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1
INTRODUCTION

From the invention of semiconductors in 1874 and the transistor in 1948 [1], the high-
tech industry has drastically developed to meet the increasing need of electronics that
has become more pivotal in the lives of the modern era. Such demand is currently met
through production of semiconductors through a process called litography. Figure 1.1
shows a typical litography machine made by ASML, a leading company in the high-tech
industry.

Figure 1.1: DUV Litography machine by ASML

The litography machines outputs semiconductors in bulk, in which each bulk is termed
a waver. The motion of these wavers inside the machine requires precise control, which
currently uses a control scheme called PID. PID is currently the workhorse of the in-
dustry, dominant in use due to its versatility and ease in tuning. However, the increasing
need in rate of production requires the controllers to have a higher bandwidth and accu-
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2 1. INTRODUCTION

racy [2]. Due to the linear nature of PID, satisfying these requirements inevitably reduces
the stability margin of the controller. This fundamental limitation presents itself mathe-
matically through well-known relations such as the waterbed effect and Bode gain phase
relation.

There have been attempts to circumvent this limitation through the use of nonlinear
methods, however most of them are complex in nature and possess complicated tun-
ing methods. Most importantly, they are not compatible with the loop shaping method,
which utilizes the frequency response of the controller and what made PID highly attrac-
tive.
However, among these nonlinear methods, one of them called reset control has gained
a lot of attention due to simplicity in tuning and compatibility with the loop shaping
method [3], [4], [5], [6]. A typical reset element resets its state to zero whenever the input
crosses zero. Clegg [7] applied the idea of reset to a linear integrator, with the Describ-
ing Function analysis [8] showing that the Clegg Integrator possesses a phase lag of −38°
instead of −90° that a linear integrator has, while still maintaining the gain behaviour
of the linear integrator. Such behaviour mean that the gain behavior of linear integra-
tor can be exploited without a large inevitable reduction in stability, meaning that the
aforementioned fundamental tradeoff that is charateristic of linear controllers is now
reduced. The Clegg Integrator has been further developed to be incorporated in first
order systems (termed First Order Reset Controller) and second order systems (termed
Second Order Reset Controller), which extends the possibility of gaining the aforemen-
tioned benefit for more complex systems and controllers.

In spite of these promising results, the above benefit is often not seen in practice.
This is because the Describing Function analysis neglects the higher order harmonics
that is also output by the reset controller. Through the works of Cai [9], it was found
that the sequence of parts that construct a reset controller has a significant effect on the
contribution of the higher order harmonics in the output of the controller.

Cai’s work is done through the framework of usage of the reset element within other
control elements. Through his work and the work of Oustasloup et. al. [10], which
utilizes fractional order calculus to develop an approximation for non-integer transfer
functions, it is surmised that it might be possible to break a Clegg Integrator into frac-
tional reset parts and find the optimal sequence and reset values of each part such that
the influence of higher order harmonics is reduced. This thesis attempts to investigate
this possibility, by investigating the behaviour of fractional order elements under reset
and using an optimization routine to find the optimal reset values of the fractional parts.
This would make the aforementioned benefit of a Clegg Integrator one step closer to be
consistently realized in practice.



2
LITERATURE REVIEW

This chapter reviews the available literature within reset control in conference paper for-
mat. The preliminaries of reset control is first introduced. Then, limitations of reset con-
trol that prevent realization of benefits of reset control are explained. The final section
elaborates different strategies to mitigate these limitations, with a concluding part that
explains the significance of this thesis within the context of reset control.
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Abstract—In the motion control industry, PID (Propor-
tional Integral Derivative) controller is highly favored due
to its ease of implementation through the loop shaping
method in frequency domain. However, there is an increas-
ing need to obtain higher precision while maintaining the
same robustness, which is impossible to achieve with PID
control due to inherent limitations it possesses being that it
is linear in nature. Reset controller is a class of nonlinear
controller that has been successful in overcoming the fun-
damental limitation of PID controller while simultaneously
being compatible with the loop shaping method, which is
a feature that is not present in other nonlinear control
schemes. However, reset control suffer from problems such
as limit cycles and existence of higher order harmonics,
which makes the expected increase in performance physi-
cally not realizable. This paper reviews the theory behind
reset control, its shortcomings and possible strategies to
overcome them.

Index Terms—PID, Reset Control, Limit Cycle, Precision
Systems, Higher Order Harmonics

I. INTRODUCTION

ONE recent survey [1] indicates that among different
control strategies, PID control still outperforms

others in terms of adoption and usage in a wide range of
industries, especially in the motion control industry [2]
due to ease of tuning (e.g. using loop shaping method)
and acceptable tradeoff between performance (specifi-
cally tracking and precision performance) and robustness.
In spite of this, PID is still inherently a linear controller,
which means it has fundamental limitations that causes
a mandatory tradeoff between precision and robustness.
These limitations are known as the Waterbed effect and
Bode’s gain phase relation [3]. Bode’s gain phase relation
demonstrates how the phase of a linear control element is
dependent upon the slope of the gain by a fixed relation.
The Waterbed effect shows how reducing the gain of
the sensitivity function of a closed loop system at low
frequencies in order to improve tracking and disturbance
rejection performance has a consequence of increasing
the peak of the function, which means that the stability
level has been reduced. These two limitations show that
there is a a fundamental trade-off between performance
(tracking and noise rejection) and stability.

To reduce this tradeoff, one could resort to nonlin-
ear control schemes. Reset control is one such option,
where some or all of the states of the controller are

reset to zero or a fraction of the current value given
certain conditions. Reset control has been successfully
implemented in a wide range of situations, such as
controlling plants with large parametric uncertainty [4],
improving hard-disk systems’ mid-frequency disturbance
rejection performance [5], and improving performance
of servomotors by resetting fractional order integrators
[6]. One particular attractive aspect of reset control is
the availability of an approximate frequency response
that utilizes a technique called Describing Function (DF),
which makes loop shaping technique (that made PID
control desireable) also applicable to reset control. This
gives reset control an advantage over other nonlinear
control alternatives.

The earliest and simplest reset controller is the Clegg
Integrator (CI) that was introduced by Clegg in 1958
[7]. A CI is an integrator where its state resets to zero
whenever its input is zero. In the frequency domain, the
CI has a similar gain performance compared to a linear
integrator, however it has a -38 degrees less phase lag
compared to -90 of that of the linear integrator. This
means that from a time domain perspective, a system
controlled with a CI would have a lower overshoot, while
from a frequency domain perspective the system would
be further away from instability compared to if it is
controlled with a linear integrator. Further application
of reset control schemes include applying it to first and
second order linear control elements (known as First
Order Reset Element (FORE) and Second Order Reset
Element (SORE) respectively), which introduces design
variables that can be tuned to improve performance at
desired range of frequencies.

Despite the advantages offered by reset control, the
resetting action introduces unwanted dynamics in time
domain response such as limit cycles. In addition, the
nature of Describing Function being an approximation
of the frequency response causes inaccurate results when
used in closed-loop analysis. This literature review will
address the various aspects of reset control, its shortcom-
ings and current methods available to address this.

II. RESET CONTROL

A. Definition
Reset control is a class of nonlinear controllers where

some or all of the states of a linear controller is set to



zero or some fraction of its current state when a certain
condition is met [8]. For instance, a reset controller that
resets its states to a fraction Aρ of its current state when
the input e(t) is 0 is shown in state space in equation (1)





ẋ (t) = Arx (t) +Bre (t) if e(t) 6= 0

x (t+) = Aρx (t) if e(t) = 0

u (t) = Crx (t) +Dre (t)

(1)

Ar,Br,Cr and Dr are the state matrices of the base
linear system, and Aρ is the reset matrix. Specifically, Aρ
is a diagonal matrix, where if x(t) comprises of multiple
states, then each diagonal of Aρ indicates the degree to
which the corresponding state is being reset, from 0 being
full reset to 1 being not reset at all.

B. Describing function

Since reset control is nonlinear, it inherently does not
have a frequency response. Describing Function (DF) is
a method to approximate the frequency response of a
reset controller by taking the first harmonic of a Fourier
series decomposition of the output, and dividing it with
the input to the controller [3]. The most commonly used
input to construct the DF is a sinusoidal input, giving
the term SIDF (Sinusoidal Input Describing Function)
to refer to this situation. As an example, the describing
function for a reset element with reset condition e(t) = 0
is given by:

G (jω) = Cr (jωI −Ar)−1
(I + jθD (ω))Br+Dr (2)

where

θD (ω) , −2ω2

π
∆ (ω)

[
ΓD (ω)− Λ−1 (ω)

]

∆ (ω) , I + e
π
ωAr

Λ (ω) , ω2I +A2
r

ΓD (ω) , ∆−1
D Aρ∆Λ−1

∆D (ω) , I +Aρe
π
ωAr

C. Reset Systems Stability

For the reset condition e(t) = 0, there exists a
condition that will ensure that a plant controlled by a
reset controller in closed loop will be asymptotically
stable [9].

Theorem 1: Assume a function V : Rn → R that is
positive-definite, continuously differentiable, and radially
unbounded such that

V̇ (x) :=

(
∂V

∂x

)T
Aclx < 0 if x 6= 0 (3)

∆V (x) := V (ARx)− V (x) ≤ 0 if x ∈M (4)

where

M = {x ∈ Rnp+nr : Cclx = 0, (I −AR) x 6= 0

Acl and AR are the closed loop A matrix and reset matrix

respectively, and x=
[
xR
xp

]
are the states of the reset con-

troller and the plant. If a V exists such that 3) and (4) are
satisfied, the reset system is asymptotically stable. This
stability condition is called Lyapunov stability theorem
for reset systems.

This stability theorem can be specialized for quadratic
V i.e. V that satisfies V (x) = xTPx where P is a
positive definite function [9].

Theorem 2: Let there be a constant β ∈ Rnr×1 and
Pρ ∈ Rnr×nr , Pρ > 0 such that the Lyapunov equation

P > 0, ATclP + PAcl < 0 (5)

BT0 P = Co (6)

|λ(Aρe
π
ωAr )| < 1 (7)

has a solution for P , where

C0 =
[
βCp 0nr×nnr Pp

]
, B0 =




0nr×nr
0nnr×nr
Inr×nr


 (8)

with nr and nnr are the amount of resetted and non
resetted states of the controller respectively, and Cp has
size 1×np with np being the number of plant states. This
criterion, however, only indicates whether the system is
stable or not, and does not give an indication to the
degree of stability of the system.

III. EXAMPLES OF RESET CONTROLLERS

As alluded to in section I, reset controllers are ba-
sically common linear elements that are modified to
reset their states when their inputs are zero [9]. This
section elaborates the use of reset in more detail for some
common linear controllers.

A. Clegg Integrator (CI)

The Clegg Integrator is an integrator whose state resets
to 0 whenever the input is 0. The parameters in equation
1 become

Ar = 0, Br = 1, Cr = 1, Dr = 0, Aρ = 0

Figure 1 shows the frequency response of CI approx-
imated using the Describing Function method. As seen
from the figure, the phase lag of CI is -38.1◦. Comparing
to a linear integrator, CI has a similar gain behaviour but
a much more reduced phase lag. This means that the CI
will contribute less in increasing possibility of instability
in closed loop usage, as compared to a linear integrator.

2



Fig. 1. Frequency response of a linear integrator vs. Clegg Integrator

B. First Order Reset Element (FORE)

The FORE is a first order low pass filter whose state
is reset when the input is 0 [4]. The parameters of FORE
in (1) are:

Ar = −ωr, Br = ωr, Cr = 1, Dr = 0, Aρ = 0 (9)

where ωr is the cutoff frequency of the filter. To include
possibility of a partial reset, Aρ can be modified to γ ∈
[−1, 1]. With partial reset, the FORE is known to be
Generalized First Order Reset Element (GFORE). The
describing function of this element, with partial reset, is:

GGFORE (s) =
1

���
�: γs

ωr
+ 1

(10)

The plot of the describing function is shown in figure 2.
From this figure, it is seen that the FORE (γ = 0) has
less phase lag compared to a normal low pass filter with
similar gain performance.

Fig. 2. Frequency response of 1st order LPF (Low Pass Filter) vs
FORE, wr=50 rad/s

C. SORE

The SORE is a second order LPF whose states are
reset when the input is 0. The parameters in (1) are

Ar =

[
0 1
−ω2

r −2βrωr

]
, Br =

[
0
ω2
r

]
(11)

Cr =
[
1 0

]
, Dr = 0 (12)

Aρ =

[
γ1 0
0 γ2

]
(13)

where ωr and βr are the cutoff frequency and the
damping ratio respectively, and for full reset γ1 and γ2
are zero. Aρ is now a matrix instead of a scalar as was
the case with CI and GFORE. This is because second
order systems has two eigenvalues, which corresponds
to two states. The describing function of SORE is:

GSORE (s) =
1

���
���

���:
Aρ(

s
ωr

)2
+ 2βrs

ωr
+ 1

(14)

Figure 3 shows the plot of this Describing Function
with full reset (γ = 0). With the existence of βr,
there is an extra tuning parameter available, giving more
flexibility than FORE. It is observed in this figure that βr
controls the manner to which the phase drop occurs. It
is also observed that for even low values of βr (i.e. low
damping) there’s no appreciable resonance peak at ωr, as
would be the case with a linear second order LPF. This is
advantageous since the tradeoff between a delayed phase
drop and a consequently large resonance peak is now
reduced.

Fig. 3. Frequency response of SORE for different values of βr

3



IV. LIMITATIONS OF RESET CONTROL

A. DF Limitation

For the motion control industry, the advantages of
reset control are primarily sought after in the frequency
domain. However, when implementing the results in
time domain, the expected benefits often do not occur.
This is because the frequency response is approximated
using the aforementioned Describing Function, where
this method only takes into account the first harmonic
of the output. Thus the use of loop shaping method by
assuming the DF to be the frequency response of the
reset element may produce incorrect conclusions [10].

To illustrate the issue, consider a Clegg Integrator
controlling the second order plant

P (s) = 0.15
s+ 2

s2 + 0.2s
(15)

Fig. 4. Step response of CI controlling 0.15(s+2)

(s2+0.2s)

The frequency response of the open loop system using
the Describing Function of CI is as shown in figure 5,
with the step response shown in figure 4. We observe that
frequency response predicts an unstable system, since
the phase drops below -180 ◦at the crossover frequency.
However, the step response shows a stable result. Thus
loop shaping method cannot be fully trusted when using
Describing Functions. This discrepancy is due to higher
order harmonics that is present in the output, which is
neglected by DF analysis.

Clearly the higher order harmonics of the output are
significant. Nuij, and later by Kars [10] has developed
a method to quantify the describing function of these
higher order harmonics. These are called Higher Order

Fig. 5. Open Loop Frequency Response using Describing Function

Sinusoidal Input Describing Function (HOSIDF). The
formula to find the HOSIDF is as shown:

G(jω) =





Cr (jwI −Ar)−1
(I + jθp (a))Br +Dr n = 1

Cr (jµnI −Ar)−1
jθp (ω)Br for even n ≥ 2

0 for odd n ≥ 2

The HOSIDF of the CI is shown in figure 6. Here it is
observed that the higher order harmonics (non-blue color
lines) have gain values that are close to that of the 1st
harmonic (shown in blue line), which means that they
are significantly inflencing the output of the CI.

Fig. 6. HOSIDF of CI

It is desired to suppress these higher order harmonics
so that the response of the system gets closer to resem-
bling its describing function.

B. Unwanted Dynamics: Limit Cycle

Another problem that might occur with using reset
controllers is unwanted dynamics caused by a phe-
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nomenon called limit cycles [3]. To illustrate this prob-
lem, consider a plant P (s) = 1

s+0.5 being controlled
by a PCI (Proportional + Clegg Integrator) controller.
The step response is shown in figure 7, compared with
that of a PI controller. The system controlled by PCI
indeed shows less overshoot due to the resetting action.
However, there is a persistent oscillation at the set-point.
To explain this, consider the control signal required to
keep the response equal to setpoint. The final value
theorem gives the steady state output of the closed loop
system and the plant to be 1 and 2 respectively. This
means that the control signal has to be a constant value
of 0.5 in order to maintain the steady state output of
the closed loop system. However, at steady state the
error is 0, which means that the PCI will reset its state,
causing the output of the controller to be 0 instead of 0.5,
and thus the steady state condition is destabilized. The
controller will then restabilize the output to setpoint, in
which the destabilizing condition occurs again, causing
a cycle referred to as limit cycle.

Fig. 7. Step response of 1
s+0.5

controlled by Linear vs. Clegg
Integrator

C. Impractical control signal

Consider the control signal output by the controller
considered in section IV A, shown in figure 8. As can
be seen there are jumps in the signal corresponding to
the reset instants. This is undesirable for an actuator
that has to physically realize this signal, since it is
commanded to have a large change in its output in a
very small time frame (essentially instantaneous). The
actuator will have physical limitations in rate of change
of output signal, and thus such a signal jump will not
be realizable, causing time delays to the system which
may reduce stability. In addition, subjecting the actuator

to its physical limit (i.e. saturating it) multiple times will
cause premature degradation of the life of the actuator.

Fig. 8. Control signal of CI controlling 0.15(s+2)

(s2+0.2s)

D. Poor actual disturbance rejection

To obtain a better performance in terms of disturbance
rejection an extra integrator is used with a PID controller
to obtain a PI2D controller. However, this controller
is still bound to the fundamental limitation of linear
controller, with a consequently lower phase margin as
the extra integrator is introduced. A Clegg Integrator
can be added instead of a linear integrator to obtain the
better disturbance rejection while reducing the negative
consequence of reduced phase margin. Consider rejecting
disturbance and noise of a second order plant, as shown
in figure 9, with the Extra Controller block can be an
extra linear integrator or extra Clegg Integrator. The
bare PID controller is then tuned so that the open loop
frequency response have a bandwidth of 100 Hz with a
phase margin of 40 degrees, and then add an integrator
or a Clegg Integrator and retune each of them so that
the bandwidth is maintained at 100 Hz, as shown in
figure 10. It should be kept in mind that the frequency
response of the system with the Clegg Integrator is
approximated using the describing function of the Clegg
Integrator. A zoomed in plot of the phase plot of figure
9 is shown in figure 11. Indeed, PCIID gives a better
phase margin compared to PI2D, while preserving the
gain performance of PI2D.

However, applying a disturbance of 1 Hz in simulation
shows the response shown in figure 12. The amplitude of
the response of PCIID (in yellow), instead of matching
that of PI2D (in red), exceeds it because of the jumping
action. This jumping action is due to the higher order
harmonics alluded to in subsection A of this section,

5



causing the response to not match that predicted by the
open loop based on Describing Function.

Fig. 9. Disturbance rejection scheme of plant: 1
0.57s2+0.28s+146

Fig. 10. Frequency response of 1
0.57s2+0.28s+146

controlled with
various schemes

Fig. 11. Phase margin of 1
0.57s2+0.28s+146

controlled with various
schemes

V. RESET STRATEGIES TO OVERCOME LIMITATIONS

Techniques that are available in literature to mitigate
the aforementioned limitations will be outlined in this
section.

A. Partial Reset

By applying different values to the diagonals of the
reset matrix Aρ (or to the value of γ in the case of CI
and FORE), the magnitude of higher order harmonics

Fig. 12. Steady state response to 1 Hz disturbance from simulation

will change. The value of γ, which builds the diagonal of
Aρ can vary between -1 and 1 to ensure Schur stability
[11], meaning that the overall closed loop system will
be internally stable. Figure 13 shows the step response
of 1

s+0.5 controlled with a partially reset controller. It is
observed that the limit cycle problem is reduced, with the
magnitude of the limit cycles reducing as the reset value
is increased. This method also reduces the higher order
harmonics, as seen in figure 15 where the 3rd order har-
monic has a lower magnitude compared to full reset case.
However, looking at the phase plot of figure 14, applying
partial reset reduces the obtained phase lag reduction
compared to full reset case. Therefore this strategy still
involve a trade-off between provided increase in stability
and actual performance of the element.

Fig. 13. Closed loop step response of 1
s+0.5

controlled with partially
reset Clegg Integrator

B. Reset with band

Instead of resetting the state of the controller to zero
when the input is zero, reset with band strategy resets
when the input instead enters a specified band Bδ [3].
δ, a real non-negative number, is the width of the band,

6



Fig. 14. Frequency response of 1/(s+ 0.5) controlled with partially
reset Clegg Integrator, using describing function

Fig. 15. Third order harmonic of 1/(s+0.5) controlled with partially
reset Clegg Integrator

where the band is centered around zero. Mathematically
this is defined as





ẋ (t) = Arx (t) +Bre (t) if (e(t), ė(t)) 6= Bδ

x (t+) = Aρx (t) if (e(t), ė(t)) = Bδ

u (t) = Crx (t) +Dre (t)
(16)

with

Bδ = {(e(t), ė(t)) ∈ R2|(e(t) = −δ ∧ ė(t) > 0)∨
(e(t) = δ ∧ ė(t) < 0)} (17)

By tuning the value of δ, the problem of limit cycle
is reduced. For instance, consider controlling the plant

1
s+0.5 with a reset band CI. For δ = 0.34, the limit cycle

problem that was there with a standard CI is removed.
However, it is found that this strategy requires careful
tuning of δ. With a small reduction to δ = 0.33, figure
16 shows that a very small limit cycle reoccurs, along
with a steady state error. Particularly concerning is the
observation that the transition back to the problematic
steady state error condition as δ reduces is not gradual but
rather abrupt. This makes the method not robust against
model uncertainties and/or disturbances. Moreover, if
δ is tuned to be too large in an attempt to achieve
robustness, there will be less reset instants compared to
traditional reset because as time elapses, the error signal
will oscillate inside the band and so resetting does not
occur anymore. This means that the system acts linearly
and the advantages of reset is not fully realized.

Fig. 16. Step response of 1
s+0.5

controlled with reset band strategy

C. PI+CI

PI+CI controller is a parallel combination of a CI
and a linear integrator [3]. There is an additional reset
parameter preset that gives weight on the contribution
of the CI and linear integrator on the output of the
controller. preset can vary between 0 and 1, with a value
of 0 and 1 making the integrating part of the PI+CI
controller a completely linear one or a completely reset
one respectively. PI+CI structure is shown in figure 17
and is represented by:

PI + CI = kp(1 +
1

τi
(
1− Preset

s
+
Preset

��s
)) (18)

Figure 18 shows the output of this scheme. Compared
to partial reset strategy, it is shown that the limit cycle
problem is significantly removed without adding any
excessive overshoot. Clearly this strategy softens the

7



tradeoff between overshoot and limit cycles. In [12],
Banos et. al. developed a tuning rule for the PI+CI
controller, with [13] [14] showing examples of use of
PI+CI controller in industrial applications.

Fig. 17. PI+CI controller configuration

Fig. 18. Step response of 1
s+0.5

controlled with PI+CI strategy

D. Placement of reset and linear elements

In motion control, reset element is often used to
replace one of the elements that constitute a linear PID
controller, or to complement a PID controller, which in
combination makes a reset controller. For instance is a
CgLp element developed by Saikumar et. al. [15], which
when used in series with a PID controller produces a
frequency response that has a very similar gain response
as if the PID acts by itself, but with a larger phase lead
at the bandwidth frequency. This controller is called a
CgLp+PID controller. Yusuf [16] shows that different
strategies used to tune the controller to achieve larger
phase lead is still subject to an increase in influence of
the higher order harmonics. Investigating this problem,
Chengwei [17] found that sequence of components of a
reset controller in tandem with linear controllers have an
effect on the magnitude of the high order harmonics.

The linear part of a reset controller can be divided
into lag and lead elements. The lag and lead elements is
described as:

Clead(s) = cns
n + cn−1s

n−1 + ...+ c0s
0

Clag(s) =
1

dnsn + dn−1sn−1 + ...+ d0s0
(19)

Chengwei found that the sequence with the reset element
placed after a lead linear element and before a lag linear
element gives the highest reduction in the magnitude of
high order harmonics. This is because in this sequence,
the lead element, which is an increasing function of
frequency, does not have the chance to amplify higher
order harmonics that is produced by the output of the
reset part. In addition, placing the lag element at the
end allows the generated higher order harmonics to be
filtered, since the lag element is a decreasing function
of frequency. Other possible sequences do not have
both of these characteristics, which causes the higher
order harmonics to be as effectively suppressed as this
sequence. Figure 19 shows the magnitude of third order
harmonic for different sequences of a first order lead
and lag filter with a FORE. This optimal sequence was

Fig. 19. Third harmonic of P(s) controlled with PID+FORE, with
different sequences of the linear and nonlinear elements. No.1: Lead-
Reset-Lag, No.2: Lag-Reset-Lead, No.3: Reset-Lead-Lag, No.4: Lead-
Lag-Reset

analysed in closed loop configuration to validate the
benefits, and indeed that is the case. Figure 20 shows the
closed loop step response of a reset element consisting of
linear PID controller and a FORE, controlling a second
order mass spring damper system

P (s) =
1

1.077× 10−4s2 + 0.0049s+ 4.2218
(20)

The lead-reset-lag sequence has the smallest settling time
compared to other sequences. Also contrary to other
sequences, this sequence has no steady state error and
overshoot. In terms of precision performance, figure
21 shows the sensitivity function based on dividing
the maximum of the error signal with the amplitude
of a sinusoidal input, for different frequencies of the
sinusoidal input. Again it is seen that the lead-reset-
lag sequence has the lowest error for all frequencies.

8



Therefore this sequence is promising in making the DF
more reliable in using loop shaping method for reset
controllers.

Fig. 20. Step response of P(s) controlled with PID+FORE, with
different sequences of the linear and nonlinear elements

Fig. 21. Sensitivity function of P(s) controlled with PID+FORE, with
different sequences of the linear and nonlinear elements. Here DF is
the sensitivity function based on the describing function of PID+FORE,
which is plotted here to show that it is inaccurate since it does not
conform with the Lead-Reset-Lag curve, which is obtained numerically
and so is more reflective of reality

VI. CONCLUSION

Linear controller such as PID is preeminently used in
industry due to its robustness and ease of use through
the loop shaping method. To meet the increasing need
of improving linear controllers beyond its fundamental
limitations, a class of nonlinear controllers known as
reset control is highly attractive due to its ability to be
tuned using loop shaping method by approximating its
frequency response using the Describing Function, mak-
ing the controller as simple to tune as linear controllers
while having a better performance.

However, being inherently nonlinear, reset controllers
do not produce sinusoidal outputs and thus its output
contain Fourier higher order harmonics. The Describing
Function method only incorporates the first harmonic,
causing simulation or experimental results to deviate

from expected theoretical results that was found by
tuning the controller using loop shaping methods. Other
problems include unwanted dynamics such as limit cy-
cles.

Some methods have been proposed in literature to
address the problem of limit cycles. Partial reset method
can reduce the presence of higher order harmonics in
the output, however it reduces the phase lead benefit si-
multaneously. In addition, limit cycles are not effectively
removed compared to other methods such as PI+CI.
Reset with band method is another promising method,
however it only works for certain ideal plants and so
is not robust against plant parameter uncertainties. In
addition, it requires careful parameter tuning, in which a
tuning rule is not yet present in literature.

Methods available in literature, as shown above, seem
to be more focused in addressing limit cycle problems
and are more preeminently validated in process systems
(i.e. first order plants). To the best of the author’s
knowledge there exists no works in literature that address
the problem of higher order harmonics in specific relation
to the motion control industry. Works by Chengwei [17]
has successfully attempted the use HOSIDF to reduce
the effects of higher order harmonics. However this was
addressed by analyzing the reset element in combination
with other linear elements. It would be advantageous to
reduce the higher order harmonics by examining the reset
element by itself and changing the way it is implemented,
making it more flexible to use in different situations.
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3
OBJECTIVE

3.1. PROBLEM DEFINITION
The literature review has shown how available methods in literature to address problems
in reset control have been more focused on addressing issues pertaining to time domain,
with validation being focused on first-order systems. Work by Cai [9] has successfully ad-
dressed the problems of reset control within frequency domain, through using HOSIDF
tool by [8] to reduce higher order harmonics by finding the optimal sequence of reset
controllers. Taking this idea of rearranging sequences of parts of reset controllers and
the possibility of deconstruction of a reset element to fractional elements through works
by Oustasloup et. al. [10] and recently by Hassan et. al. [5], the objective of this thesis is
established:

Find the number of parts and the optimal reset values of each part of the fractional-
order analogue of Clegg Integrator that results in the most minimum magnitude of the
higher order harmonics while maintaining the benefits of the Clegg Integrator, and vali-
date that the higher order harmonics reduction results in a better closed loop performance.

3.2. APPROACH
The approach taken to complete the objective is:

• Use HOSIDF to investigate the gain and phase behavior of a fractional reset inte-
grator, and how the first harmonic gain and phase of the Clegg Integrator can be
replicated faithfully by a collection of these fractional elements.

• Find the reset values of the elements that make up the fractional analogue such
that the higher order harmonics are minimized using an optimization routine.

• Using the optimization results, recommend the best architecture that will be the
most optimal fractional order analogue of the Clegg Integrator.
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16 3. OBJECTIVE

• Investigate the non-zero higher order harmonic phase of the fractional order ana-
logue on possibility of further reducing the effects of higher order harmonics’ in-
fluence on the output of the controller.

• Validate the fractional order analogue’s superiority over the Clegg Integrator in
closed loop through closed loop disturbance rejection control of a fine stage ac-
tuated by a Lorentz actuator.



4
AUGMENTED FRACTIONAL-ORDER

RESET CONTROL: APPLICATION IN

PRECISION MECHATRONICS

This chapter presents, in conference paper format, the description of the optimal archi-
tecture of augmented fractional analogue of Clegg Integrator. Firstly, the theory of reset
control and Describing Function is revisited. Then, the equivalence of the Clegg Inte-
grator and a proposed fractional order analogue of the Clegg Integrator is established
through a mathematical derivation. This analogue is then modified such that it still per-
tains the same first harmonic performance as the Clegg Integrator, but with lower higher
order harmonics. This is achieved through use of a constrained optimization routine.
Finally, the expected benefit of use of the modified fractional order analogue is validated
in closed loop simulation and experiment.
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Augmented Fractional-order Reset Control:
Application in Precision Mechatronics

Aldo Sebastian, Nima Karbasizadeh, Hassan HosseinNia, Niranjan Saikumar
High Tech Engineering, TU Delft

Abstract—Linear control such as PID possesses fundamen-
tal limitations, seen through the Waterbed effect. Reset con-
trol has been found to be able to overcome these limitations,
while still maintaining the simplicity and ease of use of
PID control due to its compatibility with the loop shaping
method. However, the resetting action also gives rise to
higher order harmonics that hinders consistent realization
of the aforementioned expected improvement. In this paper,
a fractional-order augmented state analogue of the reset
integrator is investigated. This analogue is composed of a
series of augmented states that each possess unique reset
values, providing the same first order harmonic behavior
but reduced higher order harmonics magnitude compared
to the reset integrator. The optimal number of augmented
states along with the corresponding tuning values are inves-
tigated. To validate the improvement, the reset integrator
and the optimal fractional order analogue is tuned to
equally improve disturbance rejection of a high precision
1 DOF positioning stage while maintaining the stability
level, with both designed to overcome linear control. From
simulation and experimental results, it was found that the
novel fractional-order augmented state analogue gives rise
to disturbance rejection performance that is closer to the
desired and expected improvement, compared to using the
traditional reset integrator.

Index Terms—PID, Reset Control, Fractional Calculus,
Fractional Order Control, Motion control, Higher Order
Harmonics

I. INTRODUCTION

P ID control scheme has become the mostly used con-
troller in many industries, particularly the high-tech

industry [1] due to robustness and ease of use through the
loop-shaping method. However, being inherently linear,
it suffers from fundamental limitations, which are the wa-
terbed effect and Bode’s gain phase relation [2] [3]. One
novel approach called reset control has gained increasing
attention due to its compatibility with frequency domain
techniques for design and analysis, which are popular
within industry.
In reset control, the states of the base linear system
of the controller are reset when a predefined condition
is satisfied. The first reset element introduced was a
Clegg Integrator (CI) in 1958 [4], which is an integrator
whose state is reset to zero when the input is zero.

Using a pseudo-linear frequency response description of
nonlinear controllers called Describing Function (DF)
[5], the frequency response of the CI is obtained, which
reveals a similar gain performance as the linear integrator
but with only -38◦ phase lag. This is advantageous since
this violates Bode’s gain phase relationship, allowing
improved performance without sacrificing stability. The
idea of reset has also been extended to more sophisticated
elements such as First Order Reset Element (FORE)
[6] [7] and Second order Reset Element (SORE) [8].
These elements have been successfully applied to satisfy
various objectives such as phase lag reduction [9], broad-
band phase compensation [10], improving servomotor
performance [11], and improvement of mid frequency
disturbance rejection [12].
Frequency response of reset controllers can be ap-
proximated using the aforementioned DF method [5].
However, since it is an approximation, the advantages
described previously is not always seen in practice.
This is because of non-linearity in the form of higher
order harmonics in the output of reset controllers are
not considered by the DF method. These higher order
harmonics are analyzed in open loop through HOSIDF
method [13] and recently in closed loop [14]. There
exists a need to reduce the higher order harmonics
such that the output is dominated by the first harmonic,
which makes the benefit of reset control predicted by
the DF consistently realizable. This paper presents a
novel augmented analogue for the reset integrator with
the aim of obtaining the same first harmonic behavior
while reducing the higher order harmonics.
The paper is structured as follows. Section II of this paper
will introduce reset control. Section III examines the
fractional order augmented state reset integrator and the
benefits it possesses over the traditional reset integrator.
Section IV gives an illustrative example of benefits
of using the augmented state reset integrator through
simulation and experimental validation of disturbance
rejection on a precision positioning system. Conclusions
and possible future work are outlined in section V.
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Fig. 1: Block diagram of a reset controller RC with a plant P

II. RESET CONTROL

A. Definition
A single-input single-output (SISO) reset controller (de-
noted ΣRC) is defined as





ẋ (t) = Arx (t) +Bre (t) if e(t) 6= 0

x (t+) = Aρx (t) if e(t) = 0

u (t) = Crx (t) +Dre (t)

(1)

Here x(t) are the states, and Ar, Br, Cr and Dr are
the matrices corresponding to state-space representation
of the base linear system of the controller. e(t) and u(t)
are the input and output of the controller respectively. Aρ
is a diagonal matrix that dictates the after-reset values of
the states.
Theorem 1: [15] The reset controller defined by equation

(1) with a sinusoidal input has a 2π
ω periodic solution that

is globally asymptotically stable for all ω > 0 if and only
if

|λ(Aρe
∆)| < 1 (2)

where ∆ = π
ωAr. This theorem consequently constraints

each member of the diagonal of Aρ to be between -1
and 1.

B. Reset Systems Stability
Figure 1 shows a reset controller ΣRC with a plant
ΣP . As shown in the figure, the reset controller can be
decomposed into a reset part Σr and a non reset part Σnr.
Let nr and nnr therefore denote the number of reset and
non reset states of ΣRC respectively.
Theorem 2: [16] The reset control system depicted in

figure (1) is quadratically stable if and only if the Hβ

condition holds, i.e. there exists a β ∈ Rnr and a positive
definite matrix Pr ∈ Rnr×nr such that the transfer
function

Zβ(s) :=
[
βCp 0nr×nnr Pr

]
(sI −Acl)−1




0np
0nnr×nr
Inr




(3)

is strictly positive real. Here Acl is the closed loop A
matrix of Figure 1 defined as:

Acl =

[
Ap BpCRC

−BRCCp ARC

]

in which (Ap, Bp, Cp) are the state space matrices of
Σp, and (ARC , BRC , CRC) are the state space matrices
of ΣRC .
C. Describing function
Describing Function (DF) is a pseudo-linear approxima-
tion of the frequency response of reset controllers. Since
it only considers the first harmonic of the output, ex-
pected experimental results based on loop shaping are not
seen [10]. Nuij et. al. [5] developed the concept of higher
order sinusoidal input describing function (HOSIDF),
which is further developed by Kars [13] specifically for
reset elements. The HOSIDF formula for reset elements
is as shown:

Hn(jω) =





Cr (jwI −Ar)−1
(I + jθD (ω))Br +Dr for n = 1

Cr (jωnI −Ar)−1
jθD (ω)Br for odd n ≥ 2

0 for even n ≥ 2

(4)
where

θD (ω) , −2ω2

π
∆ (ω)

[
ΓD (ω)− Λ−1 (ω)

]

∆ (ω) , I + e
π
ωAr

Λ (ω) , ω2I +A2
r

ΓD (ω) , ∆−1
D Aρ∆Λ−1

∆D (ω) , I +Aρe
π
ωAr

Here, n indicates the number of harmonic. The DF is
therefore a special case of HOSIDF with n = 1.

III. AUGMENTED FRACTIONAL-ORDER STATE RESET
INTEGRATOR

Fractional calculus generalizes integration and differen-
tiation to real or complex number powers. There exist
multiple accepted definitions of fractional differentiation.
The notation Dkx(t), k ∈ [0, 1] in this paper will refer
to the Caputo definition defined in [17].
A. Augmented system of fractional order reset integra-

tor
A fractional order reset integrator is defined as:

Dkx(t) = e (t) (5)
x(t+) = γx(t)

u(t) = x (t)

where k ∈ [0, 1].
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The fractional order integrator is implemented through
the CRONE approximation [18] with its poles being
reset, defined by:

��>
γ

sα ≈ P
N∏

m=1�
�
�
��>

Aρ
1 + s

ωz,m

1 + s
ωp,m

(6)

with

ωz,m = ωl

(
ωn
ωl

) 2m−1−α
2N

ωp,m = ω1

(
wh
wl

) 2m−1+α
2N

where α ∈ (0, 1), N is the number of real stable poles
and real minimum phase zeros, [ωl, ωh] is the frequency
range where the approximation is valid, and P is a
parameter to tune the gain of the approximation. Aρ is a
reset matrix that corresponds to the reset of the fractional
order integrator γ.

Remark 1: Aρ is dependent on the chosen state
space representation of the approximation. With an
observable canonical form, only the last state of the
approximation directly influences the output, and thus
the corresponding reset matrix becomes

Aρ =

[
I 0
0 γ

]
(7)

However, with controllable canonical form, all states
influence the output, and thus the reset matrix is:

Aρ =



γ1

. . .
γN


 (8)

B. Augmented system of integer order reset integra-
tor

The integer-order state reset integrator is obtained by
setting k = 1 in 5. The augmented fractional order form
of this case is given by:

Dqχ (t) = AX (t) + Be (t) (9)

X
(
t+
)

= AρX (t)

u (t) = CX (t)

where,

A =

[
0 I
0 0

]
, Aρ =

[
γ 0
0 I

]

B =




0
...
1


 ,C =

[
1 . . . 0

]

Here X = [xxq,1 xq,2 ... xq,p−1]T is a vector of the
augmented states and p = 1

q , where p ∈ Z+.

1

s

e(t) u(t) 1

s
1
p

e(t) u(t)
1

s
1
p

. . .
1

s
1
p

1

s
1
p

γ1 = 1 γ2 = 1 γp−1 = 1 γp= γγ

p times

Fig. 2: Illustration of equivalence between cascade of fractional
order integrators and an integer reset integrator. The arrows
indicate that the reset of each element is with respect to the
input to the cascade i.e. e(t)

C. Equivalence of cascaded fractional order reset inte-
grators with augmented integer order reset integra-
tor

Remark 2: Consider figure 2. The cascade of p frac-
tional order reset integrators in series is equivalent to
the augmented form of an integer reset integrator with
q = 1

p .

Proof : Let k be the kth fractional order reset integra-
tor, with 1 ≤ k ≤ p. The state space representation
becomes:

D1/pxk(t) = ek (t) (10)
xk(t+) = γkxk(t)

uk(t) = xk (t)

With e1(t) = e(t), ek = uk−1 and up(t) = u(t),
the combined state space of the cascade is simplified
to:

D1/p



x1 (t)

...
xp (t)


 =

[
0 0
I 0

]


x1 (t)

...
xp (t)


+




1
...
0


e (t) (11)

u (t) =
[
0 . . . 1

]


x1 (t)

...
xp (t)




where x1 = D1/px2, x2 = D1/px3, . . . , xp−1 =
D1/pxp.
Considering remark 1, since the output of the cascade is
only influenced by the state xp(t), the appropriate reset
matrix for the cascade is:

Acascadeρ =

[
I 0
0 γp

]

(12)
Reverse the ordering of the state vector above such that
xp becomes in the first entry. With q = 1/p and γp = γ,
this results in state space that is equal to (9). Therefore
equivalence is proven and the cascade is a valid replace-
ment of the integer-order reset integrator.

Remark 3: [19] Let the reset control system ΣRC in
figure 1 be composed of firstly a reset element Σr

3



followed by a lag element Σnr. The higher order
harmonics gain of ΣRC is smaller than Σr if Σnr is a
linear lag element:

|Hn(jω)|R < |Hn(jω)|Σr , oddn > 1 (13)

Remark 4: Consider a reset integrator with reset value
γ. With −1 < γ ≤ 1, the following relation holds:

−90◦ ≤ ∠H1(jω) < 0◦ (14)
where −90◦ corresponds to γ = 1 (linear integrator)
and 0◦ corresponds to γ = −1.

Remark 4 also holds for the fractional order reset
integrator of 5, with the lower limit changed to −90◦k.

Based on remark 2, (11) is the analogue to the reset
integrator if γp = γ and γk = 1, ∀ k ≤ p−1. It therefore
follows that not only the first but also higher order
harmonics are similar. However, it is desired to reduce
the higher order harmonics while maintaining the first
order harmonic behavior. Considering remark 3 and 4,
this could be achieved through a combination of γ1, . . . ,
γp that does not necessarily satisfy the aforementioned
restriction on γp and γk. Therefore, the goal of this
paper is to design γ1, ..., γp such that the first harmonic
is the same as the reset integrator while simultaneously
possessing lower higher order harmonic gain.
This goal is casted in an optimization problem as
shown:

min
γAug=[γ1,γ2,...,γp]

|Hn(γAug, jω)|Aug (15)

∀n > 1 oddn, ∀ω ∈ [ωl, ωh]

subject to

|H1(γAug, jω)|Aug = |H1(γ, jω)|Reset Integrator

∠H1(γAug, jω)Aug = ∠H1(γ, jω)Reset Integrator

where Aug refers to the fractional order analogue of the
reset integrator. For simplicity, the optimization will be
run for p = 2, 3 and 4 and the reductions in higher order
harmonics magnitude will be compared. In addition, non-
zero values of γ will also be considered.
D. Results
Table I shows the third order harmonic gain for different
reset values of the reset integrator and its respective
augmented fractional order analogue for p = 2, 3 and 4.
Instead of the different reset values, by utilizing remark
4, the horizontal axis of this figure alternatively shows the
phase lag that the reset integrator provides. Table I shows
the reset values of the augmented states for each value of
p and the optimal reset values. Some observation:
• For all p and phase lag values, the integrator nearing
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Fig. 3: 3rd order harmonic gain at ω = 100rad/s of various
p values, for different provided phase lag

the end of the cascade is more linear than those
nearing the start, which satisfies remark 2.

• As the required phase lag decreases, the reset value
of the integrators near the end of the cascade is
not fully linear. Considering remark 3, this indicates
that the starting integrators cannot provide all the re-
quired phase lag reduction, and thus the integrators
near the end provide some support in this regard.

• There is more reduction of the third order harmonic
for larger phase lag. Thus there exists a tradeoff
between obtaining larger reduced phase lag advan-
tage and the corresponding third harmonic gain
reduction.

• The further reduction in third harmonic gain by
going from p = 2 to p = 3 or p = 4 is insignificant
compared to reduction from the original reset inte-
grator to p = 2 case. Therefore it is recommended
to use p = 2 in implementation.

E. Non-Zero Higher Order Harmonic Phase
In this subsection it will be shown how the non-
zero higher order harmonics phase of the augmented
fractional-order state analogue could be of bene-
fit.
The time domain output of a reset element given a
sinusoidal input sin(ωt) is:

u(t) =

∞∑

m=1

Amsin(ωt+ φm), oddm ≥ 1 (16)

The above emphasizes that not only the gain but the
higher order harmonics phase also influence the output
of the reset element.
To investigate this, the RMS difference between the
time domain response of the reset integrators and the
ideal response is computed, where the ideal response is
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Reset Integrator
γ Equivalent Phase Lag (◦) 3rd harmonic gain (dB)

-0.8 -5.00 -9.57
-0.4 -18.60 -10.00

0 -38.15 -11.63
0.4 -61.38 -15.94
0.8 -81.95 -26.62

Augmented analogue, p = 2
γ Equivalent Phase Lag (◦) γ2 γ1 3rd harmonic gain (dB)

-0.8 -5.00 -0.98 -0.74 -9.71
-0.4 -18.60 -0.98 -0.11 -10.83

0 -38.15 -0.97 0.66 -13.56
0.4 -61.38 -0.38 1.00 -18.44
0.8 -81.95 0.59 1.00 -29.32

Augmented analogue, p = 3
γ Equivalent Phase Lag (◦) γ3 γ2 γ1 3rd harmonic gain (dB)

-0.8 -5.00 -0.97 -0.97 -0.66 -9.80
-0.4 -18.60 -0.95 -0.95 0.27 -11.25

0 -38.15 -0.75 -0.71 1.00 -13.72
0.4 -61.38 -0.6 0.48 1.00 -18.55
0.8 -81.95 0.35 1.00 1.00 -29.68

Augmented analogue, p = 4
γ Equivalent Phase Lag (◦) γ4 γ3 γ2 γ1 3rd harmonic gain (dB)

-0.8 -5.00 -0.94 -0.92 -0.87 -0.64 -9.81
-0.4 -18.60 -0.95 -0.92 -0.87 0.53 -11.34

0 -38.15 -0.97 -0.82 0.18 1.00 -13.73
0.4 -61.38 -0.43 -0.23 1.00 1.00 -18.60
0.8 -81.95 0.16 1.00 1.00 1.00 -30.20

TABLE I: Reset values and 3rd harmonic gain at ω =
100rad/s of each augmented state for various p values, the
subscripts for the various γ correspond to figure 2

the response of the reset integrator with all the higher
order harmonic gains eliminated. Figure 4 shows this
RMS difference for different values of the higher order
harmonics phase. At -48.5◦ there exists a minimum of
the RMS difference. The reset integrator however, has
zero higher order harmonics phase and so this minimum
cannot be achieved.
In contrast, the augmented fractional-order state analogue
has a negative higher order harmonics phase. For instance
the third harmonic phase is shown in figure 5 for p = 2.
Therefore in addition to lower higher order harmonics
gain, the augmented fractional-order state analogue also
possess a beneficial higher order harmonics phase behav-
ior.

IV. ILLUSTRATIVE EXAMPLE

For validation in performance improvement of a system
that utilizes the augmented fractional state analogue, four
controllers are designed and studied in simulation and
in practice. This section compares results of disturbance
rejection performance between a parallel PID (termed
PI+D) and three other parallel PID respectively in series
with a linear integrator, Clegg Integrator and augmented
fractional state analogue of the Clegg Integrator with p =
2.
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Fig. 4: Higher order harmonics phase vs. RMS Error of reset
integrator with γ = 0
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Fig. 5: Phase plot of 1st and 3rd harmonic of the CI vs.
augmented fractional-order analogue

1) Plant

The plant use for this validation is a two flexure-guided
fine stage guided by a Lorentz actuator as shown in
figure 12, with figure 6 describing its identified frequency
response and additionally a fitted second order transfer
function. The position of the plant is sensed using a laser
interferometer with 10nm resolution, with the sampling
period of the plant at 100µs.
The fitted transfer function is:

G(s) =
3.038e4

s2 + 0.7413s+ 243.3
(17)
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Fig. 6: Identified frequency response of the fine stage

2) Control Strategy

Four sets of controllers are designed with a bandwidth of
100 Hz: a parallel PID controller (PI+D), a parallel PID
with an extra tamed integrator ((PI+D)PI), a parallel PID
with an extra tamed Clegg Integrator ((PCI+D)PI), and
a parallel PID with an extra tamed augmented fractional
order analogue of Clegg Integrator ((PCIaug+D)PI). Fig-
ure 7 depicts the details of these controllers. As shown
in figure 8, the (PI+D)PI controller was able to out-
perform PI+D in terms of gain performance, however
with the tradeoff of phase margin reduction. Considering
the reduced phase lag advantage of a Clegg Integrator,
it is surmised that the (PCI+D)PI controller could be
tuned to have less phase margin reduction while still
maintaining the gain behavior of (PI+D)PI, which is
indeed the case as shown in yellow and blue in 8. To
verify this result, figure 9 shows simulation result of
disturbance rejection performance to 1 Hz disturbance
input. Contrary to expected performance from 8, the
simulation plot shows (PCI+D)PI performing far worse
compared to (PI+D)PI; this is because figure 8 shows
only the first order harmonic.
To reduce the effects of the higher order harmonics,
the augmented fractional-order analogue replaces the
Clegg Integrator (giving the controller (PCIaugI+D)PI),
with tuned open loop performance shown in purple in
figure 8. The simulation result is also shown in purple
in figure 9. From these figures it is observed that the
phase margin of (PCI+D)PI is still maintained, while
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(b) Control schemes used for the adapted PI+D controllers

Fig. 7: Control scheme definitions for validation. Disturbance
refers to an applied sinusoidal disturbance input

the jump size in figure 9 reduced in magnitude, making
the maximum amplitude of the response now closer to
(PI+D)PI.
To see whether this improvement exists over a range of
frequencies, a process sensitivity function is constructed.
To capture the higher order harmonics in the process
sensitivity function plot for the controllers with reset
elements, a new process sensitivity function is defined
as:

S(ω) =
max(|y(t)|)
|D| for t ≥ tss (18)

where tss is the time it takes for the response to become
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Fig. 9: Response of control scheme in figure 7 to a 1 Hz
disturbance, using each of the four different extra controllers

steady state and periodic, y(t) is the output and D is
the amplitude of the sinusoidal disturbance input. This
function is found by simulating the closed loop system
with a disturbance input for increasing, closely spaced
ω. The plot is shown in figure 10. Here it is seen that
compared to (PCI+D)PI, (PCIaugI+D)PI’s performance
is closer to (PI+D)PI up to approximately 4 Hz, from
which the performance of all the reset controllers are
now able to match (PI+D)PI.
It is also noted that the higher stability level of the
(PCI+D)PI and the (PCIaugI+D)PI compared to (PI+D)PI
and PI+D, which was implied by their higher phase
margin from figure 8, was also taken by utilizing the
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Fig. 10: Process sensitivity plot based on equation (18)

0.5 0.505 0.51 0.515 0.52

Time (s)

0

20

40

60

80

100

M
ag

ni
tu

de

Fig. 11: Step response of each controller

Descibing Function. This therefore means that the true
stability level may not be the same as what the DF
predicted in this figure. To check that the higher stability
level indeed truly exist, the peak of the step response
is examined, with a lower overshoot indicating higher
stability. This is shown in figure 11. Here it is observed
that both (PCI+D)PI and (PCIaugI+D)PI have a lower
overshoot, which indicates a higher stability level has
indeed been achieved.

3) Stability Check Using Hβ condition

To further confirm the stability of the fractional order
analogue, the Hβ condition described in section II is also
applied on the control scheme 7. Solving the condition
using a YALMIP Sedumi solver [20], a positive definite
matrix Pr was indeed found, further confirming that the
fractional order analogue is indeed stable.

7



Dist. max(|y(t)|)(10nm)
(Hz) PI+D (PI+D)PI (PCI+D)PI (PCIaug+D)PI
0.1 21 3 14 13
0.2 32 3 25 20
0.3 56 4 37 35
0.4 74 5 49 40
0.5 93 7 61 46
0.6 110 8 72 62
0.7 127 12 84 69
0.8 146 14 96 78
0.9 163 13 107 85
1 178 19 116 89
2 341 68 206 146
3 476 137 263 250
4 582 216 296 290
Step
input

max(|y(t)|)(10nm)

1000 1492 1611 1515 1517

TABLE II: Experiment results. Disturbance input amplitude is
6528 (10nm) and step input size is 1000 (10nm)

V. EXPERIMENT RESULTS

1) Results

To validate the closed loop simulation results, an experi-
ment is conducted. Disturbances of selected frequencies
are chosen, and the amplitude of the plant response are
recorded. To check the stability level, a step input is also
applied.
Table II shows the maximum response of the plant con-
trolled by each of the four different controllers. It is seen
that the trend in the simulation result is confirmed, with
the (PCIaug+D)PI outperforms (PCI+D)PI and PI+D in
the frequency region predicted by the simulation in figure
10. In addition, the step response of the (PCI+D)PI and
the (PCIaug+D)PI also exhibit a similar overshoot value,
indicating that the increased stability level predicted by
simulation is also seen in experiment.

Fig. 12: Fine stage used in experiment

VI. CONCLUSION

Reset controller is a subset of nonlinear controllers
that overcomes the fundamental limitations of linear
controller, while still retaining the advantage of linear
controllers in that the loop shaping method is applicable
through the Describing Function method. However, the
Describing Function does not take into account higher
order harmonics, which makes the actual output of the
controller sometimes deviate from that predicted using
the Describing Function. It is then desired to minimize
the role of these higher order harmonics on influencing
the output.
Augmented fractional-order reset integrator analogue is
a promising method in achieving this goal. By resetting
the fractional states of the reset integrator to a determined
optimal values, it has been shown that there is a higher
order harmonics reduction that may not seem huge in
open-loop, however results in a significant closed loop
performance improvement. A recommendation was then
made as to the reset values of the fractional states
required for a particular tolerable phase lag. Further-
more, the non-zero higher order harmonics phase that
the augmented fractional-order reset integrator analogue
possess was shown to be promising in further improving
the output of the reset integrator.
For future work, it is recommended to develop a tuning
rule for the state space representation of the augmented
fractional-order analogue such that the higher order har-
monics phase can be manipulated to obtain the optimal
reduction in the RMS difference discussed in section 4.4,
while still maintaining reduced higher order harmonic
gains. A final recommendation is to also investigate
resetting the fractional elements with respect to their own
respective inputs as opposed to the error; there may be
aspects of the intermediate signals that could bring about
more higher order harmonic reductions.
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5
CONCLUSION

5.1. FINDINGS
The research goal of this thesis is:

Find the analogue of the reset integrator that has reduced higher order harmonics
while maintaining the first order harmonic performance of the reset Integrator, and con-
firm that this reduction translate to improved performance in closed loop.

Based on an understanding of fractional elements at different reset values, optimiza-
tion and time domain simulations, the results obtained are:

• There indeed exist reduction of higher order harmonics through the use of the aug-
mented analogue, with the corresponding reset values of the analogue conforming
to the filtering of higher order harmonics theory alluded to by Cai [9].

• Breaking the analogue from two elements to further smaller elements do produce
further reduction in higher order harmonics, however the reduction is insignifi-
cant and therefore is not recommended to be used.

• The non-zero higher order harmonics of the analogue was manipulated; this ma-
nipulation do indeed produce further improvement in the output of the element.
At the value of −52°, the RMS error of the output of the analogue is minimum, with
a smaller value than the RMS error of CI.

• The disturbance rejection performance of a controller incorporating the CI ana-
logue (PC Iaug+D)PI ) instead of a CI ((PC I+D)PI )) is investigated to check whether
the benefits of reduced higher order harmonics translate to a better closed loop
performance. Due to higher order harmonics, (PC I +D)PI is unable to approach
the disturbance rejection performance of a (PI + D)PI controller despite being
tuned in open loop to do so. Replacing the CI with its augmented analogue, (PC Iaug+
D)PI is able to approach the performance of (PI+D)PI better compared to (PC I+
D)PI , by improved disturbance rejection performance over frequency ranges where
disturbances are relevant.
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30 5. CONCLUSION

Appendix A attempts an analysis as to why using more elements in the integrator
do not produce further significant reduction in higher order harmonics. In Appendix B,
an investigation is done on the effects of using a lead element in the analogue in order
to allow integrating behavior even outside the fractional order element’s approximation
frequency range. With the plant under investigation having a resonance peak, Appendix
C verifies that usage of a parallel PID indeed produces a lower higher order harmonics
contribution to the closed loop scheme, and also investigates adding a notch filter and
seeing the effects in the disturbance rejection investigation. Although adding the notch
filter further improves the reliability of the Describing Function of the reset controllers
by reducing the higher harmonic peak at the resonant frequency of the plant, the distur-
bance rejection performance at the resonant frequency of the plant is highly worsened.

Appendix D investigates performance improvement in other areas than disturbance
rejection; this is not included in the above paper because experimental validation was
not conducted on these areas. Appendix E describes the system used for experimental
validation in the paper, and Appendix F checks the stability of the analogue using Hβ

condition.

5.2. RECOMMENDATIONS
For further study, the following points are recommended:

• This thesis has shown that manipulation of the non-zero phase of higher order
harmonics of the analogue produce a better time domain output compared to CI.
A further study could be to find a tuning rule that finds the optimal state space
representation of the analogue, such that the higher order harmonics reduction
is maintained while simultaneously producing higher order harmonics phase that
further reduces the RMS difference between time domain output of analogue and
the first harmonic of CI.

• A different experiment set up could be used to verify that the superiority of the
analogue is not unique to the fine stage used in this thesis.

• In this thesis, the reset of each of the elements that make up the analogue is based
on the zero crossing of the input to the first element of the analogue. A further
study could investigate looking at resetting the elements based on the zero cross-
ing of the inputs to each of the elements; whether doing so could produce further
significant higher order harmonics reduction.

• The analogue was found only for a reset integrator. Further investigation could be
to find the analogue for more complicated elements such as FORE or SORE.



A
THIRD HARMONIC REDUCTION FOR

MORE ELEMENTS

In the paper, further reduction of third harmonic gain by using more elements was found
to not be significant. This appendix attempts to explain the reason.

First it is investigated as to why using more elements could contribute to lower higher
order harmonic. Figure A.1a shows the first order harmonic phase as a function of con-
tributed phase lag for 1

s1/2 and a smaller element 1
s1/3 ; here smaller is in the sense of the

power of the fractional integrator. At a very low reset value (γ = −0.8), 1
s0.33 is still able

to obtain the same phase lag as 1
s0.5 . This implies that with two of 1

s0.33 , each of 1
s0.33

can have more moderate reset values while the combination still providing the required
phase lag advantage, making the higher order harmonics produced by the combination
not as large as 1

s0.5 due to the less aggressive reset of each of them.
From looking at the reset values of the analogue for reset integrator with γ = 0, the

integrators that provide the phase lag advantage case for p = 3 indeed has more mod-
erate reset values compared to p = 2, which contribute to less higher order harmonic
contribution.

However, looking at figure A.1b, the integrator that filters higher order harmonics for
p = 3 has a less steep slope, which makes the filtering behaviour less effective compared
to p = 2. Therefore, it is concluded that exists a tradeoff by using more elements; there
is reduced contribution of higher order harmonics, however the consequent lessened
effectiveness of the filter makes this reduced contribution insignificant.
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B
USE OF LEAD ELEMENT IN THE

ANALOGUE

In the paper, the CRONE approximation was used to implement the augmented frac-
tional order analogue. The consequence is that the fractional order analogue will only
have the integrating behavior in the specified frequency range, with the gain response
flattening outside this range. For an alternative implementation to allow the integrating
behavior to act in all frequencies independent of the specified frequency range, the ar-
chitectures shown in figure B.2 can be used. Here, the use of a traditional Clegg Integra-
tor in the cascade allows for the integrating behavior in the overall response to exist out-
side the frequency range of the CRONE approximation, with the fractional lead element
used to correct the slope in the approximation frequency range. Figure B.1 compares
the 1st order harmonic gain of the analogue with and without a lead element implemen-
tation; from this figure it’s clear that the 1st order gain of the analogue approximates
the reset integrator’s 1st harmonic much better (albeit not perfect) outside the specified
CRONE approximation range, and thus the analogue still has an integrating behavior
outside this specified approximation range. This appendix shows the reset values and
the corresponding third harmonic reduction for the two element analogue with a frac-
tional lead element, and possible reason behind these values. The architectures and the
values are shown in figure B.2 and table B.1.

• An explanation as to why architectures (1) and (2) could not provide a significant
reduction is attempted. Optimization results in table B.1 of architectures that have
significant 3rd order harmonic gain reduction (i.e. (3) and (6)) show that the fil-
tering integrators (integrator at the end of the cascade) are partially reset, sug-
gesting that the highly reset starting integrator cannot fully provide the required
reduced phase lag advantage, and so the filtering integrator also has to support
this. Looking at figure B.3, it compares the 3rd order harmonic gain of resetted
1
s and 1

s0.5 for decreasing reset values (i.e. towards γ = −1). From this figure it is
seen that the maximum frequency of the sinusoidal input at which the 3rd order
harmonic gain of the traditional integrator is above the fractional integrator in-
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Figure B.1: 1st order harmonic gain of the reset integrator (with reset value of 0) and its analogue with and
without differentiator implementation. All fractional elements used are CRONE approximated between 1 and
10000 rad/s.

Architecture γ1 γ2 Third harmonic gain
reduction (dB)

(1) 0 1 0.0061
(2) 0 1 0.0050
(3) -0.9409 0.7122 2.1456
(4) N/A N/A N/A
(5) N/A N/A N/A
(6) -0.9802 0.8420 2.4644

Table B.1: Third order harmonic reduction for two-element Fractional Clegg Integrator, lead not reset; reset of
CI = 0
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Figure B.2: All possible architectures for a two-element fractional order Clegg Integrator

creases. In addition, looking at the magnitude of the 3rd harmonic in this figure for
low γ values (for instance γ = −0.95), at some frequencies of the sinusoidal input
(ω< 50r ad/s), the traditional integrator introduces 3rd order harmonic gain that
has an amplitude larger than the sinusoidal input itself (i.e. above 0 dB), whereas
the fractional integrator do so at a much smaller frequencies. This means that
by using the traditional integrator as the integrator that provides reduced phase
lag advantage, there exist more input frequency ranges at which the higher order
harmonics is larger than the input amplitude, which translates to more significant
higher order harmonics that have to be filtered by a fractional integrator. Looking
at the 1st harmonic gain behaviour of the fractional integrator in figure B.4, the
less steep negative slope (in comparison to a traditional integrator) means that it
has to be linear (i.e. γ = 1) in order to effectively filter the higher order harmon-
ics, giving no chance to provide the support in providing the reduced phase lag
advantage required by the starting integrator. Thus, since the lead and fractional
integrator are both linear, they cancel each other, effectively making the cascade
only consist of a CI. And since there is a constraint for the cascade to have the same
1st harmonic gain performance as a CI, this CI is then reset to 0, causing no change
whatsoever. Although in the table there is a slight 3rd order harmonic gain reduc-
tion, it is merely due to the optimizer trying to satisfy the constraints’ tolerance at
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the boundaries.

• The optimizer could not find a solution for architectures (4) and (5). These archi-
tectures have a lead element at the start of the cascade. Figure B.5 illustrates the
input and output of the first two elements of these architectures. Here it is ob-
served that the output of the lead element (shown in red) is a 45° shift of its sinu-
soidal input (shown in blue). This output becomes input into the reset integrator,
after which the integrator’s output is shown in green. Since the reset of these two
architectures are done with respect to input of lead element, the reset instant is
as shown in gray dotted line, as opposed to black dotted line which would be the
case if reset is with respect to input of integrator. Thus, this causes less phase lag
reduction advantage than what could have been achieved. To recoup this loss as
well as providing the original required phase lag reduction advantage, this middle
integrator might have to be reset lower than -1, which is not allowed in the opti-
mization routine in order to ensure Schur stability. This may very well be the case,
in view of the other architectures already requiring the integrator that provide the
phase lag reduction advantage (which is reset with respect to its (sinusoidal) in-
put), to have a reset value close to -1.

• In contrast to architectures (1) and (2), architectures (3) and (6) has a traditional
integrator as the filtering integrator. Looking at figure B.4, the more negative slope
of the first harmonic of 1

s means that higher order harmonics can be filtered ef-
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Figure B.5: Illustration of time domain input and output of the first two elements of architecture (4) and (5)

99.4 99.5 99.6 99.7 99.8 99.9 100

Time (s)

-0.5

0

0.5

M
ag

ni
tu

de

CI

FCI

Ideal response

Figure B.6: Output of architecture (6) given input of sin(10t )

fectively without the integrator resorting to becoming fully linear, and thus could
also contribute in providing the phase advantage. Comparing these two, (6) has a
higher order harmonic reduction compared to (3). However, looking at the simu-
lation output in figure B.6, architecture (6) shows excessive jumping/spikes at the
reset instants. In practical implementation, although an LPF or other control ele-
ments are used, this behaviour still rises the risk of saturating the actuator.

Given the considerations above, it is then recommended to use architecture (3) as the
analogue of the reset integrator for an alternative implementation with a lead element.





C
EFFECT OF PID SCHEME ON

HIGHER ORDER HARMONICS

In the paper, the parallel PID scheme was chosen as opposed to the traditionally series
PID scheme used in precision industry. The reason is that with a series configuration,
the higher order harmonics output by the reset integrator will pass through the differ-
entiator, which consequently will unnecessarily amplify these higher order harmonics
and deteriorate performance. To verify this claim, the open loop response of the series
and parallel PID scheme is compared in figure C.2, with each scheme plotted in figure
C.1 for clarity. The extra controller C is placed in the specified position so that it specif-
ically acts on the error signal and not on the intermediate signals within the controller.
his appendix looks into the possibility of reduced higher order harmonics in a reset con-
troller by placing the differentiator used in a PID controller in parallel configuration, as
opposed to putting it in series as was done in illustrative example section of the main
paper. It is clear from figure C.2 that the 3rd harmonics of the parallel PID is lower than
series, which consequently makes tuning results based on DF more reliable.

To further reduce the effects of higher order harmonics, a notch filter can be applied
at the resonance of the plant. Figure C.3 shows the effect of applying the notch filter,
with the 3rd order harmonic peak now completely removed and thus the 3rd harmonic
is now consistently below the 1st harmonic over all frequency ranges.

The process sensitivity plot for the controllers using parallel PID configuration and
a notch filter is plotted in figure C.5. The use of notch filter causes a peak of this distur-
bance rejection at the resonant frequency of the plant, with the input disturbance now
even amplified beyond its initial amplitude for PI+D. This therefore shows that this tech-
nique to improve reliability of DF gives a downside of poorer performance in disturbance
rejection.
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D
PERFORMANCE IMPROVEMENT IN

OTHER AREAS

D.1. OPEN LOOP TIME DOMAIN OUTPUT
This section examines the effects of using the analogue to reduce the higher order har-
monics in time domain. Figure D.1a compares the output of the Clegg Integrator and
the analogue with p = 2. From this figure it is seen that the output of the analogue ap-
proximates better that of the "ideal" response, this being the first harmonic of the Clegg
Integrator. This improvement is seen through the analogue having a smaller integrated
squared error (ISE) compared to the Clegg Integrator itself.

D.2. CLOSED LOOP REFERENCE TRACKING
In the paper, only disturbance rejection performance was examined. This section re-
ports the results of simulation for reference tracking of the same control scheme consid-

(a) Integrated squared error (ISE) of CI defined
as the area between response of CI and ideal re-
sponse; ISE = 17.27

(b) Integrated squared error (ISE) of analogue of CI
defined as the area between response of CI’s ana-
logue and ideal response; ISE = 9.01
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Figure D.2: Fourth order trajectory profile to be followed by the control scheme described in the paper

ered in the paper. Two references were considered. First is a sinusoidal wave of different
frequencies, and the second is a fourth-order trajectory profile described by Lamberts
et. al. [11] and shown in figure D.2 .

For following sinusoidal reference, (PI+D)PI was found to be able to follow the refer-
ence better at all frequencies compared to PI+D and so the results of PI+D are not quoted
here for brevity. Therefore, it is desired that the controllers with the reset controller are
able to follow the (PI+D)PI’s response. Different to the method for disturbance rejection,
since the signal to be followed is non-zero, then it is more accurate to calculate the ISE
(integrated square error) between the desired signal and the response, rather than only
the maximum amplitude of the response and seeing whether its amplitude is equal to
the desired response.

The results are shown in table D.1 and D.3. From these data it is seen that the re-
set controller with the reset controller analogue consistently has lower ISE compared to
the controller with the traditional reset integrator. Therefore it is established that per-
formance improvement is also obtained with regards to reference tracking, on top of
disturbance rejection.
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Figure D.3: Fourth order trajectory error. ISE of PI+D = 23.16, (PI+D)PI =21.69, (PCI+D)PI = 21.91, (PCIaug +D)PI
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Input Frequency ISE of (PCI+D)PI ISE of (PCIaug )+D)PI

0.3 1.0564e-4 7.7042e-5
0.5 3.78e-4 2.5294e-4
0.7 7.8309e-4 6.0032e-4
0.9 0.0012 0.0010
1 0.0016 0.0011
4 8.6511e-4 8.8370e-4
5 0.2661 0.0567
8 10.4130 5.7490
9 20.8173 17.5962

10 4.3032 2.4304

Table D.1: ISE of (PCI+D)PI and (PCIa ug +D)PI, error is between the respective controller and response of
(PI+D)PI





E
SYSTEM OVERVIEW

This section provides the detail of experiment setup used to validate the simulation re-
sults

E.1. SETUP DETAILS
The experimental setup built by Bart Joziasse [3] is used to validate the simulation re-
sults; only the fine stage is used. The side view is shown in this figure ... .

Figure E.1: Fine Stage

The black base is fixed on a vibration isolation table. The encoder used is a Renishaw
RLE10 Laser Interferometer with a resolution of 10 nm. The actuator is a copper wire
wound 140 times situated between the pairs of parallel flexures shown in figure E.1; it
has a diameter of 0.5 mm. The schematic of the experiment is shown in figure E.2.

E.2. SYSTEM IDENTIFICATION
A chirp signal with frequency ranging from 0.1 Hz to 1000 Hz was used as input for ob-
taining the frequency response of the setup. The chirp signal frequency increases every

47
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Figure E.2: Schematic of experiment

250ms and the position data is logged every 10µs. The data is then processed using tfes-
timate function in MATLAB, and tfest is used to obtain the transfer function of the setup:

G(s) = 3.038e4

s2 +0.7413s +243.3
(E.1)
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F
STABILITY CHECK

In this chapter, the stability of the fractional order analogue in the disturbance rejection
control scheme described in the paper is investigated. The Hβ condition as described in
the paper is used, utilizing a YALMIP Sedumi solver to solve the LMI in MATLAB. Figure
F.1 shows the control scheme with extra information in order to help in understanding
the following MATLAB code.

1 %% Check stability code
2

3 %ss_total_FCI is the state space of total controller. It has been ...
constructed

4 %such that the it corresponds to a state vector, where the first n ...
entries

5 %of this state vector belong to the reset integrator (this reset
6 %part has n states), and the remaining entries belong to the
7 %differentiator and linear integrator. See diagram below for details
8

9 %FIrst build the state space of LPF and plant
10 ss_LPF=ss(LPF);
11 ss_plant=ss(-SYS);
12

13 %Next put all into a cell:
14 A_collect{1}=ss_total_FCI.A;
15 B_collect{1}=ss_total_FCI.B;
16 C_collect{1}=ss_total_FCI.C;
17 D_collect{1}=ss_total_FCI.D;
18

19 A_collect{2}=ss_LPF.A;
20 B_collect{2}=ss_LPF.B;
21 C_collect{2}=ss_LPF.C;
22 D_collect{2}=ss_LPF.D;
23

24 A_collect{3}=ss_plant.A;
25 B_collect{3}=ss_plant.B;
26 C_collect{3}=ss_plant.C;
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correspond to the differentiator and the linear integrator states (which are not reset)

Figure F.1: Extra explanation to help understand the MATLAB code that investigates stability
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27 D_collect{3}=ss_plant.D;
28

29 %Cascade the controller state space with that of LPF and plant
30

31 [A_openloop,B_openloop,C_openloop,D_openloop]=cascadeSSM(A_collect,...
32 B_collect,C_collect,D_collect);
33

34 %Next we build the closed loop state space
35 syscl=feedback(ss(A_openloop,B_openloop,C_openloop,D_openloop),-1);
36 %Take the A matrix of this closed loop state space
37 Acl=syscl.A;
38

39 %%
40 %Now we specify the amount of reset states and non reset states
41 %for the "equality" part of the Lyapunov condition i.e.
42 %the B0'P==C0 part.
43

44 nrho=9; %no of controller reset states; if there's too many reset states
45 %then this code may run into numerical issues due to arithmetic with
46 %numbers that are too small so be careful
47

48 nrhobar=3; %no of controller non reset states, including LPF (so D, ...
linear I and LPF)

49 np=order(ss_plant); %no of plant states
50 %%
51 %Now we build B0 and C0 using the above information
52 %and specify beta and Prho as objective variable for
53 %LMI solver
54

55 beta=sdpvar(nrho,1,'full','real');
56 Prho=sdpvar(nrho,nrho,'full','real');
57 B0=[zeros(np,nrho);zeros(nrhobar,nrho);ones(nrho,nrho)];
58 C0=[beta*ss_plant.C zeros(nrho,nrhobar) Prho];
59

60 %normalize Acl so that we don't run into problems with
61 %numbers being too small or too large after arithmetic operations
62 Acl=Acl/norm(Acl);
63 %%
64 %For the condition A_rho'PA_rho-P≤0 inequality, need to
65 %edit A_rho so that we have the (non reset) states of
66 %the plant and LPF also in it
67

68 A_rho_augmented=blkdiag(A_rho_FCI,eye(np+1));% 1 here is the state ...
of the LPF

69 %%
70 %Now specify LMI and constraint equality, and solve for
71 %P, the objective
72 P=sdpvar(size(Acl,1),size(Acl,1),'symmetric');
73

74 lmi=Acl'*P+P*Acl≤0;
75 eps=1e-14;
76 constr=[P≥eps*eye(size(Acl,1)), ...

B0'*P==C0,A_rho_augmented'*P*A_rho_augmented-P≤0];
77 ops=sdpsettings('solver','sedumi','verbose',1);
78

79 F=solvesdp([lmi constr],0,ops);
80 %%
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81 %display P and check if eigenvalues are positive
82 %if eigenvalues are positive then we have a stable
83 %controller
84 if F.problem==0
85 P
86 end

Running the above MATLAB code returned the following response:

1 P: Linear matrix variable 14x14 (symmetric, real, 105 variables)
2 Eigenvalues between [1.1111e-10,0.021598]
3 Coeffiecient range: 1 to 1

Since a P is found that has all positive eigenvalues, by the Hβ condition the fractional
order analogue is stable.



G
MATLAB AND SIMULINK CODE

Here the MATLAB and SIMULINK codes are given.

G.1. OBJ_CHANGE_GAMMA.M
This code runs the objective function for optimizing the reset values for architecture (3)
(i.e. Best architecture with lead element).

1 %% This function is the objective function used in the optimization ...
routine

2 function [obj]= obj_change_gamma(gamma,CI_reset)
3 N=9; %No of poles in the CRONE approximation
4

5 %Specify the range of frequencies where the approximation is valid
6 w_lower_wanted=1;%rad/s
7 w_higher_wanted=1000*2*pi;%rad/s
8

9 % Number of integrators
10 alpha=-1/(length(gamma)-1)*ones(1,(length(gamma)-1));
11

12 % Frequency spacing in logarithmic scale
13 freqs = logspace(log10(w_lower_wanted),log10(w_higher_wanted),1000);
14

15 % Translate the valid frequency range into values that the CRONE
16 % approximation function takes in
17 wl=10^(log10(w_lower_wanted)-0.5);
18 wh=10^(log10(w_higher_wanted)+0.5);
19

20 % Initialize reset matrix
21 Arho=[];
22

23 % Build state space of each block in the cascade
24 for i=1:length(alpha)
25 if i==1
26 % Build the fractional integrator and lead filter
27 tf_block=zz(alpha(i),N,wl,wh);

53



54 G. MATLAB AND SIMULINK CODE

28 ss_block=ss(tf_block);
29

30 A_collect{1,i}=ss_block.A;
31 B_collect{1,i}=ss_block.B;
32 C_collect{1,i}=ss_block.C;
33 D_collect{1,i}=ss_block.D;
34

35 syms x;
36 alpha_beda=solve(-1+x==alpha(1));
37 alpha_beda=double(alpha_beda);
38 tf_block=zz(alpha_beda,N,wl,wh);
39 ss_block=ss(tf_block);
40

41 A_collect{1,i+1}=ss_block.A;
42 B_collect{1,i+1}=ss_block.B;
43 C_collect{1,i+1}=ss_block.C;
44 D_collect{1,i+1}=ss_block.D;
45

46 elseif i>1 %build the remaining integrator(s)
47 s=tf('s');
48 A_collect{1,i+1}=ss(1/s).A;
49 B_collect{1,i+1}=ss(1/s).B;
50 C_collect{1,i+1}=ss(1/s).C;
51 D_collect{1,i+1}=ss(1/s).D;
52 end
53

54 % Cascade the state space matrices
55 [Atot,Btot,Ctot,Dtot]=cascadeSSM(A_collect,B_collect,C_collect, ...

D_collect);
56

57 % Build the reset matrix
58 %Since ss_block is controllable canonical, we reset all the ...

states not just the end state. If you find it in your ...
MATLAB to be observable canonical then adapt appropriately

59 if i==1
60 Arho=blkdiag(Arho,diag(gamma(i)*ones(1,length(ss_block.A))));
61 Arho=blkdiag(Arho,diag(gamma(i+1)*ones(1,length(ss_block.A))));
62 elseif i>1
63 Arho=blkdiag(Arho,diag(gamma(i+1)));
64 end
65 end
66

67 %Calculate the 1st and 3rd harmonic gain response
68 sys=ss(Atot,Btot,Ctot,Dtot);
69 HOSIDF_order=[1 3];
70 [Gabs,¬]=hosidf(sys, Arho, HOSIDF_order, ...
71 freqs,0);
72

73 % The 1st harmonic gain responses may have a gain (DC) offset ...
compared to

74 % the CI. We need to correct for the gain offset.
75 % Compute the gain of CI and find gain that makes the 1st harmonic gain
76 % response equal
77

78 s=tf('s');
79 sys_real=1/s;
80 [real_gain,real_phase]=hosidf(ss(sys_real),CI_reset,HOSIDF_order,...
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81 freqs,0);
82 % The ratio is calculated as the ratio of the responses at the ...

middle
83 % of the frequency approximation range.
84 ratio=db2mag(real_gain(1,500))/db2mag(Gabs(1,500));
85 % The if statement below is to ensure ratio is always a number
86 if isnan(ratio)
87 ratio=1;
88 end
89 %Now we have the gain offset, apply this to the FCI
90 sys_adjusted=ratio*sys;
91 [Gabs,¬]=hosidf(sys_adjusted, Arho, HOSIDF_order,...
92 freqs,0);
93 %% Finally calculate the objective
94 %The objective is to maximize the difference between the 1st and 3rd
95 %harmonic, which translates to minimizing the third harmonic. Since
96 %the integrator has consistent -1 gradient, minimizing this ...

difference
97 %at the middle of the frequency range will also make the same
98 %difference at other frequencies.
99

100 %This objective function was found to be faster and more robust for
101 %different frequency ranges, as opposed to directly minimizing ...

the 3rd
102 %harmonic.
103 gain_difference=abs(Gabs(1,500)-Gabs(2,500));
104 obj=-gain_difference;

G.2. OBJ_CHANGE_GAMMA_NO_LEAD.M
This code runs the objective function for optimizing the reset values for architecture
without lead element.

1 %% This function is the objective function used in the optimization ...
routine

2 function [obj]= obj_change_gamma_no_lead(gamma,CI_reset)
3 N=9; %No of poles in the CRONE approximation
4

5 %Specify the range of frequencies where the approximation is valid
6 w_lower_wanted=1;%rad/s
7 w_higher_wanted=1000*2*pi;%rad/s
8

9 % Number of integrators
10 alpha=-1/(length(gamma)-1)*ones(1,(length(gamma)-1));
11

12 % Frequency spacing in logarithmic scale
13 freqs = logspace(log10(w_lower_wanted),log10(w_higher_wanted),1000);
14

15 % Translate the valid frequency range into values that the CRONE
16 % approximation function takes in
17 wl=10^(log10(w_lower_wanted)-0.5);
18 wh=10^(log10(w_higher_wanted)+0.5);
19

20 % Initialize reset matrix
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21 Arho=[];
22

23 % Build state space of each block in the cascade
24 for i=1:length(alpha)
25

26 % Build the fractional integrator and lead filter
27 tf_block=zz(alpha(i),N,wl,wh);
28 ss_block=ss(tf_block);
29

30 A_collect{1,i}=ss_block.A;
31 B_collect{1,i}=ss_block.B;
32 C_collect{1,i}=ss_block.C;
33 D_collect{1,i}=ss_block.D;
34

35

36 % Cascade the state space matrices
37 [Atot,Btot,Ctot,Dtot]=cascadeSSM(A_collect,B_collect,C_collect, ...

D_collect);
38 % Build the reset matrix
39 %Since ss_block is controllable canonical, we reset all the ...

states not just the end state. If you find it in your ...
MATLAB to be observable canonical then adapt appropriately

40 Arho=blkdiag(Arho,diag(gamma(i)*ones(1,length(ss_block.A))));
41 end
42

43 %Calculate the 1st and 3rd harmonic gain response
44 sys=ss(Atot,Btot,Ctot,Dtot);
45 HOSIDF_order=[1 3];
46 [Gabs,¬]=hosidf(sys, Arho, HOSIDF_order, ...
47 freqs,0);
48

49 % The 1st harmonic gain responses may have a gain (DC) offset ...
compared to

50 % the CI. We need to correct for the gain offset.
51 % Compute the gain of CI and find gain that makes the 1st harmonic gain
52 % response equal
53

54 s=tf('s');
55 sys_real=1/s;
56 [real_gain,real_phase]=hosidf(ss(sys_real),CI_reset,HOSIDF_order,...
57 freqs,0);
58 % The ratio is calculated as the ratio of the responses at the middle
59 % of the frequency approximation range.
60 ratio=db2mag(real_gain(1,500))/db2mag(Gabs(1,500));
61 % The if statement below is to ensure ratio is always a number
62 if isnan(ratio)
63 ratio=1;
64 end
65 %Now we have the gain offset, apply this to the FCI
66 sys_adjusted=ratio*sys;
67 [Gabs,¬]=hosidf(sys_adjusted, Arho, HOSIDF_order,...
68 freqs,0);
69 %% Finally calculate the objective
70 %The objective is to maximize the difference between the 1st and 3rd
71 %harmonic, which translates to minimizing the third harmonic. Since
72 %the integrator has consistent -1 gradient, minimizing this difference
73 %at the middle of the frequency range will also make the same
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74 %difference at other frequencies.
75

76 %This objective function was found to be faster and more robust for
77 %different frequency ranges, as opposed to directly minimizing the 3rd
78 %harmonic.
79 gain_difference=abs(Gabs(1,500)-Gabs(2,500));
80 obj=-gain_difference;

G.3. NLCON_CHANGE_GAMMA.M
This code contains the constraint functions for optimizing the reset values for architec-
ture (3) (i.e. Best architecture with lead element).

1 %% This function is the nonlinear constraint function used in the ...
optimization routine

2 function [c,ceq]= nlcon_change_gamma(gamma,CI_reset,special_position)
3 N=9; %No of poles in the CRONE approximation
4

5 %Specify the range of frequencies where the approximation is valid
6 w_lower_wanted=1;%rad/s
7 w_higher_wanted=1000*2*pi;%rad/s
8

9 % Number of integrators
10 alpha=-1/(length(gamma)-1)*ones(1,(length(gamma)-1));
11

12 % Frequency spacing in logarithmic scale
13 freqs = logspace(log10(w_lower_wanted),log10(w_higher_wanted),1000);
14

15 % Translate the valid frequency range into values that the CRONE
16 % approximation function takes in
17 wl=10^(log10(w_lower_wanted)-0.5);
18 wh=10^(log10(w_higher_wanted)+0.5);
19

20 % Initialize reset matrix
21 Arho=[];
22

23 % Build state space of each block in the cascade
24 for i=1:length(alpha)
25 if i==1
26 % Build the fractional integrator and lead filter
27 tf_block=zz(alpha(i),N,wl,wh);
28 ss_block=ss(tf_block);
29

30 A_collect{1,i}=ss_block.A;
31 B_collect{1,i}=ss_block.B;
32 C_collect{1,i}=ss_block.C;
33 D_collect{1,i}=ss_block.D;
34

35 syms x;
36 alpha_beda=solve(-1+x==alpha(1));
37 alpha_beda=double(alpha_beda);
38 tf_block=zz(alpha_beda,N,wl,wh);
39 ss_block=ss(tf_block);
40
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41 A_collect{1,i+1}=ss_block.A;
42 B_collect{1,i+1}=ss_block.B;
43 C_collect{1,i+1}=ss_block.C;
44 D_collect{1,i+1}=ss_block.D;
45

46 elseif i>1 %build the remaining integrator(s)
47 s=tf('s');
48 A_collect{1,i+1}=ss(1/s).A;
49 B_collect{1,i+1}=ss(1/s).B;
50 C_collect{1,i+1}=ss(1/s).C;
51 D_collect{1,i+1}=ss(1/s).D;
52 end
53

54 % Cascade the state space matrices
55 [Atot,Btot,Ctot,Dtot]=cascadeSSM(A_collect,B_collect,C_collect,...
56 D_collect);
57

58 % Build the reset matrix
59 %Since ss_block is controllable canonical, we reset all the ...

states not just the end state. If you find it in your ...
MATLAB to be observable canonical then adapt appropriately

60 if i==1
61 Arho=blkdiag(Arho,diag(gamma(i)*ones(1,length(ss_block.A))));
62 Arho=blkdiag(Arho,diag(gamma(i+1)*ones(1,length(ss_block.A))));
63 elseif i>1
64 Arho=blkdiag(Arho,diag(gamma(i+1)));
65 end
66 end
67

68 %Calculate the 1st and 3rd harmonic gain and phase response
69

70 sys=ss(Atot,Btot,Ctot,Dtot);
71 HOSIDF_order=[1 3];
72 [Gabs,Gphase]=hosidf(sys, Arho, HOSIDF_order, freqs,0);
73

74 % The 1st harmonic gain responses may have a gain (DC) offset ...
compared to

75 % the CI. We need to correct for this gain offset.
76 % Compute the gain of CI and find gain that makes the 1st harmonic gain
77 % response equal
78

79 s=tf('s');
80 sys_real=1/s;
81 [real_gain,real_phase]=hosidf(ss(sys_real),CI_reset,HOSIDF_order,...
82 freqs,0);
83 % The ratio is calculated as the ratio of the responses at the ...

middle
84 % of the frequency approximation range.
85 ratio=db2mag(real_gain(1,500))/db2mag(Gabs(1,500));
86 % The if statement below is to ensure ratio is always a number
87 if isnan(ratio)
88 ratio=1;
89 end
90 %Now we have the gain offset, apply this to the FCI. Phase not ...

needed
91 %to be computed since gain offset does not affect phase
92 sys_adjusted=ratio*sys;
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93 [Gabs,¬]=hosidf(sys_adjusted, Arho, HOSIDF_order, freqs,0);
94

95 %% Finally calculate constraints
96 phase_diff=Gphase(1,500)-real_phase(1,500);
97

98 %The 1st harmonic phase of FCI must be within 0.5 degrees of ...
that of CI

99 c(1)=phase_diff-0.1;
100 c(2)=-phase_diff-0.1;
101

102 %The gradient of the 1st harmonic gain of FCI must be the same ...
as that

103 %of CI. This is included because after investigation it was ...
found that

104 %if each of the reset values used are very negative, the
105 %optimizer could report an optimum reset value that shows a ...

reduction in
106 %the 3rd harmonic gain at the frequency in middle of the ...

approximation
107 %range, but however the gradient is not -1 in the range of
108 %approximation. 10^-2 is used to have a more relaxed constraint ...

and so
109 %the optimization can run faster.
110

111 c(3)=abs((Gabs(1,500)-Gabs(1,499))-(real_gain(1,500)-...
112 real_gain(1,499)))-10^-6;
113

114 %The 3rd harmonic gain of FCI is forced to be less than the 3rd ...
harmonic gain

115 %of CI
116 c(4)=Gabs(2,500)-real_gain(2,500);
117 ceq=[];
118

119 % end
120 % else
121 % return
122 % end

G.4. NLCON_CHANGE_GAMMA_NO_LEAD.M
This code contains the constraint functions for optimizing the reset values for architec-
ture without lead.

1 %% This function is the nonlinear constraint function used in the ...
optimization routine

2 function [c,ceq]= ...
nlcon_change_gamma_no_lead(gamma,CI_reset,special_position)

3 N=9; %No of poles in the CRONE approximation
4

5 %Specify the range of frequencies where the approximation is valid
6 w_lower_wanted=1;%rad/s
7 w_higher_wanted=1000*2*pi;%rad/s
8

9 % Number of integrators
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10 alpha=-1/(length(gamma)-1)*ones(1,(length(gamma)-1));
11

12 % Frequency spacing in logarithmic scale
13 freqs = logspace(log10(w_lower_wanted),log10(w_higher_wanted),1000);
14

15 % Translate the valid frequency range into values that the CRONE
16 % approximation function takes in
17 wl=10^(log10(w_lower_wanted)-0.5);
18 wh=10^(log10(w_higher_wanted)+0.5);
19

20 % Initialize reset matrix
21 Arho=[];
22

23 % Build state space of each block in the cascade
24 for i=1:length(alpha)
25

26 % Build the fractional integrator and lead filter
27 tf_block=zz(alpha(i),N,wl,wh);
28 ss_block=ss(tf_block);
29

30 A_collect{1,i}=ss_block.A;
31 B_collect{1,i}=ss_block.B;
32 C_collect{1,i}=ss_block.C;
33 D_collect{1,i}=ss_block.D;
34

35

36 % Cascade the state space matrices
37 [Atot,Btot,Ctot,Dtot]=cascadeSSM(A_collect,B_collect,C_collect, ...

D_collect);
38 % Build the reset matrix
39

40 %Since ss_block is controllable canonical, we reset all the ...
states not just the end state. %If you find it in your ...
MATLAB to be observable canonical then adapt appropriately

41 Arho=blkdiag(Arho,diag(gamma(i)*ones(1,length(ss_block.A))));
42 end
43 %Calculate the 1st and 3rd harmonic gain and phase response
44

45 sys=ss(Atot,Btot,Ctot,Dtot);
46 HOSIDF_order=[1 3];
47 [Gabs,Gphase]=hosidf(sys, Arho, HOSIDF_order, freqs,0);
48

49 % The 1st harmonic gain responses may have a gain (DC) offset ...
compared to

50 % the CI. We need to correct for this gain offset.
51 % Compute the gain of CI and find gain that makes the 1st harmonic gain
52 % response equal
53

54 s=tf('s');
55 sys_real=1/s;
56 [real_gain,real_phase]=hosidf(ss(sys_real),CI_reset,HOSIDF_order,...
57 freqs,0);
58 % The ratio is calculated as the ratio of the responses at the middle
59 % of the frequency approximation range.
60 ratio=db2mag(real_gain(1,500))/db2mag(Gabs(1,500));
61 % The if statement below is to ensure ratio is always a number
62 if isnan(ratio)
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63 ratio=1;
64 end
65 %Now we have the gain offset, apply this to the FCI. Phase not needed
66 %to be computed since gain offset does not affect phase
67 sys_adjusted=ratio*sys;
68 [Gabs,¬]=hosidf(sys_adjusted, Arho, HOSIDF_order, freqs,0);
69

70 %% Finally calculate constraints
71 phase_diff=Gphase(1,500)-real_phase(1,500);
72

73 %The 1st harmonic phase of FCI must be within 0.5 degrees of that of CI
74 c(1)=phase_diff-0.1;
75 c(2)=-phase_diff-0.1;
76

77 %The gradient of the 1st harmonic gain of FCI must be the same as that
78 %of CI. This is included because after investigation it was found that
79 %if each of the reset values used are very negative, the
80 %optimizer could report an optimum reset value that shows a ...

reduction in
81 %the 3rd harmonic gain at the frequency in middle of the approximation
82 %range, but however the gradient is not -1 in the range of
83 %approximation. 10^-2 is used to have a more relaxed constraint and so
84 %the optimization can run faster.
85

86 c(3)=abs((Gabs(1,500)-Gabs(1,499))-(real_gain(1,500)-...
87 real_gain(1,499)))-10^-6;
88

89 %The 3rd harmonic gain of FCI is forced to be less than the 3rd ...
harmonic gain

90 %of CI
91 c(4)=Gabs(2,500)-real_gain(2,500);
92 ceq=[];
93

94 % end
95 % else
96 % return
97 % end

G.5. RUN_CHANGE_GAMMA.M
This function runs the objective and constraint functions above using the fmincon algo-
rithm.

1 function ...
[X,FVAL]=run_change_gamma(gamma_initial,CI_reset,special_position)

2 objective=@(gamma)obj_change_gamma(gamma,CI_reset,special_position);
3

4 A=[];
5 b=[];
6 Aeq=[];
7 Beq=[];
8 lb=-1*(ones(length(gamma_initial),1));
9 ub=1*(ones(length(gamma_initial),1));

10 nonlincon=@(gamma)nlcon_change_gamma(gamma,CI_reset,special_position);
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11 options=optimoptions(@fmincon,'Algorithm','sqp','Display','iter');
12 [X,FVAL]=fmincon(objective,gamma_initial,A,b,Aeq,Beq,lb,ub,...
13 nonlincon,options);
14

15 end

G.6. OPTIMIZE_ARCHITECTURE.M
This function optimizes architecture (3) for a given reset value of CI.

1 function [X,reduction_in_3rd_harmonic]=optimize_architecture(CI_reset)
2 warning OFF
3 gamma_initial=[0 0 0];%This specifies the reset values for each ...

block
4 %%
5 sets=[];
6 for i=1:size(gamma_initial,1)
7 [X,FVAL]=run_change_gamma(gamma_initial(i,:),CI_reset,...
8 special_position);
9 sets(i,:)=[gamma_initial(i,:) X FVAL];

10 end
11 s=tf('s');
12 freqs=logspace(-1,4,1000);
13 [Gabs,Gphase]=hosidf(ss(1/s), CI_reset,[1 3],freqs,0);
14 FVAL_original=Gabs(1,length(freqs)/2)-Gabs(2,length(freqs)/2);
15 reduction_in_3rd_harmonic=abs(abs(FVAL)-abs(FVAL_original));
16 end

G.7. PHASE_MANIPULATION_INVESTIGATION.M
This function calculates the RMS error of FCI with architecture (3) for a given equal phase
of the higher order harmonics.

1 %% Higher order harmonics phase manipulation
2 % This code calculates the RMSE of FCI given that the higher order
3 % harmonics phase are kept the same, with this phase being changed ...

from 0
4 % to -90 degrees
5 clear
6 phase_offset=deg2rad(-90:0.1:0);
7 rms=[];
8 for i=1:length(phase_offset)
9 rms(i)=rms_phase_manipulation_all_phase_same(phase_offset(i));

10 end
11 rms_min=min(rms);
12 phase_offset_best=rad2deg(phase_offset(find(abs(rms-rms_min)<eps)));
13 %% Plot the results
14 t=0:0.001:5;
15 figure;
16 plot(rad2deg(phase_offset),rms);
17 title('Phase offset (degrees) vs. rms');
18 xlabel('Degrees');
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19 ylabel('rms');
20 hold on;
21

22 % The following lines are the gains and phase of the FCI at 10 ...
rad/s; the

23 % corresponding FCI architecture is as shown in the chapter
24 first_harmonic_phase=deg2rad(-38.89);
25 third_harmonic_phase_ori=deg2rad(-29.17);
26 fifth_harmonic_phase_ori=deg2rad(-27.33);
27 seventh_harmonic_phase_ori=deg2rad(-25.79);
28 ninth_harmonic_phase_ori=deg2rad(-24.47);
29 eleventh_harmonic_phase_ori=deg2rad(-23.4);
30 thirteenth_harmonic_phase_ori=deg2rad(-22.53);
31 fifteenth_harmonic_phase_ori=deg2rad(-21.81);
32 seventeenth_harmonic_phase_ori=deg2rad(-21.19);
33 nineteenth_harmonic_phase_ori=deg2rad(-20.63);
34 twentyfirst_harmonic_phase_ori=deg2rad(-20.12);
35 twentythird_harmonic_phase_ori=deg2rad(-19.65);
36 twentyfifth_harmonic_phase_ori=deg2rad(-19.22);
37 twentyseventh_harmonic_phase_ori=deg2rad(-18.81);
38

39 first_harmonic_gain=db2mag(-15.97);
40 third_harmonic_gain=db2mag(-29.74);
41 fifth_harmonic_gain=db2mag(-35.63);
42 seventh_harmonic_gain=db2mag(-39.47);
43 ninth_harmonic_gain=db2mag(-42.28);
44 eleventh_harmonic_gain=db2mag(-44.49);
45 thirteenth_harmonic_gain=db2mag(-46.31);
46 fifteenth_harmonic_gain=db2mag(-47.68);
47 seventeenth_harmonic_gain=db2mag(-49.21);
48 nineteenth_harmonic_gain=db2mag(-50.4);
49 twentyfirst_harmonic_gain=db2mag(-51.47);
50 twentythird_harmonic_gain=db2mag(-52.43);
51 twentyfifth_harmonic_gain=db2mag(-53.32);
52 twentyseventh_harmonic_gain=db2mag(-54.13);
53

54 y_offset_harmonic_kept_original = ...
55 first_harmonic_gain*sin(10*t+first_harmonic_phase) + ...
56 third_harmonic_gain*sin(3*10*t+ third_harmonic_phase_ori)+ ...
57 fifth_harmonic_gain*sin(5*10*t + fifth_harmonic_phase_ori)+ ...
58 seventh_harmonic_gain*sin(7*10*t+ seventh_harmonic_phase_ori)+ ...
59 ninth_harmonic_gain*sin(9*10*t+ ninth_harmonic_phase_ori)+ ...
60 eleventh_harmonic_gain*sin(11*10*t+ eleventh_harmonic_phase_ori)+ ...
61 thirteenth_harmonic_gain*sin(13*10*t+ ...

thirteenth_harmonic_phase_ori)+ ...
62 fifteenth_harmonic_gain*sin(15*10*t+ fifteenth_harmonic_phase_ori)+ ...
63 seventeenth_harmonic_gain*sin(17*10*t+ ...

seventeenth_harmonic_phase_ori)+ ...
64 nineteenth_harmonic_gain*sin(19*10*t+ ...

nineteenth_harmonic_phase_ori)+ ...
65 twentyfirst_harmonic_gain*sin(21*10*t+ ...

twentyfirst_harmonic_phase_ori)+ ...
66 twentythird_harmonic_gain*sin(23*10*t+ ...

twentythird_harmonic_phase_ori)+ ...
67 twentyfifth_harmonic_gain*sin(25*10*t+ ...

twentyfifth_harmonic_phase_ori)+ ...
68 twentyseventh_harmonic_gain*sin(27*10*t+ ...
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twentyseventh_harmonic_phase_ori);
69

70 %These are the ideal response's gain and phase at 10 rad/s
71 first_harmonic_gain=db2mag(-15.97);
72 ideal_response=first_harmonic_gain*sin(10*t+first_harmonic_phase);
73

74 %Calculate RMS of original FCI and plot
75 rms_FCI_original=sqrt(sum((ideal_response-...
76 y_offset_harmonic_kept_original).^2)/length(ideal_response));
77 plot(rms_FCI_original,'o');
78

79 title('Phase offset (degrees) vs. RMS Error');
80 xlabel('Degrees');
81 ylabel('RMS Error');
82 hold on;
83 legend('Phase offset','RMS of original FCI')
84

85 %% This function calculates the RMS error of FCI for a given phase ...
offset

86 % This function assumes that all the higher order harmonics phase ...
are the

87 % same
88 function rms=rms_phase_manipulation_all_phase_same(phase_offset)
89 % Gain of ideal response
90 CI_first_harmonic_gain=db2mag(-15.97);
91

92 % Gains of FCI; architecture used are as shown in the corresponding
93 % chapter
94 first_harmonic_gain=db2mag(-15.97);
95 third_harmonic_gain=db2mag(-29.74);
96 fifth_harmonic_gain=db2mag(-35.63);
97 seventh_harmonic_gain=db2mag(-39.47);
98 ninth_harmonic_gain=db2mag(-42.28);
99 eleventh_harmonic_gain=db2mag(-44.49);

100 thirteenth_harmonic_gain=db2mag(-46.31);
101 fifteenth_harmonic_gain=db2mag(-47.68);
102 seventeenth_harmonic_gain=db2mag(-49.21);
103 nineteenth_harmonic_gain=db2mag(-50.4);
104 twentyfirst_harmonic_gain=db2mag(-51.47);
105 twentythird_harmonic_gain=db2mag(-52.43);
106 twentyfifth_harmonic_gain=db2mag(-53.32);
107 twentyseventh_harmonic_gain=db2mag(-54.13);
108 % First harmonic phase
109 first_harmonic_phase=deg2rad(-38.89);
110

111 %calculate time responses
112 t=0:0.001:5;
113

114 ideal_response=CI_first_harmonic_gain*sin(10*t+first_harmonic_phase);
115 %y=[];
116

117 y_offset=first_harmonic_gain*sin(10*t+first_harmonic_phase) + ...
118 third_harmonic_gain*sin(3*10*t+ phase_offset)+ ...
119 fifth_harmonic_gain*sin(5*10*t + phase_offset)+ ...
120 seventh_harmonic_gain*sin(7*10*t+ phase_offset)+ ...
121 ninth_harmonic_gain*sin(9*10*t+ phase_offset)+ ...
122 eleventh_harmonic_gain*sin(11*10*t+ phase_offset)+ ...
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123 thirteenth_harmonic_gain*sin(13*10*t+ phase_offset)+ ...
124 fifteenth_harmonic_gain*sin(15*10*t+ phase_offset)+ ...
125 seventeenth_harmonic_gain*sin(17*10*t+ phase_offset)+ ...
126 nineteenth_harmonic_gain*sin(19*10*t+ phase_offset)+ ...
127 twentyfirst_harmonic_gain*sin(21*10*t+ phase_offset)+ ...
128 twentythird_harmonic_gain*sin(23*10*t+ phase_offset)+ ...
129 twentyfifth_harmonic_gain*sin(25*10*t+ phase_offset)+ ...
130 twentyseventh_harmonic_gain*sin(27*10*t+ phase_offset);
131

132 % Calculate RMS
133 rms=sqrt(sum((ideal_response-y_offset).^2)/length(ideal_response));
134 end

G.8. PROCESS_SENSITIVITY.M
This code tunes and calculate the parameters for the four controllers used for distur-
bance rejection.

1 %% Tuning script
2 % This script tunes the 4 controllers in closed loop and also calculates
3 % the discrete state space representation of the controllers for ...

simulation
4

5 % [T,f]=tfestimate(u,y,[],[],[],1e4);
6 %
7 %DATA=iddata(y,u,Ts);
8 %SYS = tfest(DATA, 2,0);
9 clear

10 close all
11 load('SYS.mat')
12 warning off
13 %% set parameters
14 wh=50000;
15 wl=0.05;
16 wl=10^(log10(wl)-0.5);
17 wh=10^(log10(wh)+0.5);
18 freqs_crone=logspace(log10(wl),log10(wh),1000);
19 [freq index_low] = min(abs(freqs_crone-wl*10));
20 [freq2 index_high] = min(abs(freqs_crone-wh/10));
21 freqs=freqs_crone(index_low:index_high);
22

23 CI_reset=0;
24 no_of_chunks=2;
25 specify_reset=[-0.9409 1 0.7122];
26 %Here I use the architecture with lead, but using the architecture ...

without lead also produces same result. I use architecture with ...
lead here because I spent so much time working on it and is so ...
happy that it works that I use it here instead of the one ...
without lead.

27 Ts=1e-4;
28 SYS_discrete=c2d(SYS,Ts,'tustin');
29

30 alpha=-1/no_of_chunks*ones(1,no_of_chunks);
31 N=9;
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32

33 s=tf('s');
34 P_rule_of_thumb=1/db2mag(-22)/3.5;
35

36 P=P_rule_of_thumb;
37

38 f_bw=100;
39 w_bw=2*pi*f_bw;
40 wf=w_bw*10;
41 wi=w_bw/10;
42 a=3;
43 wt=w_bw*a;
44 wd=w_bw/a;
45

46 %% Evaluate plant at freqs
47 plant_abs=mag2db(abs(squeeze(freqresp(-SYS,freqs))));
48 plant_phase=rad2deg(unwrap(phase(squeeze(freqresp(-SYS,freqs)))));
49 %% Evaluate LPF at freqs AND ADD TO PLANT
50 LPF=(1/(s/(wf)+1));
51 LPF_discrete=c2d(LPF,Ts,'tustin');
52 %LPF_discrete.num{1}/LPF_discrete.num{1}(1)
53 %LPF_discrete.den{1}
54 LPF_abs=mag2db(abs(squeeze(freqresp(LPF,freqs))));
55 LPF_phase=rad2deg(unwrap(phase(squeeze(freqresp(LPF,freqs)))));
56

57 plant_and_LPF_abs=plant_abs+LPF_abs;
58 plant_and_LPF_phase=LPF_phase+plant_phase;
59

60 %% PI+D
61

62 PID=P *((1+wi/s) + (1+s/wd) / (1+s/wt));
63 %* (1/(s/(wf)+1));
64 P_PID=P;
65 I_PID=(1+wi/s);
66 I_PID_discrete=c2d(I_PID,Ts,'tustin');
67 %I_PID_discrete.num{1}/I_PID_discrete.num{1}(1)
68 %I_PID_discrete.num{1}(1)
69 %I_PID_discrete.den{1}
70 D_PID=(1+s/wd) / (1+s/wt);
71 D_PID_discrete=c2d(D_PID,Ts,'tustin');
72 ss_D_PID=ss(D_PID);
73 %D_PID_discrete.num{1}/D_PID_discrete.num{1}(1)
74 %D_PID_discrete.num{1}(1)
75 %D_PID_discrete.den{1}
76

77 PID_abs=mag2db(abs(squeeze(freqresp(PID,freqs))));
78 PID_phase=rad2deg(unwrap(phase(squeeze(freqresp(PID,freqs)))));
79

80 % For simulation
81 Ts=1e-4;
82 PID_discrete=c2d(PID,Ts,'tustin');
83 %PID_discrete_combine_with_LPF=c2d(PID,Ts,'tustin');
84 %% PI2+D
85 extra_integrator=(1+wi/s);
86 extra_integrator_discrete=c2d((1+wi/s),Ts,'tustin');
87

88 PID_I2D=P *((1+wi/s) + (1+s/wd) / (1+s/wt))*extra_integrator;
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89

90 PI2D_abs=mag2db(abs(squeeze(freqresp(PID_I2D,freqs))));
91 PI2D_phase=rad2deg(unwrap(phase(squeeze(freqresp(PID_I2D,freqs)))));
92

93 PID_I2D_discrete=c2d(PID_I2D,Ts,'tustin');
94 %% CI
95 P_CI=P*1.055;
96 I_CI=(1+wi/s)/1.62;
97 I_CI_discrete=c2d(I_CI,Ts,'tustin');
98 ss_I_CI_discrete=ss(I_CI_discrete);
99 I_CI=ss(I_CI);

100 I_CI_discrete_not_tamed=c2d(ss(1/s),Ts,'tustin');
101

102 %Combine state space of differentiator and reset integrator
103 A_total=blkdiag(I_CI.A,ss_D_PID.A);
104 B_total=[I_CI.B;ss_D_PID.B];
105 C_total=[I_CI.C ss_D_PID.C];
106 D_total=I_CI.D+ss_D_PID.D;
107

108 %Combine state space of P+CI with extra integrator
109

110 ss_extra_integrator=ss(extra_integrator);
111 A_collect={A_total,ss_extra_integrator.A};
112 B_collect={B_total,ss_extra_integrator.B};
113 C_collect={C_total,ss_extra_integrator.C};
114 D_collect={D_total,ss_extra_integrator.D};
115

116 [A_total2,B_total2,C_total2,D_total2]=cascadeSSM(A_collect,B_collect,...
117 C_collect,D_collect);
118

119 ss_total2=P_CI*ss(A_total2,B_total2,C_total2,D_total2);
120 ss_total_PCIID_discrete=c2d(ss_total2,Ts,'tustin');
121 %construct appropriate A_rho
122 diag_of_A_rho=[zeros(1,size(I_CI.A,1)) ...

ones(1,size(A_total2,1)-size(I_CI.A,1))];
123 A_rho=diag(diag_of_A_rho);
124

125 %HOSIDF it
126 [Gabs_CI,Gphase_CI]=hosidf(ss_total2, A_rho, 1, freqs, 0);
127

128 %% FCI parameters
129

130 %Calculate the state space of the FCI
131 [ratio,FCI_A,FCI_B,FCI_C,FCI_D,Arho]= ...

find_ratio_better_arch_arch_3(alpha,specify_reset,CI_reset,N,wl,..
132 wh,freqs_crone);
133 ss_FCI2=(1+ss(FCI_A,FCI_B,FCI_C,FCI_D)*wi)/1.62;
134 ss_FCI2_discrete=c2d(ss_FCI2,Ts,'tustin');
135 ss_FCI_discrete_open_loop=c2d(ss(FCI_A,FCI_B,FCI_C,FCI_D),Ts,'tustin');
136

137 %The below is for Labview experiment
138 %Use the state space representation (in Labview) that have elements
139 %that are not smaller than the resolution of digits in Labview
140

141 [num,den]=ss2tf(ss_FCI2.A,ss_FCI2.B,ss_FCI2.C,ss_FCI2.D);
142 ss_FCI2_discrete_labview=c2d(tf(num,den),Ts,'tustin');
143 ss_FCI2_discrete_labview=ss(ss_FCI2_discrete_labview);
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144

145 ss_FCI2_discrete_A=reshape((ss_FCI2_discrete_labview.A)',1,361);
146 ss_FCI2_discrete_B=(ss_FCI2_discrete_labview.B)';
147 ss_FCI2_discrete_C=(ss_FCI2_discrete_labview.C);
148 ss_FCI2_discrete_D=(ss_FCI2_discrete_labview.D);
149

150 ss_FCI2_discrete_A_modal=reshape((canon(ss_FCI2_discrete,'modal').A)',...
151 1,361);
152 ss_FCI2_discrete_B_modal=(canon(ss_FCI2_discrete,'modal').B)';
153 ss_FCI2_discrete_C_modal=(canon(ss_FCI2_discrete,'modal').C);
154 ss_FCI2_discrete_D_modal=(canon(ss_FCI2_discrete,'modal').D);
155 %Calculate P+FCI
156

157 A_total=blkdiag(ss_FCI2.A,ss_D_PID.A);
158 B_total=[ss_FCI2.B;ss_D_PID.B];
159 C_total=[ss_FCI2.C ss_D_PID.C];
160 D_total=[ss_FCI2.D+ss_D_PID.D];
161

162 % Cascade P+FCI with extra I
163 A_collect={A_total,ss_extra_integrator.A};
164 B_collect={B_total,ss_extra_integrator.B};
165 C_collect={C_total,ss_extra_integrator.C};
166 D_collect={D_total,ss_extra_integrator.D};
167

168 [A_total2,B_total2,C_total2,D_total2]=cascadeSSM(A_collect,B_collect,...
169 C_collect,D_collect);
170

171 ss_total_FCI=P_CI*ss(A_total2,B_total2,C_total2,D_total2);
172 %construct A_rho_FCI
173 diag_of_rest_of_Arho=[ones(1,size(A_total2,1)-size(Arho,1))];
174 A_rho_FCI=blkdiag(Arho,diag(diag_of_rest_of_Arho));
175

176 %HOSIDF 'em
177 [Gabs_FCI,Gphase_FCI]=hosidf(ss_total_FCI, A_rho_FCI, 1, freqs, 0);
178

179 % A=ss_FCI2_discrete.A;
180 % A=A';
181 % %A=reshape(A,361,1);
182 % B=ss_FCI2_discrete.B;
183 % C=ss_FCI2_discrete.C;
184 % D=ss_FCI2_discrete.D;
185 % gamma=diag(Arho);
186

187 % A=ss_FCI2_discrete.A;
188 % A=A';
189 % %A=reshape(A,361,1);
190 % B=ss_FCI2_discrete.B;
191 % C=ss_FCI2_discrete.C;
192 % D=ss_FCI2_discrete.D;
193 % gamma=diag(Arho);
194 % Plot 1st harmonic of CI at 10 rad/s
195

196 %% Cascade frequency responses
197

198 Gabs_PID_openloop=PID_abs'+plant_and_LPF_abs';
199 Gphase_PID_openloop=PID_phase'+plant_and_LPF_phase';
200



G.8. PROCESS_SENSITIVITY.M 69

201 Gabs_PI2D_openloop=PI2D_abs'+plant_and_LPF_abs';
202 Gphase_PI2D_openloop=PI2D_phase'+plant_and_LPF_phase';
203

204 Gabs_PCIID_openloop=Gabs_CI+plant_and_LPF_abs';
205 Gphase_PCIID_openloop=Gphase_CI+plant_and_LPF_phase';
206

207 Gabs_PFCIID_openloop=Gabs_FCI+plant_and_LPF_abs';
208 Gphase_PIFCID_openloop=Gphase_FCI+plant_and_LPF_phase';
209 %% Evaluate open loop of the different controllers
210 freqs=freqs./(2*pi);
211 figure
212 ax1=subplot(2,1,1);
213 semilogx(freqs,Gabs_PID_openloop,'LineWidth',1.5);
214 title('Open loop freq resp, different controllers')
215 grid on
216 hold on
217 semilogx(freqs,Gabs_PI2D_openloop,'LineWidth',1.5);hold on
218 semilogx(freqs,Gabs_PCIID_openloop,'LineWidth',1.5);hold on
219 semilogx(freqs,Gabs_PFCIID_openloop,'LineWidth',1.5);
220 grid on
221 yline(0);
222 xlabel('Frequency (Hz)')
223 ylabel('Magnitude (dB)')
224 Legend{1}='PID';
225 Legend{2}='PI2D';
226 Legend{3}='PCIID';
227 Legend{4}='PFCIID';
228 legend(Legend)
229 %xlim([freqs(1) freqs(end)]);
230 xlim([0.1 1000])
231 %ylim([-0.1 0.1]);
232 hold on
233

234 ax2=subplot(2,1,2);
235 semilogx(freqs,Gphase_PID_openloop,'LineWidth',1.5);
236

237 hold on
238 semilogx(freqs,Gphase_PI2D_openloop,'LineWidth',1.5);hold on
239 semilogx(freqs,Gphase_PCIID_openloop,'LineWidth',1.5);hold on
240 semilogx(freqs,Gphase_PIFCID_openloop,'LineWidth',1.5);hold on
241 grid on
242 xlabel('Frequency (Hz)')
243 ylabel('Phase (degrees)')
244 %yline(-180);
245 %yline(-135);
246 xlim([freqs(1) freqs(end)]);
247 hold off
248 b=axes('position',[.60 .145 .15 .15]);
249 indexOfInterest = ...

numel(find((freqs-95)<eps)):1:numel(find((freqs-105)<eps));
250 semilogx(freqs(indexOfInterest),Gphase_PID_openloop(indexOfInterest),...
251 'LineWidth',1.5);hold on % plot on new axes
252 semilogx(freqs(indexOfInterest),Gphase_PI2D_openloop(indexOfInterest),...
253 'LineWidth',1.5);hold on % plot on new axes
254 semilogx(freqs(indexOfInterest),Gphase_PCIID_openloop(indexOfInterest),...
255 'LineWidth',1.5);hold on % plot on new axes
256 semilogx(freqs(indexOfInterest),Gphase_PIFCID_openloop(indexOfInterest),...
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257 'LineWidth',1.5);hold on % plot on new axes
258 grid on
259 %axis on
260 set(b,'xticklabel',[]);
261 set(b,'yticklabel',[]);
262 box on
263 ylim([-153 -145])

G.9. SIMULINK DIAGRAM FOR DISTURBANCE REJECTION IN-
VESTIGATION

The following diagram shows the Simulink Model used for closed loop validation of the
augmented analogue controller.

Overall Simulink simulation:

Reset controller block:
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G.10. HOSIDFCALC.M
This function calculates the HOSIDF of a given state space representation for a base lin-
ear system given a reset matrix Aρ

1 function [G] = hosidfcalc(sys, Ar, n, freqs)
2 % G = hosidfcalc(SYS, AR, N, FREQS, CLOL)
3 % Calculated the higher order (n) describing function for a ...

reset system.
4 %
5 % SYS is the reset element described in state space
6 % AR is the amount of reset you want to achieve (typical 0)
7 % N is the describing function order
8 % FREQS contains the frequencies the describing function is ...

calculated for
9

10 % Kars Heinen - TU Delft - 2018
11

12 % to do; replace inv() by 'matlab \' for faster results
13

14 % odd orders will be skipped
15 if (mod(n,2) == 0)
16 G = 0;
17 return;
18 end
19

20 A = sys.a; B = sys.b; C = sys.c; D = sys.d;
21

22 G = zeros(1,numel(freqs)); %this is a vector, which indeed is ...
the HOSIDF

23

24 for i=1:numel(freqs)
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25 w = freqs(i);
26

27 Lambda = w*w*eye(size(A)) + A^2;
28 LambdaInv = (Lambda)\eye(size(Lambda));
29

30 Delta = eye(size(A)) + expm(A*pi/w);
31 DeltaR = eye(size(A)) + Ar*expm(A*pi/w);
32

33 GammaR = inv(DeltaR)*Ar*Delta*LambdaInv;
34

35 ThetaD = (-2*w*w/pi)*Delta*(GammaR-LambdaInv);
36

37 %Now we calculate the HOSIDF
38 if (n==1)
39 G(i) = C*inv(j*w*eye(size(A)) - A)*(eye(size(A)) + ...

j*ThetaD)*B;
40 else
41 % J1 and J2 dissappear
42 G(i) = C*inv(1j*w*n*eye(size(A)) - A)*1j*ThetaD*B;
43 end
44 end
45

46 if (n == 1)
47 G = G + D;
48 end
49 end
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