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ARTICLE INFO ABSTRACT

Keywords: Depression detection benefits from combining neurological and behavioral indicators, yet integrating hetero-
Depression detection geneous modalities such as EEG and interview audio remains challenging. We propose a transformer-based
EEG multimodal framework that jointly models spectral, spatial, and temporal EEG features alongside linguistic and

Multimodal transformer
Modality synchronization
Flexible temporal sequence matching

paralinguistic cues from interviews. By employing synchronized multi-head cross-attention and self-attention
mechanisms, the model effectively captures intra- and inter-modal correlations. In addition, a flexible temporal
sequence matching strategy reduces EEG channel requirements, enhancing device portability. Evaluated on the

MODMA and DAIC-WOZ datasets, our approach achieves superior performance compared to state-of-the-art
models, with a 4.7% improvement in accuracy and a 10% increase in precision. These results demonstrate
the potential of the proposed framework for accurate, scalable, and cost-effective depression detection in both

clinical and real-world settings.

1. Introduction

Depression is a prevalent mental health condition with significant
personal and societal impacts, including disability, diminished quality
of life, and an increased suicide risk [1]. Traditional diagnostic methods
for depression rely on a combination of objective biomedical evalua-
tions, such as electroencephalography (EEG), and subjective behavioral
assessments, like clinical interviews. Among biomedical tools, EEG is
prominent due to its ability to directly measure neurological brain
activity, crucial for detecting depression [2-5]. Research has explored
various EEG signal features, such as power spectral density and con-
nectivity [6-9]. Traditional EEG-based approaches involve two steps:
feature extraction and classification, using machine learning classifiers
like support vector machines (SVMs) and decision trees [10-13]. How-
ever, these methods depend heavily on handcrafted features and often
fail to generalize across diverse populations.

To address these limitations, deep learning methods such as convo-
lutional neural network (CNNs) and long short-term memory (LSTM)
have been increasingly applied to automate EEG feature extraction,
demonstrating notable improvements in accuracy [14-17]. Parallel to
neurological signals, behavioral indicators derived from clinical inter-
views have also proven valuable. Advances in machine learning allow

automatic extraction of linguistic and paralinguistic features, where
lexical diversity, semantic cues, prosody, and speech tone provide com-
plementary information for depression detection [18-21]. Combining
these heterogeneous modalities has thus become an active research
direction.

Despite these advances, recent state-of-the-art multimodal methods,
such as graph-based neural networks and transformer-based fusion
frameworks, still face important challenges. For example, graph neu-
ral network (GNN)-based approaches capture modality-specific and
shared structures but often struggle with inter-modal synchronization
when modalities are not temporally aligned [22]. Transformer-based
systems such as hierarchical or tensor-based fusion models improve
long-term dependency modeling, yet they are limited in simultaneously
integrating spectral, spatial, and temporal EEG information with lin-
guistic and paralinguistic signals [23-28]. Moreover, the complexity
and cost of EEG acquisition remain barriers to scalability, as most ex-
isting approaches require large numbers of electrodes and cumbersome
hardware setups.

To address these gaps, this study proposes a multimodal transformer
model that integrates EEG signals—transformed into two-dimensional
representations  preserving spectral, spatial, and temporal
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information—with interview data capturing both linguistic and paralin-
guistic cues. By employing synchronized multi-head cross-attention and
self-attention mechanisms, our model effectively aligns heterogeneous
modalities and extracts richer inter- and intra-modal dependencies,
overcoming the limitations of previous CNN-, LSTM-, and GNN-based
approaches. Furthermore, to improve practicality in real-world appli-
cations, we introduce the flexible temporal sequence matching (FTSM)
technique for EEG channel selection. This strategy substantially re-
duces the number of required electrodes while maintaining competi-
tive accuracy, thereby improving portability and lowering deployment
costs.
The main contributions of this paper are summarized below:

» We propose a multimodal transformer architecture that jointly
models spectral, spatial, and temporal EEG patterns alongside
linguistic and paralinguistic interview features. In comparison
with existing state-of-the-art approaches, our framework achieves
superior depression detection performance by explicitly synchro-
nizing intra- and inter-modal correlations.

We introduce the FTSM technique for EEG channel prioritization,
which allows reducing the number of EEG channels from 128
to 4 with only a marginal drop in accuracy (91% to 84%). This
contribution directly addresses the cost and scalability limitations
of wearable EEG systems, making the approach more applicable
to real-world and remote clinical settings.

The remainder of this article is organized as follows: Section 2 reviews
the related work and sets the context for our research. Section 3
describes the proposed methodology, including the architecture of
the multimodal transformer and the data transformation techniques.
Section 4 presents the experimental setup, datasets, evaluation metrics,
and results. Section 5 concludes the article with a summary of the key
contributions. Table 1 lists the main notations used throughout the

paper.
2. Related work

In this section, we review related work on depression detection,
grouped according to the data modality and previously applied method-
ologies. We cover EEG-based approaches, audio/text-based methods,
multimodal strategies, transformer-based frameworks, and EEG channel
selection techniques. The aim is to highlight both advancements and
persistent gaps that motivate our proposed model.

2.1. Approaches based on modality

EEG has been widely used in depression detection because it directly
measures brain activity. Studies have analyzed EEG features across
spectral, spatial, and temporal dimensions, using handcrafted features
and classical machine learning classifiers such as SVMs or decision
trees [6-13]. Although effective to some extent, these methods rely
heavily on manual feature extraction and often fail to generalize across
datasets.

Behavioral markers of depression, including linguistic [29] and
paralinguistic cues, have also been studied extensively. Shin et al. [18]
and Bauer et al. [19] analyzed linguistic and speech features, while
Sardari et al. [20] focused on paralinguistic indicators. More recent
works highlight the role of lexical diversity and prosody in capturing
depressive states [21]. Transformer-based large language models have
also been fine-tuned for social media posts, showing strong sensitivity
to subtle cues of stress and depression [30,31].

Given the multifaceted nature of depression, multimodal strate-
gies that integrate EEG with other behavioral modalities have gained
prominence. Zhu et al. [32] and Chen et al. [33] demonstrated that
fusing EEG with eye movement or interviews improves accuracy. Zhang
et al. [22] proposed a GNN-based modal-shared modal-specific archi-
tecture to capture heterogeneity and homogeneity across modalities,
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Table 1
Notations and definitions
Notation Definition
X First sequence of length n
Y Second sequence of length m
Sftsm_dist Distance between the sequences X and Y
D Cost matrix for X and Y
d(x;,y;) Distance between x; and y,
(value,idx) Minimum value and its index among neighboring cells
s(1) Input signal
s(p+q) Signal s(7) sampled at time (p + q)
q Current time frame or window position
p Position of time samples within each window
L Length of the finite window
w(p) Window function applied to the signal
e~Jjop Frequency-dependent phase shift
—jwp Inverse Fourier transform convention
J Imaginary unit
® Frequency component
Or Query token
Ky Key token
Vr Value token
d Size of the vector space for the key and query vectors
z! Input to the self-attention block at layer /
w Weight matrix
T, Transpose
Norm Layer normalization
MLP MultiLayer perceptron
A Audio sequence

E EEG sequence

r Offset range

€ Smoothing factor

t Time sample

A Feature vectors for the audio at time ¢

E, Feature vectors for the EEG at time ¢
Dot product of the vectors
I1A, Euclidean norms of the audio feature vectors
[1E,]| Euclidean norms of the EEG feature vectors
T Total number of frames in the sequence vectors
0 Possible offset
esimilarity() Exponential cosine similarity for a particular Offset o
p(0) Predicted probability for each offset o
label, Represents the ground-truth label for the offset
€ Smoothing factor

though it remains sensitive to temporal misalignment. Recent multi-
modal studies extend fusion to EEG, audio, and video data, showing
the advantage of cross-modal information sharing [34-40].

2.2. Previously applied methodologies

Transformers have emerged as a powerful tool for multimodal
depression detection, owing to their ability to model long-term de-
pendencies and integrate heterogeneous modalities. For instance, Ten-
sorFormer [41] uses tensor algebra to retain modality structure while
enabling cross-modal interactions. Teng et al. [42] developed an intra-
and inter-emotion fusion transformer that balances homogeneous and
heterogeneous emotional cues. Fan et al. [43] proposed DepMSTAT,
which leverages spatio-temporal attention to jointly analyze EEG and
behavioral cues, successfully modeling speech prosody shifts [44]. Li
et al. [45] incorporated contrastive learning to improve transformer
robustness, while Zhu et al. [46] introduced MTNet, which fuses EEG
and eye-tracking for early depression detection. Sun et al. [28] applied
graph-based attention mechanisms to audio-based depression detec-
tion. Despite these advances, limitations remain. GNN-based meth-
ods are restricted in handling modality synchronization, while trans-
former variants like TensorFormer and DepMSTAT do not fully capture
spectral, spatial, and temporal EEG features alongside linguistic and
paralinguistic cues. Moreover, none explicitly address EEG channel
reduction for portability. In contrast, our proposed model integrates
spectral-spatial-temporal EEG features with linguistic and paralinguis-
tic interview data using synchronized multi-head cross-attention and
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Fig. 1. A general overview of the proposed multimodal transformer model
includes the Signal Preparation, Signal Conversion and Projection, Multi-head
Cross-attention, Self-attention Block, and Classification.
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self-attention, while introducing FTSM for model-agnostic EEG chan-
nel selection. This dual novelty addresses both fusion challenges and
practical device constraints.

EEG devices typically include 128 or more channels, which hinders
real-world usability. To overcome this, channel reduction methods have
been explored. Zhang et al. [47] proposed weighting EEG channels
to identify and remove low-value ones. Similarly, Wang et al. [38]
applied gradient-weighted class activation mapping to rank channel
importance. Shen et al. [48] combined kernel-target alignment with
binary particle swarm optimization for optimal channel selection. A
feature-aggregation-based cross-device transfer method was introduced
by Li et al. [49], enabling improved generalization with fewer channels.
Zhu et al. [50] applied mutual information to identify EEG channels
most correlated with pupil area signals. These works demonstrate the
promise of channel reduction, yet most are tied to specific models or
feature extraction pipelines.

3. Methodology

An overview of the proposed multimodal transformer model is
shown in Fig. 1, and a more detailed representation is given in Fig.
2. The model integrates EEG and interview data within a unified
architecture, where EEG signals are transformed to preserve their spec-
tral, spatial, and temporal properties, while the audio data contributes
both linguistic and paralinguistic cues. By leveraging multi-head cross-
attention, the framework captures both intra- and inter-modal correla-
tions, allowing the integration of neural and behavioral cues to enhance
depression detection.

The workflow of the model is organized into five main stages,
illustrated in Fig. 1. First, in the signal preparation stage, raw data
is preprocessed and EEG channel prioritization is performed. Second,
during the signal conversion and projection stage, both EEG and audio
signals are transformed into appropriate formats for subsequent pro-
cessing. Third, the multi-head cross-attention stage fuses heterogeneous
modalities, enabling the model to learn interactions between EEG
and interview features. Fourth, the self-attention block further refines
the representations by modeling dependencies within each modality.
Finally, the classification stage assigns labels to distinguish between
normal and depressed subjects.

These five steps build on one another in a sequential manner,
ensuring a smooth flow from raw data acquisition to final prediction.
The following subsections describe each stage in detail.

3.1. Signal preparation

3.1.1. Optimal EEG channels selection

To assess the system’s real-world portability while maintaining ac-
ceptable levels of relative accuracy, the model is tested using various
input scenarios, each corresponding to a different number of channels.
To select the sample channels, for each subject, the similarity of sig-
nals from each channel with all other channels was measured using
FTSM [51], and the same channels were identified. Then the chan-
nels were prioritized based on the repetition of similarity in different
subjects. This makes it possible to evaluate the priority of channels
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independently of the model used for depression classification. As shown
in Fig. 3, based on priority, four, eight, 16, 32, 64 and 128 channels
were selected for analysis, respectively. For example, the four channels
with numbers 67, 68, 93, and 94 have the highest priority which are
marked in red. Next, the four orange channels, 48, 66, 82, and 84,
are added to this set. Subsequently, eight yellow channels, 16 green
channels, 32 blue channels, and 64 purple channels are included in the
set of channels under examination.

Fig. 4 illustrates a sample scenario where flexible temporal sequence
matching is compared with the fixed Euclidean distance method. In
“Step-1” the green line indicates spatially similar points between the
two signals, while the red points represent their differences. In “Step-
2” additional red-filled points are inserted according to the differences
so that the two signals can be aligned. The FTSM offers a more flexible
and robust approach for comparing time series data, particularly when
handling time shifts, distortions, and varying lengths, making it more
suitable for real-world applications.

Details of the FTSM are provided in Algorithm 1. The FTSM is
used to measure similarity between two temporal sequences that may
vary in time or speed. It aligns the sequences in a non-linear fashion
to minimize the distance between them. In the algorithm, let X =
(x1, x5, ...,x,) be the first sequence of length n, and Y = (y;, ¥, ..., V)
be the second sequence of length m. Create a cost matrix D of size
(n + 1) X (m + 1) initialized to infinity (o), except for the first cell
D(1,1), which is set to 0. This extra row and column allow for easier
handling of boundary conditions. The cost matrix D is filled using
a nested loop. As shown in Eq. (1), in each cell, D(i,j) represents
the minimum cumulative cost to align the first i elements of X with
the first j elements of Y. The cost to align x; with y; is calculated
using a distance function, typically the absolute difference or squared
difference.

DEp=dx;, y)+min{D¢-1),D¢, j—1),DG-1j—1)} (€D)]

where d(x;,y;) is the distance between x; and y;. The nested loops
iterate through each cell of the matrix D starting from D(2,2). For
each cell D(,j), calculate the cost and update the matrix using the
formula mentioned above. After filling the matrix, the FTSM distance is
found at D(n+ 1, m+ 1). This value represents the minimum cumulative
cost required to align the entire sequences X and Y. Starting from
D(n+1,m+1), trace back to D(1, 1) by choosing the path that led to the
minimum cost in the dynamic programming step. This path represents
the optimal alignment between the two sequences. PathX and PathY
indices of the elements from sequence X and Y that are aligned. The
pair (value, idx) finds the minimum value and its index among the three
neighboring cells: above, left, and diagonal. The FTSM distance is set
to the value at the bottom-right corner of the cost matrix D.

3.1.2. Interview audio data preparation

To prepare audio files for conversion to 2D representation and
token extraction, a comprehensive data integrity check was performed.
This process ensured compatibility of audio file formats, identified and
excluded corrupted files, and standardized file names for consistency.
Following this, volume normalization was applied across all audio
files to maintain uniform loudness levels, enhancing the quality and
consistency of subsequent processing steps. Finally, all audio files were
resampled to 44.1 kHz sampling rate, ensuring uniformity in data struc-
ture and compatibility with the selected processing algorithms. These
preparation steps set a robust foundation for accurate 2D generation
and reliable token extraction.

3.2. Signal conversion and projection

3.2.1. EEG signal to 2D representation

Studies have shown that each aspect of spatial, spectral, and tem-
poral dimensions in EEG data provides valuable information about
individuals’ emotions [52]. Simultaneous analysis of all three aspects
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Fig. 2. The overall workflow of the proposed model for depression detection includes five main steps: Signal Preparation, Signal Conversion and Projection,
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High Priority

Low Priority

Fig. 3. Priority-based channel selection using flexible temporal sequence
matching for four, eight, 16, 32, 64, and 128 channels.

can help improve the accuracy of the model. In addition, by convert-
ing signals to images, different modalities are integrated together in
the form of similar patches. For this purpose, EEG data have been
transformed into images in such a way that all three aspects are
preserved [37,53,54]. As shown in Fig. 5, the vertical axis represents

Euclidean Distance

Flexible Temporal Sequence Matching (Step-1)

X e\

®

AN ./ a4

Nl

Flexible Temporal Sequence Matching (Step-2)

Fig. 4. Ilustration of Euclidean distance and flexible temporal sequence
matching for signal alignment. Step 1: Green lines show spatially similar
points, and red points denote differences. Step 2: Red-filled points are added
to align the two signals.

channels (spatial) from top to bottom. Each channel receives five
samples per second, which are converted into grayscale pixels (spectral)
arranged in a row from left to right (temporal). This process creates
an image approximately 70,000 pixels long. Inspired by ViT [55], the
image is resized to 224 x 224 pixels and divided into 16 x 16 patches
so that in later stages, both local and global features can be extracted
from them to distinguish between normal and depressed states. Linear
projection is applied, followed by position embedding on the tokens.

3.2.2. Interview audio file to words and 2D representation
In the analysis of emotions from interview data, we recognize
the importance of both linguistic and paralinguistic features. To
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Algorithm 1 Flexible Temporal Sequence Matching

1: Input: Sequences X =(x1,X2,....x,) and Y = (1, ¥2, ..., V)
2: Output: FTSM distance and alignment path
3: Initialize cost matrix D of size (n+ 1) x (m + 1) with oo
4: D(1,1) <0

5: fori <2 ton+1 do
6: for j <2 to m+1 do
7

8

9

cost < |x;_y — yj_1l
D(i, j) < cost +min{D( — 1, ), DG, j — 1), DG - 1,j — 1)}
. end for
10: end for

11: ftsm.dist « D(n+1,m+1)

12: Initialize empty lists pathX and pathY

13: i—n+1

14: jem+1

15: while i>1 and j > 1 do

16: Insert i — | at the beginning of pathX

17: Insert j — | at the beginning of pathY

18: (value,idx) < min{D(i — 1, j), D(i,j — 1), D(i = 1,j — 1)}
19: if idx =1 then

20: i—i-1

21: else if idx =2 then
22: jej-1

23: else

24: i—i-1

25: jej—-1

26: end if

27: end while

28: Insert i — 1 at the beginning of parhX
29: Insert j—1 at the beginning of pathY
30: return frsm_dist, pathX, pathY

Tim

sjpuueyn

Spectrum Change

Fig. 5. Transforming EEG signals into images while preserving the spatial
information from channels, the spectral details in the gray-scale spectrum, and
the temporal aspects over time.

facilitate a comprehensive analysis, the audio input signal undergoes
a two-stream preprocessing pipeline. For the linguistic stream, the
raw audio file is first transcribed into text using an automatic speech
recognition system. This transcript is then processed for linguistic anal-
ysis. Words are tokenized using a pre-trained tokenizer, which breaks
the sentences into sub-word units or words. These tokens are then
mapped to numerical embeddings, which are prepared as input for the
multi-head cross-attention mechanism.

For the paralinguistic stream, we extract features that capture
vocal nuances. The audio signal is first converted to a spectrogram
using the Short-Time Fourier Transform (STFT). This process involves
dividing the signal into small, overlapping frames and computing the
Fourier transform for each. The magnitude of the resulting complex
values represents the intensity of different frequencies over time, ef-
fectively converting the audio signal into a 2D image-like representa-
tion. This spectrogram is then used to derive features such as pitch,
volume, and spectral centroid, which serve as crucial indicators of
emotional state. This 2D representation is then used as input for the
cross-attention module, as depicted in Fig. 2.
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The STFT of a signal s(f) is defined in Eq. (2). Here, s(p + q)
represents the signal s(f) sampled at time p + ¢, where g denotes the
position of the current time frame (or window) and p indexes the time
samples within each window of length L. The window function w(p)
is applied to the signal to isolate a segment for analysis, effectively
“windowing” it. This ensures that the analysis focuses on a specific
portion of the signal within each frame. The term e~/®” is a complex
exponential representing a sinusoid with a frequency-dependent phase
shift. Here, w is the angular frequency (in radians per sample), and
Jj is the imaginary unit (j = \/—_1). By Euler’s formula, e~/ can be
expressed as cos(wp) — j sin(wp). This enables the STFT to capture both
the amplitude and phase of the frequency component » for each time
frame gq.

-1
STFT{s(1)}(q, w) = 2 s(p+ Qu(p)e /P (2)

Eq. (3) presenté7 t(ile spectrogram on a decibel scale, which visually
represents the magnitude of the STFT. It shows how the spectrum of
frequencies in a signal changes over time.

Spectrogram, z(¢q, w) = 20log;( |[STFT{s(1) }(q, ®)| 3

The STFT{s(t)}(q,w) is the short-time Fourier transform of the
signal s(r). It provides a complex number representing the magni-
tude and phase of the frequency component w at the time frame
g. |STFT{s(t)}(¢, w)| is the magnitude of the STFT. The magnitude is
calculated by taking the absolute value of the complex number obtained
from the STFT, which gives the amplitude of the frequency component
 at the time frame ¢. Using the logarithm helps in compressing the
dynamic range of the amplitudes, making it easier to visualize and
interpret. Multiplying the logarithm by 20 converts the magnitude
to decibels (dB). This is a common practice in signal processing to
express the amplitude of signals on a logarithmic scale, which is more
aligned with how humans perceive sound intensity. The spectrogram
in dB thus provides a way to visualize how the frequency content of
a signal changes over time, with the intensity in the spectrogram plot
representing the amplitude of the frequency components in decibels.
This helps in identifying patterns, harmonics, and other features in
the signal that may not be evident in the time domain alone. To
more effectively represent the audio spectrum of human speech, certain
assumptions were made. The view range was set between 0 and 5000.
Since the voice pitch range for humans is from 85 to 255, the display
range for voice pitch was set between 75 and 265. The window length
was set to 0.125 s [56,57].

3.3. Multi-head cross-attention

As shown in Fig. 2, in multi-head cross-attention block, a bidi-
rectional multimodal attention mechanism is responsible for fusing
modalities at the token level. The model performs both intra-modal
and inter-modal attention operations. Intra-modal attention focuses
on the connections between elements of the same type of modality,
such as EEG images, interview audio files, or interview text. How-
ever, inter-modal attention addresses the connections between different
modalities. With the help of these two mechanisms, the model can
simultaneously extract local patterns and understand the relationships
between these patterns across different modalities. As a result, a more
comprehensive understanding of the data is created, which can lead
to increased model accuracy. Specifically, cross attention is a mech-
anism that identifies and encodes the relationships between different
modalities. It calculates attention scores between the interview audio
and interview text modalities and separately examines the total of these
connections with the related EEG signal images.

In our model, cross attention works by using attention mechanisms
where the query (Q), key (K), and value (V) matrices come from
different types of tokenized data, like Q;. These cross-modal atten-
tion scores are then integrated with the intra-modal attention scores
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to create a unified representation that fuses information from both
text and images. The data extracted from individuals’ interviews and
the EEG signals obtained from them can inherently be asynchronous.
This issue can significantly affect the performance of the multi-head
cross-attention mechanism. To mitigate the impact of this lack of
synchronization, inspired by [58] a synchronization module is propose
whose structure is presented in Algorithm 2

In the first step, it simulates real-world asynchronous conditions by
randomly shifting the audio or EEG sequence within a defined range
(e.g., [-1, r]). In the second step, for each possible audio-EEG (AV)
sequence within the range, the model shifts either the audio or EEG and
processes the concatenated sequence through the encoder to extract
features. In the third step, the cosine similarity between the audio and
EEG feature vectors is computed for each possible offset to measure the
alignment quality. The formula computes the cosine similarity between
the audio A and EEG sequence E over time t. A, and E, are the feature
vectors for the audio and EEG at time ¢. - denotes the dot product of
the vectors. ||4,|| and || E,|| are the magnitudes (Euclidean norms) of
the feature vectors. 7T is the total number of frames in the sequence. A
higher cosine similarity value indicates better alignment between the
audio and EEG at that specific offset. In the fourth step, the model
smooths the labels for offset predictions to prevent harsh penalties
for minor prediction deviations. In the fifth step, the similarities are
converted into probabilities using softmax, and the cross-entropy loss is
computed between the predicted and ground truth offsets. The softmax
function, converts the cosine similarity scores into probabilities for
each possible offset 0. The e*™arit¥©) js the exponential of the cosine
similarity for a particular offset o. The denominator ¥, eSmilarity@) jn
similarity softmax formula is the sum of the exponentials of cosine
similarities for all possible offsets. The cross-entropy loss is used to
compute the difference between the predicted AE offset probabilities
and the ground-truth labels. p(o) is the predicted probability for each
offset o, obtained from the softmax function. /abel, represents the
ground-truth label for the offset, which is 1 for the correct offset and
0 for incorrect offsets (after smoothing). The loss quantifies how well
the model’s predicted offset probabilities align with the true offsets.
Minimizing this loss improves the model’s ability to handle AE syn-
chronization. Label smoothing formula smooths the labels to avoid
over-penalizing small deviations from the true AE offset. For the true
offset, the label is reduced by a small factor ¢ (smoothing factor), and
this value ¢ is distributed to adjacent offsets. This prevents the model
from being overly confident in predicting the exact offset. Smoothing
helps regularize the model, making it more tolerant to small deviations
and improving its generalization performance. Finally, in the sixth step,
the Sync Loss is used to update the model weights, improving the
alignment of asynchronous audio and EEG data.

3.4. Self-attention block

As shown in Fig. 2, the self-attention block utilizes the self-attention
mechanism, which calculates attention scores between all pairs of
tokens within a single modality. These scores come from the query (Q),
key (K), and value (V) matrices, which are representations of the input
data transformed by learned weight matrices. The attention scores

are computed using Eq. (4) [59]. In this equation, % represents
k

the scaled dot-product of the query and key matrices, normalized
by the square root of the key vectors’ dimensionality (d,). Here, d,
is the size of the vector space for the key and query vectors. The
softmax function ensures the scores are positive and sum to one. After
calculating the attention scores, the outputs are processed through
a residual connection, followed by normalization and a multi-layer
perceptron (MLP). A residual connection (Z'*!) adds the input to the
layer (Z') to the output of the attention mechanism. This technique
aids in training deep networks by providing a direct path for the
gradient during backpropagation, addressing the vanishing gradient
problem, and preserving information from the input while learning
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Algorithm 2 Modality Synchronization Module

1: Input: Audio sequence A, EEG sequence E, Offset range r, smoothing factor e
2: Output: Adjusted sync between audio and EEG, optimized Sync Loss

3: Initialization:

4: - Prepare encoder with initial weights.

5: - Set offset range r (e.g., [-4,4] frames).

6: - Initialize loss function (e.g., cross-entropy for classification).

7: procedure SynchronizaTIONMODULE(A, E)

8: Step 1: Data Augmentation

9: - For each training example, artificially introduce AV offset:
10: Shift A or E by random offset € [-r,r]
11: Step 2: Enumerate Over Possible Offsets
12: for each offset o € [-r,r] do
13: - Shift A or E by offset o.
14: - Compute the fused sequence F, by concatenating shifted A and E.
15: - Pass F, through shared encoder to get encoded features f,.
16: end for

17: Step 3: Calculate Cosine Similarity
18: for each offset o do

19: - Calculate average cosine similarity between A and E for offset o:
T
s 1 A - E,
similarity(A, E) = — _—
& T 2 TATIET
20: end for
21: Step 4: Apply Label Smoothing
22: - For each ground truth offset, smooth the label distribution:
23: Subtract smoothing factor ¢ from true label position and add to adjacent
positions.
24: - This prevents harsh penalties for small deviations in offset predictions.

1—¢ for the true offset,
smoothed_label, = for adjacent offsets,

€
0 for all other offsets.

25: Step 5: Compute Sync Loss
26: - Use softmax to convert cosine similarities to probabilities for each offset o:
esimilarity(o)
plo) = o o
2 , esimilarity(o”)
o
27: - Calculate cross-entropy loss between predicted and ground truth offsets:

Lgyne = — 2 label, - log(p(0))
0

28: Step 6: Backpropagation and Weight Update

29: - Use Lgype to update the encoder weights via backpropagation.

30: - Adjust the model’s attention and encoder to improve AE alignment.
31: end procedure

new features. This process can be summarized by Eq. (5). Variable Z'
denotes the input to the self-attention block at layer /. This variable
is a matrix with each row representing a token’s representation at
that specific layer. Inspired by [53], we stack multiple self-attention
blocks to iteratively enhance the input data representations. Each block
enables the model to identify more intricate patterns and dependencies
within the modality. Attention(Q, K, V) denotes the outcome of the self-
attention mechanism for the specified layer. This result is computed
utilizing the query (Q), key (K), and value (V) matrices, derived from
the input Z'. As depicted in Eq. (6), matrices Wy, W, and Wy, serve as
weight matrices employed to project the input embeddings into the key
(K), query (Q), and value (V) vectors. Q is obtained from the input X’
by applying a weight matrix W, to it, representing the token currently
under focus. Similarly, K is derived from Z/ by multiplying it with the
weight matrix Wy. It depicts the tokens that used for comparison with
the query. V is obtained from the input Z' by the process of multiplying
it with a weight matrix W),. It encapsulates the values compiled from
the attention scores. The self-attention mechanism calculates the level
of attention each token should allocate to every other token utilizing
these matrices. The result is a calculated total of the values (V), with
the weights determined by the attention scores as defined in Eq. (4).
Norm denotes layer normalization, a method aimed at stabilizing and
expediting the training of deep neural networks by standardizing the
inputs across the features for every token. It guarantees that the outputs
maintain a consistent range of values across the network by ensuring
they have an average of zero and a variance of one. After normalization,
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the data is processed by an MLP feed-forward neural network, which
usually consists of two linear layers with a GeLu activation function in
between. The model processes EEG data from the entire session along
with interview data, using a self-attention block before the classifica-
tion stage to fully capture the key information from both modalities.
The MLP, alongside the self-attention mechanism, helps to identify
patterns and relationships in the data before classification.

OKT
Attention(Q, K, V') = softmax 14 4
dk
7'+ = MLP(Norm(Attention(Q, K, V) + Z')) )
0=2z'W, & K=Z'Wyx & V=2Z'w, (6)

3.5. Classification head

Classification is the final step of proposed model. The classification
head receives a latent array that has been processed through multiple
multimodal and self-attention layers. This array contains the combined
features from both the image and text data. The classification head
generates raw scores, or logits, for the ‘normal’ and ‘depressed’ classes.
These logits are passed through a softmax function to calculate the
probability for each class. During training, binary cross-entropy loss is
used to compare the predicted scores with the actual labels.

4. Experimental results
4.1. Datasets and experimental setup

This study utilizes the multi-modal open dataset for mental-disorder
analysis dataset (MODMA), and distress analysis interview corpus-
wizard of oz (DAIC-WOZ). The MODMA is a public resource for major
depressive disorder (MDD) research published by Lanzhou University.
The MODMA includes 128-channel EEG recordings and audio data from
24 MDD patients and 29 healthy controls. MDD persons were recruited
from a hospital setting and diagnosed by psychiatrists. Twenty of the
participants (named subjects) were women and 33 were men. The age
range of the subjects was 16 to 52 years. The audio data and EEG
signals are recorded simultaneously during multimodal emotion elic-
itation experiments. Each session typically lasts for about 20-30 min,
depending on the specific experimental setup and protocol used [60].

The DAIC-WOZ dataset is a widely used benchmark for detect-
ing signs of psychological distress, particularly depression. It contains
audio, video, and text data from clinical interviews, where a virtual
interviewer (controlled by a human “wizard”) engages participants
in a structured conversation. The dataset includes 189 sessions, with
142 used for training and 47 for testing. Each session contains tran-
scribed text, audio recordings (16 kHz, 16-bit WAV format), and video
(1920 x 1080 resolution), along with facial landmarks, prosodic fea-
tures, and voice pitch variations. We are used audio files and transcripts
in this research [61]. The comparison of channels for selecting channels
and generating the image dataset was performed on a system with an
Intel Core i7 CPU, 48.0 GB RAM, and an NVIDIA GeForce GTX 1080
graphics card. The implementation and evaluation of the model were
conducted on Google Colab. The evaluation metrics included Accuracy,
Precision, Recall, and F1-score.

4.2. Evaluation results

To assess the effectiveness of our proposed model, as shown in
Table 2 we perform a quantitative comparison against several methods
applied to the MODMA dataset, and DAIC-WOZ including HGP-SL [23],
AM-GCN [24], SAGE [25], CGIPool [26], SGP-SL [27], MS2-GNN [22],
and G-Atten. According to the experimental results, our model has
outperformed the state-of-the-art.
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HGP-SL [23] developed a hierarchical graph pooling method that
emphasizes structure learning to effectively summarize graph repre-
sentations. Their approach leverages a structure learning mechanism
that dynamically learns the graph structure during the pooling process,
leading to enhanced performance in various graph-based tasks. The
AM-GCN [24] employs adaptive multi-channel graph convolutional net-
works to capture the complex relationships in data, achieving notable
results in various domains. SAGE [25] proposed a semi-supervised
classification method to capture multi-scale structures within data,
achieving high accuracy in classification tasks. CGIPool [26] utilizes a
graph pooling approach to improve the infomax principle on coarsened
graphs, achieving significant results in the task of graph classification.
The [27] utilizes self-attention mechanism integrated with EEG-based
topological structures and soft labels to enhance depression detection.
MS?-GNN [22] focus on fusing different modalities to improve de-
tection accuracy. Features from each modality are extracted different
techniques and then fused using a neural network, which enables the
model to learn complex interactions between features from different
modalities. Recently, [28] introduced an approach for depression detec-
tion based on audio signals using a GNN framework. This method first
employs a gated recurrent unit (GRU) to capture time-series dependen-
cies in audio features and then constructs two sequential graph neural
networks. The first network models frame-level features within each
audio sample, while the second one captures inter-sample relationships.

Our multimodal transformer model demonstrates significant ad-
vancements in depression detection, achieving the highest accuracy
of 91.22% on the MODMA and 94.17% on the DAIC-WOZ dataset,
outperforming previous models such as AM-GCN, MS?-GNN, and G-
Atten. To validate these improvements statistically, we conducted 10
independent runs of our model on both datasets. For MODMA, the
mean accuracy was 91.20% with a standard deviation of 0.75% and
a 95% confidence interval (CI) of [90.79%, 91.73%], while for DAIC-
WOZ, the mean accuracy was 94.18% with a standard deviation of
0.71% and a 95% CI of [93.61%, 94.75%]. Paired t-tests revealed
statistically significant improvements over all baseline models (p <
0.0001), except for G-Atten on MODMA, where p = 0.0006, indicating a
robust performance advantage. By integrating EEG and audio data, our
model captures a richer representation through spectro-temporal and
linguistic features, leveraging advanced attention mechanisms and im-
age transformation techniques. As will be discussed in Section 4.3, this
approach not only ensures higher accuracy, precision, recall, and F1-
score, respectively 91.22%, 92.34%, 90.15%, and 91.23% for MODMA,
and 94.17%, 96.14%, 94.87%, and 95.50% for DAIC-WOZ, but also
exhibits robustness and better generalization, particularly in real-world
scenarios where some EEG channels might be missing. This high-
lights the model’s practical applicability and improved usability in
constrained data acquisition environments.

4.3. Ablation study

4.3.1. Channel and modality selection using FSTM

To investigate the impact of reducing the number of channels,
as performed by the FTSM algorithm, on measurement accuracy, the
accuracy of the model was examined with four, eight, 16, 32, 64, and
128 channels. Additionally, the impact of each modality on the model’s
accuracy when channel selection is performed was assessed. As shown
in Fig. 6, including any of the modalities along with EEG significantly
increases the model’s accuracy. The highest accuracy is achieved when
all three EEG, audio, and text (E,A,T) modalities are considered. It is
important to note that due to the large number of parameters in vision
transformer models compared to traditional models like CNNs, along
with the limited dataset size, there is a significant gap between training
and validation performance, indicating overfitting. However, adding
modalities and utilizing attention mechanisms and modality synchro-
nization greatly reduces the extent of this overfitting. According to Fig.
7 EEG played the most important role in classification. Additionally, the
audio file, which provides paralinguistic features, often plays a more
significant role than the text, which contains linguistic features.
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Table 2
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Comparison of recent research studies that employed deep learning and transformer models to detect depression using MODMA

and DAIC-WOZ datasets, ranked by accuracy.

Dataset Model ACC.% PRE.% REC.% F1-.% Stats (Mean +Std, p-value)
HGP-SL [23] 58.49 53.57 62.50 62.50 - (p <0.0001 vs. Ours)*
AM-GCN [24] 64.86 58.82 62.50 60.61 — (p < 0.0001 vs. Ours)*
SAGE [25] 67.92 64.00 66.67 65.30 - (p < 0.0001 vs. Ours)*
MODMA CGIPool [26] 73.58 69.23 75.00 72.00 - (p <0.0001 vs. Ours)*
SGP-SL [27] 84.91 80.77 87.50 84.00 - (p <0.0001 vs. Ours)*
MS?-GNN [22] 86.49 82.35 87.50 84.85 - (p <0.0001 vs. Ours)*
G-Atten. [28] 90.35 88.25 90.33 89.15 — (p = 0.0006 vs. Ours)
Ours 91.22 92.34 90.15 91.23 91.20 + 0.75, CI 95% [90.79%, 91.73]
AM-GCN [24] 54.35 29.41 35.71 32.26 - (p <0.0001 vs. Ours)*
HGP-SL [23] 60.71 57.19 59.12 58.14 - (p <0.0001 vs. Ours)*
SAGE [25] 68.51 67.02 65.98 66.50 - (p <0.0001 vs. Ours)*
DAIC-WOZ CGIPool [26] 74.19 70.79 72.28 71.53 — (p < 0.0001 vs. Ours)*
SGP-SL [27] 79.63 78.90 80.88 79.88 - (p <0.0001 vs. Ours)*
MS2-GNN [22] 80.43 64.71 78.57 70.97 - (p <0.0001 vs. Ours)*
G-Atten. [28] 92.21 92.36 92.18 92.23 — (p < 0.0001 vs. Ours)
Ours 94.17 96.14 94.87 95.50 94.18 + 0.71, CI 95% [93.61%, 94.75]

*Note: p-values for baseline models are based on paired t-tests using 10 runs, comparing the mean accuracy of ours (91.20% for MODMA,
94.18% for DAIC-WOZ) with the respective baseline accuracies. For MODMA, G-Atten p-value is 0.0006; for DAIC-WOZ, all p-values are <

0.0001.
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Fig. 6. The training and validation accuracy of the model on the MODMA
dataset in different modalities, including EEG, audio, and text (E,A,T); EEG
and audio (E,A); EEG and text (E,T); and EEG alone (E), across sets of four,
eight, 16, 32, 64, and 128 channels.

4.3.2. Multi-head cross-attention, modality synchronization, and self-
attention

The multi-head cross-attention block and self-attention block are
vital components for enhancing the model’s comprehension of hidden
information across various modalities, as shown in Table 3. Removing
either block leads to a significant decrease in accuracy, while the im-
pact of the Modality Synchronization Module is comparatively smaller.
When the multi-head cross-attention block is removed, a normaliza-
tion and unification stage is introduced after the signal conversion
and projection block. The data is then passed directly to the self-
attention block. Cross-attention helps the model combine information
from different modalities and capture their relationships, so removing it
reduces or eliminates these interactions. When the self-attention block
is removed, a normalization stage follows unification, leading directly
to the classification stage. Self-attention helps the model understand
long-term dependencies between input tokens. Removing it can weaken
the model’s ability to grasp these dependencies, especially in tasks that
involve complex or long-term relationships.
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Fig. 7. Scatter plot of SHapley Additive exPlanations (SHAP) values illustrat-
ing the impact of EEG, Audio, and Text features on model predictions for the
MODMA dataset.

Table 3

Ablation studies of the proposed model’s multi-head cross-attention and self-
attention blocks using the MODMA dataset, including the effect of the modality
synchronization module on multi-head cross-attention.

Cross-att. Sync. Modu. Self-att. ACC.% PRE. % REC.% F1-%
X X 58.52 56.12 59.62 57.83
X X v 62.16 61.84 62.32 62.10
v X X 64.63 63.92 65.02 64.46
v X v 87.16 88.84 86.84 87.89
v v X 75.08 78.12 76.10 77.10
v v v 91.22 92.34 90.15 91.23

4.4. Impact of hyperparameters setting

The performance of a deep learning model is highly influenced by
its hyperparameter settings. To develop a highly reliable deep learning
model, it is essential to carefully optimize these hyperparameters. The
grid search algorithm is a straightforward and efficient method for pa-
rameter optimization, commonly employed in hyperparameter tuning
for deep learning models [37]. To optimize the hyperparameters of
the proposed model, including learning rate, batch size, and maximum
epoch, a grid search strategy is utilized. In particular, Fig. 8(a) shows
that when the learning rate is set to 0.0001, the proposed method
achieves the highest recognition accuracy. However, as the learning
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Fig. 8. Accuracy comparison with different hyperparameters. (a) Learning
rate. (b) Batch size. (c) Epoch.

rate increases to 0.1, the recognition accuracy drops significantly be-
cause the learning rate is too high, causing the model to oscillate
around the global optimum. Furthermore, lowering the learning rate
to 0.00001 causes a decline in the model’s recognition accuracy, as
the reduced learning rate results in the model underfitting. Fig. 8(b)
shows that with a batch size of 8, the proposed method achieves
the lowest recognition accuracy. This is due to the instability in the
gradient descent process caused by the smaller batch size. As the batch
size grows, the model’s performance improves, but once the batch size
hits 32, the performance levels off. Fig. 8(c) shows that the model’s
performance improves up to epoch 38, suggesting that choosing 38
epochs is a sensible decision for this model.

4.5. Channel attention analysis of EEG subjects

In this section, we analyze channel attention by visualizing the
channel weights learned by the proposed model. Fig. 9 displays the
distribution of channel attention on the scalp for three healthy and
three MDD subjects from the MODMA dataset. The red areas on the
scalp indicate channels with large weights, while the blue areas in-
dicate channels with small weights. The red areas are significantly
smaller than the blue areas, suggesting that only a few EEG chan-
nels are strongly correlated with depression recognition, while many
channels are irrelevant. Due to individual differences, no significant
visual distinctions were observed between the healthy and MDD classes.
However, relatively more scattered red spots were seen in depressed
individuals. Fewer red spots occur in the front and left parts of the
brain, while more red spots appear in the back of the head and the
right side.

5. Conclusions

This study presents a synchronized multimodal transformer model
that integrates EEG signals and interview data to enhance depres-
sion detection, extracting spectral, spatial, and temporal features from
EEG via 2D mapping and linguistic/paralinguistic cues from audio.
Employing self-attention and multi-head cross-attention mechanisms
alongside a synchronization module, the model captures inter- and
intra-modal correlations, achieving a 4.7% accuracy improvement and
10% precision boost on MODMA and DAIC-WOZ datasets compared to
state-of-the-art methods. The FTSM algorithm optimizes EEG channel
selection, reducing channels from 128 to 4 while maintaining 84%
accuracy, thereby lowering costs and improving device portability.
However, limitations include limited generalizability beyond evaluated
datasets, susceptibility to real-world noise, and ethical concerns like
data privacy and misdiagnosis risks.

Future Research Directions. Based on the current results, sev-
eral directions can be explored: (i) evaluation on larger and more
diverse datasets to improve generalization across populations, (ii) de-
velopment of noise-robust and domain-adaptive methods to handle
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MDD-2

MDD-1

Fig. 9. Display of the channel attention distribution on the scalp surface and
on the image related to EEG signals for three healthy subjects and three MDD
subjects.

real-world recording artifacts, (iii) incorporation of privacy-preserving
and fairness-aware learning frameworks such as federated learning to
address ethical concerns, (iv) design of adaptive multimodal fusion
strategies to remain effective when some modalities are missing, (v)
real-time deployment using lightweight wearable EEG systems for clin-
ical and telehealth applications, and (vi) personalized and longitudinal
modeling for tracking depressive symptoms over time.

CRediT authorship contribution statement

Nima Esmi: Writing - original draft, Visualization, Validation,
Project administration, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization. Asadollah Shahbahrami: Writing —
review & editing, Validation, Supervision, Conceptualization. Georgi
Gaydadjiev: Writing — review & editing. Peter de Jonge: Writing —
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.



N. Esmi et al.

References

[1]
[2]

[3]

[4]

[5]

(6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

World-Health-Organization, Depressive disorder (depression), 2023.

Guanyu Chen., Tianyi Shi, Baoxing Xie, Zhicheng Zhao, Zhu Meng, Yadong
Huang, Jin Dong, SwinDAE: Electrocardiogram quality assessment using 1D swin
transformer and denoising AutoEncoder, IEEE J. Biomed. Health Inf. 27 (12)
(2023) 5779-5790, http://dx.doi.org/10.1109/JBHI.2023.3314698.

Soheil Zabihi, Elahe Rahimian, Amir Asif, Arash Mohammadi, Trahgr: Trans-
former for hand gesture recognition via electromyography, IEEE Trans. Neural
Syst. Rehabil. 31 (1) (2023) 4211-4224, http://dx.doi.org/10.1109/TNSRE.2023.
3324252.

Jialai Yin, Minchao Wu, Yan Yang, Ping Li, Fan Li, Wen Liang, Zhao Lv, Research
on multimodal emotion recognition based on fusion of electroencephalogram
and electrooculography, IEEE Trans. Instrum. Meas. 73 (1) (2024) 1-12, http:
//dx.doi.org/10.1109/TIM.2024.3370813.

Seyed Reza Shahamiri, Vanshika Lal, Dhvani Shah, Dysarthric speech trans-
former: A sequence-to-sequence dysarthric speech recognition system, IEEE
Trans. Neural Syst. Rehabil. 31 (1) (2023) 3407-3416, http://dx.doi.org/10.
1109/TNSRE.2023.3307020.

Hong Peng, Chen Xia, Zihan Wang, Jing Zhu, Xin Zhang, Shuting Sun, Jianxiu Li,
Xiaoning Huo, Xiaowei Li, Multivariate pattern analysis of EEG-based functional
connectivity: A study on the identification of depression, IEEE Access 7 (1)
(2019) 92630-92641, http://dx.doi.org/10.1109/ACCESS.2019.2927121.
Xiaowei Li, Xin Zhang, Jing Zhu, Wandeng Mao, Shuting Sun, Zihan Wang,
Chen Xia, Bin Hu, Depression recognition using machine learning methods with
different feature generation strategies, Artif. Intell. Med. 99 (1) (2019) 1-15,
http://dx.doi.org/10.1016/j.artmed.2019.07.004.

Subha D. Puthankattil, Paul K. Joseph, Classification of EEG signals in normal
and depression conditions by ANN using RWE and signal entropy, Mech. Med.
Biol. 12 (04) (2012) 1-13, http://dx.doi.org/10.1142/50219519412400192.
Behshad Hosseinifard, Mohammad Hassan Moradi, Reza Rostami, Classifying
depression patients and normal subjects using machine learning techniques and
nonlinear features from EEG signal, Comput. Meth. Prog. Bio 109 (3) (2013)
339-345, http://dx.doi.org/10.1016/j.aeue.2018.09.015.

Emrah Aydemir, Turker Tuncer, Sengul Dogan, Raj Gururajan, U. Rajendra
Acharya, Automated major depressive disorder detection using melamine pattern
with EEG signals, Appl. Intell. 51 (9) (2021) 6449-6466, http://dx.doi.org/10.
1007/510489-021-02426-y.

Maie Bachmann, Laura Péeske, Kaia Kalev, Katrin Aarma, Andres Lehtmets, Pille
Oopik, Jaanus Lass, Hiie Hinrikus, Methods for classifying depression in single
channel eeg using linear and nonlinear signal analysis, Comput. Methods Progr.
Biomed. 155 (1) (2018) 11-17, http://dx.doi.org/10.1016/j.cmpb.2017.11.023.
Yalin Li, Bin Hu, Xiangwei Zheng, Xiaowei Li, EEG-based mild depressive
detection using differential evolution, IEEE Access 7 (1) (2018) 7814-7822,
http://dx.doi.org/10.1109/ACCESS.2018.2883480.

Ah Young Kim, Eun Hye Jang, Seunghwan Kim, Kwan Woo Choi, Hong Jin
Jeon, Han Young Yu, Sangwon Byun, Automatic detection of major depressive
disorder using electrodermal activity, Sci. Rep. 8 (1) (2018) 1-9, http://dx.doi.
org/10.1038/541598-018-35147-3.

Ayan Seal, Rishabh Bajpai, Jagriti Agnihotri, Anis Yazidi, Enrique Herrera-
Viedma, Ondrej Krejcar, DeprNet: A deep convolution neural network framework
for detecting depression using EEG, IEEE Trans. Instrum. Meas. 70 (1) (2021)
1-13, http://dx.doi.org/10.1109/TIM.2021.3053999.

Pristy Paul Thoduparambil, Anna Dominic, Surekha Mariam Varghese, EEG-based
deep learning model for the automatic detection of clinical depression, Phys.
Eng. Sci. Med. 43 (4) (2020) 1349-1360, http://dx.doi.org/10.1007/s13246-020-
00938-4.

Vivek Sharma, Neelam Rup Prakash, Parveen Kalra, Depression status identifi-
cation using autoencoder neural network, Biomed. Signal Process. Control. 75
(2022) 103568, http://dx.doi.org/10.1016/j.bspc.2022.103568.

Surbhi Soni, Ayan Seal, Anis Yazidi, Ondrej Krejcar, Graphical representation
learning-based approach for automatic classification of electroencephalogram
signals in depression, Comput. Biol. Med. 145 (1) (2022) 1-13, http://dx.doi.
0rg/10.1016/j.compbiomed.2022.105420.

Daun Shin, Kyungdo Kim, Seung-Bo Lee, Changwoo Lee, Ye Seul Bae, Won Ik
Cho, Min Ji Kim, C. Hyung Keun Park, Eui Kyu Chie, Nam Soo Kim, et al.,
Detection of depression and suicide risk based on text from clinical interviews
using machine learning: possibility of a new objective diagnostic marker, Front.
Psychiatry 13 (1) (2022) 1-11, http://dx.doi.org/10.3389/fpsyt.2022.801301.
Jonathan F. Bauer, Maurice Gerczuk, Lena Schindler-Gmelch, Shahin Amiripar-
ian, David Daniel Ebert, Jarek Krajewski, Bjo Schuller, Validation of machine
learning-based assessment of major depressive disorder from paralinguistic
speech characteristics in routine care, Depress. Anxiety 2024 (1) (2024) 1-12,
http://dx.doi.org/10.1155/2024/9667377.

Sara Sardari, Bahareh Nakisa, Mohammed Naim Rastgoo, Peter Eklund, Audio
based depression detection using convolutional autoencoder, Expert Syst. Appl.
189 (1) (2022) 1-13, http://dx.doi.org/10.1016/j.eswa.2021.116076.

Na Wang12, Raymond Chiong13, Raja Kamil, Weijia Zhang, Syed Abdul Rahman
Al-Haddad, Normala Ibrahim, Depression detection using speech audio and text:
A comprehensive review focusing on deep learning methods, Authorea (2024)
1-47, http://dx.doi.org/10.22541/au.172474607.71425235/v1.

10

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Biomedical Signal Processing and Control 113 (2026) 109039

Tao Chen, Richang Hong, Yanrong Guo, Shijie Hao, Bin Hu, MS?>-GNN: Ex-
ploring GNN-based multimodal fusion network for depression detection, IEEE
Trans. Cybern. 53 (12) (2023) 7749-7759, http://dx.doi.org/10.1109/TCYB.
2022.3197127.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Zhao Li, Chengwei Yao,
Huifen Dai, Zhi Yu, Can Wang, Hierarchical multi-view graph pooling with
structure learning, IEEE Trans. Knowl. Data Eng. 35 (1) (2023) 545-559, http:
//dx.doi.org/10.1109/TKDE.2021.3090664.

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei, Am-gcn:
Adaptive multi-channel graph convolutional networks, in: Proc. Int. Conf. Knowl.
Discov. Data Min, 2020, pp. 1243-1253, http://dx.doi.org/10.1145/3394486.
3403177.

Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, Junzhou Huang,
Semi-supervised graph classification: A hierarchical graph perspective, in: WWW
Conf., 2019, pp. 972-982, http://dx.doi.org/10.1145/3308558.3313461.
Yunsheng Pang, Yunxiang Zhao, Dongsheng Li, Graph pooling via coarsened
graph infomax, in: Proc. Int. ACM Conf. Res. Dev. Inf. Retriev., 2021, pp.
2177-2181, http://dx.doi.org/10.1145/3404835.3463074.

Tao Chen, Yanrong Guo, Shijie Hao, Richang Hong, Exploring self-attention
graph pooling with EEG-based topological structure and soft label for depression
detection, IEEE Trans. Affect. Comput. 13 (4) (2022) 2106-2118, http://dx.doi.
org/10.1109/TAFFC.2022.3210958.

Chenjian Sun, Min Jiang, Linlin Gao, Yu Xin, Yihong Dong, A novel study
for depression detecting using audio signals based on graph neural network,
Biomed. Signal Process. Control. 88 (2024) 105675, http://dx.doi.org/10.1016/
j.bspc.2023.105675.

Nima Esmi, Asadollah Shahbahrami, Yasaman Nabati, Bita Rezaei, Georgi Gay-
dadjiev, Peter de Jonge, Stress detection through prompt engineering with a
general-purpose LLM, Acta Psychol. 260 (2025) 105462, http://dx.doi.org/10.
1016/j.actpsy.2025.105462.

Loukas Ilias, Spiros Mouzakitis, Dimitris Askounis, Calibration of transformer-
based models for identifying stress and depression in social media, IEEE Trans.
Comput. Soc. Syst. 11 (2) (2023) 1979-1990, http://dx.doi.org/10.1109/TCSS.
2023.3283009.

Nima Esmi, Asadollah Shahbahrami, Georgi Gaydadjiev, Peter de Jonge, Suicide
ideation detection based on documents dimensionality expansion, Comput.
Biol. Med. 192 (2025) 110266, http://dx.doi.org/10.1016/j.compbiomed.2025.
110266.

Jing Zhu, Shiqing Wei, Xiannian Xie, Changlin Yang, Yizhou Li, Xiaowei Li, Bin
Hu, Content-based multiple evidence fusion on EEG and eye movements for mild
depression recognition, Comput. Methods Progr. Biomed. 226 (1) (2022) 1-11,
http://dx.doi.org/10.1016/j.cmpb.2022.107100.

Tao Chen, Richang Hong, Yanrong Guo, Shijie Hao, Bin Hu, MS?-GNN: Ex-
ploring GNN-based multimodal fusion network for depression detection, IEEE
Trans. Cybern. 53 (12) (2023) 7749-7759, http://dx.doi.org/10.1109/TMC.2022.
3140430.

Ziye Zhang, Aiping Liu, Yikai Gao, Xinrui Cui, Ruobing Qian, Xun Chen,
Distilling invariant representations with domain adversarial learning for cross-
subject children seizure prediction, IEEE Trans. Cogn. Dev. Syst. 16 (1) (2024)
202-211, http://dx.doi.org/10.1109/TCDS.2023.3257055.

Xiaobing Du, Xiaoming Deng, Hangyu Qin, Yezhi Shu, Fang Liu, Guozhen Zhao,
Yu-Kun Lai, Cuixia Ma, Yong-Jin Liu, Hongan Wang, MMPosE: Movie-induced
multi-label positive emotion classification through EEG signals, IEEE Trans.
Affect. Comput. 14 (4) (2023) 2925-2938, http://dx.doi.org/10.1109/TAFFC.
2022.3221554.

Mingyi Sun, Weigang Cui, Shuyue Yu, Hongbin Han, Bin Hu, Yang Li, A dual-
branch dynamic graph convolution based adaptive transformer feature fusion
network for EEG emotion recognition, IEEE Trans. Affect. Comput. 13 (4) (2022)
2218-2228, http://dx.doi.org/10.1109/TAFFC.2022.3199075.

Jie Luo, Weigang Cui, Song Xu, Lina Wang, Xiao Li, Xiaofeng Liao, Yang Li,
A dual-branch spatio-temporal-spectral transformer feature fusion network for
EEG-based visual recognition, IEEE Trans. Ind. Inf. 20 (2) (2024) 1721-1731,
http://dx.doi.org/10.1109/TI11.2023.3280560.

Yongling Xu, Yang Du, Ling Li, Honghao Lai, Jing Zou, Tianying Zhou, Lushan
Xiao, Li Liu, Pengcheng Ma, AMDET: Attention based multiple dimensions EEG
transformer for emotion recognition, IEEE Trans. Affect. Comput. 15 (3) (2024)
1067-1077, http://dx.doi.org/10.1109/TAFFC.2023.3318321.

Yingdong Wang, Qingfeng Wu, Shuocheng Wang, XiQiao Fang, Qungsheng Ruan,
MI-EEG: Generalized model based on mutual information for EEG emotion
recognition without adversarial training, Expert Syst. Appl. 244 (1) (2024) 1-11,
http://dx.doi.org/10.1016/j.eswa.2023.122777.

Beilin Li, Jiao Wang, Zhifen Guo, Yue Li, Automatic detection of schizophrenia
based on spatial-temporal feature mapping and LeViT with EEG signals, Expert
Syst. Appl. 224 (1) (2023) 1-13, http://dx.doi.org/10.1016/j.eswa.2023.119969.
Hao Sun, Yen-Wei Chen, Lanfen Lin, TensorFormer: A tensor-based multimodal
transformer for multimodal sentiment analysis and depression detection, IEEE
Trans. Affect. Comput. 14 (4) (2023) 2776-2786, http://dx.doi.org/10.1109/
TAFFC.2022.3233070.


http://refhub.elsevier.com/S1746-8094(25)01550-2/sb1
http://dx.doi.org/10.1109/JBHI.2023.3314698
http://dx.doi.org/10.1109/TNSRE.2023.3324252
http://dx.doi.org/10.1109/TNSRE.2023.3324252
http://dx.doi.org/10.1109/TNSRE.2023.3324252
http://dx.doi.org/10.1109/TIM.2024.3370813
http://dx.doi.org/10.1109/TIM.2024.3370813
http://dx.doi.org/10.1109/TIM.2024.3370813
http://dx.doi.org/10.1109/TNSRE.2023.3307020
http://dx.doi.org/10.1109/TNSRE.2023.3307020
http://dx.doi.org/10.1109/TNSRE.2023.3307020
http://dx.doi.org/10.1109/ACCESS.2019.2927121
http://dx.doi.org/10.1016/j.artmed.2019.07.004
http://dx.doi.org/10.1142/S0219519412400192
http://dx.doi.org/10.1016/j.aeue.2018.09.015
http://dx.doi.org/10.1007/s10489-021-02426-y
http://dx.doi.org/10.1007/s10489-021-02426-y
http://dx.doi.org/10.1007/s10489-021-02426-y
http://dx.doi.org/10.1016/j.cmpb.2017.11.023
http://dx.doi.org/10.1109/ACCESS.2018.2883480
http://dx.doi.org/10.1038/s41598-018-35147-3
http://dx.doi.org/10.1038/s41598-018-35147-3
http://dx.doi.org/10.1038/s41598-018-35147-3
http://dx.doi.org/10.1109/TIM.2021.3053999
http://dx.doi.org/10.1007/s13246-020-00938-4
http://dx.doi.org/10.1007/s13246-020-00938-4
http://dx.doi.org/10.1007/s13246-020-00938-4
http://dx.doi.org/10.1016/j.bspc.2022.103568
http://dx.doi.org/10.1016/j.compbiomed.2022.105420
http://dx.doi.org/10.1016/j.compbiomed.2022.105420
http://dx.doi.org/10.1016/j.compbiomed.2022.105420
http://dx.doi.org/10.3389/fpsyt.2022.801301
http://dx.doi.org/10.1155/2024/9667377
http://dx.doi.org/10.1016/j.eswa.2021.116076
http://dx.doi.org/10.22541/au.172474607.71425235/v1
http://dx.doi.org/10.1109/TCYB.2022.3197127
http://dx.doi.org/10.1109/TCYB.2022.3197127
http://dx.doi.org/10.1109/TCYB.2022.3197127
http://dx.doi.org/10.1109/TKDE.2021.3090664
http://dx.doi.org/10.1109/TKDE.2021.3090664
http://dx.doi.org/10.1109/TKDE.2021.3090664
http://dx.doi.org/10.1145/3394486.3403177
http://dx.doi.org/10.1145/3394486.3403177
http://dx.doi.org/10.1145/3394486.3403177
http://dx.doi.org/10.1145/3308558.3313461
http://dx.doi.org/10.1145/3404835.3463074
http://dx.doi.org/10.1109/TAFFC.2022.3210958
http://dx.doi.org/10.1109/TAFFC.2022.3210958
http://dx.doi.org/10.1109/TAFFC.2022.3210958
http://dx.doi.org/10.1016/j.bspc.2023.105675
http://dx.doi.org/10.1016/j.bspc.2023.105675
http://dx.doi.org/10.1016/j.bspc.2023.105675
http://dx.doi.org/10.1016/j.actpsy.2025.105462
http://dx.doi.org/10.1016/j.actpsy.2025.105462
http://dx.doi.org/10.1016/j.actpsy.2025.105462
http://dx.doi.org/10.1109/TCSS.2023.3283009
http://dx.doi.org/10.1109/TCSS.2023.3283009
http://dx.doi.org/10.1109/TCSS.2023.3283009
http://dx.doi.org/10.1016/j.compbiomed.2025.110266
http://dx.doi.org/10.1016/j.compbiomed.2025.110266
http://dx.doi.org/10.1016/j.compbiomed.2025.110266
http://dx.doi.org/10.1016/j.cmpb.2022.107100
http://dx.doi.org/10.1109/TMC.2022.3140430
http://dx.doi.org/10.1109/TMC.2022.3140430
http://dx.doi.org/10.1109/TMC.2022.3140430
http://dx.doi.org/10.1109/TCDS.2023.3257055
http://dx.doi.org/10.1109/TAFFC.2022.3221554
http://dx.doi.org/10.1109/TAFFC.2022.3221554
http://dx.doi.org/10.1109/TAFFC.2022.3221554
http://dx.doi.org/10.1109/TAFFC.2022.3199075
http://dx.doi.org/10.1109/TII.2023.3280560
http://dx.doi.org/10.1109/TAFFC.2023.3318321
http://dx.doi.org/10.1016/j.eswa.2023.122777
http://dx.doi.org/10.1016/j.eswa.2023.119969
http://dx.doi.org/10.1109/TAFFC.2022.3233070
http://dx.doi.org/10.1109/TAFFC.2022.3233070
http://dx.doi.org/10.1109/TAFFC.2022.3233070

N. Esmi et al.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Shiyu Teng, Jiaqing Liu, Yue Huang, Shurong Chai, Tomoko Tateyama, Xinyin
Huang, Lanfen Lin, Yen-Wei Chen, An intra-and inter-emotion transformer-based
fusion model with homogeneous and diverse constraints using multi-emotional
audiovisual features for depression detection, IEICE Trans. Info. Syst. 107 (3)
(2024) 342-353, http://dx.doi.org/10.1587/transinf.2023HCP0006.

Huiting Fan, Xingnan Zhang, Yingying Xu, Jiangxiong Fang, Shiqing Zhang,
Xiaoming Zhao, Jun Yu, Transformer-based multimodal feature enhancement
networks for multimodal depression detection integrating video, audio and
remote photoplethysmograph signals, Inf. Fusion. 104 (1) (2024) 1-11, http:
//dx.doi.org/10.1016/j.inffus.2023.102161.

Yongfeng Tao, Minqiang Yang, Huiru Li, Yushan Wu, Bin Hu, DepMSTAT:
Multimodal spatio-temporal attentional transformer for depression detection,
IEEE Trans. Knowl. Data Eng. 36 (7) (2024) 2956-2966, http://dx.doi.org/10.
1109/TKDE.2024.3350071.

Meiling Li, Yuting Wei, Yangfu Zhu, Siqi Wei, Bin Wu, Enhancing multimodal
depression detection with intra-and inter-sample contrastive learning, Inf. Sci.
684 (1) (2024) 1-15, http://dx.doi.org/10.1016/j.ins.2024.121282.

Feiyu Zhu, Jing Zhang, Ruochen Dang, Bingliang Hu, Quan Wang, MTNet:
Multimodal transformer network for mild depression detection through fusion
of EEG and eye tracking, Biomed. Signal Process. Control. 100 (2025) 106996,
http://dx.doi.org/10.1016/j.bspc.2024.106996.

Yangting Zhang, Kejie Wang, Yu Wei, Xinwen Guo, Jinfeng Wen, Yuxi Luo, Min-
imal EEG channel selection for depression detection with connectivity features
during sleep, Comput. Biol. Med. 147 (2022) 1-9, http://dx.doi.org/10.1016/j.
compbiomed.2022.105690.

Jian Shen, Xiaowei Zhang, Xiao Huang, Manxi Wu, Jin Gao, Dawei Lu, Zhijie
Ding, Bin Hu, An optimal channel selection for EEG-based depression detec-
tion via kernel-target alignment, IEEE J. Biomed. Health Inf. 25 (7) (2020)
2545-2556, http://dx.doi.org/10.1109/JBHI.2020.3045718.

Fang Liu, Pei Yang, Yezhi Shu, Niqi Liu, Jenny Sheng, Junwen Luo, Xiaoan Wang,
Yong-Jin Liu, Emotion recognition from few-channel EEG signals by integrating
deep feature aggregation and transfer learning, IEEE Trans. Affect. Comput. 15
(3) (2024) 1315-1330, http://dx.doi.org/10.1109/TAFFC.2023.3336531.

Jing Zhu, Changlin Yang, Xiannian Xie, Shiqing Wei, Yizhou Li, Xiaowei Li,
Bin Hu, Mutual information based fusion model (MIBFM): mild depression
recognition using EEG and pupil area signals, IEEE Trans. Affect. Comput. 14
(3) (2022) 2102-2115, http://dx.doi.org/10.1109/TAFFC.2022.3171782.
Jiaping Zhao, Laurent Itti, shapeDTW: Shape dynamic time warping, Pattern
Recognit. 74 (1) (2018) 171-184, http://dx.doi.org/10.1016/j.patcog.2017.09.
020.

11

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

Biomedical Signal Processing and Control 113 (2026) 109039

Weijian Mai, Fengjie Wu, Xiaoting Mai, Learning spatial-spectral-temporal EEG
representations with dual-stream neural networks for motor imagery, Biomed.
Signal Process. Control. 92 (2024) 106003, http://dx.doi.org/10.1016/j.bspc.
2024.106003.

Hong-Yu Zhou, Yizhou Yu, Chengdi Wang, Shu Zhang, Yuanxu Gao, Jia
Pan, Jun Shao, Guangming Lu, Kang Zhang, Weimin Li, A transformer-based
representation-learning model with unified processing of multimodal input for
clinical diagnostics, Nat. Biomed. Eng 7 (6) (2023) 743-755, http://dx.doi.org/
10.1038/541551-023-01045-x.

Rui Li, Chao Ren, Sipo Zhang, Yikun Yang, Qiqi Zhao, Kechen Hou, Wenjie
Yuan, Xiaowei Zhang, Bin Hu, STSNet: a novel spatio-temporal-spectral network
for subject-independent EEG-based emotion recognition, Health Inf. Sci. Syst. 11
(1) (2023) 25, http://dx.doi.org/10.1007/513755-023-00226-x.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, An image is worth 16x16 words: Transformers for image
recognition at scale, 2020, http://dx.doi.org/10.48550/arXiv.2010.11929, arXiv
Preprint.

Jana Van Canneyt, Jan Wouters, Tom Francart, Enhanced neural tracking of the
fundamental frequency of the voice, IEEE Trans. Biomed. Eng. 68 (12) (2021)
3612-3619, http://dx.doi.org/10.1109/TBME.2021.3080123.

Toe Aung, David Puts, Voice pitch: a window into the communication of social
power, Curr. Opin. Psychol. 33 (1) (2020) 154-161, http://dx.doi.org/10.1016/

j.copsyc.2019.07.028.

Jiahong Li, Chenda Li, Yifei Wu, Yanmin Qian, Unified cross-modal attention:
Robust audio-visual speech recognition and beyond, IEEE/ACM Trans. Audio
Speech Lang. Process. 32 (1) (2024) 1941-1953, http://dx.doi.org/10.1109/
TASLP.2024.3375641.

Andrea Galassi, Marco Lippi, Paolo Torroni, Attention in natural language
processing, IEEE Trans. Neural Netw. Learn. Syst. 32 (10) (2020) 4291-4308,
http://dx.doi.org/10.1109/TNNLS.2020.3019893.

Hanshu Cai, Zhengin Yuan, Yiwen Gao, Shuting Sun, Na Li, Fuze Tian, Han Xiao,
Jianxiu Li, Zhengwu Yang, Xiaowei Li, et al., A multi-modal open dataset for
mental-disorder analysis, Sci. Data 9 (1) (2022) 178, http://dx.doi.org/10.1038/
s41597-022-01211-x.

Fabien Ringeval, Bjo Schuller, State-of-mind, detecting depression with Al, and
cross-cultural affect recognition, 2019, pp. 3-12, http://dx.doi.org/10.1145/
3347320.3357688.


http://dx.doi.org/10.1587/transinf.2023HCP0006
http://dx.doi.org/10.1016/j.inffus.2023.102161
http://dx.doi.org/10.1016/j.inffus.2023.102161
http://dx.doi.org/10.1016/j.inffus.2023.102161
http://dx.doi.org/10.1109/TKDE.2024.3350071
http://dx.doi.org/10.1109/TKDE.2024.3350071
http://dx.doi.org/10.1109/TKDE.2024.3350071
http://dx.doi.org/10.1016/j.ins.2024.121282
http://dx.doi.org/10.1016/j.bspc.2024.106996
http://dx.doi.org/10.1016/j.compbiomed.2022.105690
http://dx.doi.org/10.1016/j.compbiomed.2022.105690
http://dx.doi.org/10.1016/j.compbiomed.2022.105690
http://dx.doi.org/10.1109/JBHI.2020.3045718
http://dx.doi.org/10.1109/TAFFC.2023.3336531
http://dx.doi.org/10.1109/TAFFC.2022.3171782
http://dx.doi.org/10.1016/j.patcog.2017.09.020
http://dx.doi.org/10.1016/j.patcog.2017.09.020
http://dx.doi.org/10.1016/j.patcog.2017.09.020
http://dx.doi.org/10.1016/j.bspc.2024.106003
http://dx.doi.org/10.1016/j.bspc.2024.106003
http://dx.doi.org/10.1016/j.bspc.2024.106003
http://dx.doi.org/10.1038/s41551-023-01045-x
http://dx.doi.org/10.1038/s41551-023-01045-x
http://dx.doi.org/10.1038/s41551-023-01045-x
http://dx.doi.org/10.1007/s13755-023-00226-x
http://dx.doi.org/10.48550/arXiv.2010.11929
http://dx.doi.org/10.1109/TBME.2021.3080123
http://dx.doi.org/10.1016/j.copsyc.2019.07.028
http://dx.doi.org/10.1016/j.copsyc.2019.07.028
http://dx.doi.org/10.1016/j.copsyc.2019.07.028
http://dx.doi.org/10.1109/TASLP.2024.3375641
http://dx.doi.org/10.1109/TASLP.2024.3375641
http://dx.doi.org/10.1109/TASLP.2024.3375641
http://dx.doi.org/10.1109/TNNLS.2020.3019893
http://dx.doi.org/10.1038/s41597-022-01211-x
http://dx.doi.org/10.1038/s41597-022-01211-x
http://dx.doi.org/10.1038/s41597-022-01211-x
http://dx.doi.org/10.1145/3347320.3357688
http://dx.doi.org/10.1145/3347320.3357688
http://dx.doi.org/10.1145/3347320.3357688

	Multimodal transformer for depression detection based on EEG and interview data
	Introduction
	Related Work
	Approaches Based on Modality
	Previously Applied Methodologies

	Methodology
	Signal Preparation
	Optimal EEG Channels Selection
	Interview Audio Data Preparation

	Signal Conversion and Projection
	EEG Signal to 2D Representation
	Interview Audio File to Words and 2D Representation

	Multi-head Cross-attention
	Self-attention Block
	Classification Head

	Experimental Results
	Datasets and Experimental Setup
	Evaluation Results
	Ablation Study
	Channel and Modality Selection using FSTM
	Multi-Head Cross-Attention, Modality Synchronization, and Self-Attention

	Impact of Hyperparameters Setting
	Channel Attention Analysis of EEG Subjects

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


