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Summary

Mathematical models for simulation and optimization of multi-
carrier energy systems

Anne Saskia Markensteijn

Energy systems are vital in modern society, and reliable operation is crucial. Multi-
carrier energy systems (MESs), which couple two or more single-carrier systems, have
recently become more important, as the need for sustainable energy systems increases.
Important tools for the design and operation of energy systems are steady-state sim-
ulation and optimization. Steady-state simulation, which involves solving the load
flow (LF) problem, is concerned with determining the flow of energy through the sys-
tem and the values of other quantities throughout the system, such as voltages and
pressures, for given demands. In operational optimization, which involves solving the
optimal flow (OF) problem, the distribution of generation over the various sources
and the set points of controllable elements are determined such that some objective
is optimized and such that the system is operated within physical limits.

LF problems and OF problems have been widely studied for single-carrier (SC)
systems. However, conventional LF models for the separate single-carrier networks
(SCNs) are not able to capture the full extent of the coupling. Recently, different LF
models for MESs have been proposed, either using the energy hub (EH) concept, or
using a case specific approach. Yet, they do not state how the graphs of the SCNs can
be combined into one multi-carrier network (MCN). A good description of integrated
networks of multiple energy carriers is very important. Some couplings between energy
systems, while possible in practice, can lead to model problems. Although the EH
concept can be applied to a general MES, it is unclear in the existing models how
the EH should be represented in the graph of the MES. On the other hand, the case
specific approaches are not easily applicable to general MESs. Moreover, the effect of
the coupling on solvability and well-posedness of the system of nonlinear LF equations
for a MES has had little attention in these models.

Operational optimization requires the detailed LF equations to be incorporated
into the optimization problem. Nonlinearities of these equations cause issues with
convexity and solvability of the OF problem. Hence, the formulation of the LF equa-
tions, and the way they are incorporated in the OF problem, greatly influence the
solvability of the OF problem and the convergence of the optimization algorithms.

In this thesis, we address some of the existing issues and possibilities to improve on
the available models. We present a graph-based framework for steady-state load flow
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analysis of general MESs that consist of gas, electricity, and heat. The framework is
based on connecting the SCNs to heterogeneous coupling nodes, using homogeneous
dummy links, to form one connected MCN. Load flow equations are associated with
each network element, including the coupling nodes, which are combined with bound-
ary conditions to form one integrated system of nonlinear equations, that needs to
be solved to find the solution to the LF problem. This is the integrated approach to
formulate the LF problem of a MES.

Alternatively, the model of the connected MCN can be reformulated, such that
a MES is represented by a disconnected MCN that consists of the SC networks and
a coupling network. This allows for a more decoupled approach to the LF problem,
in which the system of nonlinear equations, now consisting of interface conditions
connecting the coupling network with the SC networks and the LF equations per SC
network, can be solved making use of individual solves for each SC network.

The model framework is validated using a small example MES. Using the inte-
grated approach, we formulate the LF problem of various example MESs, of varying
size, with various coupling models and topologies, and various formulations in the
single-carrier parts, and solve their LF problems using the Newton-Raphson method
(NR). Using these examples, we investigate the effect of coupling on the system of
LF equations and discuss the problems arising due to the coupling of SC networks on
the solvability of the LF problem. Based on numerical experiments, we compare the
convergence behavior of NR for the various single- and multi-carrier systems. Finally,
we formulate and solve the LF problem of MESs using the integrated approach and
using the decoupled approach. We compare the systems of equations, and we compare
the convergence of the solution methods for the two approaches.

Furthermore, in this thesis, we consider two ways to include the LF equations in the
OF problem for general MESs, called formulation I and formulation II. In formulation
I, optimization is over the combined control and state variables, with the LF equations
included explicitly as equality constraints. In formulation II, optimization is over the
control variables only, and the LF equations are included as a subsystem, which is
solved to obtain the state variables for given control variables. We compare the two
formulations theoretically, and we illustrate the effect of the two formulations on the
solvability of the OF problem by optimizing two MESs.

This study shows that the graph-based framework can be used to formulate and
solve the steady-state LF problem for general MESs that consist of gas, electricity,
and heat, both with the integrated approach and with the decoupled approach. More-
over, the framework can be used with different components and models, both in the
SCNs and for the coupling units. Therefore, our framework includes and extends the
currently available LF models for MESs. Furthermore, the model framework provides
guidelines to obtain a solvable steady-state LF problem for MESs. We find that using
the decoupled approach to perform LF analysis is slower than using the integrated
approach. For the LF problem of an example MES with a tree-like structure, NR is
independent of the size of the network and of the coupling, and NR requires at most
as many iterations as the slowest single-carrier network.

Both formulation I and formulation II result in a solvable OF problem. For the
two example MESs, the optimization algorithms require significantly fewer iterations
with formulation II than with formulation I.



Samenvatting

Wiskundige modellen voor simulatie en optimalisatie van gëınte-
greerde energiesystemen

Anne Saskia Markensteijn

Energiesystemen zijn een essentieel onderdeel van onze samenleving, en het is cruci-
aal dat deze systemen betrouwbaar functioneren. Naarmate de vraag naar duurzame
energiesystemen stijgt worden gëıntegreerde energiesystemen, die twee of meer af-
zonderlijke energiesystemen aan elkaar koppelen, steeds belangrijker. Simulatie en
optimalisatie zijn belangrijke middelen tijdens het ontwerpen en beheren van ener-
giesystemen. Bij tijdonafhankelijke simulaties, waarbij het load flow (LF) probleem
wordt opgelost, worden de energiestromen en andere grootheden, zoals spanning of
druk, in het systeem bepaald voor een gegeven vraag naar energie. Bij optimalisatie,
waarbij het optimal flow (OF) probleem wordt opgelost, wordt de totale opgewekte
energie over de verschillende bronnen verdeeld, zodanig dat een bepaalde functie wordt
geoptimaliseerd en er gelijktijdig aan de fysieke limieten van het energiesysteem wordt
voldaan.

Er is uitgebreid onderzoek gedaan naar LF en OF problemen voor de afzonderlijke
energiesystemen, maar deze conventionele LF modellen voor de afzonderlijke energie-
netwerken zijn niet in staat om de volledige reikwijdte van een koppeling weer te
geven. Recent zijn er verschillende LF modellen ontwikkeld voor gëıntegreerde ener-
giesystemen, die gebruik maken van het energy hub (EH) concept of die uitgaan van
een specifiek energiesysteem, maar deze modellen geven niet aan hoe de grafen van
de afzonderlijke energiesystemen gecombineerd kunnen worden tot één gëıntegreerd
netwerk. Een goede beschrijving van gëıntegreerde netwerken is belangrijk, want som-
mige koppelingen tussen de energiesystemen, die in de praktijk mogelijk zijn, kunnen
leiden tot modelproblemen. Hoewel het EH concept gebruikt kan worden voor een
generiek gëıntegreerd energiesysteem, is het onduidelijk hoe een EH moet worden
weergegeven in de graaf van het gëıntegreerde energiesysteem. Aan de andere kant
zijn de modellen die uitgaan van een specifiek energiesysteem lastig te gebruiken voor
een generiek gëıntegreerd energiesysteem. Bovendien is in deze modellen weinig aan-
dacht besteed aan het effect van een koppeling op de oplosbaarheid en goedgestelheid
van het stelsel van niet-lineaire LF vergelijkingen voor een gëıntegegreerd energiesys-
teem.

Voor optimalisatie moeten de gedetailleerde LF vergelijkingen opgenomen worden
in het optimalisatieprobleem. De niet-lineaire aard van deze vergelijkingen kan leiden

v



vi

tot een verlies van convexiteit en oplosbaarheid van het OF probleem. De formule-
ring van de LF vergelijkingen, en de manier waarop ze verwerkt worden in het OF
probleem, is daarom van grote invloed op de oplosbaarheid van het OF probleem en
op de convergentie van de optimalisatie-algoritmen.

In dit proefschrift bespreken we bestaande problemen van de beschikbare model-
len, en bespreken we mogelijke verbeteringen. We presenteren een framework voor
tijdonafhankelijke LF analyse van generieke gëıntegreerde energiesystemen, bestaande
uit gas, elektriciteit en warmte, gebruikmakend van de weergave van het energiesys-
teem als graaf. Het framework is gebaseerd op het verbinden van de afzonderlijke
energienetwerken met heterogene koppelingsknopen, via dummyzijden, om één sa-
menhangend gëıntegreerd energienetwerk te vormen. LF vergelijkingen worden toe-
gewezen aan ieder netwerkelement, inclusief de koppelingsknopen, en deze vergelij-
kingen worden gecombineerd met randvoorwaarden tot één gëıntegreerd stelsel van
niet-lineaire vergelijkingen. De oplossing van dit stelsel is de oplossing van het LF
probleem. Dit is de gëıntegreerde aanpak om het LF probleem van een gëıntegreerd
energiesysteem op te stellen.

Als alternatief kan het model van het samenhangende gëıntegreerde energienetwerk
aangepast worden, zodanig dat een gëıntegreerd energiesysteem wordt weergegeven
door een onsamenhangende graaf bestaande uit de afzonderlijke energienetwerken en
een koppelingsnetwerk. Dit staat een meer losgekoppelde aanpak van het LF probleem
toe waarin het stelsel van niet-lineaire vergelijkingen, dat nu bestaat uit de stelsels
van LF vergelijkingen voor ieder afzonderlijk netwerk en de koppelingscondities die
de verbinding vormen tussen het koppelingsnetwerk en de afzonderlijke netwerken,
opgelost kan worden door het LF probleem van ieder afzonderlijk netwerk apart op
te lossen.

Het framework wordt gevalideerd middels het opstellen en oplossen van het LF
probleem voor een klein gëıntegreerd energiesysteem. We gebruiken de gëıntegreerde
aanpak om het LF probleem op te stellen van verschillende energiesystemen, met
een variërende grootte, verschillende koppelingsmodellen en topologieën en verschil-
lende formuleringen van de LF vergelijkingen in de afzonderlijke netwerken, en we
lossen deze LF problemen op met de methode van Newton-Raphson (NR). Met deze
voorbeelden onderzoeken we het effect van een koppeling op het stelsel van LF verge-
lijkingen, en bespreken we de problemen met oplosbaarheid van dit stelsel veroorzaakt
door het koppelen van de afzonderlijke energienetwerken. Op basis van numerieke ex-
perimenten vergelijken we het convergentiegedrag van NR voor de verschillende afzon-
derlijke en gëıntegreerde energiesystemen. Ten slotte gebruiken we de gëıntegreerde
en de losgekoppelde aanpak om het LF probleem op te stellen en op te lossen. We
vergelijken de stelsels van LF vergelijkingen, en we vergelijken het convergentiegedrag
van de oplossingsmethoden, voor de twee aanpakken.

In dit proefschrift beschouwen we twee manieren om de LF vergelijkingen te ver-
werken in het OF probleem van een generiek gëıntegreerd energiesysteem, die we
formulering I en formulering II noemen. Bij formulering I wordt er over de con-
trolvariabelen en toestandsvariabelen geoptimaliseerd, waarbij de LF vergelijkingen
expliciet worden verwerkt als gelijkheidsvoorwaarden. Bij formulering II wordt er
alleen over de controlvariabelen geoptimaliseerd, en worden de LF vergelijkingen als
subsysteem verwerkt, dat opgelost wordt naar de toestandsvariabelen voor gegeven
controlvariabelen. We vergelijken de formuleringen theoretisch, en we illustreren het
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effect van de twee formuleringen op de oplosbaarheid van het OF probleem door twee
gëıntegreerde energiesystemen te optimaliseren.

Dit proefschrift laat zien dat het framework gebruikt kan worden om het tijdon-
afhankelijke LF probleem te formuleren en op te lossen voor generieke gëıntegreerde
energiesystemen die bestaan uit gas, elektriciteit en warmte, zowel met de gëıntegreerde
aanpak als met de losgekoppelde aanpak. Het framework kan bovendien gebruikt
worden voor verschillende netwerkelementen en modellen, zowel in de afzonderlijke
netwerken als voor de koppelingen. Ons framework omvat daarom de bestaande LF
modellen voor gëıntegreerde energiesystemen, en breidt deze modellen uit. Verder
kan het framework gebruikt worden om richtlijnen af te leiden om tot een oplosbaar
tijdonafhankelijk LF probleem voor gëıntegreerde energiesystemen te komen. Op ba-
sis van numerieke experimenten vinden we dat het framework met de losgekoppelde
aanpak leidt tot een langzamere oplossingsmethode van LF problemen dan het fra-
mework met de gëıntegreerde aanpak. Voor het voorbeeld van het LF probleem van
een gëıntegreerd energiesysteem waarvan het netwerk een boomstructuur heeft, geldt
dat NR onafhankelijk is van de grootte van het netwerk en van de koppeling, en dat
NR ten hoogste zoveel iteraties nodig heeft als voor het langzaamste afzonderlijke
netwerk.

Zowel formulering I als formulering II leiden tot een oplosbaar OF probleem. Voor
de twee gëıntegreerde energiesystemen die als voorbeeld gebruikt worden geldt dat het
optimalisatie-algoritme beduidend minder iteraties nodig heeft met formulering II dan
met formulering I.
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MC multi-carrier.

MCN multi-carrier network.

MES multi-carrier energy system.
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OF optimal flow.

SC single-carrier.
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SLSQP sequential least squares programming.
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Physical network quantities

Symbol Name Unit Description

δ voltage angle rad Angle of the complex voltage pha-
sor.

∆p pressure drop Pa Pressure drop over a pipe.
∆ϕ injected heat power W Difference in heat power between

supply and return line.
∆T temperature difference °C Temperature difference, or temper-

ature drop, over a heat exchanger
or over a pipe.

E energy of source W Energy flow of source or generator.
One entry of E.

h head m Pressure head.
I current − Current phasor, with angle θ and

amplitude |I|.
m mass flow kg/s Water mass flow rate, e.g. in a pipe.
P active power W Active power, the real part of S.
p pressure Pa Pressure.
ϕ heat power W Internal energy flow of a water.
Q reactive power var Reactive power, the imaginary part

of S.
q gas flow rate kg/s Gas mass flow rate, e.g. in a pipe

or through a compressor.
S complex power VA Complex power, given by P + iQ.
T temperature °C Temperature.
V voltage V Voltage phasor, with angle δ and

amplitude |V |.
|V | voltage amplitude V Amplitude of the complex voltage

phasor.



CHAPTER 1

Introduction

Energy systems are vital in modern society, and reliable operation is crucial. Multi-
carrier energy systems have recently become more important, as the need for sustain-
able energy systems increases. Important tools for design and operation of energy
system are steady-state simulation and optimization.

This chapter first explains the background and some physical aspects of energy
systems. Then, the simulation and optimization of energy systems are introduced.
Finally, the outline of this thesis is detailed.

1.1 Energy systems

An energy system is a physical system that generates, transports, distributes, and
consumes one or more types of energy. If only one type of energy is concerned,
the energy system is called a single-carrier (SC) system. Otherwise, it is called a
multi-carrier (MC) system. Some examples of energy carriers are (bio)gas, electricity,
heating, or cooling.

In practice, most energy systems are MC systems. Consider a power grid, which is
seen as a SC system. However, certain generators convert gas to electricity, meaning
that a power grid also includes the energy carrier gas. As such, it could be seen as a
multi-carrier energy system (MES).

To support the realization of regional energy self-sufficiency, we look at systems
from a national scale down to the distribution of energy to end-users. In this thesis,
we focus on gas, electricity, and heat as energy carriers.

1.1.1 Single-carriers energy systems

This section describes the background and some practical aspects of the SC energy
systems, with gas, electricity, or heat as carrier.

Icons in figures are based on designs by gstudioimagen, macrovec, and macrovector official, from
Freepik (http://www.freepik.com)

1
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Gas

End-users of the gas system include industrial customers, private households, and
gas-fired generators. Gas is divided into two types: high calorific gas (H-gas), and
low calorific gas (L-gas). The latter is also called Groningen gas (G-gas) in the
Netherlands. The end-use determines the required quality of the gas, which could be
a mix of H-gas and L-gas.

Gas field

High pressure

7 bar–67 bar

Low pressure
100mbar–300mbar

Households

Industrial user

Small industrial
user

Transmission network

Distribution network

Medium pressure

8 bar

Industrial user

Figure 1.1: Schematic representation of a gas system.

The most basic gas transportation system is a pipeline system (e.g. [1, 2]). Sources
are connected to end-users by pipelines. Gas is transported through these pipes based
on pressure differences between beginning and end of a pipe.

Over large distances, the gas is transported through wide pipes at high pressures.
This part of the system is called the transmission network. The gas is transferred to
subsystems of smaller size, with smaller pipes and operating at lower pressures. The
subsystems distribute the gas to end-users or to subsequent subsystems. This part of
the system is called the distribution network.

Aside from sources, pipelines, and end-users, there are three main components in a
gas system: compressors, pressure regulators, and valves. Pressure loss occurs during
transportation due to friction in the pipes. Compressors are used to maintain the
required pressure levels throughout the system. At the same time, various pressure
levels are maintained within one system. Pressure regulators are used to change the
pressure from one level to another. For instance, the pressure is lowered when gas is
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transferred from the transmission network to the distribution network. Finally, valves
regulate the gas flow. For instance, valves prevent flow of gas in the wrong direction,
or they cut off certain regions of the system in case of a breakdown.

Figure 1.1 shows a schematic representation of a gas system, with the pressures
of the Dutch system.

Electricity

End-users of the electrical system include industrial customers as well as households.
Energy systems with electricity as carrier are usually called power systems. When
there is no confusion between electrical power and heat power, we refer the former
simply as power. The electrical system is then called a power system.

High voltage
110 kV–380 kV

Industrial user

Transmission grid

Distribution grid

Medium voltage
10 kV–50 kV

Small industrial

user

Households

Solar farm

Wind farm

Power plant

Low voltage

0.4 kV

Figure 1.2: Schematic representation of an electrical system.

The total power system consists of generation, transmission, and distribution of
power (e.g. [3]). Generators are connected to end-users by overhead transmission
lines or underground cables.
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Over large distances, the electricity is transported at high voltages. This part of
the system is called the transmission grid. It connects the generators to substations
near end-users. At the substations, electricity is distributed to subsystems operat-
ing at lower voltages. The subsystems distribute the electricity to end-users or to
subsequent subsystems. This part of the system is called the distribution grid.

Because of historical and financial reasons, most power grids use alternating cur-
rent (AC). However, if the transmission distance is long enough, direct current (DC)
systems might be preferred because of the smaller incremental conductor costs. Re-
cently, there has also been interest in DC distribution systems in the context of smart
grids. In this thesis, we consider balanced three-phase AC systems. When a three-
phase system is balanced, the voltages of each phase have the same magnitude, and
their angles are shifted by 120°.

Figure 1.2 shows a schematic representation of a power system, with the voltages
of the Dutch system.

Heat

End-users of the heat system include industrial costumers as well as (domestic) build-
ings (e.g. [4]). Heat demands for buildings include space heating and domestic hot
water supply, which require relatively low temperature levels. The typical water tem-
perature for hot water supply is 55 °C. Industrial uses additionally include evapora-
tion or drying, and manufacturing of metals or other materials. Evaporation or drying
requires a medium temperature, with temperatures between 100 °C–400 °C. Manufac-
turing of materials requires high temperature levels, with temperatures above 400 °C.

Supply temperature

60 °C–120 °C

Source
Household

Household

Supply line

Return line

Return temperature
30 °C–70 °C

Figure 1.3: Schematic representation of a district heating system.

A general heating system consists of sources connected to end-users by double
pipes (e.g. [4]). The pipes deliver the heat from source to end-user by a carrier,
which is usually pressurized water. These pipes are generally short for the heating
system to be financially viable. Therefore, we only consider district heating systems,
where local sources supply heat to end-users within a relatively small region.

The pipes in the distribution system are double. Supply pipes transport hot water
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from the sources to the end-users. After extracting heat from the water, return pipes
transport the cold water from the end-users to the sources, where it is heated up
again. In current systems, supply temperature varies from 60 °C to 120 °C and return
temperature varies from 30 °C and 70 °C. The collection of supply pipes is called the
supply line, and the collection of return pipes is called the return line.

Figure 1.3 shows a schematic representation of a district heating system.

1.1.2 Multi-carrier energy systems

Traditionally, the total energy system consists of several SC systems that are designed,
operated, and controlled separately. As the need for efficient, reliable, and low carbon
energy systems increases, MES have become more important [5]. In MESs, different
energy carriers, such as electricity and heat, interact with each other, leading to one
integrated system. Hence, MESs are sometimes called integrated energy systems.
Figure 1.4 shows a schematic representation of a MES.

End user

Source Network

Heat

Electricity

Gas

Figure 1.4: Schematic representation of a multi-carrier energy system.

The SC systems interact with each other through various system elements, which
we call coupling units. The most straightforward way of interaction is through con-
version units. These units convert one type of energy carrier into another. Examples
include gas-fired generators, which convert gas into electricity, and combined heat
and power plants (CHPs), which convert gas into electricity and heat. A CHP is also
called a cogeneration plant, since it generates two energy carriers.

Another way of interaction is through active elements, for instance a compressor
in a gas system. Some compressors are driven by electricity, meaning that a coupling
between the power grid and the gas system exists. Elements such as compressors do
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not convert one type of energy carrier into another. Instead, they serve a control
purpose in one of the SC systems.

Table 1.1 gives an overview of some of the most common coupling units. Since
CHP refers to any unit that converts gas to both electricity and heat, it is not included
in the table separately. An example of a CHP in Table 1.1 is a gas turbine.

Table 1.1: Common coupling units for a MES.

Unit Gas Electricity Heat
Turbo compressor control consumed
Heat pump consumed produced
Gas boiler consumed produced
Electric boiler consumed produced
Circulation pump consumed control
Gas turbine consumed produced produced
Gas-fired generator consumed produced
Power-to-gas produced consumed

Compared with SC energy systems, MESs are more flexible, more reliable, use
more renewables and distributed generation, and have a lower carbon emission. One
possible example of a MES is a regional system which is not connected to a larger
grid, that is, an energy self-sufficient region.

Flexibility and reliability are increased by load shifting. For instance, an electrical
demand can be supplied by the gas system through a conversion unit, effectively
shifting the load from the power grid to the gas system.

The use of renewable sources and distributed generation is mainly limited by
technical limits of the power grid. When different systems are integrated into a single
system, any excess power generated by a renewable source can be ‘stored’ in the other
systems through converter units. For instance, it can be stored in the gas system using
power-to-gas (P2G) units. This excess power would otherwise be curtailed.

Total carbon emission is reduced due to higher efficiency of the MES compared
with separate SC systems. One reason for higher efficiency is cogeneration of electrical
and heat power. Additionally, a MES allows for optimal operation of the total energy
system, as opposed to optimizing operations of the separate SC systems.

MESs currently also have disadvantages. First, the interaction between the various
systems leads to more complex systems that are not well understood, and for which
very few simulation tools are available. Furthermore, the current market is tailored
to separate systems and not to one integrated system. Therefore, robust and efficient
simulation and optimization tools for MES are needed.

1.2 Simulation of multi-carrier energy systems

Steady-state simulation, or steady-state analysis, is an important tool for the design
and operation of energy systems. Given demands, such a simulation determines the
flow of energy through the system, and the values of other quantities, such as volt-
ages and pressures, throughout the system. In power system literature, this type of
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problem is called the power flow or the load flow (LF) problem. For MES, we call this
type of simulation steady-state load flow (LF) simulation or steady-state LF analysis.

Steady-state LF analysis tries to find a solution to the steady-state LF problem.
For simplicity, steady-state LF analysis and the steady-state LF problem are called
LF analysis and the LF problem respectively. A solution to the LF problem is math-
ematically feasible, but not necessarily physically feasible or optimal.

For LF analysis, energy systems are mathematically abstracted to a graph or
network. Load flow problems for SCs systems have been widely studied, but load
flow problems for MESs have only been proposed recently.

The currently available LF models for MESs do not state how the graphs of single-
carrier networks (SCNs) can be combined into one multi-carrier network (MCN). A
good description of integrated networks of multiple energy carriers is very important.
Some couplings between energy systems, while possible in practice, can lead to model
problems.

Furthermore, the available LF models for MES do not consider the effect of cou-
pling on the LF problems. Usually, a coupling model introduces more unknowns than
equations.

We provide a systematic analysis of the SCNs to determine how energy systems
of different carriers can be combined into one MCN. Furthermore, we discuss how
the models of the energy system elements should be collected to form one integrated
system of LF equations, both for SCNs and for an MCN. Based on these analyses, we
propose a new graph-based model framework for steady-state LF problems of general
MESs.

1.3 Optimization of multi-carrier energy systems

Optimization is an important tool for the design and operation of an energy system.
In operational optimization, the distribution of generation over the various sources,
or the set points of controllable elements, are determined such that an objective is
optimized. At the same time, the operation of the energy system must stay within
physical limits. Again, these problems have been widely studied for SC systems, but
optimization for MESs has only been proposed recently.

An example of operational optimization is to find a physically feasible solution to
the LF problem, in which the steady-state LF analysis is extended with physical oper-
ational limits of the energy system. For gas systems, such an optimization problem is
called validation of nominations [1]. Other examples are economical dispatch and op-
timal power flow, which are well-known operational optimization problems for power
systems. Economical dispatch determines a least-cost distribution of generation, but
simplifies or ignores steady-state LF equations. Optimal power flow problems find an
optimal solution to some objective while satisfying both the LF equations and the
physical limits of the power system.

Several objective functions are used in optimization of energy systems, such as
minimizing generation costs, minimizing losses, or minimizing carbon emissions. We
choose to minimize total generation costs, which is commonly used in both SC and
MC systems (e.g. [6], [7], and [8]).

Currently, most optimization problems for MESs are like an economical dispatch
problem, where the network transmission is simplified or ignored. In this thesis, we



8 Introduction Chapter 1

consider optimization problems for MESs like optimal power flow problems, which
we call optimal flow (OF) problems. This requires the detailed LF equations to
be incorporated into the optimization problem. Nonlinearities of these equations
cause issues with convexity and solvability of the optimization problem, as also noted
in [6] and [9]. Hence, the formulation of the LF equations, and the way they are
incorporated in the optimization problem, greatly influence the solvability of the
optimization problem.

We analyze the effect of the LF equations on the solvability of the optimization
problem for general MESs. We consider two ways to include the LF equations into
the OF problem. Based on this analysis, we formulate an optimization problem for a
general SC or MC energy system, providing a general optimization framework.

1.4 Outline of thesis

The rest of this thesis is structured as follows.

Chapter 2: Mathematical models of the quantities and elements in the energy sys-
tems used in steady-state simulation and optimization. This includes commonly
used models in single-carrier energy systems, and various models for conversion
units in multi-carrier energy systems.

Chapter 3: A systematic analysis of the SCNs to determine how energy systems
of different carriers can be combined into one MCN. We introduce a coupling
node to connect the SC networks into one integrated MC network. This gives a
generic and uniform network representation for general MES consisting of gas,
electricity, and heat.

Chapter 4: Formulation of one integrated system of LF equations, both for SCNs
and for a MCN, based on the comprehensive network description of SC and MC
energy systems. We discuss the effect of coupling on the LF problem, such as the
need for additional boundary conditions (BCs). Together with the results from
Chapter 3, Chapter 4 gives a graph-based model framework for steady-state LF
problems of general MESs.

Chapter 5: Basic algorithm of the Newton-Raphson method, used for solving non-
linear system of equations. We discuss the role of scaling and permutation of the
variables and equations in the Newton-Raphson method (NR). We discuss the
application of NR to steady-state LF problems of MESs.

Chapter 6: Validation and illustration of the graph-based model framework for
steady-state LF problems, using a MES. This MES consists of a gas network,
an electricity network, and a heat network, each with three loads, which are con-
nected through several coupling units. The coupling is modeled in three different
ways, giving three MCNs for the same MES.

Chapter 7: Analysis of the effect of coupling on the solvability and well-posedness
of the integrated system of nonlinear LF equations, and on the convergence of
NR, based on numerical experiments.
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Chapter 8: A decoupled approach to solving the LF problem of integrated MES, as
an alternative to the framework presented in Chapter 4. This decoupled approach
represents a MES as a disconnected MCN, by decoupling the connected MCN
into SC subnetworks and a coupling subnetwork. We solve the LF problem of
three example MESs, validating and demonstrating the decoupling approach.

Chapter 9: Theory regarding nonlinearly constrained optimization problems, in-
cluding optimality conditions, optimization methods, and elimination of vari-
ables.

Chapter 10: Analysis of the effect of the LF equations on the solvability of the OF
problem for general MESs. We consider two ways to include the LF equations
in the OF problem. Based on this analysis, two formulations of the optimization
problem for SC or MC energy systems are stated, providing a general optimiza-
tion framework. We optimize two example MESs, demonstrating some of the
theoretical advantages and disadvantaged of the formulations of the OF problem
in practice.

Chapter 11: The effect of scaling on the system of equations, based dimensional
analysis, in LF and OF problems is studied. We introduce a per unit scaling
for MESs and compare the per unit scaling with matrix scaling. We show that
these scaling methods are equivalent for NR, when using the same base values
and assuming infinite precision. We show that the optimization algorithms are
affected by the type of scaling.

Chapter 12: Conclusions on and some recommendations for steady-state simulation
and optimization of general MESs.





CHAPTER 2

Steady-state models of energy system elements

Steady-state simulations are an important tool for design and operation of energy
systems. These simulations are based on mathematical models for each element in
the system.

Steady-state simulations use time independent models. The gas, electrical, and
heating SC energy systems operate at different time scales. Hydraulic changes in
pressure and flow in the gas and water pipelines take seconds to reach throughout the
entire system. Changes in voltages and current propagate even faster. These changes
can be seen as instantaneous, and a steady-state approach can be used. Thermal
changes in a heating system, however, can take hours to reach throughout the entire
system. For short-term operational purposes, a steady-state approach to heat systems
might be inaccurate. However, for long-term operational or design purposes, demands
and generation of the system can be assumed constant in time. Therefore, a steady-
state approach can be used.

This chapter gives the mathematical models of the quantities and elements in
the energy systems used in steady-state simulation and optimization. First for each
carrier: gas, electricity, and heat, and then for conversion units used in MESs. Unless
stated otherwise, all variables and equations are in S.I. units.

2.1 Gas systems

We give the steady-state models for pipes and compressors in a gas system. For more
details on models in a gas system, see for instance [1] or [2].

2.1.1 Hydraulic pipe flow

As detailed in [2], the general steady-state flow equation of gas through a pipe is
derived from Bernoulli’s law, assuming (i) steady-state flow, (ii) isothermal flow, (iii)
negligible kinetic energy change in a pipe, (iv) constant compressibility of gas in each
pipe, (v) constant friction factor coefficient along a pipe, (vi) validity of Darcy friction
loss relationship across a pipe, and (vi) a horizontal pipe.

For low-pressure systems, the gauge pressures are small, and the absolute pressures
are close to pn, the pressure at standard conditions. Furthermore, the temperature

11
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is typically close to the temperature at standard conditions, i.e. T ' Tn, and the
compressibility Z ' 1. This is then used for additional simplifications of the flow
equation for low-pressure systems.

Now, denote the gas mass flow in the pipe by q and the pressure drop over the
pipe by ∆p. The general steady-state flow equation is then given by

q = Cgsign (∆p)

√
|∆p|
f

(2.1)

with Cg the pipe constant for a given pipe in a gas network and f the Fanning friction
factor of the pipe. The sign function is defined as

sign (x) =

{
1, x ≥ 0

−1, x < 0

The pressure drop and pipe constant are different for low-pressure and high-pressure
systems:

Cg =


π

8

√
2pnSD5

TnRairL
, for low-pressure systems

π

8

√
SD5

TRairLZ
, for high-pressure systems

(2.2)

Here, S is the specific gravity of the gas, Rair is the gas constant of air, D is the
pipe diameter, L is the pipe length, T is the temperature of the gas, and Z is the
compressibility of the gas. As mentioned before, a system is a low-pressure system if
the gauge pressures are small and the absolute pressures are close to pn.

The pressure drop in (2.1) is given by

∆p =

{
pi − pj , for low-pressure systems; p is gauge pressure

p2i − p2j , other; p is absolute pressure
(2.3)

with pi and pj the pressure at the start and end of the pipe respectively.
Various friction factor models are used, resulting in different pipe flow models. For

some of those, friction factor is a function of the gas flow, such that f = f(q). Com-
monly used friction factors are Weymouth’s friction factor for high-pressure systems
and turbulent flow [2]:

f = (20.642D
1
3E2)−1 (2.4)

with E the efficiency factor of the pipe, and Pole’s friction factor for systems operating
between 0mbar–75mbar gauge [2]:

f = 0.0065 (2.5)

An example of a friction factor dependent on the gas flow is the implicit Colebrook-
White equation for high-pressure systems in the turbulent regime:

1

2
√
f
= −2 log10

(
ε

3.7D
+

2.51

Re
√
f

)
(2.6)
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Here, ε is the absolute roughness of the pipe, and Re is the Reynolds number given
by

Re =
4q

πµρnD

with µ the kinematic viscosity of the gas, and ρn = (pnS)/(RairTn) the density of the
gas at standard conditions.

2.1.2 Compressor

Compressors in the gas network are used to compensate for pressure losses due to
friction in the pipes, and allow the transport of gas over large distances. Compressors
increase the pressure of the incoming gas flow, such that the outgoing gas has a higher
pressure. Commonly used compressors are turbo compressors and piston compressors,
and are for instance driven by gas turbines or electric motors [1].

In practice, every compressor has a feasible operating range, defined by the volume
flow through the compressor, and the change in adiabatic energy of the gas. Detailed
physical models of compressors exist, taking into account the operating range, drive,
and adiabatic energy of the gas (e.g. [1]). In this thesis, a basic compressor model is
used, which describes the increase in pressure by assuming a fixed pressure ratio r.

Denote the pressure at the inlet of the compressor by pi, and the pressure at the
outlet by pj . The basic compressor model is then given by:

pj = rpi (2.7)

2.2 Electrical systems

We give the models for voltage, current, and power in AC power grids, and the steady-
state models for transmission lines. For more details on models in an electrical system,
see for instance [3].

2.2.1 Voltage and current

In steady-state models of AC power grids, the frequency is assumed constant and
uniform. The current I and voltage V are represented as complex waves, which are
described by a time-independent phasor representation:

I = |I|eθi (2.8a)

V = |V |eδi (2.8b)

with |I| and θ the current amplitude and current angle, |V | and δ the voltage am-
plitude and voltage angle, and i the imaginary unit. The amplitudes |I| and |V | are
the root-mean-square values of the time dependent sinusoidal alternating current and
voltage.
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2.2.2 Electrical power

The instantaneous time-dependent power over an impedance is a sinusoidal function,
consisting of two parts: a unidirectional part with non-zero average, and a part with
average zero that is alternately positive and negative. The average of the first part is
called the active power P , and the amplitude of the second part is called the reactive
power Q:

P = |V ||I| cosφ (2.9a)

Q = |V ||I| sinφ (2.9b)

Here, φ = δ − θ is the power factor angle, and cosφ is the power factor. The active
power P is also called the real power or the average power, and the reactive power Q
is also called the imaginary power.

The corresponding phasor is the complex power:

S = V I∗ (2.10a)

= P + iQ (2.10b)

where [·]∗ denotes the complex conjugate. Note that P = Re(S) and Q = Im(S). The
amplitude of the complex power is called the apparent power.

Complex power, active power, and reactive power all have the same dimension,
but for practical reasons S is generally measured in VA (volt-ampere), P in W (watt),
and Q in var (volt-ampere reactive).

2.2.3 Resistance, impedance, and admittance

The basic elements of an AC electrical circuit are resistors, inductors, and capacitors.
The total impedance phasor for a general element is

Z =
∆V

I
= R+ iX (2.11)

with ∆V the voltage drop over the element, R the resistance, and X the reactance of
the element. When X > 0 the element acts as an inductor, when X < 0 it acts as a
capacitor, and when X = 0 it acts as a resistor.

Similarly, for a general element the admittance is given by

Y =
I

∆V
= G+ iB (2.12)

with G the conductance and B the susceptance.
From (2.11) the voltage drop over an element is given by ∆V = ZI, which can be

seen as the extension of Ohm’s law from DC to AC circuits.

2.2.4 Transmission lines

To model a transmission line, four line parameters are distinguished: the series re-
sistance, the inductance, the capacitance, and the shunt conductance. Depending
on the length L of the transmission line, a different model is used [3]. We consider
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a medium-length transmission line, with 80 km < L < 240 km, and a short-length
transmission line, with L < 80 km.

We denote the voltage at the sending end of the transmission line by Vi, and at
the receiving end by Vj . Iij and Sij denote the current and complex power at the
sending end, and Iji and Sji at the receiving end.

Vi

Sij

Iij zij Izij

Sji

Iji

Vj
yshij
2

yshij
2

Figure 2.1: Equivalent circuit of a medium-length transmission line (80 km <
L < 240 km).

The equivalent circuit of a medium-length transmission line is shown in Figure 2.1.
It consists of the series impedance zij of the line, and the shunt impedance yshij of the

line, which is divided equally over both ends of the line. The shunt conductance gsh

is generally negligibly small, such that ysh = ibsh. This model for the medium-length
transmission line is also called the π-line model.

Using Kirchhoff’s current law, (2.11), and (2.12), the current at the sending end
of the line is given by

Iij = yij(Vi − Vj) + i
bshij
2
Vi (2.13)

The active and reactive powers at the sending end of the line are obtained by substi-
tuting the current (2.13) into the complex power equation (2.10):

Pij = gij |Vi|2 − |Vi||Vj | (gij cos δij + bij sin δij) (2.14a)

Qij = −bij |Vi|2 − |Vi||Vj | (gij sin δij − bij cos δij)− i
bshij
2
|Vi|2 (2.14b)

where δij := δi − δj . Similar expressions hold for the active and reactive powers at
the receiving end of the line:

Pji = gij |Vj |2 − |Vi||Vj | (gij cos δij − bij sin δij) (2.15a)

Qji = −bij |Vj |2 + |Vi||Vj | (gij sin δij + bij cos δij)− i
bshij
2
|Vj |2 (2.15b)

The equivalent circuit of a short-length transmission line is shown in Figure 2.2.
It consists of the series impedance zij of the line only.

The current at the sending end of the line is given by

Iij = yij(Vi − Vj) (2.16)

The active and reactive power at the sending end of the line are given by

Pij = gij |Vi|2 − |Vi||Vj | (gij cos δij + bij sin δij) (2.17a)

Qij = −bij |Vi|2 − |Vi||Vj | (gij sin δij − bij cos δij) (2.17b)
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Vi

Sij

Iij zij

Sji

Iji

Vj

Figure 2.2: Equivalent circuit of a short-length (L < 80 km) transmission line.

Similarly, at the receiving end of the line, the active and reactive power are:

Pji = gij |Vj |2 − |Vi||Vj | (gij cos δij − bij sin δij) (2.18a)

Qji = −bij |Vj |2 + |Vi||Vj | (gij sin δij + bij cos δij) (2.18b)

2.3 Heating systems

Water transports heat through the pipes in a heating system. Steady-state models
for a pipe consist of a hydraulic model and a thermal model. We also give a (thermal)
model for heat loads. For more details on models in a heating system, see for instance
[4] or [10].

In heating systems, the head h is frequently used instead of the pressure. It is
related to the pressure by

h =
p

ρg
(2.19)

with g the gravitational constant and ρ the density of the water.

2.3.1 Hydraulic pipe flow

Both water and gas are fluids. As such, a similar model is used to describe flow
through a pipe in a heating system as is done in a gas system.

For the water flow, we assume steady-state one-directional incompressible flow.
The water flow through a pipe can then be modeled similar to the gas flow.

Denote the water mass flow in the pipe by m, and the pressure at the start and
end of the pipe by pi and pj . The general steady-state flow equations is then given
by

m = Chsign (∆p)

√
|∆p|
f

(2.20)

For incompressible water flow, there is no difference between a high-pressure and
a low-pressure system. The pressure drop is given by

∆p = pi − pj (2.21)

and the pipe constant is given by

Ch =
π

8

√
2ρD5

L
(2.22)



Section 2.3 Heating systems 17

with ρ the density of the water.
Various friction factor models are used, resulting in different pipe flow models, as

is the case for the gas network. The friction factor models are equivalent to the ones
used for gas.

2.3.2 Hydraulic resistor

A hydraulic resistor gives a hydraulic model for a general element in a heating system.
It can, for instance, be used as a simplified pipe-flow model.

Denote the water mass flow through the element by m, and the pressure at the
start and end of the element by pi and pj . The general steady-state flow equations is
then given by

m = Chsign (∆p)
√

|∆p| (2.23)

with Ch a constant, and ∆p given by (2.21).
Comparing the general hydraulic equation of a resistor (2.23) with that of a pipe

(2.20), the resistor can be seen as a pipe with constant friction factor.

2.3.3 Heat power and heat loads

The heat power ϕ is the internal energy flow of a fluid:

ϕ = CpmT (2.24)

with Cp the specific heat, m the mass flow, and T the temperature of the fluid.
Heat loads are elements of the heating system where heat is injected into, or taken

out of, the system. Essentially, heat is exchanged between the heating system and
its surroundings, such that heat loads are generally modeled as heat exchangers. A
basic model for a heat exchanger expresses the total injected heat power ∆ϕ of a
heat load as the change in the heat power directly before and directly after the heat
exchanger. Since a heat load is a connection between the supply and the return line
of the heating system, we use (2.24) for the heat power at the supply and return line
sides of the heat exchanger to obtain the total injected heat power of a heat load:

∆ϕ = Cpm (T s − T r) (2.25)

with m the water mass flow through the heat exchanger, and T s and T r the temper-
ature at the supply line and return line side of the heat exchanger respectively.

If the heat load is a source, water flows from the return line to the supply line and
heat power is injected into the heating system. Conversely, if a heat load is a sink,
water flows from the supply line to the return line and heat power is taken from the
heating system.

2.3.4 Thermal pipe flow

Heat is transported in the heating system through pipes. Convection transfers the
heat through a pipe by transporting water. We assume conductive heat transfer
within the fluid is negligible. There is conductive heat transfer from pipes to the
surroundings, due to a temperature difference between the water in the pipes and the
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surroundings. Furthermore, we assume steady-state one-directional flow, the thermal
resistance of the pipe is independent of direction of flow, and we assume there is no
direct thermal interaction between supply and return line (e.g. [10]).

We model the conductive heat transfer to the surroundings by Newton’s law of
cooling:

ϕ = hA∆T (2.26)

with area A, heat transfer coefficient h, and temperature difference ∆T . Newton’s
law of cooling is analogous to Ohm’s law. If the heat power ϕ is analogous to the
current I, and the temperature difference ∆T is analogous to the voltage drop ∆V ,
(2.26) is analogous to (2.12), where hA can be seen as a thermal admittance.

Consider a pipe with length L, diameter D, water mass flow m, and an ambient
temperature outside the pipe of T a. The energy flows through a small volume of
the pipe are shown in Figure 2.3. Conservation of energy within this volume element
gives

Cpm
dT

dx
= λ (T − T a) (2.27)

where the heat transfer coefficient is defined as λ := hA = hπD.

L

CpmT x CpmT x+dx

x+ dxx

D

hπDdx (T x − T a)

Figure 2.3: Pipe with energy flow into, and out of, a small volume of the pipe.

Denoting the temperature at the start of the pipe by T start, and assuming m > 0,
we can solve (2.27) for the temperature T end at the end of the pipe:

T end − T a = exp

(
−λL
Cpm

)(
T start − T a

)
(2.28)

This equation is called the temperature drop equation, and holds for both the supply
and the return line. For notational simplicity, we define the temperature drop factor
as

ψ(m) := exp

(
−λL
Cpm

)
(2.29)

2.4 Conversion units

Many of the coupling units in a MES are conversion units. We give the steady-state
models for several of the conversion units listed in Table 1.1.

For notational simplicity, we introduce the energy flow rate Eg of the gas flow rate
q, based on the gross heating value (GHV) of the gas:

Eg := GHVq (2.30)
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2.4.1 Gas-fired generators

The majority of the electrical power in a power grid is generated by a synchronous
machine, which converts the mechanical energy of a rotating shaft into electrical
energy [3]. The shaft is rotated by the combustion of some fuel, for instance gas. The
combination of a synchronous machine with the combustion of gas is called a gas-fired
generator (GG).

A basic model for a GG assumes the generator operates at a fixed efficiency:

P = ηEg (2.31)

Here, Eg is the energy of the gas flow rate into the GG, P is the electrical power
produced by the GG, and 0 < η < 1 is its efficiency.

A more detailed model takes the heat rate curve and the valve-point effect (VP)
into account [11]:

Eg = aP 2 + bP + c+
∣∣d sin (e(Pmin − P ))

∣∣ (2.32)

Here, a, b, c, d, and e are heat rate parameters, and Pmin is the minimum amount of
power produced by the GG.

2.4.2 Gas boilers

Generation plants in heating systems use a variety of fuels, one of which is (natural)
gas (e.g. [4]). A gas boiler (GB) burns gas to create heat. A basic model for a GB
assumes the boiler operates at a fixed efficiency:

∆ϕ = ηEg (2.33)

Here, Eg is the energy of the gas flow rate into the GB, ∆ϕ is the heat power produced
by the GB, and 0 < η < 1 is its efficiency.

A more detailed model takes the part-load effect into account (e.g. [11] or [12]):

Eg =
∆ϕ+ r1Ess

r2
(2.34)

Here, r1 and r1 are parameters related to the part load effect, and Ess is the steady-
state input per cycle.

2.4.3 Combined heat and power plants

A combined heat and power plant (CHP) uses the excess heat from (electrical) gener-
ators to also generate heat power. In the most basic form, the heat produced during
the generation of electrical power, for instance during the combustion of gas in a
GG, is transferred to the heating system through a heat exchanger. CHPs are gener-
ally more thermodynamically advanced than classical boilers, such that CHPs require
significantly less fuel (e.g. [4]).

Several measures are used to determine the overall efficiency of a CHP. A basic
model for CHP assumes a fixed total efficiency (e.g. [4]):

ηEg = P +∆ϕ (2.35)
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Here, Eg is the energy of the gas flow rate into the CHP, P and ∆ϕ are the active
power and the heat power produced by the CHP, and 0 < η < 1 is its total efficiency.

Another basic model assumes fixed electrical and thermal efficiencies (e.g. [4]):

Eg =
P

ηge
+

∆ϕ

ηgh
(2.36)

Here, 0 < ηge < 1 is the electrical efficiency and 0 < ηgh < 1 is the thermal efficiency.
A more detailed model, also using a total efficiency η, takes the part-load effect

into account ([11] or [13]):

ηEg = P +∆ϕ (2.37a)

P = P (∆ϕ, T s) = a∆ϕ+ bT s + d− w(∆ϕ) (2.37b)

w(∆ϕ) =


0, L1∆ϕ

max ≤ ∆ϕ ≤ ∆ϕmax

(L1∆ϕ
max −∆ϕ)r1, L2∆ϕ

max ≤ ∆ϕ ≤ L1∆ϕ
max

(L1∆ϕ
max −∆ϕ)r1

+(L2∆ϕ
max −∆ϕ)r2

, ∆ϕmin ≤ ∆ϕ ≤ L2∆ϕ
max

(2.37c)

Here, a, b, and d are model parameters of the CHP, r1, r2 > 0 are parameters related
to the part-load effect, 0 ≤ L2 < L1 ≤ 1 are limits (0 indicated no load, and 1
indicates full load), and ∆ϕmin and ∆ϕmax are the minimum and maximum heat
power produced by the CHP.

2.4.4 Energy hubs

The energy hub (EH) concept was first introduced in [6], and models a coupling
between different energy carriers by relating the input and output energy of the EH
through a coupling matrix. An EH is not a physical conversion unit, rather, it is
a model representation of one or several units. Within the EH, transmission of the
energy of each carrier is not taken into account. Unidirectional flow from input to
output is assumed, such that the coupling matrix is constant or a function of the
input power only:

Eout = C(Ein)Ein (2.38)

Assuming a MES consisting of gas, electricity, and heat, Eout =
(
Egout Pout ∆ϕout

)T
is the vector of output energies, Ein =

(
Egin Pin ∆ϕin

)T
is the vector of input en-

ergies, and C is the coupling matrix:

C =

cgg ceg chg

cge cee che

cgh ceh chh

 (2.39)

Each entry cαβ is the coupling factor to convert energy of carrier α into energy of
carrier β. This coupling factor can be a (nonlinear) function of the input power, such

that cαβ = fα(Eβ) with Eβin ∈ Ein.



CHAPTER 3

Energy networks

Energy systems have their own terminology, which varies per carrier. Moreover, the
transport of energy throughout the systems is governed by different physical laws.
Mathematically, all energy systems can be represented by a graph or a network.

A network representation for SC energy system is common practice for steady-
state load flow computations and for optimal flow problems. For instance, a power
grid is usually represented by buses which are connected by lines.

The currently available LF models for MES do not state how the networks of
SCNs can be combined into one MCN. Some couplings between energy systems, while
possible in practice, can lead to model problems. To avoid such model problems, a
good description of integrated networks of multiple energy carriers is very important.
In this chapter, we provide a systematic analysis of the SCNs to determine how energy
systems of different carriers can be combined into one MCN.

A comprehensive definition of a single-carrier energy system as a SCN, with cor-
responding LF models for the network elements, allows for a systematic analysis of
coupling SCNs into an MCN. The existing SC network representations show a cer-
tain equivalence among the various carriers, despite the differences in the physical
systems. We exploit this equivalence to define a network representation of a general
energy system.

We introduce a coupling node to connect the SC networks into one integrated MC
network. This coupling node can represent various coupling units. Load flow equa-
tions are associated with the network elements, including the coupling node. There-
fore, we have developed a generic and uniform network representation for general MES

This chapter is based on the article:

Anne S. Markensteijn, Johan E. Romate, and Cornelis Vuik. A graph-based model framework
for steady-state load flow problems of general multi-carrier energy systems. Applied Energy,
280:115286, December 2020. ISSN 0306-2619. doi: 10.1016/j.apenergy.2020.115286,

and additional work.
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consisting of gas, electricity, and heat. This comprehensive network representation
makes it possible to describe integrated energy systems in a very effective way.

This chapter first gives terms and definitions for graphs and networks. Using these
definitions, the graph or network representation for the SC networks is given, including
the LF variables and equations for each network element. Finally, the coupling node
is introduced, and the graph or network representation of a MES is given, including
the LF variables and equations.

3.1 Graph representation

3.1.1 Terms and definitions

A graph G is a pair (V, E), where V is a set of nodes or vertices vi and E is a set of
links or edges ek. A link is a set of two nodes, ek = {vi, vj}, or an ordered pair of
nodes, ek = (vi, vj). A graph is directed if all links in E are ordered, and a graph is
undirected if none of the links are ordered.

A network is a graph, directed or not, with an associated physical model. If
the associated model is a representation of an energy transportation system, the
network is called an energy transportation network. In such a network, the energy is
transported along the links. An energy transportation network is also simply called
an energy network, or a flow network.

Energy or flow enters the energy system through generation units or sources.
It leaves the system at end-users. In a network, flow enters through sources and
leaves through sinks, which are both called loads or terminal nodes. In the graph,
these terminal nodes are a subset of V. Inflow and outflow of a graph or network
can be represented by values associated with the terminal nodes. However, flow
throughout the rest of the network is associated with links or edges. For consistency,
it is convenient to see inflow and outflow of a terminal node as flow through an open
link connected to that node. These open links, connected to a single node only, are
called terminal links. They are also called half links, as they are half of a normal link.

By definition, a terminal link can only be connected to a terminal node. Con-
versely, a node without a terminal link connected to it is not a terminal node. The
direction of a terminal link is defined as outgoing, such that the terminal node acts
as a source if the flow is opposite in direction to the terminal link, and acts as a sink
if the flow is in the same direction as the terminal link. These terminal links are
included explicitly in the network representation of an energy system.

Let T be the set of terminal links tl. Then an energy network is represented by
the collection N = {V, E , T } = {G, T }. Hence, N is directed if G is directed, and
undirected if G is undirected.

For notational simplicity, i is used as the node index (vi), k as the link index (ek),
and l as the terminal link index (tl). We denote the number of nodes, links, and
terminal links in the sets by |V|, |E|, and |T |, respectively.

The incidence matrix describes the interconnection between nodes and links in a
graph. An element of the |V| × |E| incidence matrix A is defined as

Aik =

{
1, if ek = {vi, vj}
0, otherwise



Section 3.2 Single-carrier energy networks 23

for every link ek ∈ E and every node vi ∈ V of an undirected graph G = (V, E).
Similarly, for a directed graph the elements of A are defined as

Aik =


1, if ek = (vj , vi)

−1, if ek = (vi, vj)

0, otherwise

(3.1)

3.1.2 Representing energy systems as energy networks

To represent an energy system as an energy network, each element of the energy
system needs to be represented by a network element, and needs to have a physical
model associated with it. By definition, the possible network elements are (terminal)
nodes and (terminal) links. This means that any SCNs consists of these elements,
even though the physical energy systems are different for each carrier. Some system
elements are carrier specific, such as transformers in a power grid, but others are
more general, such as an end-user. Even then, an end-user for a power grid is not the
same as that of a district heating system. In an energy network, both are represented
by a terminal node, with one or more terminal links connected to it. The difference
between the two end-users is reflected by different physical models associated with
the terminal nodes and terminal links.

Physical quantities, physical models, and model parameters of system elements
are associated with network elements. Quantities associated with nodes are called
nodal variables, and those associated with (terminal) links are called (terminal) link
variables. Since terminal links are half of a normal link, they have the same type of
quantities associated with them as links. Similarly, models associated with nodes are
called nodal equations, and those associated with (terminal) links are called (terminal)
link equations.

Some variables associated with terminal links are seen as nodal variables. For
instance, demand of an end-user is generally seen as a nodal variable. To distinguish
between (terminal) link and nodal variables, the nodal variables are called injected.
If a node has more than one terminal link connected to it, the injected flow or power
is the sum of all the flows or powers on the terminal links.

The physical models that are associated with network elements, are functions that
depend on these variables. A nodal equation is a function of the nodal variables and
of the (terminal) link variables of the links connected to that node. A link equation
is a function of the link variables and of the nodal variables of two nodes which are
connected by that link. A terminal link equation is a function of the terminal link
variables and of the terminal node variables. There can be additional physical models,
such as Kirchhoff’s second law, involving several network elements.

3.2 Single-carrier energy networks

The SC gas, electricity, and heat systems all have their own terminology and different
physical system. We use the general graph definition to represent each system as a SC
energy network. There are two physical laws that hold for all of these SC networks,
which are used in LF simulations.
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Table 3.1: LF variables per network element, for each carrier.

Carrier Node Link Terminal link

Gas pressure p flow q flow q

Electricity

voltage angle δ current I current I

voltage amplitude |V | active power P active power P

reactive power Q reactive power Q

Heat

pressure p flow m flow m

temperatures T s, T r temperatures T s, T r temperatures T s, T r

heat powers ϕs, ϕr injected heat power ∆ϕ

The first is nodal conservation of mass or energy, which is called Kirchhoff’s first
law or Kirchhoff’s current law in power grids. This is a nodal equation, which states
that the sum of the incoming and outgoing mass flow or energy is zero.

The second is Kirchhoff’s second law, which states the sum of potential differences
over a loop must be zero. Since this law concerns a summation over a loop, it is neither
a nodal equation nor a link equations. However, it is often used in LF analysis to
reduce the size of the system of nonlinear equations.

In the following sections, we give the network representation of a gas, electricity,
and heating system. Furthermore, we give the variables and equations used in LF
simulation, and the network elements they are associated with. The variables are
summarized in Table 3.1.

3.2.1 Gas networks

A gas system is represented by a directed network N g = {Vg, Eg, T g}. A node can
represent a sink, a source, or a junction. A junction is an intersection of pipes where
the gas is redistributed. It is represented by a terminal node with zero in- or outflow.
This means that all nodes in a gas network are terminal nodes. A link can represent
a pipe, a compressor, a pressure regulator, or a valve.

jqij
pj

qj,l

i
pi

qi,l

Figure 3.1: Network representation of a gas network, showing quantities of interest
for LF and the network elements they are associated with. Arrows on (terminal) links
show defined direction, not actual direction of flow.

The variables of interest for basic steady-state LF simulation are nodal pressure p
and (terminal) link gas flow rate q. These variables, and the network elements they
are associated with are shown in Table 3.1 and in Figure 3.1. This figure shows a gas
network consisting of two nodes connected with one link. The arrows in this directed
graph show defined direction of flow. If node i is a source, such that node j is a sink,
then the flow of terminal link l of node i is opposite to the defined direction. That is,
qi,l < 0 and qij , qj,l > 0.
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Load flow equations

For steady-state LF, a basic gas network can be completely described by conservation
of mass and the link equations [2]. In every node vi ∈ Vg, conservation of mass holds:

F qi :=
∑
j, j 6=i

qji −
∑
j, j 6=i

qij − qi = 0 (3.2)

The first term are all link flows going into node i, the second term are all outgoing
link flows, and the final term is the injected gas flow qi :=

∑
l

qi,l of node i.

For every link ek ∈ Eg from node vi ∈ Vg to node vj ∈ Vg, the general link
equation is given by:

F k (qk, pi, pj) = 0 (3.3)

It generally holds that qij = −qji.
If a link represents a pipe, (2.1) is used for the link equation. The pipe flow

equation (2.1) can either express the link gas flow rate as a function of pressures, or
express the pressure drop as a function of link flow. We denote the link equation

using the former as F
q(∆p)
k , and as F

∆p(q)
k using the latter, such that for a pipe we

have

F
q(∆p)
k (qk, pi, pj) = qk − Cgksign (∆pk) f

− 1
2

k |∆pk|
1
2 = 0 (3.4a)

F
∆p(q)
k (qk, pi, pj) = ∆pk − (Cgk)

−2fk|qk|qk = 0 (3.4b)

These equations are generally nonlinear in the pressures, unless (2.1) is used for a
low-pressure system. Then, ∆pk is linear in pi and pj according to (2.3), such that
(3.4b) is linear in the pressures.

If a link represents a compressor, the link equation (3.3) is given by (2.7):

F k (pi, pj) = rkpi − pj = 0 (3.5)

which is independent of qk.

3.2.2 Electrical networks

A balanced three-phase AC power grid is represented by an undirected network N e =
{Ve, Ee, T e}. A node represents a bus, sink, or source. As in the gas network, a bus
without in- or outflow is represented by a terminal node with zero in- or outflow. A
link represents a transmission line or a transformer.

i Pij , Qij jPji, Qji

Pj,l, Qj,l, Ij,l

δj , |Vj |δi, |Vi|

Pi,l, Qi,l, Ii,l

Iij Iji

Figure 3.2: Network representation of a power grid, showing quantities of interest
for LF, and the network elements they are associated with. Arrows on (terminal)
links show defined direction.

The variables of interest for basic steady-state LF simulation are nodal voltage V ,
(terminal) link current I, and (terminal) link complex power S. These variables, and
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the network elements they are associated with are shown in Table 3.1 and in Figure
3.2. This figure shows an electrical network consisting of two nodes connected with
one link. The complex power S is divided into active power P and reactive power
Q using (2.10b), and the voltage V is represented by its amplitude |V | and angle δ
using (2.8b). The arrows of the terminal link in this graph show defined direction of
flow. If node i is a source, such that node j is a sink, then the flow of terminal link l
of node i is opposite to the defined direction. That is, P i,l < 0 and P j,l > 0.

Load flow equations

Using an AC steady-state approximation, a power grid is completely described by
Kirchhoff’s current law, link equations, and the complex power equation [3]. In every
node vi ∈ Ve, Kirchhoff’s current law holds:

F Ii := −
∑
j, j 6=i

Iij − Ii = 0 (3.6)

with Ii :=
∑
l

Ii,l the injected current of node i. Furthermore, the complex power

equation (2.10a) holds in every node:

FSi := Si − V i(Ii)
∗ = 0 (3.7)

with Si :=
∑
l

Si,l the injected complex power.

For every link ek ∈ Ee from node vi ∈ Ve to node vj ∈ Ve, one or more general
link equations hold:

F k (Iij , Iji, Sij , Sji, V i, Vj) = 0 (3.8)

If a link represents a medium-length transmission line, (2.13)–(2.15) can be used
for the link equations. Similarly, (2.16)–(2.18) can be used as the link equations for
a link representing a short-length transmission line.

Most elements of the power grid that are represented by links, such as transmission
lines, are subject to losses. In those cases, it holds that Iij 6= −Iji, Pij 6= −Pji, and
Qij 6= −Qji. The power loss over a link is defined as the difference between the power
at both ends:

Sloss
k = Sij + Sji (3.9)

For electrical networks without dummy links (see Section 3.3.2), the admittance
matrix is generally used (e.g. [3]). This is an |Ve| × |Ve| matrix Y , with off-diagonal
elements equal to the negative value of the admittance between node i and node j, and
diagonal elements equal to the sum of all admittances connected to node i. Consider,
for example, a network where all links represent a medium-length transmission line.
From (2.13) it follows that, for node i, Y ij = −yij and Y ii =

∑
j,j 6=i

(yij + ibshij /2).

3.2.3 Heat networks

The physical heating system consists of a supply line and return line, connected to
each other through loads. Hence, the hydraulic part of the heat network is a closed
system. The water never enters or leaves the system during operation. Heat is injected



Section 3.2 Single-carrier energy networks 27

into or extracted from the water in the network through heat exchangers at the loads.
Figure 3.3 gives a model representation of a source connected to a sink by a pipe.
Here, [·]s and [·]r indicate that a quantity is associated with the supply line or return
line, respectively.
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Figure 3.3: Model representation of a heating system, showing quantities of interest
for LF and the elements they are associated with. Arrows show actual direction of
the water flow.

We assume that the water flow in the return line is opposite in direction, but
equal in size, to the water flow in the supply line [14]. The return line is not modeled
explicitly, and the hydraulic part of the system is no longer closed. A heating system
is then represented as a directed network N h =

{
Vh, Eh, T h

}
. A node represents a

junction, sink, or source. A junction is an intersection of pipes where the water is
redistributed. A junction has no connection between the supply and return line, so
it does not have a terminal link. A pipe in the supply line is represented by a link.
A terminal link represents a heat exchanger and a connection between supply and
return line. We assume that a node can have only sink or only source terminal links
connected to it, such that we can call the node a sink or a source respectively.

Figure 3.4 gives the network representation of a source connected to a sink by a
single pipe.
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Figure 3.4: Network representation of a heating system, showing quantities of inter-
est for LF and the network elements they are associated with. Arrows on (terminal)
links show defined direction.

The variables of interest for basic steady-state LF simulations are pressure p,
mass flow m, temperature T , and heat power ϕ. The temperatures are different
in the supply and return line, so both the supply temperature T s and the return
temperature T r are used as variables for a (terminal) link. These variables are also
shown in Table 3.1 and in Figures 3.3 and 3.4, where the latter also shows the network
elements that the variables are associated with.
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The arrows of the (terminal) links in the directed graph in Figure 3.4 show defined
direction of flow. We define mij := ms

ij . By assumption with respect to the flow in
the return line it holds that mr

ij = −ms
ij . Moreover, we assume mji = −mij , which

holds for most physical elements represented by a link. If node i is a source, water
flows from the return line to the supply line. The flow of terminal link l of node i is
then opposite to the defined direction, such that mi,l < 0. Conversely, with node j a
sink, we have mj,l > 0.

Heat enters or leaves the network only through terminal links, or as a loss over
a pipe. Furthermore, we assume the conductive heat transfer within the fluid is
negligible. This means that the temperature at the start of a link is equal to the
nodal temperature, where the start and end of a link is defined with respect to actual
direction of flow. For a link k from node i to node j, the temperatures in the supply
line are given by:

T s,startk =

{
T sij = T si , mij ≥ 0

T sji = T sj , mij < 0
(3.10a)

T s,endk =

{
T sji, mij ≥ 0

T sij , mij < 0
(3.10b)

Similarly, for the link temperatures in the return line we have

T r,startk =

{
T rji = T rj , mij ≥ 0

T rij = T ri , mij < 0
(3.11a)

T r,endk =

{
T rij , mij ≥ 0

T rji, mij < 0
(3.11b)

This also holds for terminal links. The supply temperature of a terminal link
that represents a sink is equal the nodal supply temperature. Conversely, the return
temperature of a terminal link that represents a source is equal to the nodal return
temperature. That is, for a terminal link l connected to node i, we have

T si,l = T si , mi,l > 0 (3.12a)

T ri,l = T ri , mi,l < 0 (3.12b)

It is convenient to use the temperature difference ∆Ti,l over a terminal link, and
injected heat power ∆ϕi,l of a terminal link:

∆Ti,l = T si,l − T ri,l (3.13a)

∆ϕi,l = ϕsi,l + ϕri,l (3.13b)

If the terminal link represents a source, thenmi,l, ∆ϕi,l < 0. Conversely,mi,l, ∆ϕi,l >
0 if the terminal link represents a sink.

Load flow equations

The load flow model for a heat network consists of a hydraulic and a thermal part.
Using a steady-state approximation, the hydraulic part is similar to the model for



Section 3.2 Single-carrier energy networks 29

a gas network, such that conservation of mass holds in every node vi ∈ Vh, and
a hydraulic link equation holds for every link ek ∈ Eh from node vi ∈ Vh to node
vj ∈ Vh. The thermal part is completely described by conservation of energy, thermal
link equations, and the heat power equation.

In every node vi ∈ Vh, conservation of mass holds:

Fmi :=
∑
j, j 6=i

mji −
∑
j, j 6=i

mij −mi = 0 (3.14)

The first term are all link flows going into node i, the second term are all outgoing
link flows, and the final term is the injected mass flow mi :=

∑
l

mi,l of node i.

For every link ek ∈ Eh from node vi ∈ Vh to node vj ∈ Vh, the general hydraulic
link equation is given by:

F k (mk, pi, pj) = 0 (3.15)

If a link represents a pipe, (2.20) is used for the link equation. For heat networks, the
pipe flow is generally expressed as a function of the pressures:

F k (mk, pi, pj) = ∆pk − (Chk)
−2fk|mk|mk = 0 (3.16)

This link equation is nonlinear in the mass flow, and linear in the pressures, since
(2.21) is used for ∆pk. Furthermore, it holds that mij = −mji.

For the thermal part, conservation of energy holds in every node vi ∈ Vh, both in
the supply line and in the return line:

F s,ϕi =
∑
j, j 6=i

ϕsij +
∑
j, j 6=i

ϕsji +
∑
l

ϕsi,l (3.17a)

F r,ϕi =
∑
j, j 6=i

ϕrij +
∑
j, j 6=i

ϕrji +
∑
l

ϕri,l (3.17b)

Using the heat power equation (2.24) and using that mij = −mji, we determine the
heat powers in de directed network, taking into account the defined direction of flow.
The link heat powers are:

ϕsij = CpmijT
s
ij , ϕrij = −CpmijT

r
ij

ϕsji = −CpmijT
s
ji, ϕrji = CpmijT

r
ji

(3.18)

Similarly, the heat powers on a terminal link are:

ϕsi,l = Cpmi,lT
s
i,l (3.19a)

ϕri l = −Cpmi,lT
r
i,l (3.19b)

Assuming a constant specific heat Cp of the water, and using (3.18) and (3.19) for
the heat powers ϕ, conservation of energy (3.17) reduces to a mixing rule:

FT
s

i =
∑

ek∈Eh
out

ms
ijT

s
ij −

∑
ek∈Eh

in

ms
ijT

s
ji +

∑
l

mi,lT
s
i,l (3.20a)

FT
r

i = −
∑

ek∈Eh
out

ms
ijT

r
ij +

∑
ek∈Eh

in

ms
ijT

r
ji −

∑
l

mi,lT
r
i,l (3.20b)
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Here, Ehout are all the outgoing links of node i with respect to defined direction of
flow. That is, Ehout := {ek ∈ E|ek = (vi, vj)}. Similarly, Ehin := {ek ∈ E|ek = (vj , vi)}
are all the incoming links of node i.

The general thermal link equations for the supply and return line are given by:

F s,ψk

(
T s,startk , T s,endk ,mk

)
= 0 (3.21a)

F r,ψk

(
T r,endk , T r,endk ,mk

)
= 0 (3.21b)

The temperatures T s,startk and T s,endk are given by (3.10), and T r,startk and T r,endk

are given by (3.11). If a link represents a pipe, (2.28) is used for the thermal link
equations.

Pipes in a heating network are subject to thermal losses. For the links representing
such pipes, it holds that ϕsij 6= −ϕsji, and ϕrij 6= −ϕrji. The heat power loss over a link
is defined as the difference between the heat power at both ends of the link. Since
the link is a representation of a pipe in the supply line and a pipe in return line, the
total heat power loss over the link is ϕloss

k = ϕs,lossk + ϕr,lossk , where

ϕs,lossk = ϕsij + ϕsji (3.22a)

ϕr,lossk = ϕrij + ϕrji (3.22b)

A terminal link tl ∈ T h connected to node vi ∈ Vh, has a thermal terminal link
equation. If the terminal link represents a heat source or sink, (2.25) is used for the
terminal link equation:

Fϕi,l
(
mi,l, T

s
i,l, T

r
i,l,∆ϕi,l

)
= −∆ϕi,l + Cpmi,l∆Ti,l = 0 (3.23)

where ∆Ti,l is given by (3.13a), and ∆ϕi,l is given by (3.13b).

3.3 Multi-carrier energy networks

A MES is represented as a multi-carrier network (MCN) by coupling the nodes of
SCNs to form one integrated network. Two nodes can be connected in three ways:
connect the two nodes by a link, merge the two nodes into one node, or introduce an
additional node and connect the nodes to it.

A link is a network component with two flow connections, making it difficult to use
as a representation of a coupling involving more than two carriers, such as a CHP.
That is, it cannot be used to connect more than two nodes. Moreover, a physical
interpretation of a coupling link is not straightforward.

Coupling by merging two nodes is complicated by the nodal variables. Suppose
we want to merge two electrical nodes, each with a voltage magnitude |V | and voltage
angle δ, into one new electrical node. Some combined |V | and δ must then be defined
for this new node, or a node with multiple voltages must be allowed. Coupling two
nodes of a different carrier by merging introduces similar difficulties.

Therefore, we couple networks by introducing an additional node, called a coupling
node.
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3.3.1 Coupling node

No variables are associated with the coupling node, meaning that it does not belong
to any of the SCNs. If the coupling node is used to couple networks with the same
carrier, the coupling node is called homogeneous. Similarly, it is called heterogeneous
when used to couple networks with different carriers. Nodes and links of an SCN are
called homogeneous. A network is then called heterogeneous if it has one or more
heterogeneous nodes, and homogeneous if it consists of only homogeneous nodes and
links.

∆ϕicih

T sicih , T
r
icih mc ih

ie

Picie , Qicie

qigicig ic

heat
electricity
gas

Figure 3.5: Network representation of a coupling node, showing quantities of interest
for LF and the network elements they are associated with.

A heterogeneous coupling node can be connected to a (terminal) link of any carrier.
However, no variables are associated with the coupling node, so that links representing
certain physical components cannot be connected. For instance, a link representing
a gas pipe cannot be connected, since the flow model (3.4) associated with the link
requires both start and end node to have a nodal pressure p. We introduce a dummy
link to couple a (heterogeneous) coupling node to any other node.

Figure 3.5 shows the network representation of a heterogeneous coupling node
connecting a gas network, an electrical network, and a heat network. The arrows on
the (terminal) links show defined directions, not the actual directions of flow. Hence,
the coupling node concept allows for bidirectional flow.

A MES is then represented by a network N = {V, E , T }. The vertex set is the
collection of all homogeneous SC nodes and all coupling nodes, such that V = Vg∪Ve∪
Vh∪Vc. Similarly, the edges and terminal edges are the collections of all homogeneous
SC edges and terminal edges, such that E = Eg ∪ Ee ∪ Eh and T = T g ∪ T e ∪ T h.
Hence, the vertex, edge, and terminal edge sets of any two SCN are disjoint.

3.3.2 Dummy links

Dummy links do not represent any physical component, they merely show a connection
between nodes. If a dummy link connects a coupling node and a SC node, the dummy
link is considered homogeneous and of the same carrier as the SC node. As such, it
has the same variables associated with it as any other link of that carrier. These
variables are shown in Figure 3.5, at the side of the coupling node only. Similar to
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(3.13b), the heat power produced or consumed by the coupling unit is given by

∆ϕicih = ϕsicih + ϕricih (3.24)

Even though dummy links do not represent a physical component, they can be
seen as lossless pipes or lines.

A lossless transmission line conserves electrical energy across the line. Therefore,
it holds that Iicie = −Iieic , P icie = −P ieic , and Qicie = −Qieic . Indeed, (3.9) then
gives Sloss

k = 0. A dummy link does not have additional link equations, such that P
and Q are independent of V ie and I.

Similarly, a lossless heat pipe does not lose heat to its surroundings. Therefore,
it holds that ϕsicih = −ϕsihic , and ϕ

r
icih = −ϕrihic . Indeed, (3.22) then gives ϕs,lossk =

ϕr,lossk = 0. Moreover, it holds that T sicih = T sihic , and T
r
icih = T rihic . A heat dummy

link can be seen as a perfectly insulated pipe. Using (3.10a) and (3.11a) for a heat
dummy link, we find

T sicih = T sihic = T sih , micih < 0

T ricih = T rihic = T rih , micih ≥ 0
(3.25)

3.3.3 Load flow equations

In every heterogeneous coupling node vi ∈ Vc, one or more coupling equations hold.
For a coupling node i connected with dummy links to a homogeneous node j of each
carrier, we assume the coupling equations to be of the general form:

F c,Ei
(
qij , P ij , Qij , mij , T

s
ij , T

r
ij , ∆ϕij

)
= 0 (3.26)

This general form can be easily adjusted if a coupling node has multiple links, or no
links, of a carrier connected to it.

Any physical coupling unit for which the model equation(s) are of the form (3.26),
can be represented by a (heterogeneous) coupling node. Most conversion units, such
as GGs, CHPs, electric boilers (EBs), or P2G units are modeled in such a way.
Moreover, the coupling node concept allows for both linear and nonlinear models.
For instance, a linear model (2.31) or a nonlinear model (2.32) can be used for the
coupling equation (3.26) of a GG.

If a coupling unit produces or consumes heat, one of the coupling equations (3.26)
is a heat power equation similar to (3.23). Substituting (3.18) in (3.24) gives the
nodal heat power equation for a coupling node:

F c,ϕi (micih , T
s
icih , T

r
icih , ∆ϕicih) = −∆ϕicih + Cpmicih(T

s
icih − T ricih) = 0 (3.27)

Here, T sicih and T ricih are given by (3.25). Note that ∆ϕicih > 0 if the coupling
produces energy, and ∆ϕicih < 0 if the coupling consumes energy.



CHAPTER 4

Steady-state load flow problems

As stated in Section 1.2, steady-state load flow (LF) analysis tries to find a solution
to the steady-state LF problem. That is, given demands, LF analysis determines the
flow of energy carriers through the system, and the values of other quantities, such as
voltages and pressures, throughout the system. Load flow problems for SCs systems
have been widely studied, but load flow problems for MESs have only been proposed
recently.

Two types of models for MESs can be distinguished. The first uses the energy
hub (EH) concept for the coupling between SCNs, the other a case specific approach.

The EH concept was first introduced in [6], and later extended or adopted in
[15, 16, 17]. The graph representation of the EH is unclear or the connection of the
EH to the rest of the network is not described, such that load flow analysis for the
entire network is not possible.

The second type of LF models for MESs combines the existing equations for the
SCNs and models for the coupling units into one system of equations. This allows for
load flow analysis of the full MES, and for a more detailed model of the coupling units.
This approach is used in [18, 19, 20, 8, 11, 21, 22]. However, it is not specified how
to integrate the single-carrier models using a general coupling component, making it
difficult to use this approach for a general MES.

The available load flow models for MESs do not consider the effect of coupling on
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the system of LF equations. Usually, a coupling model introduces more unknowns
than equations. Additional equations or boundary conditions (BCs) are needed for
the total system to be solvable. In the models encountered so far, some or all of
the energy flows to or from the couplings are assumed known as additional BCs.
However, this effectively decouples the integrated system of LF equations of the MES
into the separate single-carrier parts, such that the flexibility provided by coupling
the energy systems into one MES is not fully used. To obtain a truly integrated
model description of a MES, the additional BCs must be imposed elsewhere in the
MCN. Not all combinations of load flow equations and BCs for such integrated energy
systems (consisting of gas, electricity, and heat) lead to well-posed problems. For
good solvability of the integrated load flow problem, the BCs used are of primary
importance.

Combining the generic network description of MESs with a thorough analysis
of the BCs, we propose a graph-based model framework for steady-state load flow
problems of general MESs. LF equations are associated with the various network
elements, including the coupling node, see Chapter 3. Collecting all the equations
gives the integrated system of equations for steady-state load flow analysis of a MES.
This framework makes it possible to describe integrated energy systems in a very
efficient way.

In this chapter, we first discuss the need for additional BCs. Then, we describe
how to collect the LF equations of the network elements into one integrated system of
equations. Various formulations of this system of equations are discussed. Together
with the comprehensive graph representation of a MES as detailed in Chapter 3, this
gives the graph-based model framework for steady-state load flow problems of general
MESs. Finally, we introduce derived variables and the extended LF problem.

4.1 Node types and boundary conditions

Typically, the SCNs have more variables than equations. Therefore, some variables
are assumed known, which we call the boundary conditions (BCs) of the network.
Even in the SCNs, the choice of BCs is important to formulate a well-posed problem
(e.g. [1] for gas and [23] for heat). A BC can be placed on a node, a link, or a terminal
link. Usually, they are placed on a (terminal) node or on its terminal link. A node
type is assigned to every node based on the known variables.

The standard node types for SCNs are shown in Table 4.1 (e.g. [2] for gas and
[3] for electricity). Some of the specified or unknown variables are injected variables,
which are actually associated with a terminal link l connected to node i. If there is
no ambiguity, nodal and terminal link indices are omitted. Heat nodes that are not
a sink or a source are junctions, which are nodes that have no inflow or outflow in
the network. In the physical heating system, these corresponds to junctions in the
pipelines, without a connection between the supply and the return line.

For the temperatures on the heat nodes and terminal links, assumptions are made
based on conservation of energy. For a load node modeling a sink, we use (3.12a) to
eliminate T si,l as variable. Similarly, we use (3.12b) to eliminate T ri,l for a source.

For an MCN, the dummy and terminal links of a coupling generally introduce more
variables than the coupling node introduces equations. A coupling node i connected
to one homogeneous node j of each carrier introduces 6 variables: qij , P ij , Qij , mij ,
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Table 4.1: Standard node types for single-carrier networks.

Network Node type Specified Unknown

Gas
reference p q

load q p

Electricity

slack |V |, δ P , Q

generator (PV) P , |V | Q, δ

load (PQ) P , Q |V |, δ

Heat

source reference slack T si , p T ri , T
s
i,l, ∆ϕ, m

load (source) T si,l and ∆ϕ < 0 T si , T
r
i , p, m

load (sink) T ri,l and ∆ϕ > 0 T si , T
r
i , p, m

junction m = 0 T si , T
r
i , p

∆ϕij , and T
s
ij or T rij . On the other hand, it generally introduces 2 equations: (3.26)

and (3.27).

These extra degrees of freedom could be used for optimization purposes. However,
for steady-state LF, (additional) BCs are needed in an MCN to make the system
well posed. One commonly used option is to prescribe one or more of the coupling
energies (e.g. [6, 11, 22, 17]), but this effectively decouples the integrated network.
If one or more of the coupling energies are known, the coupling equations of most
coupling units can be used to directly determine (some of) the other energies. These
energies, combined with the already prescribes ones, can then be used as BCs for
the SCNs. In that case, there is no need to model the LF problem as one integrated
system of equations, and the advantages provided by a coupling are not fully captured.
Therefore, we will assume all coupling (energy) flows unknown. That is, we assume
q, P , Q, m, ∆ϕ on the dummy links connected to the coupling node unknown.
If a coupling unit produces or consumes heat, T s, T r, or ∆T of the heat dummy
link can be assumed known as a BC without decoupling the system of equations.
The additionally required BCs are imposed elsewhere in the MCN, that is, they are
imposed in the single-carrier parts.

Imposing the additionally required BCs on the homogeneous nodes may lead to
new node types, as also observed in [19] for a power grid. Consider, for instance, a
gas network connected to a power grid through a GG. Suppose the electrical node to
which we couple is a slack node before coupling, such that P and Q are unknown,
and |V | and δ are known. We could then replace these unknown input powers with
the unknown coupling powers, such that the coupling, or the gas network, could be
considered as the slack for the power grid. However, the coupling powers flow into
the power grid through a dummy link. Since we want to replace the slack powers
with the coupling powers, the total injected power of the electrical node should be
zero after coupling. Hence, the electrical node turns into a new node with P , Q, |V |,
and δ known, called a PQVδ-node.

Table 4.2 gives some, but not all, possible new node types. The names of the node
types indicate which variables are assumed known. Not all of these are realistic from
a physical perspective. For instance, a heat sink slack node would physically be a
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Table 4.2: Some possible new node types for multi-carrier networks.

Carrier Node type Specified Unknown

Gas
slack - p, q

reference load p, q -

Electricity

PVδ P , |V |, δ Q

QVδ Q, |V |, δ P

PQVδ P , Q, |V |, δ -

Heat

source reference T si,l, p, and ∆ϕ < 0 T si , T
r
i , m

sink reference T ri,l, p, and ∆ϕ > 0 T si , T
r
i , m

source temperature T si , T
s
i,l, and ∆ϕ < 0 T ri , p, m

reference p, m = 0 T ri , T
s
i

temperature T si , m = 0 T ri , p

reference temperature T si , p, m = 0 T ri
sink slack T ri , p T si , T

r
i,l, ∆ϕ, m

Coupling
standard - T s or T r

temperature T s or T r -

node where the pump to regularize pressure is located at a sink instead of at a source.
However, they might be needed to solve the integrated system of equations.

In addition to these standard and new node types, it is possible to assume ∆T
known as a BC for elements that produce or consume heat. For heat terminal links
or heat dummy links, this means ∆T is assumed known instead of T s if the element
acts as a heat source, and ∆T is assumed known instead of T r if the element acts as a
heat sink. This holds both for the heat nodes in Tables 4.1–4.2, and for the coupling
nodes in Table 4.2. For heat terminal links, ∆T is given by (3.13), for heat dummy
links from a coupling node ic to ih, ∆T is given by ∆Ticih = T sicih − T ricih .

4.2 Formulations of the load flow problem

The steady-state load flow problem is formulated by collecting the load flow equations
into one system of equations. The size of this system for the SCNs is reduced by
substituting the BCs and by substituting some equations into others. For each carrier,
several formulations for the system of equations are used (see e.g. [2] for gas, [3, 24, 25]
for electricity, and [26, 8] for heat).

4.2.1 Gas networks

The nodal, loop, or nodal-loop formulations are commonly used formulations for the
SC gas network [2]. Another option is the full formulation. In this thesis, the nodal
formulation and the full formulation are used for the SC gas network.

Usually, one of the sources is taken as the reference node, and all other nodes are
load nodes.
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Full formulation

The full formulation collects the nodal conservation of mass (3.2) for each node with
known injected flow, and the link equations (3.3) into one system of equations:

F g(xg) =

(
F q

FL

)
= 0, xg =

(
q
pg

)
(4.1)

with pg the vector of unknown nodal pressures, q the vector of unknown link flows,
F q the vector of conservation of mass, and FL the vector of link equations.

In the full formulation, (3.4a) or (3.4b) can be used in FL for a link representing
a pipe. The conservation of mass F q is linear in q and independent of p.

Conservation mass can be written as a linear system of equations using the inci-
dence matrix (3.1) of the network:

F q = Ag′q − qinj = 0 (4.2)

with qinj the vector of known nodal injected flows qi, and A
g′ the reduced incidence

matrix of the gas network, which only takes into account the nodes with known
injected flow.

Nodal formulation

The nodal formulation collects the nodal conservation of mass (3.2) for each node
with known injected flow. The link equations (3.3) are substituted into conservation
of mass to eliminate link flow as a variable. The system of equations is given by

F g(xg) = F q = 0, xg = pg (4.3)

with pg the vector of unknown nodal pressures and F q the vector of conservation of
mass. In this case, (4.2) becomes

F q = Ag′q(p)− qinj = 0

The link equations (3.3) can only be substituted into the nodal equations (3.2)
if the link equations can be rewritten such that the link flow q is expressed as a
function of nodal pressures p. This means that (3.4a) must be used as the link
equation for pipes. Moreover, the nodal formulation cannot be used for a network
with compressors, as (3.5) is independent of q.

The size of the system is reduced compared to (4.1). On the other hand, conser-
vation of mass F q can be nonlinear, depending on the specific link equations used.

4.2.2 Electrical networks

In this thesis, the complex power formulation in polar coordinates is used for the SC
electrical network [3]. For every node i, the link equations (3.8) are substituted in
Kirchhoff’s current law (3.6), which is subsequently substituted in the complex power
equation (3.7). This nodal equation, which gives conservation of energy, is then split
in the active power part FP and reactive power part FQ, where FS = FP + iFQ.
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With Pij and Qij the powers obtained from (3.8), and Pi and Qi the known injected
powers, the nodal equations are

FPi = Pi +
∑
j,j 6=i

Pij(δi, δj , |Vi|, |Vj |) (4.4a)

FQi = Qi +
∑
j,j 6=i

Qij(δi, δj , |Vi|, |Vj |) (4.4b)

For each node i with known injected P , (4.4a) is taken into the system of equations,
and (4.4b) is taken for each node with known injectedQ. Usually, one of the generators
is taken is the slack node, the other generators are taken as generator nodes, and the
demands are taken as load nodes. The system of (nonlinear) equations is given by:

F e(xe) =

(
F P

FQ

)
= 0, xe =

(
δ

|V |

)
(4.5)

Here, F P and FQ are the vectors of conservation of energy for every node with known
injected active power or known injected reactive power, and δ and |V | are the vectors
of unknown nodal voltage angle and voltage amplitude.

For non-dummy links, the second term in (4.4) can be expressed using the admit-
tance matrix Y . Denoting the set of all non-dummy links by Eend, and the set of all
dummy links by Eed , (4.4) becomes

FSi = Si + Vi
∑

j,ij∈Ee
nd

Y ∗
ijV

∗
i +

∑
j,ij∈Ee

d

Sij (4.6)

4.2.3 Heat networks

The heat network consist of a hydraulic model and a thermal model, which we combine
into one integrated hydraulic-thermal model. Generally, a loop formulation is used in
the hydraulic part. In this thesis, however, we use a formulation similar to the full
formulation of the gas network.

The terminal link mass flows and temperatures are generally substituted to reduce
the system size. We call this formulation the standard formulation. Another option
is to keep the terminal link flows and temperatures as variables, which we call the
terminal link formulation.

For both formulations, some of the (terminal) link temperatures are substituted
by the nodal temperatures based on the actual direction of flow, according to (3.10)
and (3.11) for links, and (3.12) for terminal links.

The thermal link equations (3.21) can usually be rewritten such that T end
k is

a function of mk and T start
k . This temperature is subsequently substituted in the

mixing-rule (3.20).
In addition to the terminal link formulation and standard formulation, there are

two options for the BCs for the terminal links of loads, as described in Section 4.1.
We assume that a slack node has only one terminal link connected to it. The mass

flow is determined using conservation of mass (3.14), such that

mi,l =
∑
j, j 6=i

mji −
∑
j, j 6=i

mij
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Then, (3.23) gives the injected heat power ∆ϕi,l of the slack node.
Usually, one of the sources is taken as source reference slack node, and the other

nodes are taken as junction or as load nodes.

Terminal link formulation

For the hydraulic part, the nodal conservation of mass (3.14) for each node with
known injected heat power and known terminal link supply or return temperature,
and the hydraulic link equations (3.15) are collected. For the thermal part, the supply
line mixing-rule (3.20a) for every node with T si unknown and every source node with
T si,l unknown, the return line mixing-rule (3.20b) for every node with T ri unknown and
every sink node with T ri,l unknown, and the heat power equation (3.23) for all terminal
links with known injected heat power and known supply or return temperature are
collected.

If T si,l or T
r
i,l is known for loads, it is substituted in (3.20) and in (3.23). If instead

∆Ti,l is known, T
s
i,l or T

r
i,l is added as a variable, and (3.13a) is added to the system

of equations as
F∆T
i,l = T si,l − T ri,l −∆Ti,l

The system of nonlinear equations for the terminal link formulation is then given by:

F h =


Fm

FL

F T s

F T r

F ϕ

F∆T

 = 0, xh =



mL

mTL

ph

T s

T r

T TL,s

T TL,r


(4.7)

with mL the vector of link mass flows, mTL the vector of unknown terminal link
mass flows of loads, ph the vector of unknown nodal pressures, T s and T r the vectors
of unknown nodal supply and return temperatures, T TL,s and T TL,r the vectors of
unknown terminal link supply and return temperatures, Fm the vector of conservation
of mass for every non slack node, FL the vector of link equations, F T s

the vector of
supply line mixing-rules, F T r

the vector of return line mixing-rules, F ϕ the vector of
heat power equations for each terminal link with known ∆ϕ, and F∆T the vector of
temperature difference equations for each terminal link with known ∆T .

The conservation of mass Fm is linear in the mass flows mL and mTL, and
independent of ph. It can be written as a linear system of equations using the incidence
matrix (3.1) of the network:

Fm = Ah′mL −minj = 0 (4.8)

with minj the vector of nodal injected flows mi of the non slack nodes, which is a
sum of part of the terminal link flows in mTL, and Ah′ the reduced incidence matrix
of the heat network, which only takes into account the non slack nodes.

The supply line mixing-rule F T s

is independent of the return temperatures T r

and T TL,r, and the return line mixing-rule F T r

is independent of the supply line
temperatures T s and T TL,s.
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If T si,l or T
r
i,l is known for all loads, F∆T , T TL,s and T TL,r are not part of the

system of LF equations.

Standard formulation

In the standard formulation, the flowmi,l of each terminal link is written as a function
of T si,l, T

r
i,l and ∆ϕi,l, using (3.23), and substituted into the other equations. If ∆T

is known for loads, then T si,l or T
r
i,l is expressed as a function of ∆T i,l and T ri or

T si , using (3.13a), and substituted into the other equations. The system of nonlinear
equations is then given by:

F h =


Fm

FL

F T s

F T r

 = 0, xh =


mL

ph

T s

T r

 (4.9)

This system of equations is smaller than (4.7). However, conservation of mass (4.8)
now becomes

Fm = Ah′mL −minj(T s,T r) = 0

which is nonlinear and depends on the supply and return temperatures. Furthermore,
the supply line mixing-rule F T s

depends on T r, and the return line mixing-rule F T r

depends on T s.

4.2.4 Coupling nodes

In every coupling node, one or more coupling equations (3.26) hold. If a coupling node
represents a coupling unit that produces or consumes heat, the heat power equation
(3.27) holds for each heat dummy link connected to the coupling node. Similar to the
SC heat network, if, for such a dummy link, T sicih or T ricih is known, it is substituted in

(3.27), and in the mixing-rule F T s

or F T r

in (4.7) or (4.9) of the heat part. Otherwise,
if ∆Ticih is known, T sicih or T ricih is added as a variable, and a temperature difference
equation is added to system for each dummy heat link:

F c,∆T
icih

= T sicih − T ricih −∆Ticih

If more than one heat dummy link is connected to a coupling node, an additional
equation based on conservation of mass or energy, like a mixing-rule, might be needed
to accurately determine the temperatures on the dummy links.

The system of equations for the coupling part of an MCN is then given by:

F c =

 F c,E

F c,ϕ

F c,∆T

 = 0, xc =



q
P
Q
m
∆ϕ
T s

T r


(4.10)
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Here, F c,E is the vector of nodal coupling equations, F c,ϕ is the vector of heat power
equations, F c,∆T the vector of temperature difference equations, T s and T r are the
vectors of unknown supply and return dummy link temperatures, and q, P , Q, m,
and ∆ϕ are the vectors of the coupling gas flow, active power, reactive power, water
link mass flow, and injected heat power.

4.2.5 Multi-carrier energy networks

The load flow equations of the SC parts and the coupling part are combined to form
the integrated system of nonlinear equations describing the steady-state LF problem
for a MES.

Since a (heterogeneous) coupling node is connected by homogeneous (dummy)
links to the homogeneous SC nodes, the coupling flows qc, P c, Qc, andmc are included
in the nodal conservation laws of the SCNs. Furthermore, mc, and the temperatures
T s,c, and T r,c on the heat dummy link are included in (3.20) of the heat network,
and T rih is included in the heat power equation for the coupling node, if the coupling
unit produces heat.

Combining the SC systems (4.1) or (4.3), (4.5), and (4.7) or (4.9) with the coupling
part (4.10), gives the integrated system of equations for a MES:

F (x) =


F g(xg, xc)
F e(xe, xc)
F h(xh, xc)
F c(xc, xh)

 = 0, x =


xg

xe

xh

xc

 (4.11)

Using dummy links to connect the SC into one MCN shows the connection between
the SC parts explicitly. This connection is more difficult to see when the coupling
flows are incorporated into injected nodal flows, as is commonly done. Furthermore,
using dummy links, the LF models of the SC parts are only slightly altered, and the
effect of coupling is included through the coupling part of the system of equations.
However, since the additionally required BCs are imposed in the SC parts, an SC part
might be overdetermined while another might be underdetermined. This is discussed
in more detail in Section 5.3.

4.3 Model framework

The proposed graph-based model framework for steady-state load flow problems of
MES is summarized as follows, which is also shown in Figure 4.1.

First, the SC gas, electricity, and heat systems to be combined into a MES are
represented by a network as described in Section 3.2. Then, the desired coupling units
are represented by a coupling node, and connected to SC networks using dummy links,
as described in Section 3.3. The resulting graph is the MCN corresponding to the
MES. Third, LF equations are chosen for each network element, see Chapter 2, and
node types, or BCs, are chosen. Then, the load flow equations are collected into one
integrated system of equations (4.11), giving the LF problem for the MES. Finally,
this system of nonlinear equations is solved using NR, which is explained in Chapter 5.

The node types, and the location of the coupling nodes in the graph, must be
carefully chosen. Certain combinations of node types, or graph topologies, can result
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Coupling units (e.g. CHP)

Graph representation Graph representation

Load flow equations and node types

Multi-carrier network

Integrated system of equations (4.11)

Connect with dummy links

Coupling nodes Single-carrier networks

Single-carrier energy systems

Figure 4.1: Flowchart of the graph-based model framework for steady-state load
flow problems of MESs.

in systems of equations that are not (uniquely) solvable. A necessary condition for
the LF problem to be uniquely solvable is that the number of equations F is equal
to the number of variables x. We will call such a system, with equal number for
variables and (non)linear equations, a square system. However, even with a square
system, the LF problem might still be ill-posed, such that are no or multiple solutions.
The effect of node types and coupling models on solvability and well-posedness of the
steady-state LF problem is discussed in Section 7.1.

The LF models and network elements can represent a variety of physical compo-
nents of an energy system, such that the model framework is applicable to general
MESs. Moreover, using different coupling components, models, or node types, re-
sults in different MCNs for the same MES. The model framework is illustrated and
validated in Chapter 6.

An alternative solution method for steady-state LF analysis of general integrated
MESs is discussed in Chapter 8.

4.4 Derived variables

The LF problem is concerned with solving a system of nonlinear equations (4.11) for
the state variables x, given BCs. With these state variables, all other quantities of
interest in the network can be determined. Those quantities are derived variables
based on the state variables. For instance, in a power grid the state variables usually
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are the nodal voltage amplitudes and nodal voltage angles, and the derived variables
include complex power through a line and injected reactive power at a generator.

The division of network variables into state variables and derived variables is not
unique, since there are various ways to formulate the LF problem. In the nodal
formulation (4.3) for a gas network, the state variables are the nodal pressures, while
the gas flows on the links are derived variables. In the loop formulation it is the
other way around, such that the state variables are the gas link flows and the nodal
pressures are the derived variables.

We combine the state variables xF ∈ RNF and derived variables xG ∈ RNG into
the extended state variables:

x :=
(
xG1 . . . xGNG

xF1 . . . xFNF

)T
(4.12)

We extend the standard LF equations and state variables with the derived variables
and with the (non)linear equations needed to derive them, leading to the extended
LF problem:

F
(
xF
)
= 0 (4.13a)

G
(
xG, xF

)
= 0 (4.13b)

Here, (4.13a) is the system of (non)linear steady-state LF equations (4.11) and G :
RNF+NG → RNG are additional load flow equations. To solve the extended LF problem
(4.13), the standard LF problem (4.13a) is solved for the state variables xF . Then,
using this xF , the additional equations (4.13b) determine the derived variables xG.

Generally, the entries of xG are independent of each other, and (4.13b) can easily
be rewritten to give an analytic expression for each xG ∈ xG dependent only on
xF . Hence, obtaining xG from (4.13b) generally does not require solving a system of
nonlinear equation.





CHAPTER 5

The Newton-Raphson method

Steady-state LF analysis of energy networks requires solving the system of nonlinear
LF equations (4.11). We consider a general systems of nonlinear equations:

F (x) = 0 (5.1)

It is generally not possible to find an analytical solution to a system of nonlinear equa-
tions. Iterative methods are used to find an approximation of the solution. Various
methods exist, for instance fixed-point methods, but we will use the Newton-Raphson
method (NR).

First, we give the basic iterative scheme and algorithm for NR. Then, we provide
the iterative scheme of NR when the variables or equations are scaled or permuted.
We show that scaling and permutation does not affect the iterates of NR. Finally, we
discuss the application of NR to steady-state LF problems of MESs.

5.1 Basic iterative scheme

Consider the square nonlinear system of N equations (5.1), with F : RN → RN
continuously differentiable. This system is solved iteratively, using a linearization of
F at each iteration. The Jacobian matrix J is given by

J = ∇F :=


∂F 1

∂x1
. . . ∂F 1

∂xN

...
...

∂FN

∂x1
. . . ∂FN

∂xN

 (5.2)

Given an initial guess x0, in every iteration k, the linear system

J
(
xk
)
sk = −F

(
xk
)

(5.3)

is solved to determine the update s to the current iterate. Any linear solver can be
used. The iteration scheme of NR is given in Algorithm 5.1.

Some error measure is needed to determine if the current iterate is close to the
solution. Based on (5.1), the vector F (xk) can be seen as the residual vector at
iteration k. A commonly used error measure ek is the residual norm ‖F (xk)‖ or the

45
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Algorithm 5.1 The Newton-Raphson method in multiple dimensions.

Set k := 0.
Choose initial guess x0, maximum number of iterations kmax, and tolerance τ .
Calculate e0 using (5.4).
while ek > τ and k < kmax do:

Solve sk from J(xk)sk = −F (xk)
Set xk+1 := xk + sk

Set k := k + 1
Calculate ek using (5.4)

end while

relative residual norm ‖F (xk)‖/‖F (x0)‖. We use the residual norm for the error
measure:

ek = ‖F (xk)‖2 (5.4)

NR is said to be converged when the error measure of the final iteration is smaller
than a chosen tolerance τ . The algorithm is terminated when convergence is reached,
or when the maximum number of iterations kmax is exceeded.

One of the advantages of NR is the local quadratic convergence. That is, if some
iterate xK is close to the solution x∗, then there exists a constant c ≥ 0 such that
‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2 for all iterations k ≥ K.

One of the disadvantages of basic NR is that global convergence is not guaran-
teed: If the initial guess is too far from the (global) solution, NR can have problems
converging, or it might diverge. Furthermore, the system (5.3) needs to be solved at
every iteration, which causes problems if the system is ill-conditioned, or if J

(
xk
)
is

singular.
The Jacobian J

(
xk
)
needs to be determined every iteration. If an analytical

expression is not available, or if the computation is too expensive, the Jacobian can be
approximated numerically. The most straightforward and widely used approximation
is a finite difference approximation:

Jnm =
∂Fn
∂xm

≈ Fn(x+∆xem)− Fn(x)

∆x
, n,m = 1, . . . , N (5.5)

with ∆x the step size and em a vector with element m equal to 1 and all other
elements equal to 0.

5.2 Scaling and permutation

In many mathematical models of practical problems, the dependent and independent
variables, and the value of the equations, in (5.1) can be several orders of magnitude
apart. This can cause issues in Algorithm 5.1, as the smaller variables or equations
might be ignored [27]. To avoid such convergence issues, we scale x and F to be of
(roughly) the same order of magnitude.

Let Tx, TF ∈ RN×N be nonsingular matrices, called transformation matrices.
We define the transformed variables as x̂ := Txx and the transformed equations as
F̂ := TFF (x).
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The linear system (5.3) is adjusted to Ĵ(xk)ŝk = −F̂ (xk) and the new scaled
iterate is determined by x̂k+1 = x̂k + ŝk. The iteration scheme of transformed NR in
multiple dimensions is given in Algorithm 5.2.

Algorithm 5.2 Transformed NR in multiple dimensions.

Set k := 0.
Choose initial guess x0, maximum number of iterations kmax, and tolerance τ .
Calculate x̂0 = Txx

0.
Calculate ê0 using (5.6).
while êk > τ and k < kmax do:

Calculate F̂ k = TFF (T−1
x x̂k) and Ĵ

k
= TFJ(T

−1
x x̂k)T−1

x

Solve ŝk from Ĵ
k
ŝk = −F̂ k

Set x̂k+1 := x̂k + ŝk

Set k := k + 1
Calculate êk using (5.6)

end while

As stopping criterion of transformed NR, we take êk ≤ τ , with the transformed
error given by

êk = ‖F̂ k‖2 = ‖TFF
(
T−1
x x̂k

)
‖2 (5.6)

For the transformed step, it holds that ŝk = −TxJ (x)
−1

F
(
xk
)
= Txs

k, meaning
that scaling and permutation do not affect the NR iterations. More details and the
proof are given in Appendix A.

Even though the NR iterates are not affected by transformation, the stopping
criterion of the algorithm might be. For instance, if the same tolerance τ is used in
the stopping criterion of the original Algorithm 5.1 as in the stopping criterion of
the transformed Algorithm 5.2, the algorithms will terminate at a different iteration
number, since typically ek 6= êk.

If Tx and TF are diagonal matrices, x and F are only scaled and not permuted.
Specifically, Tx is a diagonal matrix with (Tx)nn = (xb)n, where (xb)n is the base
value of xn ∈ x. Similarly, TF is a diagonal matrix with (TF )nn = (F b)n, where

(F b)n is the base value of Fn ∈ F . We refer to x̂ and F̂ as the scaled variables and
equations, respectively.

5.3 Application to steady-state load flow problems
of multi-carrier energy systems

To solve the steady-state LF problem for general MESs, we use NR to solve the
nonlinear system (4.11). Some remarks regarding the Jacobian and the initial guess
can be made based on the structure of the system and the individual LF equations.

5.3.1 Jacobian

Due to the choice for a (heterogeneous) coupling node connected to the SCNs by
(homogeneous dummy) links, the Jacobian matrix for the system of equation (4.11)
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is given by:

J =


Jgg Jge Jgh Jgc

Jeg Jee Jeh Jec

Jhg Jhe Jhh Jhc

Jcg Jce Jch Jcc

 =


Jgg 0 0 Jgc

0 Jee 0 Jec

0 0 Jhh Jhc

0 0 Jch Jcc

 (5.7)

where the submatrices are defined as

Jαβ =
∂F α

∂xβ
, α, β ∈ {g, e, h, c}

This distinct structure holds for any MCN for which the individual LF equations
satisfy the general forms as described in Chapter 3. Since the BCs additionally
required by the coupling are imposed in the SC parts, these submatrices will generally
not be square. In other words, an SC part might be overdetermined while another
might be underdetermined. Therefore, the system (5.3) can generally not be solved
blockwise, without reordering first.

Using dummy links to connect the SC into one MCN shows the connection between
the SC parts explicitly, as already mentioned in Section 4.2.5. This is reflected by the
distinct structure of the Jacobian matrix (5.7). This structure also shows that the
effect of coupling is included through the coupling part of the system of equations.
That is, due to the use of dummy links for the connections, we have Jαβ = 0 for all
α 6= β with α, β ∈ {g, e, h}. Appendix B.1 gives details on the submatrices.

5.3.2 Initial guess

In general, it is difficult to derive conditions to guarantee convergence, both for fixed-
point methods and for NR. If the problem is ill-posed, such that the Jacobian matrix
is singular, NR will not find a solution.

Even if the problem is well-posed, care has to be taken when initializing the
solution vector. A badly chosen initial guess x0 can cause convergence problems for
the solver. Moreover, it can lead to singular Jacobians, depending on the models
used.

A well-known problem in SC gas (and heat) networks is a flat initial guess for the
pressures, resulting in undefined first derivatives. A similar problem occurs with the
thermal models in the heat network if a zero mass flow rate is used as initial guess.
See Appendix B for more details.

5.3.3 Singular Jacobians in a heat network

Even if a proper initial guess is chosen, the mixing-rule in a heat network can cause
the LF problem to become ill-posed, resulting in a singular Jacobian.

For any xh that satisfies the system of LF equations (4.7) or (4.9), each node i
has both inflow and outflow of water. However, during NR, there might be an iterate
such that node i has only inflow or only outflow. This results in convergence issues,
caused by the mixing-rule (3.20). To avoid these problems, we adjust the mixing-rule.

If a junction node or a source node has only inflow from the pipes in the supply
line, the supply line mixing-rule (3.20a) is independent of T si . Hence, the Jacobian
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Jhh is singular, causing issues with the solvability of the linear system (5.3). Similarly,
the return line mixing-rule (3.20b) is independent of T ri if node i is a junction or a
sink with only outflow into the pipes of the supply line.

To avoid a singular Jacobian in these cases, we adjust the mixing-rule by using
conservation of mass. We assume conservation of mass (3.14) holds (even though
this is not true, in these cases), and add it to the mixing-rule. That is, in case of a
junction or source with only inflow, we define the outflow into the pipes in the supply
line (which is zero) to be equal to the inflow from the pipes (which is nonzero), and
vice versa for a junction or sink with only outflow. These newly defined nonzero mass
flows are then added to the mixing-rule.

For any junction or source i with only inflow from the pipes in the supply line,
the supply line mixing-rule (3.20a) is adjusted to

FT
s
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ek∈Eh
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ijT
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where the adjustment is shown in box.
Similarly, for any junction or sink i with only outflow from the pipes in the supply

line, the return line mixing-rule (3.20b) is adjusted to
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Since conservation of mass is not satisfied in these cases, the added term is nonzero,
and FT

s

i now depends on T si and FT
r

i depends on T ri .





CHAPTER 6

Validation of load flow model framework

To illustrate and validate the model framework proposed in Section 4.3, we consider a
small MES, which is based on a case study introduced in [11], and later adapted in [17]
using an extended EH approach. For comparison, and to show that our framework
is applicable to general MES, we consider three different ways of coupling the single-
carrier networks of this MES, two similar to the couplings used in [11] and one similar
to [17]. That is, the coupling is modeled in three different ways, resulting in three
MCNs for the same MES.

6.1 Networks and models

Figure 6.1 shows the networks for the three ways of coupling. In network 1, we use a
GG at node 0c, a GB at node 1c, and a CHP at node 2c for the coupling. In network
2, we use two EHs. In network 3, we use a GG at node 0c, a GB at node 1c and at
node 3c, and a CHP at node 2c for the coupling. For all three networks, the same
models are used in the SC part. The parameter values used in the equations for all
three networks are summarized in Tables C.14–C.16 in Appendix C.3.

In the gas network, the links from 0g to 1g, from 0g to 2g, and from 3g to 2g,
represent pipes, and the link from 1g to 2g represents a compressor. The pipes are
modeled using the steady-state flow equation (2.1), with the pipe constant (2.2) and

This chapter is based on the articles:

Anne S. Markensteijn, Johan E. Romate, and Cornelis Vuik. A graph-based model framework
for steady-state load flow problems of general multi-carrier energy systems. Applied Energy,
280:115286, December 2020. ISSN 0306-2619. doi: 10.1016/j.apenergy.2020.115286,

Anne S. Markensteijn, Johan E. Romate, and Cornelis Vuik. A graph-based framework for
steady-state load flow analysis of multi-carrier energy networks. Technical Report 19-01, Delft
University of Technology, Delft Institute of Applied Mathematics, 2019,

and additional work.
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pressure drop (2.3) for high-pressure networks. For the friction factor, we use the
implicit Colebrook-White equation (2.6). Since the network contains a compressor,
we use the full formulation (4.1). We use (3.4b) for the link equation of the pipes,
and (3.5) for the link equation of the compressor.

In the electrical network, all links represent transmission lines, which we model as
short lines. We use (2.17) and (2.18) for the active and reactive powers in (4.4).

In the heat network, all links represent pipes. For the hydraulic model, we use
the steady-state flow equation (2.20), with the pipe constant (2.22), pressure drop
(2.21), and friction factor (2.6). For the thermal pipe model, we use (2.28). We use
the terminal link formulation (4.7), with (3.16) for the hydraulic link equations.

Note that the parameter values used in the heat network, as proposed by [11], and
used by [17] (see Table C.14), are not typical. For instance, the roughness is bigger and
the diameter is smaller than those of typical pipes (e.g. [4] for typical pipe dimension).
With the mass flows through the pipes reported in [17], this leads to pressure drops
up to 17 bar/km, while 1 bar/km–3 bar/km is typical in heat networks. However, for
validation purposes of our model, we will use the same parameters for pipes in the
heat network as proposed by [11].
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(a) Network 1: GG, GB, and CHP.
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(b) Network 2: EHs.
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(c) Network 3: GG, two GBs, and CHP.

heat

electricity
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Figure 6.1: MES network topologies. Network 1 (a) and 3 (c) are based on [11],
network 2 (b) is based on [17]. Arrows on links and terminal links show defined
direction of flow.
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In network 1, node 0c represents a GG, node 1c a GB, and node 2c a CHP. We
use linear models (2.33) and (2.36) for the GB and CHP, and use the nonlinear model
(2.32) for the GG, such that the nodal coupling equations (3.26) are

F c,E0c = GHVq0g0c − aP 2
0c0e − bP 0c0e − c−

∣∣d sin (e(Pmin − P 0c0e))
∣∣ (6.1a)

F c,E1c = ∆ϕ1c0h − ηGBGHVq0g1c (6.1b)

F c,E2c = GHVq2g2c −
P 2c2e

ηCHP
− ∆ϕ2c2h

ηCHP
(6.1c)

∆ϕ0c0h

P 0c0e

q0g0c

GG

GBν0

1− ν0

(a) EH at 0c.

∆ϕ1c2h

P 1c2e

q2g1c CHP

(b) EH at 1c.

Figure 6.2: Representation of the EHs in network 2, related to network 1. Arrows
show actual direction of flow.

In network 2, both nodes represent an EH. Figure 6.2 shows a representation of
the EHs, illustrating the relation to the coupling units in network 1. The coupling
matrices are chosen such that the EHs model the same conversion of energy as the
coupling components in network 1. Using (2.38), the nodal coupling equations (3.26)
are

F c,E0c =

(
P 0c0e

∆ϕ0c0h

)
−
(

ν0ηGG

(1− ν0)ηGB

)(
GHVq0g0c

)
(6.2a)

F c,E1c =

(
P 1c2e

∆ϕ1c2h

)
−
(

ν1ηCHP

(1− ν1)ηCHP

)(
GHVq2g1c

)
(6.2b)

with ν0 and ν1 dispatch factors, and ηGG the efficiency of the (linearized) GG. To
ensure consistency with network 1, we take

ηGG =
P̃ 0c0e

GHVq̃0g0c
≈ 0.45

ν0 =
q̃0g0c

q̃0g0c + q̃0g1c
≈ 0.77

ν1 =
P̃ 2c2e

P̃ 2c2e +∆ϕ̃2c2h

≈ 0.27

with q̃, P̃ , and ∆ϕ̃ the coupling flows of network 1.
In network 3, node 0c represents a GG, node 1c and 3c a GB, and node 2c a CHP.

We use the models (2.34) and (2.37) for the GBs and CHP, as proposed in [11], which
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are linear but more detailed than (6.1b) and (6.1c). For the GG, we use (6.1a). The
nodal coupling equations (3.26) for the GBs and CHP are

F c,E0c = GHVq0g0c − aP 2
0c0e − bP 0c0e − c−

∣∣d sin (e(Pmin − P 0c0e))
∣∣ (6.3a)

F c,E1c = GHVq0g1c −
∆ϕ1c0h + r1Ess

r2
(6.3b)

F c,E2c = GHVq2g2c −
P 2c2e

ηCHP
− ∆ϕ2c2h

ηCHP
(6.3c)

F c,P2c = P 2c2e − a∆ϕ2c2h − bT s2c2h − d+ w(∆ϕ2c2h) (6.3d)

F c,E3c = GHVq2g3c −
∆ϕ3c2h + r1Ess

r2
(6.3e)

where w(∆ϕ2c2h) is given by (2.37c). The parameter values, see Table C.16, are
chosen to match the solution given [11].

6.2 Node types

We assume T s known for all heat-producing coupling components. As BCs for the
heat terminal links, we specify T si,l for sources, and T

r
i,l for sinks.

For network 1 and network 2, we assume all coupling energies unknown. For
comparison and validation, we assume ∆ϕ known, for the GB represented by node 3c

and for the CHP, in network 3.
The coupling models (6.1) and (6.3) for network 1 and network 3 require two

additional BCs more than the coupling models (6.2) for network 2, if T s is known for
all coupling nodes. Tables 6.1–6.3 give the nodes types used for the two networks.
Due to the amount of additional BCs required in network 1, node 2h is a non-physical

Table 6.1: Node type set for network 1, coupled with a GG, a GB, and a CHP.

Node Node type Specified Unknown

0g ref. pg q

1g load q pg

2g ref. load pg, q -

3g load q = 0 pg

0e PQVδ P , Q, |V |, δ -

1e load P , Q |V |, δ
2e PQV P , Q, |V | δ

0h ref. ph, m = 0 T s, T r

1h load (sink) T r1,0, and ∆ϕ1,0 > 0 T s, T r, ph, m1,0

2h load (sink) ref. T r2,0, ∆ϕ2,0 > 0, ph T s, T r, m2,0

0c standard - -

1c temp. T s1c0h -

2c temp. T s2c2h -
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Table 6.2: Node type set for network 2, coupled with EHs.

Node Node type Specified Unknown

0g ref. pg q

1g load q pg

2g load q pg

3g load q = 0 pg

0e PQVδ P , Q, |V |, δ -

1e load P , Q |V |, δ
2e PQV P , Q, |V | δ

0h ref. ph, m = 0 T s, T r

1h load (sink) T r1,0, and ∆ϕ1,0 > 0 T s, T r, ph, m1,0

2h load (sink) T r2,0, and ∆ϕ2,0 > 0 T s, T r, ph, m2,0

0c temp. T s0c0h -

1c temp. T s1c2h -

Table 6.3: Node type set for network 3, coupled with a GG, two GBs, and a CHP.

Node Node type Specified Unknown

0g ref. pg q

1g load q pg

2g load q pg

3g load q = 0 pg

0e PQVδ P , Q, |V |, δ -

1e load P , Q |V |, δ
2e PQV P , Q, |V | δ

0h ref. ph, m = 0 T s, T r

1h load (sink) T r1,0, and ∆ϕ1,0 > 0 T s, T r, ph, m1,0

2h load (sink) T r2,0, and ∆ϕ2,0 > 0 T s, T r, ph, m2,0

0c standard - -

1c temp. T s1c0h -

2c temp. heat T s2c2h , ∆ϕ2c2h -

3c temp. heat T s3c2h , ∆ϕ3c2h -

sink reference node. This shows that the coupling units determine the additional
BCs required. Conversely, requiring realistic or physical BCs for all nodes limits the
coupling units that can be used to couple SCNs.

The chosen node sets are not unique. For instance, instead of the node set given
for network 2, node 2h can be taken as sink reference node and T s for node 1c can
be kept as unknown. The corresponding system of LF equations would then also be
solvable for a suitable initial guess.
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With the node sets in Tables 6.1–6.3, the system of LF equations for the MES
(4.11) consists of 32 equations and variables for network 1, 33 equations and variables
for network 2, and 35 equations and variables for network 3. The values used for the
BCs are given in Tables C.23–C.31 in the appendix.

6.3 Solution to load flow problem

To solve the system of equations (4.11) for each network, we use scaled NR, see
Algorithm 5.2, with a tolerance τ = 10−6. For the scaling, we use the base values
given in Table C.17, and for the initial guess to the solution vector, we use the values
given in Tables C.20–C.22.

Table 6.4: Relative error of results for the gas network, for network 1 (a), 2 (b), and
3 (c).

p qinj q

Node (a) (b) (c) (a) (b) (c) Link (a) (b) (c)

0 0 0 0 8.341·10−3 8.343·10−3 4.674·10−6 0-1 0.38880 0.38880 0.38880

1 0.28699 0.28699 0.28699 0.08649 0.08649 0.08649 0-2 2.4112 2.4112 2.4111

2 0.31549 0.31549 0.31548 0 0 0 3-2 0.61152 0.61152 0.61153

3 0.28700 0.28700 0.28699 - - - 1-3 0.61152 0.61152 0.61153

Table 6.5: Relative error of results for the electrical network, for network 1 (a), 2
(b), and 3 (c).

|V | δ Sinj

Node (a) (b) (c) (a) (b) (c) (a) (b) (c)

0 0 0 0 0 0 0 6.897·10−4 6.897·10−4 6.897·10−4

1 8.163·10−5 8.166·10−5 4.695·10−5 4.721·10−3 4.726·10−3 2.018·10−5 0 0 0

2 0 0 0 0.01111 0.01112 8.354·10−5 0 0 0

Sij Sji Sloss
ij

Link (a) (b) (c) (a) (b) (c) (a) (b) (c)

0-1 3.833·10−3 3.837·10−3 2.161·10−5 4.057·10−3 - 1.250·10−5 6.924·10−3 6.930·10−3 7.349·10−5

0-2 9.436·10−3 9.407·10−3 3.404·10−5 9.975·10−3 - 2.186·10−5 0.01691 0.01693 7.036·10−5

1-2 0.02371 0.02373 7.308·10−5 0.02336 - 1.181·10−4 0.03057 0.03060 3.783·10−3

Table 6.6: Relative error of results for the hydraulic part of the heat network, for
network 1 (a), 2 (b), and 3 (c).

∆p m

Link (a) (b) (c) (a) (b) (c)

0-1 0.03894 0.03894 0.03857 1.131 · 10−4 0.01933 8.069 · 10−5

0-2 0.10209 0.10215 0.10491 1.423 · 10−3 0.05072 1.464 · 10−4

1-2 0.07549 0.07550 0.07575 6.521 · 10−5 0.03813 7.600 · 10−5
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Table 6.7: Relative error of results for the thermal part of the heat network, for
network 1 (a), 2 (b), and 3 (c).

T s T r

Node (a) (b) (c) (a) (b) (c)

0 4.737·10−16 0 1.184·10−16 1.987·10−5 2.968·10−3 9.459·10−6

1 2.103·10−5 0.01665 7.522·10−7 1.421·10−16 0 0

2 4.418·10−5 4.380·10−5 1.540·10−6 3.113·10−6 0.01017 3.353·10−6

∆ϕloss

Link (a) (b) (c)

0-1 1.040·10−4 1.041·10−4 1.062·10−4

0-2 2.232·10−5 4.605·10−3 5.117·10−5

1-2 3.435·10−4 0.02906 3.795·10−4

Table 6.8: Relative error of results for coupling part of the network, for network 1
(a), 2 (b), and 3 (c).

q P

Node (a) (b) (c) (a) (b) (c)

0 0.01182 0.03156 6.111·10−6 7.224·10−3 0.03540 3.883·10−6

1 0.09336 1.057·10−4 1.567·10−4 - 0.03540 -

2 1.064·10−4 - 1.961·10−5 0.03537 - 3.932·10−5

3 - - 1.142·10−3 - - -

Q ∆ϕ

Node (a) (b) (c) (a) (b) (c)

0 4.195·10−4 6.587·10−3 4.188·10−7 - 5.092·10−4 -

1 - 6.587·10−3 - 1.9995 5.246·10−4 7.184·10−6

2 6.581·10−3 - 3.566·10−6 5.349·10−4 - 0

3 - - - - - 0

To validate our model framework, we compare the solution of network 1, 2, or 3,
with the solution given in [11] or [17], based on the relative error:

e = max(|x∗ − x|/|x∗|)

where x∗ is the solution given [11] or [17] and x the solution of network 1, 2, or 3.
Since we use slightly different models from the ones used in [11] and [17], we expect
our solution to be close, but not equal, to the solutions given in [11] and [17].

Tables 6.4–6.8 give the relative error between the solution of network 1, 2, or 3,
and the solution given in [11] or [17]. The gas data in Table 6.4–6.8 is compared with
the data from [11], as the solution in the gas part is not given in [17]. Similarly, the
pressure drops in Table 6.6 are compared with the data from [17], as the solution for
the pressure in the heat network is not given in [11]. For all other quantities, the
solution of network 1 and 3 is compared with [11], while the solution in network 2 is
compared with [17]. The full solution to the LF problem is given in Tables C.23–C.31.



58 Validation of load flow model framework Chapter 6

Our results for network 1 match the ones found in [11], except for the gas net-
work. However, plugging in their pressures values in the flow equation (2.1) does not
give their gas pipe flows. The ratio between their presented gas flows and the flows
obtained from the flow equations seems to be a factor ln 10.

Our results for network 2 match the ones found in [17], except for small differences
in the heat network. The model used in [17] for sinks and sources is different from
the one used here. That is, in [17] ∆T i,l = T si −T ri is used for both sinks and sources,
whereas we use the temperature difference in (3.13a). Second, they use a different
thermal model for the pipe lines. Finally, they use Buzzelli’s friction factor, whereas
we use Colebrook-White (2.6) in the hydraulic model for the pipe lines. With our
pipe flow model, their reported mass flow m01 results in a nodal head h1 = 225.05m,
instead of h1 = 10.666m as given in [17].

The other small differences are due to differences in BCs, and different formulations
of the system of load flow equations. In [11] and [17], the heat powers of the coupling
components are assumed known, while, for our BCs in network 1 and 2, the heat
network determines the required heat power. Through the coupling equations, the
coupling gas flows and active power can be determined, which are then effectively a
specified value from the perspective of the single-carrier gas and electrical networks.
Due to small differences in the coupling heat powers between our result and the one
presented in [11] and [17], the result in the gas and electrical part is also slightly
different.

To avoid the errors in the rest of the network caused by these small differences
in the coupling heat power, we take ∆ϕ known for the GB represented by node 3c

and for the CHP in the BCs of network 3. Comparing the results of network 3 with
the results of network 1 and with the results of [11], we indeed find that the results
of network 3 match those of [11] more closely. See for instance the voltage angle in
Table 6.5 and the active and reactive coupling powers in Tables 6.8. With this we
can explain the small differences between the models in the literature and our own
models.

This example illustrates that our proposed model framework can indeed be used
to model steady-state load flow for general MESs. Moreover, our framework can be
used with different components and models, both in the SCNs and for the coupling
units. Therefore, our framework includes and extends the currently available load
flow models for MESs.



CHAPTER 7

Numerical results for steady-state load flow problems

As mentioned in Section 4.3, the choice of the additional BCs is important for the
solvability and well-posedness of the integrated system of nonlinear LF equations.
Furthermore, the specific formulation of the system of LF equations in the SC net-
works and the formulation of the integrated system of equations influence the solv-
ability of the LF problem and the convergence behavior of NR. Using the graph-based
modelframework to formulate the steady-state LF problem, we analyze the effect of
coupling on the solvability and well-posedness of the system of equations, and on the
convergence of NR.

First, we investigate the effect of coupling on the solvability and well-posedness,
using a small MES with sets of BCs. Then, we investigate the convergence of NR by
considering the LF problem for example MESs of varying size, with various coupling
models and topologies, and various formulations in the single-carrier parts.

7.1 Solvability and well-posedness

For an MCN, additional BCs are required for the nonlinear system of LF equations to
be solvable. The choice of these BCs influences the solvability and well-posedness of
the LF problem. The node types, and the location of the coupling nodes in the graph,
must be carefully chosen. Certain combinations of node types, or graph topologies,
can result in systems of equations that are not (uniquely) solvable.

This chapter is based on the articles:

Anne S. Markensteijn, Johan E. Romate, and Cornelis Vuik. On the Solvability of Steady-
State Load Flow Problems for Multi-Carrier Energy Systems. In IEEE Milan PowerTech 2019,
2019,

Anne S. Markensteijn and Cornelis Vuik. Convergence of Newton’s Method for Steady-State
Load Flow Problems in Multi-Carrier Energy Systems. In IEEE PES Innovative Smart Grid
Technologies (ISGT Europe 2020), 2020.
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To investigate the effect of the node types, we consider a small MES. Two different
types of coupling are considered, leading to two MCNs representing the same MES.
For both of these MCNs, we formulate the LF problem using two different sets of
node types. We solve the resulting systems of LF equations using NR.

7.1.1 Networks and models

Figure 7.1 shows the network topologies of the MES. The network in Figure 7.1a is
coupled with a GB and a CHP, while the network in Figure 7.1b is coupled with a
single EH. Using the EH as shown in Figure 7.2 means that both networks model the
same MES.
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0e 2e

1e
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2g

1g

0c

1c

(a) Coupled with a GB (0c) and a CHP (1c).
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1e
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heat

electricity
gas

(b) Coupled with an EH.

Figure 7.1: Network topologies of one MES. Arrows on links and terminal links
show defined direction of flow.

∆ϕ0c0h

P 0c1e

q0g0c

CHP

GBν

1− ν

Figure 7.2: Model representation of the EH in Figure 7.1b.

Each SC network consists of three nodes, all connected to each other. The gas
network and power grid have an external source, connected at node 0g and 0e re-
spectively. The heat network has no external source; all heat is provided by the gas
network. The networks are coupled at node 2g of the gas network, node 1e of the
power grid, and node 0h of the heat network. For both networks, the same models are
used in the SC part. The parameter values used in the equations for both networks
are summarized in Tables C.32–C.34 in Appendix C.4.
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In the gas network, all links represent pipes, which are modeled using the steady-
state flow equation (2.1), with the pipe constant (2.2) and pressure drop (2.3) for
low-pressure networks, and with Pole’s friction factor (2.5). We use (3.4b) for the
link equation of the pipes.

In the electrical network, all links represent transmission lines, which we model as
short lines. We use (2.17) and (2.18) for the active and reactive powers in (4.4).

In the heat network, all links represent pipes. For the hydraulic model, we use
the steady-state flow equation for resistors (2.23), with constant Ch = 1/ρg. For the
thermal pipe model, we use (2.28). We use the terminal link formulation (4.7), with
(3.16) for the hydraulic link equations.

In the first network, node 0c represents a GB and node 1c a CHP, which we model
using (2.33) and (2.35), such that the nodal coupling equations (3.26) are

F c,E0c = ∆ϕ0c0h − ηGBGHVq2g0c (7.1a)

F c,E1c = GHVq2g1c −
P 1c1e

ηCHP
− ∆ϕ1c0h

ηCHP
(7.1b)

In the second network, the GB and CHP are represented by one EH, as shown
in Figure 7.2. The coupling matrix is chosen such that the EH models the same
conversion of energy as the GB and CHP. Using (2.38), the nodal coupling equations
(3.26) are

F c,E0c =

(
P 0c1e

∆ϕ0c0h

)
−
(

µ(1− ν)ηCHP

νηGB + (1− µ)(1− ν)ηCHP

)(
GHVq2g0c

)
(7.2)

with ν the factor of gas dispatched to the GB, and µ the factor of gas converted to
active power by the CHP. This model is consistent with (7.1) for appropriate values
of ν and µ.

7.1.2 Node types

The loop created between nodes 2g and 0h in the first network (Figure 7.1a) restricts
the possible node types, regarding solvability. If only the total amount of gas con-
sumed and total amount of heat provided by the coupling components is known, it
leaves infinitely many options to distribute those energy flows over the GB and the
CHP. For the first network, the node types must be chosen such that either both gas
flows, or both heat flows, can be determined uniquely. Since none of the coupling
flows are specified, this is impossible in the gas network. In the heat network, it is
possible if both outflow temperatures are specified such that T s0c0h 6= T s1c0h , and if
the supply temperature in node 0h is specified. If instead of (3.27), a heat power
equation with ∆T = T sih − T sih is used (e.g. [17]), this would not be possible.

This problem does not arise for the network with the EH (Figure 7.1b), because
the EH concept specifies both ratios ν and µ in (7.2), and because there is no loop
between nodes 2g and 0h. However, if for this network one of the coupling flow q2g0c ,
P 0c1e , or ∆ϕ0c0h is determined by one of the SCNs, the other two energies are known
through the coupling equations (7.2). This effectively fixes those two energies as BCs
in the other two SC networks, limiting the allowable node types in those two SC
networks.
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Due to the differences in network topology between Figure 7.1a and Figure 7.1b,
and in coupling equations (7.1) and (7.2), different node types are needed for the total
system (4.11) to be solvable. Table 7.1 gives two sets for both networks for which the
system is well posed. For both networks, the first set has no additional BCs in gas,
while the second set has.

Table 7.1: Node type sets with BCs for the networks shown in Figure 7.1.

set 1 set 2 set 1 EH set 2 EH

Node Type Specified Type Specified Type Specified Type Specified

0g ref. pg ref. pg ref. pg ref. pg

1g load q load q load q load q

2g load q ref. load pg, q load q ref. load pg, q

0e slack |V |, δ slack |V |, δ slack |V |, δ slack |V |, δ
1e PQVδ P , Q, |V |, δ PQV P , Q, |V | PQV P , Q, |V | PQV P , Q, |V |
2e load P , Q load P , Q load P , Q load P , Q

0h ref. temp. T s, ph, m=0 ref. temp. T s, ph, m=0 ref. ph, m=0 junction m=0

1h load (sink) T r1,0, ∆ϕ1,0 load (sink) T r1,0, ∆ϕ1,0 load (sink) T r1,0, ∆ϕ1,0 load ref. slack T r1, p
h

2h load (sink) T r2,0, ∆ϕ2,0 load (sink) T r2,0, ∆ϕ2,0 load (sink) T r2,0, ∆ϕ2,0 load (sink) T r2,0, ∆ϕ2,0

0c temp. T s0c0h temp. T s0c0h temp. T s0c0h temp. T s0c0h

1c temp. T s1c0h temp. T s1c0h - - - -

In the first example, with the network shown in Figure 7.1a, node types are chosen
such that the heat network can determine the coupling heat power flows. For the first
node set, the nodes are chosen such that the power grid determines the active power
required from the CHP. The coupling equations then determine the coupling gas
flows. For the second node set, the nodes are chosen such that, given the heat flow
produced by the GB (node 0c), the gas network can determined the gas flow supplied
to the CHP. The coupling equations then determine the active power produced by
the CHP.

For the example with the EH, shown in Figure 7.1b, the first node set is chosen such
that the heat network determines the coupling heat power. The coupling equations
then determine the coupling gas flow and active power.

The second node set, for the example with the EH, is chosen such that the gas
network determines the coupling gas flow. The coupling equations then determine
the coupling heat power and active power. Taking nodes 1h and 2h as sink nodes,
and assuming there is no external heat source, leaves the heat network without a
slack for the heat power, which could lead to an ill-posed problem. If ∆ϕ0c0h �
|∆ϕ1,0| + |∆ϕ2,0|, the water mass flow in the pipes will become very small, that is
mij ≈ 0. If 1h and 2h are load nodes, T r1,0, T

r
2,0, and the heat powers would be

known. Since T s0c0h is also known, it follows from the heat power equations (3.23) and
(3.27) that T r0 � T s0c0h , T

s
1 � T r1,0, and T s2h � T r2,0. In this example, this leads to

a numerically singular Jacobian matrix (i.e. |J(xk)| ≈ 0, such that the linear solver
in NR is unable to find a solution at iteration k). To avoid this, a slack for the heat
power must be introduced. One option is to make node 0h a slack node. However, this
would model a situation with an external heat source connected to node 0h. Another
option is to take one of the sink nodes 1h or 2h as slack nodes. Although this is not
physically realistic, we choose the second option to show the effect of node types on
convergence behavior.

The chosen coupling unit and model determines the topology of the MCN and the
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used coupling equations. This influences the possibilities for imposing the additionally
required BCs in the SC networks, and subsequently influences the integrated system
of LF equations. Choosing the wrong node types leads to an ill-posed or unsolvable
LF problem.

7.1.3 Solving the load flow problem

To solve the system of equations (4.11) for both networks, we use scaled NR, see
Algorithm 5.2, with a tolerance τ = 10−6, and the base values for scaling given in
Table C.35. We use the full formulation (4.1) in the gas part, and the standard
formulation (4.9) in the heat part.

Figure 7.3 shows the convergence behavior of NR for all four examples, that is,
for the two node sets in Table 7.1 for both networks in Figure 7.1. We can see that
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Iteration
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101

104
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2
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τ

Figure 7.3: Error ‖F̂ k‖2 of NR, for the networks in Figure 7.1 with the node sets
in Table 7.1. The curves for node set 2 are indistinguishable at this scale.

NR converges for all four examples. For each node set, the convergence behavior
of the two networks is similar, showing that the coupling model does not influence
convergence behavior for this MES. Node set 2 takes more iterations to convergence
than node set 1, for both networks. This difference is due to the additional BC in gas
for the second node set.

Even though this MES is too small to draw general quantitative conclusions re-
garding the convergence of NR, the number of iterations needed by NR are different
for the two node sets. Therefore, these examples show that the choice of node types
influences the convergence behavior of NR, even if the BCs are chosen such that the
LF problem is uniquely solvable.
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7.2 Convergence of the Newton-Raphson method

Various formulations of the LF problem are used in each of the SC networks. More-
over, different coupling models lead to different integrated systems of equations for
the LF problem of MESs. To investigate the effect of coupling, and the effect of the
formulation of the LF problem in the SC parts, on the convergence of NR for the LF
problem of MESs, we consider a MES of varying size, with various coupling models
and topologies, and various formulations in the single-carrier parts. We compare the
convergence behavior of NR for the various SCNs and MCNs.

7.2.1 Networks and models

The MES consists of a base network, coupling 3-node SC gas, electricity, and heat
networks. For each carrier, node 1 is a source, and node 3 is a sink. For the electrical
network and the heat network, node 2 is an additional source.

heat
electricity
gas

1h 2h 3h

1e 2e 3e

1g 2g 3g

1c

(a) Coupled at node 1, CHP or EH.

1h 2h 3h

1e 2e 3e

1g 2g 3g

1c
2c

(b) Coupled at node 1, GB and GG.

1h 2h 3h

1e 2e 3e

1g 2g 3g

1c

(c) Coupled at node 2, CHP or EH.

1h 2h 3h

1e 2e 3e

1g 2g 3g

2c1c

(d) Coupled at node 2, GB and GG.

Figure 7.4: MES network topologies, using various couplings. Arrows on links and
terminal links show defined direction of flow.

We consider coupling components that convert gas to electricity, heat, or both,
to connect the SC networks. One electrical and one heat source are replaced with a
coupling, such that the SCNs are coupled at node 1 or at node 2. The networks are
coupled by a single node representing a CHP or an EH, or by two nodes representing
a GB and a GG. Figure 7.4 shows the possible topologies for the base case MES.

This base case can be extended by replacing the sink at node 3 of each SC network
by a tree-like structure which we call ‘streets’. There are s streets, S1 – Ss, which are
all connected to node 3 of the base SC network through a junction node. Each street
consists of n loads, L1 – Ln, connected to the main street links by junctions, m of
which, J1 – Jm, are connected to two loads. Figure 7.5 shows the topology of such an
extended SC network, which consists of 3+s(2n−m+1) nodes and 2+s(2n−m+1)
links. The extended MES is created by coupling the SCNs in the same way as for the
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base network.

S1

321

L1

J1

Ss

Jm

Jm

Ln

Ln

L1

L2

L2

J1

Figure 7.5: Extension of SC networks, with s streets consisting of n loads. Arrows
on links and terminal links show defined direction of flow.

For all four types of coupling, and for both the base case and the extended case,
the same models are used in the SC parts. The parameter values used in the equations
are given in Tables C.42–C.52 in Appendix C.5.

In the gas network, all links represent pipes, which are modeled using the steady-
state flow equation (2.1), with the pipe constant (2.2) and pressure drop (2.3) for
high-pressure networks, and with Weymouth’s friction factor (2.4). We consider both
(3.4a) and (3.4b) for the link equation of the pipes.

In the electrical network, all links represent transmission lines, which we model as
medium-length lines. We use (2.14) and (2.15) for the active and reactive powers in
(4.4).

In the heat network, all links represent pipes. For the hydraulic model, we use the
steady-state flow equation (2.20), with pipe constant (2.22) and pressure drop (2.21),
and with Pole’s friction factor (2.5). For the thermal pipe model, we use (2.28). We
use the terminal link formulation (4.7), with (3.16) for the hydraulic link equations.

For the coupling components, we use linear models (2.33) and (2.36) for the GB
and CHP, we use linear model (2.31) or nonlinear model (2.32) for the GG, and we

use (2.38) for the EH, with Eout =
(
Pout ∆ϕout

)T
, Ein =

(
Egin
)
, cge = 1/2ηGG, and

cgh = 1/2ηGB.

7.2.2 Node types

We consider both types of BC for the heat load nodes, as described in Section 4.1.
That is, for each terminal link l connected to node i, we either assume ∆Ti,l known,
or we assume T ri,l known for sinks and T si,l known for sources.

Table 7.2 gives the node types used for the LF problem in the SCNs, based on
which variables are specified. Note that the electrical and heat network do not nec-
essarily have a physical solution. For instance, if |∆ϕ2,0| > |∆ϕ3,0| > 0, the source
slack node 1h would have to behave as a sink, which is unphysical.

Node 1 is the slack node in all three SCNs, such that LF analysis determines
the amount of injected flow or energy entering node 1. Replacing the slacks of the
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Table 7.2: Node type set with BCs for the SC base networks.

Gas Electricity Heat

Node Type Spec. Type Spec. Type Specified

1 ref. pg slack |V |, δ source ref. slack T s, ph

2 load q gen. P , |V | load (source) T s2,0 or ∆T , ∆ϕ

3 load q load P , Q load (sink) T r3,0 or ∆T , ∆ϕ

electrical and heat network with a coupling is then straightforward. The electrical
and heat SC parts of the MES will determine the coupling powers ∆ϕc and P c, after
which the coupling equations for a CHP, or for a GB and a GG, uniquely determine
coupling gas flow qc. For the EH, the coupling equation needs only P c or ∆ϕc to
uniquely determine qc and ∆ϕc or P c. Hence, either the electrical or the heat network
will need an additional slack.

Conversely, node 2 was a generator or a source node in the SC electrical and heat
network, such that P and ∆ϕ were given. Replacing those sources with the coupling,
after which P c and ∆ϕc are unknown, means BCs must be chosen such that the
SC parts can determine qc, P c, or ∆ϕc for the coupling equation(s) to be able to
determine the others.

Table 7.3: Node type sets with BCs for the networks, coupled at node 1, shown in
Figures 7.4a and 7.4b.

CHP or GB+GG EH

Node set 1 set 2 set 1 set 2

1g pg pg pg pg

2g q q q q

3g q q q q

1e P , Q, |V |, δ P , Q, |V |, δ Q, |V |, δ P , Q, |V |, δ
2e P , |V | P , |V | P , |V | P , |V |
3e P , Q P , Q P , Q P , Q

1h T s, ph, m=0 ph, m=0 T s, ph, m=0 T s, ph

2h T s2,0 or ∆T , ∆ϕ T s2,0 or ∆T , ∆ϕ T s2,0 or ∆T , ∆ϕ T s2,0 or ∆T , ∆ϕ

3h T r3,0 or ∆T , ∆ϕ T r3,0 or ∆T , ∆ϕ T r3,0 or ∆T , ∆ϕ T r3,0 or ∆T , ∆ϕ

1c - T s - T s

2c - - - -

Tables 7.3 and 7.4 give the various node sets of BCs, only showing the specified
values, used in the MCNs for the base case. We consider two different node sets if the
SCNs are coupled at node 1, and we consider three different node sets if the SCNs
are coupled at node 2.

The BCs for nodes 1 and 2 of the extended case are the same as in Table 7.2 for
the SC networks and the same as in Table 7.3 and Table 7.4 for the MCNs, node 3 is
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a junction, and the additional nodes are junction or load (sink) nodes.

Table 7.4: Node type sets with BCs for the networks, coupled at node 2, shown in
Figures 7.4c and 7.4d.

CHP or GB+GG EH

Node set 1 set 2 set 3 set 1 set 2 set 3

1g pg, q pg, q pg pg, q pg pg

2g q q q q q q

3g q q q q q q

1e P , |V | |V |, δ P , |V | |V |, δ P , |V | |V |, δ
2e P , Q, |V |, δ P , Q, |V | P , Q, |V |, δ P , Q, |V | P , Q, |V |, δ P , Q, |V |
3e P , Q P , Q P , Q P , Q P , Q P , Q

1h T s, ph ph, T s1,0 or ∆T , ∆ϕ ph, T s1,0 or ∆T , ∆ϕ T s, ph T s, ph ph, T s1,0 or ∆T , ∆ϕ

2h m=0 m=0 m=0 m=0 m=0 m=0

3h T r3,0 or ∆T , ∆ϕ T r3,0 or ∆T , ∆ϕ T r3,0 or ∆T , ∆ϕ T r3,0 or ∆T , ∆ϕ T r3,0 or ∆T , ∆ϕ T r3,0 or ∆T , ∆ϕ

1c T s T s T s T s T s T s

2c - - - - - -

7.2.3 Solving the load flow problem

For the SC gas network, and for the gas part in the MC network, we consider the
nodal system (4.3) with (3.4a) for the link equations, and the full system (4.1) with
(3.4a) or (3.4b) for the link equations, giving three different formulations of the SC
gas LF problem.

For the SC heat network, and for the heat part in the MC network, we consider
the terminal link formulation (4.7) and the standard formulation (4.9), both with
either Ti,l or ∆T known for the heat load nodes, giving four different formulations of
the SC heat LF problem.

For the MESs, we consider the base case MCNs with the topologies as shown
in Figures 7.4a–7.4b and the node sets given in Table 7.3 when coupled at node 1,
and the topologies shown in Figures 7.4c–7.4d and the nodes sets given in Table 7.4
when coupled at node 2. The extended cases use the same node sets, and we take 30
nodes per SCN (n = 5,m = 2, s = 3) for a medium network, or 323 nodes per SCN
(n = 10,m = 5, s = 20) for a large network.

To solve the system of equations for each SCN, and the system of equations (4.11)
for the MCNs, we use scaled NR, see Algorithm 5.2, with a tolerance τ = 10−6. As
base values for scaling, we take the values given in Table C.45 for the base case. We
take the same base values for the extended cases, except for pg for which we take
pgb = 50 · 105 Pa, see Table C.53.

We use a flat initial guess of NR, except for a linear profile for pg, ph, and T s,
where the nodes furthest from the source have the lowest value. See Appendix C.5.2
for more details.

Figure 7.6 shows the convergence behavior of NR for the three SCNs, using the
largest network, as an example. Table 7.5 summarizes the iterations needed by NR
to converge. The convergence of NR for the SCNs shows very similar behavior for all
network sizes. However, the convergence is different for the various formulations in
the gas network and in the heat network.

For the gas network, using link equation F∆p(q) (3.4b) results in slightly faster
convergence than F q(∆p) (3.4a). With the latter, the nodal and full formulation give
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Figure 7.6: Convergence of NR for the extended SCNs, with n = 10, m = 5, and
s = 20, using various formulations in gas and in heat.

Table 7.5: NR iterations for different formulations of the LF problem of SCNs.

Case (number of nodes per SCN)

Carrier Formulation Base Ext. medium (30) Ext. large (323)

Gas

nodal, F q(∆p) 4 6 6

full, F q(∆p) 4 6 6

full, F∆p(q) 3 5 4

Electricity 2 3 5

Heat

standard, Ti,l 3 3 3

standard, ∆T 2 2 2

terminal link, Ti,l 3 3 3

terminal link, ∆T 2 2 2

the same results. For the heat network, convergence shows no difference between the
terminal link or the standard formulation. Assuming ∆Ti,l known for a heat load,
instead of assuming T ri,l known for sinks and T si,l for sources, gives better convergence.
Hereafter, we only show the results of the LF problem for the MESs with the full
formulation in gas and the terminal link formulation, with ∆T known, in heat. Using
the nodal formulation in gas, and standard formulation or terminal link formulation
with Ti,l known in heat, give similar results.

Figure 7.7 shows the convergence of NR for the base case MES coupled at node
2, using different topologies, coupling components, and all node sets. In total, this
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Figure 7.7: Convergence of NR for the base case MES, coupled at node 2, using full
formulation with F∆p(q) in gas, and terminal link formulation with ∆Ti,l known in
heat. Most of the curves are indistinguishable at this scale.

figure shows the convergence of twelve cases, namely four different types of coupling
with three different node sets each. The convergence in Figure 7.7 is typical for this
MES. Numerical experiments show similar convergence for the extended case coupled
at node 2, and for the base and extended case coupled at node 1, for all considered
topologies, coupling components, and node sets.

For comparison of the various couplings and the various sizes, we give the results
for the node sets in which the coupling component functions as a slack for the heat
network. That is, we use node set 1 when coupling at node 1, and node set 3 when
coupling at node 2. Table 7.6 shows the number of iterations needed by NR to
converge for the base and extended case MESs, for these two node sets. Numerical
experiments show similar results for the other node sets, and other formulations.
Given a formulation of the SC parts, the NR iterations for the MCNs follow a similar
pattern for both points of coupling, all four coupling components and models, and all
node sets. Hence, for this example, the convergence behavior of the MES is determined
by the SCNs, and not by the coupling. Moreover, we find that for the extended case,
the number of iterations barely increases if the size of the network increases, both for
the SCNs and for the MCNs.

The independence of the convergence of NR on the type of coupling, seen in this
example, could be due to the topology and the choice of BCs. All node sets are chosen
such that the steady-state LF problem can be solved uniquely for one or two SCNs,
with the coupling energy as unknown. The coupling equations can then be used to
compute the other coupling energies or energy, which serve as a BC for the other
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Table 7.6: NR iterations for LF problem of the MCNs of various sizes.

Size Form. gas Coupled at CHP GB+GG GB+GG VP EH Max. SC

base

full, F q(∆p)
node 1 4 4 4 4 4

node 2 4 4 4 4 4

full, F∆p(q) node 1 3 3 3 3 3

node 2 3 3 3 3 3

medium
n = 5
m = 2
s = 3

full, F q(∆p)
node 1 6 6 6 6 6

node 2 6 6 6 6 6

full, F∆p(q) node 1 5 5 5 5 5

node 2 5 5 5 5 5

large
n = 10
m = 5
s = 20

full, F q(∆p)
node 1 6 6 6 6 6

node 2 6 6 6 6 6

full, F∆p(q) node 1 4 4 4 4 5

node 2 4 4 4 4 5

SCNs. Hence, the LF problem for the example MESs could be solved by sequentially
solving the SC LF problems, instead of solving one integrated system of equations.
In other words, the Jacobian matrix (5.7) used in NR could easily be reordered into
block upper triangular form, where the coupling part is included with the SC parts.
This may induce the solution paths of the subsystems to be very similar to those of
the individual subsystems when solved separately, so that the number of iterations of
the integrated systems is automatically near the maximum of the iteration numbers of
the individual subsystems. Similar convergence behavior could be expected for other
MESs where the integrated LF problem can easily be decomposed into solvable SC
subsystems.

For these example MCNs, NR for the LF problems of the MES requires at most
as many iterations as the slowest SCN. Moreover, the number of NR iterations are
independent of the coupling and almost independent of the size of the network.

7.3 Final remarks

The node types determine in which SC part of the MCN most of the solver work is
done. For the example in Section 7.1, the focus is on the electrical part for the first
node set and on the gas part for the second node set. It might be possible to choose
BCs such that the work is done in the SC network that is easiest to solve, but further
research is required. Moreover, if the difference in convergence behavior of the SC
parts is larger than in this example, we expect to see a bigger influence of the node
type sets on the convergence of NR for the MCN.

For the example in Section 7.2, the size-independency of NR might be due to the
tree-structure of the considered networks. Further research is required to determine
the influence of the size of the network on the convergence of NR for a network that
contains (more) loops.

The independence of the convergence of NR on the type of coupling could be due
to the topology and the choice of BCs. The SCNs of the considered MES do not
depend on each other, rather, one SC part depends on the other two. When solving
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the integrated system of LF equations, the SC parts are essentially solved in parallel,
so that the number of iterations of the integrated system is automatically near the
maximum number of iterations of the SCNs. We expect similar convergence behavior
for other MESs where the integrated LF problem can easily be decomposed into
solvable SC subsystems. Such a decomposition is not as straightforward for the first
example MES, for which the convergence of NR is indeed influenced by the coupling
and the node type sets.





CHAPTER 8

A decoupled approach to solving the load flow problem

The framework to perform steady-state LF analysis of MESs, as given in Section 4.3,
represents a MES as one connected MCN, after which the single system of equations
(4.11) is solved using NR. However, SC energy systems have been widely studied,
such that dedicated models and solvers exist. Using these SC models and solvers
within this framework is not straightforward, due to the single connected MCN. Fur-
thermore, the SC energy systems of the various carriers are usually maintained and
controlled by different systems operators. Issues with sharing detailed network data
amongst the various operators might prohibit a MES to be modeled as a single MCN.
One option to model a MES as an integrated system, while keeping the SC energy
systems (relatively) separate, is to adopt a decoupling approach, similar to domain
decomposition (DD). This approach allows the use of dedicated SC solvers, and does
not require all data to be shared amongst the various subsystems.

The decoupling approach disconnects the SC systems from the coupling part,
and models each SC system, the coupling, and the interaction between the systems
separately. A similar approach is used in [8], for a case study of a combined electricity
and heat system, but has not yet been used for MESs consisting of gas, electricity, and
heat. We provide a decoupling approach to general MESs, based on a disconnected
or decoupled network representation. This approach provides an alternative to the
framework in Figure 4.1, to perform steady-state LF analysis of integrated MESs.

The definition of the links and terminal links, and the choice for a coupling node,
allows for the decoupling of the single connected MCN into SCNs and a (heteroge-
neous) coupling network. This provides a framework to represent general MESs as a
disconnected MCN, consisting of several SCNs and one or more coupling networks.

For each of these subnetworks, the extended LF problem (4.13) can be solved. In
addition to these subproblems, the connection between the SC and coupling subnet-
works needs to be taken into account, which we call the interface conditions (IFCs).
Combining the LF problems of the subnetworks with the IFCs gives a system of
(non)linear equations, that models the LF problem for the integrated MES, and which
is an alternative to the system (4.11). We consider three ways to solve this alternative
system: the fixed-point method (FP), NR, and accelerated FP.

First, we discuss how to decouple a connected MCN into SCNs and a (hetero-
geneous) coupling network. We introduce the IFCs, which model the connections
between the subnetworks. Then, we describe how to formulate the LF problem of the

73
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MES, based on the LF problems of the subsystems and on the IFCs. We discuss the
three ways to solve the resulting nonlinear system of equations, and we compare the
decoupled approach to solving the LF problem (4.11). Finally, we use the decoupled
approach to solve the LF problem of some small example MESs.

8.1 Decoupling a multi-carrier network

Decoupling an MCN is relatively straightforward, and is the opposite of coupling the
SCNs as described in Section 3.3. We decouple the MCN by cutting all dummy links
that connect a homogeneous node to a (heterogenous) coupling node.

By definition, a terminal link is half of a link, such that cutting a link results in
two (homogeneous) terminal links. The link quantities that are associated with one
side of the link will be a terminal link quantity of only one of the created terminal
links. Link quantities that are associated with the entire link will be a terminal link
quantity of both terminal links. This process is shown in Figure 8.1, for a coupling
that produces heat.
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(b) Node ih is a sink.

Figure 8.1: Decoupling an MCN, assuming the coupling produces heat, by cutting
the (dummy) links, with node ih a source (a) or a sink (b). Arrows on links and
terminal links show defined direction of flow.

Since dummy links only show a connection between two nodes, but do not rep-
resent any physical component, cutting a dummy link simply results in two terminal
links. Cutting a non-dummy link might be possible, but requires a strategy to ‘cut’
the model of the physical element represented by the link. In this thesis, we only
consider cutting dummy links.

We assume heat nodes can only have one type of terminal link, either sink or
source, connected to them, see Section 3.2.3. Cutting a (dummy) link connected to
a heat node leaves a terminal link connected to that node. If this node already has
a terminal link connected to it, we might end up with both sink and source terminal
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links connected to one heat node. If this would be the case, an additional node is
added to the SC heat network instead, to which the newly created terminal link is
connected. This additional node is connected with a dummy link to the original heat
node. Both the original and the additional heat node now have terminal links of only
one type connected to them. This is shown in Figure 8.1b, where node jh is the
additional node.

In practice, this issue might not occur, as, usually, to create a connected MCN,
some heat source nodes of the SC heat network are connected to a coupling unit that
produces heat. Hence, a coupling unit that produces heat will not be connected to
a heat sink node in the MCN. If such an MCN is decoupled by cutting the dummy
links, this will result in new source terminal links that have to be connected to the
heat source nodes. This does not require extra steps, and is shown in Figure 8.1a.

The nodal coupling equation (3.26) remains on the coupling node, but is now a
function of terminal link quantities instead of link quantities. For coupling units that
produce or consume heat, the heat power equation (3.27) is replaced by (3.23) on
each terminal link created by cutting the dummy link.

If a MES has multiple coupling components, the corresponding MCN can have
multiple coupling nodes. Decoupling the connected MCN by cutting all dummy links
gives a disconnected MCN with multiple coupling nodes, which are also disconnected
from each other. The collection of these coupling nodes can be seen as one (dis-
connected) heterogeneous network, or each coupling node can be seen as a separate
(connected) heterogeneous network. In this thesis, we view the coupling nodes as one
disconnected heterogeneous network.

By cutting all the dummy links between a homogeneous node and a heteroge-
neous node, a connected MCN is decoupled, or decomposed, into its SC parts and its
coupling part. For each of these subnetworks, the extended LF problem (4.13) can
be solved. Denoting the BCs of a (sub)network by b, we can write the extended LF
problem, for each α ∈ {g, e, h, c}, as

hα(xα; bα) :=

(
F α (xα; bα)
Gα (xα; bα)

)
= 0 (8.1)

Given appropriate BCs bα, this system can be solved for the (extended) state variables
xα. We use (4.1) or (4.3) for the gas LF equations F g, (4.5) for the electrical LF
equations F e, (4.7) or (4.9) for the heat LF equations F h, and (4.10) for the LF
equations F c of the coupling network.

8.1.1 Interface conditions

In order to formulate the LF problem of the integrated MES, the interaction between
the SC subnetworks and the coupling subnetwork should also be taken into account,
in addition to the subproblems (8.1). We model this interaction through interface
conditions (IFCs). The subnetworks are created by cutting the dummy links of the
MCN. Since the dummy links represented the connection between the SC networks
and the coupling nodes, the subnetworks interact through the terminal links obtained
after cutting the dummy links.

The IFCs relate the quantities on the terminal links of the various subnetworks to
each other. For instance, if a gas dummy link from gas node ig to coupling node ic is
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cut into terminal links l, as shown in Figure 8.1, the IFC for this connection is given
by

qig,l = −qic,l (8.2)

Figure 8.1 also shows that these terminal links flows are related to the dummy link
flow of the connected MCN as qig,l = −qic,l = qigic .

Similarly, the IFCs for an electrical dummy link between node ie and ic, cut into
terminal links l, are given by

Pie,l = −Pic,l (8.3a)

Qie,l = −Qic,l (8.3b)

The terminal link powers are related to the dummy link powers of the connected MCN
as Pie,l = Pieic , Pic,l = Picie , Qie,l = Qieic , and Qic,l = Qicie .

If a coupling node produces heat, a heat dummy link from ic to ie is cut into two
source terminal links l. The IFCs are then given by

mih,l = mic,l (8.4a)

∆ϕih,l = ∆ϕic,l (8.4b)

T sih,l = T sic,l (8.4c)

T rih,l = T ric,l (8.4d)

The terminal link quantities are related to the dummy link quantities of the connected
MCN as mih,l = mic,l = −micih , ∆ϕih,l = ∆ϕic,l = −∆ϕicih , T

s
ih,l = T sic,l = T sicih , and

T rih,l = T ric,l = T rihic .

The subnetworks require BCs for their LF problems (8.1) to be solvable. Generally,
this requires the assumption that some of the quantities on the terminal links, obtained
after cutting the dummy links, are known. In other words, some of these terminal
link quantities are part of the BCs bα and the rest are part of the (extended) state
variables xα.

8.2 Formulation of the load flow problem

Even though the MES is represented by a decoupled MCN, we still want to perform
steady-state LF analysis for the integrated MES. To do this, the output of one
subnetwork is taken as BC for another subnetwork, through the IFCs. The steady-
state LF problem of the integrated MES, represented by a decoupled MCN, is then
obtained by combining the LF equations of the SC subnetworks and of the coupling
subnetwork with the IFCs.

Since the output of one subnetwork is taken as BC for another subnetwork, one of
the quantities in an IFC is a variable in the extended LF problem of one subnetwork,
and the other quantity is a BC for another subnetwork. Therefore, each IFC in (8.2)–
(8.4) is of the form bα = ±xβ , with xβ ∈ xβ and bα ∈ bα, for α, β ∈ {g, e, h, c}, and
α 6= β.

Only a part of the (extended) state variables xα and of the BCs bα of each subsys-
tem are used in the IFCs, namely only those quantities associated with the terminal
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links obtained after cutting the dummy links. Denoting those parts by v ⊆ x and
u ⊆ b respectively, the IFCs (8.2)–(8.4) can be written as

ug = Acgvc (8.5a)

ue = Acevc (8.5b)

uh = Achvc (8.5c)

uc =

Agc 0 0
0 Aec 0
0 0 Ahc

vg

ve

vh

 (8.5d)

The matrices Aαβ are sparse matrices with non-zero elements equal to ±1. For the
coupling subnetwork, vc and uc are assumed to be ordered like xc in (4.10), with
terminal link quantities instead of dummy link quantities. For notational simplicity,
we denote each of the IFCs (8.5a)–(8.5d) as:

uα = gI,α(v) (8.6)

Given these uα (and the rest of bα), the extended LF problem (8.1) of each
subnetwork can be solved for vα (and the rest of xα). That is, we can determine vα

for a given uα, for each α ∈ {g, e, h, c}, assuming (8.1) is well-posed. We denote these
subproblems as

vα = gα(uα) (8.7)

Since these subproblems correspond to solving the extended LF problem (8.1), it is,
in general, not possible to derive an explicit algebraic expression for gα.

The subnetworks of the decoupled MCN only interact with each other through the
IFCs. Hence, the values of the terminal link variables v (and BCs u) are the only data
that needs to be communicated between the various subsystems. This limits the data
that has to be shared among the operators of the subsystems, and does not require
the operators to share detailed network data or models. For instance, an operator of
a gas network does not need to share pressure values, but only the gas flows going to
or coming from a coupling unit.

We combine the IFCs (8.6) with the implicit relations (8.7), for each α ∈ {g, e, h, c},
to formulate the steady-state LF problem of the integrated MES, represented by a
decoupled MCN:

y = g(y) (8.8)

In this thesis, we consider two ways to form (8.8) by collecting (8.6) and (8.7). For
the first option, we collect the equations and variables per carrier, such that

g(y) =



gg(ug)
gI,g(vc)
ge(ue)
gI,e(vc)
gh(uh)
gI,h(vc)
gc(uc)

gI,c(vg, ve, vh)


:=

(
g1(y1, y2)

g2(y1)

)
, y =



vg

ug

ve

ue

vh

uh

vc

uc


:=

(
y1

y2

)
(8.9)
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For the second option, we exploit the structure of the decoupled MCN. Since the
SC subnetworks only interact with the coupling subnetwork, and vice versa, and only
through the IFCs, we take

g(y) =



gg(ug)
ge(ue)
gh(uh)

gI,c(vg, ve, vh)

gc(uc)

gI,g(vc)
gI,e(vc)
gI,h(vc)


:=


g1(y4)

g2(y1)

g3(y2)

g4(y3)

, y =



vg

ve

vh

uc

vc

ug

ue

uh


:=


y1

y2

y3

y4

 (8.10)

The division of g and y into two subsystems in (8.9) and four subsystems in (8.10)
is used in Section 8.3.3.

Note that each of gg, ge, gh, and gc, given by (8.7), corresponds to solving the
extended LF problem (8.1). These LF subproblems contain all the detailed network
models and all the state variables, which are not explicitly part of (8.8). Moreover,
dedicated SC solvers can be used for these subproblems.

8.3 Solving the load flow problem

To perform steady-state LF analysis of an integrated MES, using a decoupled MCN,
the system of nonlinear equations (8.8) has to be solved (instead of (4.11), which is
solved if a MES is represented by one connected MCN). We consider three ways to
solve this system: FP to solve (8.8) as a single system, NR to solve y − g(y) = 0
instead, and an accelerated version of FP.

All of these methods to solve (8.8) require g to be computed. To compute
gg, ge, gh, and gc in (8.7), the extended LF problem (8.1) needs to be solved, for
a given uα. We use NR as described in Chapter 5 to solve each of these subsystems.

8.3.1 Basic FP

Consider the nonlinear system y = g(y), with g : D → D, y ∈ D, and a domain
D ⊆ RN . This system is solved iteratively using FP by setting

yk+1 = g(yk) (8.11)

at each iteration k. Starting at some initial guess y0, this gives a sequence {yk}∞k=0.
Global convergence can be guaranteed for FP under certain conditions. If there

exists a constant ρ < 1, such that ‖J(y)‖ ≤ ρ, with ‖ · ‖ some matrix norm and
J = ∇g the Jacobian matrix, then the FP iteration scheme (8.11) is guaranteed to
converge to the unique fixed point y∗ of g for any initial guess y0 ∈ D. However, FP
has linear convergence, as opposed to the (local) quadratic convergence of NR.

To solve the LF problem (8.8) with the basic FP scheme (8.11), we use Algo-
rithm 8.1. The subsystems (8.1) in step 7 are solved using NR (see Algorithm 5.1 or
Algorithm 5.2). To reduce total computation time, we only solve the extended LF
problem (8.1) if the change in u between two FP iterations is ‘large’. Otherwise, the
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Algorithm 8.1 Basic FP applied to the integrated LF problem (8.8).

1: Set k := 0.
2: Choose initial guess y0, maximum number of iterations kmax, overall tolerance τ ,

and LF tolerance τF .
3: Compute or set error e0.
4: while ek > τ and k < kmax do:
5: for α ∈ {g, e, h, c} do:
6: if k = 0 or ‖(uα)k − (uα)k−1)‖ > τF then:
7: Compute gα((uα)k) by solving (8.1) to a tolerance τF .
8: else:
9: Set gα((uα)k) := (vα)k.

10: end if
11: end for
12: for α ∈ {g, e, h} do:
13: Compute gI,α((vc)k).
14: end for
15: Compute gI,c((vg)k, (ve)k, (vh)k).
16: Set yk+1 := g(yk).
17: Set k := k + 1.
18: Compute error ek using (8.12) or (8.13).
19: end while

previous solution is used, such that vk+1 = vk. Furthermore, these subsystems are
independent of each other, such that steps 5–11 could be done in parallel, as could
steps 12–14.

Algorithm 8.1 is terminated at iteration k if ek ≤ τ . We consider two error
measures for this stopping criterion. The first is commonly used for FP methods:

ek = ‖yk − yk−1‖2 (8.12)

The second is based on the accuracy of the LF solutions of the subnetworks, to resem-
ble the error (5.4) used when solving (4.11), the LF problem of the connected MCN.
Since the LF subsystems in step 7 are solved using NR, F α((xα)Kk) is computed at
each FP iteration k, for α ∈ {g, e, h, c} and with Kk the final iteration number of NR.
The error of the FP iteration is then determined as

ek = ‖F k‖2, F k =


F g,k

F e,k

F h,k

F c,k

 (8.13)

where F α,k := F α((xα)Kk), for α ∈ {g, e, h, c}.

8.3.2 The Newton-Raphson method

To solve the LF problem (8.8) using NR, we apply Algorithm 5.1 (or Algorithm 5.2)
to the system F (y) := y− g(y) = 0, which has Jacobian matrix JF (y

k) = I − J(yk)
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with I the identity matrix. At every outer NR iteration k, g(yk) is computed by
following steps 5–15 in Algorithm 8.1.

If all LF models and network data would be available, the Jacobian J(yk) can
be determined analytically, see Appendix B.2. However, we solve the system (8.8),
instead of (4.11) for the connected MCN, to allow limited data transfer between the
operators of the SC networks, such that the detailed LF models and data of the
subnetworks are not available. In that case, the Jacobian J(yk) can be approximated
by (5.5), using a finite difference approach. This requires the computation of g(y +
∆yem) for m = 1, . . . , N , in addition to g(y), which drastically increases the number
of solves of LF subsystems in each outer iteration k.

8.3.3 Accelerated FP

The basic iteration scheme (8.11) of FP has linear convergence, which can be ac-
celerated by an approach similar to the adjustment of the Jacobi method to the
Gauss-Seidel method for solving linear systems. Instead of using iteration scheme
(8.11), part of the variables are updated during a single iteration step. Assuming all
components of y are computed in order, the iteration scheme is adjusted to

yk+1
n = g(yk+1

1 , . . . ,yk+1
n−1,y

k
n, . . . ,y

k
N ) (8.14)

for all n = 1, . . . , N . Although this adjustment can accelerate convergence, it generally
does not change the order of convergence, such that iteration scheme (8.14) still has
linear convergence.

Cutting the dummy links of the connected MCN decomposes it into the SC net-
works and a coupling network. The resulting system of LF equations (8.8) is then
naturally divided into four system of LF problems for the subnetworks and four sys-
tems of IFCs. We combine these eight systems as (8.9) or as (8.10) to form the system
of LF equations (8.8). Based on this structure, we use the accelerated FP scheme
(8.14) to solve the LF problem (8.8). The effect of the ordering on the convergence
of accelerated FP is investigated in Section 8.5

If the system of equations (8.8) is ordered as (8.9), g and y can be divided into
two subsystems, g1 and g2, and y1 and y2, respectively, such that the accelerated FP
scheme (8.14) becomes

yk+1
1 = g1(y

k
1 ,y

k
2)

yk+1
2 = g2(y

k+1
1 )

To solve (8.8) ordered as (8.9) using the accelerated FP scheme, we use Algo-
rithm 8.2.

If the system of equations (8.8) is ordered as (8.10), g and y can each be divided
into four subsystems, g1, g2, g3 and g4, and y1, y2, y3 and y4, respectively, such
that the accelerated FP scheme (8.14) becomes

yk+1
1 = g1(y

k
4)

yk+1
2 = g2(y

k+1
1 )

yk+1
3 = g2(y

k+1
2 )

yk+1
4 = g2(y

k+1
3 )
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Algorithm 8.2 Accelerated FP applied to the LF problem (8.8) with (8.9).

1: Set k := 0.
2: Choose initial guess y0, maximum number of iterations kmax, overall tolerance τ ,

and LF tolerance τF .
3: Compute or set error e0.
4: while ek > τ and k < kmax do:
5: Steps 5–14 from Algorithm 8.1.
6: Set yk+1

1 := g1(y
k
1 ,y

k
2).

7: Compute gI,c((vg)k+1, (ve)k+1, (vh)k+1).
8: Set yk+1

2 := g2(y
k+1
1 ).

9: Set k := k + 1.
10: Compute error ek using (8.12) or (8.13).
11: end while

To solve (8.8) ordered as (8.10) using the accelerated FP scheme, we use Algo-
rithm 8.3. We call this method for solving the LF problem of an integrated MES,
decoupled load flow. It can be seen as a DD approach to the nonlinear system of LF
equations (4.11).

Algorithm 8.3 Accelerated FP applied to the LF problem (8.8) with (8.10).

1: Set k := 0.
2: Choose initial guess y0, maximum number of iterations kmax, overall tolerance τ ,

and LF tolerance τF .
3: Compute or set error e0.
4: while ek > τ and k < kmax do:
5: for α ∈ {g, e, h} do:
6: Steps 6–10 from Algorithm 8.1.
7: end for
8: Set yk+1

1 := g1(y
k
4).

9: Compute gI,c((vg)k+1, (ve)k+1, (vh)k+1).
10: Set yk+1

2 := g2(y
k+1
1 ).

11: Steps 6–10 from Algorithm 8.1 with α = c.
12: Set yk+1

3 := g3(y
k+1
2 ).

13: Steps 12–14 from Algorithm 8.1.
14: Set yk+1

4 := g4(y
k+1
3 ).

15: Set k := k + 1.
16: Compute error ek using (8.12) or (8.13).
17: end while

Algorithm 8.2 and Algorithm 8.3 iterate between the LF problems of the subnet-
works and the IFCs. Some MCNs are coupled in such a way that one subnetwork
determines the BCs for the others. For instance, if node 1c in the network in Figure 7.4
represents an EH, BCs can be chosen such that the heat part determines the heat
power produced by the EH. The nodal coupling equations of the EH then give the
active power produced, and gas flow consumed, by the EH. If we decouple this MCN,
and formulate the LF problem (8.8), Algorithm 8.2 would need only 2 iterations, and
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Algorithm 8.3 only 1, to find the solution. In other words, if the subnetworks of the
decoupled MCN do not depend on each other, no iterations between the subsystems is
required to solve the LF problem of the MES. We say that a MES that is represented
by such an MCN is not fully integrated.

8.4 Relation to permutation of the load flow prob-
lem for a connected multi-carrier network

There are some similarities between the decoupled approach and permuting the system
of LF equations (4.11) for a connected MCN. These similarities become clear when
looking at the Jacobian of the permuted system.

With LF using a connected MCN, the SC parts and the coupling part of the
LF system (4.11) generally are not square systems, as discussed in Section 4.2.5 and
Section 5.3.1.

With decoupled LF, the subsystems (8.1) of the SCNs and of the coupling net-
work of the decoupled MCN are square systems. Part of the BCs of the subnetworks
in the decoupled MCN are obtained from the state variables of the other subnet-
works, through the IFCs. This means that information obtained from the coupling is
combined with the SC subnetworks, and vice versa.

We can adopt a similar approach to the system of LF equations (4.11), which
is based on a connected MCN, by permuting the equations and variables such that
the SC parts and the coupling part become square systems. This permutation is not
unique, just like the sets of node types for the subnetworks in the decoupled MCN
are not unique.

For the decoupled MCN, the coupling equations are part of the LF subproblem
of the coupling subnetwork. Therefore, we choose to not combine coupling equations
in (4.11) with the LF equations of the SC parts, instead we keep them separate as a
subsystem when permuting. We move some of the coupling variables from xc to the
corresponding SC variables, but not the other way around. For instance, a coupling
gas flow qc can be included with xg instead of xc. The permutation of (4.11) is
chosen to match the structure of the LF problem (8.8) using a decoupled MCN. See
for instance Appendix C.1, where (C.2) is such an permutation of the original LF
system (C.1) for the gas-electricity MES used in Section 8.5.1.

Permutation changes the structure of the Jacobian matrix of the system of LF
equations (4.11), which is originally structured as (5.7). Since we keep the coupling
equations as a subsystem, the SC parts of the connected MCN do not interact with
each other directly, but only through the coupling equations. However, we permute
the variables such that some of the coupling variables are included with the SC vari-
ables. Denoting the permuted variables by x̂, and the permuted equations by F̂ , the
permuted Jacobian matrix of the LF using a connected MCN is then given by

Ĵ =


Ĵgg 0 0 Ĵgc

0 Ĵee 0 Ĵec

0 0 Ĵhh Ĵhc

Ĵcg Ĵce Ĵch Ĵcc

 (8.15)

If an appropriate permutation is chosen, the submatrices Ĵgg, Ĵee, Ĵhh, and Ĵcc are
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square. Each diagonal submatrix Ĵαα corresponds to the LF problem (8.1) of a
subnetwork in the decoupled MCN, while the off-diagonal submatrices Ĵαβ correspond
to the IFCs (8.5) of the decoupled MCN. Hence, the equations and variables of the
LF problem of the connected MES can be reordered to match the structure of the LF
problem of the disconnected MCN.

Note that a permutation of (4.11) does not affect the iterates of NR, as discussed
in Section 5.2. However, if the system (4.11) is permuted such that the submatrices
Ĵαα are square, DD or block iterative methods can be used to solve the linear system
Ĵkŝk = −F̂ k in Algorithm 5.2. Unlike the decoupled LF approach, such a DD
approach still requires the detailed models and data of the SC networks to be available,
and does not use dedicated LF solvers for SC parts. In this thesis, we do not consider
DD in the linear system of NR.

If a permutation exists such that the Jacobian (8.15) is a block upper triangular
matrix, with square submatrices on the diagonal, the SC parts of the MES are not
interdependent on each other. As stated in Section 8.3.3, using the decoupled LF
method to solve the LF of such a MES means that Algorithm 8.3 would only need 1
iteration to find a solution. Since NR is not affected by permutation, solving permuted
(4.11) with NR would still require several iterations.

8.5 Numerical results

To illustrate the decoupled approach, we perform steady-state LF analysis for three
small MESs. We use the three methods described in Section 8.3 to solve the LF
problem (8.8). For comparison, we also solve the LF problem (4.11), both with
and without permutation, using NR. We compare the convergence of these various
methods, and compare the final solution.

The first and second MES consist of only two carriers, and the third MES consist
of gas, electricity, and heat. Each of these MESs have two coupling units to create
a MES in which the SC systems depend on each other, such that the MES is truly
integrated, as described in Section 8.3.3.

8.5.1 Gas-electricity multi-carrier energy system

The first MES consist of a two-node gas network and a two-node electrical network,
connected to each other with two coupling nodes. Figure 8.2 shows the connected
and decoupled network representations of this MES.

Models and node types

In the gas network, node 0g is a source, node 1g is a sink, and the link from 0g to 1g

represents a pipe. In the electrical network, both nodes are sinks, and the link from
0e to 1e represents a short transmission line. See Appendix C.1 for details on the
models.

Both coupling nodes represent a GG, for which we use the linear model (2.31).
The nodal coupling equations (3.26) for the connected MCN, shown in Figure 8.2a,
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Figure 8.2: Connected and decoupled network representation of a gas-electricity
MES. Arrows on links and terminal links show defined direction of flow.

are then

F c,E0c = P0c0e − η0cGHVq0g0c

F c,E1c = P1c1e − η1cGHVq1g1c

and the nodal coupling equations (3.26) for the disconnected MCN, shown in Fig-
ure 8.2b, are

F c,E0c = P0c − η0cGHV(−q0c)

F c,E1c = P1c − η1cGHV(−q1c)

The parameter values used in the equations are summarized in Tables C.1–C.2 in
Appendix C.1.

Table 8.1 gives the node type sets we use as BCs, for the connected and discon-
nected MCN. Note that these node sets lead to a LF problem that might not have a
physically realistic solution, depending on the values of the BCs. Specifically, energy
only enters the network in node 0g, and we assume this inflow q0 known. If this in-
flow is taken too small or too large, a (physically realistic) solution to the LF problem
(4.11) or (8.8) does not exist. The values used for the BCs are given in Tables C.4–C.6
in Appendix C.1.

Table 8.1: Node type sets for the gas-electricity network.

Connected Decoupled

Node Type Specified Type Specified

0g ref. load p, q0 ref. p, q0

1g load q1 load q1, q1,1

0e PQV P0, Q0, |V | gen. P0, P0,1, Q0, |V |
1e PQVδ P1, Q1, |V |, δ slack P1, P1,1, Q1, |V |, δ
0c standard - qQ q0c , Q0c

1c standard - PQ P1c , Q1c

With the node sets in Table 8.1, the system of LF equations for the connected
MCN (4.11) consists of 9 equations and variables, while the system of LF equations
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for the decoupled MCN (8.8) consists of 12 equations and variables. For the decoupled
LF problem, we take

vg =
(
q0,1
)
, ve =

(
P1,1 Q0,1 Q1,1

)T
, vc =

(
−q1c P0c

)T
,

ug =
(
q1,1
)
, ue =

(
P0,1

)
, uc =

(
q0c P1c Q0c Q1c

)T (8.16)

See Appendix C.1 for details on the IFCs and the systems of LF equations.

Solving the load flow problem

To solve the system of equations (4.11) for the connected MCN, we use scaled NR with
and without permutation. To solve the system of equations (8.8) for the decoupled
MCN, we use the methods described in Section 8.3. In NR, we take a tolerance
τ = 10−7, and in Algorithms 8.1, 8.2, and 8.3 we take tolerances τ = 10−5 and
τF = 10−7. We use scaling for all methods, with the base values as given in Table C.3.

For NR, the Jacobian J can be determined analytically or it can be approximated
by (5.5). For FP, both the basic version and the accelerated version, we can use
(8.12) or (8.13) as error e in the stopping criterion. We consider the original and
the permuted system (4.11), and we use (8.9) or (8.10) to order the equations and
variables in (8.8). This gives a total of 14 ways to solve the LF problem.

Table 8.2: Solver information of the LF problem of the gas-electricity MES.

# solves (8.1)

Method System J or e # iters gas elec. coup.

NR on (4.11)
orig. an. 4

perm. an. 4

NR

(8.9)
an. 4 4 4 4

appr. 5 ∗ ∗ ∗

(8.10)
an. 4 4 4 4

appr. 4 ∗ ∗ ∗

FP

(8.9)
(8.12) 729 723 725 729

(8.13) 744 731 735 743

(8.10)
(8.12) 729 723 725 729

(8.13) 744 731 735 743

Acc. FP

(8.9)
(8.12) 535 342 343 352

(8.13) 473 314 314 315

(8.10)
(8.12) 193 193 193 193

(8.13) 182 181 181 181

Table 8.2 gives the results for the three methods described in Section 8.3 to solve
(8.8) and for NR applied to (4.11). The second columns indicates how the equations
and variables are ordered in the system of LF equations. The third column states if the
exact or approximated J is used in NR, or which error e is used in FP. The column ‘#
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iters’ gives the total number of (outer) iterations required by the method to converge.
The final three columns give the total number of times that the LF problem (8.1) is
solved, for each subsystem, in NR on (8.8) with analytical J , and in Algorithms 8.1,
8.2, and 8.3. For NR on (8.8) with approximated J , the LF subproblem (8.1) needs to
be solved several times to compute (5.5), in addition to the solves required to compute
F (y), which is indicated by ‘∗’ in Table 8.2.

All methods converge to a solution; to validate this LF solution, we determine the
variables x corresponding to the LF problem of the connected MCN, and compare
those variables with the solution x∗ of LF problem (4.11) solved without permutation.
For all methods, the found solution is close to the reference solution x∗, that is,
max(|x∗ − x|/|x∗|) ∼ τ or smaller. Therefore, the decoupled approach can be used,
with any of the three methods described in Section 8.3, to solve the LF problem of
this gas-electricity MES.

0 1 2 3

Iteration k

10−9

10−7

10−5

10−3

10−1

‖F̂
k
‖ 2

(8.8) with (8.9)

(8.8) with (8.10)

(4.11)

permuted (4.11)

τ

Figure 8.3: Convergence of NR to solve (4.11) or (8.8) for the gas-electricity MES.
The lines ‘(8.8) with (8.9)’ and ‘(8.8) with (8.10)’ are indistinguishable, as are the
lines ‘(4.11)’ and ‘permuted (4.11)’.

Table 8.2 shows that the order of the variables and equations does not affect
NR, neither when applied to (4.11), nor when applied to (8.8). This is illustrated in
Figure 8.3, which shows the convergence of NR, where J is determined analytically.
This figures also shows that NR has quadratic convergence for these LF problems.

Figure 8.4 shows the convergence of basic and accelerated FP, with (8.13) for the
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error measure. We can see, both in Table 8.2 and in Figure 8.4, that the order of
the variables and equations does not affect basic FP but does affect accelerated FP.
For the latter, using (8.10) for the ordering results in faster convergence than using
(8.9), as expected, since the ordering of (8.10) is chosen to exploit the structure of
the interdependencies amongst the subsystems. Furthermore, accelerated FP indeed
converges faster than basic FP. Even though accelerated FP convergences faster, both
basic FP and accelerated FP show linear convergence.
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10−1

100

êk

Acc. FP with (8.9)

FP with (8.9)

Acc. FP with (8.10)

FP with (8.10)

τ

Figure 8.4: Convergence of FP (Alg. 8.1) and accelerated FP (Alg. 8.2 or Alg. 8.3),
for the gas-electricity MES, using error (8.13). The lines ‘FP with (8.9)’ and ‘FP with
(8.10)’ are indistinguishable.

Finally, comparing the fourth column with the final three columns in Table 8.2,
we see that the subsystem (8.1) does not need to be solved at every outer iteration
of Algorithms 8.1, 8.2, and 8.3 for FP to find a solution to the LF problem, since
the number of times that (8.1) is solved is smaller than or equal to the total number
of outer iterations for these methods. Hence, using an if-statement as in step 6 of
Algorithm 8.1 reduces the total CPU time.

8.5.2 Electricity-heat multi-carrier energy system

The second MES consists of a two-node electrical network and a two-node heat net-
work, connected to each other with two coupling nodes. Figure 8.5 shows the con-
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Figure 8.5: Connected and decoupled network representation of an electricity-heat
MES. Arrows on links and terminal links show defined direction of flow.

nected and the decoupled network representation of this MES. Both electrical nodes
and both heat nodes in the connected MCN are sinks, such that energy enters the
network as gas through the couplings, which produce electricity and heat.

Models and node types

In the electrical part of the connected network, both nodes are sinks, and the link
from 0e to 1e represents a short transmission line. In the heat part of the connected
network, both nodes are sinks, and the link from 0h to 1h represents a pipe. See
Appendix C.2 for details on the models.

Both coupling nodes represent an EH, for which we use the linear model (2.38).
The nodal coupling equations (3.26) for the connected MCN, shown in Figure 8.5a,
are then

F c,E0c =

(
P0c0e

∆ϕ0c0h

)
−
(
cge0
cgh0

)
GHV(−q0c)

F c,E1c =

(
P1c1e

∆ϕ1c1h

)
−
(
cge1
cgh1

)
GHV(−q1c)

and the nodal coupling equations (3.26) for the disconnected MCN, shown in Fig-
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ure 8.5b, are

F c,E0c =

(
P0c

−∆ϕ0c

)
−
(
cge0
cgh0

)
GHV(−q0c)

F c,E1c =

(
P1c

−∆ϕ1c

)
−
(
cge1
cgh1

)
GHV(−q1c)

The parameter values used in the equations are summarized in Tables C.7–C.8 in
Appendix C.2.

Table 8.3 gives the the node type sets we use as BCs, for the connected and discon-
nected MCN. In the connected MCN, nodes 0h and 1h are sinks, in the disconnected
MCN, nodes 1h and 2h are sinks and nodes 0h and 3h are sources. The values used
for the BCs are given in Tables C.10–C.13 in Appendix C.2.

Table 8.3: Node type sets for the electricity-heat network.

Connected Decoupled

Node Type Specified Type Specified

0e PQV P0, Q0, |V | gen. P0, P0,1, Q0, |V |
1e PQVδ P1, Q1, |V |, δ slack P1, P1,1, Q1, |V |
0h ref. load p, T r0,0,∆ϕ0 slack p, T s0
1h load T r1,0,∆ϕ1 load T r1,0,∆ϕ1

2h ref. load p, T r2,0, ∆ϕ2

3h ref. load p, T s3,0, ∆ϕ3

0c temp. T s0c0h QTϕ Q0c , T
s
0c , ∆ϕ0c , T

r
0c , m0c

1c temp. T s1c1h PQT P1c , Q1c , T
s
1c , T

r
1c , m1c

With the node sets in Table 8.3, the system of LF equations for the connected
MCN (4.11) consists of 19 equations and variables, while the system of LF equations
for the decoupled MCN (8.8) consists of 24 equations and variables. For the decoupled
LF problem, we take

ve =
(
P1,1 Q0,1 Q1,1

)T
, vh =

(
m0 m3 ∆ϕ0

)T
,

ue =
(
P0,1

)
, uh =

(
∆ϕ3

)
,

vc =
(
−q0c −q1c P0c −∆ϕ1c

)T
,

uc =
(
P1c Q0c Q1c m0c m1c ∆ϕ0c

)T
See Appendix C.2 for details on the IFCs.

Solving the load flow problem

We use the same methods as for the gas-electricity MES to solve the LF problems
(4.11) and (8.8), see Section 8.5.1, such that we again consider 14 ways to solve the
LF problem. In NR, we take a tolerance τ = 10−7, and in Algorithms 8.1, 8.2, and
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Table 8.4: Solver information of the LF problem of the electricity-heat MES.

# solves (8.1)

Method System J or e # iters elec. heat coup.

NR on (4.11)
orig. an. 6

perm. an. 6

NR

(8.9)
an. 4 4 4 4

appr. 5 ∗ ∗ ∗

(8.10)
an. 4 4 4 4

appr. 5 ∗ ∗ ∗

FP

(8.9)
(8.12) 69 69 69 69

(8.13) 66 65 65 65

(8.10)
(8.12) 69 69 69 69

(8.13) 66 65 65 65

Acc. FP

(8.9)
(8.12) 50 33 33 34

(8.13) 50 33 33 33

(8.10)
(8.12) 21 21 21 21

(8.13) 19 18 18 18

8.3 we take tolerances τ = 10−6 and τF = 10−7. We use scaling for all methods, with
the base values as given in Table C.9.

Table 8.4 gives the results for the three methods described in Section 8.3 and
for NR applied to (4.11). Again, the second column indicates how the equations
and variables are ordered in the system of LF equations, the third column states
if the exact or approximated J is used in NR, or which error e is used in FP, the
fourth column gives the total number of (outer) iterations required by the method
to converge, and the final three columns give the total number of times that the LF
problem (8.1) is solved, for each subsystem. For NR on (8.8) with approximated J ,
the LF subproblem (8.1) needs to be solved several times to compute (5.5), in addition
to the solves required to compute F (y), which is indicated by ‘∗’ in Table 8.4.

All methods converge to a solution, which is close to the reference solution x∗ of
the LF problem (4.11) solved without permutation, that is, max(|x∗ − x|/|x∗|) ∼ τ
or smaller. Therefore, the decoupled approach can be used, with any of the three
methods described in Section 8.3, to solve the LF problem of this electricity-heat
MES.

The results are similar to the gas-electricity MES. Table 8.4 shows that NR
and basic FP are not affected by the order of the variables and equations, whereas
accelerated FP is. For accelerated FP, using (8.10) for the ordering results in faster
convergence than using (8.9). Furthermore, accelerated FP indeed converges faster
than basic FP, though both show linear convergence. This is illustrated in Figure 8.6,
which shows the convergence of basic and accelerated FP, with (8.13) for the error
measure. Finally, Table 8.4 shows that the subsystem (8.1) does not need to be solved
at every outer iteration of Algorithms 8.1, 8.2, and 8.3 for FP to find a solution to
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the LF problem.
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Figure 8.6: Convergence of FP (Alg. 8.1) and accelerated FP (Alg. 8.2 or Alg. 8.3),
for the electricity-heat MES, using error (8.13). The lines ‘FP with (8.9)’ and ‘FP
with (8.10)’ are indistinguishable.

8.5.3 Multi-carrier energy system with three carriers

The third MES consist of gas, electricity, and heat SC networks, and is the same
MES as used in Chapter 6, coupled with EHs. Figure 8.7 shows the connected and
the decoupled network representation of this MES.

Models and node types

We use the same LF equations as in Chapter 6, which are also detailed in Ap-
pendix C.3, with the parameter values as given Tables C.14–C.16.

Both coupling nodes represent an EH, for which we use the linear model (2.38).
The nodal coupling equations (3.26) in the connected MCN, shown in Figure 8.7a,
are given by (6.2), and the nodal coupling equations (3.26) in the disconnected MCN,
shown in Figure 8.7b, are

F c,E0c =

(
P0c

−∆ϕ0c

)
−
(

ν0ηGG

(1− ν0)ηGB

)
GHV(−q0c) (8.17a)

F c,E1c =

(
P1c

−∆ϕ1c

)
−
(

ν1ηCHP

(1− ν1)ηCHP

)
GHV(−q1c) (8.17b)
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Figure 8.7: Connected and decoupled network representation of a MES, based on
[17], with EHs as coupling units. Arrows on links and terminal links show defined
direction of flow.

For the decoupled approach, we use different BCs in the electrical network than
in Chapter 6. Instead of the node type sets in Table 6.2, we use the node types in
Table 8.5, for the connected and disconnected MCN. The values used for the BCs are
given in Tables C.23–C.31.

Table 8.5: Node type sets for the gas-electricity-heat MES.

Connected Decoupled

Node Type Specified Type Specified

0g ref. pg ref. pg, q0,1

1g load q1 load q1

2g load q2, q2,1 load q2, q2,1

3g load q3 = 0 load q3 = 0

0e PQV P0, Q0, |V | gen. P0, P0,1, Q0, |V |
1e load P1, Q1 load P1, Q1

2e PQVδ P2, Q2, |V |, δ slack P2, P2,1, Q2, |V |
0h ref. ph, m = 0 slack ph, T s0
1h load T r1,0, ∆ϕ1 load T r1,0, ∆ϕ1

2h load T r2,0, ∆ϕ2 load T r2,0, ∆ϕ2

3h ref. load ph, T s3,0, ∆ϕ3

0c temp. T s0c0h QTϕ Q0c , T
s
0c , ∆ϕ0c , T

r
0c , m0c

1c temp. T s1c1h PQT P1c , Q1c , T
s
1c , T

r
1c , m1c

With the node sets in Table 8.5, using the full formulation in the gas network and
terminal link formulation in the heat network, the system of LF equations for the
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connected MCN (4.11) consists of 33 equations and variables, while the system of LF
equations for the decoupled MCN (8.8) consists of 36 equations and variables. The
node types in the decoupled MCN are such that the BCs of the gas network depend on
the state variables of the electrical and heat networks through the coupling network,
but not the other way around. The state variables of the gas network are then not
part of the IFCs, and for the decoupled LF problem we take

vg = ∅, ve =
(
P2,1 Q0,1 Q2,1

)T
,

ug =
(
q0,1 q2,1

)T
, ue =

(
P0,1

)
,

vh =
(
m0 m3 ∆ϕ0

)T
, vc =

(
−q0c −q1c P0c −∆ϕ1c

)T
,

uh =
(
∆ϕ3

)
, uc =

(
P1c Q0c Q1c m0c m1c ∆ϕ0c

)T
See Appendix C.3 for details on the IFCs.

Solving the load flow problem

We consider the same 14 ways to solve the LF problems (4.11) and (8.8) as in the
previous two examples. In NR, we take a tolerance τ = 10−7, and in Algorithms 8.1,
8.2, and 8.3 we take tolerances τ = 10−6 and τF = 10−7. We use scaling for all
methods, with the base values as given in Table C.18. For the initial guess, we use
the same values as in Table C.21, except for the voltage angles, for which we take
δ0 = 0 rad as initial guess, and δ2 is given as part of the BCs.

This example is essentially an extension of the electricity-heat MES, for which all
14 ways could be used to solve the LF problem. However, for this MES, both basic
and accelerated FP, using (8.9) or (8.10), are unable to find a solution to (8.8). The
FP iterates of the active power and heat power produced by the EHs diverge, until
∆ϕ3 > 0, such that node 3h would act as a sink instead of a source. Since node 3h is
assumed to be a source, the LF model of the heat network is undefined for ∆ϕ3 > 0,
and the FP algorithm is terminated.

With the parameters in Table C.16 for the EH models (8.17), some eigenvalues λk
of the Jacobian of (8.8) are outside of the unit circle, such that ‖J(y)‖ := max

k
(λk) >

1. This means that FP is not guaranteed to converge to a solution of the LF problem
(8.8). The coupling matrices of the EHs can be chosen such that the spectrum of
J(y) falls within the unit circle, such that ‖J(y)‖ ≤ 1, but this means we would solve
the LF problem of a different MES. In conclusion, this MES cannot be solved with
FP for this way of decoupling.

Table 8.6 gives the results for NR applied to (4.11) and applied to (8.8). These
methods converge to a solution, which is close to the reference solution x∗ of LF prob-
lem (4.11) solved without permutation, that is, max(|x∗ − x|/|x∗|) ∼ τ or smaller.
Again, we see that NR is not affected by the order of the variables and equations.

For this MES, FP cannot be used to solve the decoupled LF problem, but NR
can be used. Since NR applied to (8.8) with an approximated J does not require
the detailed network models and data to be shared amongst the subsystems, see
Section 8.3.2, the decoupled approach can still be used to solve the LF problem of
this MES.
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Table 8.6: Solver information of the LF problem of the gas-electricity-heat MES.

# solves (8.1)

Method System J or e # iters gas elec. heat coup.

NR on (4.11)
orig. an. 6

perm. an. 6

NR

(8.9)
an. 3 1 3 3 3

appr. 8 ∗ ∗ ∗ ∗

(8.10)
an. 3 1 3 3 3

appr. 8 ∗ ∗ ∗ ∗

8.6 Final remarks

A decoupling approach is developed to solve the LF problem of an integrated MES
with dedicated SC solvers, and with limited communication between the various sub-
systems. In the decoupling approach, a connected MCN is decoupled into its SC
parts and its coupling part by cutting the dummy links into two terminal links, such
that a general MES can be represented as a disconnected MCN. Then, the interac-
tion between the SC networks and the coupling network is modeled using interface
conditions (IFCs), and the (extended) LF problem for each subnetwork, including
the coupling network, is formulated. Combining the IFCs with these LF subproblems
gives a system of (non)linear equations that models the LF problem for the integrated
MES, and which is an alternative to the system of LF equations using the connected
MCN.

The LF subproblems and IFCs can be combined in any order to form the system
of LF equations, and we consider two different orderings. We use three ways to solve
the system of LF equations for the disconnected MCN: the fixed-point method (FP),
NR, and accelerated FP. The LF problem of the subnetworks needs to be solved for
several (outer) iterations of each of these three methods.

The decoupled approach is used to formulate and solve the LF problem of a gas-
electricity MES, an electricity-heat MES, and a gas-electricity-heat MES. For the first
two examples, FP, NR, and accelerated FP find the solution to the LF problem. For
the third example, FP and accelerated FP diverge, but NR finds the solution to the
LF problem. For all examples, the order of the variables and equations in the system
of LF equations does not affect NR or basic FP. Accelerated FP is affected by the
ordering, and exploiting the structure of subnetworks results in faster convergence.
Both basic and accelerated FP show linear convergence, whereas NR shows quadratic
convergence.

The examples show that the decoupled approach can be used to solve the LF
problem of integrated MESs. However, FP does not always find a solution, and when
it does, it has linear convergence. Moreover, the LF problem of each subnetwork needs
to be solved multiple times during the FP or NR iterations. Therefore, the decoupled
approach is slower than solving the LF problem of the connected MCN. On the other
hand, the decoupled approach allows the use of dedicated solvers for the LF problem of
the SC subnetworks, and the decoupled approach does not require sharing of detailed
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model and network data amongst the various subsystems. Therefore, the decoupled
approach might be preferred to the connected approach in certain situations.

Further research is required to accelerate FP and NR used in the decoupled ap-
proach, and to investigate the possible convergence issues of FP.





CHAPTER 9

Optimization

Optimization problems are concerned with finding a solution that minimizes or max-
imizes some objective function, while satisfying a set of constraints. We consider a
minimization problem with (non)linear equality and inequality constraints:

min
y

f(y) (9.1a)

s.t h (y) = 0 (9.1b)

g (y) ≥ 0 (9.1c)

Here, f : RN → R is the objective function, y ∈ RN is the vector of optimization
variables, h : RN → RMh are the equality constraints, and g : RN → RMg the
inequality constraints. The (in)equality constraints are element wise, that is, (9.1c)
denotes gn (y) ≥ 0 for all n ∈ {1, . . . ,Mg}.

An optimization problem with nonlinear equality or inequality constraints is called
a nonlinearly constrained optimization problem. A vector y that satisfies all con-
straints is called feasible, and the set of all feasible vectors is called the feasible
region. The optimization problem is called infeasible if there is no feasible y.

The goal of the optimization problem is to find a vector y∗ that is feasible and
minimizes the objective function f(y). Such a global minimum y∗ does not always
exist, and when it does, it is not always possible to find y∗ analytically [28]. For
practical problems, numerical techniques are used to find an acceptable, feasible,
approximate solution.

Optimality conditions are used to determine if a vector y is a solution to an
optimization problem, and these conditions form the basis for many numerical solvers.

In this chapter, we first give the first-order and second-order optimality conditions.
Then, we discuss some commonly used optimization methods for unconstrained and
constrained optimization problems. Finally, we introduce elimination of variables,
and discuss the effect on the optimization problem and on the optimization methods.

9.1 Optimality conditions

To state the optimality conditions, we assume that the objective function f and
constraint functions h and g are twice-continuously differentiable. Furthermore, we
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define the Lagrangian function for the constrained optimization problem (9.1) as

L(y, λ, µ) := f(y)− λTh(y)− µTg(y) (9.2)

with λ ∈ RMh and µ ∈ RMg Lagrange multipliers. Its gradient is given by

∇yL(y, λ, µ) = ∇f(y)− λT∇h(y)− µT∇g(y) (9.3)

Here, ∇xf(x) :=
(
∂f
∂x1

. . . ∂f
∂xN

)
denotes the gradient of f to x and

∇xf(x) :=


∂f1
∂x1

. . . ∂f1
∂xN

...
...

∂fM
∂x1

. . . ∂fM
∂xN


denotes the Jacobian of f with respect to x.

Furthermore, we assume that the linear independence constraint qualifications
hold. That is, we assume that the gradients at y∗ of the equality constraints h, and
the gradients at y∗ of the subset of the inequality constraints g that are active, are
linearly independent [28, 29].

9.1.1 First-order conditions

Suppose y∗ is a local solution of the optimization problem (9.1), and assume that the
linear independence constraint qualifications hold. The first-order necessary optimal-
ity conditions are then [29]:

∇yL(y∗, λ∗, µ∗) = 0, (9.4a)

hm(y∗) = 0, for m = 1, . . . , Mh, (9.4b)

gm(y∗) ≥ 0, for m = 1, . . . , Mg, (9.4c)

µ∗
m ≥ 0, for m = 1, . . . , Mg, (9.4d)

µ∗
mgm(y∗) = 0, for m = 1, . . . , Mg (9.4e)

The first condition (9.4a) states that y∗ is a stationary point of the Lagrangian
(9.2) for λ∗ and µ∗. Conditions (9.4b) and (9.4c) ensure feasibility of the solution.
The final conditions (9.4e) are the complementarity conditions. The first-order con-
ditions (9.4) are known as the Karush-Kuhn-Tucker (KKT) conditions, and any local
solution y∗ of the optimization problem (9.1) satisfies these KKT conditions.

9.1.2 Second-order conditions

The first-order conditions are not always enough to determine if a move along a
tangent to a feasible arc decreases or increases the objective function f . Hence, a
second-order necessary condition is used, which is related to the curvature of the
objective function [28].

The tangent p to the feasible arc of y∗ satisfies

∂h

∂y
(y∗)p = 0 (9.5)
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Assuming that the constraint qualifications hold, (9.5) completely characterizes the
tangent p to a feasible arc.

The Hessian matrix of a scalar function f to x is defined as:

∇xxf(x) :=


∂2f

∂x1∂x1
. . . ∂2f

∂xN∂x1

...
...

∂2f
∂x1∂xN

. . . ∂2f
∂xN∂xN


A second-order necessary optimality condition is then; for all p satisfying (9.5), it
must hold that

pT∇yyL(y∗, λ∗, µ∗)p ≥ 0 (9.6)

In other words, (9.6) states that the projected Hessian of the Lagrangian function
must be positive definite.

9.2 Optimization methods

Optimization methods are iterative methods. They start with an initial guess y0 and
produce a sequence of iterates yk until a solution is found within a required accuracy
or the algorithm is terminated.

Almost all methods are descent methods, which require the objective function f
to decrease for each new iterate.

Many optimization methods are based on the KKT and second-order optimality
conditions. Methods for constrained problems often involve solving unconstrained
subproblems. We will briefly discuss methods for unconstrained optimization prob-
lems, before discussing methods for constrained problems. See for instance [28] or
[29] for more details.

9.2.1 Methods for unconstrained problems

Two types of optimization methods for nonlinear unconstrained problems can be
distinguished: line-search methods and trust-region methods. Both types of method
determine the new iterate by taking a step of length α in direction d from the current
iterate:

yk+1 = yk + αkdk

A line-search method first determines a search direction dk for the next step, for
instance using a first-order approximation to f . Then, the step length αk is chosen
such that f is decreased satisfactorily.

A trust-region method first chooses a maximum step length αk, called the trust-
region radius. Then, the method tries to find a search direction dk that decreases
f satisfactorily. If such a search direction cannot be found, the trust-region radius
is reduced, and the method looks for a new search direction. Several trial search
directions might be computed before a suitable one is found.
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9.2.2 Methods for constrained problems

Various methods exist for nonlinearly constrained optimization problems, and there
is no standard categorization of these methods. We consider projected Lagrangian
methods, sequential quadratic programming (SQP) methods, and interior-point (IP)
methods. Many algorithms are a combination of two or more methods.

Projected Lagrangian methods

The (sufficient) optimality conditions imply that the solution y∗ of a nonlinearly
constrained problem (9.1) can be defined as the solution of a linearly constrained
subproblem with an objective function related to the Lagrangian function, and with
appropriate linear constraints [28]. Since the objective function of this subproblem is
based on the Lagrangian, the Lagrange multipliers λ and µ need to be estimated.

The algorithms of projected Lagrangian methods generally involve a sequence
of these subproblems. Various choices for objective functions of the subproblem are
used. Examples are quadratic functions, for instance in SQP methods, or least-squares
functions.

SQP

Sequential quadratic programming methods aim to find an approximate solution to
the original problem (9.1), by solving a sequence of quadratic programming subprob-
lems. The solution of the subproblem is used to determine the new iterate to the
original problem.

SQP methods can be viewed as an application of NR to the KKT conditions.
Consider an optimization problem with nonlinear equality constraints and without
inequality constraints, that is, consider (9.1a)–(9.1b). For this problem, the KKT
conditions (9.4) can be written as a system of nonlinear equations:

F (y, λ) =

(
∇f(y)− λT∇h(y)

h(y)

)
= 0

Applying (5.3), NR updates pky and pkh are determined by solving(
∇2

yyL(y, λ) −∇h(y)
∇h(y) 0

)(
pky
pkh

)
=

(
−∇f(y) + λT∇h(y)

−h(y)

)
= −F (y, λ)

Then, yk and λk are updated as(
yk+1

λk+1

)
=

(
yk

λk

)
+

(
pky
pkh

)
SQP methods can also be seen as a projected Lagrangian methods. The quadratic

subproblem at iteration k is obtained by linearizing the equality and inequality con-
straints (9.1b) and (9.1c):

min
pk

fk +∇fkpk + 1

2
(pk)T∇2

yyLkpk (9.7a)

s.t ∇h(yk)pk + h(yk) = 0 (9.7b)

∇g(yk)pk + g(yk) ≥ 0 (9.7c)
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where fk = f(yk) and Lk = L(yk, λk, µk) are the objective (9.1a) and Lagrangian
(9.2) of the original problem at iteration k.

The subproblem (9.7) is solved for pk, with corresponding Lagrange multipliers
λk+1 and µk+1. The new iterate for y is determined as yk+1 = yk + pk.

Interior-point methods

Interior-point (IP) methods, also called barrier methods, are mainly used for inequal-
ity constrained problems. Slack variables s are added to the inequality constraints
g to turn them into equality constraints. A barrier function is added to f using a
barrier parameter µ > 0. This gives a barrier subproblem for the original problem
(9.1), for a given µ:

min
y, s

f(y)− µ

Mg∑
m=1

ln (sm) (9.8a)

s.t h (y) = 0 (9.8b)

g (y)− s = 0 (9.8c)

s ≥ 0 (9.8d)

A barrier method finds an approximate solution to the original problem (9.1) by
solving the barrier subproblem (9.8) for a sequence of barrier parameters µ converging
to zero.

In early barrier methods, a slightly different barrier function was used, which
prevented iterates from leaving the feasible region. This required a feasible initial
guess y0, after which all iterates yk remained within the feasible region. Hence the
name interior-point methods. Newer IP methods do not require a feasible initial guess
and do not retain strict feasibility.

9.3 Elimination of variables

The size of the optimization space, and the number of equality constraints, can be
reduced by elimination of variables (e.g. [28], [29]).

We divide the N optimization variables y into control variables u ∈ RNu and state
variables x ∈ RNx , such that Nx +Nu = N :

y :=
(
u1 . . . uNu x1 . . . xNx

)T
(9.9)

This distinction turns the general optimization problem (9.1) into

min
x,u

f (x, u) (9.10a)

s.t h (x; u) = 0 (9.10b)

γ (x, u) ≥ 0 (9.10c)

ulb ≤ u ≤ uub (9.10d)

xlb ≤ x ≤ xub (9.10e)
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with ulb and uub the lower and upper bounds for the control variables, and xlb and xub

the lower and upper bounds for the state variables. The inequality constraints (9.1) of
the general optimization problem are divided into (non)linear inequality constraints
γ : RN → RMγ and linear bounds (9.10d) and (9.10e) on u and x respectively.

We eliminate the state variables and the equality constraints, giving a second
formulation of the optimization problem:

min
u

f (x(u), u) (9.11a)

s.t g (x(u), u) ≥ 0 (9.11b)

ulb ≤ u ≤ uub (9.11c)

with g (x(u), u) =

γ (x(u), u)
x(u)− xlb

xub − x(u)

 (9.11d)

The relation x(u) is given implicitly by the equality constraints (9.10b). This elimi-
nation requires the system of equality constraints to be solvable.

Problem formulations (9.10) and (9.11) each have several advantages and disad-
vantages. Problem (9.11) has a smaller optimization space, due to the elimination
of x. However, this also increases the nonlinearity of the inequality constraints and
objective function, and the linear bounds (9.10e) are turned into (non)linear inequal-
ity constraints (9.11b). Moreover, elimination of variables using nonlinear equations
may result in errors ([29] pp. 426–428).

An advantage of (9.11) is that the system of equations (9.10b) is solved separately,
allowing the use of dedicated solvers for this subproblem. These dedicated solvers
might be more efficient at solving system of equality constraints than the optimization
algorithm. However, this system of equations needs to be solved several times during
the optimization algorithm, which might increase the total computation time of the
optimization algorithm for (9.11) compared with formulation (9.10), depending on
the efficiency of the dedicated subsolver.

Another effect of eliminating the equality constraints is that they are satisfied at
each iteration of the optimizer when solving problem (9.11). Depending on the opti-
mization algorithm, equality constraints are not satisfied at every iteration, such that
(9.10b) is not always satisfied when using optimization problem (9.10). Therefore,
problem (9.11) can be preferred to (9.10) if feasibility has to be ensured.

9.4 Direct and adjoint approach

Eliminating the state variables x and the equality constraints h implies that solving
problem (9.11) requires additional steps in the optimization algorithm. Most opti-
mizers use the gradient of the objective function and the Jacobian of the (in)equality
constraints. For problem (9.11), these derivatives can be determined by a direct or an
adjoint approach (e.g. [30] and [31]). The direct approach is also called the forward
approach, and the adjoint approach is also called the backward approach. The gra-
dient of the objective (9.11a) and the Jacobian of the inequality constraints (9.11b)
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to the control variables are given by

df

du
=
∂f

∂x

dx

du
+
∂f

∂u
(9.12a)

dg

du
=

∂g

∂x

dx

du
+

∂g

∂u
(9.12b)

For simplicity, we denote partial derivatives by a subscript, e.g. gu := ∂g
∂u . Fur-

thermore, we define v := dx
du , such that v ∈ RNx × RNu . For the system of equality

constraints (9.10b) it holds that:

dh =
∂h

∂x
dx+

∂h

∂u
du

Since h (x; u) = 0, we can choose dx and du such that dh = 0, giving

hxv = −hu (9.13)

9.4.1 Direct approach

In the direct or forward approach, (9.12) is determined using (9.13) directly. That is,
the gradient and the Jacobian are given by

df

du
= fxv + fu (9.14a)

dg

du
= gxv + gu (9.14b)

where hxv = −hu (9.14c)

Here, v is determined by solving (9.14c). Hence, the direct approach requires solving
Nu linear systems of size Nx ×Nx any time df

du or dg
du is calculated.

9.4.2 Adjoint approach

In the adjoint or backward approach, we introduce λT := fxh
−1
x and µT := gxh

−1
x

to determine (9.12). With these definitions of λ ∈ RNx and µ ∈ RNx × RMγ+2Nx ,
we have fxv = −λThu and gxv = −µThu. The gradient and the Jacobian are then
given by

df

du
= −λThu + fu (9.15a)

dg

du
= −µThu + gu (9.15b)

where hTxλ = fTx (9.15c)

hTxµ = gTx (9.15d)

Here, λ and µ are determined by solving (9.15c) and (9.15d) respectively. Hence, the
adjoint approach requires solving 1 +Mγ + 2Nx linear systems of size Nx × Nx any

time df
du or dg

du is calculated.
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9.4.3 Comparison

The direct approach requires solving (9.14c), which are Nu linear systems of size Nx×
Nx. The adjoint approach requires solving (9.15c) and (9.15d), which are 1+Mγ+2Nx
linear systems of size Nx ×Nx. Since the linear systems in both approaches have the
same size, the adjoint approach might be more efficient than the direct approach if
Nu > 1 +Mγ + 2Nx. In other words, the adjoint approach might be faster if the
number of control variables is large compared to the number of (nonlinear) inequality
constraints. For optimization problems of energy systems, this is generally not the
case.



CHAPTER 10

Optimal flow problems

In an optimal flow (OF) problem, one tries to minimize or maximize an objective func-
tion, while satisfying operational constraints or physical limits of the energy system,
as mentioned in Section 1.3. To ensure that the optimal solution satisfies operational
constraints, the LF equations are used in OF. The way the LF equations are included
in the optimization problem influences the solvability of the optimization problem.
Most optimization problems for MES simplify these equations, or do not consider
network transmission at all (e.g. [18, 6, 7, 32, 9, 33, 34]).

Various formulations of the LF equations exist for modeling energy systems, both
in the SC and in the MC case, see Section 4.2. Moreover, there are multiple ways to
incorporate the LF equations in the optimization problem. Usually, the LF equations
are directly included in the OF problem as equality constraints. Nonlinearities in these
constraints cause issues with convexity and solvability of the optimization problem,
as also noted in [6] and [9]. Hence, the formulation of the LF equations, and the way
they are incorporated in the OF problem, greatly influence the solvability of the OF
problem.

In this chapter, we provide an analysis of the effect of the LF equations on the
solvability of the OF problem for general MESs. We formulate an OF problem for
a general single- or multi-carrier energy system, providing a general optimization
framework.

First, we give the objective function to be minimized. Then, the effect of which
network quantities are chosen as variables and which are considered known is dis-

This chapter is based on the articles:

Anne S. Markensteijn, Johan E. Romate, and Cornelis Vuik. Optimal flow for general multi-
carrier energy systems, including load flow equations. Results in Control and Optimization,
January 2021 [Under review],

Anne S. Markensteijn, Johan E. Romate, and Cornelis Vuik. Optimal flow for general multi-
carrier energy systems, including load flow equations. Technical Report 20-06, Delft University
of Technology, Delft Institute of Applied Mathematics, December 2020.
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cussed. Third, we describe the two ways of including the LF equations, that is, as
equality constraints or as subsystem, in an OF framework. Based on this, two for-
mulations of the general optimization problem for MESs are stated. Advantages and
disadvantages of both formulations are discussed. Then, we give the methods used
for solving the OF problem, and discuss the use of the direct and adjoint approach.
Finally, the two formulations of the OF problem are used to optimize example MESs,
demonstrating some of the theoretical advantages and disadvantages of the formula-
tions of the OF problem in practice.

10.1 Objective function

As the objective, we minimize total generation costs. We model the costs of each
source as a quadratic function of its energy flow. The objective function is the sum
of the costs of the sources:

f(E) =
∑
E∈E

aE + bEE + cEE
2 (10.1)

Here, E is the vector of energy flows of the sources. For instance, for a gas source
with mass flow q we have GHVq ∈ E, and for a gas-fired generator that produces
active power P we have P ∈ E. The parameters aE , bE , and cE specify the cost of
the energy source related to energy flow E.

The sum of quadratic functions is twice-continuously differentiable. Moreover, the
objective function f is convex in E for suitable parameters aE , bE , and cE . Both the
differentiability and convexity have several mathematical advantages (e.g. [28], [29]).

10.2 Variables and bounds

To apply the elimination of variables as described in Section 9.3, the network quanti-
ties of interest are divided into control and (extended) state variables. This division
also has a practical interpretation for energy systems. The choice of variables de-
termines if linear bounds or (non)linear inequality constraints are needed to model
operational limits.

In optimization problems, the derived variables are also used, either in the objec-
tive function or with respect to physical limits of the energy system. Therefore, we
use the extended state variables (4.12), divided into state variables xF and derived
variables xG, in the OF framework.

10.2.1 Control variables

The optimization variables y are divided into control variables u and extended state
variables x as (9.9). By definition, the state variables cannot be control variables.
When a design optimization problem is considered, the control variables can include
design variables such as the diameter of a gas pipe. We consider an OF problem,
which is an operational optimization problem. The control variables are quantities
in the energy system that are controllable in practice. They can include set points,
which are (a subset of) the BCs of the LF problem, or model parameters such as
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transformer tap-ratios or dispatch factors of EHs. Including model parameters as
variables would require derivatives of the objective and constraint functions to these
parameters. Since the model parameters would be part of the control variables u,
which are given for the LF equations, including the model parameters as variables
does not change the nature of the optimization problem and the proposed framework.
Therefore, we assume the model parameters are given, leaving only the BCs of the
LF problem as possible control variables.

Solving the LF problem determines the state variables in the network, for given
BCs. That is, for any u, the nonlinear system (4.13) can be solved for xF and xG,
assuming the LF problem is well-posed. For notational simplicity, we denote the
extended LF problem (4.13) by

h (x; u) :=

(
G (x; u)
F (x; u)

)
= 0 (10.2)

However, not every u results in a physically feasible extended state x.

10.2.2 Bounds

To ensure physical feasibility of the set points u, bounds are imposed on network
quantities. Bounds imposed on variables y are simple linear inequality constraints
(e.g. (9.10d) and (9.10e)) in the optimization problem. Bounds imposed on network
quantities not in y have to be included as (non)linear inequality constraints (9.10c)
that are a function of y. These inequality constraints can be highly nonlinear.

When the energy flows of sources are part of the optimization variables, i.e. when
E ⊆ y, the objective function (10.1) is convex in y. However, when some of the
energy flows in E are derived quantities that are not included in the extended state
x, the nonlinearity of the objective function increases, and it may no longer be convex
in y.

To avoid (highly) nonlinear inequality constraints, and to reduce the nonlinearity
of the objective function, derived variables can be included in the extended state.
On the other hand, including the derived variables in x increases the optimization
space and the number of LF equations in the (extended) LF problem. Depending on
the optimization algorithm, using extended state variables instead of only the regular
state variables can be beneficial.

10.3 Two problem formulations

The optimization problem determines a solution that minimizes the objective func-
tion, while satisfying the LF problem and while staying within the operational limits
of the network. We consider two ways to formulate the OF problem, which we call
formulation I and formulation II. Formulation I includes the LF equations as equality
constraints, while formulation II includes them as subsystem. Formulation I gives an
optimization problem like (9.10), while formulation II applies nonlinear elimination
of variables, resulting in an optimization problem like (9.11). We repeat them here
for convenience.
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10.3.1 Formulation I: load flow as equality constraints

The most straightforward way to satisfy the LF equations during optimization, is to
include them as equality constraints directly and optimize over the combined control
and (extended) state variables (as is done in e.g. [6], [7], and [8]). This gives an
optimization problem like (9.10), such that formulation I for the OF problem is

min
x,u

f (x, u) (10.3a)

s.t h (x; u) = 0 (10.3b)

γ (x, u) ≥ 0 (10.3c)

ulb ≤ u ≤ uub (10.3d)

xlb ≤ x ≤ xub (10.3e)

The objective function (10.3a) is given by (10.1), the equality constraints (10.3b) are
given by the extended system of LF equations (10.2), and the inequality constraints
(10.3c) represent the bounds for any network quantities not included in y.

10.3.2 Formulation II: load flow as subsystem

Another way to formulate the optimization problem is to apply (nonlinear) elimination
of variables and constraints. We eliminate the extended state variables x, using the
extended LF equations (10.2), to get an optimization over the control variables u
only. This gives an optimization problem like (9.11), such that formulation II for the
OF problem is

min
u

f (x(u), u) (10.4a)

s.t ulb ≤ u ≤ uub (10.4b)

g (x(u), u) ≥ 0 (10.4c)

with g (x(u), u) =

γ (x(u), u)
x(u)− xlb

xub − x(u)

 (10.4d)

The relation x(u) is implicitly given by the extended LF problem (10.2). That is,
for any given u, the (extended) state x satisfies the LF equations, and is obtained by
solving x from (10.2).

10.3.3 Comparison

If bounds are only imposed on network quantities that are included in y, then (10.3c) is
not included in optimization problem (10.3), and γ is not included in (10.4). Similarly,
bounds do not have to be imposed on all variables in y. Using nonlinear inequality
constraints γ in (10.3c) or in (10.4c) instead of including derived variables in the
extended state variables is an example of (nonlinear) elimination of variables as well.
This type of elimination is commonly used in optimal power flow problems.

Formulations I and II have several advantages and disadvantages, in addition to the
ones mentioned in Section 9.3. The use of a dedicated solver for (10.2) in formulation
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II is especially interesting when optimizing MESs. A user solving the optimization
problem does not need to have access to the LF model; they only need access to the
output and be able to set the input. For MESs, the operator of each carrier might
have their own LF solver. Moreover, ensuring (physical) feasibility at each iteration by
elimination of variables might avoid solvability issues of the optimization algorithm.
As such, formulation II might be preferred over formulation I.

The same quadratic objective function is used in both problems. If the objec-
tive function depends on x, then it might have some nonlinear dependency on u,
other than quadratic, in problem (10.4). The (in)equality constraints (10.3b) and
(10.3c) are generally nonlinear in y, while (10.3d) and (10.3e) are linear inequality
constraints. If bounds are imposed on variables in y only, such that (10.3c) is not
included, problem (10.3) is an optimization problem with nonlinear equality con-
straints and linear inequality constraints. If (10.3c) is included, problem (10.3) is an
optimization problem with nonlinear equality and nonlinear inequality constraints.
The inequality constraints (10.4c) are generally nonlinear in u, regardless of whether
γ is included or not. Problem (10.4) is an optimization problem with nonlinear in-
equality constraints, but has no equality constraints. Both problems (10.3) and (10.4)
are nonlinearly constrained optimization problems.

Since the two formulations have advantages and disadvantages, we compare the
two formulations using some example MCNs.

10.4 Solving the optimal flow problem

OF problems (10.3) and (10.4) are nonlinear, (in)equality constrained, multivariable
optimization problems. It is generally not possible to analytically determine if the
KKT and second-order optimality conditions are met. Moreover, when the objective
function is concave, or when the (in)equality constraints are nonlinear, which is the
case for most load flow equations, the solution space might be non-convex. Hence, we
use numerical solvers to approximate an optimal solution, see also Section 9.2.

Badly scaled optimization problems cause convergence issues for the optimizer [27].
We use matrix scaling to scale the variables and equations, and scale the objective
function as well. See Section 11.5 for the effect of scaling on the optimizers, and a
comparison with per unit scaling.

10.4.1 Optimizers

To solve problems (10.3) and (10.4) we consider three solvers used for nonlinearly
constrained optimization problems: The ‘trust-constr’ (TC) and SLSQP methods
from SciPy [35], and IPOPT [36].

The TC method is a trust-region IP method for large-scale nonlinear optimization
problems, based on the algorithm developed in [37]. Inequality constraints are handled
by introducing a barrier function. The resulting barrier subproblems are solved using
an adapted version of the Byrd-Omojokun Trust-Region SQP Method ([29] p. 549).
The TC method is a projected Lagrangian method.

The sequential least squares programming (SLSQP) method is based on the algo-
rithm developed in [38]. It is a projected Lagrangian method, where a sequence of
linearly constrained quadratic programming subproblems is created. The Hessian of
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the Lagrangian is factorized, turning the quadratic subproblem into a least-squares
problem. Hence, a sequence of least-squares subproblems is solved. Unlike the TC
method, the SLSQP method does not require the Hessian of the Lagrangian.

IPOPT is a primal-dual interior-point optimization method for large-scale non-
linear optimization problems, using the algorithm developed in [36]. Like the TC
method, inequality constraints are handled by introducing a barrier function. These
barrier subproblems are solved by applying NR to the system of primal-dual equa-
tions. The search directions for the next iterate are determined by linearizing these
primal-dual equations. The step sizes are determined by a backtracking line-search
procedure, which is a variant of a filter method, to ensure global convergence.

10.4.2 Derivatives

All three optimizers use the gradient of the objective function and the Jacobian of
the (in)equality constraints. For formulation II, we can use the direct and adjoint
approach to determine these derivatives, see Section 9.4. We use formulation II.A
and II.B to refer to formulation II with the direct or adjoint approach respectively.

The TC method uses the Hessian of the objective function. For the general ob-
jective function (10.1) the Hessian is a constant diagonal matrix. This is also true for
problem (10.3) in formulation I, where E ∈ y for all E ∈ E, such that

Hnm :=
∂2f

∂yn∂ym
=

{
2cE , yn = ym := E ∈ E

0, otherwise

In formulation II, where x depends (implicitly) on u, the Hessian is no longer constant
if any of the energy flows E in the objective is part of x instead of u. Therefore, we
let TC determine the Hessian numerically for formulation II.

10.4.3 Additional steps for formulation II

Formulation II of the LF problem includes the state variables x and associated LF
equations as subsystem, which requires additional steps in the optimization algorithm.
Whenever one of the extended state variables x(u) is needed while solving problem
(10.4), the extended LF problem (10.2) would need to be solved. Since x(u) might be
used several times per iteration of the optimizer, the system (10.2) might be solved
multiple times per optimizer iteration. To increase efficiency, we store the values x(u)
of the previous iteration. Furthermore, the extended LF problem (10.2) is only solved
to determine a new x(u) if u has changed significantly since the last solve, or if the
LF equations with the current x are not satisfied within a desired tolerance. Suppose
xk and ui are the previous values of the extended state and control variables, and
ui+1 are the current control variables. The extended LF problem (10.2) is only solved
if

||ui+1 − ui||2 > τu (10.5a)

or ||h
(
xk, ui

)
||2 > τh (10.5b)

with τu and τh tolerances. We store ||h (x, u) ||2 any time (10.2) is solved to evaluate
(10.5b) without having to recalculate the LF equations.
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10.5 Comparison of formulations and solvers

Combining all possible ways described in Section 10.3 and Section 10.4 to formulate
and solve the OF problem leads to multiple cases. To compare these various for-
mulations and aspects of the optimization problem, we optimize two different MESs.
We mainly compare the various formulations and aspects based on the efficiency of
the optimizer. That is, first we determine if an optimal solution is found. Then, the
number of iterations and number of function calls to the objective functions required
by the optimizer are used as a measure for efficiency.

We compare formulation I and formulation II, that is, the way that LF is incorpo-
rated into OF, for both MESs. Additionally, for each MES we focus on some of the
formulations and aspects of solving the OF problem. Since scaling greatly improves
the convergence of the optimizers for the OF problem, we only consider the scaled
OF problem.

The first MES is the same system as used in Chapter 6. The coupling of this MES is
modeled in two different ways, giving two MCN representations for the same MES. For
both versions, we use a single formulation of the LF equations. Bounds are imposed on
all variables y or on the control variables u only. Within the optimizers, the inequality
constraints are taken as hard constraints or as soft constraints. With hard constraints,
each iteration of the optimizer must satisfy all inequality constraints. With soft
constraints, iterates are allowed to violate the inequality constraints, but the final
solution must satisfy all constraints. We consider both, since hard constraints might
help keep the iterates feasible. Hence, we use this MES to focus on the inequality
constraints.

The second MES is the same system as used in Section 7.2. It is represented by
one MCN, but we use multiple formulations of the LF equations. We consider two
options in the gas part and two in the heat part. Bounds are imposed on (most of)
the variables y. We look at the effect of imposing bounds on some derived variables,
which might not be included in y, depending on the formulation of the system of LF
equations. Finally, we vary the size of the MCN, as detailed in Section 7.2. Hence,
this MES focuses on the effect of the LF formulation on OF.

10.5.1 Costs of energy sources

The cost parameters aE , bE , and cE in the objective function (10.1) are chosen to
represent the variable operation and maintenance costs of the energy sources. The
focus of this research is on the mathematical formulation of the optimization problem,
and the inclusion of the LF equations within an optimization framework. As such,
the values of the cost parameters aE , bE , and cE are chosen to be realistic, but are
not meant to be accurate values of any specific energy source.

For non-coupling sources or (external) grid connections, we take aE = cE = 0
for all carriers. The operational costs of the coupling components are based on the
produced energy. A CHP produces both electricity P and heat ∆ϕ, but the heat is
‘waste’ from the production of electricity, such that it is considered free. Table 10.1
gives the cost parameters, per energy source and per carrier.
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Table 10.1: Cost parameters in the objective function (10.1), per energy source.

Source Energy E aE [AC/h] bE [AC/(MWh)] cE
[
AC/(MW2 h)

]
ext. grid

gas Eg 0 15 0

elec. P 0 40 0

heat ∆ϕ 0 16 0

CHP
elec. P 0 5 0.05

heat ∆ϕ 0 16 0

GG elec. P 0 2 0.02

GB heat ∆ϕ 0 1 0.01

10.5.2 MES 1: Effect of inequality constraints

The first MES is the same system as used in Chapter 6. We model the energy system
by two different networks, the first using a GG, GB, and a CHP for the coupling, as
shown in Figure 6.1a, and the second using EHs, as shown in Figure 6.1b. See also
Appendix C.3 for more details.

Problem formulations

Both networks have only one external source, connected to node 0g. The electrical
and heat powers are produced by the couplings. The energy vector E of the objective
function (10.1) is

E =
(
−GHVq0,0 P0c0e P2c2e ∆ϕ1c0h

)T
, for network 1

E =
(
−GHVq0,0 P0c0e P1c2e ∆ϕ0c0h

)T
, for network 2

Table 6.1 and Table 6.2 give the BCs for network 1 and network 2 respectively.
We take some of these known variables as control variables in the OF problem:

u =
(
pg2 |V2| ph2 T s2c2h

)T
, for network 1

u =
(
|V2| T s1c2h

)T
, for network 2

The choice for control variables is different for the two networks, since the BCs used
in LF are different.

For the LF problem, we use the full formulation (4.1) in the gas network, and the
terminal link formulation (4.7) in the heat network. The extended state variables for
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network 1 are then:

xG =
(
q0,0
)

xF,g =
(
q01 q02 q32 q13 pg1 pg3

)T
xF,e =

(
δ1 δ2 |V1|

)T
xF,h =

(
m01 m02 m12 m1,0 m2,0 ph1

T s0 T s1 T s2 T r0 T r1 T r2
)T

xF,c =
(
q0g0c q0g1c q2g2c P0c0e P2c2e Q0c0e

Q2c2e m1c0h m2c2h ∆ϕ1c0h ∆ϕ2c2h
)T

and the extended state variables for network 2 are:

xG =
(
q0,0
)

xF,g =
(
q01 q02 q32 q13 pg1 pg2 pg3

)T
xF,e =

(
δ1 δ2 |V1|

)T
xF,h =

(
m01 m02 m12 m1,0 m2,0 ph1

ph2 T s0 T s1 T s2 T r0 T r1 T r2
)T

xF,c =
(
q0g0c q2g1c P0c0e P1c2e Q0c0e

Q1c2e m0c0h m1c2h ∆ϕ0c0h ∆ϕ1c2h
)T

Hence, there are 37 variables for network 1, consisting of 32 state variables xF , 1 de-
rived variable xG, and 4 control variables u, and 36 variables for network 2, consisting
of 33 state variables xF , 1 derived variable xG, and 2 control variables u.

The extended LF problem (10.2) is not solvable (for a physically feasible solution)
for all values of u. The bounds imposed on u are chosen such that the LF problem
is solvable. This requires relatively tight bounds, especially for pg2 and ph2 .

We can impose bounds on u only, or on the extended state variables x as well.
We solve the OF problem in both cases, with bounds on u only, and with bounds on
y. Moreover, we consider hard and soft inequality constraints within the optimizer.

This gives a total of 12 different formulations and solution methods of the OF
problem for both network representations of this MES. That is, we use formulation I
(10.3) for the OF problem, including the LF equations as equality constraints, or we
use formulation II (10.4), eliminating the LF equations. For the latter, we can use
the direct approach II.A or the adjoint approach II.B when solving the optimization
problem. For each of these, we impose bounds on u or on y, and we use soft or hard
bounds within the optimizers. In addition to these 12 options, we use TC, SLSQP,
or IPOPT as optimizer, see Section 10.4.1.

Table 10.2 gives the number and size of the linear systems (9.14c) and (9.15c)–
(9.15d) for formulation II.A and II.B, respectively. Using soft or hard constraints
does not change the system size. For both formulation II.A and II.B, the size of the
linear systems is equal, since hx is square. If bounds are imposed on u only, there are
no (nonlinear) inequality constraints on x(u), such that the OF problem is given by
(10.4a)–(10.4b). In that case, only (9.12a) is needed, such that only (9.15c) needs to
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be solved for formulation II.B. Hence, formulation II.B requires solving fewer linear
systems than formulation II.A when bounds are imposed on u only, while formulation
II.B requires solving significantly more linear systems than formulation II.A when
bounds are imposed on y (i.e. on both u and x).

Table 10.2: Number and size of the linear systems (9.14c) and (9.15c)–(9.15d) for
formulation II.A and II.B respectively, for both networks.

Network 1 Network 2

bounds on OF form. # lin. sys. size lin. sys. # lin. size lin.

u
II.A 4 33×33 2 34×34

II.B 1 33×33 1 34×34

y
II.A 4 33×33 2 34×34

II.B 67 33×33 69 34×34

Results

We set the tolerance for the OF problem, the tolerance τh for the extended LF
problem, and the tolerance τu to 10−6, and use matrix scaling to scale the problem.
The maximum number of iterations for the optimizers is 40, and the maximum number
of iterations for NR to solve the extended LF problem (10.2) within formulation II is
10. The optimizers were unlikely to find a solution if it did not find one within these
40 iterations. For the scaling, we take the base values as given in Table C.19 and we
take fb = 1010 for the objective function.

Table 10.3 and Table 10.4 give the results for network 1 and 2 respectively. The
first columns gives the case number, for ease of reference. A dash (‘-’) indicates the
optimizer is unable to find a solution for that particular case. The columns ‘# iters’
and ‘# f ’ give the number of iterations and number of calls to the objective function
of the optimizer respectively. The last column gives the error of the LF equations
‖F̂ ‖2 for the found optimal solution.

First, we compare the optimizers. For network 1, TC and IPOPT are not able to
find a solution for any of the cases. In Table 10.3, we see that SLSQP finds a solution
for all cases for network 1. For network 2, see Table 10.4, IPOPT finds a solution for
all cases, and TC and SLSQP for all cases that use formulation II.

Since hard constraints might avoid convergence issues due to infeasible iterates,
we consider both soft and hard constraints. Comparing cases 1–3 with 4–6 and cases
7–9 with 10–12 in Table 10.3 and in Table 10.4, we can see that there are no cases for
which any of the optimizers find a solution with hard constraints but not with soft
constraints. Furthermore, we have seen, in various examples, that using appropriate
values for the bounds, and using a reasonable initial guess, are more effective to ensure
feasible iterates than imposing hard constraints. Therefore, we see no advantage to
using hard constraints compared with soft constraints.

Now, we consider imposing bounds on u or y, that is, we compare cases 1–6 with
7–12. For network 1 and formulation I, there is no difference between bounds on u
or y (cf. 1 and 4 with 7 and 10 in Table 10.3). For network 1 and formulation II,
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Table 10.3: Optimizer information of the OF problem for network 1.

# iters # f ‖F̂ ‖2
case bounds constr. OF form. SLSQP SLSQP SLSQP

1

u

soft

I 21 32 4.782 · 10−7

2 II.A 15 38 2.674 · 10−10

3 II.B 15 38 2.674 · 10−10

4

hard

I 21 32 4.782 · 10−7

5 II.A 15 38 2.674 · 10−10

6 II.B 15 38 2.674 · 10−10

7

y

soft

I 21 32 4.782 · 10−7

8 II.A 9 42 6.606 · 10−7

9 II.B 8 42 1.312 · 10−7

10

hard

I 21 32 4.782 · 10−7

11 II.A 9 42 6.606 · 10−7

12 II.B 8 42 1.312 · 10−7

Table 10.4: Optimizer information of the OF problem for network 2.

# iters # f ‖F̂ ‖2
case bounds constr. OF form. TC SLSQP IPOPT TC SLSQP IPOPT TC SLSQP IPOPT

1

u

soft

I - - 15 - - 16 - - 3.744 · 10−9

2 II.A 20 6 10 14 7 11 2.696 · 10−7 8.532 · 10−7 5.605 · 10−7

3 II.B 20 6 10 14 7 11 2.696 · 10−7 8.532 · 10−7 5.605 · 10−7

4

hard

I - - 15 - - 16 - - 4.232 · 10−9

5 II.A 16 6 10 10 7 11 2.723 · 10−7 8.532 · 10−7 5.605 · 10−7

6 II.B 16 6 10 10 7 11 2.723 · 10−7 8.532 · 10−7 5.605 · 10−7

7

y

soft

I 30 - 14 30 - 15 1.944 · 10−8 - 3.817 · 10−8

8 II.A 24 9 9 27 22 10 7.465 · 10−7 4.268 · 10−8 4.163 · 10−8

9 II.B 24 9 9 27 22 10 7.465 · 10−7 4.257 · 10−8 4.163 · 10−8

10

hard

I 26 - 14 26 - 15 1.124 · 10−6 - 3.817 · 10−8

11 II.A 15 9 9 9 22 10 1.455 · 10−7 4.268 · 10−8 4.163 · 10−8

12 II.B 15 9 9 9 22 10 1.455 · 10−7 4.257 · 10−8 4.163 · 10−8

imposing bounds on y reduces the number of iterations (cf. 2, 3, 5, and 6 with 8, 9,
11, and 12 in Table 10.3). For network 2 and formulation I, TC is only able to find a
solution when bounds are imposed on y (cf. 1 and 4 with 7 and 10 in Table 10.4). For
network 2 and formulation II, SLSQP requires fewer iterations with bounds imposed
on u than with bounds imposed on y (cf. 2, 3, 5, and 6 with 8, 9, 11, and 12 in
Table 10.4). The other optimizers seem to be less affected by this in this case. Hence,
if one can choose between imposing bounds on u only or on y, it depends on the
network and the optimizer which is best.

Finally, we consider the inclusion of the LF equations in the OF problem, that
is, we compare formulation I (cases 1, 4, 7, and 10) with formulation II. Figure 10.1
gives the error of the LF equations at every iteration of the optimizer, for the OF
problem of network 1 with soft bounds on y (cases 7–9) using SLSQP, and illustrates
the difference between the two formulations. Figure 10.1 shows that the LF equations
are satisfied at every iteration of the optimizer when using formulation II, while this
is not the case for formulation I, as already mentioned in Section 9.3.

Table 10.4 shows that there are cases where a solution cannot be found using



116 Optimal flow problems Chapter 10

0 2 4 6 8 10 12 14 16 18 20 22

Iteration

10−9

10−7

10−5

10−3

10−1

101

‖F̂
‖ 2

Form. I

Form. II.A

Form. II.B

τ

Figure 10.1: Error of scaled LF equations ‖F̂ ‖2 at every iteration of the optimizer
for network 1 (Figure 6.1a), for the OF problem with soft bounds on y, using SLSQP.

formulation I while it is found using formulation II. However, there are also cases
where both formulation I and II result in a solution. Table 10.3 and Table 10.4 both
show that formulation II requires fewer iterations than formulation I, for all consid-
ered cases. Formulations II.A and II.B show very similar performance. Therefore,
formulation II is more efficient than formulation I.

Comparing the final error of the LF equations for formulation I and II for each case,
given in the final column of both tables, we see that the errors of the LF equation of
the final solution are slightly different. This means that formulation I and formulation
II result in different iterates for the same optimization algorithm. This can also be
seen in Figure 10.1, since the error of the LF equations for formulation I is different
from that of formulation II at each iteration.

Based on this MES, we find that there is no substantial difference between soft
and hard constraints. TC performs worse than SLSQP and IPOPT. If one can choose
between imposing bounds on u only or on y, it depends on the network and the
optimizer which is best. Finally, both formulation I and II can be used for the OF
problem, and formulation II is more efficient than formulation I, in terms of number
of iterations required by the optimizer.

10.5.3 MES 2: Effect of LF formulations

The second MES is the same system as used in Section 7.2, which consists of a
base network, coupling 3-node single-carrier gas, electricity, and heat networks. An
extended network is created by replacing the sink at node 3 of each SCN by streets,
shown in Figure 7.5, giving networks of varying size. See also Appendix C.5 for more
details.

We consider the base network coupled at node 1 with a single EH, which is the
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network shown in Figure 7.4a, and an extended network with 163 nodes per SCN
(n = 10,m = 5, s = 10).

Problem formulations

Nodes 1g, 1e, 2e, and 2h are external single-carrier sources. The EH produces electrical
power and heat power, such that it is a source to the electrical and heat networks.
The energy vector E in the objective function (10.1) is then

E =
(
−GHVq1,0 −P1,0 −P2,0 P1c1e −∆ϕ2,0 ∆ϕ1c1h

)T
where q1,0, P1,0, P2,0, ∆ϕ2,0 < 0 and P1c1e , ∆ϕ1c1h > 0.

We use set 1 of the EH in Table 7.3, with q = 0 for node 2g and T s2,0 and T r3,0
known for the heat load nodes, as BCs of the LF problem for the base network. For
the extended networks, the additional nodes are load or junction nodes, where we
assume T ri,l known for the heat load (sink) nodes. We take some of these known
variables as control variables in OF:

u =
(
|V2| P2 T s2,0 ∆ϕ2,0

)T
We use two formulations of the LF equations in the gas part, and two in the heat

part. In a gas network, we use the nodal formulation (4.3) and the full formulation
(4.1) with (3.4b) for the link equations. In the nodal formulation, the link flows
qk are derived variables, while they are part of the state variables xF in the full
formulation. In the heat network, we use the terminal link formulation (4.7) and the
standard formulation (4.9). In the standard formulation, the terminal link flows mi,l

are derived variables, while they are part of the state variables xF in the terminal
link formulation.

If the link gas flows qk or terminal link mass flows mi,l are derived variables, we
do not include them in xG. The extended state variables are then:

xG,g =
(
q1,0
)

xG,e =
(
P1,0 Q2,0

)T
xF,gn =

(
pg2 pg3

)T
xF,gf =

(
q12 q32 pg2 pg3

)T
xF,e =

(
δ2 δ3 |V3|

)T
xF,hs =

(
m12 m23 ph2 ph3 T s2 T s3 T r1 T r2 T r3

)T
xF,ht =

(
m12 m23 m2,0 m3,0 ph2

ph3 T s2 T s3 T r1 T r2 T r3
)T

xF,c =
(
q1g1c P1c1e Q1c1e m1c1h ∆ϕ1c1h T s1c1h

)T
with xF,gn and xF,gf the gas state variables using the nodal or the full formulation, and

xF,hs and xF,ht the heat state variables using the standard or terminal link formulation.
Again, the extended LF problem (10.2) is not solvable (for a physically feasible

solution) for all values of u. The bounds imposed on u are chosen such that the LF
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problem is solvable. We also impose bounds on the (extended) state variables xG,g,
xG,e, xF,g, xF,e, xF,h, and xF,c. In addition, we consider imposing bounds on the gas
link mass flows qk, electrical link complex power |Sk|2 = P 2

k +Q2
k, and heat terminal

link mass flows mi,l. For the nodal and standard formulation, qk and mi,l are derived
variables, as is |Sk|2. Bounds are imposed through (nonlinear) inequality constraints
(10.3c) or (10.4c). For each gas and electrical link k and each heat terminal link l,
the inequality constraints are:

γgk =

(
qk(pi, pj)− qlbk
qubk − qk(pi, pj)

)
≥ 0 (10.6a)

γek = (|Sk|2)ub − P 2
k −Q2

k ≥ 0 (10.6b)

γhi,l =

(
mi,l(∆ϕi,l, T

s
i,l, T

r
i,l)−mlb

i,l

mub
i,l −mi,l(∆ϕi,l, T

s
i,l, T

r
i,l)

)
≥ 0 (10.6c)

Here, the heat terminal link mass flow mi,l is a function of terminal link heat powers
∆ϕi,l, terminal link supply temperature T si,l, and terminal link return temperature
T ri,l using the heat power equation (3.23).

If the full formulation is used in gas, and the terminal link formulation is used in
heat, qk and mi,l are part of xF. If bounds are then imposed on these variables, they
are included as bounds (10.3e) or (10.4d) instead of using (10.6a) and (10.6c).

We have seen in Section 10.5.2 that there is no difference between using soft
and hard constraints in the optimizers, so we only consider soft constraints for this
network. Furthermore, we do not consider the TC optimizer, since it performs worse
than SLSQP and IPOPT.

This gives a total of 24 formulations and solution methods of the OF problem.
That is, we use formulation I (10.3) for the OF problem, including the LF equations
as equality constraints, or we use formulation II (10.4), eliminating the LF equations.
For the latter, we can use the direct approach II.A or the adjoint approach II.B
when solving the optimization problem. For each of these, we use one of the four
possible formulations of the LF problems, based on the nodal formulation with pipe
flow equations (3.4a) or the full formulation with pipe flow equations (3.4b) in the gas
part, and the standard formulation or the terminal link formulation in the heat part.
Moreover, we impose bounds on the (derived) variables qk, |Sk|2, and mi,l, or we do
not impose these bounds. In addition to these 24 options, we use SLSQP and IPOPT
as optimizers, see Section 10.4.1. Finally, we consider various sizes of the network.

Table 10.5 gives the system size of the OF problem for these 24 formulations, for
the base network. The number of bounds on x ∈ x should be counted double, as they
are lower and upper bounds. The system sizes are different for the various formula-
tions. However, using the adjoint approach, or formulation II.B, always requires more
linear systems to be solved than using the direct approach, or formulation II.A. For
both approaches, the size of the linear systems is equal, since hx is square.

Results

We set the tolerance for the OF problem, the tolerance τh for the extended LF
problem, and the tolerance τu to 10−6, and use matrix scaling to scale the problem.
The maximum number of iterations for the optimizers is 50, and the maximum number
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Table 10.5: Size of u, xG, xF , γ, and the number of x ∈ x on which bounds
are imposed, for the various formulations of the OF problem for the base network.
The last two columns give the number and size of the linear systems (9.14c) and
(9.15c)–(9.15d) for formulation II.A and II.B, respectively.

bounds on qk, # x with # lin. size

case |Sk|2, mi,l form. gas form. heat xG xF u γ bounds OF form. sys. lin. sys.

2

no

full

term. link 3 24 4 0 23
II.A 4 27×27

3 II.B 47 27×27

5
standard 3 22 4 0 23

II.A 4 25×25

6 II.B 47 25×25

8

nodal

term. link 3 22 4 0 23
II.A 4 25×25

9 II.B 47 25×25

11
standard 3 20 4 0 23

II.A 4 23×23

12 II.B 47 23×23

14

yes

full

term. link 3 24 4 2 27
II.A 4 27×27

15 II.B 57 27×27

17
standard 3 22 4 6 25

II.A 4 25×25

18 II.B 57 25×25

20

nodal

term. link 3 22 4 6 25
II.A 4 25×25

21 II.B 57 25×25

23
standard 3 20 4 10 23

II.A 4 23×23

24 II.B 57 23×23

of iterations for NR to solve the extended LF problem (10.2) within formulation II is
20. The optimizers were unlikely to find a solution if it did not find one within these
50 iterations. For the scaling, for both the base network and the extended network,
we take the base values as given in Table C.46 and we take fb = 1 for the objective
function, which means we do not scale the objective function.

Figure 10.2 and Figure 10.3 show the difference in the energy flows of the sources
between a reference LF solution and the optimal solutions. The reference LF solution
is given in Tables C.47–C.51 in Appendix C.5. For the gas input, only the part
of the total gas input into node 1 that is used by the coupling is shown, that is,
only −q1,0 − q3,0 is shown. We can see that energy flows of the optimal solution
are distributed differently over the sources compared with the LF solution. Most
significantly, P1,0 ≈ 0 for the optimal solutions. However, Figure 10.2b shows that the
total active power and heat power of the sources are roughly equal. Since P1,0 ≈ 0, the
total gas input −q1,0 is larger for the optimal solutions, as we can see in Figure 10.2a.
Figure 10.3 shows that the total generation costs of the optimal solutions are lower
than those of the reference LF solution, as expected.

Table 10.6 gives the results for the base network. Again, he first column gives the
case number for ease of reference, and a dash (‘-’) indicates the optimizer did not find
a solution for that particular case.

For the base-case network, SLSQP is able to find a solution for slightly more cases
of the OF problem than IPOPT. When both find a solution, SLSQP converges in
significantly fewer iterations than IPOPT.

Then, we consider the effect of imposing bounds on qk, mi,l, and |Sk|2, that is, we
compare cases 1–12 with cases 13–24. If bounds are imposed (cases 1–12), Table 10.6
shows that an optimal solution is found for more options of the OF problem. The
number of iterations required to find a solution is roughly equal with or without these
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Figure 10.2: Energy of sources E for the base network. The first bar shows a
reference LF solution, the others show OF solutions, without bounds on qk, mi,l, and
|Sk|2, full formulation in gas, terminal link flow formulation in heat, using SLSQP
and matrix scaling.

bounds, except for one formulation of the OF problem. With nodal formulation in
gas and standard formulation in heat, IPOPT requires significantly more iterations
if bounds are imposed than if they are not imposed (cf. cases 10–12 with 22–24), for
all three formulations I, II.A, and II.B.

Comparing the various formulations of the LF equations in Table 10.6, that is,
nodal or full formulation in gas and standard or terminal link formulation in heat, we
can see that the number of iterations required to find a solution is different for the
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Figure 10.3: Generation costs for the base network. The gas input is only the part
that goes towards coupling. The first bar shows a reference LF solution, the others
show OF solutions, without bounds on qk, mi,l, and |Sk|2, full formulation in gas,
terminal link flow formulation in heat, using SLSQP and matrix scaling.

Table 10.6: Optimizer information of the OF problem for the base network.

# iters # f

bounds on qk,

case |Sk|2, mi,l form. gas form. heat OF form. SLSQP IPOPT SLSQP IPOPT

1

no

full

term. link

I 14 41 24 59

2 II.A 15 - 46 -

3 II.B 15 - 46 -

4

standard

I 17 13 25 14

5 II.A 6 - 16 -

6 II.B 6 - 16 -

7

nodal

term. link

I 13 16 23 18

8 II.A - - - -

9 II.B 49 - 50 -

10

standard

I 14 19 17 20

11 II.A 7 10 7 11

12 II.B 7 10 7 11

13

yes

full

term. link

I 12 27 22 33

14 II.A 7 21 7 29

15 II.B 7 21 7 29

16

standard

I 16 36 32 42

17 II.A 7 48 7 117

18 II.B 7 - 7 -

19

nodal

term. link

I 11 29 12 35

20 II.A 7 21 7 29

21 II.B 7 21 7 29

22

standard

I 14 40 17 97

23 II.A 7 18 7 26

24 II.B 7 18 7 26
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various formulations. These differences are minor, expect for one formulation. For
the OF problem without bounds on qk, mi,l, and |Sk|2, nodal formulation in gas, and
terminal link formulation in heat (cases 7–9), a solution is not found with formulation
II. This shows that the formulation of the system of LF equations influences the
solvability of the OF problem and influences the convergence of the optimizers.

Finally, we consider the inclusion of the LF equations in the OF problem, that is,
we compare formulation I (cases 1, 4, 7, 10, 13, 16, 19, and 22) with formulation II.
For this network, there are some formulations of the OF problem where a solution is
found using formulation I but not when using formulation II.A or II.B. However, if all
three formulations I, II.A, and II.B find a solution, formulation II requires significantly
fewer iterations than formulation I.

Table 10.7 gives the results for the network with 163 nodes per SCN. For this
extended network, SLSQP and IPOPT find a solution in the same cases, although
IPOPT requires more iterations than SLSQP.

Table 10.7: Optimizer information of the OF problem for the extended network
(163 nodes per carrier, n = 10,m = 5, s = 10).

# iters # f

bounds on qk,

case |Sk|2, mi,l form. gas form. heat OF form. SLSQP IPOPT SLSQP IPOPT

1

no

full

term. link

I - - - -

2 II.A 5 24 5 40

3 II.B 5 24 5 40

4

standard

I - - - -

5 II.A 3 24 3 40

6 II.B 3 24 3 40

7

nodal

term. link

I - - - -

8 II.A 5 15 5 40

9 II.B 5 15 5 40

10

standard

I - - - -

11 II.A 15 14 15 22

12 II.B 3 14 3 22

13

yes

full

term. link

I - - - -

14 II.A 5 31 5 32

15 II.B 5 32 5 33

16

standard

I - - - -

17 II.A - - - -

18 II.B - - - -

19

nodal

term. link

I - - - -

20 II.A 5 30 5 31

21 II.B 5 28 5 29

22

standard

I - - - -

23 II.A 12 28 14 30

24 II.B 12 28 13 30

As for the base network, we can see in Table 10.7 that the formulation of the LF
problem influences the solvability of the OF problem and influences the convergence
of the optimizers. Most notably, no solution is found for the OF problem with bounds
on qk, mi,l, and |Sk|2, full formulation in gas, and standard formulation in heat (cases
16–18). SLSQP requires more iterations for the OF problem with bounds on qk, mi,l,
and |Sk|2, nodal formulation in gas, and standard formulation in heat (cases 22-24),
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than for the other cases (except case 11, which also uses the nodal formulation in
gas and standard formulation in heat). IPOPT requires fewer iterations for the OF
problem without bounds on qk, mi,l, and |Sk|2 and nodal formulation in gas (cases
7–12), than for the other OF formulations.

Finally, we compare formulations I, II.A, and II.B. No solution is found using
formulation I, for any of the formulations of LF. Furthermore, there are some differ-
ences between formulation II.A and II.B, both for SLSQP and IPOPT. The difference
is most noticeable for the OF problem without bounds on qk, mi,l, and |Sk|2, nodal
formulation in gas, and standard formulation in heat (cases 11 and 12), using SLSQP.
This is illustrated in Figure 10.4, which shows the error of the scaled LF equations
‖F̂ ‖2 at each iteration of the optimizer for these cases. We can see that formulations
II.A and II.B result in different iterates, and a different number of iterates. For the
other cases, these differences are minor. Since formulations II.A and II.B are simply
different methods to calculate the required gradients, see Section 9.4, these differ-
ences are caused by numerical errors. As such, formulations II.A and II.B are not
equivalent.

0 2 4 6 8 10 12

Iteration

10−10
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10−8

10−7

10−6

‖F̂
‖ 2

τ

Form. II.A

Form. II.B

Figure 10.4: Error of scaled LF equations ‖F̂ ‖2 at every iteration of the optimizer
for the extended network (163 nodes per carrier, n = 10,m = 5, s = 10), bounds on
qk, mi,l, and |Sk|2, nodal formulation in gas, and standard formulation in heat (cases
11 and 12), using SLSQP. Comparison of formulation II.A. and formulation II.B.

Based on this MES, we find that formulations II.A and II.B are not equivalent
when solving the OF problem. The formulation of the LF equations influences the
solvability of the OF problem, and the convergence of the optimizers. If a solution is
found for all three formulations I, II.A, and II.B, formulation II requires significantly
fewer iterations than formulation I.
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10.6 Final remarks

The formulation of the LF equations, both the individual equations and the system
of equations, influences the solvability and convergence of the OF problem. The for-
mulation of the system of LF equations determines which variables are state variables
and which are derived variables, which subsequently determines the nonlinearity of
the (in)equality constraints and objective function. Moreover, the formulation of the
system of LF equations is related to the choice of BCs for the LF problem, which
determines the choice of control variables in the OF problem. The best formulation
of the LF equations, and the best choice for the control variables, depends on the
specific problem and network.

Bounds on the control variables are used to keep the iterates (physically) feasible,
by ensuring the extended LF problem is solvable. Hence, choosing appropriate bounds
for the control variables is crucial in formulating a solvable OF problem. Additional
bounds on (extended) state variables and derived variables increase the complexity of
the optimization problem and (can) increase the nonlinearity. Hence, they influence
the solvability of the OF problem and the convergence of the optimizers. Whether
bounds should be imposed depends on the specific problem and energy system.

Including the LF equations as equality constraints or as subsystem both result
in a solvable OF problem. That is, both formulation I and formulation II can be
used to optimize a MES. Formulation II reduces the size of the optimization space
compared with formulation I, but increases the nonlinearity of the objective function
and constraints. In formulation II, the LF equations are solved separately for multiple
iterations of the optimizer. This allows the use of a dedicated separate solver for the
LF problem. Furthermore, it ensures the LF equations are satisfied at each iteration
of the optimizer. However, it might increase CPU time.

For the two example MESs, formulation II requires significantly fewer iterations
than formulation I, if an optimal solution is found for both formulations. Furthermore,
formulations II.A and II.B are not equivalent due to numerical errors. For some OF
problems, II.A and II.B result in different iterates of the optimizers.

The OF problem for a MES can be formulated in various ways, with respect to
choice of state variables, control variables, and BCs, with respect to the formulation
of the LF equations, with respect to including the LF equations in the OF problem,
and with respect to bounds and inequality constraints. Which way is best depends
on the specific network and problem considered.



CHAPTER 11

Scaling

The parameters and the dependent and independent variables in the LF equations can
be several orders of magnitude apart, even within one single-carrier network (SCN).
For instance, q ∼ 1 kg/s whereas p ∼ 105 Pa. These different scales might result
in problems with solving the system of nonlinear LF equations, see Section 5.2. In
MESs, the SCN variables, which have various scales, are combined. This requires a
consistent way to scale the LF equations for MESs.

In SC electricity networks, per unit (p.u.) scaling is generally used (e.g. [3]). In
the per unit system, every variable and parameter is scaled to obtain dimensionless
quantities and equations. In gas and heat networks, a more ad hoc approach to scaling
is used. In [17], the p.u. system is extended to the heat network, for consistency
throughout an example MES. There is no equivalent of the p.u. system for a gas
network.

Another option to scale the system of nonlinear LF equations is by scaling the
equations and variables using scaling matrices, without scaling the equation parame-
ters. Even though this method is a well known scaling method, see Section 5.2, it is
not generally used for LF equations in any of the SCNs or in MCNs.

To investigate the effect of scaling on the system of LF equations, we consider
dimensional analysis. We introduce a p.u. scaling for MESs, by extending the p.u.
scaling of an electricity network to gas and heat. We compare per unit scaling with
matrix scaling, and show that they are equivalent for NR, when using the same base

This chapter is based on the articles:

Anne S. Markensteijn, Johan E. Romate, and Cornelis Vuik. Scaling of the steady-state
load flow equations for multi-carrier energy systems. In Numerical Mathematics and Advanced
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Engineering. Springer, May 2021. ISBN 978-3-030-55874-1,

Anne S. Markensteijn, Johan E. Romate, and Cornelis Vuik. Optimal flow for general multi-
carrier energy systems, including load flow equations. Technical Report 20-06, Delft University
of Technology, Delft Institute of Applied Mathematics, December 2020.
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values and assuming infinite precision. The advantages and disadvantages of both
methods are discussed.

Using two example MESs, we investigate the effect of the two scaling methods on
the convergence of NR for LF problem and on the convergence of optimization algo-
rithms for OF problems. Despite numerical (round-off) errors, both scaling methods
show the same convergence behavior for NR. The optimization algorithms are affected
by the type of scaling.

11.1 Dimensional analysis

The LF equations are a mathematical representation of a physical phenomenon. Phys-
ical quantities are not just numerical values, they also have a dimension and a unit
measure associated with them. For instance, the diameter D of a gas pipe has dimen-
sion ‘length’, and could have a unit measure of 1 cm and a value of 15. Denoting the
length unit measure by l and the value of D by k, we can write D = kl. We can scale
D by changing the unit measure with a scaling factor kl ∈ R, and generally kl > 0,
such that l → kll. Using this new unit measure for D will change the unit measure
and the value (to k/kl), but not the dimension.

Based on the logic as laid out for dimensional analysis in for instance [39] or [40],
quantities can only be combined in limited ways. Quantities can be multiplied, which
multiplies the dimension in the same way. To add two quantities, they must have
the same dimension and the same unit measure. Other functional relations are only
possible if all arguments are dimensionless. For instance, if f(x) = sin (x), then both
f(x) and x must be dimensionless. Using these concepts recursively, a function of
multiple arguments can be constructed. An equation that satisfies these properties is
called complete [39]. A consequence is that the algebraic form of the equation is unit
independent. That is, if the unit measure of any dimension is changed, the algebraic
form of the equation remains the same. However, the value of the function might be
changed, just like the value of some of the quantities is changed. This can be seen as
follows.

Since two (or more) terms can only be added if the terms have the same dimension
and unit measure, we can limit ourselves to functions consisting of only one term.
Furthermore, for dimensionless quantities, or for a dimensionless group consisting of
the power product of some quantities, the changes in unit measures cancel out. Hence,
we only need to consider the change in value of functions that are a power product of
the variables:

f(x1, . . . , xN ) = xa11 · · ·xaNN
We can assume that all xn ∈ {x1, . . . , xN} have a single (primary) dimension. Scaling
each xn by changing the unit measures of the primary dimensions by a factor kn gives

f (x1, . . . , xN ) → f (k1x1, . . . , kNxN ) = (ka11 · · · kaNN ) (xa11 · · ·xaNN )

= (ka11 · · · kaNN ) f (x1, . . . , xN ) (11.1)

such that f is scaled by a power product of the unit measure scaling factors.
An equation describing a physical model does not need to be complete for the

model to be valid. In fact, the commonly used form of the link equation (2.14) or
(2.17) for the power of a transmission line, is not a complete equation, since it contains
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terms sin δij and cos δij . Based on the logic provided above, the nodal voltage angles
δi and δj should be dimensionless. However, they have dimension ‘plane angle’. The
link equation can be turned into a complete equation by using δij/δ0 instead of δij ,
with δ0 a reference angle.

11.2 Types of scaling

Based on dimensional analysis, we consider two ways to scale variables and equations:
per unit scaling and matrix scaling.

11.2.1 Per unit system

The per unit (p.u.) system is commonly used in electricity networks, and extended in
[17] to a heat network. We introduce a more general extension of the p.u. system to
heat and gas networks. In the p.u. system, a quantity x is scaled by a base value:

xp.u. =
xa
xb

(11.2)

Here, xa is the unscaled or actual quantity, usually in S.I. units, xb is a chosen base
value with the same dimension as xa, and xp.u. is the scaled quantity. The scaled
quantity is dimensionless but is given p.u. as unit. Hence, the scaled quantity is also
called the per unit quantity or value.

There are two main differences between the p.u. system and changing the unit
measures. The first is that the base value has a dimension, unlike the scaling factor
of the unit measure. Second, only the unit measure scaling factors of the primary
dimensions are chosen, whereas in the per unit system, the base value for derived
quantities might be chosen. The first point has no consequence for the arguments
outlined in Section 11.1 which result in (11.1). However, the second point can lead to
some difficulties.

Since derived quantities are combinations of other quantities, and applying the
same logic that results in a complete equation, only a limited set of base values can
be specified. The base values for the other quantities then follow from dimensional
analysis. The set of base values that can be specified is not unique, neither are the
resulting base values of the other quantities. However, it is possible to find a set of
base values such that the equation remains a complete equation. For such a set of base
values, the argumentation resulting in (11.1) is still valid. We can now investigate the
effect of the p.u. system on the LF equations.

Suppose we have a (complete) equation of the form F (xa, pa), with xa ∈ RNx all
the variables, and pa ∈ RNp all other quantities, dimensionless or not, appearing in
the algebraic form of F . We take a set of base values b1, . . . , bNb

, with N b ≤ Nx+Np,
and scale each xa ∈ xa and pa ∈ pa according to (11.2), with xb and pb power products
of the base values b1, · · · , bNb

. If the base values are chosen such that the equation F
remains a complete equation after scaling, the equation is scaled according to:

F (xa, pa) =
[
bα1
1 · · · bαNb

Nb

]
F (xp.u., pp.u.)

Usually, only the variables are explicitly denoted as arguments for the function, such
that F (xa, pa) is written as F (xa) and F (xp.u., pp.u.) as F (xp.u.). For the scaled
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equation we then find

F (xa) = [bα1
1 · · · bαNb

Nb
]F (xp.u., pp.u.) := F bF (xp.u.) (11.3)

where F b := [bα1
1 · · · bαNb

Nb
] is called the base value of the function F.

Equation (11.3) means that, for a suitable set of base values, the same expression
of the LF equations can be used for both the unscaled and p.u. quantities, and all
independent variables and all LF equations can be scaled to similar orders of magni-
tude.

For an electricity network, the base values of the voltage amplitude and the (com-
plex) power are chosen. The base values of the other variables and of the parameters
of the LF equations (e.g. admittance) are determined by the requirement that the LF
equations remain complete equations, using dimensional analysis (e.g. [3]).

The p.u. system is then easily extended to the gas and heat SCN, and to a MES.
We choose the base values for pressure and flow in the gas network, and for pressure,
mass flow, temperature, and power in the heat network. The base values of the other
variables and parameters are determined based on dimensional analysis. For the
couplings in a MES, we choose the base values of the power of every carrier involved
in the coupling, and again determine the base values of the other quantities according
to dimensional analysis. See Appendix D.1 for details on the base values.

The advantage of scaling derived quantities instead of scaling primary dimensions
becomes clear when considering transformers in an electrical network, or compressors
in a gas network. These components change the voltage or pressure level, and their
link equation (e.g. (3.5) for a compressor) has the general form F (x1, x2, r) = x1 −
rx2 = 0, with x1 and x2 the voltages or pressures, and r some ratio. Since x1 and
x2 have the same dimension, r must be dimensionless. Hence, changing the unit
measures will scale the values of x1 and x2 with the same factor, and will leave r
unscaled. In practice, x1 and x2 might be orders of magnitude apart when using the
same unit measure. In the p.u. system, it is possible to use a different base value for
x1 and x2, such that both x1 ∼ 1 p.u. and x2 ∼ 1 p.u.. Note that the scaled x1 and x2
now have different unit measures, despite both of their units being denoted by p.u..
Due to the requirement for addition of dimensional quantities, r needs to scaled with
rb = (x1)b / (x2)b.

11.2.2 Matrix scaling

Another option is to scale the independent variables and the equations only, using
transformation matrices (see Section 5.2). Taking non-singular matrices Tx, TF ∈
RN×N , the scaled variables x̂ and scaled equations F̂ are given by:

x̂ = Txx (11.4a)

F̂ (x̂) = TFF
(
T−1
x x̂

)
= TFF (x) (11.4b)

Unlike the p.u. scaling, scaling with matrices also requires base values to scale the
equations, instead of only base values for the variables. On the other hand, p.u. scaling
requires base values for all parameters in every equation. Furthermore, matrix scaling
is generally easier to implement than p.u. scaling.
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11.2.3 Equivalence of per unit and matrix scaling

If we take Tx as a diagonal matrix with (Tx)nn = (xb)n, where (xb)n is the base value
of xn ∈ x used in p.u. scaling, it follows from (11.3) that TF is a diagonal matrix with
(TF )nn = (F b)n, where (F b)n is the base value of Fn ∈ F found in p.u. scaling, see
Appendix D.2 for details. Therefore, in infinite precision, the p.u. scaling and matrix
scaling will result in the same scaled system of equations F̂ and the same scaled
variables x̂. Hence, the p.u. system and matrix scaling are said to be equivalent.

Matrix scaling does not affect the NR iterations, see Section 5.2. Since p.u. scaling
and matrix scaling are equivalent, p.u. does not affect the NR iterations either.

11.3 Finite precision

The analyses in Section 5.2 and Section 11.2.3 only hold in infinite precision. In finite
precision, p.u. and matrix scaling might not be equivalent, such that an NR step
might be affected.

In the p.u. system, the scaled variables and parameters are substituted into (4.11)
to obtain the scaled system of equations, denoted by F p.u.. With matrix scaling, the
unscaled variables and parameters are used in (4.11). Then, the scaled system of

equations F̂ is given by (11.4b). Due to round-off errors, generally F p.u. 6= F̂ , even

though F p.u. and F̂ will be close. Similarly, Jp.u. 6= Ĵ , such that for the NR update

we have ŝk 6= skp.u. 6= Txs
k.

11.4 Scaling in steady-state load flow problems

We model two small MESs to investigate the effect of finite precision on NR for the
two different scaling options. The first MES is similar to the one in Section 7.1, but
some of the network elements are modeled differently. The second is the same MES
as used in Chapter 6.

11.4.1 Networks and models

The first MES we consider is similar to the one used in Section 7.1, but we only
consider the MCN coupled with a GB and a CHP, giving the network in Figure 7.1a.

For the gas network and the electrical network we use the same models as in
Section 7.1, but we use different models in the hydraulic part of the heat network, and
for the coupling units. The parameter values used in the equations are summarized
in Tables C.32–C.34 in Appendix C.4.

In the heat network, all links represent pipes. For the hydraulic model, we use the
steady-state flow equation (2.20), with the pipe constant (2.22), pressure drop (2.21),
and Pole’s friction factor (2.5). For the thermal pipe model, we use (2.28).

Node 0c represents a GB and node 1c a CHP, which we model using (2.33) and
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(2.36) respectively, such that the nodal coupling equations (3.26) are

F c,E0c = ∆ϕ0c0h − ηGBGHVq2g0c (11.5a)

F c,E1c = GHVq2g1c −
P 1c1e

ηgeCHP

− ∆ϕ1c0h

ηghCHP

(11.5b)

To form the system of LF equations, we use node set 1 from Table 7.1 for the BCs,
and we use the full formulation (4.1) in the gas part, and the standard formulation
(4.9) in the heat part, with hydraulic link equations (3.4b). The values of the BCs
are given in Tables C.37–C.41.

The second MES is the same as the one used in Chapter 6, but we only consider
network 1 and network 2, shown in Figure 6.1a and Figure 6.1b respectively.

In total, we consider three MCNs.

11.4.2 Solving the load flow problem

The systems of nonlinear equations (4.11) for the three networks are solved using the
per unit system and using matrix scaling. For the former, the resulting scaled systems
F p.u. are solved using unscaled NR, see Algorithm 5.1, whereas for the latter scaled
NR is applied, see Algorithm 5.2.

For comparison, we also solve the unscaled system for the first MES using NR.
To compare the unscaled error (5.4) at each NR iteration with the error of NR for
the scaled systems, we calculate the scaled error of the unscaled NR iteration by
ẽk = ‖TFF (xk)‖2. Note that ẽk is different from the error êk of scaled NR (5.6),
since scaled NR uses the scaled update ŝk instead of sk.

For both algorithms, we set the tolerance to τ = 10−6. As base values for the first
MES, we take the values given in Table C.36, and for the second MES we take the
values given in Table C.17.

Table 11.1: Errors of NR using scaling, for the first MES, with ẽk = ‖TFF k‖2,
êk = ‖F̂ k‖2, and ekp.u. = ‖F k

p.u.‖2.

k ẽk êk ekp.u. |ẽk − êk|/|ẽk| |ẽk − ekp.u.|/|ẽk|
0 1.0310 · 106 1.0310 · 106 1.0310 · 106 0 0

1 1.3081 · 103 1.3081 · 103 1.3081 · 103 2.6421 · 10−14 1.0951 · 10−14

2 5.7417 · 10−1 5.7417 · 10−1 5.7417 · 10−1 1.5071 · 10−12 9.6527 · 10−13

3 7.0379 · 10−4 7.0379 · 10−4 7.0379 · 10−4 6.5244 · 10−10 7.7472 · 10−10

4 3.2883 · 10−9 3.2890 · 10−9 3.2886 · 10−9 1.8566 · 10−4 7.4581 · 10−5

5 6.6172 · 10−11 - - - -

Table 11.1 and Table 11.2 give the errors of NR for the first and second MES,
respectively. We can see that the NR errors for per unit scaling and matrix scaling
are unequal, but close, to each other and, for the first MES, to the error of unscaled
NR. Hence, scaling affects NR in finite precision.

In these examples, this effect does not result in a significant difference between
the solutions to the LF problem. This shows that scaling by matrix multiplication is
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indeed equivalent to scaling using the per unit system, when the same base values are
used, and the parameters in the LF equations are scaled accordingly for the per unit
system.

Table 11.2: Errors of NR using scaling, for the second MES, with êk = ‖F̂ k‖2 and
ekp.u. = ‖F k

p.u.‖2.

Network 1 Network 2

k êk ekp.u. |êk − ekp.u.|/|ê
k| êk ekp.u. |êk − ekp.u.|/|ê

k|
0 2.1756 · 103 2.1756 · 103 2.0903 · 10−16 3.1521 · 103 3.1521 · 103 4.3280 · 10−16

1 9.2049 · 102 9.2049 · 102 4.9403 · 10−16 6.8240 · 102 6.8240 · 102 3.3320 · 10−16

2 1.6054 · 102 1.6054 · 102 5.3111 · 10−16 5.3596 · 101 5.3596 · 101 3.1818 · 10−15

3 2.4988 · 10−1 2.4988 · 10−1 1.5817 · 10−13 5.4506 · 10−1 5.4506 · 10−1 5.6319 · 10−13

4 5.9439 · 10−4 5.9439 · 10−4 3.0217 · 10−10 5.0576 · 10−5 5.0576 · 10−5 6.8517 · 10−9

5 5.9071 · 10−7 5.9071 · 10−7 2.0139 · 10−7 1.6610 · 10−8 1.6610 · 10−8 7.4091 · 10−6

11.5 Scaling in optimal flow problems

Scaling affects the iterates of an optimizer, unlike the iterates of NR, and is often
required for an optimization method to converge [27]. For instance, scaling changes
the steepest-descent direction. In finite precision, p.u. scaling and matrix scaling are
not equivalent due to round-off errors. Therefore, the type of scaling can influence
the iterates and convergence of the optimization algorithm.

To investigate the effect of scaling on optimization, we consider the same MES
as in Section 10.5.3 (see also Appendix C.5 for details). We only consider the base
case network, consisting of 3 nodes per SCN. We compare matrix scaling with per
unit scaling for the 24 formulations and solution methods of the OF problem, using
SLSQP and IPOPT as optimizers.

We set the tolerance for the OF problem, for the extended LF problem τh, and
τu to 10−6. The maximum number of iterations for the optimizers is 50, and the
maximum number of iterations for NR to solve the extended LF problem (10.2) within
formulation II is 20. For both matrix scaling and p.u. scaling, we take the base values
as used in Section 10.5.3, which are also given in Table C.46.

Table 11.3 gives the results for the base network using p.u. scaling, where a dash
(‘-’) indicates the optimizer did not find a solution for that particular case.

We compare Table 11.3 with Table 10.6 to look at the effect of scaling. There are
minor differences between matrix scaling and p.u. scaling. With matrix scaling (Ta-
ble 10.6), SLSQP with formulation II.B finds a solution for the OF problem without
bounds on qk, mi,l, and |Sk|2, nodal formulation in gas, and terminal link formulation
in heat (case 9), while no solution is found with per unit scaling (Table 11.3) in that
case. On the other hand, with p.u. scaling, IPOPT with II.B finds a solution for the
OF problem with bounds on qk, mi,l, and |Sk|2, full formulation in gas, and standard
formulation in heat (case 18), while no solution is found with matrix scaling in that
case. Furthermore, there is some difference in the number of iterations when a solu-
tion is found with both types of scaling. Compare, for instance, SLSQP with I for
the OF problem without bounds on qk, mi,l, and |Sk|2, full formulation in gas, and
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Table 11.3: Optimizer information of the OF problem for the base network, using
p.u. scaling.

# iters # f

bounds on qk,

case |Sk|2, mi,l form. gas form. heat OF form. SLSQP IPOPT SLSQP IPOPT

1

no

full

term. link

I 12 41 22 59

2 II.A 15 - 46 -

3 II.B 15 - 46 -

4

standard

I 16 13 32 14

5 II.A 6 - 16 -

6 II.B 6 - 16 -

7

nodal

term. link

I 13 16 23 18

8 II.A - - - -

9 II.B - - - -

10

standard

I 16 19 31 20

11 II.A 7 10 7 11

12 II.B 7 10 7 11

13

yes

full

term. link

I 12 27 13 33

14 II.A 7 21 7 29

15 II.B 7 21 7 29

16

standard

I 16 36 32 42

17 II.A 7 20 7 28

18 II.B 7 20 7 28

19

nodal

term. link

I 13 29 23 35

20 II.A 7 21 7 29

21 II.B 7 21 7 29

22

standard

I 14 33 17 91

23 II.A 7 18 7 26

24 II.B 7 18 7 26

terminal link flow formulation in heat (case 1), or SLSQP with I for the OF problem
with bounds on qk, mi,l, and |Sk|2, nodal formulation in gas, and terminal link flow
formulation in heat (case 19).

Finally, the solutions found with matrix scaling are slightly different from the
ones found with p.u. scaling. This is most noticeable for the OF problem of the base
network with bounds on qk, mi,l, and |Sk|2, nodal formulation in gas, and terminal
link flow formulation in heat, using SLSQP and formulation I (case 19). With matrix
scaling, SLSQP requires 11 iterations and 12 function evaluations, whereas with p.u.
scaling SLSQP requires 13 iterations and 23 function evaluations. Figure 11.1 shows
the error of the scaled LF equations ‖F̂ ‖2 or ‖F p.u.‖2 at each iteration of the optimizer
for this case. We can see that the iterates with matrix scaling and p.u. scaling are not
the same, even though the same base values are used. We have seen similar results
for the other cases of the base network, and for the networks with larger size. In
many of cases where matrix scaling and p.u. scaling resulted in the same of number
of iterations of the optimizers, the iterates themselves where still different.

We have seen similar results for MES 1, used in Section 10.5.2, and for the extended
network of this MES. Therefore, matrix scaling and p.u. scaling are not equivalent if
solving the OF problem.
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Figure 11.1: Error of scaled LF equations ‖F̂ ‖2 or ‖F p.u.‖2 at every iteration of
the optimizer, using matrix scaling and p.u. scaling, for case 19.





CHAPTER 12

Conclusions and recommendations

Important tools for the design and operation of energy systems are steady-state simu-
lation and optimization. Steady-state simulation, solving the load flow (LF) problem,
is concerned with determining the flow of energy carriers through the system and the
values of other quantities, such as voltages and pressures, throughout the system for
given demands. In operational optimization, solving the optimal flow (OF) problem,
the distribution of generation over the various sources, or the set points of controllable
elements, are determined such that some objective is optimized and such that the sys-
tem is operated within physical limits. LF and OF problems for single-carriers (SCs)
systems have been widely studied, but have only been proposed recently for multi-
carrier energy systems (MESs). In this chapter, we give conclusions on and some
recommendations for steady-state simulation and optimization of general MESs.

12.1 Conclusions

In this thesis, we developed a graph-based model framework for steady-state LF
analysis of general MESs, consisting of gas, electricity, and heat. The framework is
based on connecting the single-carrier networks (SCNs) to heterogeneous coupling
nodes, using homogeneous dummy links, to form one connected multi-carrier network
(MCN). Load flow equations are associated with each network element, including the
coupling nodes. A coupling node allows for bidirectional flow, and can represent a
variety of couplings, such as a single converter component or an energy hub. This
network representation makes it possible to describe integrated energy systems in a
very effective way.

To formulate the LF problem of a MES, the models of all network elements of the
connected MCN are combined with boundary conditions (BCs) to form one integrated
system of nonlinear equations. If the coupling energies are known, the SCNs would
effectively be decoupled. If they are unknown, additional BCs in the single-carrier
part of the network are required, leading to new node types. The node types and
location of the coupling nodes in the network must be carefully chosen. Certain
combinations of node types, or graph topologies, can result in systems of equations
that are not (uniquely) solvable.

We showed that our proposed model framework can be used to formulate and
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solve the steady-state LF for general MESs. Moreover, our framework can be used
with different components and models, both in the SCNs and for the coupling units.
Therefore, our framework includes and extends the currently available LF models for
MESs.

As an alternative to solving the integrated system of equations of a connected
MCN, we also formulated a decoupled approach for the same problem. In the de-
coupled approach, a connected MCN is split into its SC parts and its coupling part,
such that a general MES is represented as a disconnected MCN. The interaction
between the SC networks and the coupling network is modeled using interface con-
ditions (IFCs), and the LF problem for each subnetwork, including the coupling net-
work, is formulated. Combining the IFCs with these LF subproblems gives a system
of (non)linear equations that models the LF problem for the integrated MES.

We showed that the decoupled approach can be used to solve the LF problem of
integrated MESs. However, using the decoupled approach to perform LF analysis is
slower than solving the LF problem of the connected MCN. On the other hand, the
decoupled approach allows the use of dedicated solvers for the LF problem of the SC
subnetworks, and the decoupled approach does not require sharing of detailed model
and network data amongst the various subsystems.

We provided an analysis of the effect of the LF equations on the solvability of the
OF problem for general MESs, and we provided a optimization framework for general
single- and multi-carrier energy systems. The formulation of the LF equations, both
the individual equations and the system of equations, influences the solvability and
convergence of the OF problem. The formulation of the system of LF equations
determines which variables are state variables and which are derived variables. This
subsequently determines the nonlinearity of the (in)equality constraints and objective
function. Moreover, the formulation of the system of LF equations is related to the
choice of BCs for the LF problem, which determines the choice of control variables in
the OF problem. The best formulation of the LF equations, and the best choice for
the control variables, depends on the specific problem and network.

The LF equations can be included in the OF problem as equality constraints or as
subsystem, and both result in a solvable OF problem. The latter reduces the size of
the optimization space compared with the former, but increases the nonlinearity of the
objective function and constraints. When the LF equations are included as subsystem,
the LF equations are solved separately for multiple iterations of the optimizer. This
allows the use of a dedicated separate solver for the LF problem. Furthermore, it
ensures the LF equations are satisfied at each iteration of the optimizer. However, it
might increase CPU time.

Scaling is often required for solution methods to solve the LF problem, and espe-
cially for optimization methods to solve the OF problem. We considered two types
of scaling to scale the equations and variables: per unit (p.u.) scaling and matrix
scaling. In this thesis, we introduced a p.u. scaling for the LF equations of MESs, by
extending the p.u. scaling of an electricity network to gas and heat. We showed that
base values can be chosen such that p.u. scaling is equivalent to matrix scaling for
the LF problem, in infinite precision. The Newton-Raphson method (NR) is used to
solve the (scaled) system of nonlinear LF equations. In finite precision, both scaling
methods show the same convergence behavior for NR in the considered examples,
despite numerical (round-off) errors.
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Scaling does affect the iterates of an optimizer. In finite precision, p.u. scaling
and matrix scaling show different iterates for some examples, due to round-off errors.
These examples show that the type of scaling can influence the iterates and conver-
gence of the optimization algorithm. Therefore, p.u. scaling and matrix scaling are
not equivalent when solving the OF problem.

Summarizing, we developed a graph-based model framework for steady-state LF
analysis of general MESs, consisting of gas, electricity, and heat, which includes and
extends the currently available LF models for MESs. As an alternative to this frame-
work, a decoupled approach can be used to solve the LF problem of an integrated
MES. Furthermore, we provided a framework for operational optimization of single-
or multi-carrier energy systems, which includes the detailed LF equations. The for-
mulation of the system of LF equations, based on the coupling components, network
topology, models for the individual network elements, and choice of BCs, influences
the solvability of the LF and OF problems and influences the convergence of the
solution methods.

12.2 Recommendations

In this thesis, we focused on steady-state LF analysis and operational optimization
of MESs consisting of gas, electricity, and heat. This section provides possible topics
for future research.

We have applied our steady-state LF framework to small MESs, where each cou-
pling node represented coupling components which physically did not allow bidirec-
tional flow. Several other example networks and extensions or adaptations to this
framework can be considered. A first option for such an example network could be
one with coupling components that do allow bidirectional flow, as the coupling node
concept, in combination with the dummy links, allows for such components. More-
over, the coupling node could be used to represent a complete heterogeneous network
as single node, which could lead to a hierarchical approach. Furthermore, the frame-
work itself is generic, and could be extended to include other energy carriers, such
as cooling. Finally, a steady-state approach might not be accurate enough for short-
term operational purposes, especially for heating systems. Moreover, storage, which
is essential in exploiting the full potential of MES, can only be modeled accurately if
time is taken into account. Therefore, transient models might be considered for any
of the SC systems and for the MES.

Our systematic approach to the graph representation of MESs, and corresponding
formulation of the system of LF equations, provides insight into which coupling nodes
and node types lead to a system that is uniquely solvable. However, this is still an
open problem, and further research is required to determine definitive guidelines on
which combinations of node types, or graph topologies, result in a well-posed LF
problem, both for the integrated and the decoupled approach.

We have looked at the convergence of solution methods for steady-state LF prob-
lems and for OF problems, using several small MESs. Larger networks should be
considered to see how these methods scale with the size of the network, and if the
qualitative results also hold for larger networks. Furthermore, the decoupled ap-
proach is slow, even for small networks. Further research is required to accelerate the
fixed-point method (FP) and NR used in the decoupled approach.
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Finally, in the OF problems, we only considered the system of LF equations based
on a connected MCN. Another option is to extend the decoupled approach for LF
problems to OF problem, for instance by including the system of LF equations based
on a disconnected MCN in the OF problem.
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APPENDIX A

The effect of transforming the system of equations and
variables on the Newton-Raphson method

Scaling or permuting the system of equations F or the variables x is called a trans-
formation. In infinite precision, the Newton-Raphson method (NR) is not affected
by a transformation of F or of x. We repeat the proof by Dennis and Schnabel
[27, pp. 155–159] when only x is transformed, and show it also holds when F is
transformed.

To solve the system F (x) = 0, the iteration scheme of NR in multiple dimensions,
without transformations, is given by:

J
(
xk
)
sk = −F

(
xk
)

(A.1a)

xk+1 = xk + sk (A.1b)

with x ∈ RN the variables and F (x) ∈ RN the system of nonlinear equations.
Let Tx, TF ∈ RN×N be nonsingular matrices, called transformation matrices. We
define the transformed variables as x̂ := Txx and the transformed equations as F̂ :=
TFF (x). The iteration scheme (A.1) is adjusted to

Ĵ
(
xk
)
ŝk = −F̂

(
xk
)

(A.2a)

x̂k+1 = x̂k + ŝk (A.2b)

with the Jacobian matrix defined as

Ĵ(x) :=
∂F̂

∂x̂
(A.3)

Since F (x) = F
(
T−1
x x̂

)
, we find that

∂Fn
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∂Fn
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+ · · ·+ ∂Fn
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(
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This holds for all Fn ∈ F and x̂m ∈ x̂, such that:
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Using (A.4), the transformed Jacobian (A.3) is given by:

Ĵ(x) :=
∂F̂

∂x̂
= TF

∂F

∂x̂

= TF
∂F

∂x
T−1
x

= TFJ(x)T
−1
x (A.5)

with ŝk the update of NR at iteration k, for the transformed system of equations. If
we substitute (A.5) in (A.2a), and using (A.1a), we find:

Ĵ(xk)ŝk = −F̂ (xk)

ŝk = −Ĵ(xk)−1F̂ (xk) = −
[
TFJ(x

k)T−1
x

]−1
TFF (xk)

= −TxJ(xk)−1T−1
F TFF (xk) = −TxJ(xk)−1F (xk)

= Txs
k

Using this transformed NR update ŝk in (A.2b) gives a transformed new iterate x̂k+1

for NR. Transforming back, we get

xk+1 = T−1
x x̂k+1 = T−1

x (x̂k + ŝk)

= T−1
x x̂k + T−1

x ŝk

= xk + sk

for the original new iterate. This is equal to the new iterate computed by NR (A.1b).
Assuming xk = T−1

x x̂k for some iteration k, this means that NR is unaffected by the
transformation of the system of equations F or of the variables x, in infinite precision.
Hence, if the same initial iterate x0 is used for both the original and the transformed
system, NR will give the same iterates.



APPENDIX B

Jacobian matrices

NR uses the Jacobian matrices of the LF equations to solve the steady-state LF
problem for energy systems. This chapter gives details on the computation of the
various Jacobian matrices.

B.1 Jacobians for single-carrier parts of multi-carrier
networks

This section gives the Jacobian matrices for the SC gas, electricity, and heat networks,
and discusses possible problems with certain initial guesses.

B.1.1 Gas

For the gas part, using the full formulation (4.1), the Jacobian is given by

Jgg =

(
Ag′ 0
∂FL

∂q
∂FL

∂p

)
(B.1)

The submatrix ∂FL

∂q is a diagonal matrix with entries ∂F k

∂qk
for each link k with link

equation (3.3). This derivative is zero for a link representing a compressor. The

submatrix ∂FL

∂p can be calculated as

∂FL

∂p
=

∂FL

∂∆p

∂∆p

∂p
(B.2)

with ∂FL

∂∆p a diagonal matrix with entries ∂F k

∂∆pk
for each link k with link equation (3.3).

For the gas part, using the nodal formulation (4.3), the Jacobian is given by

Jgg = Ag′
∂q

∂p
= Ag′

∂q

∂∆p

∂∆p

∂p
(B.3)

with ∂q
∂∆p a diagonal matrix with entries ∂qk

∂∆pk
for each link k, where qk(∆pk) is

obtained from the link equation (3.3), see for instance (B.5).
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If link k represents a pipe, we can use (3.4a) or (3.4b) as the link equation. The
partial derivatives of (3.4a), required for the Jacobian, are given by

∂F
q(∆p)
k

∂qk
= 1 +

1

2
Cgksign (∆pk) |∆pk|

1
2 f

− 3
2

k

dfk
dqk

(B.4a)

∂F
q(∆p)
k

∂∆pk
= −1

2
Cgkf

− 1
2

k |∆pk|−
1
2 (B.4b)

Note that
∂F

q(∆p)
k

∂qk
= 1 if fk is independent of qk. In the nodal formulation, (3.4a) is

rewritten to obtain an expression for the link flow qk:

qk = Cgksign (∆pk) f
− 1

2

k |∆pk|
1
2 (B.5)

which is an implicit equation if fk is a function of qk, such that

∂q(∆p)k
∂∆pk

=
1

2
Cgkf

− 1
2

k |∆pk|−
1
2 (B.6)

If pi = pj for any link k from node i to node j, the pressure drop ∆pk = 0 for
that link. This means that qk = 0 if (B.5) is used, and that (B.4b) and (B.6) are
undefined.

Therefore, taking a flat initial guess for p results in undefined Jacobian matrices
(B.1) and (B.3), for the full formulation with (3.4a) for the link equations and for the
nodal formulation, respectively.

The partial derivatives of (3.4b), required for the Jacobian, are given by

∂F
∆p(q)
k

∂qk
= −2(Cgk)

−2|qk|(fk +
1

2
qk

dfk
dqk

) (B.7a)

∂F
∆p(q)
k

∂∆pk
= 1 (B.7b)

If qk = 0, we find from (B.7a) that
∂F

∆p(q)
k

∂qk
= 0. Therefore, taking q = 0 as initial

guess gives ∂FL

∂q = 0, such that the Jacobian matrix (B.1) is a block diagonal matrix,

if (3.4b) is used for the link equations.

B.1.2 Electricity

For the electrical part, using the complex power formulation in polar coordinates, the
Jacobian is given by

Jee =

∂FP

∂δ
∂FP

∂|V |
∂FQ

∂δ
∂FQ

∂|V |


Here, ∂FP

∂δ and ∂FQ

∂δ are the real and imaginary part of ∂FS

∂δ respectively. Similarly,
∂FP

∂|V | and ∂FQ

∂|V | are the real and imaginary part of ∂FS

∂|V | respectively.
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Using (4.6) for FPi and FQi , we have

∂FSi
∂δj

=
[
i ·Diag (V )

(
Diag (Y V )

∗ − Y ∗Diag (V )
∗)]

ij

∂FSi
∂|Vj |

=
[
Diag (V ) (Diag (Y V )

∗
+ Y ∗Diag (V )

∗
)Diag (|V |)−1

]
ij

with Diag (x) a diagonal matrix with x on the diagonal, and V the vector of nodal
voltage phasors V.

B.1.3 Heat

For the heat part, using the terminal link formulation (4.7), the Jacobian is given by

Jhh =



Ah′ ∂Fm

∂mTL 0 0 0 0 0

∂FL

∂mL 0 ∂FL

∂p 0 0 0 0

∂F Ts

∂mL
∂F Ts

∂mTL 0 ∂F Ts

∂T s 0 ∂F Ts

∂TTL,s 0

∂F Tr

∂mL
∂F Tr

∂mTL 0 0 ∂F Tr

∂T r 0 ∂F Tr

∂TTL,r

0 ∂Fϕ

∂mTL 0 ∂Fϕ

∂T s
∂Fϕ

∂T r
∂Fϕ

∂TTL,s
∂Fϕ

∂TTL,r

0 0 0 ∂F∆T

∂T s
∂F∆T

∂T r
∂F∆T

∂TTL,s
∂F∆T

∂TTL,r


(B.8)

Here, the submatrices ∂Fϕ

∂mTL ,
∂Fϕ

∂TTL,s ,
∂Fϕ

∂TTL,r ,
∂F∆T

∂TTL,s , and
∂F∆T

∂TTL,r are diagonal matri-

ces. As for the gas part with the full formulation, the submatrix ∂FL

∂mL is a diagonal

matrix with entries ∂Fk

∂mk
for each link k with hydraulic link equation (3.15), and the

submatrix ∂FL

∂p is given by (B.2), with ∂FL

∂∆p a diagonal matrix with entries ∂Fk

∂∆pk
for

each link k with hydraulic link equation (3.15).
For the heat part, using the standard formulation (4.9), the Jacobian is given by

Jhh =


Ah′ 0 ∂Fm

∂T s
∂Fm

∂T r

∂FL

∂mL
∂FL

∂p 0 0

∂F Ts

∂mL 0 ∂F Ts

∂T s
∂F Ts

∂T r

∂F Tr

∂mL 0 ∂F Tr

∂T s
∂F Tr

∂T r

 (B.9)

The submatrices ∂FL

∂mL ,
∂FL

∂p , ∂F Ts

∂mL , and ∂F Tr

∂mL are the same as in the terminal link
formulation.

For the submatrices ∂FL

∂mL and ∂FL

∂p , the same analysis holds as for the gas network
in Appendix B.1.1. That is, a flat initial guess for p results in an undefined Jacobian
matrix.

The temperatures T sij or T
s
ji and T

r
ij or T

s
ji in the mixing rules (3.20) are obtained

from the thermal link equation (3.21). If (2.28) is used as the thermal pipe model,
these temperatures are a function of the mass flow m. Specifically, the temperature
drop factor (2.29) is part of the mixing rules, after substituting (2.28) for the ap-
propriate temperatures. This temperature drop factor, and its derivative to m, is
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undefined if m = 0. Therefore, a zero flow initial guess m = 0 results in undefined
Jacobian matrices (B.8) and (B.9).

In the full formulation, (3.23) is used in F ϕ, which has zero first partial derivatives
if mi,l = 0 or if ∆Ti,l = 0. If both mi,l = 0 and ∆Ti,l = 0, all partial derivatives of
F ϕ are zero, such that the Jacobian (B.8) is singular.

In the standard formulation, (3.23) is rewritten to obtain an expression for the
terminal link flow mi,l:

mi,l =
∆ϕi,l
Cp∆Ti,l

(B.10)

which is then substituted into Fm, F T s

, and F T r

. If the supply and return tempera-
tures in (3.13a) are equal, we have ∆Ti,l = 0, such that (B.10) is undefined. Therefore,
the Jacobian for the standard formulation can be undefined if the initial guesses T s

and T r are chosen incorrectly. Furthermore, the Jacobian can be ill-conditioned if
T s ≈ T r.

Finally, the Jacobian can become singular if the mass flows are such that a node
has only inflow or outflow, as discussed in Section 5.3.3. Therefore, the initial guesses
to mL and mTL should be chosen such that every node has both inflow and outflow.

B.2 Jacobian for a decoupled multi-carrier network

This section gives the Jacobian matrix for the LF problem of a decoupled MCN, given
by the system y = g(y), see (8.8). It consists of IFCs (8.6) and LF subproblems (8.7)
for each carrier α ∈ {g, e, h, c}. To determine the Jacobian of g, the partial derivatives
of the IFCs and LF subproblems need to computed, for each carrier.

The IFCs (8.6) are given by linear systems (8.5), such that the (partial) derivatives
are

∂uα

∂vβ
= Aβα (B.11)

for α, β ∈ {g, e, h, c} and α 6= β.
For decoupled LF, only part of the extended state variables and BCs of each

subnetwork are of interest, which are denoted as v ⊆ x and u ⊆ b. Given u, the
extended LF problem (8.1) is solved for each subnetwork to obtain v, which is written
as (8.7), or

vα = gα(uα) (B.12)

We can obtain the v from the extended state variables x as v := Px, with P a
RNv ×RNx matrix, with Nv ≤ Nx, that selects the appropriate variables from x. The
function g depends on u only, and its derivative is then given by

dgα

duα
=

dvα

duα
= P

dxα

duα
(B.13)

Deriving the extended LF subproblem (8.1), using the same approach as in Sec-
tion 9.4, gives

∂hα

∂xα
dxα

duα
= −∂hα

∂uα

For each α ∈ {g, e, h, c}, the derivative of (B.12) is then determined by solving this
equation for dxα

duα , and substituting the result in (B.13).
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The Jacobian of g is obtained by collecting the derivatives (B.11) and (B.13). If
the system y = g(y) is ordered as (8.9), the Jacobian of g is given by

J =

(
∂g1

∂y1

∂g1

∂y2

dg2

dy1
0

)
=



0 dvg

dug 0 0 0 0 0 0
0 0 0 0 0 0 Acg 0

0 0 0 dve

due 0 0 0 0
0 0 0 0 0 0 Ace 0

0 0 0 0 0 dvh

duh 0 0
0 0 0 0 0 0 Ach 0

0 0 0 0 0 0 0 dvc

duc

Agc 0 Aec 0 Ahc 0 0 0


If the system is ordered as (8.10), the Jacobian is given by

J =


0 0 0 dg1

dy4

dg2

dy1
0 0 0

0 dg3

dy2
0 0

0 0 dg4

dy3
0

 =



0 0 0 0 0 dvg

dug 0 0

0 0 0 0 0 0 dve

due 0

0 0 0 0 0 0 0 dvh

duh

Agc Aec Ahc 0 0 0 0 0

0 0 0 dvc

duc 0 0 0 0

0 0 0 0 Acg 0 0 0
0 0 0 0 Ace 0 0 0
0 0 0 0 Ach 0 0 0







APPENDIX C

Network topologies and data

Several MESs, represented by various MCNs, are used throughout this thesis. In this
appendix, we provide details on network topologies and models, and on the values of
parameters, BCs, and other quantities, for these networks.

C.1 Gas-electricity multi-carrier energy system

This small gas-electricity MES is used in Section 8.5.1, and consist of a two-node gas
network and a two-node electrical network, connected to each other with two coupling
nodes. Figure C.1 shows the connected and the decoupled network representation of
this MES.

electricity
gas

1e

0e0g

1g

0c

1c

(a) Connected MCN.

1e

0e0g

1g

0c

1c

(b) Decoupled MCN.

Figure C.1: Connected and decoupled network representation of a gas-electricity
MES. Arrows on links and terminal links show defined direction of flow.

In the gas network, node 0g is a source and node 1g is a sink. The link from 0g

to 1g represents a pipe, which is modeled using the steady-state flow equation (2.1),
with the pipe constant (2.2) and pressure drop (2.3) for low-pressure systems, and
with Pole’s friction factor (2.5). In the electrical network, both nodes are sinks. The
link from 0e to 1e represents a transmission line, which is modeled as a short line with
(2.17) and (2.18) for the active and reactive powers. Both coupling nodes represent
a gas-fired generator (GG), for which we use the linear model (2.31). Table C.1 gives
the link parameters and the parameters for the coupling models, and Table C.2 gives
the parameters of the gas.
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Table C.1: Link parameters and parameters of the coupling models for the networks
in Figure C.1, per carrier.

Carrier Link parameters Unit Parameters

gas
L D

GG at 0c
η0

500m 0.15m 0.6

electricity
b g

GG at 1c
η1

−0.3 S 0.03 S 0.7

Table C.2: Parameters of the gas carrier for the networks in Figure C.1.

Carrier Parameters

gas

Tn T Rair pn

288K 288K 287.001 J/(kgK) 1 · 105 Pa
Z S GHV

1 0.589 60 134 305 J/kg

To form the system of LF equations (4.11) or (8.8), we use the full formulation
(4.1) in the gas network. We use (3.4b) for the link equation F01(q01, p0, p1) of the
gas pipe, and the active and reactive powers P01, P10, Q01, and Q10 of the electrical
transmission line are function of δ0, δ1, |V0|, |V1|, given by (2.17) and (2.18). Table 8.1
gives the node type sets we use as BCs, for the connected and the disconnected MCN.

The extended LF problems of the subnetworks of the decoupled MCN, which are
solved in the decoupled approach to obtain the subproblems (8.7) of (8.8), are

F g(xF,g) =

(
−q1 + q01 − q1,1
F 01 (q01, p0, p1)

)
= 0, xF,g =

(
q01
p1

)
Gg(xG,g, xF,g) =

(
−q0 − q01 − q0,1

)
= 0, xG,g =

(
q0,1
)

for the gas subnetwork,

F e(xF,e) =
(
P 0 + P0,1 + P01

)
= 0, xF,e =

(
δ0
)

Ge(xG,e, xF,e) =

P 1 + P1,1 + P10

Q0 +Q0,1 +Q01

Q1 +Q1,1 +Q10

 = 0, xG,e =

P1,1

Q0,1

Q1,1


for the electrical subnetwork, and

F c(xF,c) =

(
P0c − η0cGHV(−q0c)
P1c − η1cGHV(−q1c)

)
= 0, xF,c =

(
−q1c
P0c

)
for the coupling network. Based on (8.2) and (8.3), the IFCs for the disconnected
MCN in Figure 8.2b are

q0,1 = −q0c , P0,1 = −P0c , Q0,1 = −Q0c

q1,1 = −q1c , P1,1 = −P1c , Q1,1 = −Q1c
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With the node set given in Table 8.1, the variables for the LF problem of the discon-
nected MCN are given in (8.16):

vg =
(
q0,1
)
, ve =

(
P1,1 Q0,1 Q1,1

)T
, vc =

(
−q1c P0c

)T
,

ug =
(
q1,1
)
, ue =

(
P0,1

)
, uc =

(
q0c P1c Q0c Q1c

)T
With these variables, the IFCs (8.6) for the disconnected MCN are then

ug =
(
1 0

)
vc

ue =
(
0 −1

)
vc

uc = −I
(
vg

ve

)
with I the 4× 4 identity matrix. The LF problem (8.8) for the disconnected MCN is
obtained by combining the LF subproblems and the IFCs.

Using the same ordering of equations and variables as is done in (4.11), the LF
problem for the connected MCN is given by

F (x) =

F g

F e

F c

 =



−q0 − q01 − q0g0c

−q1 + q01 − q1g1c

F01(q01, p0, p1)

P 0 + P0e0c + P 01

P 1 + P1e1c + P 10

Q0 +Q0e0c +Q01

Q1 +Q1e1c +Q10

P0c0e − η0cGHVq0g0c

P1c1e − η1cGHVq1g1c


= 0, x =

xg

xe

xc

 =



q01
p1
δ0
q0g0c

q1g1c

P0c0e

P1c1e

Q0c0e

Q1c1e


(C.1)

We can reorder the equations and variables in this LF problem of the connected MCN
to match the structure of the LF problem of the disconnected MCN, as described in
Section 8.4. The LF problem (C.1) is then permuted to

F (x) =



−q1 + q01 − q1g1c

F 01 (q01, p0, p1)
−q0 − q01 − q0g0c

P 0 + P0e0c + P 01

P 1 + P1e1c + P 10

Q0 +Q0e0c +Q01

Q1 +Q1e1c +Q10

P0c0e − η0cGHVq0g0c

P1c1e − η1cGHVq1g1c


= 0, x =



q01
p1
q0g0c

δ0
P1c1e

Q0c0e

Q1c1e

q1g1c

P0c0e


(C.2)

Table C.3 gives the base values used to scale the LF problem, both for the con-
nected and the disconnected MCN, with Eg given by (2.30).

Tables C.4–C.6 give the solution to the LF problem for this example MES, obtained
by solving (C.1) using matrix scaling. The values that are used as BCs for the LF
problem of the connected MCN are shown in bold.
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Table C.3: Base values used to scale the LF problem of the networks in Figure C.1.

Carrier Base values

gas
pgb qb Egb
50mbar 0.1 kg/s 1MW

elec.
|V |b δb |S|b
10/

√
3 kV 1 rad 1MW

Table C.4: Results for the gas part of the network in Figure C.1a, using matrix
scaling. BCs are denoted in bold.

Node p [mbar] qinj [kg/s] Link q [kg/s]

0 50.000 -0.121 0–1 0.093

1 32.981 0.010

Table C.5: Results for the electrical part of the network in Figure C.1a, using matrix
scaling. BCs are denoted in bold.

Node |V | [kV] δ [rad] Sinj [MW] Link Sloss
ij [MW]

0 5.376 -0.101 2.0 +1.0i 0–1 0.014 +0.143i

1 5.774 0 2.5 +1.5i

Table C.6: Results for the coupling part of the network in Figure C.1a, using matrix
scaling. BCs are denoted in bold.

Unit q [kg/s] P [MW] Q [Mvar]

GG at 0 0.028 1.000 0.500

GG at 1 0.083 3.514 2.143

C.2 Electricity-heat multi-carrier energy system

This small electricity-heat MES is used in Section 8.5.2, and consists of a two-node
electrical network and a two-node heat network, connected to each other with two
coupling nodes. Figure C.2 shows the connected and the decoupled network repre-
sentation.

In the electrical part of the connected network, both nodes are sinks. The link
from 0e to 1e represents a transmission line, which is modeled as a short line. We
use (2.17) and (2.18) for the active and reactive powers in (4.4). In the heat part of
the connected network, both nodes are sinks. The link from 0h to 1h represents a
pipe. For the hydraulic model, we use the steady-state flow equation (2.20), with pipe
constant (2.22) and pressure drop (2.21), and with Pole’s friction factor (2.5). For
the thermal pipe model, we use (2.28). Both coupling nodes represent an energy hub
(EH), for which we use the linear model (2.38). Table C.7 gives the link parameters
and the parameters for the coupling models, and Table C.8 gives the parameters of
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heat

electricity
gas

0h

1h1e

0e 0c

1c

(a) Connected multi-carrier network.

0h

1h3h

2h

1e

0e 0c

1c

(b) Decoupled multi-carrier network.

Figure C.2: Connected and decoupled network representation of an electricity-heat
MES. Arrows on links and terminal links show defined direction of flow.

the gas and water.

Table C.7: Link parameters and parameters of the coupling models for the networks
in Figure C.2, per carrier.

Carrier Link parameters Unit Parameters

electricity
b g

EH at 0c
cge0 cgh0

−0.3 S 0.03 S 0.249 0.751

heat
L D λ

EH at 1c
cge1 cgh1

500m 0.15m 0.2W/(mK) 0.510 0.218

IFCs conditions are required to form the system of LF equations (8.8) for the
decoupled MCN. Based on (8.3) and (8.4), the IFCs for the disconnected MCN in
Figure C.2b are

P0,1 = −P0c , m0 = m0c , T s0,0 = T s0c ,

P1,1 = −P1c , m3 = m1c , T s3,0 = T s1c ,

Q0,1 = −Q0c , ∆ϕ0 = ∆ϕ0c , T r0,0 = T r0c ,

Q1,1 = −Q1c , ∆ϕ3 = ∆ϕ1c , T r3,0 = T r1c

To form the systems of LF equations for the heat (part of the) network, we use the
terminal link formulation (4.7), with (3.16) for the hydraulic link equations.
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Table C.8: Parameters of the gas and heat carriers for the networks in Figure C.2.

Carrier Parameters

gas

Tn T Rair pn

288K 288K 287.001 J/(kgK) 1 · 105 Pa
Z S GHV

1 0.589 60 134 305 J/kg

heat
ρ T a Cp

960 kg/m3 0 °C 4.182 · 103 J/(kgK)

Table C.9 gives the base values used to scale the LF problem, both for the con-
nected and the disconnected MCN, with Eg given by (2.30).

Table C.9: Base values used to scale the LF problem of the networks in Figure C.2.

Carrier Base values

gas
qb Egb
0.1 kg/s 1MW

elec.
|V |b δb |S|b
10/

√
3 kV 1 rad 1MW

heat
phb mb T b ϕb

100m≈9.418 bar 1 kg/s 100 °C 1MW

Tables C.10–C.13 give the solution to the LF problem for this example MES,
obtained by solving the system of LF equations for the connected MCN using matrix
scaling. The values that are used as BCs for the LF problem of the connected MCN
are shown in bold.

Table C.10: Results for the electrical network in Figure C.2a, using matrix scaling.
BCs are denoted in bold.

Node |V | [kV] δ [rad] Sinj [MW] Link Sloss
ij [MW]

0 5.376 -0.101 2.0 +1.0i 0–1 0.014 +0.143i

1 5.774 0 2.5 +1.5i

Table C.11: Results for the hydraulic part of the heat network in Figure C.2a, using
matrix scaling. BCs are denoted in bold.

Node p [bar] minj [kg/s] Link m [kg/s]

0 9.418 9.518 0–1 4.830

1 9.384 12.075
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Table C.12: Results for the thermal part of the heat network in Figure C.2a, using
matrix scaling. BCs are denoted in bold.

Node T s [°C] T r [°C] ∆ϕinj [MW] Link ∆ϕloss [MW]

0 100.000 49.753 2.0 0–1 0.015

1 99.506 50.000 2.5

Table C.13: Results for the coupling part of the network in Figure C.2a, using
matrix scaling. BCs are denoted in bold.

Unit q [kg/s] P [MW] Q [Mvar] m [kg/s] ∆ϕ [MW] T s [°C]
EH at 0 -0.067 1.000 0.500 14.348 3.015 100.000

EH at 1 -0.115 3.514 2.143 7.245 1.500 99.506

C.3 Multi-carrier energy system used for validation

This small MES is used in Chapter 6, Section 8.5.3, Section 10.5.2, and Section 11.4.
It is based on a case study introduced in [11], which is later adapted in [17] using an
extended EH approach. We consider three different ways of coupling the single-carrier
networks of this MES; two similar to the couplings used in [11] and one similar to
[17].

Figure C.3 shows the networks for the three ways of coupling. In network 1, we
use a GG at node 0c, a gas boiler (GB) at node 1c, and a combined heat and power
plant (CHP) at node 2c for the coupling. In network 2, we use two EHs. In network
3, we use a GG at node 0c, a GB at node 1c and at node 3c, and a CHP at node 2c

for the coupling. For all three networks, the same models are used in the SC part,
based on the models used in [11].

In the gas network, the links from 0g to 1g, from 0g to 2g, and from 3g to 2g,
represent pipes, and the link from 1g to 2g represents a compressor. The pipes are
modeled using the steady-state flow equation (2.1), with the pipe constant (2.2) and
pressure drop (2.3) for high-pressure networks. For the friction factor, we use the
implicit Colebrook-White equation (2.6).

In the electrical network, all links represent transmission lines, which we model as
short lines by (2.17) and (2.18).

In the heat network, all links represent pipes. For the hydraulic model, we use the
steady-state flow equation (2.20), with the pipe constant (2.22), pressure drop (2.21),
and friction factor (2.6). For the thermal pipe model, we use (2.28).

Table C.14 gives the link parameters used in all three networks, and Table C.15
gives the parameters of the gas and the water.

In network 1, node 0c represents a GG, node 1c a GB, and node 2c a CHP. We use
linear models (2.33) and (2.36), for the GB and the CHP, and the nonlinear model
(2.32) for the GG.

In network 2, both nodes represent an EH, modeled by (2.38), with Eout =(
Pout ∆ϕout

)T
, and Ein =

(
Egin
)
. Figure C.4 shows a representation of the EHs,

illustrating the relation to the coupling units in network 1. The coupling matrices
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(a) Network 1: GG, GB, and CHP.
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(c) Network 3: GG, two GBs, and CHP.

heat

electricity
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Figure C.3: MES network topologies. Network 1 (a) and 3 (c) are based on [11],
network 2 (b) is based on [17]. Arrows on links and terminal links show defined
direction of flow.

Table C.14: Link parameters for the networks in Figure C.3, per carrier.

Carrier Link parameters

gas
L D ε r

30 · 103 m 0.15m 0.05 · 10−3 m 1.3

electricity
b g

−5.941 S 0.5941 S

heat
L D ε λ

30 · 103 m 0.15m 1.25 · 10−3 m 0.2W/(mK)

are chosen such that the EHs model the same conversion of energy as the coupling
components in network 1, such that cge = ν0ηGG and cgh = (1− ν0)ηGB for the EH
at node 0c, and cge = ν1ηCHP and cgh = (1 − ν1)ηCHP for the EH at node 0c, with
ν0 and ν1 dispatch factors. To ensure consistency with network 1, we take ηGG =
P̃ 0c0e/(GHVq̃0g0c), ν0 = q̃0g0c/(q̃0g0c+ q̃0g1c), and ν1 = P̃ 2c2e/(P̃ 2c2e+∆ϕ̃2c2h), with
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Table C.15: Parameters of the gas and heat carrier for the networks in Figure C.3.

Carrier Parameters

gas

Tn T Rair pn

273.15K 281.15K 287.001 J/(kgK) 1.013 25 · 105 Pa
Z S µ GHV

0.8 0.6106 0.288 · 10−6 m2/s 5.4297 · 107 J/kg

heat
ρ T a µ Cp

960 kg/m3 10 °C 0.294 · 10−6 m2/s 4.182 · 103 J/(kgK)

Table C.16: Parameters of the coupling models for the networks in Figure C.3.

Unit Parameters

GG

ηGG a b c d

0.45 2.931 · 10−9 1.1724 4.3965 · 107 4.3965 · 106

e Pmin

5 · 10−7 0W

GB
ηGB r1Ess r2

0.88 −37 780.1W 0.797 347

CHP

ηCHP a b d r1

0.88 0.463 −45 320 4.49 · 106 0.0736

r2 L1 L2 ∆ϕmin ∆ϕmax

0.0845 0.8 0.6 107 W 14 · 106/0.48W

EHs
ν0 ν1

0.77 0.27

∆ϕ0c0h

P 0c0e

q0g0c

GG

GBν0

1− ν0

(a) EH at 0c.

∆ϕ1c2h

P 1c2e

q2g1c CHP

(b) EH at 1c.

Figure C.4: Representation of the EHs in network 2, related to network 1. Arrows
show actual direction of flow.

q̃, P̃ , and ∆ϕ̃ the coupling flows of network 1.

In network 3, node 0c represents a GG, node 1c and 3c a GB, and node 2c a CHP.
We use the models (2.34) and (2.37) for the GBs and CHP, as proposed in [11]. The
parameter values in these model are chosen to match the solution given in [11]. For
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the GG, we use the same model as in network 1.
Table C.16 gives the parameters for the coupling models, for all three networks.
For the decoupled approach used in Section 8.5.3, the IFCs for the disconnected

MCN, based on (8.2)–(8.4), are

q0,1 = −q0c , P0,1 = −P0c , m0 = m0c , T s0,0 = T s0c ,

q2,1 = −q1c , P2,1 = −P1c , m3 = m1c , T s3,0 = T s1c ,

Q0,1 = −Q0c , ∆ϕ0 = ∆ϕ0c , T r0,0 = T r0c ,

Q2,1 = −Q1c , ∆ϕ3 = ∆ϕ1c , T r3,0 = T r1c

Table C.17 gives the base values used to scale the LF problem in Chapter 6 and
in Section 11.4, Table C.18 gives the base values used to scale the LF problem in
Section 8.5.3, and Table C.19 gives the base values used to scale the OF problem in
Section 10.5.2, with Eg given by (2.30).

Table C.17: Base values used in Chapter 6 and in Section 11.4 to scale the LF
problem of the networks in Figure C.3.

Carrier Base values

gas
pgb qb Egb
105 Pa 1 kg/s 10 · 106 W

elec.
|V |b δb |S|b
10/

√
3 · 103 V 1 rad 10 · 106 W

heat
phb mb T b ϕb

105 Pa 1 kg/s 130 °C 10 · 106 W

Table C.18: Base values used in Section 8.5.3 to scale the LF problem of the networks
in Figure C.3.

Carrier Base values

gas
pgb qb Egb
50 · 105 Pa 2.1922 kg/s 1 · 106 W

elec.
|V |b δb |S|b
10/

√
3 · 103 V 1 rad 1 · 106 W

heat
phb mb T b ϕb

105 Pa 10 kg/s 100 °C 1 · 106 W

As initial guess x0 to the solution vector used in NR, with the full formulation
(4.1) in the gas network and the terminal link formulation (4.7) in the heat network,
we take the values given in Tables C.20–C.22.

The LF calculations are done in S.I. units, such that x0 should also be given in
S.I. units (except T s and T r, which are in °C). Specifically, the nodal pressures for
the heat nodes are used in the calculations, rather than nodal heads.
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Table C.19: Base values used in Section 10.5.2 to scale the OF problem of the
networks in Figure C.3.

Carrier Base values

gas
pgb qb Egb
30 · 105 Pa 2.1922 kg/s 100 · 106 W

elec.
|V |b δb |S|b
10/

√
3 · 103 V 1 rad 100 · 106 W

heat
phb mb T b ϕb

94.176 · 105 Pa 50 kg/s 130 °C 100 · 106 W

Table C.20: Initial values of x0 used for NR, for network 1.

Node Initial values Link Initial values

0g - 0g–1g q = 4.384 kg/s

1g pg = 40 · 105 Pa 0g–2g q = 4.384 kg/s

2g - 3g–2g q = 4.384 kg/s

3g pg = 40 · 105 Pa 1g–3g q = 4.384 kg/s

0e -

1e |V | = 104/
√
3 V, δ = 0 rad

2e δ = 0 rad

0h T s=100 °C, T r=50 °C 0h–1h m = 60 kg/s

1h T s=120 °C, T r=50 °C, h=10m, m=20 kg/s 0h–2h m = 30 kg/s

2h T s=120 °C, T r=50 °C, m=20 kg/s 1h–2h m = 60 kg/s

Coupling part

Link Initial values Link Initial values

0c–0e P = 50 · 106 W, Q = 0W 0g–0c q = 2.192 kg/s

1c–0h m = 10 kg/s, ∆ϕ = 30 · 106 W 0g–1c q = 0.6577 kg/s

2c–2e P = 10 · 106 W, Q = 0W 2g–2c q = 0.6577 kg/s

2c–2h m = 10 kg/s, ∆ϕ = 25 · 106 W

Tables C.23–C.31 give the solution to the LF problem for networks 1, 2, and 3.
For comparison, the values of the solution as given in [11] and [17] are also included
in the tables, if available. Results in the gas network are not reported in [17], and
results for the pressure in the heat network are not given in [11].



162 Network topologies and data Appendix C

Table C.21: Initial values of x0 used for NR, for network 2.

Node Initial values Link Initial values

0g - 0g–1g q = 4.384 kg/s

1g pg = 45 · 105 Pa 0g–2g q = 4.384 kg/s

2g pg = 47 · 105 Pa 3g–2g q = 4.384 kg/s

3g pg = 45 · 105 Pa 1g–3g q = 4.384 kg/s

0e -

1e |V | = 104/
√
3 V, δ = 0 rad

2e δ = 0 rad

0h T s=100 °C, T r=50 °C 0h–1h m = 65 kg/s

1h T s=120 °C, T r=50 °C, h=254m, m=20 kg/s 0h–2h m = 30 kg/s

2h T s=120 °C, T r=50 °C, h=4300m, m=20 kg/s 1h–2h m = −60 kg/s

Coupling part

Link Initial values Link Initial values

0c–0e P = 50 · 106 W, Q = 0W 0g–0c q = 2.192 kg/s

0c–0h m = 10 kg/s, ∆ϕ = 30 · 106 W 2g–1c q = 0.6577 kg/s

1c–2e P = 10 · 106 W, Q = 0W

1c–2h m = 10 kg/s, ∆ϕ = 25 · 106 W

Table C.22: Initial values of x0 used for NR, for network 3.

Node Initial values Link Initial values

0g - 0g–1g q = 4.384 kg/s

1g pg = 25 · 105 Pa 0g–2g q = 4.384 kg/s

2g pg = 30 · 105 Pa 3g–2g q = 4.384 kg/s

3g pg = 40 · 105 Pa 1g–3g q = 4.384 kg/s

0e -

1e |V | = 10/
√
3 · 103 V, δ = 0 rad

2e δ = 0 rad

0h T s=120 °C, T r = 50 °C 0h–1h m = 60 kg/s

1h T s=120 °C, T r=50 °C, h=10m, m=20 kg/s 0h–2h m = 30 kg/s

2h T s=120 °C, T r=50 °C, h=4000m, m=20 kg/s 1h–2h m = 60 kg/s

Coupling part

Link Initial values Link Initial values

0c–0e P = 50 · 106 W, Q = 0W 0g–0c q = 2.192 kg/s

1c–0h m = 10 kg/s, ∆ϕ = 30 · 106 W 0g–1c q = 0.6577 kg/s

2c–2e P = 10 · 106 W, Q = 0W 2g–2c q = 0.6577 kg/s

2c–2h m = 10 kg/s 2g–3c q = 0.6577 kg/s

3c–2h m = 10 kg/s
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Table C.23: Results for the gas network, for network 1 (a), 2 (d), and 3 (b), and
from [11] (c).

p [bar] qinj
[
103 m3/h

]
q
[
103 m3/h

]
Node (a) (b) (c) (d) (a) (b) (c) (d) Link (a) (b) (c) (d)

0 50.000 50.000 50.000 50.000 -46.715 -47.108 -47.108 -46.715 0-1 18.233 18.233 29.831 18.233

1 29.102 29.102 40.816 29.102 10.865 10.865 10.000 10.865 0-2 16.408 16.408 4.810 16.408

2 34.077 34.077 49.783 34.077 20.000 20.000 20.000 20.000 3-2 7.368 7.368 18.966 7.368

3 37.833 37.833 53.061 37.833 - - - - 1-3 7.368 7.368 18.966 7.368

Table C.24: Results for the electrical network, for network 1 (a), 3 (b), and from
[11] (c).

|V | [p.u.] δ [°] Sinj [MW]

Node (a) (b) (c) (a) (b) (c) (a) (b) (c)

0 1.060 1.060 1.060 0.000 0.000 0.000 0.145 +0i 0.145 +0i 0.145 +0i

1 0.980 0.980 0.980 -6.989 -7.022 -7.022 30.000 +15i 30.000 +15i 30.000 +15i

2 1.000 1.000 1.000 -6.048 -6.115 -6.116 30.136 +15i 30.136 +15i 30.136 +15i

Sij [MW] Sji [MW] Sloss
ij [MW]

Link (a) (b) (c) (a) (b) (c) (a) (b) (c)

0-1 26.862 +15.801i 26.980 +15.811i 26.981 +15.811i -26.429 -11.479i -26.545 -11.459i -26.545 -11.459i 0.432 +4.322i 0.435 +4.352i 0.435 +4.352i

0-2 23.492 +11.551i 23.740 +11.552i 23.741 +11.552i -23.187 -8.501i -23.430 -8.451i -23.430 -8.450i 0.305 +3.050i 0.310 +3.102i 0.310 +3.102i

1-2 -3.571 -3.521i -3.455 -3.541i -3.455 -3.541i 3.584 +3.652i 3.467 +3.669i 3.467 +3.669i 0.013 +0.131i 0.013 +0.127i 0.013 +0.127i

Total 0.750 +7.502i 0.758 +7.581i 0.758 +7.581i

Table C.25: Results for the electrical network, for network 2 (d) and from [17] (e).

|V | [p.u.] δ [°] Sinj [MW]

Node (d) (e) (d) (e) (d) (e)

0 1.060 1.060 0.000 0.000 0.145 +0i 0.145 +0i

1 0.980 0.980 -6.989 -7.022 30.000 +15i 30.000 +15i

2 1.000 1.000 -6.048 -6.116 30.136 +15i 30.136 +15i

Sij [MW] Sji [MW] Sloss
ij [MW]

Link (d) (e) (d) (d) (e)

0-1 26.861 +15.801i 26.981 +15.811i -26.429 -11.479i 0.432 +4.322i 0.435 +4.352i

0-2 23.492 +11.551i 23.740 +11.552i -23.187 -8.501i 0.305 +3.049i 0.310 +3.102i

1-2 -3.571 -3.521i -3.455 -3.541i 3.584 +3.652i 0.013 +0.131i 0.013 +0.127i

Total 0.750 +7.502i 0.758 +7.581i

Table C.26: Results for the hydraulic part of the heat network, for network 1 (a), 2
(d), 3 (b), from [11] (c), and from [17] (e).

h [m] minj [kg/s] m [kg/s]

Node (a) (b) (d) (e) (a) (b) (d) Link (a) (b) (c) (d) (e)

0 5517.000 5517.000 5517.000 5517.000 - - - 0-1 64.687 64.699 64.694 64.687 65.962

1 225.103 223.052 225.066 10.666 121.223 121.228 121.223 0-2 31.408 31.448 31.453 31.409 29.893

2 4268.109 4264.918 4268.046 4383.800 65.026 65.030 65.026 1-2 -56.537 -56.529 -56.533 -56.537 -58.778

Table C.27: Results for the thermal part of the heat network, for network 1 (a), 3
(b), and from [11] (c).

T s [°C] T r [°C] ∆ϕinj [MW] ∆ϕloss [MW]

Node (a) (b) (c) (a) (b) (c) (a) (b) (c) Link (a) (b) (c)

0 120.000 120.000 120.000 48.680 48.681 48.681 - - - 0-1 0.890 0.890 0.890

1 119.040 119.037 119.037 50.000 50.000 50.000 35.000 35.000 35.000 0-2 0.877 0.877 0.877

2 123.546 123.541 123.541 49.534 49.534 49.534 20.000 20.000 20.000 1-2 0.910 0.910 0.910

Total 2.677 2.677 2.677
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Table C.28: Results for the thermal part of the heat network, for network 2 (d) and
from [17] (e).

T s [°C] T r [°C] ∆ϕinj [MW] ∆ϕloss [MW]

Node (d) (e) (d) (e) (d) (e) Link (d) (e)

0 120.000 120.000 48.680 48.536 - - 0-1 0.890 0.890

1 119.039 117.090 50.000 50.000 35.000 35.000 0-2 0.877 0.873

2 123.546 123.541 49.534 49.035 20.000 20.000 1-2 0.910 0.884

Total 2.677 2.647

Table C.29: Results for the coupling part of the network, for network 1 (a) and
from [11] (c).

q
[
103 m3/h

]
P [MW] Q [Mvar] m [kg/s] ∆ϕ [MW] T s [°C]

Unit (a) (c) (a) (c) (a) (c) (a) (a) (c) (a)

GG 9.338 9.450 50.499 50.866 27.352 27.363 - - - -

GB 2.736 3.018 - - - - 96.095 28.661 28.677 120.000

CHP 3.776 3.776 10.533 10.173 10.151 10.218 90.154 29.016 29.000 126.493

Table C.30: Results for the coupling part of the network, for network 2 (d) and
from [17] (e).

q
[
103 m3/h

]
P [MW] Q [Mvar] m [kg/s] ∆ϕ [MW] T s [°C]

Unit (d) (d) (e) (d) (e) (d) (d) (e) (d)

EH 0 12.074 50.498 50.866 27.352 27.363 96.096 28.662 28.647 120.000

EH 1 3.776 10.533 10.173 10.151 10.218 90.153 29.015 29.000 126.493

Table C.31: Results for the coupling part of the network, for network 3 (b) and
from [11] (c).

q
[
103 m3/h

]
P [MW] Q [Mvar] m [kg/s] ∆ϕ [MW] T s [°C]

Unit (b) (c) (b) (c) (b) (c) (b) (b) (c) (b)

GG 9.450 9.450 50.866 50.866 27.363 27.363 - - - -

GB 1c 3.018 3.018 - - - - 96.148 28.677 28.677 120

CHP 3.358 3.358 10.173 10.173 10.218 10.218 74.292 25.000 25.000 130

GB 3c 0.417 0.417 - - - - 15.818 4.000 4.000 110
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C.4 Multi-carrier energy system used for solvability
and scaling

This small MES is used in Section 7.1 and Section 11.4. Each SC network consists of
three nodes all connected to each other. This MES is created to investigate the effect
of coupling on the solvability and well-posed of the LF problem, which is why we
consider different types of coupling. We couple nodes 2g, 1e, and 0h of these networks
in two different ways, giving two different MCNs, as shown in Figure C.5. The first
network, shown in Figure C.5a, uses a GB and a CHP which creates a loop between
the SC nodes 2g and 0h, while the second network, shown in Figure C.5b, uses an EH
and avoids such a loop.

1h

0h

2h

0e 2e

1e

0g

2g

1g

0c

1c

(a) Coupled with a GB (0c) and a CHP (1c).

1h

0h

2h

0e 2e

1e

0g

2g

1g

0c

heat

electricity
gas

(b) Coupled with an EH.

Figure C.5: Network topologies of one MES. Arrows on links and terminal links
show defined direction of flow.

Node 1 and node 2 are sinks in each SC network. The gas network and power grid
have an external source, connected at node 0g and 0e respectively. The heat network
has no external source; all heat is provided by the gas network. For both networks,
the same models are used in the SC part.

Table C.32: Link parameters in networks in Figure C.5, per carrier.

Link parameters

Carrier Section 7.1 Section 11.4

gas
L D L D

500m 0.08m 500m 0.15m

electricity
b g b g

−0.3 S 0.03 S −0.3 S 0.03 S

heat
L D λ L D λ

500m 0.15m 0.2W/(mK) 500m 0.15m 0.2W/(mK)
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Table C.33: Parameters of the gas and heat carrier for the networks in Figure C.5.

Carrier Parameters

gas

Tn T Rair pn

288K 288K 287.001 J/(kgK) 105 Pa

Z S GHV

1 0.589 6.013 43 · 107 J/kg

heat
ρ T a Cp

960 kg/m3 0 °C 4.182 · 103 J/(kgK)

In the gas network, all links represent pipes, which are modeled using the steady-
state flow equation (2.1), with the pipe constant (2.2) and pressure drop (2.3) for
low-pressure networks, and with Pole’s friction factor (2.5). In the electrical network,
all links represent transmission lines, which we model as short lines by (2.17) and
(2.18). In the heat network, all links represent pipes. For the thermal pipe model, we
use (2.28). Different models are used in Section 7.1 and Section 11.4 for the hydraulic
part of the heat network, and for the coupling units.

Table C.34: Parameters of the coupling models for the networks in Figure C.5.

Parameters

Unit Section 7.1 Section 11.4

GB
ηGB ηGB

0.8 0.81

CHP
ηCHP ηgeCHP ηghCHP

0.9 0.65 0.81

EH
ν µ

- -
0.358 26 0.668 37

Table C.32 gives the link parameters used in each example, Table C.33 gives the
carrier parameters used in both examples, and Table C.34 gives the parameters of the
coupling models.

C.4.1 Example for solvability and well-posedness

This is the example as used in Section 7.1. For the hydraulic model of the pipes in the
heat network, we use the steady-state flow equation for resistors (2.23), with constant
Ch = 1/ρg.

In the first network, see Figure C.5a, node 0c represents a GB and node 1c a CHP,
which we model using (2.33) and (2.35).

In the second network, see Figure C.5b, the GB and CHP are represented by
one EH, as shown in Figure C.6. The coupling matrix is chosen such that the EH
models the same conversion of energy as the GB and CHP. Using (2.38), with Eout =(
Pout ∆ϕout

)T
, and Ein =

(
Egin
)
, we have cge = µ(1 − ν)ηCHP and cgh = νηGB +
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∆ϕ0c0h

P 0c1e

q0g0c

CHP

GBν

1− ν

Figure C.6: Model representation of the EH in Figure C.5b.

(1− µ)(1− ν)ηCHP, with ν the factor of gas dispatched to the GB, and µ the factor
of gas converted to active power by the CHP.

Table C.35 gives the base values used to scale the LF problem, with Eg given by
(2.30).

Table C.35: Base values used in Section 7.1 to scale the LF problem of the networks
in Figure C.5.

Carrier Base values

gas
pgb qb Egb
0.016 629Pa 0.016 629 kg/s 106 W

elec.
|V |b δb |S|b
1 p.u. 1 rad 1 p.u.

heat
phb mb T b ϕb

53 848.32Pa 2.3912 kg/s 100 °C 106 W

C.4.2 Example for scaling

In this example, used in Section 11.4, only the first network shown in Figure C.5a is
used.

Table C.36: Base values used in Section 11.4 to scale the LF problem of the network
in Figure C.5a.

Carrier Base values

gas
pgb qb Egb
1Pa 0.05 kg/s 106 W

elec.
|V |b δb |S|b
10/

√
3 · 103 V 1 rad 106 W

heat
phb mb T b ϕb

1Pa 2.3912 kg/s 100 °C 106 W

For the hydraulic model of the pipes in the heat network, we use the steady-state
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flow equation (2.20), with the pipe constant (2.22), pressure drop (2.21), and Pole’s
friction factor (2.5).

In the network in Figure C.5a, node 0c represents a GB and node 1c a CHP, which
we model using (2.33) and (2.36).

Table C.36 gives the base values used to scale the LF problem, with Eg given by
(2.30).

Table C.37: Results for the gas network in Figure C.5a, using matrix scaling. BCs
are denoted in bold.

Node p [mbar] qinj [kg/s] Link q [kg/s]

0 50.000 -0.240 0–1 0.118

1 22.734 0.090 0–2 0.122

2 21.172 0.045 1–2 0.028

Table C.38: Results for the electrical network in Figure C.5a, using matrix scaling.
BCs are denoted in bold.

Node |V | [kV] δ [rad] Sinj [MW] Link Sloss
ij [MW]

0 5.774 -0.105 -1.000 -0.151i 0–1 0.000 +0.004i

1 5.658 -0 1 +1.000i 0–2 0.029 +0.294i

2 4.951 -0.208 2 +2i 1–2 0.025 +0.247i

Total 0.054 +0.545i

Table C.39: Results for the hydraulic part of the heat network in Figure C.5a, using
matrix scaling. BCs are denoted in bold.

Node p [bar] minj [kg/s] Link m [kg/s]

0 9.418 - 0–1 5.993

1 9.366 4.821 0–2 6.106

2 9.364 7.278 1–2 1.172

Table C.40: Results for the thermal part of the heat network in Figure C.5a, using
matrix scaling. BCs are denoted in bold.

Node T s [°C] T r [°C] ∆ϕinj [MW] Link ∆ϕloss [MW]

0 100 49.705 - 0–1 0.015

1 99.602 49.803 1.000 0–2 0.015

2 99.284 50.000 1.500 1–2 0.015

Total 0.045
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Table C.41: Results for the coupling part of the network in Figure C.5a, using
matrix scaling. BCs are denoted in bold.

Unit q [kg/s] P [MW] Q [Mvar] m [kg/s] ∆ϕ [MW] T s [°C]
GB 0.031 - - 6.049 -1.525 110

CHP 0.074 2.054 1.958 6.049 -1.019 90

Tables C.37–C.41 give the solution to the LF problem for this example, using
matrix scaling. The values that are used as BCs for the LF problem are shown in
bold.

C.5 Multi-carrier energy system of adjustable size

This MES is used in Section 7.2, Section 10.5.3, and Section 11.5, and allows for
MCNs of various sizes. Moreover, different couplings are used to couple the SCNs,
resulting in various MESs.

The MES consists of a base network, coupling 3-node SC gas, electricity, and heat
networks, which can be extended by replacing the sink at node 3 of each SC network
by a tree-like structure.

C.5.1 Base network

For each 3-node SCN, node 1 is a source, and node 3 is a sink. For the electrical
network and the heat network, node 2 is an additional source. We consider coupling
components that convert gas to electricity, heat, or both, to connect the SC networks.
One electrical and one heat source are replaced with a coupling, such that the SCNs
are coupled at node 1 or at node 2. The networks are coupled by a single node repre-
senting a CHP or an EH, or by two nodes representing a GB and a GG. Figure C.7
shows the possible topologies for the base case MES. For all four types of coupling,
and for both the base case and the extended case, the same models are used in the
SC part.

In the gas network, all links represent pipes, which are modeled using the steady-
state flow equation (2.1), with the pipe constant (2.2) and pressure drop (2.3) for
high-pressure networks, and with Weymouth’s friction factor (2.4).

In the electrical network, all links represent transmission lines, which we model
as medium-length lines by (2.14) and (2.15). For each link k, we use bk = −xk/|zk|2
and gk = rk/|zk|2, where rk and xk are given by

rk =
4ρLk
πD2

k

xk = 10rk

with ρ = 1.6 · 10−8 Ωm. If the link represents a medium-length transmission line, we
additionally use bshk = 2πfcLk ·10−12, with c = 100 nF/km and f = 50Hz, and where
the factor 10−12 is needed to convert c to S.I. units.
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heat
electricity
gas

1h 2h 3h

1e 2e 3e

1g 2g 3g

1c

(a) Coupled at node 1, CHP or EH.

1h 2h 3h

1e 2e 3e

1g 2g 3g

1c
2c

(b) Coupled at node 1, GB and GG.

1h 2h 3h

1e 2e 3e

1g 2g 3g

1c

(c) Coupled at node 2, CHP or EH.

1h 2h 3h

1e 2e 3e

1g 2g 3g

2c1c

(d) Coupled at node 2, GB and GG.

Figure C.7: MES network topologies, using various couplings. Arrows on links and
terminal links show defined direction of flow.

In the heat network, all links represent pipes. For the hydraulic model, we use the
steady-state flow equation (2.20), with pipe constant (2.22) and pressure drop (2.21),
and with Pole’s friction factor (2.5). For the thermal pipe model, we use (2.28).

Table C.42: Link parameters in networks in Figure C.7, per carrier.

Link parameters

Carrier Section 7.2 Section 10.5.3 and Section 11.5

gas
L12 L23 D E L12 L23 D E

4 km 5km 10 cm 0.98 4 km 5km 10 cm 0.98

electricity
L12 L23 D L12 L23 D

4 km 5km 10 cm 4 km 5km 1 cm

heat
L12 L23 D λ L12 L23 D λ

4 km 5km 30 cm 0.002W/(mK) 4 km 5km 15 cm 0.2W/(mK)

Table C.43: Parameters of the gas and heat carrier for the networks in Figure C.7.

Carrier Parameters

gas

Tn T Rair pn

288K 288K 287.002 J/(kgK) 105 Pa

Z S GHV

1 0.589 6.013 43 · 107 J/kg

heat
ρ T a Cp

960 kg/m3 10 °C 4.182 · 103 J/(kgK)
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Table C.44: Parameters of the coupling models for the networks in Figure C.7.

Unit Parameters

GG
ηGG a b c d e Pmin

0.7 2.931 · 10−9 1.1724 2931 293.1 5 · 10−7 0W

GB
ηGB

0.8

CHP
ηgeCHP ηghCHP

0.7 0.8

EH
cge cgh

0.35 0.4

For the coupling components, we use linear models (2.33) and (2.36) for the GB
and CHP, we use linear model (2.31) or nonlinear model (2.32) for the GG, and we

use (2.38) for the EH, with Eout =
(
Pout ∆ϕout

)T
, Ein =

(
Egin
)
, cge = 1/2ηGG, and

cgh = 1/2ηGB.

Table C.45: Base values used in Section 7.2 to scale the LF problem of the networks
in Figure C.7.

Carrier Base values

gas
pgb qb Egb
105 Pa 1 kg/s 106 W

elec.
|V |b δb |S|b
50 · 103 V 1 rad 106 W

heat
phb mb T b ϕb

105 Pa 1 kg/s 100 °C 106 W

Table C.46: Base values used in Section 10.5.3 and Section 11.5 to scale the OF
problem of the networks in Figure C.7, and of the extended network.

Carrier Base values

gas
pgb qb Egb
10 · 105 Pa 1 kg/s 106 W

elec.
|V |b δb |S|b
50 · 103 V 1 rad 106 W

heat
phb mb T b ϕb

10 · 105 Pa 1 kg/s 100 °C 106 W

Table C.42 gives the link parameters used in each example, Table C.43 gives the
carrier parameters, and Table C.44 gives the parameters of the coupling models.



172 Network topologies and data Appendix C

Table C.47: Results of LF for the gas part of the network in Figure 7.4a, as used in
Section 10.5.3 and Section 11.5, using matrix scaling. BCs are denoted in bold.

Node p [bar] qinj [kg/s] Link q [kg/s]

1 50.000 -1.03 1–2 1.00

2 48.045 0.00 2–3 1.00

3 45.483 1.00

Table C.48: Results for the electrical part of the network in Figure 7.4a, as used in
Section 10.5.3 and Section 11.5, using matrix scaling. BCs are denoted in bold.

Node |V | [kV] δ [rad] Sinj [MW] Link Sloss
ij [MW]

1 50.000 0 -0.5 +0.0i 1–2 0.000 -0.310i

2 49.985 -0.004 -0.4 -1.0i 2–3 0.002 -0.374i

3 49.686 -0.009 1.5 +1.5i

Total 0.002 -0.684i

Table C.49: Results for the hydraulic part of the heat part of the network in Fig-
ure 7.4a, as used in Section 10.5.3 and Section 11.5, using matrix scaling. BCs are
denoted in bold.

Node p [bar] minj [kg/s] Link m [kg/s]

1 9.000 - 1–2 3.213

2 8.881 -6.787 2–3 10.000

3 7.435 10.000

Table C.50: Results for the thermal part of the heat part of the network in Fig-
ure 7.4a, as used in Section 10.5.3 and Section 11.5, using matrix scaling. BCs are
denoted in bold.

Node T s [°C] T r [°C] ∆ϕinj [MW] Link ∆ϕloss [MW]

1 100 46.797 - 1–2 0.100

2 87.704 49.055 -1.0 2–3 0.116

3 85.868 50.000 1.5

Total 0.217

Table C.51: Results for the coupling part of the network in Figure 7.4a, as used in
Section 10.5.3 and Section 11.5, using matrix scaling. BCs are denoted in bold.

Unit q [kg/s] P [MW] Q [Mvar] m [kg/s] ∆ϕ [MW] T s [°C]
EH at 1 0.030 0.625 -0.176 3.213 0.715 100.000
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Table C.45 gives the base values used to scale the LF problem in Section 7.2, and
Table C.46 gives the base values used to scale the OF problem in Section 10.5.3, with
Eg given by (2.30).

Tables C.47–C.51 give the solution to the LF problem for the base network coupled
at node 1 with an EH in Figure C.7a, using matrix scaling. The values that are used
as BCs for the LF problem are shown in bold. This solution is used as the reference
solution in Section 10.5.3.

C.5.2 Extended network

The base case can be extended by replacing the sink at node 3 of each SC network by
a tree-like structure which we call ‘streets’. There are s streets, S1 – Ss, which are
all connected to node 3 of the base SC network through a junction node. Each street
consists of n loads, L1 – Ln, connected to the main street links by junctions, m of
which, J1 – Jm, are connected to two loads. Figure C.8 shows the topology of such an
extended SC network, which consists of 3+s(2n−m+1) nodes and 2+s(2n−m+1)
links. The extended MES is created by coupling the SCNs in the same way as for the
base network.

S1

321

L1

J1

Ss

Jm

Jm

Ln

Ln

L1

L2

L2

J1

Figure C.8: Extension of SC networks, with s streets consisting of n loads. Arrows
on links and terminal links show defined direction of flow.

The total injected flow of node 3 of each base SC network is distributed evenly
over all the added load nodes, such that for a load node Li we have qLi

= qinj/(ns),
PLi = P inj/(ns), QLi = Qinj/(ns), and ∆ϕLi = ∆ϕinj/(ns), with qinj, P inj, Qinj, and
∆ϕinj the total injected flows.

The pipes and transmission lines in the streets and from the junctions to the loads
are dimensioned based on the (expected) fraction of total load going through that
pipe or line, and based on some length LS and diameter DS . Algorithm C.1 gives the
dimensions of the links between junctions in each street. The dimensions of a link k
from a junction to a load are given by Lk = LS/n and Dk = DS/

√
n.

We use the same carrier and coupling parameters for the extended case as in the
base case, given in Table C.43 and Table C.44, but we use the link parameters for the
extended case as given in Table C.52 and set LS = L23 and DS = D in Algorithm C.1.
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Algorithm C.1 Dimensions of link k between two junctions in the extended network.

Set LS and DS .
Set number of junction per street NJ := n−m.
for k = 1, . . . , NJ do:

if k ≤ m then
Set l := (n− 2k)/n

else
Set l := (n− 2m− (k −m))/n

end if
end for
Set Lk := lLS
Set Dk :=

√
lDS

Table C.52: Link parameters for the extended network shown in Figure C.8, per
carrier.

Carrier Link parameters

gas
L12 L23 D E

4 km 5km 10 cm 0.98

electricity
L12 L23 D

4 km 5km 1 cm

heat
L12 L23 D λ

4 km 5km 30 cm 0.002W/(mK)

We take the same base values as for the base cases, except for pg for which we
take pgb = 50 · 105 Pa, see Table C.53.

We use a flat initial guess for NR, except for pg, ph, and T s, for which we create
a linear profile, where the nodes furthest from the source have the lowest value. We
define a lower and an upper fraction of the reference values, and create a linear profile
between these values for the nodes in each street S. For the three nodes in the base
part of the extended network, we take a linear profile between the reference value and
the upper fraction of the reference value.

Table C.53: Base values used in Section 7.2 to scale the LF problem of the extended
case.

Carrier Base values

gas
pgb qb Egb
50 · 105 Pa 1 kg/s 106 W

elec.
|V |b δb |S|b
50 · 103 V 1 rad 106 W

heat
phb mb T b ϕb

105 Pa 1 kg/s 100 °C 106 W



APPENDIXD

Base values for scaling

The LF equations can be scaled using p.u. scaling or using matrix scaling. In this
appendix, we provide details on how to choose base values for both types of scaling.

D.1 Variables and parameters

In the per unit system, the base values of some of the primary or derived quantities
are chosen. The appropriate base values of the other model quantities are derived
based on the requirement that the LF equations remain complete equations, using
dimensional analysis after substituting xa = xbxp.u. for all quantities in the equation,
see Section 11.2.1. With matrix scaling, only the variables of the LF problem are
scaled and not the model parameters.

D.1.1 Electricity

For an electricity network, the base values |V |b and δb of the voltage amplitude and
angle and the base value |S|b of the complex power are generally chosen. The base
values of the other variables and of the parameters of the LF equations are then (e.g.
[3]):

|I|b =
|S|b√
3|V |b

yb =
|S|b
|V |2b

This base value |I|b for the current amplitude holds for a three-phase system. The
base value yb holds for, amongst others, short-line and π-line models.

D.1.2 Heat

In [17], the p.u. system is extended to the heat network, but we adopt a slightly
altered extension. The main difference is that we scale the temperature itself, instead
of scaling the shifted temperature T ′ := T − T a. Furthermore, we specify the base
values phb , mb, T b, and ϕb of the LF variables.

175
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For pipes, we can assume pi ∼ pj , such that we can use the same base value for
both pressures. The pressure drop ∆p over a pipe, given by (2.21), is then also scaled
with the same base value. We substitute xa = xbxp.u., with x ∈ {ph, m, Ch, f}, in
the steady-state flow equation (2.20) of a pipe. Based on dimensional analysis and
the requirement that the flow equation remains a complete equation, and dropping
the superscript h for notational simplicity, we find that

Cb
√
pb

mb

√
fb

= 1

If we do not scale the friction factor f, and keep it in S.I. units instead, the base value
of the pipe constant is given by

Cb =
mb√
pb

Similarly, for the thermal model (2.28) of a pipe, we find that

λbLb
(Cp)bmb

= 1 (D.1)

For the heat power equation (2.25) of a heat exchanger, represented by a terminal
link, we find

(Cp)b =
ϕb

mbT b
(D.2)

If we keep the length L (and the diameter D) of a pipe in S.I. units, and if we
substitute (D.2) in (D.1), we find

λb = (Cp)bmb

D.1.3 Gas

We use the same approach, based on the requirement that the LF equations remain
complete equations and using dimensional analysis, to extend the p.u. system to gas
networks. We specify the base values pgb of the pressure and qb of the gas flow.

For pipes, we can assume pi ∼ pj , such that we use the same base value for both
pressures. In the gas network, the pressure drop equation and pipe constant, and
subsequently the steady-state flow equation, are different for low-pressure and for
high-pressure systems. For the steady-state flow equation (2.1) of a pipe, with the
pipe constant given by (2.2) and the pressure drop given by (2.3), we find

Cb
√
pb

qb
√
fb

= 1, for low-pressure systems

Cbpb

qb
√
fb

= 1, for high-pressure systems

(D.3)

If we do not scale the friction factor f and keep it in S.I. units instead, like we did for
the heat network, the base value for the pipe constant is given by

Cb =


qb√
pb
, for low-pressure systems

qb
pb
, for high-pressure systems
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For a compressor, the pressures pi and pj generally have a different base value. If
a compressor is modeled by (2.7), we find

rb =
(pj)b
(pi)b

D.1.4 Coupling

For conversion units, such as those given in Section 2.4, we can assume Eg ∼ P ∼ Q ∼
∆ϕ, with Eg given by (2.30). For consistency throughout the MES, we could use the
same base values for these coupling energy flows. We specify the base values Egb , P b,
and ϕb. Again, requiring the model equations in Section 2.4 to remain complete,
and using dimensional analysis, the base values of the parameters in the models of a
conversion unit can be determined.

For gas, we choose to specify the base value qb of the gas flow. Since we also
specify Egb , it follows from (2.30) that

GHVb =
Egb
qb

D.2 Functions

In the p.u. system, all variables and parameters in the LF equations are scaled, such
that the LF equations will be scaled as well. With matrix scaling, the variables in the
LF equations are scaled, but not the parameters, such that the LF equations need to
be scaled separately. If the base values of the variables are the same as in the p.u.
system, the base values for the LF equations can be determined from (11.3), such
that the equations are scaled in the same way as they are scaled in the p.u. system.

To derive the appropriate base values for the equations, we substitute xa = xbxp.u.
for all quantities in the equation, with the base values as given in Section D.1. Rewrit-
ing the resulting expression to the form in (11.3) gives the required base values.

As an example, we derive the base values for the steady-state flow equation of a
gas pipe. We consider two formulations of the link equation for a link representing
a pipe, F q(∆p) and F∆p(q), given by (3.4a) and (3.4b) respectively, with the pipe
constant given by (2.2) and the pressure drop given by (2.3). For link equation (3.4b)
in a high-pressure system, assuming (pi)b = (pj)b := pb and using (D.3), we find

F∆p(q) (qa, (pi)a, (pj)a) = (pi)
2
a − (pj)

2
a − (Cga)

−2fa|qa|qa

= p2b(pi)
2
p.u. − p2b(pj)

2
p.u. −

fb|qb|qb
(Cgb)

2
(Cgp.u.)

−2fp.u.|qp.u.|qp.u.

= p2b
[
(pi)

2
p.u. − (pj)

2
p.u. − (Cgp.u.)

−2fp.u.|qp.u.|qp.u.
]

= p2bF
∆p(q) (qp.u., (pi)p.u., (pj)p.u.)

Comparing this expression with (11.3), we find F
∆p(q)
b = p2b for a high-pressure system.

Using the same approach, we find F
∆p(q)
b = pb for low-pressure systems, and F

q(∆p)
b =

qb for high-pressure and low-pressure systems.
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Symposium Modellering van gëıntegreerde energienetwerken, 1 May 2019, Pre-
sentation, Load flow simulations for multi-carrier energy systems

SIAM CSE, 24 February – 1 March 2019, Presentation, A Load Flow Model for
Multi-Carrier Energy Systems

Energy Open, 30 November 2018, Presentation, A load flow model for multi-
carrier energy systems

PowerWeb 2018, Poster, Modeling Multi-Carrier Energy Systems

National eScience Symposium, 12 October 2017, Presentation, Modeling Inte-
grated Energy Systems

Woudschoten, 4–6 October 2017, Poster, Modeling integrated energy systems;
heat, electricity, and gas

SIAM anual meeting, July 2017, Poster, Modeling a district heating network, gas
network and power grid as an integrated system



Acknowledgements

First of all, I would like to thank Kees Vuik and Johan Romate for giving me the
opportunity to do this project, and for their supervision over the past four years,
and before that during my master thesis. Dear Kees, thank you for cultivating an
open and friendly academic environment at the numerical analysis department. Dear
Johan, thank you for giving me the freedom to make this research my own, and thank
you for taking the time during our meetings. I appreciated our discussions, both
research and non-research related. I truly enjoyed working with you.

Second, I would like to thank Petra, Remco, and Ni, for their perspective and
valuable discussions. And of course thanks to Martijn at Alliander and Paul at AMS,
and to everyone else involved with the Regional Energy Self-Sufficiency project.

In addition, I would like to thank the other members of the committee for reading
my thesis and accepting the invitation for my defense.

Further, I would like to thank my colleagues at the numerical analysis department.
Thanks for the nice and fun times, and for the support, during and outside of research.
Thank you for letting me be a part of the Krylov Tigers, despite my abominable soccer
skills. Marieke and Baljaa, thanks for being my energy buddies in a mathematical
world, it was a pleasure collaborating with you.

Bart, Pien, Merel, Marieke, Roel, Marijn, Jeffrey, Casper, and Merel, thank you
for reading (part of) my thesis and providing valuable feedback.

Ik zou graag mijn vrienden binnen en buiten Delft bedanken voor alle hulp en
voor de nodige afleiding in de vorm van spelletjes, sport en goede gesprekken. Merel,
Jeffrey, bedankt voor jullie steun en geduld.

Oma Meta, hartelijk dank voor alle sokken die me warm hebben gehouden tijdens
het thuiswerken. Lies, Tim en Bart, bedankt dat jullie altijd voor me klaar staan.
Pap, mam, bedankt voor jullie onvoorwaardelijke steun en vertrouwen, het betekent
veel voor me. Ik weet dat dit proefschrift niet hetzelfde is als het vervangen van een
fietsband, maar ik hoop dat jullie toch trots op me zijn.

Anne Markensteijn
Delft, May 2021

183



Mathematical models for simulation
and optimization of multi-carrier

energy systems

M
athem

atical m
odels for sim

ulation and optim
ization of m

ulti-carrier energy system
s

A.S. Markensteijn

A
.S. M

arkensteijn

Uitnodiging
voor het bijwonen van 

de openbare verdediging 
van mijn proefschrift:

Wiskundige modellen 
voor simulatie en 
optimalisatie van 

geïntegreerde 
energiesystemen

Op maandag 5 juli 2021, 
om 10:00 uur in de aula 

van de Technische 
Universiteit Delft, 
Mekelweg 5, Delft.

Voorafgaand aan 
de verdediging, om 

09:30, zal ik de inhoud 
van mijn proefschrift 
kort toelichten in een 

presentatie.

Anne Markensteijn


	Summary
	Samenvatting
	Contents
	Notation
	Introduction
	Energy systems
	Simulation of MESs
	Optimization of MESs
	Outline of thesis

	Steady-state models of energy system elements
	Gas systems
	Electrical systems
	Heating systems
	Conversion units

	Energy networks
	Graph representation
	Single-carrier energy networks
	Multi-carrier energy networks

	Steady-state LF problems
	Node types and boundary conditions
	Formulations of the LF problem
	Model framework
	Derived variables

	NR
	Basic iterative scheme
	Scaling and permutation
	Application to steady-state LF problems of MESs

	Validation of LF model framework
	Networks and models
	Node types
	Solution to LF problem

	Numerical results for steady-state LF problems
	Solvability and well-posedness
	Convergence of NR
	Final remarks

	A decoupled approach to solving the LF problem
	Decoupling an MCN
	Formulation of the LF problem
	Solving the LF problem
	Relation to permuted LF of a connected MCN
	Numerical results
	Final remarks

	Optimization
	Optimality conditions
	Optimization methods
	Elimination of variables
	Direct and adjoint approach

	OF problems
	Objective function
	Variables and bounds
	Two problem formulations
	Solving the OF problem
	Comparison of formulations and solvers
	Final remarks

	Scaling
	Dimensional analysis
	Types of scaling
	Finite precision
	Scaling in LF problems
	Scaling in OF problems

	Conclusions and recommendations
	Conclusions
	Recommendations

	Bibliography
	Effect of transformation on NR
	Jacobian matrices
	Jacobians for SC parts of MCNs
	Jacobian for a decoupled MCN

	Network topologies and data
	Gas-electricity MES
	Electricity-heat MES
	MES used for validation
	MES used for solvability and scaling
	MES of adjustable size

	Base values for scaling
	Variables and parameters
	Functions

	Curriculum Vitæ
	Publications and Scientific Activities
	Acknowledgements
	Lege pagina

