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Abstract—The computational complexity of nonlinear Model
Predictive Control (MPC) poses a significant challenge in achiev-
ing real-time levels of 4 and 5 of automated driving. This
work presents the open-access Hybridization toolbox for MPC
(H4MPC), targeting computational efficiency of nonlinear MPC
thanks to several modules to hybridize nonlinear MPC opti-
mization problems commonly encountered in automated driving
applications. H4MPC is designed as a user-friendly solution with
a graphical user interface within the MATLAB environment. The
toolbox facilitates intuitive and straightforward customization of
the hybridization process for any given function appearing in
the equality or inequality constraints within the MPC frame-
work. The initial release, Version 1.0, is freely available from
https://bit.ly/H4MPCV1. To provide a clear illustration of the
toolbox capabilities, we present two case studies: one to hybridize
a vehicle model and another one to approximate tire saturation
constraints.

Index Terms—Hybrid systems, Function approximation, MAT-
LAB toolbox, Model predictive control, Automated driving

I. INTRODUCTION

Nonlinearity of the MPC optimization problem in automated
driving is a significant obstacle towards real-time vehicle
control [1]. Approximating the nonlinearities is often done in
many applications [2] to come up with improved computa-
tional efficiency in solving the nonlinear control optimization
problem. In this line, hybridization techniques [3] approximate
a nonlinear function using hybrid systems formalism, with
both continuous and discrete-time dynamics involved in the
approximation [4]. For more information on hybrid systems,
the reader is referred to [5], [6].

Hybridization has been extensively employed in automated
driving research, e.g., in vehicle control [7] by approximating
the nonlinear model using a mixed-logical dynamics [8],
or by approximating nonlinear tire forces using PieceWise-
Affine (PWA) dynamics [9]–[11]. Efficiency of MPC after
hybridization has been recently studied in [12], [13].

This work presents H4MPC [14], a hybridization toolbox in
MATLAB that provides a user-friendly interface to formulate
and solve optimization problems to approximate the nonlin-
earities in nonlinear MPC using hybrid systems formalism,
in particular PWA modeling framework. The toolbox exploits

This research is funded by the Dutch Science Foundation NWO-TTW
within the EVOLVE project (no. 18484).

the formulation from Max-Min-Plus-Scaling (MMPS) sys-
tems [15] to allow for an intuitive adjustment of the complexity
level in the approximated form. Further, H4MPC facilitates
approximation of the nonlinear constraints via covering the
resulting non-convex feasible region by a union of convex
subregions, namely ellipsoids or polytopes, where the latter
are obtained using MMPS formalism as well.

This paper describes the H4MPC modules in detail and
demonstrates its capabilities using two case studies: approx-
imating a single-track vehicle model [16], and hybridizing
the non-convex feasible region due to tire saturation limits,
known as the Kamm circle constraint [17] for a Pacejka tire
model [18]. The paper is structured as follows: Section II
covers the preliminary definitions, Section III presents the
architecture of H4MPC and Section IV illustrates the case
studies and analysis of the results. Finally, Section V summa-
rizes the results of this work.

II. PRELIMINARIES

A. Nonlinear Problem Description

Consider a given discrete-time nonlinear system
s(k+1) = F(s(k), u(k)) where s∈Rn and u∈Rm respectively
represent the state and input vectors, and the domain of F
is denoted by D ⊆ Rn+m. With the state and input vectors
defined over the whole prediction horizon Np as

s̃(k+1) =
[
ŝT (k+1|k) ŝT (k+2|k) . . . ŝT (k+Np|k)

]T
,

ũ(k) =
[
uT (k) uT (k+1) . . . uT (k+Np−1)

]T
,

and ŝT (k+ i|k) with i∈ {1, . . . ,Np} representing the prediction
of the states in step k+ i given the measured states at step k, the
nonlinear MPC problem at step k is formulated in the general
form:

min
ũ(k)

‖Θss̃(k)‖ρ +‖Θuũ(k)‖ρ (1a)

s.t. ŝ(k+ i|k) = F(ŝ(k+ i−1|k),u(k+ i−1)), (1b)
∀i ∈ {1, . . . ,Np},

G(ŝ(k+ i−1|k),u(k+ i−1))6 1, (1c)
∀i ∈ {1, . . . ,Np},
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where (1b) represents the equality constraints due to the
prediction model, and (1c) expresses the non-convex feasible
region via the normalized nonlinear constraint function G
resulting from physics-based constraints such as tire saturation
or vehicle stability. Without loss of generality, we assume G
to be a scalar function. The objective function (1a) is a sum of
the ρ−norm of the state and input vectors with ρ ∈ {1,2,∞},
induced by weight matrices Θs and Θu.

B. Approximation of the Nonlinear Problem
Hybridization of the nonlinear MPC problem is done in two

steps: (1) approximating the prediction model, i.e. F , and (2)
approximating the nonlinear constraints, i.e. G. For a more
compact representation, we use the augmented state vector
x =

[
sT uT ] to define F(x) := F(s,u) and G(x) := G(s,u).

1) Model Approximation: We approximate each component
Fw of F =

[
F1 . . . Fn

]T by an MMPS function fw in the
Kripfganz form [19] as

fw(x) = max
{

φ
+
w,1(x),φ

+
w,2(x), . . . ,φ

+
w,P+

w
(x)
}

−max
{

φ
−
w,1(x),φ

−
w,2(x), . . . ,φ

−
w,P−w

(x)
}
, (2)

∀w ∈ {1, . . . ,n},

where the vectors φ
η
s :Rm+n→RPη

with η ∈{+,−} are affine
functions of x, also referred to as dynamic modes. Figure 1
shows an illustrative example for a 1-dimensional case with
(P+,P−) = (3,4).

φ
+
1

φ
+
2

φ
+
3

φ
−
1

φ
−
2

φ
−
3

φ
−
4

Nonlinear

MMPS

x

f

Fig. 1: MMPS approximation of a nonlinear function using
the difference of two max functions

2) Constraint Approximation: With the nonlinear, non-
convex constraints given as G(x) 6 1, we approximate the
feasible region C := {x ∈D | G(x)6 1} by a union of convex
subregions R. The shape of the subregions in R can either
be polytopic, which we obtain by an MMPS approximation of
the boundary, or ellipsoidal.

Similar to the prediction model, MMPS approximation of
the constraints is expressed by

gMMPS(x) = max
{

γ
+
1 (x),γ+2 (x), . . . ,γ+R+(x)

}
−max

{
γ
−
1 (x),γ−2 (x), . . . ,γ−R−(x)

}
, (3)

with the vectors γη :Rm+n→RRη

and η ∈ {+,−} being affine
functions of x.

In the ellipsoidal approach, G is approximated by gELLP as

gELLP(x) = min
e∈{1,...,ne}

{
(x− xe,0)

T Qe(x− xe,0)−1
}
, (4)

with Qe being positive definite matrices and xe,0 representing
the center coordinates of the (possibly rotated) ne ellipsoids.
Figure 2 represents a schematic view of MMPS and ellipsoidal
constraint approximations.

Domain

MMPS

Nonlinear

Ellipsoidal

x1

x2

Fig. 2: MMPS and ellipsoidal constraint approximation.

C. Approximation Problem Formulation

All the nonlinear functions H ∈ {F1, . . . ,Fn,G} are ap-
proximated by their respective hybrid formulations h ∈
{ f1, . . . , fn,g} for g∈{gMMPS,gELLP} via solving the nonlinear
optimization problem

min
A

∫
D

‖H(x)−h(x)‖2
‖H(x)‖2 + ε0

dx, (5)

where A represents the decision variables used to define
h and the positive value ε0 > 0 added to the denominator
avoids division by very small values for ‖H(x)‖2 ≈ 0. For
the nonlinear constraint, (5) approximates the boundary of the
feasible region, and therefore we call this approach “boundary-
based”.

Another method to formulate the constraint approximation
problem is the “region-based” approach where we formulate
the optimization problem as

min
A

γc
V {C \R}

V {C }
+(1− γc)

V {R \C }
V {D \C }

, (6)

where the operator V gives the size or “volume” of the region,
and γc ∈ [0,1] is a tuning parameter to adjust the relative
penalization weight for the misclassification errors regarding
inclusion error C \R, i.e., failing to cover the feasible region,
and the violation error R \C which corresponds to violating
the constraints.
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III. TOOLBOX ARCHITECTURE

The graphical user interface of the H4MPC toolbox is shown
in Fig. 3 and consists of three steps, which correspond to the
three modules in H4MPC as shown in Fig. 4: grid generation,
model approximation, and constraint approximation. In each
module, during grid generation, model approximation, and
constraint approximation, the toolbox saves the results as
separate .mat files in case the user is only interested in the
output from one of the modules. The arrows in Fig. 4 illustrate
the possible flow of using each module within H4MPC.

Fig. 3: Graphical user interface of H4MPC.

Constraint 
Approximation

Model 
Approximation

Grid 
Generation

Grids.mat

System.mat Constraints.mat

provide nonlinear 
system/constraints 
& their properties

Fig. 4: Architecture of the H4MPC toolbox.

A. Grid Generation Module

In the first step, the user is asked to provide information on:

• number of states and inputs,
• function handles for the nonlinear model and constraint

functions,
• sampling time for forward Euler discretization if the

model function is continuous-time (can be set to 0 if the
provided function is discrete-time), and

• input and state bounds.
For the highly-nonlinear model or constraint functions in
automated driving, analytical closed-form solutions for (5)–
(6) often do not exist. Therefore, a grid is generated on D to
solve these optimization problems by minimizing the objective
function across the grid points. For model approximation, the
user can select among four methods described in [12]:
• Domain-based: [points are directly sampled from D]

– Uniform (U): the points are generated by picking
nsamp uniformly-spaced points along each axis in D .

– Random (R): a total of nrand points are randomly
selected from D .

• Trajectory-based: [nsim open-loop simulations with nstep
steps of F are run using random inputs from D]

– Steady-state (S): the initial state of each simulation
is selected as the steady-state solution w.r.t. the initial
input, i.e., it is assumed that each simulation starts
from a steady state.

– Randomly-initiated (T): the initial state of each
simulation is randomly selected from D .

For constraint approximation, the grid points are sampled
from the whole domain D . Since the region close to the
boundary of the feasible region where G(x) = 1 is of more
interest, the constraint approximation grid is generated by
combining a uniform grid (U) with a random grid (R) on
the boundary region with width εb, where |G(x)− 1| 6 εb.
The user can select the number of uniform and boundary
grid points, as well as εb in the user interface. After clicking
on the “Generate Training Grids” button, the parameters are
saved in the params struct and the model and constraint
approximation grids, respectively SM and SC, are generated.

B. Model Approximation Module

In this module, the user is asked to provide (P+,P−) values
for model approximation, for each state/input separately, i.e.
for components of F . We solve (5) for the user-defined values
of (P+,P−) by MATLAB’s nonlinear least squares optimizer,
lsqnonlin, using the trust-region-reflective algorithm, in
view of the number of optimization variables. We solve the
problem with nmultistart random initial guesses, where nmultistart
is provided by the user, and we select the one with the lowest
objective value as the optimal solution. By clicking on the “Ap-
proximate Prediction Model” button, the model approximation
optimization problem is solved and the hybridized model is
saved in the system struct.

C. Constraint Approximation Module

The third module approximates the nonlinear constraints
using the desired approach and subregion types that can be
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selected by the user. Similar to the model approximation mod-
ule, the boundary-based approach leads to a smooth problem,
which H4MPC solves for the user-defined values of (R+,R−)
or ne. The boundary-based approach offers greater flexibility in
fine-tuning the trade-off between encompassing the non-linear
region and potentially infringing upon it, ultimately resulting
in improved coverage of the non-convex region. However,
if the application demands strict adherence to non-linear
constraints, it is advisable to opt for the region-based approach
in (6), which results in a non-differentiable objective function.
The user can then select the parameter γc to adjust the weight
factor in (6). H4MPC solves the approximation problem using
the particle swarm optimizer in MATLAB, which does not
require the problem to be differentiable where -based on
extensive numerical experiments- we select the swarm size to
be 10 times larger than the number of decision variables. The
user can then click on the “Approximate Constraints” button,
to get the hybridized constraints as the const struct.

IV. CASE STUDY

In this section, two examples are investigated to showcase
model and constraint approximations handled by H4MPC.
The first example involves the single-track vehicle model
from [16] as an illustrative model approximation example,
and the second considers the Kamm circle constraint [17] as
a function of the lateral and longitudinal slips to represent a
non-convex feasible region. Multiple selections in H4MPC are
tested to highlight the effect of various tuning parameters for
hybridization.

A. Nonlinear Vehicle Model
The lateral dynamics of the single-track vehicle model in

Fig. 5 is characterized by

ṙ =
1
Izz

(
lf Fyf− lr Fyr

)
, (7a)

β̇ = arctan
(

Fyf +Fyr

mvx
− r
)
, (7b)

with the tire forces described by the Pacejka tire model [18]
as

Fxa = Fza µ sin(Cκ arctan(Bκ κa)) , (8a)
Fya = Fza µ sin(Cα arctan(Bα αa)) , (8b)

the κa representing the slip ratio on axle a ∈ {f, r}, and the
slip angles being

αf = arctan
(

β +
lfr
vx

)
−δ , (9a)

αr = arctan
(

β − lrr
vx

)
. (9b)

The system parameters are shown in Table I. The tire forces
should satisfy the tire saturation limits, i.e. Kamm circle
constraint [17]

F2
xf +F2

yf 6 (µFzf)
2 , (10a)

F2
xr +F2

yr 6 (µFzr)
2 . (10b)

Fig. 5: Single-track vehicle model.

TABLE I: System parameters and variables∗

System parameters
Par. Definition Value Unit
m Vehicle mass 1725 kg
Izz Inertia moment about z-axis 1300 kg/m2

lf CoG∗∗ to front axis distance 1.35 m
lr CoG to rear axis distance 1.15 m
µ Friction coefficient 1 –
vx Longitudinal velocity 20 m/s
Fzf Normal load on the front axis 5000 N
Fzr Normal load on the rear axis 5000 N
Bκ

Pacejka tire coefficients

11.4 –
Cκ 1.4 –
Bα 10.0 –
Cα 1.6 –

System variables
Var. Definition Bound Unit

β Sideslip angle [-0.3,0.3] rad
r Yaw rate [-0.5, 0.5] rad/s
δ Steering angle (road) [-0.3, 0.3] rad

Fxf Longitudinal force on the front axis [-5000, 0] N
Fxr Longitudinal force on the rear axis [-5000, 5000] N
Fyf Lateral force on the front axis [-5000, 5000] N
Fyr Lateral force on the rear axis [-5000, 5000] N
αf Front slip angle [-0.4,0.4] rad
αr Rear slip angle [-0.4,0.4] rad
κf Front slip ratio [-1,1] –
κr Rear slip ratio [-1,1] –
s State vector :=

[
r β

]T – –
u Input vector := δ – –
∗These kinematic parameters are from [16].
∗∗Center of Gravity

B. Approximation of the Vehicle Dynamics

We use the vehicle model (7) as a case study to investigate
model approximation with two states, represented by the
variables r and β , and the input δ . To showcase the impact
of the parameters (P+,P−) on the level of complexity of the
hybrid formulation, we examine two sets of parameter values:
(P+,P−) ∈ {(2,2),(4,3)} for ṙ and (P+,P−) ∈ {(2,2),(5,5)}
for β̇ .

As visualizing a three-dimensional input/state space can
be not easy to read, we plot two specific cases in Fig. 6a:
ṙ(β ,r) for δ = 0 rad and β̇ (β ,δ ) for r =−0.3 rad. For more
clarity, we provide two cuts along different paths in each plot
with their own distinguished colors. We compare the original
nonlinear function with its MMPS approximations by using
dashed lines for a simpler MMPS approximation and solid
lines for a more complex one. Notably, the more complex
MMPS approximation, which includes additional terms, pro-
vides a more accurate representation of the nonlinear function.
For a more clear dynamic comparison, the phase portrait of
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(a) Comparison of two MMPS approximations of the vehicle model with different (P+,P−) val-
ues. For a more clear representation, the functions are plotted along four paths as 2-dimensional
cuts of the 3-dimensional function representation.
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(b) Phase portraits of the nonlinear
and the MMPS approximation with
(P+,P−) ∈ {(4,3),(5,5)}.

Fig. 6: MMPS approximations vs. nonlinear vehicle model: (a) comparing two approximations with different complexity levels,
and (b) the resulting state trajectories of the nonlinear model and the more complex MMPS approximation on the phase portrait
for three input values.

the more accurate MMPS approximation is compared with
the nonlinear one from [16] in Fig. 6b for three values of
δ , which shows that the MMPS approximation can generate
sufficiently-accurate trajectories on the phase portrait as well.

C. Approximation of the Kamm Circle Constraint

To demonstrate the use of hybrid approximation for non-
convex feasible regions, we provide the following example
with a more intuitive interpretation: approximate the feasible
region associated with the Kamm circle constraint defined
in (10) within the κ-α plane as its two input/states. There-
fore, we employ region-based approximation techniques while
ensuring that the constraint violation error is maintained at
zero. Figure 7 showcases the hybrid approximations using
the ellipsoidal and MMPS methodologies for different values
of ne and (R+,R−). Figure 7 illustrates the obtained hybrid
approximations.

Additionally, to emphasize the significance of defining
boundaries properly, we examine simpler cases with ne = 2
for the ellipsoidal approach and (R+,R−) = (2,2) for the
MMPS method under two scenarios: setting the boundary on
the domain in terms of α to either 0.1 or 0.4 radians. A
comparison between the orange and purple approximations
for both the ellipsoidal and MMPS approaches reveals that,

as the optimizer minimizes the error across the domain, it
converges to a more accurate approximation in the vicinity of
the origin when |α| is less than or equal to 0.1. However, when
the domain is extended to |α|6 0.4, the optimizer converges
to an ellipsoidal or polytopic approximation of the feasible
region close to the origin, which cannot adequately capture
the complexity of the nonlinear constraint further from the
origin. By increasing the complexity of the approximation,
such as using five ellipsoids or (R+,R−)= (5,5), the optimizer
finds hybrid approximations that provide better coverage of the
feasible region. This improved approximation is represented in
pink in both figures.

V. SUMMARY

H4MPC is a open-sources toolbox for hybridization of
nonlinear model and constraints in MPC to allow a hybrid for-
mulation of the nonlinear optimization problem. The toolbox
includes three modules and provides a user-friendly interface
to allow the user to customize the approximation. In this
paper, a single-track vehicle model and the tire saturation
limits were investigated as two examples to showcase multiple
approximation approaches handled in H4MPC and to highlight
the influence of their corresponding parameters. We expect
the toolbox to be useful in a variety of applications such as
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Fig. 7: Illustration of MMPS and ellipsoidal approximation of the Kamm circles (10) as a function of α and κ .

automated driving or control of robotic systems. The H4MPC
toolbox is freely available from https://bit.ly/H4MPCV1. The
next versions of the toolbox will include controller design
using the hybridized form of the nonlinear model and physics-
based constraints to investigate the effect of approximation
complexity on computation time of the MPC optimization
problem.
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