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ABSTRACT 

 

In big cities, the proportion of slow-mode (such as pedestrian) flows in the total trip demand 

is steadily growing every year, along with this trend many concerns arise regarding 

accessibility and safety. The monitoring and management of pedestrians serves as a potential 

solution to maintain the transport network resilience. Thereof, the monitoring and state 

estimation for pedestrian flows are crucial as a foundation for a successful crowd 

management support system. This paper focuses on the development of pedestrian state 

estimation. A two-dimensional Generalized Adaptive Smoothing Method (2D-GASM) is 

presented, to estimate the full state of an area based on increasing amount of available 

pedestrian observations in practice. The 2D-GASM is developed based on similar concepts in 

the ASM for motorway traffic, which is based on the fact that traffic characteristics travel 

forward in free flow and backward in congestion. Here, the same mechanism is assumed for 

pedestrian flows. This extension additionally allows for comprising the two-dimensional (2D) 

nature of the pedestrian flow and also allows for the fusion and filtering of multi-source data 

(e.g., counting camera data, WiFi-sensor data, and GPS samples, etc.). Although focussing on 

pedestrian flow, the approach is applicable to any generic 2D flows, including bicyc list or 

mixed flows. This newly-developed method is validated based on the trajectory data from a 

walking experiment at a narrow bottleneck. The testing results present promising estimation 

performance and possible extensions for future applications are suggested.  

 

Key words: pedestrian/bicyclist flows, state estimation, adaptive smoothing method, two 

dimensional flows, empirical data 
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1 INTRODUCTION AND BACKGROUND 

In big cities, the proportion of “slow traffic” (such as pedestrians and bicyclists) in the total 

trip demand is steadily growing every year. For instance, in the city of Amsterdam, the 

pedestrian trip increases by 18% whereas the car demand reduces by 18% in the past few 

years (1). Although they are various reasons to welcome this trend, many concerns arise with 

respect to large crowds at more and more events in cities, crowded shopping areas, and traffic 

safety problems at places where mixed flows interact. New technical possibilities will allow 

developing crowd management support systems to ensure the safety of the pedestrians in the 

crowd. In this way, pedestrian operations can be monitored during operations, and potentially 

dangerous situations can be identified in a timely manner. With real- time monitoring and state 

estimation, the aim is to identify the traffic state (consisting of e.g., velocities, flows, 

densities, route choices) in the network. Based on the results, the crowd management system 

will give possible measures to alleviate and if possible to prevent the bottlenecks from 

occurring. The idea is to provide real-time pedestrian monitoring information (flow states, 

route choice, and potential problematic spots) to stakeholders, and to provide public useful 

information/instruction to improve pedestrian flow operations. 

The focus of this work is on the development of the first task: pedestrian monitoring and 

state estimation. Limited availability of research on this topic is partially due to the absence 

of available real- time pedestrian flow data in reality. With the development of monitoring 

technologies, pedestrian flows can be observed to a certain extent. For example, aerial 

cameras can be used to track pedestrian movement, infrared sensors to count cross-section 

flow, WiFi/Bluetooth sensors to detect pedestrian flows equipped with mobile devices at 

specific locations, also pedestrians equipped with GPS tracker to provide real-time individual 

trajectories. However, this information can only reflect partial states of the network, other 

than the fact that errors and bias are part of the raw data. Therefore, state estimation 

algorithm is needed to reproduce the full picture of states in traffic network, based on the 

limited and coarse traffic information collected from sensors. Additionally, a combination of 

types of sensors will support data fusion, to make more use of the individual data sources. 

There are many existing state estimation techniques available for car traffic flows. For 

example, model-based state estimation approaches can be applied, which rely on three 

components: a) dynamic traffic flow models (e.g., first- or second- order traffic flow models 

in Eulerian and Lagrangian coordinate systems (2, 3)) to predict the evolution of the state 

variables; b) a set of observation equations (e.g., fundamental diagrams) relating sensor 

observations to the system state; and c) a data-assimilation technique (e.g., Kalman filter (4) 

and/or its more advanced variants) is adopted to combine the model predictions with the 

sensor observations. The estimation quality of model-based methods depends on many 

factors, such as the representativeness of traffic flow model and observation models, size of 

discretized units, observation qualities, data assimilation methods, calibrated model input and 

parameters. This poses a challenge to achieve good estimation performance. Alternatively, the 

Adaptive Smoothing Method – (one dimensional 1D-ASM) (5), extended and generalized in 

(6), can be deployed. It is in essence an approach that interpolates over space and time. The 

ASM takes explicitly into account car traffic dynamics, namely the propagation of traffic 
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characteristics, and it interpolates the data along two propagation speeds. In contrast to 

model-based methods, the ASM is data driven, and there is no complex traffic flow model 

involved which is easier and faster to implement and maintain while providing adequate 

estimates. 

Compared to car traffic, pedestrian flows are two-dimensional and multi-directional. They 

possess many typical behaviours and phenomena, such as lane formation (in bidirectional 

flows), diagonal strip formation (in crossing flows), phase transition from laminar to 

turbulent flow, mildly anisotropic, etc.(7, 8). Since the previous techniques for car traffic are 

not directly transferrable, new state estimation methods are needed to consider the specific 

characteristics of pedestrian flows. In this paper, we propose a two dimensional 

generalization of the Adaptive Smoothing Method (2D-GASM), based on predefined 

available real-time (historical) data sources for pedestrian flows. The extension of the 

1D-ASM for pedestrian traffic is twofold: 1. to comprise the two-dimensional (2D) nature of 

the pedestrian flow; 2. to allow for the fusion and filtering of multi-source data (counting 

camera data, WiFi-sensor data, and GPS samples, etc.). The new approach is served as a 

candidate in the development of a crowd monitoring system on behalf of the Amsterdam 

SAIL nautical event 2015, where visitors walk along a route, while watching and visiting tall 

ships, eating and drinking (9).  

This paper is organized as follows. The proposed methodology is firstly presented, with 

detailed mathematical formulation and the application scope. Next, a validation case study is 

setup based on the trajectory data stem from a walking experiment. Different types and 

resolutions of observations are considered. Then, simulation results and discussion are 

presented, and they are followed by conclusion and recommendations. 

2 METHODOLOGY 

State estimation aims at estimating full (macroscopic) states of pedestrian traffic (densities 

/number of pedestrians, speeds, and flows) at defined areas (called reservoirs/cells), based on 

real-time/historical pedestrian data (counts, WiFi-sensor data, GPS), and route choice 

information (directional field, flow/route share). Note that, although this paper focuses on 

pedestrian state estimation, the related analysis and formulation can be easily generalised to 

other 2D flows, including bicyclist and mixed flows. 

As indicated, the 2D-ASM that will be presented in this paper is developed based on 

concepts similar to the 1D-ASM for motorway traffic. The ASM was originally designed for 

processing single data sources and reconstructing spatiotemporal traffic plots, which is based 

on spatiotemporal characteristics of car traffic flow, that is, perturbations travel forward in 

free flow (with the free flow speed 𝑣0 ) and backward in congestion (with the jam 

propagation speed 𝜔). The ASM estimates the traffic state variable by determining a 

weighted average of the “neighbouring” data in space and time. The weights for the 

averaging are determined by a so-called kernel, where the weights depend on the d irection 

and distance of the included data points relative to the center of the kernel (where closer 

means higher weight). Two kernels are used, one for free flow conditions and one in 

congestion. Typically Gaussian or negative exponential functions are used to define the shape 

of the kernel, and by setting the parameters for three dimensions (one for temporal dimension, 
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two for spatial dimension), the size of the kernels can be adjusted, as will be described in 

detail below. 

Generalised Adaptive Smoothing Method in three dimensions 

The method assumes knowledge about the following pedestrian flow quantities: 

 The pedestrian free speed 𝑣0  (with a magnitude of 1.5 m/s) 

 The pedestrian shockwave speed 𝜔 (opposite of the walking direction) 

 The expected walking direction 𝛾⃗(𝑡, 𝑥⃗) for each time instant and location; 

specifically, 𝛾⃗(𝑡, 𝑥⃗) denotes directional vector in a 2D spatial plane. 

Although the shape of pedestrian fundamental diagram depends on many factors, such as the 

size/shape/function of an area, the heterogeneity/composition of pedestrian flows, trip 

purposes (10), for demonstration purposes, we assume a triangular fundamental relation, 

similar to that in car traffic with two constant wave speeds. Note that, the assumption with a 

pedestrian shockwave speed is proposed to accommodate the algorithm formulation and its 

applications. In reality, we might observe shockwaves in big festivals and events (e.g., the 

aforementioned SAIL event) or queuing experiments (e.g., a Sugiyama-type circuit 

experiment (11)) with dense crowds. To check the plausibility of this assumption and to 

observe a clear shockwave speed is still an interesting topic to investigate for future. 

The general idea entails applying the ASM in two separate directions (vertical and 

horizontal directions). The parameters of the ASM are adapted given the e xpected walking 

directions. Note that, the generalisation to 2D flows is not trivial because of local route 

choice processes that cause “lateral” flows influencing the longitudinal flows. Hence, 

knowledge needs to be added about the walking directions / local route choice of the 

elements in the pedestrian flow. 

We assume that we have data available, that consist of the quadruples (𝑡𝑖 , 𝑥⃗𝑖 , 𝑣⃗𝑖 , 𝑧𝑖). Here, 

𝑖 denotes the index of the data point, (𝑡𝑖 , 𝑥⃗𝑖) the time and the location it pertains to, 𝑣⃗𝑖 the 

velocity and 𝑧𝑖 the actual measurement that we aim to reconstruct. Note that in many cases, 

𝑧𝑖 = 𝑣⃗𝑖 (e.g., the measurement we aim to reconstruct is actually the velocity). However, 𝑧𝑖 

can also refer to other observable quantities that we want to reconstruct, such as flow 𝑞⃗𝑖 

and/or density. In this case, the corresponding speed measurement pertain to the targeted 

reconstructed quantity needs to know. Note that, both the targeted quantity (e.g., flow) and its 

related speed measurement should follow the walking direction (align with the directional 

line).  

The aim of the approach is to estimate the value 𝑧 = 𝑧(𝑡, 𝑥⃗) for any value of (𝑡, 𝑥⃗) using 

the available measurements. There are mainly four steps: a. construction of directional fields; 

b. projecting data on the directional line; c. determine the free flow and congestion weights of 

each observation data point; d. determining regime and overall weights for the free flow and 

congestion filters. 

Step 1: constructing the directional field. Given the infrastructure, destinations, 

measurements, etc., we aim to reconstruct the directional field of the pedestrians that we are 

estimating the traffic variables for. Multiple approaches can be used here, such as modelling  

(12), estimating from the (historical) data, etc. The idea is that the outcome of the estimation 

approach will be relatively robust against errors determined when determining the directional 

field. In the end, we assume that 𝛾⃗(𝑡, 𝑥⃗) = (𝛾1 , 𝛾2 ) can be determined for all relevant values 

of (𝑡, 𝑥⃗), where 𝛾1  and 𝛾2 are the horizontal and vertical components of the direction vector 
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in the Euclidean space (𝛾1
2 + 𝛾2

2 = 1).  

Step 2: projecting the observation data 𝑧𝑖 on the directional line. Note that in the current 

version, the same type of observations (speed or flow) from different data sources can be 

non-discriminatively put into the observation set (implicitly of the same reliability level). The 

pedestrian flow will move approximately along the parameterized line: 

𝑥⃗(𝑠) = 𝑥⃗ + 𝛾⃗(𝑡, 𝑥⃗) ⋅ 𝑠 

Here, 𝑠  denotes the updating time step, and 𝑥⃗ = (𝑥1,𝑥2) , where 𝑥1 and 𝑥2  are the 

horizontal and vertical components of vector 𝑥⃗. 

We can easily show that we can rewrite this line as follows: 

𝑎𝑥1 + 𝑏𝑥2 + 𝑐 = 0 

with 𝑎 = 𝛾2 , 𝑏 = −𝛾1  and 𝑐 = 𝛾1 𝑥2 − 𝛾2 𝑥1. Using this expression, we can compute the 

distances 𝛿𝑖 to this line (orthogonal projection) for all data points as follows: 

𝛿𝑖 =
|𝑎𝑥1

(𝑖)
+ 𝑏𝑥2

(𝑖)
+ 𝑐|

√𝑎2 + 𝑏2
 

Next to the orthogonal distance, we can compute the distance 𝑑𝑖 from the projection on 

the line to the point (𝑡, 𝑥⃗). This distance is equal to: 

𝑑𝑖 = √𝐷𝑖
2 − 𝛿𝑖

2 

Here, 𝐷𝑖 is the distance between the observation point 𝑧𝑖 and position 𝑥⃗ . FIGURE 1 

provides a graphical description of Step 2. 

Since we need to include the direction as well, we define: 

𝜆𝑖(𝑡, 𝑥⃗) = 𝑠𝑖𝑔𝑛(𝛾⃗(𝑡, 𝑥⃗) ⋅ (𝑥⃗𝑖 − 𝑥⃗)) 

Step 3: determining the free flow and congestion weights of each data point. For each data 

point i, we will determine a weight expressing the contributions to the estimate at location 

(𝑡, 𝑥⃗) - under the assumption that traffic flow is either free (information moves along 𝛾⃗(𝑡, 𝑥⃗) 

with the free speed) or congested (information moves in the opposite direction −𝛾⃗(𝑡, 𝑥⃗) 

with the shockwave speed). We first define the weighing function (negative exponential 

function) that expresses the impact of time s and (generalized) distances 𝑑 and 𝛿: 

𝜙0 (𝑠, 𝑑, 𝛿) = exp (−
|𝑠|

𝜏
−

|𝑑|

𝜎
−

|𝛿|

𝜂
) 

where 𝜏, 𝜎 and 𝜂 are parameters, determining the kernel weight of each data point. 𝜏 

relates to the temporal dimension, and the other two count for the spatial dimension. Note 

that, a Gaussian type function can also be used to determine the shape of the kernel: 

𝜙0 (𝑠, 𝑑, 𝛿) = exp (−
𝑠2

2𝜏 2
−

𝑑2

2𝜎 2
−

𝛿2

2𝜂2
) 

The contribution of the data point i in case of free flow conditions is now computed as 

follows: 

𝜙𝑖
𝑓𝑟𝑒𝑒

= 𝜙0 (𝑠 − 𝜆𝑖 ⋅ 𝑑𝑖/𝑣0 , 𝑑𝑖 , 𝛿𝑖) 

where 𝑣0 > 0 is the free speed, while the contribution of the data point in case of congested 

conditions would be equal to: 
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𝜙𝑖
𝑐𝑜𝑛𝑔 = 𝜙0 (𝑠 − 𝜆𝑖 ⋅ 𝑑𝑖 /𝜔,𝑑𝑖 , 𝛿𝑖) 

where 𝜔 < 0 is the shockwave speed.  

For the variable estimate to be determined, we now determine the weighted averages: 

𝑧𝑓𝑟𝑒𝑒(𝑡, 𝑥⃗) =
∑ 𝜙𝑖

𝑓𝑟𝑒𝑒 ⋅ 𝑧𝑖𝑖

∑ 𝜙
𝑖

𝑓𝑟𝑒𝑒
𝑖

 

and 

𝑧𝑐𝑜𝑛𝑔(𝑡, 𝑥⃗) =
∑ 𝜙𝑖

𝑐𝑜𝑛𝑔
⋅ 𝑧𝑖𝑖

∑ 𝜙
𝑖

𝑐𝑜𝑛𝑔
𝑖

 

Step 4: determining regime and overall weight. In the final step, we determine the overall 

weight by considering which regime is present. This is based on the estimate of the speed at 

the location we are considering. We have: 

𝑤 =
1

2
(1 + arctan

𝑉(𝑡, 𝑥⃗) − 𝑉𝑐

𝛥𝑉
) 

Here, 𝑉𝑐  is the critical speed and 𝛥𝑉  denotes a smoothing parameter. 

𝑉(𝑡, 𝑥⃗) = min (𝑣⃗𝑐𝑜𝑛𝑔(𝑡, 𝑥⃗), 𝑣⃗𝑓𝑟𝑒𝑒(𝑡, 𝑥⃗)), this indicates a “congestion-win” principle, which 

means the speed regime is always bounded by the lowest speed. 

The resulting value of the estimate of variable 𝑧𝑖 then equals:  

𝑧(𝑡, 𝑥⃗) = (1 − 𝑤)𝑧𝑐𝑜𝑛𝑔 (𝑡, 𝑥⃗) + 𝑤𝑧𝑓𝑟𝑒𝑒(𝑡, 𝑥⃗) 

This algorithm falls in the category of parametric data-driven methods. Indeed, for optimal 

accuracy, each site should probably have a (slightly) different set of model parameters. These 

parameters, including kernel weight parameters (𝜏, 𝜎 and 𝜂), parameters 𝑉𝑐 and 𝛥𝑉 in the 

weighting function, and pedestrian wave speeds would need to calibrate site-specifically, 

although they should be of the same magnitude. Perhaps ground truth data within very short 

periods would be adequate for calibration, via for example from cameras at that site.  

Application of the GASM for different types of pedestrian data 

Pedestrian flows can be observed and monitored by various surveillance techniques. Aerial 

cameras can be deployed to track pedestrian movement and to obtain trajectories via image 

processing, but sensor coverage is normally limited. This method is not in prevailing usage 

since it is costly and different to maintain and interpret. Local counting cameras and infrared 

sensors can be used to count cross-section flows (and speeds). This type of sensors has been 

used to monitor pedestrians at selected important spots. Similarly, WiFi/Bluetooth sensors 

can be placed at fixed points to detect (partial) pedestrian flows equipped with mobile devices, 

but in an economic and loose way. Moreover, pedestrians equipped with GPS trackers (GSM 

signals, dedicated GPS devices) can provide real-time individual trajectories, although the 

penetration rate is modest. As mentioned, errors and bias are part of the raw data obtained 

from different techniques in reality. In the remainder, we assume that the same reliability 

level applies to various data sources. Although this may not be generally the case, since the 

data with a higher quality should be weighted more in the model; for the sake of this method 

presented, the error that is made due to this assumption does not influence the main message 

of this contribution. To assign different predefined reliability weights for various data sources 
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will be considered in the extension of the current work. 

In this paper, two types of observations are assumed to be available to the model, namely 

flow and speed information from local count cameras at a cross-section level – in the form of 

data quadruples as (𝑡𝑖
𝐶𝑎𝑚, 𝑥⃗𝑖

𝐶𝑎𝑚, 𝑣⃗𝑖
𝐶𝑎𝑚, 𝑞⃗𝑖

𝐶𝑎𝑚), and individual pedestrian trajectories from 

GPS trackers – in the form of (𝑡𝑖
𝐺𝑃𝑆 , 𝑥⃗𝑖

𝐺𝑃𝑆, 𝑣⃗𝑖
𝐺𝑃𝑆 , 𝑣⃗𝑖

𝐺𝑃𝑆) . The two data sources can be 

exclusively or inclusively input into the framework, of an equal reliability level and a refined 

data quality (no noise). The GASM can be used in a straightforward manner to fuse different 

data sources (refer to step 2). Based on these observations at discretized points and the 

proposed GASM, we aim at estimating the complete flow and speed states for the whole 

surveyed area. Note that, the directional field (route choice) is assumed to be known. 

3 APPLICATION EXAMPLE AND MODEL VALIDATION 

For validation purposes, the considered situation is a narrow bottleneck scenario. The data 

stem from a large scale walking experiment which was used to analyze the pedestrian 

walking behaviour in case of a narrow corridor of 1 m width (13). FIGURE 2 shows the full 

set of pedestrian trajectories and a snapshot of the walking experiment. Thereof, all the 

trajectory information of individual pedestrians is available, and it can be used to provide 

ground truth data and to emulate any type of observation data (e.g., GPS data and local 

camera data). The surveyed area is a 10m x 4 m rectangular area. The total experiment time 

period is 920s.  

The main purpose of this validation study is to apply the GASM using limited 

measurement to reproduce traffic states in the whole area. For demonstration purposes, the 

surveyed area is subdivided into small equidistant x-y grids in size of 0.25m x 0.25m. The 

updating interval is set as 10s. Note that, ground truth data can be derived from the trajectory 

information with respect to this spatiotemporal setting. The parameter settings in the GASM: 

the free flow speed 𝑣0 = 1.5m/s; the congested wave speed 𝜔 = −0.25m/s; the critical 

speed 𝑉𝑐 = 0.7𝑚/𝑠, the smoothing parameter 𝛥𝑉 = 0.5, and the kernel parameters 𝜏 = 10𝑠, 

𝜎 = 0.5𝑚 and 𝜂 = 0.1𝑚. This choice is based on the experience accumulated in literatures, 

and the calibration of the parameter set on a site-by-site basis remains as future work. The 

directional field of the pedestrians was directly estimated from the trajectory data. 

Several scenarios have been performed to test the validity of the method with diverse 

detection resolutions. Two data sources are considered: GPS data providing instantaneous 

speeds at reporting instants with six varying penetration rates, local counting camera 

providing aggregated flows and speeds at fixed positions (cross-section data relating to a 

small longitudinal grid) with three varying spatial (longitudinal) resolutions. In total, there are 

17 data scenarios in three categories, two scenarios with sole counting camera data, five with 

pure GPS data, and the rest ten cases regarding data fusion of both sources, see  
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TABLE 1. 

 

The quality of the filter result is measured by the Root Mean Squared Error (RMSE) and 

the Mean Absolute Percentage Error (MAPE), regarding the speed (𝑉 ) and flow (𝑄) 

estimations at equidistant spatiotemporal grids (0.25m x 0.25m x 10s). Both error indicators 

can provide absolute and relative performance of estimation scenarios.  

4 RESULTS AND ANALYSES 

FIGURE 3 presents the performance of all the data scenarios listed in  

 

 

TABLE 1. Clearly, the estimation accuracy increases with detection resolutions (high 

penetration rate and dense camera spacing). 

The scenario with only 5% exclusive GPS data (where solely speed estimate is available) 

shows a considerable improvement in terms of both the RMSE and the MAPE, compared to 

the case of 1~3% GPS data (moving from 1 to 5% GPS data improves the RMSE for 𝑉𝑥 

about 30%, and a clear inflection point can be observed at the performance curve in FIGURE 

3(a)). This indicates that small amount of GPS data would entitle a satisfactory estimation 

performance, although the exact value of the GPS data penetration for this performance is 

still subject to verify with more empirical tests. The main contribution of the GPS data is to 

capture the movement trend for the whole population. Instead, cross-section cameras measure 

the whole population locally at fixed locations (similar to loop detections for car traffic), and 

the estimation based on this local information provides acceptable results (refer to the error 

values intersected with the vertical axes in FIGURE 3(a~c)). With limited speed samples, the 

2D-GASM is able to reconstruct the two-dimensional speed information to a satisfactory 

level. If the local cross-section camera data with additional flow and speed information 

together with the GPS data are put into the filtering framework, speed estimation can provide 

better results. More importantly, flow estimation becomes available for the entire area.  

However, the increasing of GPS data input has very limited influence on the flow 

estimation, since GPS data only provide one-off (isolated) position-speed measures which 

may not be representative of the flow component, see FIGURE 3(d). Meanwhile, it is noticed 

that flow estimation result is not as good as the speed estimation (flow MAPE error is in 

general larger than 40%). Because the underlying model cannot capture the dynamics of flow 

evolution (e.g., the flow conservation principle), it is suggested to deploy a model-based 

estimation approach for improvement (e.g., a Kalman type of state estimation based on a 

macroscopic pedestrian model (14)). 
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It is interesting to see that the percentage error (MAPE) for speed in lateral (y) direction is 

considerably high (larger than 100% thus not included here), even when its absolute sense 

(RMSE) is in a small magnitude (see FIGURE 3(b)). This can be partially explained by the 

fact that there exist both positive and negative values along the lateral direction and both 

values are relatively small, and thus sign error would lead to substantial MAPE results. 

FIGURE 4 gives the graphic presentations of both the ground-truth data and the estimation 

at a certain time instant. From the graphic results, the estimation with pure GPS data (or  

exclusive cross-section data) already presents very promising results for speed estimation, see 

FIGURE 4(b) for the GPS case. In FIGURE 4(c), the estimation performance is enhanced 

with data fusion of additional local camera data, and details at network boundaries are able to 

reproduce (refer to red dashed circles). The flow estimation (see FIGURE 4(d)) is actually a 

reasonable representation of the ground truth. Compared to the ground-truth data, the 

2D-GASM is able to provide a full coverage of states at the entire surveyed area, with 

relatively low error indicators. Note that, the estimation values at some network grids (the 

right upper and lower parts – denoted by rectangular boxes in the figure) that do not exist in 

reality, can be neglected from the results. Equivalently, spatial-operating domain can be easily 

included to consider the existence of obstacles when applying the GSAM method. 

If we apply a naive method, for example, the speed estimate is calculated by a local 

arithmetic average of the surrounding GPS samples at a network grid, instead of 

spatiotemporal neighbouring average. The result is quite limited, only obtaining speed 

estimates at a few grids of the entire area. Flow estimation is not even possible. 

5 CONCLUSION AND RECOMMENDATIONS 

This paper pioneers to investigate the possibility of pedestrian state estimation for crowd 

management systems, in the context of the increasing amount of available pedestrian 

observations in practice, and the increased need for such crowd management systems. It 

presents a novel two-dimensional generalized Adaptive Smoothing Method, incorporating 

pedestrian flow nature and data fusion concept. The methodology can be generalized to any 

generic 2D flows, including bicyclist or mixed flows. The model validation study based on 

trajectory data from a walking experiment has demonstrated that the 2D-GASM is adequate 

to reconstruct pedestrian speed and flow field of the network, although flow estimation can 

be further improved. The data fusion concept embedded in the filtering framework can 

improve estimation quality successfully incorporating both GPS data and cross-section data.  

In this paper, the 2D-GASM shows good performance at a simple pedestrian motion base 

case: unidirectional flow. Future work is needed to test the performance of the GASM at 

more complex situations: crossing flows and/or bidirectional flows which require applying 

the GASM separately for each of the flow groups (leftward, rightward, upward and 

downward), and for other generic 2D flows (e.g., bicyclists). Meanwhile, the sensitivity 

analysis in terms of different model parameters (free- flow/congested wave speeds, kernel 

parameters) and observation data qualities remains as future work. In the current application, 

all the data sources are combined under the assumption of the equal reliability level. Further 

extension is needed to allow separate data input with predefined reliability weight for each of 

the data sources. 
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TABLE 1 Experimental scenarios with GPS data of six testing levels and local  camera data of  three 

testing levels 

Source Input/Output 
Resolution (Testing level) 

(penetration rate or spacing) 
No. Scenarios  

GPS Speed (instantaneous) 0%, 1%, 3%, 5%, 7% 9% 
6 x 3 - 1 = 17  

Camera speed and flow (cross-section aggregated) Void, 4m (1,5,9), 2m (1,3,5,7,9) 
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FIGURE 1 Projecting observation data to the directional line. 
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FIGURE 2 Trajectories and snapshot from a walking experiment at a narrow bottleneck. 
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(a) RMSE for speed in the longitudinal direction (b) RMSE for speed in the lateral direction 

  

(c) MAPE for speed in the longitudinal direction (d) RMSE for flow estimates  

FIGURE 3 Error performance of all the data scenarios regarding RMSE and MAPE. 
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(a) Ground truth - speed (b) Estimation with GPS (5%) - speed 

  

(c) Estimation with data fusion (5%-GPS, 2m-camera) 

- speed 

(d) Flow estimation comparison with cross -section 

cameras (2m) 

FIGURE 4  The ground-truth data with the reconstructed velocities (in x and y direction) and flows at one 

(random) selected time instant (472.5s).  

 

 


