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We investigate effects of spin-orbit splitting on electronic transport in a spin valve consisting of a large
quantum dot defined on a two-dimensional electron gas with two ferromagnetic contacts. In the presence of
both structure and bulk inversion asymmetry a giant anisotropy in the spin-relaxation times has been predicted.
We show how such an anisotropy affects the electronic transport properties such as the angular magnetoresis-
tance and the spin-transfer torque. Counterintuitively, anisotropic spin-relaxation processes sometimes enhance
the spin accumulation.
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I. INTRODUCTION

Conventional microelectronics makes use of the electron
charge in order to store, manipulate, and transfer informa-
tion. The potential usefulness of the spin, the intrinsic angu-
lar momentum of the electron, for electronic devices has
been recognized by a large community after the discovery of
the giant magnetoresistance �GMR� in 1988.1–3 The integra-
tion of the functionalities of metal-based magnetoelectronics
with semiconductor-based microelectronics is an important
challenge in this field.4

A central device concept in magnetoelectronics is a spin
valve consisting of a normal conductor �N� island that is
contacted by ferromagnets �F� with variable magnetization
directions. An applied bias injects a spin accumulation into
the island that affects charge and spin transport as a function
of the relative orientation of the two magnetizations. We con-
sider here a spin-valve structure in which the island is a large
semiconductor quantum dot, i.e., a patch of two-dimensional
�2D� electron gas, weakly coupled to the ferromagnetic con-
tacts. In order to observe spin-related signals the injection of
spins from the ferromagnet into the quantum dot must be
efficient and the injected spin accumulation must not relax
faster than the dwell time of an electron on the island.

Spin injection from ferromagnets into metals has been
achieved by Johnson and Silsbee in 1988 �Ref. 5�, but early
attempts to fabricate devices based on injection of spins from
metallic ferromagnets into semiconductors have not been
successful. The reason for these difficulties turned out to be
inefficient spin injection in the presence of a large difference
between the conductances of the metallic ferromagnet and
the semiconductor, i.e., the conductance mismatch problem.6

These technical difficulties, however, appear to be
surmountable.7 Effective spin injection into a semiconductor
can, e.g., be achieved using a magnetic semiconductor.8

Schottky or tunneling barriers to a metallic ferromagnet can
overcome the conductance mismatch problem,9–11 as has
been confirmed by using optical techniques.12–16 Recently,
all-electric measurements of spin injection from ferromag-
nets into semiconductors have been reported. Chen et al.
used a magnetic p-n junction diode to measure the spin ac-
cumulation injected from a ferromagnet into a bulk n-GaAs
via a Schottky contact.17 Spin accumulation in a GaAs thin

film has been injected and detected by Fe contacts in a non-
local four-point configuration.18

Spin-relaxation mechanisms lead to decay of the spin ac-
cumulation and restore the equilibrium on the island. The
main origin for spin-flip scattering in n-doped quantum well
structures4 is the Dyakonov-Perel mechanism19 due to spin-
orbit interaction, which is efficient when the spatial inversion
symmetry is broken causing the spin-orbit coupling to split
the spin-degenerate levels.20 The relaxation arises because
spins are subject to a fluctuating effective magnetic field due
to frequent scattering. The inversion symmetry may be bro-
ken by a bulk inversion asymmetry �BIA� of the zinc-blende
semiconductor material such as GaAs �Ref. 21� or structure
inversion asymmetry �SIA� in the confinement potentials of
heterostructures22 that can be modulated externally by gate
electrodes.34,35 The SIA and BIA induced spin-orbit coupling
terms linear in the wave vector often dominate the transport
properties of electrons in III–V semiconductors and are
known as Bychkov-Rashba and Dresselhaus terms, respec-
tively. Their relative importance can be extracted, e.g., from
spin-resolved photocurrent measurements.23 The growth di-
rection of the quantum well affects the strength of the spin-
orbit coupling terms. This gives rise to differences in spin-
relaxation times as observed for GaAs quantum wells using
optical measurements.24 In general, the spin-relaxation pro-
cesses in semiconductor quantum wells are anisotropic, i.e.,
the spin-relaxation rate depends on the direction of the spin
accumulation. When the coupling constants in the Bychkov-
Rashba and Dresselhaus terms in �001� grown quantum wells
are equal, the interference of the spin-orbit interactions give
rise to suppression of the Dyakonov-Perel spin-relaxation
mechanism for the �110� crystallographic direction. This
leads to a giant anisotropy in the spin lifetimes of up to
several orders of magnitude.25–27 The phenomenon can be
rationalized in terms of a SU�2� spin rotation symmetry that
protects a spin helix state.28 Similar behavior is expected for
the �110� Dresselhaus model.28

Datta and Das proposed a spin-transistor based on the
coherent rotation of spins by the SIA spin-orbit interaction
that is tuned by a gate field.29 An alternative transistor con-
cept that relies on a gate-controlled suppression of the spin-
relaxation by tuning of the SIA vs BIA spin-orbit interaction
is believed to work for wider channels and to be more robust
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against impurity scattering than the original Datta-Das
proposal.30,31 A review of the effect of spin-orbit interactions
on transport can be found in Ref. 32.

In the present work we use magnetoelectronic circuit
theory33 to calculate the transport properties of spin valves in
the presence of anisotropic spin-relaxation processes. Circuit
theory has been found to be applicable in both metal and
semiconductor-based magnetoelectronics. It was used to de-
scribe the spin transfer through a Schottky barrier between a
ferromagnetic metal and a semiconductor.38 In this work we
find that anisotropic spin-relaxation processes leave clear
marks on the transport properties such as the angular mag-
netoresistance and the spin-transfer torque. We obtain, e.g.,
the counterintuitive result that anisotropic spin relaxation
may enhance rather than destroy the current-driven spin ac-
cumulation on the island. In Sec. II we introduce our model
system and the theories of spin transport and relaxation. In
Sec. III we identify the electrical signatures of anisotropic
spin relaxation. The enhancement of spin accumulation due
to anisotropy is discussed in Sec. IV. We present conclusions
in Sec. V.

II. MODEL FOR SPIN AND CHARGE TRANSPORT

The spin valve in this work consists of a large quantum
dot island between two ferromagnets. The quantum dot is
assumed to be in contact with the ferromagnets by tunneling
barriers, with contact resistances much larger than the resis-
tance of the island. We derive the transport equations for a
general case, and as an example discuss a quantum dot made
in a �001� grown quantum well in GaAs/AlGaAs. The
Dyakonov-Perel mechanism becomes then the leading
source of spin relaxation and emergence of a giant aniso-
tropy in spin relaxation has been predicted in such
systems.26,27 A gate electrode on top of the quantum dot can
be used to tune the relative strengths of the SIA and BIA
spin-orbit interactions which effectively changes the degree
of anisotropy in the system. The model device is sketched in
Fig. 1.

We model the spin and charge transport in the spin valve
using the magnetoelectronic circuit theory,33 which describes
spin-dependent transport in an electronic circuit with ferro-
magnetic elements. The contacts between metallic or ferro-
magnetic nodes are parametrized as 2�2 conductance ten-

sors in spin space. Their diagonal elements are the
conventional spin-dependent conductances G↑ and G↓,
whereas the nondiagonal ones are occupied by the complex
mixing conductance G↑↓ �and its conjugate�. The mixing
conductance is the material conductance parameter that gov-
erns spin currents transverse to the magnetization and be-
comes relevant when magnetization vectors are not collinear.
The electric currents driven through the system are small and
current-induced spin polarizations36 may be disregarded. The
island should be diffuse or chaotic, such that its electron
distribution function is isotropic in momentum space. The
quantum dot is supposed to be large enough so that Coulomb
charging effects can be disregarded, although the calcula-
tions can be readily extended to include the Coulomb block-
ade, at least in the orthodox model.37

We focus here on a symmetric spin-valve device, i.e., the
conductances of the majority and minority spin channels G↑

and G↓ and the polarization, defined as P= �G↑−G↓� / �G↑

+G↓�, are the same for both the source and the drain contacts
to the dot. In the tunneling regime, the real part of the mixing
conductance Re G↑↓→G /2, where G=G↑+G↓ is the total
contact conductance. The imaginary part of the mixing con-
ductance is believed to be significant for ferromagnet-
semiconductor interfaces.38

The charge current Ic,i into the quantum dot through con-
tact i=1,2 is �Ref. 33�

Ic,i/G = Vc − Vi + PVs · mi, �1�

where Vi is the potential of reservoir i, Vc and Vs are the
charge and spin potentials in the quantum dot, and m1 and
m2 are the magnetizations of the left and right ferromagnet,
respectively. Equations for the spin currents through the in-
terfaces into the island read �in units of A� �Ref. 33�

Is,i = mi�Vs · mi + P�Vc − Vi��G + 2 Re G↑↓mi � �Vs � mi�

+ 2 Im G↑↓Vs � mi. �2�

A transverse spin current cannot penetrate a ferromagnet but
they are instead absorbed at the interface and transfer the
angular momentum to the ferromagnet. This gives rise to the
spin-transfer torques �Ref. 39�

FIG. 1. �Color online� Schematic picture of
the spin-valve structure. A voltage bias V=V1

−V2 drives charge and spin currents through a
layered ferromagnet-quantum dot-ferromagnet
system. The magnetizations m1 and m2 point in
arbitrary directions in the 2D plane of the large
quantum dot. The ferromagnets inject a spin ac-
cumulation Vs into the dot. The coordinate sys-
tem is chosen so that x axis is parallel to m1 and
z is perpendicular to the plane of the quantum
dot.
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�i =
�

2e
mi � �mi � Is,i� �3�

on the magnetization mi. When the spin-transfer torque is
large it may cause a switching of the magnetization direction.

The charge and spin conservation in the steady state im-
plies that

�
i=1,2

Ic,i = 0, �4�

dVs

dt
= � �Vs

�t
�

precess
+ � �Vs

�t
�

relax
+ �

i=1,2
Is,i/2e2D = 0, �5�

where D is the density of states at the Fermi energy of the
quantum dot, which is assumed to be constant and continu-
ous on the scale of the applied voltage and the thermal en-
ergy. The Bloch equation4,40 �5� describes changes in the spin
accumulation due to spin precession and spin-relaxation pro-
cesses and the spin currents. In the standard approach, spin
relaxation is parametrized in terms of an isotropic, phenom-
enological spin-flip relaxation time. However, when the spin
is coupled to orbital and structural anisotropies, spin relax-
ation can be anisotropic. Anisotropic spin-relaxation pro-
cesses can be taken care of by replacing the spin-flip
relaxation-rate constant by a tensor �, that, given a spin-orbit
coupling Hamiltonian and disorder, can be calculated with
perturbation theory. In the presence of anisotropic spin-
relaxation processes and external magnetic field B the terms
in the Bloch equation �5� read

� �Vs

�t
�

precess
= �g�Vs � B�, � �Vs

�t
�

relax
= − � · Vs, �6�

where �g is the electron gyromagnetic ratio. Comparison of
Eqs. �2�–�5� with Eq. �6� show that the imaginary part of the
mixing conductance Im G↑↓ acts like a magnetic field and
gives rise to a precession around the direction determined by
the magnetization vectors mi.

The quantum dot and the magnetizations are supposed to
be in the xy plane. The spin accumulation can have a com-
ponent perpendicular to the quantum dot �z direction� by the
imaginary part of the mixing conductance. The spin-
relaxation tensor � is diagonal in a coordinate system de-
fined by U= �ul ,us ,uz�, where �column� vector ul denotes the
direction corresponding to the longest spin lifetime �sf,l in the
plane of the quantum dot, us denotes the direction where the
in-plane spin lifetime �sf,s is shortest and uz denotes the di-
rection perpendicular to the system with spin lifetime �sf,z. In
the xyz-coordinate system the � tensor then reads

� = U�UT = U�1/�sf,l 0 0

0 1/�sf,s 0

0 0 1/�sf,z
�UT. �7�

We introduce a spin-flip conductance, which is effectively
a measure of the spin-relaxation rate, as follows:

Gsf,i =
e2

2

D
�sf,i

, �8�

for i�s , l ,z. The spin-valve effect depends nonmonoto-
nously on the contact resistance. When the resistance is too
small, the magnetoresistance is suppressed by the conduc-
tance mismatch. When it is too large, all spins relax because
the dwell time is longer than the spin-flip times,10 i.e., when
G�Gsf,i. Defining the dwell time as G=e2D / �2�dwell�, we
require that �dwell��sf,i, i.e., the spin lifetime must be long
enough so that at least one component of the spin persists
before the electrons tunnel out of the dot.

We discuss now the special case of a large quantum dot
defined on a gated 2D electron gas in GaAs. We assume a
�001� growth direction and use an effective mass m*

=0.067me and an electron density N=4�1011/cm2. In the
�001� quantum wells ul=

1
	2

�1,1 ,0� and us= 1
	2

�−1,1 ,0�
when the electric field points in the �001� direction.27,41 Ana-
lytic expressions for the spin-relaxation rates in quantum
wells dominated by the Dyakonov-Perel spin-relaxation
mechanism are given by Averkiev et al.41 They used a
Hamiltonian with linear spin-orbit coupling terms

H =
�2k2

2m* +
�

�
��xky − �ykx� +

	

�
��xkx − �yky� , �9�

where � and 	 are SIA and BIA spin-orbit coupling con-
stants and m* is the effective electron mass. A variational
calculation for a triangular model potential and the perturba-
tion theory was then used to extract the spin-relaxation rates.
In the case of short-range scattering and degenerate electron
gas they found

1

�±
=

2�tr

�2 
kF
2�±� − 	��±� − 	 +

�

2
kF

2� +
�2kF

6

8

 , �10�

1

�z
=

4�tr

�2 
kF
2��2 + 	2� −

�	kF
4

2
+

�2kF
6

8

 , �11�

where 
,� and z denote �110�, �1̄10�, and �001� directions,
respectively, and �tr denotes the transport relaxation �scatter-
ing� time. The material parameter �=	 / �kz

2�=27 eV Å3 for
GaAs. The calculations leading to �10� and �11� are valid
only when the mean free path l=vF�tr, where vF is the Fermi
velocity, is much smaller than the size of the quantum dot.

The Bychkov-Rashba term is expected to be linearly de-
pendent on the gate-electrode induced electric field E=Ez so
that �=�0eE, where �0=5.33 Å2 for GaAs/AlGaAs. The E
dependence of the expectation value for the perpendicular
component of the wave vector �kz

2�=0.78�2m*eE /�2�2/3 in
triangular asymmetric quantum wells.42 Equation �10� shows
a significant reduction of the spin-relaxation rate for the
�110� direction when ��	, whereas the spin-relaxation rate

for �1̄10� is not reduced. The spin-relaxation process is
thereby strongly insotropic in this regime. A more accurate
numerical analysis of the anisotropy based on a self-
consistent calculations in a multiband envelope-function ap-
proximation has been carried out by Kainz et al. and gives
qualitatively similar results.27 When ��	, the most stable
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spin direction �110� can have a lifetime that is several orders

of magnitude longer than in the �1̄10� and �001� directions,
i.e., �sf,l��sf,s and �sf,l��sf,z.

As shown in Eqs. �10� and �11� the spin-relaxation rate of
the Dyakonov-Perel mechanism is proportional to the trans-
port relaxation time. Spin-relaxation times are therefore ex-
pected to increase with temperature and disorder in the
sample. The enhancement of spin-relaxation times with tem-
perature has been recently demonstrated experimentally.43

For �tr=0.1 ps, Averkiev et al. predicted that the spin-
relaxation times in GaAs typically range from picoseconds to
nanoseconds.41

III. SIGNATURES OF ANISOTROPY

Equations �1�–�5� can be solved analytically, but general
expressions are lengthy. We therefore study transport in the
limiting case of strong anisotropy

Gsf,s � G � Gsf,l. �12�

By fixing the direction of the magnetization of the left ferro-
magnet along the x axis the problem contains only two vari-
ables, the angle � between the magnetizations and angle 

between the x axis and ul, i.e., the eigenvector of the spin-
relaxation rate matrix �7� corresponding to the most stable
spin-accumulation direction. We present here the results for
the spin-valve angular conductance, spin-transfer torque, and
spin accumulation on the island and identify signatures of the
anisotropy which could be probed in all-electric measure-
ments. In experiments the dependence of the currents on the
angle between the magnetizations and the orientation of the
anisotropy axes could be probed, e.g., by depositing strips of
ferromagnets at different angles on the same sample wafer.
Alternatively, the magnetization of a magnetically soft ferro-
magnet can be rotated using a magnetic field.

Figure 2 shows the current of the device versus the angle
� with anisotropic and isotropic spin-relaxation processes in
the central island. The results are compared to the current
IOhmic=GV /2 through two nonmagnetic interfaces with con-
ductance G in series. For isotropic spin-relaxation the curve
is symmetric with a single minimum at the center �Fig. 2�a��.
The � dependence is gradually suppressed when the spin-
relaxation rate increases and in the limit of very fast spin
relaxation the transport is governed solely by interface con-
ductances. In the presence of anisotropic spin-relaxation pro-
cesses the magnetoconductance depends strongly on the rela-
tive orientations of the magnetization axes with respect to the
anisotropy axis. When one of the magnetizations is oriented
perpendicular to the axis of the fastest relaxing spin compo-
nent us �i.e., 
=� /2� the magnetoresistance shows two
minima in the limit of strong anisotropy �Fig. 2�b��. When
the spin is injected along a stable magnetization direction
�
=0� the shape of the magnetoresistance curve only weakly
depends on the spin-relaxation rate in the perpendicular di-
rection �Fig. 2�c��. For 0�
�� /2 the magnetoresistance
generally contains two minima of unequal heights �Fig.
2�d��. Thus, the formation of a double minimum is a charac-
teristic signature of the anisotropy in the system. It should be

noted that such a double minimum is also possible in a sys-
tem with isotropic spin relaxation, but only when the contact
polarizations of the spin valve are significantly different.44

Since the spin relaxation affects the spin currents, aniso-
tropic spin relaxation is expected to change the spin-transfer
torque on the magnetization as a function of the relative ori-
entation of the magnetizations and the anisotropy axes. The
torque on the right ferromagnet �2 in the case of strong an-
isotropy �12� is shown in Fig. 3. Equations �2� and �3� show
that the spin torque on the ferromagnet i is proportional to
�mi�Vs�. When the left ferromagnet injects spin parallel to
the axis of the longest spin lifetime the spin-transfer torque
increases compared to the case of no spin relaxation. On the

FIG. 2. �Color online� The charge current through the device
relative to IOhmic=GV /2 in the presence of anisotropic spin relax-
ation depends strongly on the angle � between the spin-injecting
magnetizations and the angle 
 between left magnetization and the
direction of the most stable spin orientation. �a� In the case of
isotropic spin relaxation the magnetoresistance shows a single mini-
mum. �b� When the spin is injected parallel to the axis of the most
short-lived spin orientation �
=� /2� the rapid relaxation of spin
accumulation near �=� causes a shift of current towards IOhmic. �c�
When the spin is injected parallel to the axis of the most stable spin
orientation �
=0� the spin accumulation persists and there is little
change in the charge current. �d� In the case of strong anisotropy
and 0�
�� /2 the magnetoresistance generally shows two
minima with unequal heights. In �b�–�d� Gsf,l=0, P=1 and the
curves are plotted for different relative spin flip conductances
Gsf,s /G.
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other hand, when the left ferromagnet injects spin perpen-
dicular to this direction the spin torque decreases as a con-
sequence of the loss of spin accumulation. Moreover, in this
configuration the spin torque is found to change sign at �
=� /2. This effect is due to decay of the perpendicular com-
ponent of the spin accumulation. At �=� /2 the magnetiza-
tion m2 is therefore parallel to Vs and �2=0.

Another way to detect anisotropy electrically is by modu-
lating the spin-relaxation rates via the spin-orbit interaction.
We discuss this within the model system introduced in Sec.
II and use the spin-relaxation times Eqs. �10� and �11� to
calculate charge current as a function of gate-voltage induced
electric field E �Fig. 4�.

The magnetizations of the left and right ferromagnets are
set in the ul and us directions, respectively, to maximize the
effect of the spin-orbit interaction. We have used Re G↑↓

=G /2 and Im G↑↓=−G /2 for the ferromagnet-semiconductor
interface as suggested by ab initio studies of Fe-InAs
interfaces.38 Since the spin-relaxation time perpendicular to
the plane of the quantum dot �z is of the same order of
magnitude as �sf,s a finite imaginary part of the mixing con-
ductance is detrimental to the spin accumulation. The results
as shown in Fig. 4 are not particularly sensitive to the values
of these parameters, however. By setting Im G↑↓=0 the result
differs significantly only in low gate fields E�200 kV/cm
as shown by the dashed lines in Fig. 4. Due to rapid spin

relaxation in the �1̄10� and �001� directions the spin accumu-
lation is along the �110� direction to a good approximation
for E�200 kV/cm. At the dip in the current the contribu-
tions from the SIA and BIA spin-orbit couplings are approxi-
mately equal ���	�, and the anisotropy is largest.

We focus now on the analytical expressions which can be
obtained in the limit of weak polarization �P�1� and
Im G↑↓=0. As a consequence the z component of the spin

accumulation vanishes. The spin accumulation to lowest or-
der in P reads

Vs =
VP

2
� sin�
 +

�

2
�sin��

2
�

1 + 2Gsf,l/G
ul −

cos�
 +
�

2
�sin��

2
�

1 + 2Gsf,s/G
us�

+ O�P3� . �13�

Equations �1� and �4� give the charge current through the
system

Ic =
G

2
�V − PVs · �m1 − m2�� . �14�

This can be combined with �13� to obtain the charge current
to the second order in P. The GV /2 term in �14� is given by
Ohm’s law for two nonmagnetic interfaces and the second
term gives the lowest order correction.

These results help to develop an intuitive picture of the
effects of anisotropic spin-relaxation processes on transport.
To linear order in P the components of the spin accumulation
along ul and us depend only on the spin-relaxation rates
along these directions but do not depend on the spin-
relaxation rates along perpendicular directions. This lowest-
order result explains the physics when the polarization is
small. When the polarization is larger, the current and spin
accumulation have a more complicated interdependence.

IV. ENHANCEMENT OF SPIN ACCUMULATION DUE TO
ANISOTROPY

Fast spin-relaxation is supposed to be detrimental for the
spin accumulation in the central node of a spin valve. In
anisotropic systems, however, this is not necessarily the case.
Anisotropic spin-relaxation processes can also enhance the
spin accumulation when there is at least one direction with a

FIG. 4. �Color online� Calculated current through a device as a
function of gate voltage induced electric field E for three different
dwell times �dwell and using spin-relaxation rates as given by Eqs.
�10� and �11�. The magnetizations of the left and right ferromag-

netic contacts are in the �110� and �1̄10� directions, respectively.
The polarization is set to P=50% and Re G↑↓=G /2. The solid lines
correspond to Im G↑↓=−G /2 and the dashed lines correspond to
Im G↑↓=0.

FIG. 3. �Color online� The spin torque on ferromagnet 2 as a
function of the angle � between left and right magnetization in the
absence of spin relaxation processes �solid line� and in the presence
of giant spin-relaxation anisotropy with Gsf,s=�, Gsf,l=0 �dashed
and dash-dotted lines�. In the latter case the left ferromagnet injects
spin parallel to ul �
=0, dashed line� or us �
=� /2, dash-dotted
line�, respectively. The polarization is here P=1 and Im G↑↓=0.

CHARGE AND SPIN TRANSPORT IN SPIN VALVES WITH… PHYSICAL REVIEW B 75, 075313 �2007�

075313-5



long spin lifetime. We demonstrate this in a spin-valve con-
figuration in which the injected spin accumulation is domi-
nantly along the stable direction. Spin relaxation in the per-
pendicular direction then may enhance the spin
accumulation.

In the absence of spin-relaxation processes the angle de-
pendence of the x component of the spin accumulation is

Vs,x��,P� =
VP

2
sin2��/2� �15�

as shown by dashed lines in Fig. 5. Assume now that a fast
spin-relaxation process is switched on in the y direction only
and the x component of the spin accumulation does not de-
cay, i.e., us= �0,1 ,0�, �sf,s=0 and ul= �1,0 ,0�, �sf,l=�. The
decay of the spin accumulation in the y direction induces a
larger current through the system for the same bias voltage.
This implies a larger spin current and, as a consequence, an
enhanced spin accumulation in the x direction. Since to lin-
ear order in the contact polarization circuit theory predicts no
enhancement of the spin accumulation �Eq. �13��, we have to
work out the solution for arbitrary P. In the above limit of
Gsf,s=� and Gsf,l=0, the solution to the set of equations
�1�–�5� is

Vs,x��,P� =
2VP�cos � − 1�

P2�cos � + cos 2� + 3� − 8
, �16�

as shown by solid lines in Fig. 5. The results prove that spin
accumulation in the x direction may be enhanced due to spin
relaxation in the y direction. The y component of the spin
accumulation decays but the total modulus of the spin accu-
mulation vector may increase as a result of the spin relax-

ation. The enhancement of the spin accumulation is substan-
tial in the limit of high polarization P�0.9. At lower
polarizations, the increased spin current and reduced y com-
ponent of the spin compete and the phenomenon disappears
in the low P limit in Eq. �13�. In the limiting case of 100%
polarization the spin enhancement is discontinuous at �=0
�Fig. 5�c��. There is no spin accumulation at �=0, in line
with the results from collinear circuit theory, but infinitely
close to this point the spin accumulation jumps to 1/2 of the
maximum value at �=�. The enhancement of the spin accu-
mulation has an impact on the spin-transfer torque on the
ferromagnets as well. Figure 5�d� shows an increase in the
spin torque on ferromagnet 2 at P=1 compared to the spin
torque calculated from the linear-order approximation �13�.

V. CONCLUSIONS

Magnetoelectronic circuit theory has been used to calcu-
late the spin and charge transport through a spin valve with a
diffuse or chaotic quantum dot in the presence of anisotropic
spin-relaxation processes. Analytical expressions for charge
current, spin accumulation, and spin-transfer torques in the
tunneling regime illustrate the sensitivity of the charge cur-
rent on the relative orientation of the anisotropy axes and the
magnetizations of the ferromagnets. Signatures of anisotropy
have been identified in the magnetoresistance. The aniso-
tropy can be probed either by rotating the magnetization di-
rections of the ferromagnets or alternatively by using a gate
electrode to change the spin-relaxation rates. Counterintu-
itively, anisotropic spin-relaxation processes may enhance
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FIG. 5. �Color online� �a�–�c�
The component of spin accumula-
tion in the direction of the inject-
ing magnetization Vs,x is enhanced
in the presence of fast spin relax-
ation in the perpendicular direc-
tion �
=0, Gsf,s=��. The solid
line presents the results from the
circuit theory �16� and the dashed
line shows the spin accumulation
in the linear-order approximation
�13�. The spin accumulation is not
assumed to decay in the direction
of the injecting magnetization
�Gsf,l=0�. The enhancement of the
spin accumulation strongly de-
pends on the magnetization polar-
ization P. �d� Enhancement of the
spin accumulation is also reflected
by the spin-transfer torque on the
right ferromagnet as shown here
for P=1.
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the spin accumulation. This effect is attributed to an in-
creased charge current due to removal of one component of
the spin, which increases the spin-injection rate in the per-
pendicular direction. The enhancement was found to be re-
markably large in the limit of high polarization.
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