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 A B S T R A C T

Depression detection benefits from combining neurological and behavioral indicators, yet integrating hetero-
geneous modalities such as EEG and interview audio remains challenging. We propose a transformer-based 
multimodal framework that jointly models spectral, spatial, and temporal EEG features alongside linguistic and 
paralinguistic cues from interviews. By employing synchronized multi-head cross-attention and self-attention 
mechanisms, the model effectively captures intra- and inter-modal correlations. In addition, a flexible temporal 
sequence matching strategy reduces EEG channel requirements, enhancing device portability. Evaluated on the 
MODMA and DAIC-WOZ datasets, our approach achieves superior performance compared to state-of-the-art 
models, with a 4.7% improvement in accuracy and a 10% increase in precision. These results demonstrate 
the potential of the proposed framework for accurate, scalable, and cost-effective depression detection in both 
clinical and real-world settings.
1. Introduction

Depression is a prevalent mental health condition with significant 
personal and societal impacts, including disability, diminished quality 
of life, and an increased suicide risk [1]. Traditional diagnostic methods 
for depression rely on a combination of objective biomedical evalua-
tions, such as electroencephalography (EEG), and subjective behavioral 
assessments, like clinical interviews. Among biomedical tools, EEG is 
prominent due to its ability to directly measure neurological brain 
activity, crucial for detecting depression [2–5]. Research has explored 
various EEG signal features, such as power spectral density and con-
nectivity [6–9]. Traditional EEG-based approaches involve two steps: 
feature extraction and classification, using machine learning classifiers 
like support vector machines (SVMs) and decision trees [10–13]. How-
ever, these methods depend heavily on handcrafted features and often 
fail to generalize across diverse populations.

To address these limitations, deep learning methods such as convo-
lutional neural network (CNNs) and long short-term memory (LSTM) 
have been increasingly applied to automate EEG feature extraction, 
demonstrating notable improvements in accuracy [14–17]. Parallel to 
neurological signals, behavioral indicators derived from clinical inter-
views have also proven valuable. Advances in machine learning allow 
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automatic extraction of linguistic and paralinguistic features, where 
lexical diversity, semantic cues, prosody, and speech tone provide com-
plementary information for depression detection [18–21]. Combining 
these heterogeneous modalities has thus become an active research 
direction.

Despite these advances, recent state-of-the-art multimodal methods, 
such as graph-based neural networks and transformer-based fusion 
frameworks, still face important challenges. For example, graph neu-
ral network (GNN)-based approaches capture modality-specific and 
shared structures but often struggle with inter-modal synchronization 
when modalities are not temporally aligned [22]. Transformer-based 
systems such as hierarchical or tensor-based fusion models improve 
long-term dependency modeling, yet they are limited in simultaneously 
integrating spectral, spatial, and temporal EEG information with lin-
guistic and paralinguistic signals [23–28]. Moreover, the complexity 
and cost of EEG acquisition remain barriers to scalability, as most ex-
isting approaches require large numbers of electrodes and cumbersome 
hardware setups.

To address these gaps, this study proposes a multimodal transformer 
model that integrates EEG signals—transformed into two-dimensional 
representations preserving spectral, spatial, and temporal
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information—with interview data capturing both linguistic and paralin-
guistic cues. By employing synchronized multi-head cross-attention and 
self-attention mechanisms, our model effectively aligns heterogeneous 
modalities and extracts richer inter- and intra-modal dependencies, 
overcoming the limitations of previous CNN-, LSTM-, and GNN-based 
approaches. Furthermore, to improve practicality in real-world appli-
cations, we introduce the flexible temporal sequence matching (FTSM) 
technique for EEG channel selection. This strategy substantially re-
duces the number of required electrodes while maintaining competi-
tive accuracy, thereby improving portability and lowering deployment 
costs.

The main contributions of this paper are summarized below:

• We propose a multimodal transformer architecture that jointly 
models spectral, spatial, and temporal EEG patterns alongside 
linguistic and paralinguistic interview features. In comparison 
with existing state-of-the-art approaches, our framework achieves 
superior depression detection performance by explicitly synchro-
nizing intra- and inter-modal correlations.

• We introduce the FTSM technique for EEG channel prioritization, 
which allows reducing the number of EEG channels from 128 
to 4 with only a marginal drop in accuracy (91% to 84%). This 
contribution directly addresses the cost and scalability limitations 
of wearable EEG systems, making the approach more applicable 
to real-world and remote clinical settings.

The remainder of this article is organized as follows: Section 2 reviews 
the related work and sets the context for our research. Section 3 
describes the proposed methodology, including the architecture of 
the multimodal transformer and the data transformation techniques. 
Section 4 presents the experimental setup, datasets, evaluation metrics, 
and results. Section 5 concludes the article with a summary of the key 
contributions. Table  1 lists the main notations used throughout the 
paper.

2. Related work

In this section, we review related work on depression detection, 
grouped according to the data modality and previously applied method-
ologies. We cover EEG-based approaches, audio/text-based methods, 
multimodal strategies, transformer-based frameworks, and EEG channel 
selection techniques. The aim is to highlight both advancements and 
persistent gaps that motivate our proposed model.

2.1. Approaches based on modality

EEG has been widely used in depression detection because it directly 
measures brain activity. Studies have analyzed EEG features across 
spectral, spatial, and temporal dimensions, using handcrafted features 
and classical machine learning classifiers such as SVMs or decision 
trees [6–13]. Although effective to some extent, these methods rely 
heavily on manual feature extraction and often fail to generalize across 
datasets.

Behavioral markers of depression, including linguistic [29] and 
paralinguistic cues, have also been studied extensively. Shin et al. [18] 
and Bauer et al. [19] analyzed linguistic and speech features, while 
Sardari et al. [20] focused on paralinguistic indicators. More recent 
works highlight the role of lexical diversity and prosody in capturing 
depressive states [21]. Transformer-based large language models have 
also been fine-tuned for social media posts, showing strong sensitivity 
to subtle cues of stress and depression [30,31].

Given the multifaceted nature of depression, multimodal strate-
gies that integrate EEG with other behavioral modalities have gained 
prominence. Zhu et al. [32] and Chen et al. [33] demonstrated that 
fusing EEG with eye movement or interviews improves accuracy. Zhang 
et al. [22] proposed a GNN-based modal-shared modal-specific archi-
tecture to capture heterogeneity and homogeneity across modalities, 
2 
Table 1
 Notations and definitions
 Notation Definition  
 𝑋 First sequence of length 𝑛  
 𝑌 Second sequence of length 𝑚  
 𝑓𝑡𝑠𝑚_𝑑𝑖𝑠𝑡 Distance between the sequences 𝑋 and 𝑌  
 𝐷 Cost matrix for 𝑋 and 𝑌  
 𝑑(𝑥𝑖 , 𝑦𝑗 ) Distance between 𝑥𝑖 and 𝑦𝑗  
 (𝑣𝑎𝑙𝑢𝑒, 𝑖𝑑𝑥) Minimum value and its index among neighboring cells 
 𝑠(𝑡) Input signal  
 𝑠(𝑝 + 𝑞) Signal 𝑠(𝑡) sampled at time (𝑝 + 𝑞)  
 𝑞 Current time frame or window position  
 𝑝 Position of time samples within each window  
 𝐿 Length of the finite window  
 𝜔(𝑝) Window function applied to the signal  
 𝑒−𝑗𝜔𝑝 Frequency-dependent phase shift  
 −𝑗𝜔𝑝 Inverse Fourier transform convention  
 𝑗 Imaginary unit  
 𝜔 Frequency component  
 𝑄𝑇 Query token  
 𝐾𝑇 Key token  
 𝑉𝑇 Value token  
 𝑑𝑘 Size of the vector space for the key and query vectors 
 𝑍 𝑙 Input to the self-attention block at layer 𝑙  
 𝑊 Weight matrix  
 𝑇𝑝 Transpose  
 𝑁𝑜𝑟𝑚 Layer normalization  
 𝑀𝐿𝑃 MultiLayer perceptron  
 𝐴 Audio sequence  
 𝐸 EEG sequence  
 𝑟 Offset range  
 𝜖 Smoothing factor  
 𝑡 Time sample  
 𝐴𝑡 Feature vectors for the audio at time 𝑡  
 𝐸𝑡 Feature vectors for the EEG at time 𝑡  
 ⋅ Dot product of the vectors  
 ||𝐴𝑡|| Euclidean norms of the audio feature vectors  
 ||𝐸𝑡|| Euclidean norms of the EEG feature vectors  
 𝑇 Total number of frames in the sequence vectors  
 𝑜 Possible offset  
 𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑜) Exponential cosine similarity for a particular Offset 𝑜  
 𝑝(𝑜) Predicted probability for each offset 𝑜  
 𝑙𝑎𝑏𝑒𝑙𝑜 Represents the ground-truth label for the offset  
 𝜖 Smoothing factor  

though it remains sensitive to temporal misalignment. Recent multi-
modal studies extend fusion to EEG, audio, and video data, showing 
the advantage of cross-modal information sharing [34–40].

2.2. Previously applied methodologies

Transformers have emerged as a powerful tool for multimodal 
depression detection, owing to their ability to model long-term de-
pendencies and integrate heterogeneous modalities. For instance, Ten-
sorFormer [41] uses tensor algebra to retain modality structure while 
enabling cross-modal interactions. Teng et al. [42] developed an intra- 
and inter-emotion fusion transformer that balances homogeneous and 
heterogeneous emotional cues. Fan et al. [43] proposed DepMSTAT, 
which leverages spatio-temporal attention to jointly analyze EEG and 
behavioral cues, successfully modeling speech prosody shifts [44]. Li 
et al. [45] incorporated contrastive learning to improve transformer 
robustness, while Zhu et al. [46] introduced MTNet, which fuses EEG 
and eye-tracking for early depression detection. Sun et al. [28] applied 
graph-based attention mechanisms to audio-based depression detec-
tion. Despite these advances, limitations remain. GNN-based meth-
ods are restricted in handling modality synchronization, while trans-
former variants like TensorFormer and DepMSTAT do not fully capture 
spectral, spatial, and temporal EEG features alongside linguistic and 
paralinguistic cues. Moreover, none explicitly address EEG channel 
reduction for portability. In contrast, our proposed model integrates 
spectral–spatial–temporal EEG features with linguistic and paralinguis-
tic interview data using synchronized multi-head cross-attention and 
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Fig. 1. A general overview of the proposed multimodal transformer model 
includes the Signal Preparation, Signal Conversion and Projection, Multi-head 
Cross-attention, Self-attention Block, and Classification.

self-attention, while introducing FTSM for model-agnostic EEG chan-
nel selection. This dual novelty addresses both fusion challenges and 
practical device constraints.

EEG devices typically include 128 or more channels, which hinders 
real-world usability. To overcome this, channel reduction methods have 
been explored. Zhang et al. [47] proposed weighting EEG channels 
to identify and remove low-value ones. Similarly, Wang et al. [38] 
applied gradient-weighted class activation mapping to rank channel 
importance. Shen et al. [48] combined kernel-target alignment with 
binary particle swarm optimization for optimal channel selection. A 
feature-aggregation-based cross-device transfer method was introduced 
by Li et al. [49], enabling improved generalization with fewer channels. 
Zhu et al. [50] applied mutual information to identify EEG channels 
most correlated with pupil area signals. These works demonstrate the 
promise of channel reduction, yet most are tied to specific models or 
feature extraction pipelines.

3. Methodology

An overview of the proposed multimodal transformer model is 
shown in Fig.  1, and a more detailed representation is given in Fig. 
2. The model integrates EEG and interview data within a unified 
architecture, where EEG signals are transformed to preserve their spec-
tral, spatial, and temporal properties, while the audio data contributes 
both linguistic and paralinguistic cues. By leveraging multi-head cross-
attention, the framework captures both intra- and inter-modal correla-
tions, allowing the integration of neural and behavioral cues to enhance 
depression detection.

The workflow of the model is organized into five main stages, 
illustrated in Fig.  1. First, in the signal preparation stage, raw data 
is preprocessed and EEG channel prioritization is performed. Second, 
during the signal conversion and projection stage, both EEG and audio 
signals are transformed into appropriate formats for subsequent pro-
cessing. Third, the multi-head cross-attention stage fuses heterogeneous 
modalities, enabling the model to learn interactions between EEG 
and interview features. Fourth, the self-attention block further refines 
the representations by modeling dependencies within each modality. 
Finally, the classification stage assigns labels to distinguish between 
normal and depressed subjects.

These five steps build on one another in a sequential manner, 
ensuring a smooth flow from raw data acquisition to final prediction. 
The following subsections describe each stage in detail.

3.1. Signal preparation

3.1.1. Optimal EEG channels selection
To assess the system’s real-world portability while maintaining ac-

ceptable levels of relative accuracy, the model is tested using various 
input scenarios, each corresponding to a different number of channels. 
To select the sample channels, for each subject, the similarity of sig-
nals from each channel with all other channels was measured using 
FTSM [51], and the same channels were identified. Then the chan-
nels were prioritized based on the repetition of similarity in different 
subjects. This makes it possible to evaluate the priority of channels 
3 
independently of the model used for depression classification. As shown 
in Fig.  3, based on priority, four, eight, 16, 32, 64 and 128 channels 
were selected for analysis, respectively. For example, the four channels 
with numbers 67, 68, 93, and 94 have the highest priority which are 
marked in red. Next, the four orange channels, 48, 66, 82, and 84, 
are added to this set. Subsequently, eight yellow channels, 16 green 
channels, 32 blue channels, and 64 purple channels are included in the 
set of channels under examination.

Fig.  4 illustrates a sample scenario where flexible temporal sequence 
matching is compared with the fixed Euclidean distance method. In 
‘‘Step-1’’ the green line indicates spatially similar points between the 
two signals, while the red points represent their differences. In ‘‘Step-
2’’ additional red-filled points are inserted according to the differences 
so that the two signals can be aligned. The FTSM offers a more flexible 
and robust approach for comparing time series data, particularly when 
handling time shifts, distortions, and varying lengths, making it more 
suitable for real-world applications.

Details of the FTSM are provided in Algorithm 1. The FTSM is 
used to measure similarity between two temporal sequences that may 
vary in time or speed. It aligns the sequences in a non-linear fashion 
to minimize the distance between them. In the algorithm, let 𝑋 =
(𝑥1, 𝑥2,… , 𝑥𝑛) be the first sequence of length 𝑛, and 𝑌 = (𝑦1, 𝑦2,… , 𝑦𝑚)
be the second sequence of length 𝑚. Create a cost matrix 𝐷 of size 
(𝑛 + 1) × (𝑚 + 1) initialized to infinity (∞), except for the first cell 
𝐷(1, 1), which is set to 0. This extra row and column allow for easier 
handling of boundary conditions. The cost matrix 𝐷 is filled using 
a nested loop. As shown in Eq.  (1), in each cell, 𝐷(𝑖, 𝑗) represents 
the minimum cumulative cost to align the first 𝑖 elements of 𝑋 with 
the first 𝑗 elements of 𝑌 . The cost to align 𝑥𝑖 with 𝑦𝑗 is calculated 
using a distance function, typically the absolute difference or squared 
difference. 
𝐷(𝑖,𝑗)=𝑑(𝑥𝑖, 𝑦𝑗)+min{𝐷(𝑖−1,𝑗),𝐷(𝑖, 𝑗−1),𝐷(𝑖−1, 𝑗−1)} (1)

where 𝑑(𝑥𝑖, 𝑦𝑗 ) is the distance between 𝑥𝑖 and 𝑦𝑗 . The nested loops 
iterate through each cell of the matrix 𝐷 starting from 𝐷(2, 2). For 
each cell 𝐷(𝑖, 𝑗), calculate the cost and update the matrix using the 
formula mentioned above. After filling the matrix, the FTSM distance is 
found at 𝐷(𝑛+1, 𝑚+1). This value represents the minimum cumulative 
cost required to align the entire sequences 𝑋 and 𝑌 . Starting from 
𝐷(𝑛+1, 𝑚+1), trace back to 𝐷(1, 1) by choosing the path that led to the 
minimum cost in the dynamic programming step. This path represents 
the optimal alignment between the two sequences. Path𝑋 and Path𝑌
indices of the elements from sequence 𝑋 and 𝑌  that are aligned. The 
pair (𝑣𝑎𝑙𝑢𝑒, 𝑖𝑑𝑥) finds the minimum value and its index among the three 
neighboring cells: above, left, and diagonal. The FTSM distance is set 
to the value at the bottom-right corner of the cost matrix 𝐷.

3.1.2. Interview audio data preparation
To prepare audio files for conversion to 2D representation and 

token extraction, a comprehensive data integrity check was performed. 
This process ensured compatibility of audio file formats, identified and 
excluded corrupted files, and standardized file names for consistency. 
Following this, volume normalization was applied across all audio 
files to maintain uniform loudness levels, enhancing the quality and 
consistency of subsequent processing steps. Finally, all audio files were 
resampled to 44.1 kHz sampling rate, ensuring uniformity in data struc-
ture and compatibility with the selected processing algorithms. These 
preparation steps set a robust foundation for accurate 2D generation 
and reliable token extraction.

3.2. Signal conversion and projection

3.2.1. EEG signal to 2D representation
Studies have shown that each aspect of spatial, spectral, and tem-

poral dimensions in EEG data provides valuable information about 
individuals’ emotions [52]. Simultaneous analysis of all three aspects 
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Fig. 2. The overall workflow of the proposed model for depression detection includes five main steps: Signal Preparation, Signal Conversion and Projection, 
Multi-head Cross-attention, Self-attention Block, and Classification.
Fig. 3. Priority-based channel selection using flexible temporal sequence 
matching for four, eight, 16, 32, 64, and 128 channels.

can help improve the accuracy of the model. In addition, by convert-
ing signals to images, different modalities are integrated together in 
the form of similar patches. For this purpose, EEG data have been 
transformed into images in such a way that all three aspects are 
preserved [37,53,54]. As shown in Fig.  5, the vertical axis represents 
4 
Fig. 4. Illustration of Euclidean distance and flexible temporal sequence 
matching for signal alignment. Step 1: Green lines show spatially similar 
points, and red points denote differences. Step 2: Red-filled points are added 
to align the two signals.

channels (spatial) from top to bottom. Each channel receives five 
samples per second, which are converted into grayscale pixels (spectral) 
arranged in a row from left to right (temporal). This process creates 
an image approximately 70,000 pixels long. Inspired by ViT [55], the 
image is resized to 224 × 224 pixels and divided into 16 × 16 patches 
so that in later stages, both local and global features can be extracted 
from them to distinguish between normal and depressed states. Linear 
projection is applied, followed by position embedding on the tokens.

3.2.2. Interview audio file to words and 2D representation
In the analysis of emotions from interview data, we recognize 

the importance of both linguistic and paralinguistic features. To 
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Algorithm 1 Flexible Temporal Sequence Matching
1: Input: Sequences 𝑋 = (𝑥1 , 𝑥2 ,… , 𝑥𝑛) and 𝑌 = (𝑦1 , 𝑦2 ,… , 𝑦𝑚)
2: Output: FTSM distance and alignment path
3: Initialize cost matrix 𝐷 of size (𝑛 + 1) × (𝑚 + 1) with ∞
4: 𝐷(1, 1) ← 0
5: for 𝑖 ← 2 to 𝑛 + 1 do
6:  for 𝑗 ← 2 to 𝑚 + 1 do
7:  𝑐𝑜𝑠𝑡 ← |𝑥𝑖−1 − 𝑦𝑗−1|
8:  𝐷(𝑖, 𝑗) ← 𝑐𝑜𝑠𝑡 + min{𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗 − 1)}
9:  end for
10: end for
11: 𝑓𝑡𝑠𝑚_𝑑𝑖𝑠𝑡 ← 𝐷(𝑛 + 1, 𝑚 + 1)
12: Initialize empty lists 𝑝𝑎𝑡ℎ𝑋 and 𝑝𝑎𝑡ℎ𝑌
13: 𝑖 ← 𝑛 + 1
14: 𝑗 ← 𝑚 + 1
15: while 𝑖 > 1 and 𝑗 > 1 do
16:  Insert 𝑖 − 1 at the beginning of 𝑝𝑎𝑡ℎ𝑋
17:  Insert 𝑗 − 1 at the beginning of 𝑝𝑎𝑡ℎ𝑌
18:  (𝑣𝑎𝑙𝑢𝑒, 𝑖𝑑𝑥) ← min{𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗 − 1)}
19:  if 𝑖𝑑𝑥 = 1 then
20:  𝑖 ← 𝑖 − 1
21:  else if 𝑖𝑑𝑥 = 2 then
22:  𝑗 ← 𝑗 − 1
23:  else
24:  𝑖 ← 𝑖 − 1
25:  𝑗 ← 𝑗 − 1
26:  end if
27: end while
28: Insert 𝑖 − 1 at the beginning of 𝑝𝑎𝑡ℎ𝑋
29: Insert 𝑗 − 1 at the beginning of 𝑝𝑎𝑡ℎ𝑌
30: return 𝑓𝑡𝑠𝑚_𝑑𝑖𝑠𝑡, 𝑝𝑎𝑡ℎ𝑋, 𝑝𝑎𝑡ℎ𝑌

Fig. 5. Transforming EEG signals into images while preserving the spatial 
information from channels, the spectral details in the gray-scale spectrum, and 
the temporal aspects over time.

facilitate a comprehensive analysis, the audio input signal undergoes 
a two-stream preprocessing pipeline. For the linguistic stream, the 
raw audio file is first transcribed into text using an automatic speech 
recognition system. This transcript is then processed for linguistic anal-
ysis. Words are tokenized using a pre-trained tokenizer, which breaks 
the sentences into sub-word units or words. These tokens are then 
mapped to numerical embeddings, which are prepared as input for the 
multi-head cross-attention mechanism.

For the paralinguistic stream, we extract features that capture 
vocal nuances. The audio signal is first converted to a spectrogram 
using the Short-Time Fourier Transform (STFT). This process involves 
dividing the signal into small, overlapping frames and computing the 
Fourier transform for each. The magnitude of the resulting complex 
values represents the intensity of different frequencies over time, ef-
fectively converting the audio signal into a 2D image-like representa-
tion. This spectrogram is then used to derive features such as pitch, 
volume, and spectral centroid, which serve as crucial indicators of 
emotional state. This 2D representation is then used as input for the 
cross-attention module, as depicted in Fig.  2.
5 
The STFT of a signal 𝑠(𝑡) is defined in Eq.  (2). Here, 𝑠(𝑝 + 𝑞)
represents the signal 𝑠(𝑡) sampled at time 𝑝 + 𝑞, where 𝑞 denotes the 
position of the current time frame (or window) and 𝑝 indexes the time 
samples within each window of length 𝐿. The window function 𝜔(𝑝)
is applied to the signal to isolate a segment for analysis, effectively 
‘‘windowing’’ it. This ensures that the analysis focuses on a specific 
portion of the signal within each frame. The term 𝑒−𝑗𝜔𝑝 is a complex 
exponential representing a sinusoid with a frequency-dependent phase 
shift. Here, 𝜔 is the angular frequency (in radians per sample), and 
𝑗 is the imaginary unit (𝑗 =

√

−1). By Euler’s formula, 𝑒−𝑗𝜔𝑝 can be 
expressed as cos(𝜔𝑝) − 𝑗 sin(𝜔𝑝). This enables the STFT to capture both 
the amplitude and phase of the frequency component 𝜔 for each time 
frame 𝑞. 

STFT{𝑠(𝑡)}(𝑞, 𝜔) =
𝐿−1
∑

𝑝=0
𝑠(𝑝 + 𝑞)𝑤(𝑝)𝑒−𝑗𝜔𝑝 (2)

Eq.  (3) presents the spectrogram on a decibel scale, which visually 
represents the magnitude of the STFT. It shows how the spectrum of 
frequencies in a signal changes over time. 
Spectrogram𝑑𝐵(𝑞, 𝜔) = 20 log10 |STFT{𝑠(𝑡)}(𝑞, 𝜔)| (3)

The STFT{𝑠(𝑡)}(𝑞, 𝜔) is the short-time Fourier transform of the 
signal 𝑠(𝑡). It provides a complex number representing the magni-
tude and phase of the frequency component 𝜔 at the time frame 
𝑞. |STFT{𝑠(𝑡)}(𝑞, 𝜔)| is the magnitude of the STFT. The magnitude is 
calculated by taking the absolute value of the complex number obtained 
from the STFT, which gives the amplitude of the frequency component 
𝜔 at the time frame 𝑞. Using the logarithm helps in compressing the 
dynamic range of the amplitudes, making it easier to visualize and 
interpret. Multiplying the logarithm by 20 converts the magnitude 
to decibels (dB). This is a common practice in signal processing to 
express the amplitude of signals on a logarithmic scale, which is more 
aligned with how humans perceive sound intensity. The spectrogram 
in dB thus provides a way to visualize how the frequency content of 
a signal changes over time, with the intensity in the spectrogram plot 
representing the amplitude of the frequency components in decibels. 
This helps in identifying patterns, harmonics, and other features in 
the signal that may not be evident in the time domain alone. To 
more effectively represent the audio spectrum of human speech, certain 
assumptions were made. The view range was set between 0 and 5000. 
Since the voice pitch range for humans is from 85 to 255, the display 
range for voice pitch was set between 75 and 265. The window length 
was set to 0.125 s [56,57].

3.3. Multi-head cross-attention

As shown in Fig.  2, in multi-head cross-attention block, a bidi-
rectional multimodal attention mechanism is responsible for fusing 
modalities at the token level. The model performs both intra-modal 
and inter-modal attention operations. Intra-modal attention focuses 
on the connections between elements of the same type of modality, 
such as EEG images, interview audio files, or interview text. How-
ever, inter-modal attention addresses the connections between different 
modalities. With the help of these two mechanisms, the model can 
simultaneously extract local patterns and understand the relationships 
between these patterns across different modalities. As a result, a more 
comprehensive understanding of the data is created, which can lead 
to increased model accuracy. Specifically, cross attention is a mech-
anism that identifies and encodes the relationships between different 
modalities. It calculates attention scores between the interview audio 
and interview text modalities and separately examines the total of these 
connections with the related EEG signal images.

In our model, cross attention works by using attention mechanisms 
where the query (Q), key (K), and value (V) matrices come from 
different types of tokenized data, like 𝑄𝑇 . These cross-modal atten-
tion scores are then integrated with the intra-modal attention scores 
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to create a unified representation that fuses information from both 
text and images. The data extracted from individuals’ interviews and 
the EEG signals obtained from them can inherently be asynchronous. 
This issue can significantly affect the performance of the multi-head 
cross-attention mechanism. To mitigate the impact of this lack of 
synchronization, inspired by [58] a synchronization module is propose 
whose structure is presented in Algorithm 2

In the first step, it simulates real-world asynchronous conditions by 
randomly shifting the audio or EEG sequence within a defined range 
(e.g., [−r, r]). In the second step, for each possible audio-EEG (AV) 
sequence within the range, the model shifts either the audio or EEG and 
processes the concatenated sequence through the encoder to extract 
features. In the third step, the cosine similarity between the audio and 
EEG feature vectors is computed for each possible offset to measure the 
alignment quality. The formula computes the cosine similarity between 
the audio 𝐴 and EEG sequence 𝐸 over time 𝑡. 𝐴𝑡 and 𝐸𝑡 are the feature 
vectors for the audio and EEG at time 𝑡. ⋅ denotes the dot product of 
the vectors. ∥𝐴𝑡∥ and ∥𝐸𝑡∥ are the magnitudes (Euclidean norms) of 
the feature vectors. 𝑇  is the total number of frames in the sequence. A 
higher cosine similarity value indicates better alignment between the 
audio and EEG at that specific offset. In the fourth step, the model 
smooths the labels for offset predictions to prevent harsh penalties 
for minor prediction deviations. In the fifth step, the similarities are 
converted into probabilities using softmax, and the cross-entropy loss is 
computed between the predicted and ground truth offsets. The softmax 
function, converts the cosine similarity scores into probabilities for 
each possible offset 𝑜. The 𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑜) is the exponential of the cosine 
similarity for a particular offset 𝑜. The denominator ∑𝑜′ 𝑒

similarity(𝑜′) in 
similarity softmax formula is the sum of the exponentials of cosine 
similarities for all possible offsets. The cross-entropy loss is used to 
compute the difference between the predicted 𝐴𝐸 offset probabilities 
and the ground-truth labels. 𝑝(𝑜) is the predicted probability for each 
offset 𝑜, obtained from the softmax function. 𝑙𝑎𝑏𝑒𝑙𝑜 represents the 
ground-truth label for the offset, which is 1 for the correct offset and 
0 for incorrect offsets (after smoothing). The loss quantifies how well 
the model’s predicted offset probabilities align with the true offsets. 
Minimizing this loss improves the model’s ability to handle 𝐴𝐸 syn-
chronization. Label smoothing formula smooths the labels to avoid 
over-penalizing small deviations from the true 𝐴𝐸 offset. For the true 
offset, the label is reduced by a small factor 𝜖 (smoothing factor), and 
this value 𝜖 is distributed to adjacent offsets. This prevents the model 
from being overly confident in predicting the exact offset. Smoothing 
helps regularize the model, making it more tolerant to small deviations 
and improving its generalization performance. Finally, in the sixth step, 
the Sync Loss is used to update the model weights, improving the 
alignment of asynchronous audio and EEG data.

3.4. Self-attention block

As shown in Fig.  2, the self-attention block utilizes the self-attention 
mechanism, which calculates attention scores between all pairs of 
tokens within a single modality. These scores come from the query (Q), 
key (K), and value (V) matrices, which are representations of the input 
data transformed by learned weight matrices. The attention scores 
are computed using Eq.  (4) [59]. In this equation, 𝑄𝐾𝑇

√

𝑑𝑘
 represents 

the scaled dot-product of the query and key matrices, normalized 
by the square root of the key vectors’ dimensionality (𝑑𝑘). Here, 𝑑𝑘
is the size of the vector space for the key and query vectors. The 
softmax function ensures the scores are positive and sum to one. After 
calculating the attention scores, the outputs are processed through 
a residual connection, followed by normalization and a multi-layer 
perceptron (MLP). A residual connection (𝑍𝑙+1) adds the input to the 
layer (𝑍𝑙) to the output of the attention mechanism. This technique 
aids in training deep networks by providing a direct path for the 
gradient during backpropagation, addressing the vanishing gradient 
problem, and preserving information from the input while learning 
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Algorithm 2 Modality Synchronization Module
1: Input: Audio sequence 𝐴, EEG sequence 𝐸, Offset range 𝑟, smoothing factor 𝜖
2: Output: Adjusted sync between audio and EEG, optimized Sync Loss
3: Initialization:
4: - Prepare encoder with initial weights.
5: - Set offset range 𝑟 (e.g., [-4,4] frames).
6: - Initialize loss function (e.g., cross-entropy for classification).
7: procedure SynchronizationModule(𝐴, 𝐸)
8:  Step 1: Data Augmentation
9:  - For each training example, artificially introduce AV offset:
10:   Shift 𝐴 or 𝐸 by random offset ∈ [−𝑟, 𝑟]
11:  Step 2: Enumerate Over Possible Offsets
12:  for each offset 𝑜 ∈ [−𝑟, 𝑟] do
13:  - Shift 𝐴 or 𝐸 by offset 𝑜.
14:  - Compute the fused sequence 𝐹𝑜 by concatenating shifted 𝐴 and 𝐸.
15:  - Pass 𝐹𝑜 through shared encoder to get encoded features 𝑓𝑜.
16:  end for
17:  Step 3: Calculate Cosine Similarity
18:  for each offset 𝑜 do
19:  - Calculate average cosine similarity between 𝐴 and 𝐸 for offset 𝑜:

similarity(𝐴,𝐸) = 1
𝑇

𝑇
∑

𝑡=1

𝐴𝑡 ⋅ 𝐸𝑡
‖𝐴𝑡‖‖𝐸𝑡‖

20:  end for
21:  Step 4: Apply Label Smoothing
22:  - For each ground truth offset, smooth the label distribution:
23:   Subtract smoothing factor 𝜖 from true label position and add to adjacent 

positions.
24:  - This prevents harsh penalties for small deviations in offset predictions.

smoothed_label𝑜 =

⎧

⎪

⎨

⎪

⎩

1 − 𝜖 for the true offset,
𝜖 for adjacent offsets,
0 for all other offsets.

25:  Step 5: Compute Sync Loss
26:  - Use softmax to convert cosine similarities to probabilities for each offset 𝑜:

𝑝(𝑜) = 𝑒similarity(𝑜)
∑

𝑜′ 𝑒similarity(𝑜
′)

27:  - Calculate cross-entropy loss between predicted and ground truth offsets:
𝐿sync = −

∑

𝑜
label𝑜 ⋅ log(𝑝(𝑜))

28:  Step 6: Backpropagation and Weight Update
29:  - Use 𝐿sync to update the encoder weights via backpropagation.
30:  - Adjust the model’s attention and encoder to improve AE alignment.
31: end procedure

new features. This process can be summarized by Eq.  (5). Variable 𝑍𝑙

denotes the input to the self-attention block at layer 𝑙. This variable 
is a matrix with each row representing a token’s representation at 
that specific layer. Inspired by [53], we stack multiple self-attention 
blocks to iteratively enhance the input data representations. Each block 
enables the model to identify more intricate patterns and dependencies 
within the modality. Attention(Q, K, V) denotes the outcome of the self-
attention mechanism for the specified layer. This result is computed 
utilizing the query (Q), key (K), and value (V) matrices, derived from 
the input 𝑍𝑙. As depicted in Eq.  (6), matrices 𝑊𝐾 , 𝑊𝑄 and 𝑊𝑉  serve as 
weight matrices employed to project the input embeddings into the key 
(K), query (Q), and value (V) vectors. 𝑄 is obtained from the input 𝑋𝑙

by applying a weight matrix 𝑊𝑄 to it, representing the token currently 
under focus. Similarly, K is derived from 𝑍𝑙 by multiplying it with the 
weight matrix 𝑊𝐾 . It depicts the tokens that used for comparison with 
the query. 𝑉  is obtained from the input 𝑍𝑙 by the process of multiplying 
it with a weight matrix 𝑊𝑉 . It encapsulates the values compiled from 
the attention scores. The self-attention mechanism calculates the level 
of attention each token should allocate to every other token utilizing 
these matrices. The result is a calculated total of the values (V), with 
the weights determined by the attention scores as defined in Eq.  (4). 
Norm denotes layer normalization, a method aimed at stabilizing and 
expediting the training of deep neural networks by standardizing the 
inputs across the features for every token. It guarantees that the outputs 
maintain a consistent range of values across the network by ensuring 
they have an average of zero and a variance of one. After normalization, 
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the data is processed by an MLP feed-forward neural network, which 
usually consists of two linear layers with a GeLu activation function in 
between. The model processes EEG data from the entire session along 
with interview data, using a self-attention block before the classifica-
tion stage to fully capture the key information from both modalities. 
The MLP, alongside the self-attention mechanism, helps to identify 
patterns and relationships in the data before classification. 

Attention(𝑄,𝐾, 𝑉 ) = softmax
(

𝑄𝐾𝑇
𝑝

√

𝑑𝑘

)

𝑉 (4)

𝑍𝑙+1 = MLP(Norm(Attention(𝑄,𝐾, 𝑉 ) +𝑍𝑙)) (5)

𝑄 = 𝑍𝑙𝑊𝑄 & 𝐾 = 𝑍𝑙𝑊𝐾 & 𝑉 = 𝑍𝑙𝑊𝑉 (6)

3.5. Classification head

Classification is the final step of proposed model. The classification 
head receives a latent array that has been processed through multiple 
multimodal and self-attention layers. This array contains the combined 
features from both the image and text data. The classification head 
generates raw scores, or logits, for the ‘normal’ and ‘depressed’ classes. 
These logits are passed through a softmax function to calculate the 
probability for each class. During training, binary cross-entropy loss is 
used to compare the predicted scores with the actual labels.

4. Experimental results

4.1. Datasets and experimental setup

This study utilizes the multi-modal open dataset for mental-disorder 
analysis dataset (MODMA), and distress analysis interview corpus-
wizard of oz (DAIC-WOZ). The MODMA is a public resource for major 
depressive disorder (MDD) research published by Lanzhou University. 
The MODMA includes 128-channel EEG recordings and audio data from 
24 MDD patients and 29 healthy controls. MDD persons were recruited 
from a hospital setting and diagnosed by psychiatrists. Twenty of the 
participants (named subjects) were women and 33 were men. The age 
range of the subjects was 16 to 52 years. The audio data and EEG 
signals are recorded simultaneously during multimodal emotion elic-
itation experiments. Each session typically lasts for about 20–30 min, 
depending on the specific experimental setup and protocol used [60].

The DAIC-WOZ dataset is a widely used benchmark for detect-
ing signs of psychological distress, particularly depression. It contains 
audio, video, and text data from clinical interviews, where a virtual 
interviewer (controlled by a human ‘‘wizard’’) engages participants 
in a structured conversation. The dataset includes 189 sessions, with 
142 used for training and 47 for testing. Each session contains tran-
scribed text, audio recordings (16 kHz, 16-bit WAV format), and video 
(1920 × 1080 resolution), along with facial landmarks, prosodic fea-
tures, and voice pitch variations. We are used audio files and transcripts 
in this research [61]. The comparison of channels for selecting channels 
and generating the image dataset was performed on a system with an 
Intel Core i7 CPU, 48.0 GB RAM, and an NVIDIA GeForce GTX 1080 
graphics card. The implementation and evaluation of the model were 
conducted on Google Colab. The evaluation metrics included Accuracy, 
Precision, Recall, and F1-score.

4.2. Evaluation results

To assess the effectiveness of our proposed model, as shown in 
Table  2 we perform a quantitative comparison against several methods 
applied to the MODMA dataset, and DAIC-WOZ including HGP-SL [23], 
AM-GCN [24], SAGE [25], CGIPool [26], SGP-SL [27], MS2-GNN [22], 
and G-Atten. According to the experimental results, our model has 
outperformed the state-of-the-art.
7 
HGP-SL [23] developed a hierarchical graph pooling method that 
emphasizes structure learning to effectively summarize graph repre-
sentations. Their approach leverages a structure learning mechanism 
that dynamically learns the graph structure during the pooling process, 
leading to enhanced performance in various graph-based tasks. The 
AM-GCN [24] employs adaptive multi-channel graph convolutional net-
works to capture the complex relationships in data, achieving notable 
results in various domains. SAGE [25] proposed a semi-supervised 
classification method to capture multi-scale structures within data, 
achieving high accuracy in classification tasks. CGIPool [26] utilizes a 
graph pooling approach to improve the infomax principle on coarsened 
graphs, achieving significant results in the task of graph classification. 
The [27] utilizes self-attention mechanism integrated with EEG-based 
topological structures and soft labels to enhance depression detection. 
MS2-GNN [22] focus on fusing different modalities to improve de-
tection accuracy. Features from each modality are extracted different 
techniques and then fused using a neural network, which enables the 
model to learn complex interactions between features from different 
modalities. Recently, [28] introduced an approach for depression detec-
tion based on audio signals using a GNN framework. This method first 
employs a gated recurrent unit (GRU) to capture time-series dependen-
cies in audio features and then constructs two sequential graph neural 
networks. The first network models frame-level features within each 
audio sample, while the second one captures inter-sample relationships.

Our multimodal transformer model demonstrates significant ad-
vancements in depression detection, achieving the highest accuracy 
of 91.22% on the MODMA and 94.17% on the DAIC-WOZ dataset, 
outperforming previous models such as AM-GCN, MS2-GNN, and G-
Atten. To validate these improvements statistically, we conducted 10 
independent runs of our model on both datasets. For MODMA, the 
mean accuracy was 91.20% with a standard deviation of 0.75% and 
a 95% confidence interval (CI) of [90.79%, 91.73%], while for DAIC-
WOZ, the mean accuracy was 94.18% with a standard deviation of 
0.71% and a 95% CI of [93.61%, 94.75%]. Paired t-tests revealed 
statistically significant improvements over all baseline models (𝑝 <
0.0001), except for G-Atten on MODMA, where p = 0.0006, indicating a 
robust performance advantage. By integrating EEG and audio data, our 
model captures a richer representation through spectro-temporal and 
linguistic features, leveraging advanced attention mechanisms and im-
age transformation techniques. As will be discussed in Section 4.3, this 
approach not only ensures higher accuracy, precision, recall, and F1-
score, respectively 91.22%, 92.34%, 90.15%, and 91.23% for MODMA, 
and 94.17%, 96.14%, 94.87%, and 95.50% for DAIC-WOZ, but also 
exhibits robustness and better generalization, particularly in real-world 
scenarios where some EEG channels might be missing. This high-
lights the model’s practical applicability and improved usability in 
constrained data acquisition environments.

4.3. Ablation study

4.3.1. Channel and modality selection using FSTM
To investigate the impact of reducing the number of channels, 

as performed by the FTSM algorithm, on measurement accuracy, the 
accuracy of the model was examined with four, eight, 16, 32, 64, and 
128 channels. Additionally, the impact of each modality on the model’s 
accuracy when channel selection is performed was assessed. As shown 
in Fig.  6, including any of the modalities along with EEG significantly 
increases the model’s accuracy. The highest accuracy is achieved when 
all three EEG, audio, and text (E,A,T) modalities are considered. It is 
important to note that due to the large number of parameters in vision 
transformer models compared to traditional models like CNNs, along 
with the limited dataset size, there is a significant gap between training 
and validation performance, indicating overfitting. However, adding 
modalities and utilizing attention mechanisms and modality synchro-
nization greatly reduces the extent of this overfitting. According to Fig. 
7 EEG played the most important role in classification. Additionally, the 
audio file, which provides paralinguistic features, often plays a more 
significant role than the text, which contains linguistic features.
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Table 2
Comparison of recent research studies that employed deep learning and transformer models to detect depression using MODMA 
and DAIC-WOZ datasets, ranked by accuracy.
 Dataset Model ACC.% PRE.% REC.% F1-.% Stats (Mean ±Std, 𝑝-value)  
 

MODMA

HGP-SL [23] 58.49 53.57 62.50 62.50 – (𝑝 < 0.0001 vs. Ours)*  
 AM-GCN [24] 64.86 58.82 62.50 60.61 – (𝑝 < 0.0001 vs. Ours)*  
 SAGE [25] 67.92 64.00 66.67 65.30 – (𝑝 < 0.0001 vs. Ours)*  
 CGIPool [26] 73.58 69.23 75.00 72.00 – (𝑝 < 0.0001 vs. Ours)*  
 SGP-SL [27] 84.91 80.77 87.50 84.00 – (𝑝 < 0.0001 vs. Ours)*  
 MS2-GNN [22] 86.49 82.35 87.50 84.85 – (𝑝 < 0.0001 vs. Ours)*  
 G-Atten. [28] 90.35 88.25 90.33 89.15 – (p = 0.0006 vs. Ours)  
 Ours 91.22 92.34 90.15 91.23 91.20 ± 0.75, CI 95% [90.79%, 91.73] 
 

DAIC-WOZ

AM-GCN [24] 54.35 29.41 35.71 32.26 – (𝑝 < 0.0001 vs. Ours)*  
 HGP-SL [23] 60.71 57.19 59.12 58.14 – (𝑝 < 0.0001 vs. Ours)*  
 SAGE [25] 68.51 67.02 65.98 66.50 – (𝑝 < 0.0001 vs. Ours)*  
 CGIPool [26] 74.19 70.79 72.28 71.53 – (𝑝 < 0.0001 vs. Ours)*  
 SGP-SL [27] 79.63 78.90 80.88 79.88 – (𝑝 < 0.0001 vs. Ours)*  
 MS2-GNN [22] 80.43 64.71 78.57 70.97 – (𝑝 < 0.0001 vs. Ours)*  
 G-Atten. [28] 92.21 92.36 92.18 92.23 – (𝑝 < 0.0001 vs. Ours)  
 Ours 94.17 96.14 94.87 95.50 94.18 ± 0.71, CI 95% [93.61%, 94.75] 
*Note: p-values for baseline models are based on paired t-tests using 10 runs, comparing the mean accuracy of ours (91.20% for MODMA, 
94.18% for DAIC-WOZ) with the respective baseline accuracies. For MODMA, G-Atten 𝑝-value is 0.0006; for DAIC-WOZ, all p-values are <
0.0001.
Fig. 6. The training and validation accuracy of the model on the MODMA 
dataset in different modalities, including EEG, audio, and text (E,A,T); EEG 
and audio (E,A); EEG and text (E,T); and EEG alone (E), across sets of four, 
eight, 16, 32, 64, and 128 channels.

4.3.2. Multi-head cross-attention, modality synchronization, and self-
attention

The multi-head cross-attention block and self-attention block are 
vital components for enhancing the model’s comprehension of hidden 
information across various modalities, as shown in Table  3. Removing 
either block leads to a significant decrease in accuracy, while the im-
pact of the Modality Synchronization Module is comparatively smaller. 
When the multi-head cross-attention block is removed, a normaliza-
tion and unification stage is introduced after the signal conversion 
and projection block. The data is then passed directly to the self-
attention block. Cross-attention helps the model combine information 
from different modalities and capture their relationships, so removing it 
reduces or eliminates these interactions. When the self-attention block 
is removed, a normalization stage follows unification, leading directly 
to the classification stage. Self-attention helps the model understand 
long-term dependencies between input tokens. Removing it can weaken 
the model’s ability to grasp these dependencies, especially in tasks that 
involve complex or long-term relationships.
8 
Fig. 7. Scatter plot of SHapley Additive exPlanations (SHAP) values illustrat-
ing the impact of EEG, Audio, and Text features on model predictions for the 
MODMA dataset.

Table 3
 Ablation studies of the proposed model’s multi-head cross-attention and self-
attention blocks using the MODMA dataset, including the effect of the modality 
synchronization module on multi-head cross-attention.
 Cross-att. Sync. Modu. Self-att. ACC.% PRE. % REC.% F1-.% 
 7 7 7 58.52 56.12 59.62 57.83 
 7 7 3 62.16 61.84 62.32 62.10 
 3 7 7 64.63 63.92 65.02 64.46 
 3 7 3 87.16 88.84 86.84 87.89 
 3 3 7 75.08 78.12 76.10 77.10 
 3 3 3 91.22 92.34 90.15 91.23 

4.4. Impact of hyperparameters setting

The performance of a deep learning model is highly influenced by 
its hyperparameter settings. To develop a highly reliable deep learning 
model, it is essential to carefully optimize these hyperparameters. The 
grid search algorithm is a straightforward and efficient method for pa-
rameter optimization, commonly employed in hyperparameter tuning 
for deep learning models [37]. To optimize the hyperparameters of 
the proposed model, including learning rate, batch size, and maximum 
epoch, a grid search strategy is utilized. In particular, Fig.  8(a) shows 
that when the learning rate is set to 0.0001, the proposed method 
achieves the highest recognition accuracy. However, as the learning 
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Fig. 8. Accuracy comparison with different hyperparameters. (a) Learning 
rate. (b) Batch size. (c) Epoch.

rate increases to 0.1, the recognition accuracy drops significantly be-
cause the learning rate is too high, causing the model to oscillate 
around the global optimum. Furthermore, lowering the learning rate 
to 0.00001 causes a decline in the model’s recognition accuracy, as 
the reduced learning rate results in the model underfitting. Fig.  8(b) 
shows that with a batch size of 8, the proposed method achieves 
the lowest recognition accuracy. This is due to the instability in the 
gradient descent process caused by the smaller batch size. As the batch 
size grows, the model’s performance improves, but once the batch size 
hits 32, the performance levels off. Fig.  8(c) shows that the model’s 
performance improves up to epoch 38, suggesting that choosing 38 
epochs is a sensible decision for this model.

4.5. Channel attention analysis of EEG subjects

In this section, we analyze channel attention by visualizing the 
channel weights learned by the proposed model. Fig.  9 displays the 
distribution of channel attention on the scalp for three healthy and 
three MDD subjects from the MODMA dataset. The red areas on the 
scalp indicate channels with large weights, while the blue areas in-
dicate channels with small weights. The red areas are significantly 
smaller than the blue areas, suggesting that only a few EEG chan-
nels are strongly correlated with depression recognition, while many 
channels are irrelevant. Due to individual differences, no significant 
visual distinctions were observed between the healthy and MDD classes. 
However, relatively more scattered red spots were seen in depressed 
individuals. Fewer red spots occur in the front and left parts of the 
brain, while more red spots appear in the back of the head and the 
right side.

5. Conclusions

This study presents a synchronized multimodal transformer model 
that integrates EEG signals and interview data to enhance depres-
sion detection, extracting spectral, spatial, and temporal features from 
EEG via 2D mapping and linguistic/paralinguistic cues from audio. 
Employing self-attention and multi-head cross-attention mechanisms 
alongside a synchronization module, the model captures inter- and 
intra-modal correlations, achieving a 4.7% accuracy improvement and 
10% precision boost on MODMA and DAIC-WOZ datasets compared to 
state-of-the-art methods. The FTSM algorithm optimizes EEG channel 
selection, reducing channels from 128 to 4 while maintaining 84% 
accuracy, thereby lowering costs and improving device portability. 
However, limitations include limited generalizability beyond evaluated 
datasets, susceptibility to real-world noise, and ethical concerns like 
data privacy and misdiagnosis risks.

Future Research Directions. Based on the current results, sev-
eral directions can be explored: (i) evaluation on larger and more 
diverse datasets to improve generalization across populations, (ii) de-
velopment of noise-robust and domain-adaptive methods to handle 
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Fig. 9. Display of the channel attention distribution on the scalp surface and 
on the image related to EEG signals for three healthy subjects and three MDD 
subjects.

real-world recording artifacts, (iii) incorporation of privacy-preserving 
and fairness-aware learning frameworks such as federated learning to 
address ethical concerns, (iv) design of adaptive multimodal fusion 
strategies to remain effective when some modalities are missing, (v) 
real-time deployment using lightweight wearable EEG systems for clin-
ical and telehealth applications, and (vi) personalized and longitudinal 
modeling for tracking depressive symptoms over time.
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