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Abstract

Linear systems are ubiquitous in the field of numerical simulation, and can be used to describe or ap-
proximate physical processes on arbitrary objects. These objects can be represented using volumetric
meshes, often made out of tetrahedra. If the mesh contains many vertices, the corresponding linear
system becomes too large to solve using conventional methods. Multigrid methods are a scalable alter-
native to iteratively approximate solutions for such large problems, but before they can be employed, a
multigrid hierarchy that corresponds to the mesh must first be defined. A bad hierarchy can lead to bad
convergence when solving the problem, but creating a more accurate hierarchy can be computationally
expensive itself. We present an adaptation of Gravo MG, an algorithm to define such hierarchies for
triangular meshes. This adaptation translates the same design principles for the hierarchy construction
from the triangular to the tetrahedral case. Furthermore, we address some new challenges that arise
when dealing with volumetric meshes, particularly the preservation of the boundary when coarsening
the mesh.
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Preface

I will not sugarcoat it; working on this thesis has been the most difficult thing I have ever had to do.
From an intellectual perspective, entering an unfamiliar and yet well-established research field with the
task of coming up with something new, the task could be considered challenging. From an emotional
perspective, it often felt like an impossible trial. Whereas the course-based structure of the first few
years of my education has felt like having to climb ergonomically designed ladders as fast as possible,
this final challenge could be better compared to a rocky wall, with no clear path up or even a predefined
target. Needless to say, trying to treat a wall as a ladder leads to a lot of falling, and many lessons
were learned in the creation of this document, not all of them about multigrid methods. These were
important lessons to learn, though, and if I had the chance to start over, I would have confidently made
the same mistakes again. Doing a Master’s thesis is a humbling experience, one that has maybe made
me a little more intelligent, and if not that, then at least a lot wiser.

Even though doing a thesis can be a lonely endeavor, it would be ridiculous to imply I could have done
it alone. Many people have supported me in wildly different ways, and while it will certainly not be
enough to compensate for everything they have done for me, the least I can do is express some of my
gratitude in the form of text.

First, I of course need to thank my supervisors, Professor Klaus Hildebrandt and Jackson Campolattaro,
who pitched this project to me and have been my guides through the vast field of geometry processing.
Whenever I was lost, you gave me valuable directions that led to a new fixation, and when I fixated too
much, you dragged me out of it by pointing me to the things that mattered most. I know my process
has not been exemplary; I would repeatedly shoot off on wild tangents, only to return to you far too
late, more often than not with questionable results. Your patience with my tomfoolery is admirable, and
the optimism and faith that you have shown in our meetings have helped me to stay on my feet just as
much as your advice. I hope my work is valuable to you, directly or not, or at least that I have not been
too much of a bother.

My next set of thanks goes out to my parents. It is easy to take for granted the care you receive
at home. Growing up, you have guided me throughout everything I have done, with great care and
the freedom to learn my own lessons. Aside from the obvious materialistic support that you have
continuously provided throughout my upbringing, you have always given me a safe haven to return to
when I wanted or desperately needed it. I am proud of the things I have achieved so far, but I know I
would never have been able to if you had not had my back during the big moments and the many small
moments in between. Thank you for always supporting me throughout all my adventures, for giving me
the space to forge my own paths, and for picking me up every time I figuratively ran head-first into the
wall, something that would happen less if only I would listen to you more often...

Next, I want to thank all of my fellow students I have had the pleasure to meet throughout this years-
long journey. My thanks go out to Jegor, who was always there to accompany me as we slugged along
on our separate journeys, and has served as a rock and a needed constant throughout this hard time.
My thanks go out to all the friends I have made and shared experiences with, ones that I will cherish
for decades to come. My thanks go out to my entire cohort, who challenged and helped me to reach
my goals in the most formative years of my life, and to whom I hope to have reciprocated the favor. My
thanks go out to every single student in the subsequent cohorts with whom I have had the chance to
discuss the things I loved the most, to the point where I would learn about and love them more myself.
I will miss the educational environment within the university and the community that comes with it, and
I hope to find it back again someday, wherever I will end up next.

And finally, I must thank all the professionals at TU Delft who have guided me throughout my education
and have given me the chance to grow in ways beyond the intellectual. Of particular importance is
Stefan Hugtenburg: my teacher, my mentor, and the best boss I will ever have. Your impact on my
life cannot be overstated. Eight years ago, you convinced me during an orientation day that Computer
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Science was the future for me, but at that point, I could never have guessed just how much you would
contribute to my professional and personal development later in my studies. Thank you for always
being an example of a good educator and a good person, and thank you for granting me the rare
opportunity to try and follow in that example myself. I owe more to you than you can imagine, and I am
the person I am today because of you.
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1
Introduction

Systems of linear equations are ubiquitous in the field of numerical simulation. They can be used to find
or help in finding solutions to partial differential equations in discrete domains, which are both handy
tools to describe problems with all kinds of applications and infuriating puzzles that are still studied in
great detail. Wherever a partial differential equation arises, a linear system is bound to follow, either to
describe a solution or a close approximation of one. The introduction of computing devices a number of
decades ago has made the task of simulating large systems feasible, but much research is still ongoing
in improving scalability, in order to be able to push the limits of simulation further and further.

Many algorithms already exist for finding exact solutions to a given linear system, some even predat-
ing computing technology. Modern algorithms that directly solve such systems tend to make use of
factorization and concurrency to ensure that finding solutions remains feasible at a large scale. Never-
theless, the time complexity of direct solvers hinders scalability severely, requiring other approaches to
be applied instead. Iterative solvers provide an alternative approach, by iteratively improving on a given
solution in linear time, allowing approximate solutions to be provided after a fixed amount of time or up
to a fixed tolerated error. Solvers relying on iteration are useful, as long as their solution converges
rapidly towards a “true solution”. Otherwise, the solving process will be a fruitless endeavor.

Multigrid methods are a revolutionary approach to iteratively solving linear systems on spatial domains.
By considering the problem that requires a solution at varying levels of detail simultaneously, it is pos-
sible to reduce both the small errors and the large errors in the solution at the same time, leading to
fast convergence. The importance of multigrid methods in numerical simulation cannot be understated.
However, multigrid methods require a “good” multigrid hierarchy of domains to be defined, and the con-
struction of such a hierarchy on irregular domains is far from a simple task; trade-offs always need to be
made between accuracy and performance. Various branches of research have spawned to determine
how best to define such a hierarchy under different conditions and circumstances.

Defining a proper multigrid hierarchy becomes more complicated as the focus is shifted from surface
meshes towards volumetric meshes, i.e. three-dimensional meshes of which not just the surface is
of relevance, but the interior of the mesh as well. The number of vertices in these meshes tends to
be higher, and vertices also tend to have more neighboring vertices, thus affecting the density of the
corresponding systems. Some research into volumetric multigrid hierarchies exists ([BKS11; SK11]),
but these tend to prioritize the quality of the hierarchy over the efficiency of constructing the hierarchies.
There is still progress to be made when it comes to fast-to-construct multigrid methods that can coarsen
arbitrary irregular volumetric meshes.

Recently, [Wie+23] provided a new insight into constructing multigrid hierarchies for irregular triangular
domains in 3D space. By relying on graph coarsening and Voronoi cells, their algorithm, Gravo MG,
manages to quickly coarsen a geometric domain and define piecewise linear prolongation operators for
it using a barycentric weighting scheme. The surprisingly good balance between preparation and exe-
cution raises questions about whether this approach can also be used under different circumstances,
for example, in volumetric bodies consisting of tetrahedra.
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Our work aims to extend the Gravo MG algorithm from [Wie+23] to support tetrahedral elements, and
to explore and address the implications induced by this new ground. The extension of Gravo MG can
be done quite naturally by considering that the fundamental building blocks of Gravo are not limited
to a particular number of dimensions. Tetrahedra can be included by nesting some instructions and
increasing the dimensionality of some parts of the algorithm.

The three-dimensional context brings rise to new challenges, which cause coarsened versions to de-
grade quite fast. Particularly around the boundary, anomalies can occur more easily in tetrahedral
meshes. We propose several techniques to try and preserve the shape of the boundary as well as pos-
sible, using some heuristic info about what vertices belong to the boundary and which do not. These
techniques include changes in the subsampling density, in the subsampling order, in how to keep the
surface connected, and in how to smooth out the surface without degrading it.

We list all the required changes necessary for the extension and their implementation in detail. Fur-
thermore, we provide a thorough quantitative evaluation of the algorithm, benchmarking its parameters
against each other and providing a comparison between Gravo MG and some state-of-the-art algo-
rithms that are similarly suitable for the task at hand, demonstrating that it constructs multigrid hierar-
chies of high quality in a time comparable to that of simple techniques.



2
Related Work

Multigrid Solvers
Multigrid solvers [Bra77; Wes04; BL11] are among the most efficient classes of iterative solvers. After
their introduction in the previous century, they have become the default option to apply to large-scale
linear systems. Multigrid methods operate by iteratively solving the linear system on multiple different
resolutions of the domain simultaneously, with communication of systems and their solutions happening
between adjacent resolutions. Two common types of multigrid solvers exist: geometric and algebraic.

Geometric multigrid (GMG) methods are distinguished by having their hierarchy of domains be de-
termined solely by the geometric information of the initially provided domain, without relying on any
information about the linear system that will be solved on it. For regular grids, the hierarchy usually
consists of multiple versions of the same domain, where on each level higher up is a refinement of the
one below, with new points located halfway between every pair of adjacent points [Bra77]. Multilinear
interpolation can be used for transferring vectors between grids in these scenarios. The grids in ques-
tion can be generated by globally refining every cell in the grid, leading to an increasingly finer grid,
until the desired precision is obtained. To save resources, another common strategy is to refine the
grid adaptively, only putting more detail in locations where detail is expected to matter, leaving the less
important regions as coarse [BS99; SNI91].

Algebraic multigrid (AMG) methods [Bra86] find themselves at the other side of the coin, having no
explicit information on the geometry of the domain and basing their hierarchy of linear systems only
on a provided linear system. This linear system should represent the problem at the finest level of the
hierarchy. Once this is provided, AMG generates the coarser matrices of the hierarchy independently.
This is commonly done using either “classical” AMG approaches, such as Ruge-Stüben [RS87], or
smoothed aggregation AMG [VMB96]. Since no geometric information is needed to construct these
solvers, they can be applied in any context, as long as a matrix equation is provided. This makes AMG
methods a popular choice when the need to solve sparse systems spontaneously arises. However,
due to their ignorance of the geometric domain, the resulting hierarchy might prove to lead to slower
convergence in comparison to hierarchies produced by most GMG methods.

Geometric Multigrid Solvers for Unstructured Grids
Geometric multigrid can also be applied to unstructured grids and meshes, in which the positions of the
points do not follow a regular pattern. Two-dimensional grids aremost often represented as triangular or
quadrilateral meshes, which provide more freedom over the shape of the domain. The lack of structure
does come with disadvantages, as geometric multigrid is not always as straightforward to apply to
grids that do not follow a predictable structure. Refining coarse meshes is still easy, and many libraries
allow the construction of hierarchies through global or adaptive refinement [Arn+21; Bas+21; And+21].
These operations will remain doable, as every refined cell in the coarse mesh can serve as its own
small regular grid. Generating a hierarchy in the opposite direction, i.e. starting with a fine mesh and
progressively coarsening it, is more complicated, as coarsening detailed geometry requires simplifying
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the shape in a non-trivial manner. Plenty of algorithms exist that each coarsen and prolongate meshes
in their own way. Most often, a proper subset of the vertex set, by deciding which points to remove
from the original mesh, and then performing edge collapses or half-edge collapses to reconnect the
removed node’s neighbors [Hop96; Kob+98; RL03; NGH04; AKS03; BKS11]. These operations are
generally executed such that some measure of the mesh quality is maximized or preserved, such as
the aspect ratio of triangles [BKS11]. [Shi+06] does not rely on edge collapse, but rather treats the
meshes as point clouds, where first a complete subset of vertices is decided, and only afterwards they
are reconnected. This method makes the construction of such a hierarchy remarkably fast, but due to
the lack of triangular information, the defined prolongation operators lead to worse convergence rates,
thus marking a clear trade-off in the majority of use cases. [Liu+21] takes yet another approach, and
uses a parametrization of the surface that is updated at every vertex removal to define the prolongation
operators, which, while costly and time-consuming, has proven to be an effective strategy allowing
for fast convergence. A little more recently, [Wie+23] designed an algorithm similar to [Shi+06], which
subsamples point clouds, reconnects them, and then retriangulates the mesh, allowing for prolongation
operators to be defined using barycentric interpolation weights. The construction of such a hierarchy
is fast, while outperforming [Shi+06] by a wide margin in most scenarios.

Geometric Multigrid Solvers for Volumetric Meshes
Aside from 2D meshes, such as meshes located in the 2D space or describing surfaces in 3D space,
there are many use cases for volumetricmeshes as well, particularly in the realm of physics simulations.
They can be used as the domain of interest in problems such as, for example, heat transfer [CC02],
fluid simulation [MST10], and elastic deformation [JW00]. Volumetric meshes can be represented using
regular grids, tetrahedra, and/or unstructured hexahedra, among other methods. For each of these
representations, multigrid methods have been studied extensively [PPM92; Hem95; DGW11]. While
some of the methods and approaches that apply to 2D meshes can still be applied to these domains,
volumetric meshes introduce new challenges, both on a conceptual level and a performance level
[Jac15]. The main reason for the drop in performance is the higher average number of connections
per point. For regular triangular meshes, this average approximates three edges per vertex, whereas
for tetrahedral meshes this statistic is closer to seven edges per vertex, causing most linear systems
defined on tetrahedra to be far more dense than their two-dimensional equivalent. An example of an
algorithm that extends from triangular to tetrahedral meshes is [BKS11], which ports its definitions from
2D into 3D, relying on notions of tetrahedral Delaunay conditions, discrete curvature, and “ridges” on
the boundary. [SK11] instead relies on the observation that tetrahedral meshes have a defining curved
surface on which regular coarsening techniques can be applied first. Afterwards, the coarse surfaces
can be filled with tetrahedra to recreate a volumetric domain.

Both of the discussed procedures give certain guarantees about the quality of the meshes in the hierar-
chy, by carefully deciding what part of the mesh to coarsen and how to do so. While the output quality
speaks for itself, these approaches take quite a bit of time to execute, since hierarchy construction has
been turned into such an arduous task. In contrast, the work put forward in this thesis prioritizes fast
construction times over mesh quality, in the hope that good convergence can still be achieved without
having to spend minutes on preparing the multigrid.



3
Background

This chapter discusses the context and the preliminaries to the thesis. Its goal is to lay a foundation
for the motivation of the research, while also educating the reader on the topics that are essential in
interpreting it correctly. The following text has been written such that a person with a Computer Science
background, but no prior experience with computer graphics or the mathematics that accompanies it,
is able to understand the thesis in full. The chapter covers, among other things, partial differential
equations, iterative techniques for approximating solutions to them, the basics of multigrid methods,
and the inner workings of the Gravo MG algorithm.

3.1. Partial Differential Equations
A real-valued function of real variables, commonly referred to as a real function, is a function that
maps a sequence of real values to another sequence of real values. Formally, it can be described as
a function of the type Rm → Rn. An example would be the function

f(x1, x2, x3) = x2
1 + x2

2 + x2
3,

of which the function type is denoted as f : R3 → R1, or rather f : R3 → R. From this point onward,
the reader may assume that any introduced function is of the type Rm → Rn, unless otherwise stated.
To simplify notation, a sequence of values (x1, . . . , xn) will in the future often be referred to as a vector
x, recognizable by its boldface typesetting.

The derivative of a real function describes how much the output of the function changes if we slightly
tweak its input. In secondary education, it is usually taught as being the ”slope” of a function at a certain
point, which could serve as useful intuition in the spatial setting. In terms of changes happening over
time, one could instead think of it as a velocity or a rate of change.
For functions that have more than one input, each of the variables can have a different effect on the
output. We can then define multiple derivatives for the function, where each of them is the derivative
over just one of the given variables, under the assumption that the other variables are fixed and act
merely as constants. These derivatives are referred to as partial derivatives, and are denoted as
∂f
∂x , where f is the function and x is the variable with respect to which we take the derivative. As an
example, the function

f(x1, x2) = 3x1 + x2
1x2

has the partial derivatives
∂f

∂x1
= 3 + 2x1x2,

∂f

∂x2
= x2

1.

A partial differential equation, commonly abbreviated as PDE, is an equation that describes equalities
between expressions involving a function f and its partial derivatives. A solution to a PDE or a collection
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3.2. Discretization 6

of PDEs is an expression for the function f in question, such that the PDEs hold over the entire domain
on which they are defined. Finding a solution is often quite hard, which motivates the entirety of this
thesis.

Figure 3.1: A Dirichlet problem being solved on a continuous square domain.

A well-known example of a relatively simple PDE is the Dirichlet problem, which will be introduced
here and will routinely be referred back to to demonstrate new concepts in the future. The Dirichlet
problem (see Figure 3.1) is a problem in which one must find a “harmonic function” on a domain with
defined boundary values. That is, for a domain Ω with boundary ∂Ω, and a known boundary function
g : ∂Ω→ R, the goal is to find a function f : Ω→ R such that

f = g, for all x ∈ ∂Ω, and

∆f = 0, for all x ∈ Ω,

where ∆ represents the Laplace operator

∆f =
∑
i

∂2f

∂x2
i

.

An intuitive analogy for this problem could be how heat propagates through a room if the walls emit
certain constant temperatures from various locations. The Dirichlet problem will recur on multiple occa-
sions throughout this chapter, due to its simplicity in comparison to the vast number of PDEs that are
also commonly used in practice.

3.2. Discretization
PDEs are notoriously difficult to solve. Even “easy” PDEs tend to have complicated analytical solutions,
which are challenging to derive. For more complex PDEs, which might very well just be simple PDEs
with just a slight twist applied to them, solutions are often infeasible to determine. For this reason,
the search for analytical and exact solutions to PDEs is often not attempted in practical research, and
instead approximations to such solutions are made through numerical means. These numerical ap-
proximations often involve the efforts of a computer, which can do billions of computations in a matter
of seconds.
A common pitfall with computers, however, is that they do not deal well with concepts such as “continu-
ity” or “infinitesimals”, which are fundamental to calculus and the theory behind derivatives. To translate
the mathematics to a format the computer can understand, sacrifices must be made, and the continuity
must be replaced with discrete and finite parts, a process described as discretization.

The biggest and most fundamental change of discretization can be observed in the representation
of a solution to a system of PDEs. Unlike in mathematics, where functions are usually symbolically
defined using expressions and symbols, the computer will have to resort to another way of representing
functions to do its approximations. Since computers can deal well with large amounts of information,
they can give a reasonably accurate definition of a function by defining what its values are on a set of
predetermined points in the domain, and implicitly defining the rest of the function using interpolation or
extrapolation. One could imagine these points as “tent poles”, attempting to give shape to a continuous
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Figure 3.2: A continuous function on a one-dimensional domain, and a discretized representation of it made up of five points.
The function values in between the given points can be determined through any kind of interpolation, e.g. linear interpolation as

shown here.

function f by setting up a few supporting points, and allowing everyone else to take guesses at the
values in between these points through interpolation. This way, it is possible to reasonably accurately
represent continuous functions using discrete data (see Figure 3.2).

Figure 3.3: A small three-dimensional Cartesian grid.

A few types of discretization are used quite com-
monly. For example, in physics simulations,
three-dimensional spaces are often discretized
using regular grids, usually Cartesian grids,
which subdivide a cuboid representing the do-
main into a collection of smaller cuboids of equal
size (see Figure 3.3). At each of the corners of
the cuboids, a vertex can be placed, indicating a
point at which our function f is evaluated and de-
fined.
While not as intuitive to visualize, the temporal di-
mension can also be discretized similarly. It can
either be treated the same as any spatial dimen-
sion in the problem, or it can be simulated by tak-
ing a solution for a fixed timestamp, and using it
to generate a new solution at a time shortly in the future, with a small but non-zero duration separating
them. Both approaches would yield a discretization of time, subdivided into intervals of equal length.

Whenever a real-life problem or process is discretized, much information is lost, and hence whatever
solution is obtained from the problem that remains, will at best be a close approximation of the original
problem that needed solving. Accuracy can be improved by using a finer discretization, i.e. one that
contains more points that are closer to each other, leaving the original domain slightly more intact.
However, this comes at a great computing cost and can quickly result in instances that reach far outside
the realm of what is computationally feasible. A tradeoff must always be made between performance
and accuracy when it comes to numerical simulations such as these.

On the positive side, an advantage of discretization is that many intangible concepts and incomputable
operators originally used to define PDEs take on a new form, usually one that is much, much easier
to reason about. Partial derivatives and integrals are now replaced with simple operations such as
addition and subtraction, or multiplication and division. For instance, for a function f that is discretized
and defined at a series of uniformly distributed points x1, . . . , xn with a consistent spacing of h, i.e.
xi+1−xi = h, the derivative df

dx evaluated close to point xi can be approximated using a simple division
of subtractions,

f(xi)− f(xi−1)

xi − xi−1
=

f(xi)− f(xi−1)

h
,

and its second derivative follows naturally as the “derivative” of “derivatives”, along the lines of

( f(xi+1)−f(xi)
h )− ( f(xi)−f(xi−1)

h )

h
=

1

h2
f(xi+1)−

2

h2
f(xi) +

1

h2
f(xi−1).

The Dirichlet problem seen before, if applied to a regular one-dimensional grid, would contain many
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equations that resemble
f(xi+1)− 2f(xi) + f(xi−1) = 0,

which computationally looks a lot simpler than the continuous version seen before, which incorporated
the Laplace operator ∆.

Considering the fact that the evaluations of f(xi) are the unknowns that should be solved for, it appears
that PDEs, after being discretized, tend to present themselves as equations that are linear in nature, in
the sense that they consist only of terms of either constants or constant multiples of variables. The act
of solving PDEs approximately can therefore be reduced to the act of solving linear equations, which
is an important insight, as it bridges the gap between the non-computable and the easily-computable.
At this point, we will completely abandon the context of partial differential equations, and continue our
endeavors in the context of systems of linear equations.

3.3. Linear Systems
Linear equations are equations that can be represented in the form

a1x1 + · · ·+ amxm = b,

where b and all ais are constants in R, and all xis are variables in R. A linear equation can also be
written using a dot product, as a · x = b or a⊺x = b. Systems of linear equations, also referred to as
linear systems, are collections of linear equations a⊺i x = bi that all reason simultaneously about the
same variables x1, . . . , xm. A linear system with n equations can be represented as one equation, by
turning it into what is known as a matrix equation. Namely, we can define

A =

a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m

 and b =

 b1
...
bm

 ,

and consequently write our system as
Ax = b.

This is a standard form often seen in literature. A solution to a matrix equation, and thus to a linear
system, is given by any vector x for which the above equation would hold.

Linear systems are ubiquitous in numerical simulations, as complex systems can surprisingly often be
approximated using linear relations between unknowns. This is a phenomenon we have already seen
in Section 3.2 with regards to partial differential equations; even though we had only really observed
one linear equation for a single point before, one can imagine that as we try to satisfy similar equations
for a collection of points in a spatial region at the same time, a linear system is bound to present itself.
Since each PDE tends to only reason about a small neighborhood around a point within the domain,
many of the discrete equations only involve a few of the many variables included in the problem. The
consequence is that A is a sparse matrix, a matrix in which the majority of the values are 0s. This will
be significant later on, as sparse matrices can be encoded and worked with more efficiently, which will
have a great impact on our solving algorithms later on.

Linear systems are not necessarily guaranteed to have just one solution. Depending on the provided
matrix A, there might exist just one x satisfying the equation, or there might exist no xs or even an
infinite number of xs. The discussion of these phenomena becomes significantly simpler if we consider
A to be a square matrix, i.e. a matrix of which the number of rows and the number of columns are
equal. From here on out, unless stated otherwise, the reader may presume that A refers to a square
matrix whenever it is mentioned.
Square matricesA have exactly one solution if they are invertible, i.e. there exists a square matrixA−1

such that the multiplication AA−1 gives the identity matrix. This property has many different equivalent
meanings: A has an inverse, A has a non-zero determinant, As columns are linearly independent;
the list goes on and on. Matrix equations involving a non-invertible A are bound to have either zero
solutions or an infinite number of solutions, depending on the chosen vector b to accompany A in the
equation, whereas equations with an invertible A always have exactly one solution.
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Due to their prominence, much work has gone into finding ways to efficiently solve linear systems.
Some common solving techniques are discussed in the following sections, first casting a light on some
background on direct solvers (Section 3.3.1), and from there continuing with iterative solvers (Section
3.3.2), the latter of which has particular relevance with regards to the topics that have yet to appear.

3.3.1. Direct Solvers
Direct solvers are solvers for matrix equations that are guaranteed to find an exact solution in a finite
number of computations. For small systems, they can provide such a solution quickly enough for
them to be the preferred option. While understanding specific techniques is not strictly necessary for
understanding the thesis, two approaches are briefly discussed to create a contrast with the iterative
solvers later on.

One of the oldest techniques for finding solutions to linear systems is Gaussian elimination, named
after historical mathematician Carl Friedrich Gauss. The core idea is to reduce A to row echelon form
by repeatedly applying the elementary row operations to it. An invertible square matrix is in row echelon
form if it’s an upper triangular matrix of which the diagonal consists of only 1s. Visually, this means A
should look like 

1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...
0 0 · · · 1

 ,

where ∗ represents any value, possibly 0. The elementary row operations are:

• swapping two rows;
• scaling a row with a non-zero factor;
• subtracting a multiple of a row from another.

Each of these operations preserves the solution space of the linear system; any solution remains a
solution, and anything that is not will not suddenly become a solution. When these operations are
applied to rows of A, they should simultaneously be applied to the respective entries of b, to maintain
consistency between the left-hand side and the right-hand side of the equation. Once the row echelon
form has been achieved, all entries of x can be determined in reverse order by solving the equations
from the bottom to the top.

While Gaussian elimination is simple and interpretable, one of its disadvantages is that it has a runtime
complexity ofO(n3), with n defined as the size of the vector x. For practical use cases, which nowadays
involve a large number of variables, Gaussian elimination is not a viable option. On top of that, the
execution of this algorithm requires a lot of multiplication and division of numbers. If these numbers
are encoded in a floating-point representation, their precision will degrade rapidly, and direct solving
algorithms do not account for such numerical instability, leading to possibly huge errors in the final
result.

Direct solving techniques exist that perform better on both fronts. For example, an improvement can be
made by constructing a Cholesky decomposition or LDL decomposition on the matrix A, and using
those to find a solution. The details of this approach can be found in [GV96]. This kind of decomposition
can be a beneficial alternative if A is symmetric, meaning A = A⊺, and positive definite, meaning
that for every non-zero vector x, it holds that x⊺Ax > 0. For sparse systems, Cholesky decomposition
has been found to have superior performance over most other direct solving techniques [GSH07], but
it will still fall short once the size of the problem becomes too large. In these cases, alternative solving
techniques must be considered, which will be discussed next.

3.3.2. Iterative Solvers
As discussed previously, direct solvers are not always practical. Their lack of scalability and numerical
stability makes them less viable to apply to large systems, even though they, on a theoretical level,
could provide the exact solution to the system. For most purposes, however, an exact solution is not
always necessary; in most use cases, it would be sufficient to have an algorithm that can estimate a
solution that is correct up to a certain error. This leads us to the idea of iterative solvers.
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Iterative solvers are solvers that start with an initial guess at a solution x, often referred to as x(0),
and then try to deduce a more accurate “solution” x(1) from it, by adjusting it to be a slightly closer
approximation of the actual solution to the system Ax = b. Afterwards, the same process can be
followed with x(1), leading to a new candidate solution x(2), which should be even better than the
previous two. This step can be iterated over and over again, each time providing us with a solution
that should be at least a little more accurate than the previous one. At any point, when the solution
is deemed “good enough” or time has run out, the solver can decide to terminate its optimization and
return the last computed candidate solution x(n).

To evaluate the quality of a candidate solution, we need to have a notion of an error, a metric to evaluate
how close a candidate is to the actual solution. A first instinct might be to just define the error as the
Euclidean distance from the candidate to the solution x∗, i.e. as Err(i) =

∥∥x∗ − x(i)
∥∥. The issue with

this definition is that it assumes that x∗ is known, which it obviously is not; finding x∗ is precisely what
we are trying to do! So instead, the error is commonly defined as the residual error of the solution,
which is the norm of the residual vector r(i) = Ax∗ −Ax(i) = b−Ax(i), leading to the formula

Err(i) =
∥∥∥b−Ax(i)

∥∥∥ .
To evaluate this error, knowledge about x∗ is not required; only knowledge about A and b is, which is
already a known part of the problem.

To be able to deduce a new candidate solution from an old one, an algorithm is required that can
optimize a given solution. Two options for such an algorithm are the Jacobi method and the Gauss-
Seidel method, which will be examined in Sections 3.3.2.1 and 3.3.2.2, respectively.

3.3.2.1. Jacobi Method
The Jacobi method is a technique to improve a candidate solution to a linear system, i.e. to reduce its
residual error. The idea supporting the Jacobi method is quite simple. In the matrix equations that we
have discussed so far, the ith equation describes what value the ith point should have. As an example,
in the Dirichlet problem, the ith equation dictates that the ith point must be the average of its neighbors.
A straightforward idea would then be to compute this average for each of the points and change their
values accordingly.

To phrase this idea in a mathematical and more general way, suppose that our system Ax = b is given
by

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

 , and b =


b1
b2
...
bn

 ,

and that a candidate solution x(i) is given. The Jacobi method will then compute a new vector x(i+1)

such that for each j ∈ {1, . . . , n}, the value of x(i+1)
j is set such that

(aj,1x
(i)
1 + · · ·+ aj,j−1x

(i)
j−1) + aj,jx

(i+1)
j + (aj,j+1x

(i)
j+1 + · · ·+ aj,nx

(i)
n ) = bj .

Consequently, the following update rule arises:

x
(i+1)
j =

bj −
∑

k ̸=j aj,kx
(i)
k

aj,j

A visual example of the Jacobi method in action can be observed in Figure 3.4. The demonstrated
problem is a Dirichlet problem on a uniform one-dimensional domain, where the two values at the
extreme ends of the domain are fixed to particular values. The goal is thus to satisfy the equation
− 1

2xj−1 + xj − 1
2xj+1 = 0 for each internal point, leading to the update rule

x
(i+1)
j =

1

2
x
(i)
j−1 +

1

2
x
(i)
j+1.
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Figure 3.4: Multiple numbers of iterations of the Jacobi method applied to a one-dimensional Dirichlet problem. After each
iteration, every point’s value is adjusted to be the average of its neighbors’ previous values.

The effect of the Jacobi method is that high outliers in the function are iteratively “smoothed out”, at
least for the Dirichlet problem.

One can also write the update rule as a single matrix expression applied to all values at once, by
considering a decomposition of A into three matrices

L =


0 0 · · · 0

a2,1 0 · · · 0
...

...
. . .

...
an,1 an,2 · · · 0

 , D =


a1,1 0 · · · 0
0 a2,2 · · · 0
...

...
. . .

...
0 0 · · · an,n

 , U =


0 a1,2 · · · a1,n
0 0 · · · a2,n
...

...
. . .

...
0 0 · · · 0

 ,

such that
A = L+D + U.

Given a candidate vector x(i), the Jacobi method is able to obtain a better candidate x(i+1) by evaluating

x(i+1) = D−1
(
b− (L+ U)x(i)

)
.

Algorithm 1 One iteration of the Jacobi method.
function jacobi(A,b,x)

x′ ← 0
for i ∈ {1, . . . , n} do

rowSum← 0
for i ∈ {1, . . . , n} do ▷ Sum up non-diagonal entries

if i ̸= j then
rowSum← rowSum+Ai,jxj

end if
end for
x′
i ← (bi − rowSum)/Ai,i

end for
return x′

end function

An element-wise algorithm that applies this technique once to a solution x(i) is shown in Algorithm 1.

Under the assumption that A is a sparse matrix encoded with a sparse data structure, one iteration can
be run in O(nonzero(A)) time, where nonzero(A) denotes the number of non-zero entries in A.

Convergence to a solution is not guaranteed for all linear systems. The Jacobi method is known to
converge if A is strictly diagonally dominant, meaning that for each row in A, the magnitude of the
value on the diagonal is strictly greater than the sum of the magnitudes of all other values in the row.
This does not hold for all systems of interest, which motivates the usage of a variation of this method,
which is discussed next.
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Figure 3.5: Multiple numbers of iterations of the Gauss-Seidel method applied to the same one-dimensional Dirichlet problem
as in Figure 3.4. After each iteration, every point’s value is adjusted to be the average of its left neighbor’s new value and its

right neighbor’s old value.

3.3.2.2. Gauss-Seidel Method
The Gauss-Seidel method is yet another iterative algorithm for optimizing an estimate x(i). It works
very similarly to the Jacobi method, but slightly adapts the technique by immediately reusing newly
computed entries of x(i+1) in the computation for later entries within the same vector. This means that
the Gauss-Seidel method computes each x

(i+1)
j in some order, usually lexical order, each time trying

to satisfy the equation

(aj,1x
(i+1)
1 + · · ·+ aj,j−1x

(i+1)
j−1 ) + aj,jx

(i+1)
j + (aj,j+1x

(i)
j+1 + · · ·+ aj,nx

(i)
n ) = bi,

which leads us to the update rule

x
(i+1)
j =

bj −
∑

k<j aj,kx
(i+1)
k −

∑
k>j aj,kx

(i)
k

aj,j
.

With the Gauss-Seidel method, the way in which we order the variables in the linear system has a small
impact on how fast information propagates and how quickly solutions converge. However, since any
order is guaranteed to converge anyway, an arbitrary order may be used.

The Gauss-Seidel method is demonstrated visually in Figure 3.5. Similar behavior as with the Jacobi
method can be observed, though due to the immediate usage of the new values, the function tends to
“wiggle around” less.

Just like the Jacobi method, the update rule of the Gauss-Seidel method can be rewritten as a matrix
equation, relying on the same decomposition ofA into L,D, and U . The difference is that the performed
iteration is instead given by

x(i+1) = (L+D)−1
(
b− Ux(i)

)
.

Algorithm 2 One iteration of the Gauss-Seidel method.
function gaussSeidel(A,b,x)

for i ∈ {1, . . . , n} do
rowSum← 0
for i ∈ {1, . . . , n} do ▷ Sum up non-diagonal entries

if i ̸= j then
rowSum← rowSum+Ai,jxj

end if
end for
xi ← (bi − rowSum)/Ai,i

end for
return x

end function

An element-wise algorithm can also be constructed for the Gauss-Seidel method, as shown in Algorithm
2. Unlike in the algorithm for the Jacobi method, the values from x(i) and x(i+1) are no longer separated
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into different data structures, and instead the given vector is modified in-place. The consequence is
that newly-computed entries of x(i+1) are immediately used in the computation of later entries of x(i+1).

A concrete benefit of the Gauss-Seidel method in comparison to the Jacobi method is that its conver-
gence is not only guaranteed for strictly diagonally dominant systems, but also for matrices that are
positive semi-definite. A matrix A is positive semi-definite if it is symmetric and if for every vector x, it
holds that x⊺Ax ≥ 0. This is a bit different from the definition of positive definite given earlier, for which
the strict inequality x⊺Ax > 0 was defined. The new convergence conditions broaden the domain of
solvable problems significantly and allow us to apply iterative techniques to a couple of very practical
systems that will be introduced in a later chapter.

3.4. Multigrid Methods
This section will introduce and discuss the general idea of multigrid methods, starting with a motivating
example for their relevance in numerical optimization in Section 3.4.1, and then outlining the framework
and highlighting all elements involved in Section 3.4.2.

3.4.1. Motivation
Iterative solvers, when applied to the right problems, will often eventually converge to an approximately
right answer, if given enough time. Unfortunately, iterative solvers might take an unreasonable amount
of time until they resemble a usable solution. One of the causes of this can be demystified by consid-
ering how the Jacobi method would operate on a Dirichlet problem with a large domain.

Imagine a finite one-dimensional domain Ω as displayed in Figure 3.6, regularly discretized using 33
points, with the two extreme points forming the boundary ∂Ω = {p0, p32}. We fix f(p0) = −1 and
f(p32) = 1, and initialize the 31 points in between with f (0)(pi) = 0. In its attempt to solve the Dirichlet
problem, the Jacobi method will iterate over each variable point pi and compute

f (j+1)(pi) =
f (j)(pi−1) + f (j)(pi+1)

2
.

After one iteration, f (1)(p1) = −0.5 and f (1)(p31) = 0.5 are obtained, but for all other points in between,
f (1) = 0 still, as the repercussions of the boundary values at p0 and p32 have not been able to reach
them yet after just one iteration. In the next iteration, f (2)(p2) and f (2)(p30) become non-zero as well,
but for all the relevant points to become non-zero, at least 15 iterations would be needed, which is
an arguably high number for a still relatively small domain. The number of iterations required for f
to actually converge with an error lower than some desired small value would be significantly higher.
Suppose now that we did not have around thirty variable points, but around thirty thousand instead!
The process would be agonizingly slow, and it would be unreasonable to sit and wait for the computer
to finish its job, while it slowly, seemingly perpetually, tweaks its solution by the tiniest amounts each
time.

Figure 3.6: A demonstration of the convergence of the Jacobi method on a large one-dimensional Dirichlet problem. Applying
Jacobi iterations will let us slowly approach the stable solution, but it might take a long time for this to happen.
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To phrase the situation differently, the issue with the Jacobi method, as shown just now, is that it is
unable to see the big picture of a problem. It only applies local corrections based on the state of a
small neighborhood around each point, smoothing out the fine irregularities of the solution, but never
drastically reshaping it to better resemble the broad curves seen in the expected end product. The
effects of distant updates take many iterations to propagate through the entire domain, making con-
vergence difficult. The Gauss-Seidel method propagates these changes slightly faster than the Jacobi
method due to its in-place updates, but it still hopelessly falls short in terms of performance for the very
same reason. What is needed is a new approach with which huge gaps can be bridged, and relations
between points with great distances between them can be both represented and taken advantage of.
This leads us to the concept of multigrid methods.

3.4.2. Overview
A multigrid method (occasionally abbreviated as an MG method) is a hierarchical approach to itera-
tively solving linear systems. In a nutshell, it achieves fast convergence by optimizing a solution on
multiple discretizations of a domain simultaneously, each discretization having been made at a different
resolution. By observing the problem at multiple different scales, multigrid methods can optimize both
on a detailed level and on a grand level at the same time.

3.4.2.1. Hierarchy
Before the actual solving algorithm can be explained, it is important to clarify what “multiple different
scales” means in practice. For this, consider again a one-dimensional domain Ω0 discretized with 33
points (see Figure 3.7), similar to the one introduced in Section 3.4.1. To generate a new discretization
Ω1 with a lower level of detail, we can choose to remove every second point in Ω0, yielding a new
regular discretization with twice the spacing in between its points. The general process of representing
a domain with a new, similar domain consisting of fewer points is called coarsening, and the two
domains are referred to as the fine domain and the coarse domain, respectively, with respect to each
other. If the Jacobi method were to be applied to Ω1 instead of Ω0, information would be transferred
through space more quickly, as the point’s neighbors are located at a larger distance, meaning that the
information travels further in one iteration. Of course, since the coarse domain contains fewer points,
the obtained solution might not have the desired level of detail; we still wish to find a solution on the
domain Ω0. In Section 3.4.2.3, this problem will be addressed.

Figure 3.7: Multiple discretizations of a regular one-dimensional domain, at different resolutions.

We can similarly coarsenΩ1 to get a domainΩ2, and repeat this process any number of times, providing
us with a hierarchy of domains Ω0, . . . ,Ωk where every level contains significantly fewer points than
the previous one. Generating such a hierarchy is the first step required to pave the way for multigrid
methods, but just coarsening the domain is not enough, as we would still need to translate the posed
problem into this new context as well. This begs the question: how do we coarsen a linear system, i.e.
its matrices and vectors?

3.4.2.2. Restriction and Prolongation
Restriction and prolongation are essential components for MGmethods to work, and must be defined
for each newly created domain in the hierarchy. Their purpose is to map linear systems and possible
solutions from one level in the hierarchy to a neighboring one. Translating something from a fine domain
down to the next coarser domain is referred to as restricting, and the opposite upwards motion from
a coarse to a finer domain is referred to as prolongating.
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Figure 3.8: Restriction from a fine domain (red) to a coarser one (blue). Two weighted-average calculations are drawn out with
arrows. The plots are not drawn to scale; the blue plot is generally twice is in fact generally twice as large vertically as the red

plot.

Figure 3.9: Prolongation from a coarse domain (blue) to a finer one (red). Two weighted-average calculations are drawn out
with arrows. Note that the fine solution appears as a smoothed version of the one from Figure 3.8.

These two operations are commonly defined by associating points to spatially close points in adjacent
levels, and defining their values to be weighted averages of the values of these “neighboring” points.
A visualization of this process can be seen in both Figure 3.8 and Figure 3.9. Since both operators
are weighted averages defined for each point, they can be represented as a matrix multiplication. This
has many benefits, the most important one being that as we restrict a full linear system A0x0 = b0 to
lower levels, it will remain linear on every level, allowing us to still use the same methods to solve the
translated problem. We will refer to our restriction operators as matrices R0

1, R
1
2, . . . , R

k−1
k and to our

prolongation operators as P k
k−1, . . . , P

2
1 , P

1
0 . The prolongation matrices must be chosen such that if we

have a solution x1 on the domain Ω1, it can be transformed to a similarly-shaped solution x0 on the
domain Ω0 using just the matrix multiplication

x0 = P 1
0 x1.

Consequently, P 1
0 must be a matrix of size |Ω0| × |Ω1| in order for this multiplication to be well-defined.

Similarly, R0
1 must be a matrix of size |Ω1| × |Ω0|.

It should be noted that even though restriction and prolongation are considered to be “opposing” op-
erations, the operations are not each other inverses, i.e. it does not hold that R0

1P
1
0 or P 1

0R
0
1 is equal

to the identity matrix. Effectively, this means that restricting a candidate xk and then prolongating it
back, or vice versa, will not yield xk again, as can be observed in the examples in Figures 3.8 and 3.9.
However, this serves no problem, as the way in which these operators will be used does not require
them to be each other’s inverse. In fact, the operators that will be defined later on in the thesis will
scale any candidate roughly by a factor of |Ωk|/|Ωk+1|, when subsequently restricted and prolongated.
The way these operators are going to be used, this will be no issue.

To transfer not the solutions x(i) but a linear system defined by A and b to different levels, two things
can be done. A first approach would be to rediscretize the PDE from which the original system was
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derived, this time on each of the coarser domains Ωi. This requires knowledge about the original con-
tinuous problem from which the linear system was defined, which is not always available, well-defined,
or easy to reason about.
The second approach is easier to execute, as it does not rely on information about the original continu-
ous problem. The idea is to use the restriction and prolongation operators to “project” the matrix A and
the vector b onto the coarser domains. Specifically, the calculations to apply are

Ak+1 = Rk
k+1AkP

k+1
k ,

bk+1 = Rk
k+1bk.

One can see that the multiplication of bk happens analogously to the multiplication of an arbitrary
solution x

(i)
k . To justify the computation of Ak+1, one can ponder about the meaning of multiplying the

matrix with a vector xk+1; this multiplication can namely be expressed as

Ak+1xk+1 = Rk
k+1AkP

k+1
k xk+1,

which can be interpreted as prolongating the solution to the finer level, applying the original matrix Ak,
and then restricting the result back to the coarser level. This way of reducing linear systems down
the hierarchy is called the Galerkin method, and it saves us from the necessity to encode the original
continuous problem somehow and to communicate it to the solver, thus extending its applicability to
problems where this information is not available.

Since the previously mentioned algorithms generally rely on Ak being symmetric, it can be useful to
define

Rk
k+1 = (P k+1

k )⊺.

With this definition, if Ak is symmetric, Ak+1 will be too. On top of that, this definition also provides the
benefit of needing to define only one matrix for transfers in both directions; if prolongation is defined,
restriction is granted for free with it.

To demonstrate a concrete instance of prolongation, consider once more the hierarchy of regular do-
mains in Figure 3.7. A good prolongation operator for these hierarchies is not hard to come up with.
To create a solution on Ω0 based on a solution on Ω1, one could transfer the values at each point over
to their respective points on the finer level and interpolate to obtain values for the points in between.
Effectively, it would mean multiplying a solution x1 by the matrix

P 1
0 =



1 0 · · · 0 0
1
2

1
2 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 1

2
1
2

0 0 · · · 0 1


in order to obtain a translated solution x0. Note that this is the same prolongation operator as demon-
strated in Figures 3.8 and 3.9. Similar operators can be defined for each level, and can be reused
for restriction as well, allowing any vector or matrix to be transferred to any level in the hierarchy of
domains.

3.4.2.3. Multigrid Solver
With the hierarchy of domains and the prolongation operators defined, the solving method can finally
be discussed.

Multigrid solvers are similar to iterative solvers in the sense that they rely on multiple subsequent
executions of an algorithm, each of them improving a candidate solution until it converges. Unlike the
iterations from before, however, these new “iterations” do not just consist of single calls to Jacobi or
Gauss-Seidel; instead, they consist of recursive operations called multigrid cycles. Multiple different
types of multigrid cycles exist, the most common being the V-cycle, the F-cycle, and the W-cycle. To
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Algorithm 3 Multigrid V-Cycle with Gauss-Seidel.
function multigridVCycle(k,bk,xk)

if Ωk is the coarsest layer then
return solve(Ak,bk) ▷ Base case, direct solve

end if
repeat preIters times

xk ← gaussSeidel(Ak,bk,xk) ▷ Pre-smoothing
end
rk ← bk −Akxk ▷ Residual calculation
rk+1 ← (P k+1

k )⊺rk ▷ Restriction
ek+1 ← multigridVCycle(k + 1, rk+1,0) ▷ Recursive call
ek ← P k+1

k ek+1 ▷ Prolongation
xk ← xk + ek ▷ Error correction
repeat postIters times

xk ← gaussSeidel(Ak,bk,xk) ▷ Post-smoothing
end
return xk

end function

demonstrate the structure of a cycle, the V-cycle is explained first. The F-cycle and the W-cycle follow
easily from the definition of the V-cycle, as they are simple variations thereof.

The algorithm for the V-cycle is described in Algorithm 3. In the usual scenario, the algorithm starts with
a couple of iterations of e.g. the Gauss-Seidel method on the solution xk, mimicking our initial approach.
This process is referred to as pre-smoothing. After a fixed number of iterations of this, it calculates
the residual vector rk, which indicates roughly in what direction xk must be moved to become a better
solution. Next, it restricts rk to rk+1 on the domain Ωk+1, and attempts to solve the residual equation
Ak+1ek+1 = rk+1 on the next coarser domain, by calling the algorithm recursively. The solution ek+1

is then restricted and added to the solution xk, in an attempt to compensate for the lower-frequency
errors still occurring in xk even after having been pre-smoothed. Finally, some post-smoothing is
done to account for any errors introduced by the addition of ek, and the solution is returned as the new
candidate.
Once the coarsest layer is reached, the algorithm no longer relies on this iterative step-by-step plan and
instead uses a direct solver to solve the system; since the coarsest layer contains significantly fewer
points than the finer layers, the use of a direct solver will not lead to problems at this resolution.

Figure 3.10: A visualization of the transfers between the layers in the hierarchy, as performed by the V-cycle, F-cycle, and
W-cycle.

The reason why this structure is called a V-cycle becomes clear when visualizing its recursive pattern,
as is done in Figure 3.10. Downwards movement represents the restriction of residuals, upwards move-
ment represents the prolongation of error corrections. At the bottom, direct solves are executed, and
in any layer above, a few smoothing iterations take place.
Using the same figure, the F-cycle and the W-cycle can also be explained. The same operations are
used, but the pattern in constructing and solving residual equations is different. The F-cycle initially
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restricts to the coarsest level, and then executes V-cycles of increasingly greater size. TheW-cycle re-
stricts and prolongates once and recursively executes two smaller W-cycles in between until it reaches
the bottom. Both methods apply more smoothing per cycle, gaining in accuracy obtained per cycle,
while also increasing the amount of time spent on executing one. As a result, the different cycles each
perform differently from one problem to another, and one might want to opt for one type of multigrid
cycle over another, depending on what problem and what context is being dealt with.

3.5. Unstructured Meshes
In previous sections, we covered multigrid methods that execute over regular domains. These domains
were defined as Cartesian grids with any number of dimensions, which are subdivisions of cuboids.
Even our one-dimensional domains fall in this category. If the number of cuboids in each dimension is
a particular power of two, coarsening the domain and defining prolongation operators are trivial matters.
When dealing with unstructured meshes, however, the story becomes very different.

An unstructured mesh is a mesh without any regular patterns in terms of the placement of the vertices
or connectivity between them. An example is that of the surface of an irregular shape, such as a face
or a map of a country. Because of the lack of structure, many algorithms and methods that were simple
to define for regular meshes are harder to generalize and apply to this new type of mesh. In the context
of multigrid methods, the issues arise when considering how to define mesh coarsening and how to
construct the prolongation operators, which have now become non-trivial tasks.

Figure 3.11: A triangle (top) and a
tetrahedron (bottom).

3D triangular meshes are meshes that are described by two col-
lections: a list V , containing vectors in R3 that define positions of its
vertices, and a set F , containing triplets of vertices between which
a triangle (also referred to as a face) is drawn. Usually, the triplets
of F consist of the indices at which said vertices are located in V ,
meaning that F is populated by triplets of integers from 1 up to and
including |V | (see Figure 3.11, top). With this definition, the surface
of any continuous three-dimensional shape can be approximated
up to any level of detail (see Figure 3.12).

3D tetrahedral meshes are similar to triangular meshes, but in-
stead of using a set of faces, they are defined using a set of tetra-
hedra T . These tetrahedra are defined using quadruplets of vertex
indices, in the same way that faces were defined before (see Figure
3.11, bottom). The added benefit of tetrahedral meshes, in contrast
to triangular meshes, is that they allow us to encode and represent
volumes within shapes, instead of just the shape’s outer surface.
Particularly for processes in physics simulations, such as heat dif-
fusion or elastic deformation, just reasoning about the outside of a
shape is simply not enough to provide a full view of the entire sys-
tem at play; one must be able to talk about what happens inside of
a mesh to accurately model these phenomena, and tetrahedra are
one way to support this.

When referring to meshes, often a distinction is made between topology and geometry. We refer to
the topology of a mesh when talking about the structure defined by E, F , and T . The positions of
the vertices in V are not considered in this definition, and thus the actual physical shape of the mesh
is disregarded when talking about its topology. The geometry of a mesh does incorporate the spatial
data included by V , and thus allows for the discussion of lengths, areas, angles, and more.

Due to the irregular topology and geometry of unstructured meshes, many problems have to be rede-
fined to remain applicable. For example, our Dirichlet problem, which used to enforce all values to be
equal to the average of its neighbors, will now have to work with weighted averages instead. These
weights will depend on the topology and geometry of the mesh, more specifically one the distribution
of mass and the stiffness of the mesh, which is a topic to be further discussed in 5.1.2.
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Figure 3.12: A sliced triangular mesh (left) and a sliced tetrahedral mesh (right) with the same contour. spot mesh obtained
from [CPS13], visualized using Polyscope [Sha+19].

3.6. Gravo MG
Defining a geometric multigrid scheme through coarsening on irregular meshes is significantly more
complicated than it is on regular meshes. Whereas before we could trivially coarsen the domain by
omitting every other point and define prolongation through multilinear interpolation, we can no longer
rely on such simple techniques, due to the absence of a regular grid. Nonetheless, geometric multigrid
methods on irregular meshes can still be defined by approximating the shape of the original mesh with
fewer points and defining prolongation and restriction by matching proximate points between layers.
This just requires more thought and consideration than before.

When constructing a multigrid scheme, there are at least two things that are of great importance: the
time needed to construct the system for an arbitrary domain, and the time needed to solve an arbitrary
equation on the domain. A tradeoff must often be made between these two, as simple and unsophis-
ticated construction techniques could lead to slow convergence, and higher convergence usually de-
mands a coarsening technique that is more expensive to compute. Numerous studies and techniques
have been developed to apply multigrid schemes to irregular meshes, often leading to techniques that
strike a particular balance between the two relevant durations.

Recently, a new technique has been developed to generate multigrid hierarchies on irregular surface
meshes, calledGravoMG [Wie+23] (occasionally referred to simply as “Gravo”). In a nutshell, it creates
a multigrid hierarchy by recursively coarsening a graph representation of the mesh and constructs a
graph Voronoi diagram to quickly triangulate the meshes, well enough to define decently accurate
prolongation weights. Gravo MG serves as the “main character” in this thesis, and thus we will spend
the rest of this chapter discussing its inner workings in detail.

3.6.1. Algorithm
The Gravo MG algorithm initially starts with a collection of vertices V0, often referred to as a point cloud,
and a set of edges E0 connecting these vertices. A set of triangular faces F0 may also be available,
but it will only serve to determine the set of edges E0. The output of the algorithm is a sequence of
prolongation matrices P 0

1 , . . . , P
k−1
k , which can be plugged into any multigrid solver.

In a nutshell, the algorithm iteratively performs the following five steps to generate a new level k from
an existing level k − 1:
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1. Subsample the point cloud Vk−1 to obtain a point cloud Vk, such that |Vk| ≪ |Vk−1|.
2. Cluster the points in Vk−1 into clusters Ci, each associated to a vertex vi from Vk.
3. Connect the points in Vk with an edge set Ek based on the clusters Ci.
4. Triangulate Vk using Ek to create a set Fk.
5. Prolongate Vk−1 by construct a prolongation operator P k

k−1 based on Fk, Ek and Vk.

This process is repeated until Vk is sufficiently small, which we consider to be the case once it contains
at most 1000 vertices.

Each of these steps will be discussed in further detail in Sections 3.6.1.1, 3.6.1.2, and 3.6.1.3.

3.6.1.1. Subsampling
Gravo MG attempts to subsample a point cloud Vk from Vk−1 by applying variation on the Maximum
Delta-Independent Set sampling strategy, abbreviated as MδIS. The algorithm that finds such an
independent set follows a few steps. First, the average length ê of all edges in Ek−1 is calculated. Next,
a predefined ratio 0 < ϕ < 1 is used alongside it to compute a value δ using the formula

δ = ϕ− 1
3 ê.

The algorithm will treat δ as a minimum distance to maintain between the points in Vk. Then, the
algorithm will repeatedly select a random available point from Vk−1, add it to Vk, and eliminate all its
direct neighbors (so the vertices located in its one-ring, seen in Figure 3.14) for which the Euclidean
distance to the sampled points is smaller than δ. This continues until all points are either sampled or
eliminated. The result is a new point cloud Vk containing significantly fewer points than Vk−1.

Figure 3.13: The MδIS-1 algorithm, visualized. The red points will form the new domain.
From left to right: 0 steps, 1 step, 2 steps, and a possible end result.

Figure 3.14: The one-ring (red) and the
two-ring (blue) of a vertex (black).

Unlike the Maximum Independent Set (MIS) problem, which
often occurs in more algorithmic settings, Maximum Delta-
Independent Set intentionally ignores connections with a length
of at least δ. By doing this, it incorporates information about the
geometry of the mesh to ensure that the subsampling remains
locally approximately uniform. After all, imperfect tetrahedraliza-
tions could contain particularly long edges, which would cause
conflicts between vertices that are not remotely close to each
other and thus should not mutually exclude each other. For this
reason, MδIS is made use of here instead of MIS.

[Wie+23] applies an adaptation of MδIS, where not only di-
rect neighbors in close proximity are eliminated, but also the
neighbors of those neighbors, i.e. vertices in its two-ring (see
Figure 3.14). By limiting the search to the two-ring, the run-
time is not increased too much, while still eliminating signifi-
cantly more points within the desired radius, achieving unifor-
mity faster. When distinction is needed, we will refer to this
adaptation asMδIS-2, while referring to the original one-ring ver-
sion as MδIS-1.
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It should be noted that the ratio between the sizes |Vk| and |Vk−1| is likely not equal or even close to the
ratio ϕ, since δ is computed heuristically, and does not guarantee that the desired number of vertices
is sampled. In practice, MδIS-1 often samples significantly more points, and MδIS-2 significantly fewer.
This phenomenon will be revisited in Section 4.2.3.1 in more detail.

3.6.1.2. Clustering, Connecting and Triangulating
The output of subsampling a point cloud Vk−1 is a new point cloud Vk, devoid of any edges of triangles
connecting the points. Gravo MG will attempt to construct a triangular mesh based on the new point
cloud and the previous mesh in three steps. The whole process is visualized in Figure 3.15.

Figure 3.15: The triangulation process demonstrated on the mesh from Figure 3.13.
Left: The Voronoi cells that are approximated using Graph Voronoi. The coarse points (colored) are used as centroids.

Center: The clustering of all fine points, based on their proximity to the selected coarse points.
Right: Coarse edges drawn between coarse points whose clusters are connected by at least one fine edge, and the triangles

found within these coarse edges.

First, it will cluster the points in Vk−1 over different clusters Ci, where each cluster is associated with a
particular point vi from the point cloud Vk. The remaining not-sampled points, those in Vk−1 \ Vk, are
divided over these clusters based on a graph Voronoi diagram. In essence, this means that a fine
point is assigned to the cluster of the coarse point closest to it, where the distance between two points
is defined as the length of the shortest edge path connecting them, measured as the sum of the lengths
of the edges in the path. This assignment, along with the relevant closest distances, can be computed
for every point using a multi-source variation of Dijkstra’s algorithm, starting from each coarse point.

Second, after the clusters have been created, edges are drawn between every pair of coarse points
vi, vj ∈ Vk if there exists an edge in Ek−1 that connects a point in Ci to a point in Cj . Phrased differently,
the points are connected if their clusters are direct neighbors. The drawn edges will form the edge set
Ek that connects the point cloud Vk.

Algorithm 4 Triangulating a point cloud using a set of vertices V and a set of edges E.
function triangulate(V,E)

N1 ← ∅, . . . , N|V | ← ∅
for (i, j) ∈ E do ▷ Construct sets of neighboring vertices

Ni ← Ni ∪ {vj}
Nj ← Nj ∪ {vi}

end for
F ← ∅
for vi ← V do

for vj ← {vj ∈ N(vi) | i < j} do ▷ Inequality included as symmetry break
for vk ← {vk ∈ N(vi) | j < k ∧ vk ∈ N(vj)} do

F ← F ∪ {(i, j, k)} ▷ Add face to set
end for

end for
end for
return F

end function
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Finally, the mesh is triangulated by searching for triplets of unique vertices in Vk such that each pair of
vertices has an edge between them. An efficient implementation of this process is outlined in Algorithm
4. All triangles are then stored in the set Fk, and will be used in the prolongation step discussed
in Section 3.6.1.3. It should be noted that it is extremely likely that the resulting triangulation is not
watertight and contains holes. This, however, will not cause any significant problems in later stages of
the algorithm, since prolongation operators can still be defined for these meshes, even if the transfer
is a bit less accurate than it would be for a watertight mesh.

3.6.1.3. Prolongating
After having executed the preceding steps, Gravo MG should have definitions for Vk−1, Vk, Ek, and Fk

at its disposal. Using these, it will define the prolongation from level k to level k− 1. The value of each
point from Vk−1 will be determined by a weighted average of the values of at most three points from
Vk. For each fine point v ∈ Vk−1, it decides on those points and their corresponding weights by first
determining the coarse point vc ∈ Vk representing the cluster Cc that v is in, and then traversing the
following checklist:

1. Find the closest triangle f ∈ Fk containing vc such that v′, which is the projection of v onto the
plane spanning f , falls onto f (see Figure 3.16). Prolongate using the three vertices of f , and use
the barycentric coordinates of v′ inside f as the prolongation weights. If no such triangle exists,
continue to Step 2.

2. Find the closest edge e ∈ Ek containing vc such that v′, which is the projection of v onto the
line spanning e, falls onto e (see Figure 3.16). Prolongate using the two endpoints of e, and use
the linear interpolation weights of v′ inside e as the prolongation weights. If no such edge exists,
continue to Step 3.

3. Select the three points in Vk that are closest to v. Prolongate using these points, and use weights
that are proportional to their inverse distance to v.

Figure 3.16: The projection of a point v onto edges and triangles. If the projection falls inside the primitive, the primitive can be
used for prolongation with linear or barycentric weights.

To determine whether v′ is inside an edge e or not, one can determine whether all the linear interpolation
weights of v inside e are non-negative. The computation of the barycentric coordinates inside edges is
outlined in Algorithm 5. Similarly, for triangles, one can determine whether the barycentric coordinates
of v inside f are all non-negative, and these coordinates can be calculated using Algorithm 6.

By only considering triangles and edges that connect to vc, the computation is sped up significantly,
as it saves us from having to iterate over the entire mesh. Instead, the search is limited to a small
neighborhood surrounding the coarse point.

The triangulation of the point cloud at level k allows Gravo MG to prolongate using barycentric coordi-
nates for the majority of the fine points. This generally leads to quicker convergence than prolongation
using inverse distance weights, which can be computed with only a point cloud, but do not serve as an
accurate parametrization of the surface to use for interpolation.
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Algorithm 5 Calculating the linear interpolation weights of a point v inside an edge spanning vertices
v0 and v1, if projected onto the edge’s line.
function linearWeightsEdge(v,v0,v1)

λ0 ← (v−v0)·(v1−v0)

∥v1−v0∥2

λ1 ← 1− λ0 ▷ Compute remaining weight
return (λ0, λ1)

end function

Algorithm 6 Calculating the barycentric coordinates of a point v inside a triangle spanning vertices v0,
v1 and v2, if projected onto the triangle’s plane.
function baryCoordsTri(v,v0,v1,v2)

n← (v1 − v0)× (v2 − v0) ▷ Triangle normal
a← ∥n∥ ▷ Triangle surface area times two
n̂← n/a ▷ Triangle normal of unit length
d← (v − v0) · n̂ ▷ Distance from v to triangle
v′ ← v − dn̂ ▷ Projection of v onto triangle
λ0 ← 1

a ((v2 − v1)× (v′ − v1)) · n
λ1 ← 1

a ((v0 − v2)× (v′ − v2)) · n
λ2 ← 1− λ0 − λ1 ▷ Compute remaining coordinate
return (λ0, λ1, λ2)

end function

3.6.2. Conclusion
By constructing domains using primarily point cloud data, followed by a quick triangulation of these
point clouds using graph Voronoi for the purpose of defining the prolongation operators, Gravo MG
achieves a representative and useful multigrid hierarchy in a relatively short time. It hence solves sys-
tems quicker than approaches that operate and prolongate solely on point cloud data, such as [Shi+06],
and takes less time to set up than approaches that carefully maintain a triangulation throughout the en-
tire coarsening process, such as [Liu+21].



4
Methods

In this chapter, the main contribution of the thesis is provided, which is a description of the implemented
changes to the original Gravo MG algorithm from [Wie+23] in order to support tetrahedral meshes. In
Section 4.1, the strictly necessary changes for transitioning from the triangular to the tetrahedral context
are outlined, Section 4.2 explores ideas on how to preserve the boundary of the domains throughout
the hierarchy, and 4.3 briefly discusses the parallelization employed to improve runtime.

4.1. The Essentials
When considering each of the individual steps of the original Gravo MG algorithm, it turns out that many
of them do not rely on the assumption that the given point cloud represents a triangular mesh, not a
tetrahedral one. Stages such as subsampling, clustering, and connecting each remain unchanged and
untouched. Even though the two remaining steps, triangulating and prolongation, can in theory also
be left as they are without causing blocking problems, it would be nonsensical to look for triangles in a
tetrahedral mesh and use those for prolongation. If prolongation for fine points depends on triangles and
not on tetrahedra, a lot of spatial information about the mesh is disregarded, which affects convergence
negatively. These two stages of the algorithm thus need to be adapted. The required changes for both
are discussed in Sections 4.1.1 and 4.1.2, respectively.

4.1.1. Tetrahedralizing
The first essential change is that instead of triangulating the point cloud formed by Vk and Ek, it needs
to be tetrahedralized. The tetrahedralization process is similar to the triangulation process discussed
in Section 3.6.1.2, with the difference being that we are looking for a group of four connected vertices,
instead of three. These groups will form a set of tetrahedra Tk, which give shape to the mesh on the
next layer.
Alongside the tetrahedralization Tk, the triangulation Fk is still generated as well, since the triangle
data can still be used as backup in the prolongation step, if prolongation based on tetrahedra fails.
This is likely to happen close to the boundary of the mesh, for example. The triangulation can be
easily computed simultaneously with the tetrahedralization. The pseudocode for generating both a
triangulation and a tetrahedralization can be found in Algorithm 7.

The tetrahedralizations that Gravo MG generates are far from perfect. An example can be seen in
Figure 4.1. Even if the input mesh is watertight, has no overlaps, and appears to perfectly describe
a certain shape, the subsampling and the rapid coarse reconstruction of this shape will lead to many
anomalies in the domain. These anomalies include visible pits in the surface, gaps on the interior of
the mesh, and tetrahedra that partially intersect and thus both occupy the same small space within the
domain. Particularly, the intersection of tetrahedra is something that would never be seen in a mesh
that was carefully prepared to perform physics simulation on, since this would already cause ambiguity
issues in the definition of the problem, which usually relies on the assumption that the mesh can be
embedded in space.

24
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Figure 4.1: The finest domain in a multigrid hierarchy (left) and the next coarser domain, tetrahedralized with Gravo MG. Some
visible tetrahedron intersections are highlighted, though many more exist inside the mesh, not visible from the outside.

Figure 4.2: A five-point clique naturally
occurring when connecting a point cloud.

This simple structure will cause the
generation of five tetrahedra, each of which

overlaps with some of the others.

While it might be tempting to blame the occurrence of inter-
sections on the usage of graph Voronoi methods over actual
Voronoi methods, it should be pointed out that using perfect
Voronoi cells would not mitigate the issue. To this end, imag-
ine a subsampled point cloud of five coarse points in 3D space,
positioned as seen in Figure 4.2, each with an implied Voronoi
cell acting as the point’s cluster. In three dimensions, it is pos-
sible for these five clusters to all directly neighbor each other.
The result is a clique of five points in which edges are added be-
tween every single pair. As a result, five different tetrahedra will
be generated, even though only two or three of these tetrahedra
are needed to fill the space. This is just one example of how in-
tersecting tetrahedra can be created. In practice, they can also
be generated under different circumstances, which are harder
to predict and even harder to prevent.

Even though intersecting tetrahedra may sound problematic,
they turn out not to form a real issue for our use case. First of
all, these intersections only appear in the intermediate coarser
representations, which are solely used for computing, and not
in any kind of visible final output. Second of all, the tetrahedra
themselves are only used for defining the prolongation opera-
tors (as will be further discussed in Section 4.1.2), and overlaps
will just lead to multiple options for this definition for some of
the points, at which point an arbitrary selection can be made.
Since the effort needed to cleanly retetrahedralize the mesh is not trivial and would significantly in-
crease Gravo’s low construction time, one of its most valuable qualities, these “bad” tetrahedralization
are not improved and are used as they are given.

4.1.2. Prolongating
The prolongation operators for the adapted Gravo algorithm are defined similarly as in Section 3.6.1.3.
A checklist is still traversed to find the best possible prolongation for a given fine point. To support
tetrahedral meshes, however, a new step is added at the very start, which is to be checked first before
continuing with the default cases. In the stepwise algorithm below, Step 1 is the newly added step, and
the remaining steps have been unchanged. As a reminder, v refers to the fine point for which to define
the prolongation, vc refers to the coarse point that represents v’s cluster, and Vk, Ek, Fk, and Tk define
the mesh.
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Algorithm 7 Tetrahedralizing a connected point cloud using a set of vertices V and a set of edges E.
function tetrahedralize(V,E)

N1 ← ∅, . . . , N|V | ← ∅
for (i, j) ∈ E do ▷ Construct sets of neighboring vertices

Ni ← Ni ∪ {vj}
Nj ← Nj ∪ {vi}

end for
F ← ∅
T ← ∅
for vi ← V do

for vj ← {vj ∈ N(vi) | i < j} do ▷ Inequality included as symmetry break
for vk ← {vk ∈ N(vi) | j < k ∧ vk ∈ N(vj)} do

F ← F ∪ {(i, j, k)} ▷ Add face to set
for vl ← {vl ∈ N(vi) | k < l ∧ vl ∈ N(vj) ∧ vl ∈ N(vk)} do

T ← T ∪ {(i, j, k, l)} ▷ Add tetrahedron to set
end for

end for
end for

end for
return (F, T )

end function

1. Find a tetrahedron t ∈ Tk containing vc such that v lies within t. In casemultiple tetrahedra contain
v, arbitrarily pick one of them. Prolongate using the four vertices of f , and use the barycentric
coordinates of v inside t as the prolongation weights. If no such tetrahedron exists, continue to
Step 2.

2. Find the closest triangle f ∈ Fk containing vc such that v′, which is the projection of v onto the
plane spanning f , falls onto f . Prolongate using the three vertices of f , and use the barycentric
coordinates of v′ inside f as the prolongation weights. If no such triangle exists, continue to Step
3.

3. Find the closest edge e ∈ Ek containing vc such that v′, which is the projection of v onto the line
spanning e, falls onto e. Prolongate using the two endpoints of e, and use the linear interpolation
weights of v′ inside e as the prolongation weights. If no such edge exists, continue to Step 4.

4. Select the three points in Vk that are closest to v. Prolongate using these points, and use weights
that are proportional to their inverse distance to v.

Again, to determine whether v is inside t or not, one can determine whether all the barycentric coordi-
nates of v inside t are non-negative. The computation of the barycentric coordinates inside tetrahedra
is outlined in Algorithm 8.

Algorithm 8 Calculating the barycentric coordinates of a point v inside a tetrahedron spanning vertices
v0, v1, v2 and v3.
function baryCoordsTet(v,v0,v1,v2,v3)

for (a, b, c, d) ∈ {(0, 1, 2, 3), (1, 2, 3, 0), (2, 3, 0, 1)} do ▷ Cycle over ordered quadruplets of vertices
n← (vc − vb)× (vd − vb) ▷ Triangle normal
n̂← n

∥n∥ ▷ Triangle normal of unit length
λa ← n̂·(v−vb)

n̂·(va−vb)

end for
λ3 ← 1− λ0 − λ1 − λ2 ▷ Compute remaining coordinate
return (λ0, λ1, λ2, λ3)

end function
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4.2. Boundary Preservation
In this section, a few techniques are proposed to better preserve the shape of the domain through
coarsening. The techniques all rely on a notion of the boundary. Section 4.2.1 will give a precise
description of this term, 4.2.2 will describe our approach to detecting the boundary for an arbitrary
hierarchy, and 4.2.3 will show some techniques that use the boundary information to construct better
hierarchies.

4.2.1. Concept
The boundary of a triangular mesh is a region on the mesh at which the mesh appears to simply stop,
or be “cut” in a way. Examples can be a hole that is punched through the mesh or the silhouette of
a flat sheet. More formally, a boundary can be identified as a collection of edges that are adjacent
to just one triangle in the mesh, instead of being located in between two of them. It is possible for a
triangular mesh to not have a boundary at all. A simple cube, to take a concrete example, only has
edges that reside between two triangles, and thus, no boundary exists according to the definition. In
fact, the surface of any physical object around us represents a mesh without a boundary. Because of
this fact, often watertight meshes, i.e. meshes without a boundary, are preferred in physical simulation
or realistic rendering, meaning that a notion of a boundary is not that important.

Tetrahedral meshes also have their own definition of a boundary; it is commonly referred to as the sur-
face of the mesh. A tetrahedral mesh always has a boundary, since, unlike 2D surfaces embedded in a
3D space, which can curve back to itself, 3D volumes in a 3D Euclidean space must “end” somewhere.
There is guaranteed to be a certain nonempty subset of vertices that lie on the outer surface of the
shape, and because these vertices are not surrounded by vertices on all sides, they tend to behave
differently from the interior vertices when doing various computations on them. For example, when
iteratively adjusting the positions of vertices to be the average of their neighbors, a region of interior
vertices might shuffle in any direction, and gradually attempt to converge to an equilibrium, whereas
a vertex on the surface would tend to gravitate further towards the inside of the mesh, inadvertently
shrinking it. The fundamentally different behavior of boundary points gives reason to determine what
the general shape of the boundary is.

Figure 4.3: Boundary vertices on a cube mesh of
different ranks. Blue points are 1st rank boundary
points, green points are 2nd rank, and orange

points are 3rd rank.

We make a distinction between three different types of
boundary points, which will be called surface points (or
1st rank boundary points), ridge points (2nd rank boundary
points), and corner points (3rd rank boundary points). Sur-
face points are points that simply lie on the boundary and
are exposed to “negative space”. Most can be seen on the
outside of the mesh, but they could also occur in a cavity
within it. Ridge points are surface points that lie on a par-
ticularly curved part of the surface, where themesh appears
to be folded by a significant angle. In a sense, a ridge could
be considered “a boundary of a boundary” of sorts. Corner
points are surface points that find themselves in a partic-
ularly pointy part of the surface, and could be considered
“a boundary of a ridge”. Each of these types of boundary
points is visualized in Figure 4.3.

4.2.2. Computation
This section will describe the process to determine the
boundary for a given mesh. This process has a few differ-
ent stages and aspects to it, each of which is described in
the following subsections.

4.2.2.1. Initialization
Gravo MG does not come with a baked-in algorithm for determining what points are surface points,
ridge points, or corner points in the input mesh. Instead, this information is left for the user to pro-
vide as additional context for the mesh. Gravo can still function without this information, although the
techniques described in Section 4.2.3 can then no longer be executed.
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The decision to leave the boundary definition for the input mesh to the user was made for several
reasons. First of all, Gravo is, by design, unaware of the surface of the mesh, as it only has information
regarding the vertex positions defined by V and their pairwise connections defined by E. Gravo can at
best make a guess at what the boundary is supposed to be, and this might lead to estimations of the
boundary that are less than ideal. By giving this control to the user, they can decide to manually paint
the surface with ridges and corners to prioritize some details of the mesh over others, or even delegate
the work to a different algorithm, with more sophisticated detection methods beyond the scope of this
work.

However, in the event that the original mesh is known, including the tetrahedra and the faces that form
the surface, we can still propose a brief method to determine the boundary of the input that is provided
to Gravo. What will be described next is the detection method used in our experiments to determine the
boundary of an arbitrary manifold tetrahedral mesh. These methods are executed as a preprocessing
step before Gravo is run itself, and give a good enough estimation of the boundary in the majority of
cases.

Surface points can be detected using just the topology of the domain. Consider a tetrahedralization of
a shape in which no points share the same location, no tetrahedra overlap with each other, every point
is used to define at least one tetrahedron, and all tetrahedra are non-degenerate, i.e. their points are
not coplanar and thus their volume is non-zero. For these kinds of “good” tetrahedralizations, there
exists a straightforward topological approach to determine what points lie on the surface of the shape
it defines. The key is to first find the faces that lie on the surface, which are distinguished by the fact
that they only lie on one tetrahedron instead of two, and to mark every point that lies on any of the
found faces. All marked points together form the set of surface points. A formal algorithm is described
in Algorithm 9.

Algorithm 9 Given a set of tetrahedra T that describe the topology of a mesh (V, T ), determines a set
of surface point indices Surf ⊆ {0, . . . , |V | − 1}.
function determineSurface(T )

cnt← {} ▷ Counter data structure, initializes everything with 0
for (i, j, k, l) ∈ T do

Increment cnt[{i, j, k}]
Increment cnt[{i, j, l}]
Increment cnt[{i, k, l}]
Increment cnt[{j, k, l}]

end for
F Surf ← {f ∈ cnt | cnt[f ] = 1} ▷ Faces on the surface would only be encountered once
Surf ← ∅
for {i, j, k} ∈ F Surf do

Surf ← Surf ∪ {i, j, k}
end for
return Surf

end function

Ridge points we detect by iterating over each of the edges that connect two surface triangles, and
determining the angle that the two triangles make with each other. To this end, their triangle normals
are computed, and the angle between these two normals is measured. If this angle is bigger than our
selected value 1

3π, the two endpoints of the edge are marked as ridge points. Otherwise, they are not.

Finally, corner points are detected by computing the Gaussian curvature of each of the surface points,
which can be used as a measure of how pointy a mesh is at a certain point. The process of computing
the Gaussian curvature is described in Section 4.2.2.3. A point is considered a corner point if its
Gaussian curvature exceeds our selected value 1

3π.

4.2.2.2. Propagation
The boundary initialization algorithms designed to detect boundary features, as described in Sec-
tion 4.2.2.1, work well for properly tetrahedralized meshes with a manifold surface and without self-
intersections, and can thus be applied to find the boundary points in the original domain at the finest
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Figure 4.4: A coarse vertex is assigned to be a boundary point of the highest rank that can be found within its cluster.

level as a preprocessing step. However, for the coarser and messier domains in the multigrid hierarchy,
these algorithms are thrown out of the window in favor of a much simpler approach. On the lower levels
of the hierarchy, we consider a coarse point to be a boundary point of at least a certain rank if there
is at least one fine point in the cluster associated with that same boundary rank. The coarse boundary
thus directly depends on the finer boundary. A visualization is shown in Figure 4.4.

(a) A side view of two
intersecting tetrahedra (blue,
orange) sharing a triangle
(red). This triangle would

topologically not be
classified as a surface

triangle.

(b) A side view of two
intersecting tetrahedra (blue,
orange) with intersecting
faces, causing ambiguity

about whether the red points
are located on the surface.

There are two substantial benefits to the propagational
technique introduced here. First, it sidesteps edge cases
that would occur from performing all the above algorithms
on the poor tetrahedralizations that might arise. An exam-
ple of such an edge case would be two intersecting tetra-
hedra that share a face on the surface, as demonstrated
in Figure 4.5a. While these edge cases can be detected
and solved by analyzing the geometry of the mesh as well
as its topology, this would cause a lot of computational
overhead, ultimately making it not worth the effort. Sec-
ond, using a recursive definition means that the boundary
information depends completely on the boundary given
at the finest level, which the user gets to define them-
selves. This gives them almost complete control over the
definition of the boundary on every level in the hierarchy,
by just providing it at the highest level. Additionally, this
approach completely removes the dependence the algo-
rithm would have on the set of tetrahedra in the original
domain. This independence would mean that Gravo MG
could be run on just a point cloud, similarly to the original
Gravo MG algorithm from [Wie+23], as long as a guess at what the boundary should be is provided.

It should be noted that due to the poor coarse tetrahedralizations, points that reside a bit below the
surface and are arguably interior points, could still be marked as a boundary point instead, for example,
in the scenario depicted in Figure 4.5b. This error has been observed to cause even deeper “boundary”
points in subsequent coarser domains, making the computation of the surface a bit unreliable. However,
all the operations that will be described in Section 4.2.3 use the boundary solely for heuristic purposes,
and never as a cornerstone for any crucial operation. Slight mistakes or ambiguities in the boundary
thus have no disastrous effects for the execution of the algorithm as a whole.

4.2.2.3. Promotion
While coarsening amesh, it might happen that a curved section that did not get marked as a corner point
initially gets sharper after points are removed. In this event, it would be good if a point is “promoted” to
a corner point, even if there was no fine corner point in its cluster, so that the newly-developed sharp
feature of the mesh is preserved. To figure out whether a point should be promoted, an estimation of
the Gaussian curvature of the mesh around that point must be made.
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Figure 4.6: Neighbors sorted around the normal.

Figure 4.7: The estimated normals sticking
out of the surface, not always quite

perpendicularly.

TheGaussian curvature of a point on a clean andmanifold
mesh describes how curved the surface around that point
is. In discrete settings, it is often defined as the difference
between a complete angle (360◦ or 2π) and the sum of in-
ternal angles around the vertex. If the region surrounding
the point is perfectly flat, these two will be equal, and the
curvature will be 0. An extruded point will have a positive
curvature, and a point located in a saddle will have a nega-
tive curvature. While this definition of curvature is useful, it
relies on a well-triangulated exterior, which is not available
to Gravo on the coarse levels. The messy tetrahedraliza-
tion and triangulation make this measure unreliable. How-
ever, using just information about the vertices and about
the connections between them, an accurate estimation of
the curvature can still be made.

Suppose that we have a set of points and edges connect-
ing them, and for a given point, we need to estimate its
Gaussian curvature. Let the edge vector corresponding to
a neighboring point be the vector pointing from the given
point to that neighbor. The estimation process of the cur-
vature for a given surface point can then be described with
the following steps:

1. Estimate a rough surface normal at the given point.
2. Sort the edge vectors of its neighboring surface points

in clockwise or counterclockwise order relative to this
normal.

3. Compute the angles between each pair of adjacent
edge vectors.

4. Compute the curvature based on these angles.

Estimating a surface normal is done by summing up all the edge vectors of the given point, including
the ones pointing to its internal neighbors, and then taking the unit vector pointing in the exact opposite
direction. This is an inaccurate way of defining the normal, and will lead to visibly crooked vectors that
stick out of the surface in a quite slanted manner, as can be seen in Figure 4.7. However, this is not
a problem for the following steps, as the normal will just be used for ordering the neighboring surface
points, a process that is quite robust to large deviations of the normal in question.

Ordering the edge vectors around the normal (see Figure 4.6) is done by first setting up an arbitrary
orthonormal basis with the normal acting as its third basis vector and constructing a matrix from these
three basis vectors. Multiplying the transpose of this matrix with each of the edge vectors gives a
representation of these edge vectors relative to the normal. In other words, the vectors are rotated
such that the normal points up. The z-coordinate of the rotated edge vectors is then ignored, and their
angles on the xy-plane are computed with atan2(y, x). The edge vectors are then sorted increasingly
on this angle.

Next, to compute the internal angles between neighboring edge vectors, the standard cosine-formula
is used, namely

θij = arccos
ei · ej
|ei| · |ej |

,

and finally, the computed angles are used to compute the Gaussian curvature, that being

Curvature = 2π −
∑

θij .

If this value is higher than our selected value 1
3π, the point is promoted to a corner point, else it is left

untouched.
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Figure 4.8: The estimated curvature of each
of the 2930 surface points in spot plotted

over the actual discrete Gaussian curvature.
2741 of the data points lie on the red line,

indicating a perfect estimation.

The estimation of the curvature can be executed without any
explicit triangulation, and only relies on knowledge about the
positions of vertices, their neighbors, and whether they lie on
the surface or not, each of which is known information. Further-
more, since the computation only needs to be done for surface
points, it barely contributes to the runtime of Gravo for quasi-
uniform meshes. Furthermore, it can be trivially parallelized for
each point individually, as further discussed in Section 4.3, mak-
ing the computation almost negligible in practice.

While the estimation of the curvature corresponds almost per-
fectly to the true discrete curvature for most of the points, there
are certain cases in which the estimation fails. Causes of
this can be an erroneous normal estimation due to unevenly-
distributed edge vectors, or the occurrence of two boundary
points being connected by an edge that passes through the
mesh instead of remaining on its surface. In these cases, ei-
ther more internal angles end up being added, or the incorrect
ordering will cause internal angles to overlap. In either case, the
sum of internal angles increases, and thus the curvature drops
far below the intended value, as can be seen in Figure 4.8. This
happens occasionally, but infrequently enough not to be consid-
ered a major issue. Most of the curvature estimations are still
accurate, so if the curvature is only used for heuristic purposes,
the outliers should not have much impact on the result. Further-
more, the negative bias of the estimation will not cause points
to be promoted even though they should not be, since promo-
tion only happens when the curvature is positive. False positive
cases are thus not expected to occur in practice.

4.2.3. Techniques
In this section, four different techniques to better preserve the
shape of the mesh throughout the coarsening process are in-
troduced and explained. Each of these is implemented in the
Gravo MG algorithm and makes use of the computed estima-
tion of the boundary.

4.2.3.1. Sparse Sampling
In Section 3.6.1.1, a distinction was made between MδIS-1 and MδIS-2, the latter being implemented in
the original Gravo MG algorithm. Both variations come with their own advantages and disadvantages.
For instance, it can be seen in Table 4.1 that, in comparison to MδIS-1, MδIS-2 does make the domains
and the systems smaller, which means that the transfer of vectors and execution of Gauss-Seidel steps
is generally faster, but it also hinders convergence, likely due to the strong discrepancy in vertex density
between any two adjacent layers in the hierarchy. The choice between MδIS-1 and MδIS-2 is therefore
a bit of a tradeoff, where in practice both of these techniques end up taking approximately the same
time to get to the same residual error when applied in a tetrahedral context.



4.2. Boundary Preservation 32

Algorithm |Vk| per layer nonzero(P k
k−1) per layer nonzero(Ak) per layer Cycles

MδIS-1
13376
2280
408

44276
7195

191926
98514
23196

7

MδIS-2
13376
1070
165

47760
3344

191926
43006
7229

10

MδIS-1½
13376
1291
222

47224
3956

191926
50443
9996

7

Table 4.1: A comparison between the sampling techniques MδIS-1, MδIS-1½ and MδIS-2, used to create a multigrid hierarchy
with a ratio of ϕ = 8 that solves a Poisson problem on a uniform spot-tetrahedralization up to a residual error of 10−10. The

number of vertices and the nonzero matrix entries influence the time needed to execute one cycle.

It is important that the boundary is represented well throughout the hierarchy, something that the ag-
gressive MδIS-2-sampling tends to hinder. The points that lie on the boundary are, however, only a
small fraction of the points throughout the mesh, particularly for isotropically tetrahedralized meshes. If
the point density here is higher than in the interior, it would only have a small effect on the execution time
of a cycle. For this reason, a variation of the MδIS-sampling techniques has been experimented with
that finds itself in between the two previously-discussed versions. We name this technique MδIS-1½.

MδIS-1½ has a simple definition: it applies MδIS-1 on the boundary, and it applies MδIS-2 on the
interior. This means that, when selecting a point inside the mesh, the algorithm will eliminate all nearby
points in the two-ring neighborhood of the point, but when selecting a point on the boundary, only the
one-ring is checked, allowing other points to still be sampled even if their geometric proximity to the
previously-sampled points is small. The expected result is that coarsened meshes will have an interior
that is coarser than their surface, meaning that detail is maintained mainly where it would help improve
convergence.

A brief look at the comparison of MδIS-1½ demonstrated in Table 4.1 shows that the sampling method
does lead to a smaller system, without strongly affecting the convergence. A more thorough evaluation
is demonstrated in Section 5.2.1.2.

4.2.3.2. Sampling Order
In Section 3.6.1.1, Gravo MG’s subsampling technique, dubbed MδIS-2 in this work, was described as
sampling points and then removing close points in the neighborhood. What was not elaborated upon
was what point should be sampled out of the point set that is still available. While this matter is not
really discussed in [Wie+23], it is a decision that can have significant effects on the generated hierarchy
and thus the convergence of the solver. If a random order is chosen, it could happen that points around
defining features of the mesh, such as corners or ridges, are sampled before the corner or ridge point
itself can be sampled. These important points are then eliminated, leading to a degradation in the
shape.

Figure 4.9: A schematic representation of
how a pit naturally spawns. The fine points
and clusters are shown above, the coarse
points and the resulting boundary below.

Instead, a sampling order can be chosen to intentionally priori-
tize points of a higher boundary rank over other points. By sort-
ing the list of vertices on decreasing rank, breaking ties arbitrar-
ily, it is guaranteed that for every point, it is either sampled or it
is in the vicinity of a sampled point with a rank at least as high.
In practice, this means that most corner points are guaranteed
to be sampled, and many ridge points and surface points will
be too. Since these are the points are crucial in giving shape to
the domain, the shape is more likely to be preserved after the
coarsening is done.

4.2.3.3. Pit Prevention
Even if the boundary-prioritizing sampling order from Section
4.2.3.2 is used, it is still possible for “pits” to occur in the sur-
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Figure 4.10: The original spot mesh (left) and a quickly coarsened version of it
(right). Upon coarsening the mesh, the outer surface (yellow) gets ripped open,

leaving pits everywhere (purple).

Figure 4.11: A quickly coarsened
version of the spot mesh, but with pit

prevention enabled.

face of the mesh, as seen in Figure 4.10. These pits are not
characterized by a lack of vertices, but by a lack of edges, tri-
angles, and tetrahedra covering up the inside of the domain.
This can affect the prolongation operators around the boundary
negatively, precisely where it matters the most. It is therefore
important that pits are first understood and then prevented.

Pits mainly occur in a very specific situation, visualized in Figure 4.9. Suppose there are multiple
boundary points connected to each other, of which one does not get sampled. This surface point would
then be assigned to the cluster of the closest point in its neighborhood. The closest point may actually
be an interior point, instead of another surface point. If the not-sampled surface point is assigned to
the cluster of the sampled interior point, and the surface points around it do not already neighbor each
other, then the surface point gets “absorbed” into the interior point, causing a cavity, and the surface
neighbors’ clusters will not touch each other to patch that hole up. The result is a pit, and thus a drastic
change in the shape of the mesh, which hinders accurate transfer between the layers in the multigrid
hierarchy.

Figure 4.12: By explicitly forbidding a
boundary point to join an interior cluster, the

boundary clusters remain adjacent.

Oneway to prevent pits from appearing is to not allow fine points
to be assigned to clusters represented by points of a lower rank.
A surface point could then, for example, never be absorbed by
an interior point. Enforcing this is a matter of adding a simple
if-statement in the clustering stage. If an edge exists that con-
nects a surface point to an interior point, this edge cannot be
traversed in this direction, sort of as if the edge had a weight of
∞. This will ensure that points that surface points are guaran-
teed to join clusters of other surface points, as shown in Figure
4.12. The surface will consequently be completely connected,
with no gaps revealing the interior of the mesh, as demonstrated
in Figure 4.11.

4.2.3.4. Boundary-Aware Smoothing
In [Wie+23], the authors noted that slightly displacing the sub-
sampled coarse points from their original position would lead to
a small increase in convergence. The justification behind this is
that this perturbation reduces the number of single-entry rows
in the prolongation matrix, since the sampled fine points that
would usually restrict only to their coarse counterpart will now
restrict to other vertices as well.

The perturbation in [Wie+23] was implemented by moving the sampled coarse points towards the av-
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erage position of the fine points in its cluster. This would cause the coarse points to still be spread out
uniformly, but prevent the coarse points to lie exactly on top of their fine equivalent. While in principle
this approach can directly be applied to the tetrahedral case as well, it causes the boundary to shrink
and deform. This happens because clusters located on the boundary tend to have averages that lie a
bit buried underneath the surface of the mesh, due to the inclusion of interior points within the cluster.
The change in shape caused by the surface shrinking inwards can be detrimental for the performance
of a multigrid solver, so it might not seem appealing to perturb the points at all. However, there exists
a way to perturb the points without causing the boundary to shrink, and thus to still have the benefit of
smoothing the vertex positions.

Figure 4.13: Boundary-aware smoothing
helps to fill pits appearing in the surface, by

dragging interior points outwards.
Figure 4.14: An example of pits on the spot mesh being pulled towards the

surface, turning a mesh with pits (left) into one with a smooth surface (right), as
if inflating it

Figure 4.15: An overview of the
iterated stages of Gravo MG and their

parallelizability.

For this reason, we apply a form of boundary-aware smoothing. The
idea is to not necessarily take into account all points within the cluster
when computing the average position, but rather only the fine points
whose boundary rank matches that of the new coarse point. Coarse
surface points then get moved to the average position of the fine sur-
face points of the cluster, coarse ridge points to that of the fine ridge
points, et cetera. The effect is that boundary points would no longer
get shrunk inwards, as they will only be shifted into directions roughly
tangential to the surface. The same thing can be said for ridge points,
which will no longer be pulled inwards due to the local curvature of
the surface around the point, and for corner points, which will now
likely not be perturbed at all, unless there happen to be many corner
points located close to each other. With boundary-aware smoothing,
perturbation can be applied safely, preserving the general shape and
defining features of the mesh.

A lucky consequence of boundary-aware smoothing is that it also im-
mediately addresses the problem of pits appearing in the surface, as
discussed in Section 4.2.3.3. The cause of these pits was clusters
containing fine boundary points being represented by coarse interior
points. By applying a round of boundary-aware smoothing, these
coarse points will be moved towards an average position that is lo-
cated right on the surface (see Figure 4.13). As a result, any pit that
might have appeared is fixed, restoring the shape of the surface, as
seen in Figure 4.14.

4.3. Parallelization
When taking a look at the entire algorithm, it can be noted that quite
a number of individual stages can be parallelized. While we do not
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apply this parallelization ourselves in the experiments that follow, it
could help in accelerating the construction process on hardware that
allows it, and thus merits a discussion. An overview of the algorithm
and its parallelizability is given in Figure 4.15.

The estimation of the curvature on coarser levels to optionally promote points is embarrassingly parallel,
as the only writing operation that is executed is the promotion of the point itself. The tetrahedralization
and prolongation can also be parallelized by creating a list for each individual point for the threads to
store their results in. That way, no two threads ever have to touch the same list, and the results, be
that a list of triangles and tetrahedra or a list of prolongation weights, can be quickly collected into one
list afterwards.

When it comes to propagating the boundary, connecting the neighboring clusters, or applying vertex
smoothing, parallelization can still be employed, but will require some sort of locking system. The
reason for this is that these stages still iterate over all of the fine points on one layer, but each also
performs write operations on the corresponding coarse points on the next layer. By initiating a lock for
each of the coarse points, these operations can be prevented from interfering with each other. The
use of critical sections had been implemented first, but was replaced with the locking system; many
of the operations do not interfere with each other at all, assuming that the number of coarse points is
decently large, so it makes more sense to prevent the few collisions that might happen with individual
locks, instead of halting every other thread simultaneously when one thread wants to add an element
to a list no other thread was touching anyway.

Lastly, there are a few stages that cannot easily be parallelized. The clustering of the vertices cannot
be done in parallel without some sophisticated approaches, as it relies on a run of Dijkstra’s algorithm,
which requires nodes to be visited in a certain order. Subsampling, if done with MδIS-1½, is also difficult
to do concurrently, as it would allow for two neighboring points to be sampled simultaneously, which
could affect the quality of the hierarchy and/or hinder convergence. Attempts to use locks to prevent
this could result in deadlocks, which should be prevented at all costs.
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Experiments & Discussion

To evaluate the performance of the extension of the Gravo MG algorithm, a series of experiments
was conducted, comparing a handful of benchmarks under a multitude of circumstances and contexts.
Section 5.1 discussed the general setup of the conducted experiments, mainly focusing on the definition
of the problems. Then, in Section 5.2, several experimental studies are conducted to compare Gravo
to variations of itself and to some state-of-the-art algorithms. In the end, Section 5.3 summarizes the
results by presenting a brief discussion of Gravo’s performance.

5.1. Setup
In this section, the setup of the experiments is described in detail. Section 5.1.1 describes how the
tetrahedral meshes used in the experiments were obtained, and Section 5.1.2 discusses what linear
problems were solved on these meshes to assess Gravo.

5.1.1. Meshes
In order to obtain tetrahedral meshes suitable for the experiments, surface meshes were taken and then
tetrahedralized with the surface acting as a boundary. The surface meshes in question were obtained
from the Thingi10K dataset [ZJ16]. A variety of meshes has been selected in order to ensure a balanced
representation over various quantitative and qualitative attributes, e.g. the number of vertices or the
complexity of the shape. All chosen meshes are watertight and both vertex- and edge-manifold.

We distinguish between two different types of tetrahedral meshes in our experiments: adaptive meshes
and isotropic meshes (see Figure 5.2).

Figure 5.1: A bad triangulation of a mesh. Some
triangles are too large, causing huge portions of the
surface to contain no degrees of freedom. Other

triangles are too thin, causing low-quality tetrahedra to
be generated, which leads to unrealistic dependencies

between points.

Adaptive meshes are meshes for which the density of
points varies over different parts of the domain. Adap-
tivity can be useful in practice to, for example, provide
more detail in interesting regions of the domain than in
other regions. For volumetric meshes, this difference
in detail is mostly visible in the density of the surface in
comparison to the interior. Simulations on bodies tend
to show the most interesting phenomena on the bound-
ary of the domain, so it would make sense to add many
vertices in proximity to the boundary, and leave the in-
terior a bit sparser.

In our experiments, we generate adaptive meshes us-
ing TetGen, using the following simple command:

tetgen -pq1.6 file.ply

The p-flag indicates that we are coarsening a piecewise
linear complex obtained from a .ply-file, and the q1.6-flag is included to allow TetGen to refine the

36
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Figure 5.2: An adaptive tetrahedralization (left) and an isotropic tetrahedralization (right) of spot [CPS13].

mesh, and to enforce a certain quality measure for each of the generated tetrahedra, in this case
by constraining their radius-edge ratio. This is defined as the ratio of the radius of the tetrahedron’s
circumsphere, i.e. the sphere that crosses through all its vertices, and the minimum edge length in the
tetrahedron. For well-shaped tetrahedra, this ratio should be small. The above flag ensures that the
generated tetrahedra have a radius-edge ratio of at most 1.6. To ensure that this is possible, TetGen
might occasionally need to add Steiner points to the surface, which are points specifically added to
allow certain tetrahedra to exist that otherwise could not. This could be useful for difficult corners, but
also for large surface triangles, for example, those seen in Figure 5.1.

Occasionally, even adding Steiner points still leads to a mesh with a bad tetrahedralization, on which
any problem is doomed to suffer from slow convergence. For this reason, some of the meshes from
Thingi10K are remeshed before passing them to TetGen, to obtain a better-triangulated boundary and
thus a better mesh. This remeshing is done using CGAL’s isotropic_remeshing feature [Coe+24],
which aims to capture the same surface as well as possible while also keeping the edge lengths close
to a predefined value. For adaptive meshes, an adaptive sizing field was used based on the curvature
of the local region around the points, to still simulate varying vertex densities on the surface. The Y-flag
is added to the TetGen-call that follows, which ensures the surface remains will not have any vertices
added or removed.

Isotropic meshes are characterized by having approximately the same edge length throughout the
entire domain. This holds not only for the surface but also for the interior. Unlike the adaptive meshes,
whose vertex density tends to vary over the domain, the distance between any neighboring pair of
points in an isotropic mesh is as close to a certain constant as possible. The distribution of the vertices
is thus almost uniform all the way through. Since the surface to pass to TetGen is likely not already
isotropic, we again make use of CGAL’s isotropic_remeshing feature, this time with a constant sizing
field. The new edge length is arbitrarily chosen and tweaked to control the number of points. Then, the
new isotropic surface is passed into TetGen with the following command:

tetgen -pmq1.6 file.ply

The m-flag tells TetGen to look for a .mtr-file, which has been generated to provide the algorithm with
a target edge length, equal to the same arbitrarily chosen value. The output is an isotropic tetrahedral
mesh, ready for use in experiments.

In Appendix A, an overview is given of all the meshes that have been used in the experiments, along
with some general statistics about the meshes.
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5.1.2. Problems
Different types of linear systems Ax = b show different behavior when being optimized by the multi-
grid solver. A selection of problems to solve has been made to demonstrate convergence in multiple
contexts. The problem definitions rely on two types of matrices that encode two important properties
of the mesh, those being its stiffness and its mass. The definitions of these matrices are discussed in
Section 5.1.2.1. Following that, our method for fixing variables to values in a linear system is briefly
explained in Section 5.1.2.2. Finally, the linear systems for the selected problems are introduced in
Section 5.1.2.3.

5.1.2.1. Matrix Definitions
The first matrix to define is the stiffnessmatrix S, which is a matrix describing the connections between
different vertices of the mesh and the strength thereof. It is constructed by assigning each edge (i, j) ∈
E in the mesh a scalar weight wi,j , and then adding this weight to the diagonal entries ai,i and aj,j ,
while subtracting it from the off-diagonal entries ai,j and aj,i. Generally, the higher the weight wi,j , the
more important the edge (i, j) is compared to its neighbors.

Since the weight of an edge can be defined in multiple ways, different definitions exist for the stiffness
matrix. In our experiments, we opted for the cotangent Laplacian, which is defined by the equation

Si,j =


− 1

2 (cot(αi,j) + cot(βi,j)) if (i, j) ∈ E,∑
k ̸=i−Si,k if i = j,

0 otherwise,

(5.1)

where αi,j and βi,j are the two angles opposing the edge (i, j). A geometric understanding of this
formula is displayed in Figure 5.3. The main idea is to subdivide the mesh surface into quadrilateral
shapes, such that each quadrilateral corresponds to one edge in the mesh. In the definition for the
cotangent Laplacian, these quadrilaterals span the two vertices connected by the edge, and the two
circumcenters of the adjacent faces. The actual matrix entry Si,j then corresponds to the width of the
quadrilateral divided by its height, i.e. the distance between the circumcenters divided by the length of
the edge. By applying some trigonometry, one can determine that the widths of the two halves of the
quadrilateral are given by 1

2 cot(αi,j) ∥vi − vj∥ and 1
2 cot(βi,j) ∥vi − vj∥, which, when added together

and divided by the length of edge (i, j), lead to the expression listed in Equation 5.1.

(a) The circumcenter of a triangle is defined as the
center of the circle spanning all its vertices.

(b) An edge between two triangles (blue), and its quadrilateral spanning four
points (light blue). The matrix entry Si,j is the quadrilateral’s width divided by
its height, and can be computed using the cotangent of the opposing angles.

Figure 5.3: A geometric interpretation of the cotangent Laplacian.

This definition of S has the benefit of S being symmetric as well as positive semi-definite, regardless of
the topology or the geometry of the mesh. There is, however, no guarantee that the edge weights will
all be positive, as the cotangent evaluates to negative values when provided obtuse angles, i.e. angles
larger than 90◦. Visually, this can be interpreted as the circumcenter lying outside of its triangle. While
not ideal, the matrix S remains usable in the majority of contexts.
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While the formula and geometric interpretation base themselves solely on triangles, instead of the
tetrahedra which hold our interest, the same geometric principle can be applied to define a cotan-
gent Laplacian for tetrahedral meshes as well [Cra19]. In our experiments, we rely on the tetrahedral
cotmatrix-implementation from libigl [JP+18].

Figure 5.4: The mass of a vertex is determined by the
area of the Voronoi cell surrounding it.

The second matrix to define is the mass matrix M ,
which describes how themass of themesh is distributed
over the domain. A lumped mass matrix was chosen
for these experiments. This is a diagonal matrix where
each entry on the diagonal corresponds to the mass
assigned to one of the vertices. For triangular meshes,
this assignment can be done by calculating the areas
of each of the triangles, splitting it into three parts, and
dividing those areas among the three vertices span-
ning the triangle. How this split is done is a matter of
choice; in these experiments, to maintain consistency
with the definition of the stiffness matrix, the three-way
split shown in Figure 5.3a is used, which involves three
perpendicular bisectors meeting at the circumcenter of
the triangle, cutting the triangle into parts. Every ver-
tex vi receives a part of the area from each of its adja-
cent faces (see Figure 5.4), the sum of which totals to
the matrix entryMi,i. Since this construction is actually
equivalent to finding the Voronoi cell corresponding to
the vertex, this matrix is often referred to as the Voronoi
massmatrix. Due to the nature of Voronoi cells, all ver-
tex masses in a manifold mesh are guaranteed to be
positive.

Again, this concept can be translated from a triangular
context to a tetrahedral one without much trouble, now just considering the volumes of the Voronoi cells
surrounding the vertices. An implementation from libigl can be employed to compute the Voronoi
mass matrix for any tetrahedral mesh. This matrix is used in the experiments that follow.

5.1.2.2. Fixing Values
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Figure 5.5: Fixing xi = vi in a linear system.

Some of the problems listed below
rely on a notion of fixed values, i.e.
vertices whose value is not a vari-
able to solve for, but a constant
shaping the problem itself. This
is needed to support, among other
things, Dirichlet boundaries. Given
a system Ax = b, we fix a variable
xi to the value vi by replacing the
ith row with the equation 1 · xi =
vi, and subtracting multiples of this
equation from the others, to elimi-
nate the xi-term everywhere else.
This second action is an elemen-
tary row operation, seen before in
Section 3.3.1, which means it does
not affect the solution space of the
system.

It should be noted that at this point,
the ith row and column could in the-
ory be removed from the system al-
together, because they do not in-
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teract with the rest of the entries anymore. Even though this would make the system smaller, the
decision was made not to implement this for three reasons. First, the removal of the entries would be a
bit more involved than just deleting the entries from A and b, since the prolongation matrices are built
without any knowledge of the problem, including which of the values are fixed; changing the system
would require changing the prolongation matrices as well, which is a computationally tedious task. Sec-
ond, the difference in performance would be quite small, since the matrices used in the experiments
are already sparse, and these redundant rows only add one entry each to the quite large pile of num-
bers that are not redundant or removable. Third, while this feature could definitely be considered an
optimization, it would be an optimization of the problem, and not of the hierarchy construction, which
is the algorithm being benchmarked. There does not appear to be any reason to believe a more opti-
mized problem will result in a better analysis and comparison between different solvers, so none of the
experiment results are expected to be any different.

5.1.2.3. Linear Systems
In the conducted experiments, four types of linear problems were solved on a variety of domains under
a variety of conditions. These four are Poisson’s equation, the biharmonic equation, smoothing, and
gradient deformation, each of which is to be discussed next.

Figure 5.6: The applied Dirichlet boundary
conditions for Poisson’s and the biharmonic

equation.

First, Poisson’s equation is an elliptic PDE given by the equa-
tion

∆φ = f,

where φ is a function of the type Ω → R. On the boundary ∂Ω,
the values of φ are fixed to predefined values. It can be dis-
cretized by substituting the function φ for the vector x, the func-
tion f for a vector f , and ∆ for its discrete version, the mesh
Laplacian matrix L, defined as M−1S. This would yield the
matrix equation M−1Sx = f , but since the mesh Laplacian ma-
trix is not symmetric, one of the conditions for the Gauss-Seidel
method to work, it is more convenient to instead define the equa-
tion as

Sx = M f ,

which is functionally the same, but suitable for iterative relax-
ation, due to the symmetric nature of S. We fix the boundary
points to particular values, which are determined by entering
their positional coordinates into the arbitrarily-chosen formula

g(x, y, z) = sin(10x) + sin(10y) + sin(10z),

giving a smooth fluctuation in boundary values as seen in Figure 5.6. Furthermore, we enforce f = 0
for all other points, thus turning the equation into a Dirichlet problem, also referred to as a harmonic
equation, in our experiments. Since the equation in question focuses on the interior of the mesh and
not on the boundary, this problem is only run on isotropically tetrahedralized meshes, not on adaptive
meshes, which have very few points on the interior to begin with and would thus not be as interesting
for this problem.

Second, the biharmonic equation is a fourth-order PDE given by

∆2φ = 0.

Similarly to Poisson’s equation, using the mesh Laplacian, the equation can be discretized to

(M−1S)(M−1S) = 0,

and can be converted into the suitable and symmetric equation

SM−1Sx = 0.

The biharmonic equation is particularly interesting to experiment with, due to its complexity in compar-
ison with the other problems, better demonstrating the difference between the convergence rates of
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different solvers. In the experiments, the same Dirichlet boundary conditions as before are applied to
the boundary points. Similar to the Poisson problem, we only run this problem on isotropic meshes,
not on adaptive ones.

Third, smoothing is the process of reducing outliers by averaging out vertex locations in a local neigh-
borhood. The linear system that will be used to apply this smoothing is given as

(M + αS)X ′
V = MXV ,

where XV is a |V | × 3-sized matrix in which each row represents the position of one of the |V | vertices,
X ′

V represents the new respective positions to be solved for, and α is an arbitrary scalar that we fix
to 10−3. Due to the inclusion of S into the equation, every vertex is pulled to the average position
of its neighbors, simulating the smoothing effect. No boundary conditions are applied to this system,
causing different convergence behavior than Poisson’s equation and the biharmonic equation. The
problem also distinguishes itself by having lower residual errors than other problems and, therefore,
generally requiring fewer cycles to converge; if the original shape of the mesh is passed as an initial
guess to the solution, most of the points will already be close to their position in the finally obtained
solution.

Figure 5.7: Whoosh! (The transformation
applied to our gradient deformation problem.)

Lastly, gradient deformation is a type of deformation that can
be applied to a mesh, in which every tetrahedron ti is trans-
formed by a certain matrix 3 × 3-matrix Di, up to translation.
The linear system is given by

(G⊺MTG)X ′
V = G⊺MT (DG)XV ,

where G is the gradient matrix, MT is a diagonal mass matrix
that describes the mass of each tetrahedron, instead of each
vertex as in Section 5.1.2.1, and D is a collection of matrices
Di to transform each tetrahedron with, constructed by interleav-
ing these matrices row by row. G is obtained using libigl’s
gradmatrix function, which has support for tetrahedral meshes.
The matrix G⊺ is included to obtain a least-squares approxima-
tion of the desired deformation, since it is not guaranteed that
every transformation can be perfectly abided by simultaneously,
and MT is included to penalize errors in larger tetrahedra more
severely than in smaller tetrahedra. For our experiments, we
define the transformation matrix for each tetrahedron by com-
puting its barycentric center (xi, yi, zi), and then computing the
matrix as

Di =

 cos( 12πy) sin( 12πy)(1 +
1
4x) 0

− sin( 12πy) cos( 12πy)(1 +
1
4x) 0

0 0 1

 ,

which resembles a transformation as if the mesh is being bent or
curved backwards at the top and bottom (see Figure 5.7). Since
this system only reasons about vertex positions relative to each
other, the system is indifferent to translations of the solution. As
a result, the matrix is non-invertible, and more than one solution
exists. To combat this, the system is slightly altered by adding a
regularization term to the left-hand side of the equation, leading
to the new well-defined equation

(G⊺MTG+ αM)X ′
V = G⊺MT (DG)XV .

Again in this equation, α is an arbitrary scalar that we fix to 10−3 in our experiments.
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5.2. Experiments & Results
In this section, we outline the experiments that were executed to evaluate Gravo MG. The meshes,
matrices, and linear systems that were discussed before are used here to judge how well Gravo MG
can actually solve practical optimization problems. The evaluation is split into three parts. In Section
5.2.1, an ablation study is performed to try to assess the influence of each of the individual design
decisions on the optimization process. Then, Section 5.2.2 compares Gravo MG to some state-of-the-
art alternatives for solving systems under similar constraints. Finally, 5.2.3 evaluates Gravo MG in a
more regular setting, comparing it to prolongation done through refinement instead of coarsening.

5.2.1. Ablation Study
To determine what parts of the algorithm help in increasing performance, we perform an ablation study
on various features of the algorithm, including the different boundary preservation techniques intro-
duced and discussed in Section 4.2.3.

For all of the discussed experiments, the following holds:

• V-cycles are used, with two iterations of Gauss-Seidel smoothing both before and after the recur-
sive call;

• The multigrid method coarsens the domain until a domain is added with at most 1000 points.
• Instead of painting the boundary manually, the initial ranks of the boundary points are computed
automatically using dihedral angles and discrete Gaussian curvature (see Section 4.2.2).

5.2.1.1. Prolongation Weights
The reason Gravo MG constructs a triangulation and a tetrahedralization is to use barycentric coordi-
nates. Without describing volumes and surfaces on top of the point cloud, there would be no sensible
definition of how to compute barycentric coordinates. To justify the effort done by Gravo MG, we com-
pare the use of barycentric weights to other common definitions that could be used instead. The list of
weighting schemes we compared is as follows (see also Figure 5.8):

• BINARY: Every fine point prolongates to only one coarse point with a weight of 1, as is done in
[XTL19];

• UNIFORM: Every fine point prolongates to some coarse points chosen as is done in Section 4.1.2,
and gives each of the n chosen points a weight of 1

n ;
• INV-DIST: Every fine point prolongates to some coarse points chosen as is done in Section 4.1.2,
and gives all of the chosen points weights such that they are proportional to the inverse of their
Euclidean distances to the fine point;

• BARYCENTRIC: Our approach, every fine point prolongates to some coarse points chosen as is
done in Section 4.1.2, and gives each point a weight determined by the fine point’s barycentric
coordinates within the primitive that the coarse points span.

(a) Binary weights. (b) Uniform weights. (c) Inverse distance weights. (d) Barycentric weights.

Figure 5.8: The different weighting schemes, visualized on a single triangle. The intensities of the red, green, and blue colors
indicate the intensity of the weights towards the respective corners.
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The algorithm was run on devil and trex, which are an isotropic and an adaptive mesh, respectively.
None of the optimization features discussed in Section 4.2.3 was used or enabled. The results are
displayed in Figure 5.9. In these graphs, the residual error is laid out over the estimated number of
multiplications that one cycle takes. This estimation is based on the density of the prolongation matrices
and the matrices on the left-hand side of the equations on each multigrid level. Each dot in the graph
represents the start or end of a cycle.

What is clear from the results is that the use of barycentric coordinates generally speeds up the solving
process by a wide margin. In most of the experiments that were run, BARYCENTRIC appears to take
fewer cycles to get to a lower residual error than any of the other techniques. This means that, in
comparison to UNIFORM and INV-DIST, this approach is expected to be superior when plotted over units
of time as well, as these other two weighting schemes do not lead to sparser matrices, and thus take
approximately as much time to execute one cycle. The binary weights (BINARY) as seen in [XTL19] do
reduce the number of nonzero entries, and because of that, this approach could beat the barycentric
weights by taking smaller steps in rapid succession; in Figure 5.9c, this almost happens. However, in
each of the executed experiments, the barycentric weighting scheme shows a clear superiority over the
alternative schemes, be it with a small or a widemargin. This demonstrates the benefit of a prolongation
method not based on just a graph representation of a mesh, as is used in [Shi+06].
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Figure 5.9: The effects of weighting schemes, compared and visualized.
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5.2.1.2. Sparse Sampling
To evaluate the effectiveness of the used MδIS-1½ approach from Section 4.2.3.1, we benchmark it
in comparison to MδIS-1 and MδIS-2 against a variety of meshes. The list of sampling strategies that
have been compared is:

• MDIS-1: Eliminate vertices in the one-ring everywhere;
• MDIS-2: Eliminate vertices in the two-ring everywhere;
• MDIS-1½: Our approach, eliminate vertices in the one-ring on the surface, in the two-ring in the
interior.

Again, the algorithmwas run on the adaptivemeshes ball and trex, and on the isotropic meshes devil
and die. None of the other optimization features discussed in Section 4.2.3 was used or enabled. The
results are displayed in Figure 5.10.

The hypothesis of MDIS-1½ being more efficient softly shines through in the plots. In almost all of the
executed experiments, the new approach comes out as the most or one of the most efficient options
among the ones listed, albeit by a small margin. A consistent tradeoff can be seen when comparing
MDIS-1 to MDIS-2; MDIS-1 reduces the residual error more with each cycle, but the cycles take longer to
compute, whereas MDIS-2 can execute more cycles within the same amount of time, while they do not
reduce the error as much. The consequence is that both techniques often perform quite similarly, as
their advantages and disadvantages tend to cancel each other out. Occasionally, the two even seem to
almost completely overlap, e.g. in Figure 5.10h. MDIS-1½, on the other hand, appears to strike a bit of
a balance between the two. While converging less per cycle than MDIS-1 and taking slightly more time
per cycle than MDIS-2, the differences are small enough such that, often, MDIS-1½ performs at least as
well or even a bit better than both of these two approaches. Clear examples of this behavior are seen
in Figures 5.10b, 5.10h, and 5.10i, for example. It appears that enforcing more careful coarsening on
the boundary leads to a small increase in convergence, whereas coarsening the interior rapidly does
not affect the performance of the solver to a significant extent.

The results are not too remarkable, of course. For example, in the plots that show experiments on
adaptive ball mesh (Figures 5.10c and 5.10f), there seems to be no difference between MDIS-1 and
MDIS-1½. This can be justified by noting that the interior of these meshes is already sparse, and thus the
difference between the hierarchies created by the two sampling strategies is small or even non-existent.
Furthermore, on particular problems, such as biharmonic, the difference is barely there; Figures 5.10j
and 5.10k show little difference between any of the strategies. And lastly, even in the cases where there
does appear to be a measurable distinction between the plots, the speedup obtained through MDIS-1½
is minor at best. Nevertheless, since using this sampling approach does not add to the construction
time, even this small gain makes implementing it worth it.

The weakly positive results make a small case for the benefit of MδIS-1½, but there is a more general
and more interesting conclusion to be made from this. Namely, that maintaining detail on the interior of
the mesh really is less important than on the boundary of the mesh. The MδIS-1½ sampling technique
that was introduced, discussed, and evaluated is simply one of the many different sampling methods
that are capable of making a distinction between these two parts of the domain, and more sophisticated
approaches could probably be designed to optimize even further on both sparsity and solving time.
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Figure 5.10: Different sampling strategies compared.
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5.2.1.3. Sampling Order
The sampling order proposed in the algorithm relies on the notion of boundary ranks. This is just one
of the many, many ways in which vertices can be ordered. To assess the performance of this order in
particular, we compare it to a number of other possible sorting techniques. The list of chosen techniques
to compare is as follows:

• RANDOM: Traverse the points in random order;
• SWEEP: Sort the points based on their position, specifically increasing based on the linear sum
xi + yi + zi;

• DEGREE: Sort the points increasingly based on the number of connections to neighboring points;
• RANK: Our approach, sort the points descendingly on their boundary rank. Break ties arbitrarily.

The algorithm was run on the adaptive meshes arc_triomphe and trex, and on the isotropic meshes
devil and die. For the adaptive meshes MδIS-2 was used, and for the isotropic meshes MδIS-1½. No
other feature discussed in Section 4.2.3 was used or enabled. The results are displayed in Figure 5.11.

In most of the executed experiments, RANK appears to have a positive effect on the convergence. While
occasionally the difference is negligible (see Figures 5.11e and 5.11k) or even a bit on the negative side
(Figures 5.11b and 5.11j), there are many instances where sampling based on the boundary rank leads
to clearly better results. Convincing examples can be found with the mesh trex, of which the results
are displayed in Figures 5.11i and 5.11l. A possible explanation for the effectiveness of RANK on this
mesh is the many extruded surfaces that trex contains, which are not well preserved if RANDOM or SWEEP
is used, and the irregularity of the vertex density of trex, which could hinder DEGREE in the long run. In
general, due to the occasionally significantly positive results, we conclude that RANK is a nice addition
to the algorithm, particularly in comparison to the baseline RANDOM sampling order that was originally
used.
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Figure 5.11: The effects of sampling order, compared and visualized.
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5.2.1.4. Pit Prevention
Pit prevention ensures that no pits arise on the surface by controlling how clusters are made close to
the boundary. To find out how much it contributes to the whole, we run tests with pit prevention first
enabled and then disabled, and compare their results. These two settings are compared both when
(unrestricted) perturbation is done and when it is not, because the extremity of the generated pits can
vary depending on whether perturbation is applied or not, and it could be interesting to see how pit
prevention affects the results in both situations. This gives us the following four options:

• NONE/OFF: Without perturbation or pit prevention;
• ALL/OFF: With perturbation, but without pit prevention;
• NONE/ON: Without perturbation, but with pit prevention;
• ALL/ON: With perturbation and pit prevention.

The algorithm was run on the adaptive meshes arc_triomphe and trex, and on the isotropic meshes
devil and die. For the adaptive meshes MδIS-2 was used, and for the isotropic meshes MδIS-1½.
Additionally, the boundary rank-based sampling order discussed was applied. The results are displayed
in Figure 5.12.

The effect of pit prevention is, in most cases, not that extreme. For example, in Figures 5.12b, 5.12e,
5.12j, and 5.12k, there appears to be practically no difference in whether it is enabled or not. The pits
apparently did not cause that many issues for those problems specifically. In some cases, however,
there does seem to be a slight benefit. For example, in Figures 5.12a, 5.12d and 5.12h there is a mea-
surable difference between ALL/ON and ALL/OFF. While these variations can in principle be explained
by variance, these few results are interesting enough for us to keep pit prevention in the algorithm.

In the next section, pit prevention will be seen again together with boundary-aware smoothing, a com-
bination that shows some small and interesting potential.

5.2.1.5. Boundary-Aware Smoothing
Finally, we evaluate the effect of boundary-aware smoothing on the hierarchy construction and the solv-
ing process. The hypothesis is that the convergence rate slightly improves due to the dislocation of the
points from their original location and the consequent reduction of one-row-entries in the prolongation
matrix, as briefly hypothesized in [Wie+23], but does not simultaneously degrade the convergence due
to any strong misrepresentation of the boundary on the coarser levels. The following options were
selected to do the comparison with:

• NONE/ON: Without any perturbation, but with pit prevention;
• ALL/OFF: With full unrestricted perturbation and pit prevention;
• BND-AW/OFF: With boundary-aware perturbation, but without pit prevention;
• BND-AW/ON: With boundary-aware perturbation and pit prevention;

For the cases without boundary-aware smoothing, pit prevention is enabled, since the experiments in
Section 5.2.1.4 indicated it provided a slight advantage. The results are displayed in Figure 5.13.

In a majority of cases, boundary-aware smoothing does not seem to give any advantage. Sometimes
it performs roughly the same as any other setting (see Figures 5.13b and 5.13g) or boundary-aware
smoothing even makes the performance a bit worse (see Figure 5.13d). It appears that, like pit preven-
tion, most of the benefits of enabling boundary-aware smoothing are slight and merely coincidental.

However, there is an interesting result to be observed on the mesh arc_triomphe. It appears that
enabling boundary-aware smoothing on this mesh drastically improves convergence for both problems
that were run on it. This is in comparison to both having full perturbation and having no perturbation
at all, meaning that the inclusion of the boundary really does make a difference. Furthermore, on trex
boundary-aware smoothing initially seems to hinder convergence, causing BND-AW/OFF to plateau early
on for the deformation problem. Enabling pit prevention appears to mitigate the issue, though, even
causing a slight advantage over performing no perturbation at all.
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Figure 5.12: The effects of pit prevention, compared and visualized.
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Figure 5.13: The effect of boundary-aware smoothing on the convergence of solutions, visualized.
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5.2.2. Comparison to State-Of-The-Art
Up until now, Gravo MG has been extensively tested against different variations of itself. To assess
whether it can compete well against other completely different techniques, we perform a short study
comparing Gravo MG to some state-of-the-art algorithms that can also be applied to these kinds of
problems. In this section, we first introduce the algorithms to which we compare (Section 5.2.2.1),
and then compare both their solving times (Section 5.2.2.2) and hierarchy construction times (Section
5.2.2.3) to one another.

5.2.2.1. Selected Algorithms
PyAMG [Bel+23] is an algebraic multigrid library developed to be used in Python. Algebraic multigrid
differs from geometric multigrid by not explicitly incorporating the geometry or topology of the mesh
in any way or form while constructing the hierarchy or matrices. The domain remains completely un-
known. The prolongation matrices are instead based purely on the system Ax = b to be solved,
and any connection between the implied vertices on the same or on adjacent levels must be inferred
from the values in A. By not relying on information from the mesh, algebraic multigrid methods can
be applied more often and more flexibly than geometric multigrid methods; whenever there is a linear
system, a hierarchy can be constructed. However, since the hierarchy is bound to the matrix that is
being solved, a hierarchy cannot be reused if the linear system is replaced with another. A geometric
multigrid hierarchy is not based on the system, but on the mesh, and can thus be used repeatedly to
solve a variety of problems on the same domain.
PyAMG supports both Ruge-Stüben AMG and Smoothed Aggregation AMG, which operate in fun-
damentally different ways and lead to different kinds of hierarchies. Both are compared separately in
our experiments.

The method from [Shi+06], dubbed Shi06 from this point onward, is a geometric multigrid method rely-
ing on graph coarsening. It represents a mesh as a graph of vertices and edges, disregarding any faces
and tetrahedra. It applies a similar graph coarsening technique as GravoMG, but does not retriangulate
or retetrahedralize the mesh, and instead relies on inverse distance weights for prolongation.

We will include two versions of Gravo MG in these experiments too, dubbed GRAVO-DEF and GRAVO-OPT.
GRAVO-DEF (“default”) incorporates the “natural” parameters of Gravo, i.e. those that correspond closely
to the original implementation from [Wie+23]. In practice, this means sampling using MδIS-2 (see Sec-
tion 4.2.3.1) using a random sampling order, and not applying any kind of pit prevention or perturbation.
GRAVO-OPT (“optimized”) is the canonical implementation discussed before; it is considered the real
algorithmic output of this thesis.

The list of iterative multigrid methods that will be put alongside each other is thus as follows:

• AMG-RS: An implementation of Ruge-Stüben algebraic multigrid, given by pyamg;
• AMG-SA: An implementation of Smoothed Aggregation algebraic multigrid, given by pyamg;
• SHI06: The graph-based Shi06-algorithm from [Shi+06];
• GRAVO-DEF: The Gravo MG algorithm, configured with “default” parameters;
• GRAVO-OPT: The Gravo MG algorithm, configured with the optimization features discussed in Sec-
tion 4.2.3.

Aside from multigrid methods, there also exist various direct solvers, which can solve arbitrary linear
systems Ax = b without relying on any kind of multigrid technique. One example of such a solver is the
PARDISO solver [Sch+01], a direct solver that employs LU-factorization and concurrency to accelerate
the solving process. When dealing with sparse linear systems, it excels in solving speed to the point
where it can compete with multigrid methods even on large problems. It is therefore interesting to
determine at what point iterative methods, such as Gravo MG, become more appealing than a state-
of-the-art direct solver.
To directly interface with PARDISO from the experiment setup, we make use of the Python package
pypardiso1.

1https://github.com/haasad/PyPardiso
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5.2.2.2. Comparing Convergence
To compare the convergence in a fair way, the experiments were set up such that each algorithm is
given the same mesh and the same corresponding problem. They would then proceed to generate a
sequence of prolongation matrices that define the corresponding multigrid hierarchy and return them.
This sequence was then inserted into a standard multigrid solver, along with the linear system it was
created for, and the system was iteratively solved until a certain residual error was achieved or a certain
number of cycles had been executed. PARDISO was not included in these experiments, as it is a direct
solver, not an iterative one. PARDISO is individually compared in a different format in Section 5.2.2.4.

Themeshes that were chosen for this experiment were the adaptive meshes ball, trex, arc_triomphe,
and asteroid, and the isotropic meshes devil, die, venus, and lovecraft. The results are displayed
in Figure 5.14.

Most of the plots indicate a clear advantage of Gravo over the other algorithms. Convincing examples
of this are the plots given in Figures 5.14e, 5.14v, and 5.14x, though many more corroborate the same
fact to varying degrees of intensity. In the vast majority of the executed experiments, either GRAVO-DEF
or GRAVO-OPT dominates with quite a margin, demonstrating the benefit of using barycentric weights
in combination with geometric multigrid. A notable observation is how the patterns in the plots can be
roughly categorized by their corresponding linear system.

On Poisson problems (e.g. Figure 5.14g), it appears that AMG-RS and SHI06 fall off quite fast, while
GRAVO-DEF and GRAVO-OPT keep marching on downwards. For a brief moment in time, AMG-SA appears
to consistently reside below GRAVO-DEF, though after a certain number of iterations, GRAVO-DEF catches
up, as AMG-SA struggles to reduce the residual error, likely having trouble with a particular region of the
mesh at which the prolongation is not representative of an actual geometry. The difference between
GRAVO-DEF and GRAVO-OPT can be observed as well, with the optimizations clearly giving Gravo an
upper hand in reducing the error.

On biharmonic problems (e.g. Figure 5.14j), a similar advantage can be observed. Where the other
algorithms tend to stagnate, Gravo not only reduces the error to the same extent in a fraction of the
time, but it also carries on to reduce it to a significantly higher degree. Introducing the optimizations just
improves the situation, occasionally allowing the solver to maintain a higher pace even after already
having conquered a head start, as seen in Figure 5.14v, for example.

On smoothing problems (e.g. Figure 5.14a), the effects of Gravo are less accentuated. In several
situations, other approaches, such as AMG-SA and SHI06, are similarly efficient or even slightly better
(e.g. Figures 5.14a and Figures 5.14c). On other instances, however, an improvement by Gravo can
be observed, such as in Figures 5.14b. Of note is that when GRAVO-DEF appears to give disappointing
results, GRAVO-OPT sometimes does in lowering the residual error rapidly, as can be seen in Figures
5.14i and 5.14o.

On gradient deformation problems (e.g. Figure 5.14d), Gravo performs remarkably well. In most cases,
it achieves convergence up to a certain error relatively fast, whereas e.g. AMG-RS appears to immedi-
ately flatline. AMG-SA and SHI06 appear to perform generally better, with SHI06 even outperforming
GRAVO-DEF in Figure 5.14f. Overall, though, GRAVO-OPT comes out as superior in almost all of these ex-
periments, occasionally by a magnificent margin (see Figures 5.14e, 5.14f and 5.14d), likely due to the
careful preservation of the boundary of the domain. Curiously enough, on the asteroid mesh, of which
the experiment results can be seen in Figure 5.14l, the GRAVO-OPT appears to perform slightly worse
than GRAVO-DEF. Upon a closer look, it appears that the number of executed cycles is approximately
the same; it is the duration of these cycles that form the problem. The optimizations generally lead
to a slightly denser subsampling of vertices, which causes cycles to take longer to run. On asteroid,
this density apparently does not improve convergence, and in fact just slows the solver down. In most
cases, however, it is safe to say that GRAVO-OPT, and also Gravo in general, perform well on these
problems.
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Figure 5.14: Different iterative algorithms compared.
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Figure 5.14: Different iterative algorithms compared.
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Figure 5.15: The construction times of the different algorithms compared to each other. Light regions indicate reduction times.

5.2.2.3. Comparing Construction Time
Gravo has a clear advantage when it comes to convergence, but this comes at a cost. The more stages
are added to the algorithm, the longer it takes to construct the multigrid hierarchy in the first place. This
work aims to provide a healthy balance between the time needed to set up the hierarchy and to use
it, and thus, it is relevant how long it takes for Gravo to build it. To get a proper estimate on this, we
benchmark Gravo, including its optimizations, against the same algorithms as before, but now focusing
on its runtime.

The duration that is relevant is the duration between the moment both sides of the linear systems (A
and b) have been computed and the moment the solver can start executing cycles. This encapsulates
both the time needed to compute the prolongation operators (the construction time) and the Galerkin
projection of thematrix (the reduction time). For the AMGmethods in the list, the reduction time taken by
our own standard multigrid solver is ignored, as pyamg immediately reduces the matrix as it constructs
the prolongation matrix, and thus the reduction time contributed by taking out the prolongation matrices
and repeating the reduction procedure in another solver is ultimately redundant.

The resulting times from the executed experiments are displayed in Figure 5.15.

On the smaller domains (e.g. Figures 5.15a and 5.15b), GRAVO appears to need more time than the
other approaches to build its hierarchy. It takes roughly twice as long for it to finalize its computation
for relatively sparse systems, as GRAVO lingers particularly long on the tetrahedralization stage and the
prolongation stage. As the domain gets larger, though, things start to shift. The algebraic multigrid
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methods start taking more and more time, eventually exceeding the time needed for GRAVO to build its
own hierarchy and reduce the system. The ratio between SHI06’s runtime and GRAVO’s runtime stays
roughly constant, though. This is to be expected, as SHI06 follows a similar paradigm as GRAVO, but
performs a lot fewer computations on each layer.

As the linear system gets denser, the behavior of the algorithms starts changing as well. The algebraic
methods require more time to build their hierarchy, even though the geometric multigrid methods SHI06
and GRAVOmerely obtain a longer reduction time, not a longer construction time. The algebraic methods,
AMG-SA in particular, requiremuchmore time, eventually exceeding GRAVO’s time, despite not converging
as well as GRAVO at all. Furthermore, the increased reduction time also makes the gap between SHI06
and GRAVO quite a bit smaller, to the point where the construction time is no longer such a decisive
factor for performance. This reduction time could vary if a better optimized multigrid solver is used, but
as the system’s sparsity decreases, the difference between the two performances decreases too.

5.2.2.4. Comparison to Directly Solving
Next, we compare Gravo to the direct solver PARDISO (pypardiso). We do this by running PARDISO
on a problem and timing how long it takes to terminate and return a solution. Then, we assess howmuch
Gravo (including optimizations) can optimize the problem within the same amount of time, taking into
account the time needed to construct the hierarchy, to reduce the system, and to iteratively approach a
solution to it. Since geometric multigrid hierarchies can be reused for new linear systems on the same
domain, we also consider how much time Gravo would need, excluding the hierarchy construction time.
This leaves us with three different settings to compare:

• GRAVO(CON+RED+SOL): Gravo MG, including its construction time and reduction time, in addition
to its solving time;

• GRAVO(RED+SOL): Gravo MG, including its reduction time in addition to its solving time;
• PARDISO: The direct solver PARDISO.

The results are displayed in Figure 5.16.

The difference between the performance of the iterative solver and the direct solver depends, as can
be expected, on the size of the problem. On smaller systems, such as those defined on ball and trex,
the direct solver is clearly superior, already terminating before Gravo is even done creating its hierarchy
(see e.g Figures 5.16a and 5.16c). If a hierarchy is already available, Gravo can perform a couple of
cycles and reduce the error accordingly, but it can hardly be considered worthwhile to set aside the
direct solver for the iterative solver on this scale.

Things drastically change as the domain gets bigger or the system gets denser. The effects can already
be observed on a “medium-sized” mesh such as devil, with the dense biharmonic problem. Even
though it takes roughly three-and-a-half minutes for the direct solver to terminate, Gravo has reduced
the residual error to a relatively low amount after thirty seconds already. With the iterative solver, the
user can optimize it to whatever residual error is deemed appropriate for their use case, which might
not need to be that low at all.

On the large mesh die, it becomes much more reasonable to use the iterative solver over the direct
one. PARDISO requires minutes to complete, whereas Gravo can construct a hierarchy, load in a
simple linear system, and solve it to a residual error of at most 10−10 in less than one minute. When
it comes to the biharmonic problem, PARDISO was not even able to find a solution, instead throwing
an error code a couple of minutes into its computation. Gravo, on the other hand, was able to optimize
a solution to the problem without issues. For any system that is denser or larger than these systems,
Gravo is clearly a sensible choice.
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Figure 5.16: Gravo and PARDISO compared. The red vertical line indicates the amount of time needed for PARDISO to
terminate. If no vertical line is drawn, that means PARDISO suffered a running failure.
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Figure 5.17: A tetrahedron refined into eight tetrahedra, by adding midpoints on each edge. The octahedron inside (red) can
be split up in three different ways; one way is shown above.

5.2.3. Comparison to Prolongation through Refinement
In practice, multigrid domains are usually not constructed through coarsening, but rather through re-
finement. By taking a standard geometric shape representing some regular domain, such as a cuboid
or a tetrahedron, and iteratively refining it in order to add more detail and degrees of freedom, one can
create a multigrid hierarchy on which multigrid computations can be done. This construction method is
more restrictive, since it can only be created from coarse domains that lack small shapes, rather than
from complicated fine meshes that already contain a lot of detail. This might make multigrid methods
that depend on refinement inapplicable for solving equations on domains with particular shapes, which
is the focus of this work. However, the regularity imposed by the refinement does allow for clean and
sparse prolongation operators, since each new point is defined using a set of particular coarse points;
a set that can be directly used to define the prolongation operators as well.

Refining a three-dimensional Cartesian domain made out of cuboids would simply be a matter of putting
an extra point at the center of every edge, face, and cell, and then splitting up each cuboid into eight
smaller cuboids, each with half the size in each dimension. Refining tetrahedra can be done similarly,
but requires a slightly alternate approach, since a tetrahedron is not self-similar like a cuboid is. To
refine a tetrahedron, we make use of red refinement, as visualized in Figure 5.17. We split every
edge into two equal parts, with a new point defined in the middle. These points are then connected to
the midpoints of other adjacent edges with a new edge of half the length.

A tetrahedron, unlike a cuboid, is not self-similar, in the sense that eight smaller tetrahedra with the
same shape cannot create a bigger tetrahedron. We can still put a new point in the middle of each
edge, and connect them to other nearby points. After subtracting the four emerged tetrahedra from
the corners, an octahedron remains, which can be split into four other tetrahedra in three different
ways, depending on which of the three different diagonals contained within the octahedron is chosen
as a common edge between all of them. A sensible choice could be to choose the diagonal with the
shortest length, as that will lead to tetrahedra with the highest quality.

A refined domain can be trivially coarsened by just “undoing” the refinement. The result is a sparse
prolongation operator, where every fine point that is also present in the adjacent layer will prolongate
to its corresponding point with a weight of 1, and every fine point put on the midpoint of a coarse edge
will prolongate to its two endpoints with a weight of 1

2 . Since every row in the prolongation matrix will
contain at most two entries, the transfer of matrices and vectors can be done more efficiently, and the
linear systems obtained through Galerkin multigrid will also be sparser and therefore easier to apply
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Gauss-Seidel to. Because of this, a multigrid hierarchy defined this way could be considered an “ideal”
hierarchy, which might not be guaranteed to strictly perform better than any other hierarchy for all
problems, but at least provides a reliable and sparse baseline that should not show any odd behavior.

To evaluate the performance of Gravo MG, we compare it to a multigrid hierarchy generated through
refinement. This experiment is executed by taking a simple tetrahedral mesh, refining it a certain num-
ber of times (sayN ), and then applying Gravo MG on the finest generated mesh, limiting the number of
coarsening iterations toN as well. We can then compare the prolongation operators generated through
the refinement to the prolongation operators generated by Gravo MG afterwards, and compare their
convergence and runtime when applying them to solve a couple of problems.

The mesh that has been chosen is a simple cube mesh with a total of 729 vertices. The cube has been
refined a total of three times, leading to a cube with 274625 vertices in total. The problem that is solved
is the Poisson problem as described in Section 5.1.2.3, up to a residual error of 10−10. Both Gravo MG
and Shi06 have been compared to the refinement operators to properly contextualize the magnitude
of the differences between the three algorithms.

The results are displayed graphically in Figure 5.18 and quantitatively in Table 5.1.

What stands out is the similarity between the convergence of the refinement operators and Gravo MG
when set out over the number of cycles. Apparently, Gravo MG can, in the right setting, compete with
idealistic operators, suggesting its practicality for domains with simpler and more predictable geometry.
A large part of this performance can be explained by the fact that the sampling order (see Section
4.2.3.2) and boundary-aware smoothing (Section 4.2.3.4) ensure a near-perfect preservation of the
corners, the ridges, and the surface of the cube, something that algorithms such as Shi06 do not
guarantee. The fact that the interior points are spread out differently and the point density decays at a
different rate appears to make little difference for the convergence of the system.

It should be noted that, in practice, despite the similarity in the number of cycles, Gravo MG’s operators
would still take more time to converge than the refinement operators. The cause of this is the difference
in sparsity of the prolongation matrices between the two algorithms. Gravo MG guarantees that every
row in the prolongation matrix contains at most four entries, whereas the refined prolongation operator
limits it to at most two. As a result, both Gravo MG’s prolongation matrices and consequently their
reduced left-hand-side matrices are significantly denser, and thus cycles involve more multiplications
and take up more time. This is deemed a disadvantage that cannot be overcome, and also does not
need to be overcome, since this is caused by not taking advantage of the regular structure of the cube.
Gravo MG is designed to operate on meshes that do not have any such structure, in which a regular
structure is very unlikely to be present in the first place.

Algorithm |Vk|
per layer

nonzero(P k
k−1)

per layer
nonzero(Ak)
per layer Cycles

Refinement

274625
35937
4913
729

513313
66961
9097

3680781
513313
66961
9097

14

Gravo MG

274625
21982
3212
500

1066832
81750
11226

3680781
1197224
274284
43812

14

Shi06

274625
38195
7964
1924

544323
70801
14086

3680781
940834
282700
80586

73

Table 5.1: A numerical overview of the size of the systems in the respective hierarchies, including the number of cycles
required for solving them.
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Figure 5.18: A qualitative comparison between refinement operators, Gravo MG and Shi06. The same experiment is plotted
over the number of cycles and the number of multiplications.

5.3. Discussion
The above experiments have demonstrated that Gravo creates hierarchies that allow multigrid solvers
to minimize the residual error very rapidly. The usage of a barycentric weighting scheme is a large
contributor to this phenomenon. This can be rationalized by the consideration that barycentric weights
act as piecewise linear weights elevated to higher dimensions. By being able to apply this kind of close-
to-linear interpolation in the transfer of vectors, solutions to problems in which the solution values tend
to vary smoothly and predictably, such as the Dirichlet problem, can be preserved better.

The added dimension also brings with it new points of failure and new opportunities to optimize. Most of
the introduced optimizations were focused on the boundary of the mesh, since the boundary appeared
to have the most influence on the usability of the hierarchy. Among other possible reasons, this is likely
because the boundary is the most important feature to define the domain, or because points on the
boundary have fewer neighbors, usually all on one side.

A few things that have been more influential and important than others. First off, the inclusion of the
boundary rank made a significant change to the preservation of the sharp details of the domain. This
has shown to have a very positive effect on convergence, likely as the residual error around the sharp
points was not addressed well, causing outliers that hinder convergence in the region around it. Some
other attempted optimizations were less fruitful, or at least not in many contexts, such as pit prevention,
which only showed an improvement in a small number of cases.

It is important to acknowledge that, despite strong attempts to get an accurate estimation of the perfor-
mance of the optimizations, it is possible that some of the given results are a bit skewed, particularly in
the ablation study. This is, in part, because none of the parameters and stages operate in isolation, and
enabling any two features might result in interaction between them, leading to different behavior than if
they operated in isolation. It would be excessive to exhaustively simulate every possible combination
of parameters, and thus, the choice was made, for the sake of this thesis, to accept the experiment
setup and its results for what they are.

In terms of construction time, Gravo holds up quite well. Of particular relevance is its scalability in
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terms of the number of vertices in the input mesh. Whereas algebraic multigrid methods start to strug-
gle, Gravo maintains an approximately linear growth in its runtime, which eventually grants it supe-
riority. The algorithm from [Shi+06] remains the fastest option, and is generally around three times
faster than Gravo. As the input mesh gets more complex, this will result in an increasingly larger differ-
ence between the construction times of the two algorithms, which becomes even more important if the
construction needs to be repeatedly executed for many different geometries. Nevertheless, Gravo’s
performance during the solving stage justifies this overhead, and if the geometry hierarchy generated
by these methods is reused, the few seconds lost in the construction time ought not to matter too much.

The similarity in construction between Gravo and these relatively simplistic and fast approaches indi-
cates that Gravo itself can be considered a “fast” method itself. It does so generally without compro-
mising on the quality of the resulting hierarchy, as demonstrated by the comparison to the prolongation
operators defined through iterated refinement. We thus estimate, even though no direct comparison
was done due to practical reasons, that Gravo can compete with methods from [BKS11] and [SK11],
which have mostly been praised for their fast convergence, and not for their fast construction.



6
Conclusion

6.1. Summary
In this work, we have presented an adaptation of Gravo MG for tetrahedral meshes. This adaptation is
able to construct hierarchies for arbitrary tetrahedral meshes. It is performant, and can build a hierarchy
and reduce a system for larger meshes in a time comparable to that of other light-weight choices, such
as algebraic multigrid methods. Just like the original Gravo MG, it does not require a perfect mesh and
is able to operate on any domain, as long as the vertices and edges are defined.

Gravo MG can be an interesting choice for researchers and engineers who need to solve discretized
PDEs regularly. The balance between construction time and convergence time makes it appealing in
situations where high precision is necessary, but long computation times cannot be afforded, and due
to the flexibility of the algorithm, little preprocessing of the domain is needed, making it a near out-of-
the-box option for any problem in a geometric setting. Since linear systems themselves appear in many
applications, the contributions provided in this work could potentially be of relevance in any field that
requires any computation to be done on irregular meshes.

6.2. Future Work
Research can always be improved, and as such, we highlight a few possible branches that could be
expanded upon if someone were to continue ours.

6.2.1. Better Control on Vertex Density
An observation made in our work is that different regions in the domain do not need to have the same
level of detail in the multigrid hierarchy. A good preservation of the boundary points has shown to be
much more important than that of the interior points of the mesh. In our redesigned sampling approach,
we create a distinction between points by adapting the exclusion condition in our implementation of
MδIS. This is, however, a quite crude way of encouraging the desired behavior, which is only effective
up to a certain degree and can provide odd-looking meshes after having executed a coarsening pass.

While some experimentation was done with adaptive sizing fields, no useful measure was found to
further take advantage of the distinctive properties of the points and their position in the mesh. Such a
measure, or another way to control the vertex density to the solver’s advantage, could be of great help
for practical use cases.

6.2.2. Different Definition of Boundary Rank
Boundary ranks are currently given as input to the algorithm, and thus, the responsibility of defining
them is put on the user. These boundary ranks can, in principle, be painted onto the surface, but
this requires effort and manual preparation of the input, which is often not desirable and not always
feasible. In the experiments, we made use of a rigorously defined metric, promoting points to a rank if
an adjacent dihedral angle or its curvature exceeded a certain hard-coded value, which did not always
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lead to continuous ridges or marked corners.

A built-in algorithm to determine the ridges and corners on a mesh, at least on the input mesh, could
benefit the usability of Gravo. It would remove a required parameter from the input and thus put less
responsibility on the user. The used criteria from the experiments would be a suboptimal choice, due
to their unreliability. It would be of interest to design a more sophisticated algorithm that can quickly
and adaptively decide which points deserve priority during the sampling stage based on the geometry
of the input.

6.2.3. Robustness against Bad Spots
While running experiments, it has stood out how sensitive the performance of multigrid solvers was
to small irregularities in the input mesh. This could be an inconsistency in the vertex density on the
input mesh, a particularly badly tetrahedralized region, or something else entirely. Spots in which such
phenomena occur have shown to need much more time to converge than others. This consequently
prevents close parts of the domain from converging as well, and overall causes a large outlier in the
solution and a large residual error that is difficult to get rid of.

Figuring out how to make Gravo more robust against these kinds of issues would make it much more
reliable and trustworthy. First, it would be necessary to figure out what problems are actually caused by
these spots and how to identify them beforehand. Then, the question would be how to address them
without increasing the runtime so much that Gravo loses its appeal.

6.2.4. Experiments in Real-Life Settings
Gravo has been tested on a variety of problems that show different types of behavior. While these
problems have their own use cases and applications in the real world, they can be described as rather
“elementary”. Their complexity is quite limited, and they do not fully reflect the context in which multigrid
solvers are applied in industrial settings. An example would be linear elasticity, which is used to simulate
elastic bodies, a task well-suited for a multigrid method on an irregular grid. Seeing how Gravo’s
hierarchy would perform when given these types of problems would be insightful, and could motivate
its introduction into real applications or motivate research into further optimizing it and addressing its
shortcomings.



References

[AKS03] Burak Aksoylu, Andrei Khodakovsky, and Peter Schröder. “Multilevel Solvers for Unstruc-
tured Surface Meshes”. In: SIAM Journal on Scientific Computing 26 (July 2003). doi: 10.
1137/S1064827503430138.

[And+21] Robert Anderson et al. “MFEM: A modular finite element methods library”. In: Computers &
Mathematics with Applications. Development and Application of Open-source Software for
Problems with Numerical PDEs 81 (Jan. 2021), pp. 42–74. issn: 0898-1221. doi: 10.1016/
j.camwa.2020.06.009. url: https://www.sciencedirect.com/science/article/pii/
S0898122120302583.

[Arn+21] Daniel Arndt et al. “The deal.II finite element library: Design, features, and insights”. In:
Computers & Mathematics with Applications. Development and Application of Open-source
Software for Problems with Numerical PDEs 81 (Jan. 2021), pp. 407–422. issn: 0898-1221.
doi: 10.1016/j.camwa.2020.02.022. url: https://www.sciencedirect.com/science/
article/pii/S0898122120300894.

[Bas+21] Peter Bastian et al. “The Dune framework: Basic concepts and recent developments”. In:
Computers & Mathematics with Applications. Development and Application of Open-source
Software for Problems with Numerical PDEs 81 (Jan. 2021), pp. 75–112. issn: 0898-1221.
doi: 10.1016/j.camwa.2020.06.007. url: https://www.sciencedirect.com/science/
article/pii/S089812212030256X.

[Bel+23] Nathan Bell et al. “PyAMG: Algebraic Multigrid Solvers in Python”. In: Journal of Open
Source Software 8.87 (July 2023), p. 5495. issn: 2475-9066. doi: 10.21105/joss.05495.
url: https://joss.theoj.org/papers/10.21105/joss.05495.

[BKS11] Peter R. Brune, Matthew G. Knepley, and L. Ridgway Scott. Unstructured Geometric Multi-
grid in Two and Three Dimensions on Complex and Graded Meshes. arXiv:1104.0261 [cs]
version: 2. Apr. 2011. doi: 10.48550/arXiv.1104.0261. url: http://arxiv.org/abs/1104.
0261.

[BL11] Achi Brandt and Oren E. Livne. Multigrid Techniques. Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics, Jan. 2011. isbn: 978-1-61197-074-6. doi:
10.1137 /1 .9781611970753. url: https:/ /epubs .siam .org /doi /book /10. 1137/ 1.
9781611970753.

[Bra77] Achi Brandt. “Multi-Level Adaptive Solutions to Boundary-Value Problems”. In:Mathematics
of Computation 31.138 (1977). Publisher: American Mathematical Society, pp. 333–390.
issn: 0025-5718. doi: 10.2307/2006422. url: https://www.jstor.org/stable/2006422.

[Bra86] Achi Brandt. “Algebraic multigrid theory: The symmetric case”. In: Applied Mathematics and
Computation 19.1 (July 1986), pp. 23–56. issn: 0096-3003. doi: 10.1016/0096-3003(86)90
095-0. url: https://www.sciencedirect.com/science/article/pii/0096300386900950.

[BS99] Randolph Bank and Andrew Sherman. “Some Refinement Algorithms And Data Structures
For Regular Local Mesh Refinement”. In: Applications of Mathematics and Computing to
the Physical Sciences (June 1999).

[CC02] T Y Chao and W K Chow. “A REVIEW ON THE APPLICATIONS OF FINITE ELEMENT
METHOD TO HEAT TRANSFER AND FLUID FLOW”. en. In: (2002).

[Coe+24] David Coeurjolly et al. “Polygon Mesh Processing”. In: CGAL User and Reference Manual.
6.0.1. CGAL Editorial Board, 2024. url: https://doc.cgal.org/6.0.1/Manual/packages.
html#PkgPolygonMeshProcessing.

64

https://doi.org/10.1137/S1064827503430138
https://doi.org/10.1137/S1064827503430138
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1016/j.camwa.2020.06.009
https://www.sciencedirect.com/science/article/pii/S0898122120302583
https://www.sciencedirect.com/science/article/pii/S0898122120302583
https://doi.org/10.1016/j.camwa.2020.02.022
https://www.sciencedirect.com/science/article/pii/S0898122120300894
https://www.sciencedirect.com/science/article/pii/S0898122120300894
https://doi.org/10.1016/j.camwa.2020.06.007
https://www.sciencedirect.com/science/article/pii/S089812212030256X
https://www.sciencedirect.com/science/article/pii/S089812212030256X
https://doi.org/10.21105/joss.05495
https://joss.theoj.org/papers/10.21105/joss.05495
https://doi.org/10.48550/arXiv.1104.0261
http://arxiv.org/abs/1104.0261
http://arxiv.org/abs/1104.0261
https://doi.org/10.1137/1.9781611970753
https://epubs.siam.org/doi/book/10.1137/1.9781611970753
https://epubs.siam.org/doi/book/10.1137/1.9781611970753
https://doi.org/10.2307/2006422
https://www.jstor.org/stable/2006422
https://doi.org/10.1016/0096-3003(86)90095-0
https://doi.org/10.1016/0096-3003(86)90095-0
https://www.sciencedirect.com/science/article/pii/0096300386900950
https://doc.cgal.org/6.0.1/Manual/packages.html#PkgPolygonMeshProcessing
https://doc.cgal.org/6.0.1/Manual/packages.html#PkgPolygonMeshProcessing


References 65

[CPS13] Keenan Crane, Ulrich Pinkall, and Peter Schröder. “Robust fairing via conformal curvature
flow”. en. In: ACM Transactions on Graphics 32.4 (July 2013), pp. 1–10. issn: 0730-0301,
1557-7368. doi: 10.1145/2461912.2461986. url: https://dl.acm.org/doi/10.1145/
2461912.2461986.

[Cra19] Keenan Crane. “The n-dimensional cotangent formula”. en. In: (2019).
[DGW11] Christian Dick, Joachim Georgii, and Ruediger Westermann. “A Hexahedral Multigrid Ap-

proach for Simulating Cuts in Deformable Objects”. In: IEEE Transactions on Visualization
and Computer Graphics 17.11 (Nov. 2011), pp. 1663–1675. issn: 1941-0506. doi: 10.1109/
TVCG.2010.268. url: https://ieeexplore.ieee.org/abstract/document/5674032.

[GSH07] Nicholas I. M. Gould, Jennifer A. Scott, and Yifan Hu. “A numerical evaluation of sparse
direct solvers for the solution of large sparse symmetric linear systems of equations”. en.
In: ACM Transactions on Mathematical Software 33.2 (June 2007), p. 10. issn: 0098-3500,
1557-7295. doi: 10.1145/1236463.1236465. url: https://dl.acm.org/doi/10.1145/
1236463.1236465.

[GV96] Gene H. Golub and Charles F. Van Loan.Matrix computations (3rd ed.)USA: Johns Hopkins
University Press, 1996. isbn: 0-8018-5414-8.

[Hem95] P W Hemker. “Finite Volume Multigrid for 3D-Problems”. en. In: (1995).
[Hop96] Hugues Hoppe. “Progressive meshes”. en. In: (1996).
[Jac15] Alec Jacobson. How does Galerkin multigrid scale for irregular grids? 2015. url: https:

//www.alecjacobson.com/weblog/4383.html.
[JP+18] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++ geometry processing library.

2018.
[JW00] H. Jasak andH. G.Weller. “Application of the finite volumemethod and unstructuredmeshes

to linear elasticity”. en. In: International Journal for Numerical Methods in Engineering 48.2
(2000), pp. 267–287. issn: 1097-0207. doi: 10.1002/(SICI)1097- 0207(20000520)48:
2<267::AID-NME884>3.0.CO;2-Q. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/%28SICI%291097-0207%2820000520%2948%3A2%3C267%3A%3AAID-NME884%3E3.0.
CO%3B2-Q.

[Kob+98] Leif Kobbelt et al. “Interactive multi-resolution modeling on arbitrary meshes”. en. In: Pro-
ceedings of the 25th annual conference on Computer graphics and interactive techniques
- SIGGRAPH ’98. Not Known: ACM Press, 1998, pp. 105–114. isbn: 978-0-89791-999-9.
doi: 10.1145/280814.280831. url: http://portal.acm.org/citation.cfm?doid=280814.
280831.

[Liu+21] Hsueh-Ti Derek Liu et al. Surface Multigrid via Intrinsic Prolongation. arXiv:2104.13755.
May 2021. doi: 10.48550/arXiv.2104.13755. url: http://arxiv.org/abs/2104.13755.

[MST10] A McAdams, E Sifakis, and J Teran. “A parallel multigrid Poisson solver for fluids simulation
on large grids”. en. In: (2010).

[NGH04] Xinlai Ni, Michael Garland, and JohnC. Hart. “Fair morse functions for extracting the topolog-
ical structure of a surface mesh”. en. In: ACM Transactions on Graphics 23.3 (Aug. 2004),
pp. 613–622. issn: 0730-0301, 1557-7368. doi: 10.1145/1015706.1015769. url: https:
//dl.acm.org/doi/10.1145/1015706.1015769.

[PPM92] J. Peraire, J. Peiro, and K. Morgan. “A 3D finite element multigrid solver for the Euler equa-
tions”. In: NTRS Author Affiliations: NASA Headquarters, Imperial College of Science, Tech-
nology, and Medicine, Swansea, University NTRS Report/Patent Number: AIAA PAPER 92-
0449 NTRS Document ID: 19920049041 NTRS Research Center: Legacy CDMS (CDMS).
Jan. 1992. url: https://ntrs.nasa.gov/citations/19920049041.

[RL03] N. Ray and B. Levy. “Hierarchical least squares conformal map”. In: 11th Pacific Conference
onComputer Graphics and Applications, 2003. Proceedings.Canmore, Alta., Canada: IEEE
Comput. Soc, 2003, pp. 263–270. isbn: 978-0-7695-2028-5. doi: 10.1109/PCCGA.2003.
1238268. url: http://ieeexplore.ieee.org/document/1238268/.

https://doi.org/10.1145/2461912.2461986
https://dl.acm.org/doi/10.1145/2461912.2461986
https://dl.acm.org/doi/10.1145/2461912.2461986
https://doi.org/10.1109/TVCG.2010.268
https://doi.org/10.1109/TVCG.2010.268
https://ieeexplore.ieee.org/abstract/document/5674032
https://doi.org/10.1145/1236463.1236465
https://dl.acm.org/doi/10.1145/1236463.1236465
https://dl.acm.org/doi/10.1145/1236463.1236465
https://www.alecjacobson.com/weblog/4383.html
https://www.alecjacobson.com/weblog/4383.html
https://doi.org/10.1002/(SICI)1097-0207(20000520)48:2<267::AID-NME884>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1097-0207(20000520)48:2<267::AID-NME884>3.0.CO;2-Q
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000520%2948%3A2%3C267%3A%3AAID-NME884%3E3.0.CO%3B2-Q
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000520%2948%3A2%3C267%3A%3AAID-NME884%3E3.0.CO%3B2-Q
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2820000520%2948%3A2%3C267%3A%3AAID-NME884%3E3.0.CO%3B2-Q
https://doi.org/10.1145/280814.280831
http://portal.acm.org/citation.cfm?doid=280814.280831
http://portal.acm.org/citation.cfm?doid=280814.280831
https://doi.org/10.48550/arXiv.2104.13755
http://arxiv.org/abs/2104.13755
https://doi.org/10.1145/1015706.1015769
https://dl.acm.org/doi/10.1145/1015706.1015769
https://dl.acm.org/doi/10.1145/1015706.1015769
https://ntrs.nasa.gov/citations/19920049041
https://doi.org/10.1109/PCCGA.2003.1238268
https://doi.org/10.1109/PCCGA.2003.1238268
http://ieeexplore.ieee.org/document/1238268/


References 66

[RS87] J. W. Ruge and K. Stüben. “4. Algebraic Multigrid”. In: Multigrid Methods. Frontiers in Ap-
plied Mathematics. Society for Industrial and Applied Mathematics, Jan. 1987, pp. 73–130.
isbn: 978-1-61197-188-0. doi: 10.1137/1.9781611971057.ch4. url: https://epubs.siam.
org/doi/10.1137/1.9781611971057.ch4.

[Sch+01] Olaf Schenk et al. “PARDISO: a high-performance serial and parallel sparse linear solver
in semiconductor device simulation”. In: Future Generation Computer Systems. I. High Per-
formance Numerical Methods and Applications. II. Performance Data Mining: Automated
Diagnosis, Adaption, and Optimization 18.1 (Sept. 2001), pp. 69–78. issn: 0167-739X. doi:
10.1016/S0167- 739X(00)00076- 5. url: https://www.sciencedirect.com/science/
article/pii/S0167739X00000765.

[Sha+19] Nicholas Sharp et al. Polyscope. 2019.
[Shi+06] Lin Shi et al. “A fast multigrid algorithm for mesh deformation”. In: ACM Trans. Graph. 25.3

(2006), pp. 1108–1117. issn: 0730-0301. doi: 10.1145/1141911.1142001. url: https://dl.
acm.org/doi/10.1145/1141911.1142001.

[SK11] Xinwei Shi and Patrice Koehl. “Adaptive skin meshes coarsening for biomolecular simula-
tion”. In: Computer Aided Geometric Design 28.5 (June 2011), pp. 307–320. issn: 0167-
8396. doi: 10 . 1016 / j . cagd . 2011 . 04 . 001. url: https : / / www . sciencedirect . com /
science/article/pii/S0167839611000331.

[SNI91] M. Storti, N. Nigro, and S. Idelsohn. “Multigrid methods and adaptive refinement techniques
in elliptic problems by finite element methods”. In: Computer Methods in Applied Mechanics
and Engineering 93.1 (Dec. 1991), pp. 13–30. issn: 0045-7825. doi: 10.1016/0045-7825
(91)90113-K. url: https://www.sciencedirect.com/science/article/pii/0045782591
90113K.

[VMB96] P. Vaněk, J. Mandel, and M. Brezina. “Algebraic multigrid by smoothed aggregation for
second and fourth order elliptic problems”. en. In: Computing 56.3 (Sept. 1996), pp. 179–
196. issn: 1436-5057. doi: 10.1007/BF02238511. url: https://doi.org/10.1007/BF02238
511.

[Wes04] Pieter Wesseling. An introduction to multigrid methods. eng. Corr. reprint. Philadelphia: R.T.
Edwards, 2004. isbn: 978-1-930217-08-9.

[Wie+23] Ruben Wiersma et al. “A Fast Geometric Multigrid Method for Curved Surfaces”. en. In:
Special Interest Group on Computer Graphics and Interactive Techniques Conference Con-
ference Proceedings. Los Angeles CA USA: ACM, July 2023, pp. 1–11. isbn: 979-8-4007-
0159-7. doi: 10.1145/3588432.3591502. url: https://dl.acm.org/doi/10.1145/3588432.
3591502.

[XTL19] Zangyueyang Xian, Xin Tong, and Tiantian Liu. “A scalable galerkin multigrid method for
real-time simulation of deformable objects”. en. In: ACM Transactions on Graphics 38.6
(Dec. 2019), pp. 1–13. issn: 0730-0301, 1557-7368. doi: 10.1145/3355089.3356486. url:
https://dl.acm.org/doi/10.1145/3355089.3356486.

[ZJ16] Qingnan Zhou and Alec Jacobson. Thingi10K: A Dataset of 10,000 3D-Printing Models.
arXiv:1605.04797 [cs]. July 2016. doi: 10.48550/arXiv.1605.04797. url: http://arxiv.
org/abs/1605.04797.

https://doi.org/10.1137/1.9781611971057.ch4
https://epubs.siam.org/doi/10.1137/1.9781611971057.ch4
https://epubs.siam.org/doi/10.1137/1.9781611971057.ch4
https://doi.org/10.1016/S0167-739X(00)00076-5
https://www.sciencedirect.com/science/article/pii/S0167739X00000765
https://www.sciencedirect.com/science/article/pii/S0167739X00000765
https://doi.org/10.1145/1141911.1142001
https://dl.acm.org/doi/10.1145/1141911.1142001
https://dl.acm.org/doi/10.1145/1141911.1142001
https://doi.org/10.1016/j.cagd.2011.04.001
https://www.sciencedirect.com/science/article/pii/S0167839611000331
https://www.sciencedirect.com/science/article/pii/S0167839611000331
https://doi.org/10.1016/0045-7825(91)90113-K
https://doi.org/10.1016/0045-7825(91)90113-K
https://www.sciencedirect.com/science/article/pii/004578259190113K
https://www.sciencedirect.com/science/article/pii/004578259190113K
https://doi.org/10.1007/BF02238511
https://doi.org/10.1007/BF02238511
https://doi.org/10.1007/BF02238511
https://doi.org/10.1145/3588432.3591502
https://dl.acm.org/doi/10.1145/3588432.3591502
https://dl.acm.org/doi/10.1145/3588432.3591502
https://doi.org/10.1145/3355089.3356486
https://dl.acm.org/doi/10.1145/3355089.3356486
https://doi.org/10.48550/arXiv.1605.04797
http://arxiv.org/abs/1605.04797
http://arxiv.org/abs/1605.04797


A
Meshes

Below is a list of all meshes that have been referenced in any experiments throughout the thesis. Statis-
tics and images of these meshes are included as well.

Name |V | |T | |Bnd1| |Bnd2| |Bnd3| Remeshed Isotropic
cube 729 3 072 386 92 8 7 3

asteroid 135 305 511 291 97 398 0 0 3 7
arc_triomphe 147 877 530 909 112 570 547 18 3 7

venus 164 086 937 991 22 886 68 2 3 3
ball 202 244 752 178 148 966 0 0 3 7
trex 253 348 1 071 450 154 656 1 130 66 7 7
devil 316 559 1 819 700 41 318 828 44 3 3
die 809 385 4 835 763 46 069 542 0 3 3

lovecraft 1 030 046 6 126 864 67 206 2 260 81 3 3

asteroid venus
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