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Abstract. A new functional model is proposed for
gravity field modeling on the basis of KBR data from
the GRACE satellite mission. This functional model
explicitly connects a linear combination of gravita-
tional potential gradients with a linear combination
of range-rate measurements at several successive
epochs. The system of observation equations is
solved in the least-squares sense by means of the
pre-conditioned conjugate gradient method. Noise
in range-rate combinations is strongly dependent on
frequency, so that a proper frequency-dependent data
weighting is a must. The new approach allows a
high numerical efficiency to be reached. Both sim-
ulated and real GRACE data have been considered.
In particular, we found that the resulting gravity field
model is rather sensitive to errors in the satellite
orbits. A preliminary gravity field model we obtained
from a 101 day set of GRACE data has a com-
parable accuracy with the GGM01S model derived
by CSR.
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1 Introduction

The GRACE (Gravity Recovery And Climate Exper-
iment) satellite mission was launched in March 2002
mainly for the purpose of high-precision mapping
of the Earth’s gravity field (Tapley et al., 2004).
The mission consists of two satellites co-orbiting at
about 480 km altitide with a 220 ± 50 km along-
track seperation. The satellites are equipped with a
K-band ranging (KBR) measurement system, thanks
to which the inter-satellite range-rates can be con-
tinuously determined with an accuracy of better
than 0.5 �m/s (Biancale et al., 2005). Other impor-
tant on-board sensors are: (i) GPS receivers needed
to determine the satellite orbits and to synchro-
nize time tags of KBR measurements of the two

satellites, (ii) accelerometers, which measure non-
gravitational satellite accelerations, and (iii) star
cameras needed to determine the satellite attitudes.
A number of functional models for processing
GRACE KBR data have been already proposed and
applied, e.g. variational equation approach (Tapley
et al., 2004; Reigber et al., 2005), energy balance
approach (Jekeli, 1999; Han et al., 2005b), acceler-
ation approach (Rummel, 1979), the approach based
on integration of short arcs (Ilk et al., 2003) and
the gradiometry approach (Keller and Sharifi, 2005).
In the paper, we propose a new approach for grav-
ity field modeling, which is based on so-called
range-rate combination. The structure of the paper
is as follows. In Sect. 2, we present the theoret-
ical basis of the proposed approach. In Sect. 3,
we tackle some implementation issues. To verify
the approach, one-month GRACE data set is sim-
ulated and processed (Sect. 4). Next, we process
101-day set of real GRACE data (Sect. 5). Finally,
conclusions are given and the future outlook is
discussed.

2 Functional Model

The functional model makes use of a local frame at
each particular epoch (see Figure 1(a)). In the frame,
the X-axis is defined as the Line-Of-Sight; the Z -axis
is orthogonal to the X-axis in the plane formed by
two satellites and the center of the Earth (i.e. this axis
is approximately radial) and the Y -axis is orthogo-
nal to the X- and Z -axes forming a right-hand frame
(i.e. the Y -axis is cross-track). In order to build up
one observation equation, three succesive epochs are
considered (say, i − 1, i and i + 1). Let us intro-
duce inter-satellite average accelerations between the
epochs i − 1 and i (i.e. ḡi−) and between the epochs
i and i + 1 (i.e. ḡi+) as:

ḡi− :=
∫ 0
−�t g(ti + s) ds

�t
, ḡi+ :=

∫ �t
0 g(ti + s) ds

�t
,
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where g(t) is point-wise inter-satellite acceleration
as a function of time, and �t is sampling rate. Obvi-
ously, the following equalities hold:

�t · ḡi− = vi − vi−1, (1)

�t · ḡi+ = vi+1 − vi , (2)

where vi−1, vi and vi+1 are inter-satellite velocities
at three successive epochs. The accelerations in the
left-hand side of Equations (1) and (2) can be related
to the gravitational potential gradients, while the
inter-satellite velocities in the right-hand side can be
related to the range-rates. As a result, a linear combi-
nation of three successive range-rates di−1, di , di+1
can be directly related to the average inter-satellite
accelerations ḡi− and ḡi+ (Ditmar and Liu, 2006):

νi (ḡ
z
i− + ḡz

i+)− (τi−)ḡx
i− − (τi+)ḡx

i+
= (εi−)di−1 + εi di + (εi+)di+1, (3)

where ḡx
i± and ḡz

i± are the X- and Z-component of
the vector ḡi± at the epoch of i , respectively; νi ,
τi−, τi+, εi−, εi , and εi+, the so-called navigation
parameters, are functions of the unit vectors ei−1, ei ,
and ei+1 that define the line-of-sight directions at the
three successive epochs (see Figure 1(b)).

Strictly speaking, equation (3) is only valid in the
2-D case, i.e. if all 3 line-of-sight unit vectors coin-
cide with the orbital planes of the satellites. However,
real data can be reduced to the (locally) 2-D case
by applying small corrections to di−1, di and di+1,
respectively. The corrections are calculated from the
Y-components of velocity differences at epochs i − 1
and i + 1 projected onto the X- and Z -axes of the
epoch i .

As the orbit radius approaches infinity, equa-
tion (3) turns into a double-differentiation formula:

gx
i+ − gx

i−
�t

= di−1 − 2di + di+1

(�t)2
. (4)

A series of average inter-satellite accelerations gx
i±

and gz
i± can be easily related to a set of Stokes coef-

ficients (or to other parameters if the gravity field
representation is not the spherical harmonic expan-
sion). In particular, the algorithm to compute gx

i± and
gz

i± from stockes coefficients can be as follows: (1)
Compute the gravitational accelerations at the satel-
lite locations; (2) Compute the inter-satellite differ-
ences (“point-wise inter-satellite accelerations”); (3)
Apply the averaging filter (Ditmar and Van Eck van
der Sluijs, 2004); (4) At each epoch, compute the
line-of-sight component gx

i± and the orthogonal com-
ponent gz

i±.

3 Implementation

Equation (3) can be written as a matrix-to-vector
multiplication: Ax = d, where x is the set of gravity
field parameters, d is the set of Range-Rate Combina-
tions (RRCs), and A is a design matrix. These equa-
tions have to be solved in the least squares sense. The
number of unknown parameters (stokes coefficients)
in the least-squares adjustment can be up to tens of
thousands, and the number of data can reach tens
of millions. Therefore, a tailored, numerically effi-
cient adjustment algorithm is advisable. A reasonable
choice is an algorithm based on the pre-conditioned
conjugate gradient method. Such an algorithm can be
split into a number of basic operations, each of which
can be efficiently implemented: (1–2) Multiplication
of the matrices A and AT to a vector. These steps can
be implemented as a fast synthesis and co-synthesis
(Ditmar et al., 2003) combined with the application
of an averaging filter (Ditmar and Van Eck van der
Sluijs, 2004) (3) Multiplication of the inverse data
covariance matrix C−1

d to a vector. This step can be
implemented as a low-level conjugate-gradient algo-
rithm (Ditmar and Van Eck van der Sluijs, 2004;
Klees and Ditmar, 2004). (4) Pre-conditioning, i.e.
solving the system of linear equations where the
original normal matrix is replaced by its approxima-
tion (“a pre-conditioner”). In the proposed functional
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Fig. 1. (a): Definition of the working frame; (b): Unit vectors of line-of-sight directions at three successive epochs.
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model, a block-diagonal approximation of the nor-
mal matrix can be obtained by making a number of
not very unrealistic assumptions (e.g. that the orbit is
perfectly circular; the gravity field between the satel-
lites changes linearly; temporal change of the gravity
field at a given point in an inertial frame caused by
the Earth rotation can be neglected within a sampling
interval, etc.)

4 Simulation

To test the proposed functional model, a numer-
ical experiment was performed. One-month satel-
lite orbits of two satellites with 5-sec sampling
were simulated in compliance with parameters of
the GRACE mission. The force model was defined
as the gravity field model EIGEN-CG03C truncated
at degree 150. The simulated orbits were used to
compute both range-rates and the navigation param-
eters. Next, “observed” RRCs were derived. Fur-
thermore, reference RRCs were computed accord-
ing to the left-hand side of Equation (3) on the
basis of the EGM96 model truncated at degree 150.
The residual (“observed” minus “reference”) RRCs
were used to compute the corrections to the EGM96
Stokes coefficients by the least-squares adjustment.
The obtained gravity field model (reference model
+ corrections) was compared with the “true” one

(see the noise-free case in Figure 2). A perfect agree-
ment between the derived and “true” model can be
considered as a proof of validity of the proposed
functional model. The remaining small differences
between the models presumably stem from a limited
accuracy of the orbit integration. The least-squares
adjustment took only 31 min (the SGI Altix 3700
super-computing system with eight processing ele-
ments was used).

The data sets presented above were further used to
estimate how noise from different sources propagates
into the gravity field model in the proposed approach.
Errors of following origins are simulated and added
to corresponding quantities:

1. Case I – Noise in range-rates: white noise with
a RMS (root-mean-square) of 0.5 �m/s.

2. Case II – Noise in satellite orbits: noise with a
RMS of 10 mm and an auto-correlation factor of
0.995 (Reubelt et al., 2003) is added to the ‘true’
orbit of the satellite A. Furthermore, noise with a
RMS of 10, 1, or 0.1 mm and with the same auto-
correlation factor of 0.995 is resepctively added to
the baselines of two satellites (3-D differences of
the satellite positions). Then, the orbits of satellite
B used is computed by adding the noisy baselines
to the noisy orbit of the satellite A.
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Figure 3(a) shows the square root of power spec-
tral density of noise in RRCs for the Case I. The
figure clearly displays that computation of RRCs
heavily amplifies noise at high-frequencies, there-
fore, a frequency-dependentdata weighting is a must.
So that relatively high weights are assigned to low
frequencies and low weights to high frequencies.
To achieve that, we made use of the noise PSD
approximated by an analytic function (Ditmar and
Van Eck van der Sluijs, 2004; Ditmar et al., 2007).
Figure 3(b) compares the results obtained with and
without frequency-dependent data weighting. It can
be seen that the frequency-dependent weighting
improves the model accuracy both at low and high
degrees.

Propagation of orbit noise (Case II) into the grav-
ity field model is shown in Figure 2. As seen, the
resulting gravity field model is rather sensitive to
errors in the baselines of two satellites. This means
the orbit noise may become the dominant factor in
the error budget. The accuracy of baselines between
two satelites is of particular importance. A similar
conclusion was aslo made earlier by Jekeli (1999)
and Han et al. (2005a) in the context of the energy
balance approach.

5 Real Data Processing

A GRACE gravity filed model up to degree or order
150 was derived from 101 days of GRACE sci-
ence data spanning the interval from July 9, 2003
to October 17, 2003. The following main data sets
were used: (1) Reduced-dynamic orbit of satellite
A (30-sec sampling); (2) Relative baseline vectors
between satellite A and B (10-sec sampling); (3)
Non-gravitational accelerations (1-sec sampling); (4)
Attitude data (5-sec sampling); (5) K-band inter-
satellite range-rates (5-sec sampling). The items (1)
and (2) are kindly provided by Kroes et al. (2005),
and the items (3)–(5) are the L1B products which are
distributed by JPL PODAAC User Services Office
(Case et al., 2004). The principal procedure of
real data precessing is similiar to that of simulated
data. Additionally, we subtracted temporal variations
caused by tides, as well as by atmospheric and ocean
mass changes. The data sets used for this purpose,
are DE405 numerical ephemerides (Standish, 1998),
GOT00.2 ocean tide model (Ray, 1999) and AOD1B
atmospheric and ocean de-aliasing product (Case
et al., 2004). Daily bias and scale factor in terms of
non-gravitational RRCs are estimated altogether with
the parameters of gravity field model.
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Fig. 3. Power spectral density of noise in RRCs of Case I (a). Difference between the obtained and the “true” model in terms of
geiod height errors per degree (b).
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The difference between our model and the state-
of-the-art EIGEN-CG03C model (Förste et al., 2005)
is shown in terms of geoid heights in Figure 4.
For comparison, the difference between GGM01S
(Tapley et al., 2004) and EIGEN-CG03C models, as
well as the formal error of GGM01S model are also
shown. The GGM01S model was produced from 111
days of GRACE data. As can be seen, our model has
less than 2-cm geoid height difference up to degree
and order 70, and 20-cm difference up to degree and
order 120 with respect to the EIGEN-CG03C model.
This is comparable with or even better than the
GGM01S model. Unfortunately, our model shows
a somewhat lower accuracy at low degrees (below
35). There are at least three possible reasons for
that. The first reason is temporal gravity filed varia-
tions. The data span of the GGM01S model is from
April to November, though only 111 days data were
selected. Thus, temporal gravity field variations in
this model are largely averaged out. The second rea-
son is satellite orbit error. Unlike the developers of
the GGM01S model, we have not minimized these
errors by adding corresponding nuisance parameters
to the list of unknowns at the stage of least-squares
adjustement. The third reason to explain low accu-
racy at low degrees could be the noise in the naviga-

tion parameters. The navigation parameters are com-
puted from the baselines of two satelites, which are
determined by GPS data. The navigation parameters
certainly contain noise, therefore it could propagate
into the RRCs. To what an extent this noise influ-
ences of the noise on the final gravity field is not
known yet.

6 Conclusion and Future Outlook

A new approach has been proposed for gravity
field modeling from GRACE KBR data. It is based
on usage of so-called range-rate combinations. A
numerical study and real data processing prove the
validity of the approach. Although the research is
by far not complete, it is already clear that the
new approach can produce models with an accuracy
comparable to that provided by other techniques.
In the future, more nuisance parameters have to be
estimated in the course of least-squares adjustment.
In particular, nuisance parameters related to orbit
errors will be incorporated. Furthermore, more mod-
ern ocean tides models will be used. It also goes with-
out saying that more GRACE data should be used for
computation of a more accurate mean gravity field
model.
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F. Sansò, editor, V Hotine-Marussi Symposium on Math-
ematical Geodesy. International Association of Geodesy
Symposia, volume 127, pages 39–48. Springer, Berlin, Hei-
delberg, New York, 2004.

W. Keller and M. A. Sharifi. Satellite gradiometry using a
satellite pair. Journal of Geodesy, 78:544–557, 2005.

R. Kroes, O. Montenbruck, W. Bertiger, and P. Visser. Precise
GRACE baseline determination using gps. GPS Solutions,
9(1):21–31, 2005.

R. D. Ray. A Global Ocean Tide Model From
TOPEX/POSEIDON Altimetry: GOT99.2. NASA Techni-
cal Memorandum 209478, 1999.

C. Reigber, R. Schmidt, F. Flechtner, R. König, U. Meyer,
K.-H. Neumayer, P. Schwintzer, and S. Y. Zhu. An Earth
gravity field model complete to degree and order 150 from
GRACE: EIGEN-GRACE02S. Journal of Geodynamics,
39:1–10, 2005.

T. Reubelt, G. Austen, and E. W. Grafarend. Harmonic anal-
ysis of the Earth’s gravitational field by means of semi-
continuous ephemerides of a low Earth orbiting GPS-
tracked satellite. Case study: CHAMP. Journal of Geodesy,
77:257–278, 2003.

R. Rummel. Determination of short-wavelength components
of the gravity field from satellite-to-satellite tracking or
satellite gradiometry – an attempt to an identification
of problem areas. Manuscripta Geodetica, 4(2):107–148,
1979.

E. M. Standish. JPL Planetary and Lunar Ephemerides,
DE405/LE405. JPL IOM 312.F-98-048, 1998.

B. D. Tapley, S. Bettadpur, M. Watkins, and C. Reigber. The
gravity recovery and climate experiment: Mission overview
and early results. Geophysical Research Letters, 31, 2004.
L09607, doi: 10.1029/2004GL019920.


