the squared error between the prediction and the true value of the
response variable.

When the number of training pairs is small, or the number of features is high,
the least squares solution can overfit. A regularized least square is used to avoid
overfitting. Adding an extra term λ|~w|2 to the squared error suppresses solutions
in which some weights are very large, reducing the probability of a few noisy
features will completely determine the solution. Alternatively, the LASSO tries
to avoid overfitting by introducing an additional constraint that |w1|+ |w2|+ ...+
|wp| 6 Λ, so weights are not punished with a squared error, but with an absolute
error. Larger weights are punished less, relatively, and importantly many weights
are optimized to be exactly zero. LASSO performs an implicit feature selection
since features with a zero weight are not needed in the regression solution. The
advantage of this approach is that features are selected purely based on the utility
in the regressor itself, and no external or suboptimal criterion needs optimisation
as an intermediate step. The least square regression, however, was performed
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with an external forward feature selection as described in section 7.2.2. Other
regression techniques involve discretizing the time range of the PACU LOS and
predicting each level separately using classification techniques. However, our goal
is to predict the PACU LOS as a real value and not as a discrete level.

To evaluate the performance of the least square and LASSO regression, the
mean absolute deviation εr was used to measure the amount of deviation (vari-
ation) in minutes of the predicted t̂(j) from the measured PACU LOS t(j):

εr =
1

N

N∑
j=1

(log(t(j))− log(t̂(j)) (7.2)

Where t(j) is the measured PACU LOS, t̂(j) the predicted PACU LOS and N is
the number of instances in the dataset. The mean absolute deviation allows for
expressing the error in minutes between the measured and the predicted PACU
LOS.

7.3 Results
We conducted both regression and feature selection as explained above using
the statistical toolbox PRTools [Dui07a]. Using forward feature selection we
measured the selection process stability when different test sets drawn from the
original dataset were applied. We then identified the subset of features that allow
the prediction of t with accuracy comparable with the full feature set. Using
feature curve analysis we evaluated the performance of the regressors in fitting
the PACU LOS data. The optimal regression technique predicting the response
variable t and the number of samples required for optimal training is described
below.

7.3.1 Feature selection results
Forward feature selection was used to identify and rank the relevant features
for predicting PACU LOS. The feature stability was measured by repeating the
selection experiment 100 times, randomly selecting half of the data for fitting (i.e.
training), and the other half of the data for testing. The first experiment excluded
surgeons and anaesthetists from the selection process. Figure 7.2 illustrates the
top ten ranking levels using forward selection. A feature subset is considered
stable when each ranking level is dominated by few features. Forward selection
of the top ten ranking levels proved stable for the subset of features including
general anaesthesia, CRNA, neostigmine, regional anaesthesia, anaesthesia time,
age, cardiac failure, SRNA, arterial line use, gender and operative time.

The second experiment included surgeons and anaesthetists in the selection
process as illustrated in Figure 7.3. The top ten ranking levels also include two
anaesthesiologist and five surgeons. Surgeons and anaesthetists are important
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Figure 7.2: Feature stability for the top ten feature subsets using forward feature selec-
tion excluding surgeons and anaesthetists

features strongly affecting the feature selection mechanism in its top ten rank-
ing. This point to the potential that practice and procedure variation can vary
enough to impact PACU LOS. The other main observation is that feature selection
becomes unstable from level 4 onwards when adding surgeons and anaesthetists.
This result suggests that, although surgeons’ and anaesthetists’ features may pos-
itively contribute to predicting PACU LOS, they introduce high variations in the
dataset making the feature selection mechanism unstable to identify the relevant
features for predicting PACU LOS.

The forward feature selection process included ASA classification and emer-
gency case status. The absence of the classification from the top ten is of particular
interest and is consistent with bodies of work that find little correlation between
pre-operative patient status and PACU LOS [Chu99].

7.3.2 Regression results
Feature curve analysis was used to examine the relationship between the mean
absolute deviation of the regressor and the size of the feature set. Least-square
and LASSO regression methods were the best two linear regression techniques in
predicting t.

Feature curve analysis plots the mean absolute deviation against the number of

Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 103



94 POSTOPERATIVE: PREDICTION OF RECOVERY TIME 7.3

0 10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7

8

9

10

Anes Type Gen
s4
s7
s207
inRoom-time
CardiacFailure
a2
s236
s104
CRNA
Neostigmine
a7
others

Number of runs

Fe
at

ur
e 

ra
nk

in
g 

le
ve

l

Figure 7.3: Feature stability for the top ten features using forward feature selection
including surgeons and anaesthetists, note that the added features are given a red label

features p used in the training process. A steeply decreasing feature curve suggests
that better performance can be obtained when more features are available. A
flattened feature curve suggests that the regressor is already well trained, and
more features would not significantly improve the performance of the regressor.
Feature curves typically report which regression technique is suitable for small
feature set sizes, which regression technique has the most promising performance
and how large the feature set size should be for an optimal performance of the
regression technique. In this experiment, a fixed training size is used, half of the
data is used for training the regressor, and the other half for testing.

Figure 7.4 represents the feature curves of the least square and LASSO regres-
sions, excluding features representing surgeons and anaesthetists from the data.
The total feature space includes 60 features. The red dotted line represents the
mean baseline, which is the absolute error between the measured PACU LOS (t) of
each patient from the dataset and the total average PACU LOS from the dataset.
The regression curves represent the varying absolute error against an increasing
feature size from 1 to 60. Both the least square and the LASSO show a minimal
prediction error of 68 minutes, but the least square regression performs better
than the LASSO flattening out after 10 features, where the LASSO needs at least
20 features to achieve the same minimal error. Hence, a maximum average im-
provement of 12 minutes from the baseline can be achieved by using the features
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without considering the surgeons and anaesthetists in the regression models. To
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Figure 7.4: Feature learning curves for Linear and Lasso regression, number of runs=
100

investigate the existence of performance gain when surgeons and anaesthetists are
added to the regression model, the feature curves in Figure 7.5 represent the least
square and the LASSO regressions when all features are used. It demonstrates
a further performance gain of 6 minutes when all surgeons and anaesthetists are
added to the model. Note that the full feature space is comprised of 425 features,
of which 365 represent surgeons and anaesthetists responsible for the surgery, and
flattening of the feature curves occurs at approximately 200 features. A total im-
provement of 18 minutes can be achieved from the baseline by using all features.

7.4 Conclusion & Discussion
The study makes several contributions, most notably, the idea of predicting LOS
from readily available pre-, intra- and post-operative patient data to increase
PACU efficiency. To our knowledge, this is the first attempt to predict PACU
LOS as a real value in the literature.

After removing biased cases and those missing data, the least square and the
LASSO linear regression methods revealed ten features that are easily acquired
from an Anaesthesia Information Management System that can be used to suffi-
ciently estimate the number of minutes a patient’s will spend in PACU.

Feature curve analysis determined that the least square with forward feature
selection provided better performance than LASSO requiring only ten features for
optimal prediction performance. Feature curve analysis also indicated that these
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Figure 7.5: : Feature learning curves for Linear and Lasso regression including sur-
geons’ and anaesthetist’s features, number of runs= 100

ordinary regression methods are best suited for this noisy dataset, outperforming
nonlinear regression. A maximum average improvement of 12 minutes from the
baseline can be achieved by using the features without considering the surgeons
and anaesthetists in these regression models. A subset of only 10 features was
required from the complete set to predict the PACU LOS. A 6-minute performance
gain occurred when surgeons and anaesthetists were added to the model, resulting
in a total improvement of 18 minutes from the baseline by using all features.

Some features such as prolonged operative and anaesthesia times and receiving
general anaesthesia have been established in the literature as procedure related
indicators that predict PACU LOS. Likewise, patient-centric factors - age, past
smoker, and cardiac failure - identified here have also been identified as predictors
of prolonged PACU LOS. Neostigmine administration relates to the use of muscle
relaxants whose use has been shown to prolong LOS. Arterial line use likely relates
either to the complexity of the case or the patient’s pre-operative conditions,
or both. The significance of gender and CRNAs/SRNAs are unknown and will
require further investigation.

Interestingly, specific surgeons and anaesthesiologists were also predictors of
a prolonged LOS. While these features made the feature selection mechanism
unstable, the identification of two anaesthesiologists and five surgeons in the top
ten ranking levels point to the potential that practice and procedure variation can
vary enough to impact PACU LOS.

The ability to predict patient’s PACU LOS from peri-operative factors could
be invaluable in prospective and real-time bed management in the PACU, OR, and
hospital wards. If this prediction is updated with online information, mainly by
monitoring post-operative oxygen saturation, future work could lead to real-time
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LOS algorithms based on peri-operative factors to predict, manage and possibly
intercept predicted, prolonged LOS.

This paper makes use of straightforward linear regression methods as the data
contains many features, has no clear structure, and has a high amount of variabil-
ity. Nonlinear models (e.g. kernel smoother) offer many advantages to implicitly
detect complex nonlinear relationships between the variables. However, they are
prone to over-fitting and can offer less insight into the rationale of the results.
Future work may include testing the data using non-linear approaches to test if
the performance can be further improved.
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Chapter 8

Discussion and Conclusions

8.1 Summary and discussion of results

This thesis has proposed and demonstrated the application of pattern recognition
tools to log, assess and predict surgical workflow parameters. The thesis did
not directly contribute to reduce errors and safety in the OR. However the tools
developed in the thesis can be used to support standarization of surgical workflow
to both reduce errors and support surgical planning. We have used different types
of surgical data to predict outcomes about safety and efficiency of surgeries. In
this section the combined main results and conclusion for the Chapters 2-7 are
given.

Evidence-based justification of surgical practice is becoming increasingly rel-
evant to avoid adverse events. Unlike other medical treatments, surgery is a
skill-dependent, multistep procedure. This makes evidence-based studies in a tra-
ditional RCT framework difficult to be designed. We proposed pattern recognition
as an alternative approach in Chapter 2 which allows us to estimate the safety,
effectiveness and also efficiency of a surgical treatment for individual patients, us-
ing the available biased, noisy and incomplete data. Although it does not provide
the same level of evidence as an RCT, it allows for variations in surgical practice
and patient anatomy.

During pre-operative planning, demographics and comorbidities are collected
daily from patient’s pre-operative history and physical examinations. In Chapter
3 we have evaluated different classifiers based on the available evidence from pre-
operative data to distinguish between patients with complex and simple surgeries.
Experiments showed that intraoperative complexity can be predicted before sur-
gery from readily available preoperative data with an accuracy up to 83% using
an LDC or SVM classifier. This study also showed that patients, with inflamma-
tion, wall thickening, male sex and high BMI, tend to be at high risk for complex
laparoscopic cholecystectomy surgeries. The trained classifiers can be used in pre-
operative setting to optimize the preoperative planning by taking the necessary
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100 DISCUSSION AND CONCLUSIONS 8.1

precautions for the predicted complex surgeries.
By measuring surgical workflow and matching it with well-defined workflows

(i.e. best practices), meaningful connections between structure, function and
mechanism can be made. In Chapter 4, we have used instrument signals to detect
surgical high-level workflow activities during surgery. Experiments on a noiseless
dataset of ten surgeries show that it is possible to recognize surgical high-level
tasks with detection accuracies up to 90% using instrument signals. By detecting
the used surgical instrument on the laparoscopic feed, the proposed framework
can detect the phase of the surgery. The presented framework can be used in
an intra-operative setting to log the surgical activities for workflow assessment
purposes, and to optimize the peri-operative planning by real-time updates on
the expected finishing time of surgeries.

To support the design of workflows consensus from real practice, the starting
point for workflow mining is to generate the so-called “workflow log” containing
measurements of surgical activities as they have been executed. In Chapter 5, we
have developed a tracking system to detect and track instruments in endoscopic
video using biocompatible colour markers. The system can track one or multiple
instruments in the endoscopic video and generate a workflow log of the surgery.
Experimental results show that the proposed method can be run in real-time.
Moreover, it is robust to partial occlusion and smoke. The system shows high
sensitivity and specificity results for blue, green and yellow colours. The tracking
system in combination with the workflow segmentation system can be used in a
fully automatic way for real-time activity logging during surgery.

Variations in surgical workflow are considered a medical necessity. Acknow-
ledging these variations, leaves us with a valid concern on how adequate the
treatment of patients at a certain point of care is [GM10]. The lack of con-
sensus about how a surgical problem should be addressed leaves surgical practice
dependent on the surgeon’s individual experience and skills. In Chapter 6 we
have presented a new approach for deriving surgical consensus from running sur-
geries. We have shown how sequence multi-alignment can be used to derive a
generic consensus that can be used as a ground truth for detecting outliers during
surgery. The derived consensus is shown to conform to the main steps of the lap-
aroscopic cholecystectomy surgery as defined in surgical best practices. Although
it is important to monitor the compliance of surgical workflow with guidelines and
standards in itself, it is also interesting to measure the (frequency of) deviations
(e.g. outliers) from the general consensus. For these deviations, the underlying
reasons can be analysed by focusing on “process deviations” (concerning modific-
ations in treatment). We also showed in Chapter 6 how outliers can be derived
using pairwise global alignment. This approach in combination with the tracking
system can be used to automatically monitor the compliance of surgical workflow
with the consensus.

Finally, we have applied regression analysis on peri-operative data to predict
the length of stay (LOS) of patients in the Post Anaesthesia Care Unit (PACU)
in Chapter 7. PACU LOS can be predicted by perioperative factors with an im-
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provement of 12-18 minutes compared to using the mean baseline. The regression
model can be used in a peri-operative setting to predict the PACU LOS right after
the surgery. The predicted values can be used to optimize the planning of time
and resources needed for the individual patients at the PACU unit. If combined
with real-time postoperative oxygen saturation monitoring during the recovery at
the PACU unit, future work could lead to real-time update of the PACU LOS
prediction, resulting in a tool to manage prolonged PACU LOS.

8.2 Future research directions
This thesis sets a first step towards the processing of surgical data using advanced
pattern recognition tools to improve safety and efficiency of surgeries. However
there are many unsolved problems that can be investigated in future research, of
which a selection is listed below:

• Automated assessment of a surgeon’s skill during surgery: It is an unresolved
problem of how to measure surgical skills (e.g. motoric skills) in-vivo in
surgery. There are a lot of signals that can be used to measure surgical
tasks, however, how to analyse those signals to give an objective assessment
about surgical skills is currently unresolved.

• Extending the results to other surgical specialties: To the best of the au-
thor’s knowledge, automatic workflow segementation is mostly applied in
laparoscopic cholecystectomy because of its standard workflow and high fre-
quency of occurrence. We recommend exploring the possibilities for work-
flow segmentation for other specialties of surgery.

• Continuous online updating of predicted parameters: This thesis shows how
prior knowledge can be used to predict parameters. For future work, we
propose to continuously update these estimates during surgery to get an
increasingly better estimate as the procedure nears completion.

• Workflow logging for novel surgical techniques: It is hard to predict the
future of surgical procedures. After more than 20 years since its introduc-
tion, laparoscopic surgery is steadily becoming the conventional technique.
Today, new surgical treatment methods are introduced such as monoport,
NOTES (natural port) and robotic surgery. Robotic surgery is currently in
its infancy and faces many obstacles, yet could produce huge amounts of
data about kinematics of surgical movements. We propose to explore the
low-level data produced from (robotic) surgery to improve the accuracy of
workflow logs for surgical procedures.

Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 111



Optima Grafische Communicatie -  thesis_Lbouarfa v5.pdf - April 19, 2012 - Page: 112



Appendix A

Supplementary material for Chapter
2

In this appendix we show how to evaluate the performance of classifiers.

Classification performance criterion

Assume a classifier is constructed (i.e. trained) using known instances of patients
belonging to one of two classes. Although the classifier can show very good
performance for all patients in the training dataset, this is no guarantee that the
classifier will perform well for new datapionts (See Figure 2.2 for an illustration
of this). Thus the performance of the classifiers needs to be evaluated with new
datapoints.

Different criteria can be used to evaluate the classification performance. Com-
mon criteria to evaluate classification performance are the classification error and
the Area Under the Curve (AUC) of an (Receiver Operating Curve) ROC curve.
The classification error is often used for classifier evaluation through the straight-
forward counting and calculation of the percentage of misclassified records in a test
set. For our two class classification problem, assume that a classifier f is evaluated
on a test set χ = {(xi, yi), i = 1, ..., N}, with xi ∈ Rp as the p-dimensional feature
vectors and y ∈ {ω+, ω−} as class labels indicating whether surgeries are easy

or complex. The classification error is estimated by: ε = 1
N

∑N
i=1 I(f(x) 6= yi),

where I(.) is the indicator function that outputs 1 when the statement is true and
0 otherwise [Tax08]. One disadvantage to this measure is that it is sensitive to
class priors [Tax08].

The AUC is a natural criterion for measuring the classification performance
of a classifier. In basic terms, it calculates the probability that a randomly se-
lected positive (datapoint from the first class) is ranked before a randomly se-
lected negative (datapoint from the second class) [Lok01]. It is a widely used
measure of ranking performance. It can be calculated by E = 1 − AUC =
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1− 1
N+N−

∑N+
i=1

∑N−
j=1 I(f(xi) > f(xj)), where N+ and N− refer to the number

of objects from the positive and negative classes, respectively. For our dataset,
where N+ = 257 and N− = 80, the AUC error remains a relative measure inde-
pendent of those priors. Furthermore, the AUC tends to generate a more stable
estimate of performance than does the classification error [Tax08].

Classifier learning curve

The performance of classification algorithms often increases with the number of
observations used to train the algorithm. Also if we have an infinitely large set
of training examples the most complex classifier will generally have a better per-
formance when compared to a simple classifier. For small sample sizes, however,
simple classifiers are preferred since complex classifiers may overfit the pattern
as described in Section 2.3.2. A learning curve is a graphical representation of
this trade-off and is used to fine-tune the classifier complexity and appropriate
training size. The learning curve plots the criteria (e.g. ε or AUC see SectionA)
of the classifier for increasing training set sizes. The learning curve indicates per
classifier what is a sufficiently large training set size and shows for each classifier
the potential for performance improvement through the availability of more data.
Figure A.1 shows the ’learning curve’ of two different classifiers, Classifier1
shows a flat learning curve after n patients. At n patients the classifier achieved
its maximum performance and more training data would most likely not signific-
antly improve the performance of the classifier. In contrast, the performance of
Classifier2 is still improving which means it will most likely benefit further from
more training data.

training size 
(e.g. number of patients)
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�c

at
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n 
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Minimal error

n

Classi�er 1
Classi�er 2

Figure A.1: Classifier learning curve: Classifier1 shows a flat curve after n training
samples, Classifier2 could use more training data to minimize its error.

Feature learning curves

In many classification problems features are reduced to a smaller set to allow
stable and better results. Feature selection is used as the first step for classific-
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ation efficiency reasons to remove redundant features. Feature learning curves
visualize the relationship between the training size, classification error and the
number of features used (i.e dimensionality of the feature space) as illustrated in
A.2. They are used to select the smallest number of features required, without
negatively impacting the classification error. For high dimensional spaces we need
more training samples to train a classifier and a more complex classifier to fit the
pattern. For a finite training size, however, there is a risk that those complex clas-
sifiers overfit as described in Section 2.3.2, reducing the classification performance.

Feature set size 
Classi�er complexity
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ro
r

training size

Minimal error

Figure A.2: Feature learning curve: Given the number of training samples n, a min-
imum error is obtained for a specific number of features

Feature ranking

For clinical studies, it is common to measure the significance and rank the in-
dividual features. Feature selection allows the selection of a subset of features
proven to be significant in predicting a specific outcome. Individual features,
when used alone, may not be relevant in predicting specific outcome, while in
combination with other feature(s) they make a strong predictor. Feature ranking
is useful for determining the (clinically) relevant subset of features amongst all
collected features.

By randomly selecting a given percentage of datapoints from the training set,
the features can be ranked using a feature selection mechanism. By repeating
this experiment many times, insight can be obtained in the significance and the
stability of a specific subset of features. Note that even the same features could be
ranked in different orders, depending upon the samples selected from the training
set. Figure A.3 shows an example of a ranking plot of different features from
350 runs. For each run, let’s say 50% of the samples were randomly selected
from the dataset and ranked by using a feature selection algorithm [Tax08]. The
general trend is for each rank level to be dominated by a small number of features.
Exception to this trend appeared in the higher levels (8-10), where the features
become apparently less instable and hence less relevant for the classification task.
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Figure A.3: Feature ranking using a specific feature selection mechanism
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Appendix B

Supplementary material for Chapter
7

In this appendix describe the pre-operative features used for predicting the post
anaesthesia care unit - length of stay (PACU LOS)

B.1 Pre-operative features
• Gender: Binary feature referring to patient Gender

• Age: Ordinal feature referring to patient Age

• BMI: Ordinal feature referring to Body Mass Index

• Current Smoker: Binary feature referring to Current Smoker

• HTN: Binary feature referring to Hypertension Diagnosis

• Diabetes: Binary feature referring to Diabetes diagnosis

• Cardiac Failure: Binary feature referring to Cardiac Failure diagnosis

• COPD: Binary feature referring to COPD diagnosis

• Cocaine Use Current: Binary referring to Cocaine Use Current

• Cocaine Use Past: Binary feature referring to Cocaine Use Past

• Alcohol Use Current: Binary feature referring to Alcohol Use Current

• Alcohol Use Past: Binary feature referring to Alcohol Use Past

• Opiate Use Current: Binary feature referring Opiate Use Current
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• Opiate Use Past: Binary feature referring Opiate Use Past

• Anaesthetists ID: Binary feature referring Anaesthetists ID

• Surgeon ID: Binary feature referring Surgeon ID

• Anes Type General: Binary feature referring Primary Anesthetic - General
Anaesthesia

• Anes Type MAC: Binary feature referring Primary Anesthetic - Monitored
Anaesthesia Care

• Anes Type Regional: Binary feature referring to Primary Anesthetic - Re-
gional Anaesthesia

• Anes Attending: Binary feature referring to Anaesthesia Attending Name

• ASA: Discreet feature referring to ASA physical status

B.2 Intra-operative features
• Anes: Resident Binary feature referring to Anaesthesia Resident Name

• CRNA: Binary feature referring to Certified Registered Nurse Anaesthetist
Name

• SRNA: Binary feature referring to Student Registered Nurse Anaesthetist
Name

• Handoff: Binary feature referring to transition in care by AnesAtteding,
AnesResident, CRNA, SRNA

• Isoflurane: Used Binary feature referring to If Isoflurane is used before start
of surgery

• Desflurane: Used Binary feature referring to If Desflurane is used before
start of surgery

• Sevoflurane: Used Binary feature referring to If Sevoflurane is used before
start of surgery

• Midazolam: Binary feature referring to If Midazolam is used before start of
surgery

• Fentanyl: Binary feature referring to If Fentanyl is used before start of
surgery

• Morphine: Binary feature referring to If Morphine is used before start of
surgery
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• Hydromorphone: Binary feature referring to If Hydromorphone is used be-
fore start of surgery

• Meperidine: Binary feature referring to If Meperidine is used before start
of surgery

• Droperidol: Binary feature referring to If Droperidol is used before start of
surgery

• Haloperidol: Binary feature referring to If Haloperidol is used before start
of surgery

• Ondansetron: Binary feature referring to If Ondansetron is used before start
of surgery

• Dexamethasone: Binary feature referring to If Dexamethasone is before
start of surgery

• Scopalamine: Binary feature referring to If Scopalamine is used before start
of surgery

• Neostigmine: Binary feature referring to If Neostigmine is used before start
of surgery

• Physostigmine: Binary feature referring to If Physostigmine is used before
start of surgery

• Glycopyrrollate: Binary feature referring to If Glycopyrrollate is used before
start of surgery

• Phenergan: Binary feature referring to If Phenergan is used before start of
surgery

• Ephedrine: Binary feature referring to If Ephedrine is used before start of
surgery

• Phenylephrine: Binary feature referring to If Phenylephrine is used before
start of surgery

• Dopamine: Binary feature referring to If Dopamine is used before start of
surgery

• Epinephrine: Binary feature referring to If Epinephrine is used before start
of surgery

• Dobutamine: Binary feature referring to If Dobutamine is used before start
of surgery

• Vasopressin: Binary feature referring to If Vasopressin is used before start
of surgery
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• Ephedrine-AS: Binary feature referring to If Ephedrine is used before start
of surgery

• Epinephrine-AS: Binary feature referring to If Epinephrine is used after
start of surgery

• Phenylephrin-AS: Binary feature referring to If Phenylephrin is used after
start of surgery

• Dopamine-AS: Binary feature referring to: If Dopamine is used after start
of surgery

• Dobutamine-AS: Binary feature referring to: If Dobutamine is used after
start of surgery

• Vasopressin-AS: Binary feature referring to Vasopressin used after start of
surgery

• PRBC: Binary feature referring to packed red blood cells

• AlineUsedInCase: Binary feature referring to placing intra-arterial catheter

• CentralLineUsedInCase: Binary feature referring to Placing an Central ven-
ous line

B.3 Post-operative features
• Operative time: Ordinal feature referring to Perioperative time

• Anaesthesia time: Ordinal feature referring to Anaesthesia time

• Surgical time: Ordinal feature referring to Intraoperative time

• PONV: Binary feature referring to Postoperative Nausea and Vomiting
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Summary

Recognizing surgical patterns

In the Netherlands, each year over 1700 patients die from preventable surgical
errors. Numerous initiatives to improve surgical practice have had some impact,
but problems persist. Despite the introduction of checklists and protocols, patient
safety in surgery remains a continuing challenge. This is complicated by some
surgeons viewing their own work as an artistic manoeuver whose workflow cannot
be captured. However, safeguarding patient safety is also a hospital’s management
responsibility and no longer only in the surgeon’s hands.

In spite of the inherent variations, surgeries of the same kind produce similar
data, and are usually performed in similar workflows. Surgery is characterized by a
peri-operative pipeline of pre-, intra- and post-operative processes. To both reduce
errors and improve efficiency, the workflow in the peri-operative pipeline should
be designed and planned as effectively as possible in terms of flow of patients and
allocation of scarce resources such as operating rooms, instruments and personnel.
Currently, planning is done on a very basic level, without using real-world data to
learn and improve efficiency. Fortunately, there is lot of available, but unexploited
data about surgical interventions that can be used for this purpose.

The aim of this thesis is to use acquired and registered peri-operative data to
support hospital management to improve safety and efficiency in surgery. The
method of assessing safety and efficiency in surgery for individual patients needs
to be tailored to each patient. As a result generalization of the results is difficult.
We discuss how pattern recognition (PR) provides tools for the assessment of
surgical outcome for individual patients. It also allows for handling of outliers
and does not impose the same restrictions on data collection procedures as for
randomized controlled trials. We show that PR is a pragmatic next step towards
data intensive operating rooms with evidence based support for surgeries. Below
the techniques as proposed in this thesis are briefly described.

To support pre-operative planning of surgeries, assessment of surgical complex-
ity is needed beforehand in order to prepare and possibly avoid complications and
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delays. This complexity assessment can also aid surgeons in decisions regarding
how to proceed with the surgical procedure, for instance by taking extra precau-
tions or making a referral to a more experienced surgeon when a complex surgery
is predicted. We show how to use readily available patient data to predict surgical
complexity. Classifiers are trained and evaluated using readily collected data from
patients undergoing laparoscopic cholecystectomy (LAPCHOL). It is shown that
complexity of LAPCHOL surgeries can be predicted in the pre-operative stage
with an accuracy up to 83% using an LDC or SVM classifier. We also derived the
set of features that are relevant for predicting complexity including inflammation,
wall thickening, sex and BMI score.

To realize intra-operative safety and efficiency goals in surgery, hospitals are
searching for autonomous systems for monitoring the surgical workflow in the
operating room (OR). In this thesis we propose an autonomous registration tech-
nique for the OR. Registering the time of use of surgical instruments and the
sequence in which they are used enables us to detect the surgical steps, includ-
ing the duration of each step. By deploying this as a realtime system, dynamic
support for the surgical team and dynamic planning of patients can be performed.

For monitoring the usage of surgical instruments, signals from sensors which
can detect video, motion and RFID tags can be used. For the application in the
OR, it is necessary that these sensors are designed to meet the requirements of the
OR environment, specifically with respect to sterilization and non-intrusiveness.
We propose a tracking system to detect and track instruments in endoscopic video
using biocompatible and sterilization-proof colour markers. The system tracks
single and multiple instruments in the video. The output of the tracking tool is
a log file with an identifier of the instrument used and the duration of its use for
each entry.

These instrument logs are then used for workflow mining and outlier detection
in surgery. We derived a surgical consensus from multiple surgery logs using global
multiple sequence alignment. We showed that the derived consensus conforms to
the main steps of laparoscopic cholecystectomy as described in best practices.
Using global pair-wise alignment, we showed that outliers from this consensus
can be detected using the surgical log. These outliers are commonly simple vari-
ations in the execution of the surgical procedure, but can also represent serious
complications or errors.

To improve post-operative efficiency, accurate predictions of patients’ length
of stay (LOS) in the postanesthesia care unit (PACU) may lead to cost savings
and a number of other efficiency benefits. We propose to use available peri-
operative data to predict the PACU LOS, using the features case demographics,
intra-operative parameters, medications, patient co-morbidities, and surgeon. A
linear regression method was used along with ordinary least square regression
and ‘least absolute shrinkage and selection operator’ (LASSO-) regression. A
forward feature selection approach was then used to identify and rank factors
that impact PACU LOS. We showed that PACU LOS can be predicted by peri-
operative factors with an improvement of 12-18 minutes compared to using the
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mean baseline. If this prediction is updated with online information, mainly by
monitoring post-operative oxygen saturation, future work could lead to real-time
LOS algorithms based on peri-operative factors to predict, manage and possibly
intercept anticipated, prolonged PACU LOS.

This thesis has proposed and demonstrated the application of pattern recog-
nition tools to log, assess and predict surgical workflow parameters. Work in this
thesis did not directly contribute to reduce errors and safety in the OR. However,
the tools developed in the thesis can be used to support standardization of sur-
gical workflow to both reduce errors and support surgical planning. Moreover, the
proposed techniques for the operating room can be used in other medical domains
such as the intensive care unit with only small contextual modifications.

Loubna Bouarfa
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Samenvatting

Herkennen van patronen in chirurgie
In Nederland overlijden ieder jaar 1700 patiënten vanwege te vermijden fouten in
de operatiekamer. Een veelvoud van initiatieven ter verbetering van de chirurgie
hebben de situatie verbeterd, echter nog niet opgelost. Zelfs met de introductie
van checklists en protocollen blijft het waarborgen van patiëntveiligheid voor,
tijdens en na operaties een voortdurende strijd. Een complicerende factor is het
beeld dat sommige chirurgen van het opereren hebben: meer een kunstvorm dan
het volgen van een in een workflow vastgelegde processen en procedures. Echter,
het waarborgen van patiëntveiligheid is nu ook een zaak van het bestuur van het
ziekenhuis en niet alleen in de handen van de chirurg.

Ondanks de inherente verschillen in verschillende uitvoeringen van dezelfde
chirurgische ingreep, leveren ze dezelfde soort gegevens op en worden meestal
op een gelijksoortige manier uitgevoerd. Hiermee zijn ze met elkaar te verge-
lijken. Een chirurgische ingreep is op te delen in een opeenvolgende serie aan
peri-operatieve processen in de pre-, intra- en post-operatieve fase. Om voor
chirurgische ingrepen zowel fouten te vermijden als de efficiëntie te verhogen is
het van belang deze serie van processen zo effectief mogelijk te ontwerpen en in
te plannen zodat de doorstroming van patiënten en het toekenning van beperkt
beschikbare middelen (o.a. instrumenten, locatie en mensen) wordt geoptimali-
seerd. De huidige planningssystematiek in ziekenhuizen is meestal zeer basaal.
Hier wordt er geen gebruik wordt gemaakt van praktijkgegevens om de systema-
tiek bij te sturen en zo de efficiëntie vanuit de praktijk te verbeteren. Dit is een
gemiste kans, aangezien de hiervoor benodigde gegevens vaak al wel worden verza-
meld, maar echter niet voor dit doel worden ingezet. Het doel van dit proefschrift
is om bestaande, reeds verzamelde, gegevens rondom de operatie te gebruiken
om het management van een ziekenhuis te ondersteunen in het verbeteren van de
patiëntveiligheid en efficiëntie van chirurgische ingrepen.

De veiligheid en efficiëntie van een enkele chirurgische ingreep is zo sterk afhan-
kelijk van de situatie van de patiënt dat het bepalen hiervan niet op een generieke
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wijze kan plaatsvinden. Hierdoor is het zeer lastig conclusies te trekken die al-
tijd van toepassing zijn en zijn er dus meestal zeer veel uitzonderingen op een
enkele regel. Technieken van patroonherkenning (PR) bieden mogelijkheden om
de uitkomst van een chirurgische ingreep op gebied van veiligheid en efficiëntie te
beoordelen. PR biedt daarnaast een raamwerk voor het identificeren en analyse-
ren van onverwachte gebeurtenissen en is niet gebonden aan dezelfde beperkingen
om gegevens te verzamelen die gelden voor gerandomiseerde onderzoeken met een
controlegroep. Hierdoor is PR een pragmatische stap op weg naar de slimme
operatiekamer, met op wetenschappelijk bewijs gestoelde ondersteuning van de
chirurg en zijn team. Hieronder worden de in dit proefschrift voorgestelde tech-
nieken beschreven, ingedeeld naar fase (pre-, intra- en post-operatief).

Om de pre-operatieve planning van operaties te verbeteren is het van belang
van tevoren de complexiteit (en daarmee de verwachte duur, waarschijnlijke com-
plicaties en benodigde middelen) van de ingreep te kunnen inschatten. Ook kan
deze inschatting de chirurg helpen bij het kiezen van de aanpak, bijvoorbeeld
door voorafgaand aan de operatie extra voorzorgsmaatregelen te treffen of de
patiënt door te verwijzen naar een gespecialiseerde chirurg of ziekenhuis indien
een zeer complexe operatie wordt verwacht. We laten zien dat op basis van reeds
van tevoren beschikbare gegevens deze complexiteit kan worden ingeschat. Tij-
dens dit onderzoek zijn classificatiesystemen getraind met en hierna gebruikt voor
reeds verzamelde gegevens van patiënten die een laparoscopische cholecystectomie
(LAPCHOL) hebben ondergaan. Hierbij kan de complexiteit met een nauwkeurig-
heid van 83% worden bepaald met een LDC of SVM classificatiesysteem. Ook de
vier belangrijkste typen gegevens zijn hierbij gëıdentificeerd, namelijk: aanwezig
zijn van een ontsteking, dikte van de galblaaswand, geslacht en BMI score.

Om de veiligheid en efficiëntie intra-operatief te verbeteren, zijn ziekenhuizen
op zoek naar automatische registratiesystemen die de workflow in de operatieka-
mer vastleggen. In dit proefschrift stellen we een techniek op basis van gegevens
over het gebruik van instrumenten voor. Op basis van deze gegevens worden ver-
volgens de chirurgische stappen en fase en hun duur afgeleid. Door dit toe te
passen in een realtime systeem kan het chirugisch team realtime worden inder-
steund en kan de planning voor de volgende patient realtime worden bijgestuurd.

Het gebruik van instrumenten kan op allerlei manieren worden gevolgd, onder
andere via specifieke sensoren voor het detecteren van video, beweging en RFID
tags. Sensoren die kunnen worden toegepast in de operatiekamer moeten aan een
veeltal eisen voldoen, met name omtrent sterilisatie, en mogen de chirurg en zijn
team niet belemmeren in het uitvoeren van de operatie. We stellen een systeem
voor dat het gebruik van instrumenten detecteert op basis van endoscopische
video. De instrumenten worden in de video realtime herkend aan de hand van
weefsel compatibele en steriliseerbare kleurmarkeringen. Dit systeem kan zowel
een enkel als meerdere instrumenten tegelijkertijd volgen en heeft als resultaat een
logfile. Hierin is geregistreerd wanneer en hoe lang ieder instrument is gebruikt.

De logfiles van meerdere operaties kunnen vervolgens worden gebruikt voor
workflow mining en het detecteren van onverwachte gebeurtenissen. We laten
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zien dat de consensus workflow kan worden afgeleid van meerdere logfiles met
multiple sequence alignment. Hierbij voldoet de afgeleide consensus workflow
aan de hoofdstappen voor een LAPCHOL, zoals beschreven in bestaande best
practices. Middels global pair-wise alignment kunnen afwijkingen van een operatie
ten opzichte van de consensus workflow worden gevonden. Deze afwijkingen zijn
normaliter kleine variaties in de uitvoering van de chirurgische ingreep, maar
kunnen ook het resultaat zijn van ernstige complicaties of fouten.

Een mogelijkheid om de post-operatieve efficiëntie te verbeteren is het vooraf
betrouwbaar kunnen inschatten van de duur van het verblijf van de patiënt in
de verkoeverkamer. Hiervoor kunnen bestaande peri-operatieve gegevens wor-
den gebruikt, waaronder demografische kenmerken van de patiënt (o.a. leeftijd
en geslacht), gegevens verzameld tijdens te operatie (o.a. duur en complicaties),
toegediende medicijnen, patiënt comorbiditeit en behandelende chirurg. Lineaire
regressie is gebruikt samen met least squares en least absolute shrinkage and se-
lection operator (LASSO) regressie. Middels forward feature selection methoden
zijn vervolgens de meest bepalende typen gegevens bepaald om de duur van het
verblijf in de verkoeverkamer te voorspellen. We laten zien dat door gebruik te
maken van deze gegevens bij de voorspelling deze 12 tot 18 minuten nauwkeuriger
kan worden gedaan ten opzichte van de gemiddelde waarde. Door deze voorspel-
ling te verbeteren middels realtime gegevens, voornamelijk door het meten van
de zuurstof verzadiging, kan deze voorspelling tijdens het verblijf in de verkoe-
verkamer steeds betrouwbaarder worden. Dit is een onderwerp van toekomstig
onderzoek.

In dit proefschrift zijn er verschillende toepassingen van patroonherkenning
technieken voorgesteld en toegepast om chirurgische workflow te registreren, ana-
lyseren en voorspellen. Het hier getoonde werk heeft geen directe bijdrage geleverd
aan het verminderen van fouten en verbeteren van patiëntveiligheid in en rondom
de operatiekamer. Echter de technieken die hier zijn ontwikkeld kunnen wel wor-
den gebruikt om de standaardisatie van chirurgische workflow te ondersteunen
en zo zowel fouten te verminderen als de efficiëntie te verbeteren. Het is daar-
naast mogelijk deze technieken - met beperkte aanpassingen - in andere medische
toepassingsgebieden te gebruiken.

Loubna Bouarfa
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