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Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one common neuro-behavioral
disorder, for which a commonly prescribed psychotropic drug is Methylphenidate
(MPH). The effect of long-term medication use on white matter tracts is unclear.
Diffusion tensor imaging (DTI) is an approach to research white matter properties by
modelling the anisotropy of water diffusion. Tract-Based Spatial Statistics (TBSS)
based on DTI is commonly used to perform a voxel-wise statistical analysis on a rep-
resentation of white matter tracts. A framework based on a consistent model selection
followed by modified TBSS shows an improvement of statistical power and a higher
consistency of fiber property estimation in the crossing-fiber regions.

The aim of this thesis is to study the long-term effect of MPH on white matter
tracts of ADHD patients with different medication duration. Two frameworks were
applied to model the white matter based on DTI of the brains and for a voxel-wise
statistical analysis. In the reference framework, we fitted the data to the single ten-
sor model and modified the TBSS by using a high-dimensional registration. In the
proposed framework, we fitted the ball-and-sticks model to the data and applied the
consistent model selection (CMS) with the modified TBSS. A fiber orientation atlas
constructed from our data improved the consistency of fiber orientation estimation by
applying an orientation prior. Besides, we improved CMS by building the complex-
ity atlas based on the improved fiber metrics, and by optimising the orientation prior
to spatially localise the width of prior in each voxel. Intraclass correlation coefficient
(ICC) calculated through separate fitting of four reproducibility datasets was used to
evaluate the consistency of fitting with the optimised orientation prior.

In the voxel-wise statistical analysis of both frameworks, significant differences
were not found among the white matter tracts of subjects under different duration
of medication. Fitting with the optimised prior shows a higher ICC compared with
the use of global fixed prior width during the fitting. In addition, applying CMS to
another dataset appears an improved statistical power in fiber-crossings, which proves
the generalizability of this pipeline.

In conclusion, no long-term effect of MPH was observed. We proposed the
pipeline of CMS as a general pipeline to describe fiber-crossings in the white mat-
ter, with our improvements including the way calculating complexity atlas and the
optimised orientation prior.
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1 INTRODUCTION

Chapter 1

Introduction
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neuro-
behavioral disorders, characterized by inattention and/or impulsivity-hyperactivity
[47]. Methylphenidate (MPH) is among the most commonly prescribed psychotropic
drugs for treatment of ADHD [19]. Previous research shows that short-term MPH
use leads to bigger changes in white matter characteristics in children compared with
adults with ADHD [10]. The changes are related with white matter (WM) tract de-
velopment. The influence of long-term treatment still needs to be investigated, based
on a longer follow-up studies of ADHD patients with different medication duration.

To study WM structure, diffusion-weighted magnetic resonance imaging (DW-
MRI) is commonly used, in which the anisotropy of water diffusion is measured to
assess the local properties of local WM tracts [8]. Diffusion tensor imaging (DTI)
is an approach to model DW-MRI, in which the anisotropy is modelled by the sin-
gle tensor model (ST), which assumes a Gaussian diffusion profile [6]. Fractional
anisotropy (FA) value is obtained from the diffusion tensor to describe the degree of
directionality of WM structure.

To analyse and compare the FA images of different groups, Tract-based spatial
statistics (TBSS) is a pipeline formulti-subject diffusion imaging analysis [38]. TBSS
consists of a registration to establish spatial correspondence of all subjects in a com-
mon space, followed by a projection of FA values to a meanWM tract skeleton. How-
ever, [14] shows that optimised nonlinear image registration based on Elastix toolbox
[23] without projection produces better alignment on the white matter skeleton than
the registration-projection approach in TBSS.

It is well known that up to 90% of WM voxels contain more than one coherently
orientated fiber population, which do not comply with the assumption of the single
tensor model to represent the local diffusion behavior [2] [45]. In such voxels, it
is not straightforward to evaluate the properties of WM based on FA. The reason is
that spurious changes in the radial and axial diffusivity may be detected, which lack
sensitivity of FA to detect changes in the white matter microstructure [46]. Metrics
related with fiber population based on advanced models are needed for a meaningful
analysis. To provide a more accurate description of diffusion in crossing-fiber re-
gions, several models were proposed, e.g. the ball-and-sticks model [9], multi-tensor
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1 INTRODUCTION

models [45] [12], or CHARMED [4]. These models describe the diffusion signal
by modeling each fiber population separately, but require more extensive DW-MRI
acquisition protocols. A model selection among the advanced models is needed to
determine the number of fiber populations.

A framework was proposed to label the fiber populations based on their esti-
mated orientations to analyze crossing-fiber regions of WM in TBSS [17]. However,
it gives inconsistent labelling of fiber populations in every voxel, which leads to in-
consistent modelled metrics of each fiber population across subjects. Recently, Dr.
Joor Arkesteijn introduced a framework for consistent model selection (CMS) that
enhances the consistency of diffusion model parameters and improves the statistical
power in voxel-wise statistical analysis of crossing-fiber regions [3]. This is achieved
by the introduction of an ‘orientation prior’ to promote inter-subject correspondence
of estimated fiber orientations, and the application of a model complexity atlas to de-
termine the number of fiber populations in a common space instead of in each subject.
The construction of complexity atlas needs to be optimised, which does not take the
advantage of the fiber properties estimated from CMS. Another limitation of CMS is
the choice of the width of an Gaussian-shaped ‘orientation prior’. In CMS, a fixed
width of ‘orientation prior’ is used for all the voxels, which is too rigid for an adequate
fitting. A voxel-wise width of ‘orientation prior’ needs to be defined.

In this thesis, we focus on the long-term effects of MPH on the human white mat-
ter tracts of adult patients with ADHD. The aim is to find out if there is a significant
difference between groups including patients with different length of the medication
use. We expect to see a bigger change of WM tracts of patients with long-term med-
ication than others with shorter medication. We applied two frameworks. The ref-
erence framework (Section 3.2) consists of a modified TBSS based on single tensor
fitting of DW-MRI data. The proposed framework (Section 3.3) includes the mod-
ified TBSS and the consistent model selection based on fitting the ball-and-sticks
model to the data. We expect an enhanced model estimation and improved statistical
power in fiber-crossings under the application of CMS.

Besides, we improved the CMS pipeline. First, we introduced an alternative way
to build the complexity atlas based on the estimated fiber properties from the CMS
(Section 3.3.6). We also optimised the orientation prior to spatially localise the width
of orientation prior in each voxel, instead of a fixed width of the prior (Section 3.3.7).
The improvement of fitting under the optimised orientation prior was evaluated by a
reproducibility study. To prove the CMS pipeline is a general framework, we applied
the CMS to another dataset to show the improved statistical power under application
of CMS (Section 4.3). The result is valuable for an adequate clinical instruction.
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2 THEORETICAL BACKGROUND

Chapter 2

Theoretical Background

2.1 White matter in the brain

The central nervous system has two kinds of tissues: greymatter (GM) andwhitemat-
ter (WM). Greymatter, which has a pinkish-grey color in the living brain, contains the
cell bodies, dendrites and axon terminals of neurons. On the other hand, white matter
contains relatively few cell bodies and is composed mainly of long-range myelinated
axon tracts. White matter forms the bulk of the deep parts of the brain and the super-
ficial parts of the spinal cord. White matter is composed of bundles, which connect
various grey matter areas of the brain to each other, and carry nerve impulses between
neurons. Myelin (fatty white substance surrounding the nerve fibers) acts as an in-
sulator, which ensures the quality of transmission of electrical signals. Myelin also
increases the speed of transmission of all nerve signals by means of a conduction to
allow electrical signals to jump, rather than course through the axon [7].

2.2 MRI basic theory

In magnetic resonance imaging (MRI), magnetic fields are used to manipulate and
measure the magnetization of the nuclear spins in the body. Firstly, the nuclear
spins are aligned in the direction of a strong static magnetic field (B0 field, typi-
cally 1.5/3.0 Tesla). The nuclear spins (and therefore the magnetization) will start to
precess around this B0 field at a frequency known as the Larmor frequency, which is
proportional to the field strength of B0. Radio frequency (RF) fields are used to flip
the magnetization into a plane that is transverse to the B0 field. After the filpping
induced by the RF field, the magnetization of each nucleus recovers from the exci-
tation position to the original direction. This allows for measurement of the weak
RF fields generated by the precessing spins using receive coils. Gradient coils are
used to generate gradients along different directions in the static magnetic field and
introduce a positional dependency of the precession frequencies:

ν(r) = γ(B0 + G · r), (1)
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2.3 Diffusion weighted MRI 2 THEORETICAL BACKGROUND

where ν is the precession frequency of nucleus with spatial position r = (x,y,z), γ is the
gyromagnetic ratio scaled by 1/2π,B0 is the static magnetic field,G = (Gx, Gy, Gz).
As a result, spatial positions are encoded by the gradients, which makes it possible
to differentiate between signals coming from different positions in the body. Spa-
tial localization of the measured MRI signal is enabled by means of slice-selection,
frequency-encoding and phase-encoding. A pulse sequence consisting of a configu-
ration of RF and gradient pulses is at the basis of different types of image contrast.
For example, pulse sequences can be designed to generate contrast based on differ-
ences in the density of protons (PD), the decay rate of the transverse component of
the magnetization (T2-relaxation), or the recovery rate of the parallel component of
themagnetization (T1-relaxation). [33]

2.3 Diffusion weighted MRI

2.3.1 Diffusion in white matter

Particles are in constant motion in fluids at temperatures above absolute zero. This
is also known as Brownian motion [11]. Due to collisions with other atoms and
molecules, each atom or molecule makes random movements. In case of free dif-
fusion, a Gaussian distribution describes the random displacements after a time t .
The mean squared displacement is given by Einstein’s equation:

⟨
x2
⟩
= 2nDt, (2)

where n is the number of dimensions,D is the diffusion constant, and t is the diffusion
time. Diffusion can be hindered due to presence of diffusion barriers, which results
in shorter net displacements compared to free diffusion. For instance (Figure 1), in
white matter the diffusion (d⊥) perpendicular to the axon orientation is hindered or re-
stricted by the myelin sheaths around the axons, whereas diffusion(d∥) parallel to the
axon orientation is relatively free. The degree of hindrance is orientationally depen-
dent, which yields an anisotropic diffusion pattern. This anisotropic diffusion pattern
is measured by applying a pulse sequence considering particle diffusion, which is
explained below.
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2.3 Diffusion weighted MRI 2 THEORETICAL BACKGROUND

Figure 1: The diffusion in an axon (schematic drawing), adapted from [49]

Figure 2: The PGSE pulse sequence from [40]

2.3.2 Pulsed gradient spin echo pulse sequence

The history of diffusion started from Hahn in 1950 [15] who observed the diffu-
sion MRI signal. Torrey modelled the diffusion through a modification of the Bloch
equations in 1956 [43]. Subsequently, Stejskal and Tanner introduced strong bipolar
gradients in the pulse sequence to measure the diffusion in 1965 [39]. Their pulsed
gradient spin echo (PGSE) pulse sequence is still widely applied nowadays as the
bases for most diffusion-weighted MRI techniques.

The PGSE pulse sequence is shown in Figure 2. It contains a symmetric pair of
diffusion-sensitizing gradients before and after the 180◦ RF pulse. This switching of
gradients has no net effect in the case of a stationary spin, as the accumulated phase
during the first gradient is compensated by the second gradient. However, for spins
that diffuse along the gradient direction, a residual phase accumulates during the two
gradient pulses. This difference in phase results in attenuation of the measured MR
signal [27]. The larger the diffusion along the gradient orientation, the worse the
rephasing and the more attenuation of the diffusion-weighted signal is observed.

6



2.4 Diffusion tensor imaging 2 THEORETICAL BACKGROUND

2.3.3 Diffusion MRI signal

In case of Gaussian diffusion with apparent diffusion coefficient D, the diffusion-
weighted signal S can be modelled as:

S = S0 exp(−bD), (3)

where S0 is the signal obtained without diffusion-sensitizing gradients, and b (also
known as the b-value) is a parameter expressing the amount of diffusion weighting
computed as:

b = γ2G2δ2(∆− δ

3
), (4)

where γ is the gyromagnetic ratio,G is the gradient strength, δ is the gradient duration
of each diffusion-sensitizing gradient, and ∆ is the time between the two diffusion-
sensitizing gradients. In the brain regions of the CSF and the greymatter, the diffusion-
weighted MRI signal is relatively independent of the orientation while in the white
matter, the diffusion-weighted MRI signal depends strongly on the gradient orien-
tation due to the anisotropic diffusion. Higher b-value results in higher diffusion
contrast while decreasing the SNR of the image.

2.4 Diffusion tensor imaging

The diffusion MRI signal modelled as an exponential with a single scalar ADC is
only true in tissue with isotropic diffusion. If we want to describe anisotropic diffu-
sion, such as in white matter bundles, the 3D diffusion profile needs to be taken into
account [5]. The diffusion tensor (DT) models the diffusion profile as an ellipsoid by
assuming a single Gaussian diffusion process in a voxel. The DT is described by a 3
x 3 matrix [6]:

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (5)

with the diagonal elements representing the ADC in three orthogonal directions and
the off-diagonal elements representing the correlations between the diffusion of cor-
responding directions. In general, the orthogonal directions (x,y,z) are aligned with
the magnetic field gradients of the MR-system [26]. The matrix is symmetric so that
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2.5 Diffusion models 2 THEORETICAL BACKGROUND

only six elements are independent. Thus the DT can be estimated by solving a linear
system of seven acquisitions which consist of 6 acquisitions with non-colinear gradi-
ent directions and a b0 acquisition to estimate the non-diffusion weighted signal. The
eigenvectors and eigenvalues of the DT are used to describe the microstructure of a
tissue in a voxel. Particularly, the first eigenvector defines the orientation of the fiber
axons while the eigenvalues are used to calculate rotationally invariant measures such
as the degree of anisotropy (fractional anisotropy or FA) and mean diffusivity (MD)
[31]. The FA and MD are defined as:

FA =

√
3

3∑
i=1

(λi − λ)2√
2

3∑
i=1

λ2i

(6)

MD =
λ1 + λ2 + λ3

3
(7)

where λi denotes the i-th eigenvalue of the DT and FA ∈ [0, 1].
DTI is widely used in the field of neuroscience, especially for reconstructing

WM pathways from estimated fiber orientations using fiber tractography. Further-
more, the scalar measures can be used to investigate the progress of diseases such
as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism, and the
effects of education and aging on the brain [21].

2.5 Diffusion models

2.5.1 The Single Tensor model and limitations

In the DTI, the diffusion tensor (DT) models the diffusion profile as an ellipsoid,
which is also known as the single tensor model (ST). The single tensor model has
the assumption of a single Gaussian diffusion process in a voxel. Thus, the single
tensor model has several limitations. It does not hold in voxels with multiple fiber
populations where non-Gaussian diffusion is observed [45]. The prevalence of multi-
fiber voxels has been estimated to range from 33% up to 90% of the WM voxels [9]
[20]. Consequently, DTI-based tractography leads to erroneously reconstructed WM
pathways. Moreover, scalar variables are estimated ambiguously. For example, in
a voxel with two crossing fibers, the FA measured using DTI will be unexpectedly
decreased if there is an increase in the FA of one fiber population [13].
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2.6 Image registration 2 THEORETICAL BACKGROUND

2.5.2 Advanced diffusion models

Methods to address the issue of multiple fiber populations in a voxel are used, for ex-
ample, modelling the signal coming from different fiber compartments [9] [45] [51]
[4] [25]. To apply these methods, a more complicated data acquisition has to be used.
For example, a larger number of gradients for a single b-value (High angular resolu-
tion diffusion imaging or HARDI) [45] or sampling the space of diffusion weightings
b (q-space) in some other fashion [44] can be implemented.

For modeling the signal from multiple fiber populations, a general signal model
can be defined as a combination of signals from different fiber bundles and extra-
axonal compartments:

S = (1− f)
∑
i

viSfiber,i + fSextra−axonal, f ∈ (0, 1) (8)

where Sfiber and Sextra−axonal denote the signal arising from the fiber and extra-
axonal compartments, f stands for the volume fraction of the extra-axonal compart-
ment and vi represents the volume fraction of each fiber compartment.

2.6 Image registration

Image registration is an important tool in the field of medical imaging. In many clin-
ical situations, several images of a patient are made in order to analyse the patient’s
situation. These images are acquired with multi-modalities (X-ray scanners, Mag-
netic Resonance Imaging (MRI) scanners, Computed Tomography (CT), etc), with a
single modality but different scanners, at different moments of time or in different pa-
tient’s conditions. Combination of these images for a patient often yields additional
clinical information not apparent in a separate image. For this purpose, the spatial
relation between the images has to be found.

Two images with the same dimension are involved in the registration process:
the moving image IM(x) is aligned to fit the fixed image IF (x). The problem of
registration is finding a transformation T(x) = x+u(x) which allows to achieve the
alignment (equation 9).

IM(T(x)) = IF (x),T : ΩF ∈ Rd → ΩM ∈ Rd (9)

The quality of the alignment is defined by a distance or similarity measure S,

9



2.6 Image registration 2 THEORETICAL BACKGROUND

Figure 3: The task of image registration is finding a spatial transformation mapping
from one image to another. Left is the fixed image and right the moving image,
adapted from [22]

Figure 4: The main components of a registration algorithm in a block scheme from
[23]

for instance, the sum of squared differences (SSD). Because this problem is ill-posed
for nonrigid transformations T, a regularisation or penalty term P is often introduced
to constrain T. Generally, the registration problem is formulated as an optimisation
problem in which the cost function C is minimised:

T̂ = argmin
T

C(T ; IF , IM) (10)

C(T ; IF , IM) = −S(T ; IF , IM) + γP(T ) (11)

where γ weighs similarity against the penalty term.

2.6.1 Components of registration

Figure 4 shows the general components of a registration algorithm in a block scheme
[16]. At the beginning of the scheme, the images are smoothed or down-sampled with
multi-resolution strategies to speed-up registration and make the registration robust.
At each resolution level for the fixed image, a subset of all the voxels is selected with
a certain sampler [24] for the calculation of cost function. At each iteration the value
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2.6 Image registration 2 THEORETICAL BACKGROUND

of the cost function (metric) is calculated. If the metric is not minimized, an optimiser
is used to update the parameters in the transformation. Iterations are needed until the
solution of Equation (10) is found. For the moving image, the value of IM(T(x))
is evaluated at non-voxel positions during the updating step of the optimisation, for
which intensity interpolation is needed. The details about the main components of
registration is below:

1. Cost function

The mean squared difference (MSD), normalized correlation (NC), mutual in-
formation (MI) are common choice of cost functions. MSD is only suited for
images from the same modality while NC assumes less strict affine relation be-
tween the intensities of the images. MI is a recommended cost function [22],
because it only assumes a statistical relation between the intensities of the im-
ages which can apply for images from single or multiple modalities.

2. Transformation

For a linear transformation, it warps the moving image and make the alignment
(Equation (12)). For example the affine transformation with 12 degrees of free-
dom allows for rotation, shear, scaling and skew of images. Here A is a matrix
and t represents a translation vector.

Tµ(x) = Ax+ t (12)

A linear transformation is needed only for a coarse registration. Sometimes the
differences between subjects are such that the linear transform is not sufficient to
achieve good registration. A non-linear transformation initialized with a linear
transformation is used for to permit the local deformations from the moving
image to the template. Using a nonlinear transformation directly might result
in finding the local minimum solution instead of the global minimum, thus the
moving image is over warped to fit the fixed image. A commonly used non-
linear transformation is B-spline transformation. The B-spline transformation is
modelled as a weighted sum of the cubic multidimensional B-spline polynomial
[34]. The amount of spacing between the control points defines the complexity
of the transformation.

3. Optimisation

In Figure 4, we have mentioned an iterative optimisation procedure to solve
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2.7 Tract based spatial statistics 2 THEORETICAL BACKGROUND

Equation (10). The commonly used optimisation is the gradient descent method
(Euqation (13)). The subscript k mean in a certain iteration k. The parameters
of transformation in iteration k is µk, which are updated by taking a step in the
search direction dk with a step size ak.

µk+1 = µk + akdk (13)

Usually the search direction is the derivative of the cost function ∂C
∂µ

evaluated
at the current position µk. Different definitions of ak and dk yield different types
of optimisation methods.

4. Sampler

To compute the cost function, a set of voxels needs to be selected. The sampler
component in Figure 4 is responsible for this. The most straightforward strat-
egy is to use all voxels from the fixed image which will be very time-consuming
for large images. Using only a small random subset (≈ 2000 voxels) from the
fixed image accelerates registration significantly, without compromising regis-
tration accuracy [24]. And random sampling off the voxel grid has been shown
to improve the smoothness of the cost function [30] [41].

5. Interpolator

An intensity interpolation is needed for computation of the cost function since
the value of transformed moving image is evaluated at nonvoxel positions. An
additional interpolator is needed to accommodate the off-voxel random coor-
dinate sampler. Several methods of interpolation exist, varying in quality and
speed, including nearest neighbor, linear and n-th order B-spline interpolation
[41] [42].

6. Hierarchical strategies

A hierarchical (multi-resolution) strategy starts the registration process using
images with lower complexity of resolution. A certain multi-resolution image
pyramid is applied for smoothing and down-sampling and a series of images
with increasing amount of smoothing are produced for registration with different
image resolution. This increases the chance of successful registration [29] and
reduces the computation time.

2.7 Tract based spatial statistics

As we mention in Section 2.4, fractional anisotropy (FA) is one of the measures com-
monly derived from diffusionMRI data, which quantifies how strongly directional the
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local white matter structure is. TBSS is a pipeline to provide a solution to the align-
ment of FA images from multiple subjects, which allows valid voxelwise analysis. It
uses an adjusted non-linear registration followed by projection onto an registration-
independent tract representation of white matter. The default TBSS pipeline consists
of four steps as implemented in FSL [18], which will be implemented as follows.

The first step is a carefully tuned non-linear registration. The cost function con-
sists of a similarity measure with a ‘sum-of-squared difference’ and a regularization
term on the transformation field. The transformation is B-Splines transformation op-
timised by moving the control point locations until the regularization term (in cost
function) is minimized. The control point spacing is set to 20 mm for achieving an
appropriate degree of warp complexity, i.e., capability of high-dimensional warping
also preserving structure topology of the original images. The nonlinear registration
is preceded by affine registration, to achieve initial alignment. At the end of this step,
all the images are warped into a common space defined by the chosen template.

Subsequently, the mean of all aligned FA images is created. The mean FA image
is skeletonised to represent the center of all tracts which are common to all subjects.
To make the FA skeleton, the local tract perpendicular directions are estimated at all
voxels in the image. A search is made along all voxels in the local tract perpendicular
direction, and the voxel with the highest FA is identified as the centre of the tract [38].
Usually the skeleton should be thresholded to excludes voxels which are primarily
grey matter or CSF.

In the projection step, for each subject, we search in the perpendicular tract direc-
tion (computed in last step) of the mean skeleton to find the maximum FA value. This
value is used to assign the skeleton voxel so that each subject’s FA image is skele-
tonised. The aim of the projection step is to eliminate the residual misalignments
between subjects after the non-linear registration. The skeletonised FA images are
used in the following voxel-wise statistics.

2.8 Permutation testing based on the general linear model

To determine whether there are significant differences between the groups receiving
different treatment, permutation testing is applied to the data modelled by the general
linear model (GLM). A general linear model [36] at each spatial point of an image
representation can be formulated and expressed as a weighted linear sum of experi-
mental regressors. These modelled regressors are included in a design matrix. The
GLM fitting is used to estimate to what extent of relationship between the modelled
responses and the actual responses in each voxel.

After applying the GLM, a permutation testing follows. In each voxel, a certain
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test statistic T (t-test, F-test, etc) is calculated. A particular observed value T0 of this
statistic after the experiment has been conducted. After that the labels from the orig-
inal data are shuffled and the statistic is calculated again. A number of permutations
of the dataset result in a distribution of the statistic. We define the p-value as the prob-
ability of observing, by chance, a test statistic equal or larger than the one computed
with the observed value, i.e. P (T≥T0). Under the null hypothesis, there is no signif-
icant difference between the datasets. Given a significance level α, we reject the null
hypothesis if p-value is less than α and conclude that there is significant evidence
against the null hypothesis at level α. The permutation test is performed under the
assumption that certain groups of labels must be exchangeable without consequences
under the null-hypothesis.
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Chapter 3

Methods

3.1 Data

3.1.1 Study population

In this study, adult subjects suffering from ADHD were included based on the length
of period they were treated with MPH. The demographic details of three groups are
shown in Table 1. In total, 84 subjects were included, uniformly distributed in three
groups approximately (29 subjects in Group1, 26 subjects in Group2, 29 subjects in
Group3). The patients in Group1 did not receive medication. The patients in Group2
received medication, with longer duration (over ten years) and earlier starting age
compared to the patients in Group3. We refer to these as long-term medication users.
Subjects in Group3 were exposed to medication for under one year. We refer to these
as short-term medication.

Age Start age End age

Group1 28.6±4.6

Group2 25.9±2.8 9.1±2.8 19.8±2.9

Group3 28.6±4.8 27.9±4.5 28.6±4.8

Table 1: Information of patients in three groups in the dataset. All values are mean ± SD. Start/End
age means the age when a patient started/finished using the medication.

3.1.2 Data Acquisition

All MR images were acquired with a 3.0 T Philips MR scanner equipped with a
SENSE 8-channel head coil and body coil transmission (Philips Medical Systems,
Best, The Netherlands). DWIs were acquired with a single shot, diffusion-weighted
spin echo echo planar imaging sequence using a repetition time TR = 8135 ms and
TE = 94 ms. The slice thickness is 2mm, thus a native voxel size is 2 mm x 2 mm
x 2 mm. DWIs were acquired in 32 non-collinear directions with a b-value of 1000
s/mm2. One volumewas acquired without diffusion weighting (the b0-volumes). The
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field of view is 224 mm x 224 mm.

3.1.3 Preprocessing of diffusion weighted data

The acquired DWIs were corrected for motion and eddy current distortions by affine
registration of DWIs to the acquired b0 image with FLIRT in FSL [18]. The b0 image
is the image without diffusion sensitizing magnetic gradient (b-value equals to 0).
After registration to the b0 image, the gradient directions were reoriented according
to the rotation component of the transformation matrix of the affine registration (12
degree of freedom) [28]. We apply BET [37] brain extraction to the non-diffusion-
weighted image to exclude non-brain voxels from further consideration. This brain
mask was applied to diffusion-weighted images.

3.2 Reference frameworks

3.2.1 The modified TBSS analysis

The reference framework (Figure 5) essentially performed a TBSS pipeline withmod-
ified registration procedure based on the single tensor model. The aim was to eval-
uate the difference between the voxel-wise FA value of subjects in different groups.
In modified TBSS, we use a high-dimensional registration, instead of coarse regis-
tration combined with a projection step in default TBSS. After the preprocessing of
the data, the single tensor model was fitted to the DWIs at each voxel using fit_MRI
[32]. Based on this model, voxel-wise maps of FA values were calculated. A spatial
normalization was achieved by applying registration from the FA images to a com-
mon space. We used Elastix [23] as the tool to realise a high-dimensional registration.
Next, the aligned FA images were ‘skeletonised’ by the TBSS created white matter
skeleton. A voxel-wise statistical analysis was performed to evaluate the group dif-
ferences, shown in Section 3.3.9. The details of the Elastix settings are describe in
the next section.

3.2.2 Registration by Elastix

Elastix was selected to align the FA images to the atlas space (dimension is 1×1×1
mm3). The template we use was FMRIB58_FA in FSL [18]. Under the multi-
resolution strategy, the FA images with a certain resolution were used as an input
to the sampler and the corresponding value of cost function was evaluated. Next the
procedure of optimisation and transformation followed by evaluation with metrics
were iterated, as a common registration scheme does.
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Figure 5: The reference framework performs a modified TBSS analysis in each sub-
ject. After fitting the single tensor model to the DWIs and compute the FA in each
voxel, the FA image was aligned to a common space defined by a template. Subse-
quently, aligned FA image was skeletonised for a voxel-wise statistical analysis.

Our choice of configurable settings for the registration is described below. We
chose MI/NCC as the cost function and for each choice of cost function we selected
different number of voxels (2000-4000) in the random coordinate sampler. For each
subject, we used Affine transformation for initialization followed by a B-spline trans-
formation. The four resolutions of the B-spline grid are set to [64 32 16 8] mm. For
the multi-resolution strategy, a Gaussian image pyramid [29] was applied for both
the fixed and the moving image, which applied smoothing without down-sampling.
Four resolutions were used, as this seemed to be a good trade-off between speed and
accuracy [23].

3.3 Proposed framework

The proposed framework demonstrated a pipeline of consistentmodel selection (CMS).
An overview of the proposed framework is shown in Figure 6, as adapted from [3].
A fiber orientation atlas was constructed based on the model parameters from auto-
matic relevance determination (ARD) in FSL [18] to estimate mean fiber orientations
across all the subjects. We also computed a model complexity atlas to determine the
number of fiber populations in each voxel not depending on one subject, but on all
the study populations. The ball-and-sticks models (Section 3.3.1) with one or two
stick compartments were fitted to the diffusion-weighted images (DWIs). The ori-
entation atlas was used as prior during the fitting of ball-and-2sticks model. Next,
the ball-and-sticks model parameters were warped into a common space (defined by
atlas from the IXI dataset [50]). An adjusted TBSS pipeline was used to skeletonise
the estimated partial volume fractions (PVFs) of fibers in each voxel. The different
skeletonized datasets were merged according to the complexity atlas: in single fiber
voxels the first PVF was taken from the ball-and-one stick model fitting and the sec-
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Figure 6: The proposed framework, adapted from [3]. The ball-and-sticks models
were fitted to diffusion-weighted images (DWIs) per subject. An orientation prior
was used to initialize the fitting and acted as an orientation prior to regularise the
fitting. The PVFs (f1 for the PVFs of primary fiber populations, f2 for the PVFs of
secondary fiber populations) were warped and skeletonised using a modified TBSS.
In the common space, the different skeletonised datasets were merged according to
a complexity atlas, such that two skeletonised datasets remained. In single-fiber
and crossing-fiber voxels (according to the model complexity atlas) the two skele-
tonised datasets contained PVFs from the ball-and-one-stick and the ball-and-two-
sticks model respectively.

ond PVF was set to zero; in two-fiber skeleton voxels the PVFs originated from the
ball-and-two-sticks model. As a consequence, consistent model selection was en-
forced across the subjects of the study population, followed by statistical analysis.

3.3.1 The ball-and-sticks model

The diffusion-weighted signal Sθ wasmodelled according to the ball-and-sticksmodel
[18]:

Sθ,i = S0

(
(1−

N∑
j=1

fj) exp(−bid) +
N∑
j=1

fj exp(−bid(V j · gi)2)

)
(14)

where Sθ,i is the i-th diffusion-weighted signal under bi, bi is the diffusion-weighting
parameter, gi is a unit vector that specifies the direction of the diffusion-encoding
gradient pulses, S0 is the non diffusion-weighted signal, N is the number of stick
compartments (0, 1 or 2 in this research), d is a diffusivity parameter, f j is the partial
volume fraction (PVF) andV j the principal eigenvector of the j-th stick compartment.
The eigenvectors V j are parameterized using spherical coordinates ψj and ϕj .
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3.3.2 Automatic relevance determination

The computation of fiber orientation atlas and model complexity atlas was based on
the automatic relevance determination (ARD). The ARD framework [18] was used
to estimate the model parameters as well as to achieve an automatic model selec-
tion from the ball-and-sticks models. After fitting ball-and-2sticks model based on a
Bayesian approach, two partial volume fractions (PVFs) and fiber orientations were
obtained. A shrinkage prior was used to automatically reduce the volume fraction of
the secondary fiber population to zero when it is not supported by the data, by which
it achieves an automatic model selection from the ball-and-sticks model with one or
two stick compartments. The ARD is available through the function bedpostx in FSL
[18].

3.3.3 Construction of the fiber orientation atlas

To construct the orientation atlas, firstly, the single diffusion tensor model was fitted
to all 84 subjects of the dataset available through the fit_MRI toolbox. A maximum
likelihood estimation [32] was used for the fitting process. DTI-TK was used to reg-
ister the diffusion tensor images from all subjects to a population-specific template
using the full diffusion tensor information [52]. A transformation was computed from
subject space to the common space. Subsequently, the PVFs and the corresponding
stick orientations computed from ARD were warped to the common space by ‘defor-
mationScalar3DVolume’ and ‘deformationSymTensor3DVolume’ functions in DTI-
TK. The PVFs of fiber populations smaller than 0.05 were discarded [18]. Each voxel
could contain 0, 1 or 2 fiber populations.

For the computation of the fiber orientation atlas, a clustering routine was used
to compute the mean fiber orientation in the study population for both primary and
secondary fiber polulation in each voxel. The mean fiber orientation of every cluster
was computed by an adapted K-means clustering routine (K=2), which minimized
the sum of squared angular differences under the assumption of 180◦ symmetry:

J =
2∑

k=1

∑
i∈Ck

arccos(|V i · Vk,mean|)2, (15)

whereCk is the k-th cluster, Vi the i-th fiber orientation inCk, and Vk,mean the average
fiber orientation of all fiber orientations in Ck. In the initialization step, the primary
and secondary fiber orientations in each voxel for all the subjects were clustered into
two groups from which the average fiber orientations were computed. The clustering
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routine was initialized by assigning all larger stick compartments to the first cluster
and all smaller stick compartments to the second cluster. In the update step, the mean
orientation of each cluster was obtained by first computing the scatter matrices Sk
[35]:

Sk =
∑
i∈Ck

V i · VT
i , (16)

The scatter matrix is the sum of dyadic products of the fiber orientations in Ck.
The average fiber orientationVk,meanwas updated as the eigenvector corresponding to
the largest eigenvalue of the matrix Sk. In the assignment step, each fiber orientation
was assigned to the mean orientation with which this fiber had the smallest angle
(assuming under 180◦ symmetry). The clusters of the primary and secondary fiber
orientation were updated. The update and assignment step were iterated until no
fibers changed clusters.

3.3.4 Computation of the complexity atlas

The model complexity atlas was defined as the average number of fiber populations
in each voxel. Based on the ARD, the PVFs in each voxel were calculated. For
both primary and secondary fiber populations, we recognized PFV above 0.05 as a
fiber population. We binarised the PVF image based on this threshold to transfer
the volume fraction into number of fiber populations. After that, we did a majority
voting of the number of fiber populations in each voxel based on all the subjects in
our study. To obtain a discrete model complexity atlas, the average number of fiber
populations was thresholded at 1.5 (we consider the area with a value above 1.5 as the
crossing-fiber region). As a result, the model complexity atlas was used to achieve
the model selection.

3.3.5 Model estimation with prior

The ball-and-one-stick model was fitted without using any prior information on the
stick’s orientation. The ball-and-two-sticks model was fitted using the fiber orienta-
tion atlas as a prior. It can enhance the fitting in two ways: (1) the atlas orientation
was used to initialize the non-linear fit, and (2) a Gaussian-shaped prior p(θ) was
applied to regularize the fitting of the model:

p(θ) ∝ exp
(
− ϵ21
2σ2

θ

)
exp

(
− ϵ22
2σ2

θ

)
(17)
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with

ϵi = arccos(|V i · V i,mean|), (18)

where ϵ1 and ϵ2 represent the angles between the principal eigenvector of both sticks
and their corresponding atlas orientations, and σθ denotes the width of the Gaussian-
shaped orientation prior. The estimated model parameter θ is given by:

θ̂ = argmax
θ

log p(S|θ)p(θ), (19)

which was implemented using the fit_MRI toolbox. In each voxel, we considered the
angle between the primary or secondary fiber sticks and the mean fiber orientation
following a Gaussian distribution. And the width of the Gaussian-shaped orientation
prior was set to 20◦ as a default value in fit_MRI toolbox. Another function of using
the orientation atlas as a prior was to reassign the first and second fiber population.
The PVFs in the ball-and-two-sticks model were implicitly sorted in subject space by
means of the orientation prior.

3.3.6 An alternative way to build the complexity atlas

Previously, we build the complexity atlas based on PVFs from automatic relevance
determination, not from CMS. We proposed building the complexity atlas in a dif-
ferent way. Since after fitting with an orientation prior in the pipeline of CMS, the
diffusion model parameters including the PVFs were enhanced. Also under the appli-
cation of orientation atlas, the labeling of the primary and secondary fiber populations
became more consistent, which correspondingly enhanced the labeling of the PVFs
for each fiber population. Thus, we built the model complexity atlas based on the
PVFs from the pipeline of CMS. We expected this rebuilt complexity atlas different
from the one we built previously to decide the number of fiber populations in each
voxel.

3.3.7 Optimising the orientation prior

We optimised the orientation prior by localising the width of prior (σθ) in each voxel.
During the construction of the orientation atlas, we obtained the distribution of the
included angles between fiber orientation from each subject and mean fiber orienta-
tion in each voxel. We calculated a standard deviation map for the whole brain as a
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localised σθ based on this distribution. We expected a more consistent fitting with
this optimised orientation prior.

To evaluate the fitting based on a different fixed values of σθ and the localised
σθ, we produced four reproducibility datasets. The evaluation framework is shown
in Figure 7. In each subject, the data was bootstrapped by keeping the b0 image and
randomly choosing 75% of DWIs. This was repeated for four times. The same boot-
strapped pipeline was also applied for all the subjects, to obtain four reproducibility
dataset. Next, each subject in four datasets were fitted with an orientation prior a fixed
width of σθ (from 10◦ to 60◦) as well as a σθ with localised width in each voxel. To
evaluate the consistency of modelling primary/secondary fiber volume fraction, intr-
aclass correlation coefficient (ICC) was calculated as a function of σθ in each voxel.
The calculation of ICC considered ‘between row variance’ (indicating the variance
for testing reliability of different subjects) and ‘within row variance’ (indicating mean
level of testing reliability across all subjects).

Figure 7: The framework to evaluate the choice of σθ. ‘Repro’ mean a reproducibility
dataset. For each subject, 75% of the DWIs were randomly selected for four times,
which were defined as reproducibility datasets. During the fitting of each dataset, a
fixed prior width (10◦,15◦,20◦,25◦,30◦,35◦,40◦,50◦,60◦, respectively) and a localised
prior width were applied. ICCwas computed across four datasets for each application
of a prior width.
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3.3.8 The modified TBSS analysis

The PVFs of the primary and secondary fiber populations after fitting the ball-and-
sticks models were warped into the atlas space. According to the TBSS pipeline, the
FA images created from the reference framework were averaged after which a skele-
ton was generated with the function tbss_skeleton (in FSL). The mean FA skeleton
was thresholded at 0.2 merely to exclude voxels with large intersubject variability
and/or partial volume effects with grey matter or cerebrospinal fluid. This skeleton
was binarised to mask the FA images and the PVFs for obtaining skeletonised data.
Since DTI-TK performed a high dimensional registration, we ignored the ‘maximum
skeleton projection’ step of a standard TBSS analysis [38]. Finally, the skeletonised
datasets from the two models were merged according to the model complexity atlas:
in the single fiber voxels, the primary PVF from the ball-and-one-stick model was
obtained and the secondary PVF was set to zero; in the two-fiber voxels, the PVFs
were received from the fitting of the ball-and-two-stick diffusion model.

3.3.9 Statistical analysis on white matter tracts

Up to this step, we already had skeletonised data of FA and PVFs. The FA data was
under the modified TBSS with different registration components. The PVFs data
was from normal consistent model selection (CMS), from CMS with the complexity
atlas calculated as we proposed and from CMSwith an optimised orientation prior. A
voxel-wise statistical analysis was performed on the white matter skeleton to evaluate
differences of group mean value of FA and PVFs in each voxel. A general linear
model was applied on the analysis under the assumption that the response associated
with each voxel is a weighted linear combination of one or more predictor variables.
This modelling procedure was reflected in a design matrix which defined regressors
of interest, and a contrast matrix which defined the comparison (group1 vs group2,
group2 vs group3, group1 vs group3). We considered ‘age’ ‘start age’ ‘end age’ and
‘motion score’ (a measurement of the degree of head motion during the scan) as the
covariates included in the design matrix. A permutation testing was performed for
statistical analysis in our research implemented by the function Randomise [48]) in
FSL. A p-value (two-sided) smaller than 0.05 was considered significant.
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Chapter 4

Results

4.1 Reference framework

4.1.1 The modified TBSS analysis

Figure 8 shows the overlay of mean FAmap of all subjects, after each subject has been
aligned to a common space. The mean FA, shown in red-yellow, was thresholded at
0.2 and overlaid onto the FMRIB58_FA template. The mean FA skeleton, shown in
blue-light blue, was thresholded at 0.2.

Figure 8: The mean FA value map (in red-yellow) and the FA skeleton of (in blue-
lightblue) all subjects. The mean FA was thresholded at 0.2 and overlaid onto the
FMRIB58_FA template (the background). The labels of the orientations of the brain
image are right-left (R-L), posterior-anterior (P-A) and inferior-superior (I-S).

4.1.2 Registration by Elastix

From the result of voxel-wise statistical analysis, significant differences in FA were
not observed between groups of patients treated without MPH, with short/long term
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MPH. Under the choice of NCC/MI as cost functions with different sampler sizes, no
significant differences were found (all p>0.2).

4.2 Proposed framework

4.2.1 Construction of the fiber orientation atlas

The fiber orientation atlas, constructed from all 84 subjects, is visualized in Figure
9 and Figure 10. Figure 9 shows the orientation atlas of the average primary fiber
population. Figure 10 shows the orientation atlas of the average secondary fiber pop-
ulation. From the orientation atlas we can observe the average fiber populations are
relatively smooth and are approximately left-right symmetric. And it appears anatom-
ically plausible from an overview, for example, the region of corpus callosum in the
first row of Figure 9, because corpus callosum is a single-fiber tract connecting two
hemispheres. In both figures we used the mean FA image of overall subjects as the
background to modulate the fiber orientation atlas in RGB mode, which means that
red corresponds with left-right, green with posterior-anterior and blue with inferior-
superior directions.

Figure 9: The orientation atlas of the primary fiber population. The fiber orientations
modulate the background FA image, such that red corresponds with left-right, green
with posterior-anterior and blue with inferior-superior. The first row and the second
row stand for the view of two different slices in the brain.
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Figure 10: The orientation atlas of the secondary fiber population. The fiber orien-
tations modulate the background FA image. Red corresponds with left-right, green
with posterior-anterior and blue with inferior-superior.

4.2.2 Computation of the complexity atlas

Figure 11 shows the model complexity atlas constructed from 84 subjects in our
dataset. The background is the group mean FA image. For the purpose of visualiza-
tion, the average number of fiber populations was binned into four categories: blue,
blue-light blue, pink, red, which stands for the regions with decreasing numbers of
fiber populations. We consider a threshhold of 1.5 to obtain a discretemodel complex-
ity atlas so that areas with a population number above 1.5 indicate the crossing-fiber
region (red and pink areas in Figure 11). From the complexity atlas we can observe
the single-fiber areas corresponding to white matter structures known to contain a
single fiber population, e.g. the corpus callosum.
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Figure 11: The average number of fiber populations per voxel in the common space.
Voxels with (on average) fewer than 1 fiber tract are masked black. The background
is the overall mean FA image.

Figure 12: The average number of fiber populations per voxel on the white matter
skeleton. The background is the overall mean FA image.

After masking with the mean FA skeleton, we got the complexity atlas on the
skeleton in Figure 12. Based on both Figure 11 and Figure 12, we see that the
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crossing-fiber regions are approximately left-right symmetric. In our model com-
plexity atlas, 91% of the white matter skeleton consists of crossing-fiber voxels.

Figure 13: The comparison between the previous complexity atlas (in yellow) and
the rebuilt atlas (in red) in the crossing-fiber region. The crossing-fiber region is the
area with a mean number of fiber populations above 1.5.

4.2.3 An alternative way to build the complexity atlas

Additionally, we built the complexity atlas in a different way, which based on the
partial volume fractions (PVFs) of fibers after model estimation with the orientation
prior, stated in Section 3.3.6. Figure 13 shows the crossing-fiber region of previous
complexity atlas (in yellow) and rebuilt complexity atlas (in red) as well as the com-
parison of both of them (the third column). We refer to the region with a mean number
of fiber populations above 1.5 as the crossing-fiber region. It shows some differences
on the border of the crossing-fiber region. The number of voxels of crossing fiber re-
gion in the rebuilt atlas is 80% size of the number in the previous atlas. This fraction
turns to 90% if only considering the skeleton area.

4.2.4 Optimising the orientation prior

During the construction of fiber orientation atlas, in each voxel the standard devia-
tions of primary and secondary fiber orientations around the mean fiber orientation
were calculated, see Figure 14. The curve shows the ascending sorting of the stan-
dard deviations (in degree) for all the voxels on the skeleton and on the crossing-fiber
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area of the skeleton (Figure 14). If a fixed width of the orientation prior (σθ) of 20◦

is chosen (20◦ is the default setting of the toolbox fit_MRI) for the diffusion model
fitting, 93% of voxels for the primary fiber populations are under this constrain while
the fraction decreases to 43% for the secondary fiber populations.

Figure 14: Left: the standard deviation of primary fiber orientations of all subjects
around the mean fiber orientation in each voxel. Right: the standard deviation of
secondary fiber orientations of all subjects around the mean fiber orientation in each
voxel. The ‘voxelID’ means the name of each voxel (voxel 1, voxel 2, ... , voxel n)
if we have n voxels in total. The red line means choosing 20◦ as the width of prior,
which is the default setting in fit_MRI toolbox.

Figure 15: Left: average ICC on the TBSS skeleton, for the measurement of f1.
Right: average ICC in crossing-fiber regions of the TBSS skeleton, for the measure-
ment of f1. The red dashed lines denote the ICC under fitting with a localised width,
each point in the blue lines denotes the ICC under fitting with each fixed prior width.

We optimised the orientation prior with a localised σθ based on the distributions
shown above. We have produced four reproducibility datasets and for each repro-
ducibility dataset we fitted with an orientation prior with a localised width as well as
different fixed width of σθ from 10◦ to 60◦. We measured the voxel-wise PVFs for
each subject in each reproducibility dataset. Figure 15 shows the intraclass correla-
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tion coefficient (ICC) as a function of the width of σθ (blue curve) and the ICC when
using the localised width of σθ (red line). Each point was calculated by the average
of the ICC on the skeleton for PVFs of the primary fiber populations (f1) and on the
crossing-fiber regions of the skeleton for PVFs of the secondary fiber populations
(f2). We see that fitting with localised width of σθ improves the ICC without intro-
duces too much prior information on the fiber orientations, compared with using a
fixed width of σθ. All the ICCs under the usage of consistent model selection show
a high value, proving a consistent estimation of fiber properties.

4.2.5 Statistical analysis on white matter tracts

In the permutation test, no significant differences were found between the groups. For
the voxel-wise analysis of f1, no significant differences were found (all p>0.1). For
the situation of f2, no significant differences were found (all p>0.15). Similarly, no
significant differences were found (all p>0.1) under the application of the complexity
atlas we proposed and under the application of the optimised orientation prior.

4.3 The short-term effect of MPH: a following study of CMS

After achieving the research aim of studying long-term MPH effect, we furthered
our study. In the long-term MPH study, under the application of proposed frame-
work (consistent model selection based on the ball-and-sticks model), we provided
appropriate and consistent estimation of fiber-crossings. Thus we expect to find im-
proved statistical power in the crossing-fiber region, compared with the analysis in
the reference framework (based on the single tensor model). We didn’t find any sig-
nificant differences in both the reference and proposed framework, so we didn’t see
the improved statistical power, which is one of the limitations in the study of our
dataset. To further our research and show the improved statistical power, we apply
both frameworks on a different dataset.

In this dataset, we have found evidence that short-term MPH treatment is related
to bigger white matter changes in children than in adults with ADHD after a short-
term use [10]. The duration of MPH is 4 months. We expect improved statistical
power after applying the pipeline of consistent model selection, to givemore adequate
clinical instruction. In our study population, the patients are divided into two groups,
the children group (age:10.06-13.08) and the adult group (age:22.44-39.37). Each
patient received MRI scanning before and after the treatment. After the application
of the reference framework (based on single tensor model), we got the skeletonised
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FA data for each subject. After the application of the proposed framework (based
on CMS), we got the skeletonised f1/f2 data for each subject based on the fitting
with orientation prior. f1/f2 refer to the volume fraction of primary/secondary fiber
populations in each voxel. Wemade a subtraction between the skeletonised data from
scanning before and after MPH use for each subject to obtain the difference of white
matter tract induced by MPH. Then we applied the voxel-wise statistical analysis to
compare the difference on the white matter caused by MPH for children and adult
patients.

Figure 16 shows that the result of voxel-wise statistical analysis. It shows signifi-
cant areas in the analysis thatMPH treatment is related to bigger white matter changes
in children than in adults. In the analysis with FA based on the single tensor model,
the images in the top row show areas with significant differences. In the analysis
with f1 based on the CMS, the images in the bottom row show areas with significant
difference. No significant difference was found in the analysis of f2. We found an
increase number of voxels in the significant area in f1 analysis (5656 voxels) than in
FA analysis (4683 voxels). In f1 analysis, 74% of the significant voxels are in the
crossing-fiber regions.

Figure 16: The significant areas where MPH caused bigger changes on the white
matter skeleton of children patients than the adult patients. Top row: significant
area under FA analysis based on single tensor model. Bottom row: significant area
under f1 analysis based on CMS. The significant areas are thickened for visualization
propose. Background is the mean FA image.
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In this research, we found an improved statistical power under the application
of consistent model selection. It gives evidence that the CMS is a powerful pipeline
to model the fiber-crossing and improve statistical power. The significant areas we
found in FA analysis were association fibers (parts of left superior longitudinal fasci-
culus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus) [10], which
are rich in crossing fibers. So our result based on the improve statistical power in
crossing fibers is valuable to give an adequate clinical instruction for the short-term
medication use.
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Chapter 5

Discussion

5.1 Reference framework

5.1.1 Registration by Elastix

In the reference framework, the main point was to modify the standard TBSS pipeline
with a different registration. The registrationwasmodified by using a high-dimensional
registration with Elastix and leaving out the projection step. We don’t establish a
criterion to evaluate registration, because the registration parameters are all recom-
mended settings according to [23]. Another reason is that we do not have a ground
truth for establishing anatomical correspondence of white matter tracts for the aligned
images. The fitting based on the single tensor model has limitations stated in Sec-
tion 2.5.1, thus further study based on advanced model fitting should be focused to
investigate the existence of significant statistical results.

5.2 Proposed framework

We applied a framework of consistent model selection (CMS) based on the ball-and-
sticks model in the proposed framework. There are two main novelties in CMS. The
first novelty is the introduction of fiber orientation atlas, which provided a consistent
labeling of fiber populations in the crossing-fiber regions. The second novelty is a
model complexity atlas, to determine the number of fiber populations in each voxel
across all the subjects.

5.2.1 Construction of the fiber orientation atlas

The orientation atlas was constructed based on our dataset. It reflects not only the
anatomical presence of a fiber crossing, but also the DW-MRI acquisition protocol.
The modelling of fiber properties were influenced by the imaging protocol including
the resolution, the number of diffusion-encoding gradient directions and the used b-
values [9]. In the research of Arkesteijn et al [3], it was shown that 67% of voxels
on the white matter skeleton belonged to the crossing-fiber region, while in our case
the fraction increased to 91%. The main reason is the advanced imaging protocol of
our data, leading to a better sensitivity of fitting in the crossing-fiber regions. For

36



5.2 Proposed framework 5 DISCUSSION

example, all subjects were scanned on a 3.0 Tesla MRI scanner with a voxel size of
2 mm x 2 mm x 2 mm and 32 non-collinear gradient directions, while in Arkesteijn’s
case, the data was acquired with 1.5 Tesla scanner with a voxel size of 2.2 mm x 3.3
mm x 3.5 mm and 25 gradient directions.

It is the second time the framework of consistent model selection is applied,
after an improved consistent modelling of fiber-crossings shown in the research of
Arkesteijn et al [3]. However, in this work a different patient population is inves-
tigated. We have 84 subjects (Age: from 22 to 40) with ADHD (part of subjects
with medication), while Arkesteijn’s dataset has 500 subjects (Age: from 65 to 90),
free of dementia. We have a different imaging acquisition protocol compared with
Arkesteijn’s data (discussed in more details below). From the anatomical reasonable
result of orientation atlas (Figure 9, 10) and the high ICC in Figure 15, we can see
that the CMS works well as expected. We have given more evidence on the general-
izability of the CMS.

5.2.2 Computation of the complexity atlas

From the model complexity atlas (Figure 11), we find a bit overfitting in the corpus
callosum (CC), which is a single-fiber tract connecting two hemispheres. In the CC,
the mean number of fiber population appears above 1.25 (the light-blue color), which
should be 1 in principle. Two reasons lead to that issue. Firstly, the total number of
subjects in our data is 84, which is not a large population to realise an exact accurate
majority voting during the computation of the complexity atlas. The second reason is
that the subjects in our data are adults, some of which are quite young (below 25 years
old). In young people’s brain, the number and density of axons are extremely high
(over 108 fibers/mm2 in corpus callosum reported in [1]) such that the axons are in
bundles and not strictly parallel. There is a chance that the model selection identified
fibers in this situation as crossing-fibers.

5.2.3 An alternative way to build the complexity atlas

We modify the way to calculate the model complexity atlas based on the partial vol-
ume fractions (PVFs) of fibers produced after fitting the data with an orientation prior.
In Figure 13, 20% of voxels in crossing-fiber region differ between the complexity
atlas and the rebuilt one. The differences come from the different estimated PVFs,
since fitting with an orientation prior can provide a consistent labelling and enhance
the modelling of PVFs especially for the secondary fiber populations. Consequently,
majority voting of number of fiber populations based on PVFs shows a different re-
sult in the crossing-fiber region. In principle, we recommend applying the rebuilt
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complexity atlas.

5.2.4 Optimizing the orientation prior

Figure 7 shows the framework of our reproducibility study. In each voxel across four
reproducibility datasets, the differences come from part of DWI volumes with differ-
ent diffusion sensitizing gradient directions and different noise level. In Arkesteijn’s
research, the width of orientation prior (σθ) was selected as 25◦ for a good trade-off
between improving the ICC without introducing too much prior information on the
fiber [3]. The choice of a fixed value for the width of σθ is not suitable. From Figure
14 we can see a non-uniform distribution of the included angle between fiber orien-
tation from each subject and mean fiber orientation in each voxel. For a voxel with
a standard deviation much smaller than 20◦, the fitting was under constrained. Sim-
ilarly, the fitting was over constrained for a voxel with a standard deviation much
larger than 20◦. According to this distribution, we have introduced an optimised
orientation prior to set a different width of σθ in each voxel, to give an adequate
constraint and thus more consistent estimation of fiber orientations. In Figure 15, it
shows a much higher ICC under the usage of this optimised prior, which also proves
the consistent fiber estimation of the consistent model selection.

5.2.5 Statistical analysis on white matter tracts

Based on the consistent model selection followed by modified TBSS analysis, we
got the skeletonised PVFs and applied the voxel-wise statistical analysis, same as the
one in reference work. No significant differences were found between the groups. In
Group2, patients started medication from an adolescent age (9.1 years old on aver-
age) until they became adults (19.8 years old on average). This group is the long-term
medication research based on [10] in which we found a deviation of brain develop-
ment for children under 4-month medication. In our result, it suggests that there is no
significant differences on the white matter skeleton among the ADHD adult subjects
without medication, with long-term medication. Thus, based on our result, we did
not observe the long-term effect of medication.

5.3 Limitations

There are some limitations in our research. Firstly, for the subjects in the second
group of data (patients with long-term medication), there is quite a long time (6 years
in average) from the last time they receive medication to the time they were scanned.
This introduces a bias due to irrelevant variables. Next, the selection of diffusion
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models is limited to the DW-MRI acquisition used in our study (only a single b =
1000 s/mm2 value used), which needs to be improved to distinguish additional white
matter details.

In our proposed framework, the limited number of 84 subjects in our data may
cause the use of an inappropriate orientation atlas. Similarly for the complexity at-
las, a dataset with larger number of subjects can provide more convincing majority
voting for the number of fiber populations. Incorrect number may cause over-fitting
or under-fitting of the data. We should note that over-fitting of the data is reduced
by regularisation under the orientation prior. If a fiber stick compartment in the ball-
and-sticks model not supported by the data, the fiber orientation is expected in the
direction of the orientation prior and the stick partial volume fraction (PVF) of this
fiber population will be small.
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6 CONCLUSION

Chapter 6

Conclusion
In this thesis, to analyse the long-term effect of MPH on white matter skeleton of
ADHD adult patients, two frameworks were applied. Based on all the voxel-wise
statistical analysis, we did not find any significant differences on the skeletons be-
tween the three groups of patients. No long-term effect of MPH was observed. We
proposed the pipeline of consistent model selection to model the fiber-crossings in
the white matter, with our improvements including the alternative way to build the
complexity atlas and the introduction of the optimised orientation prior.
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