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Abstract 18 

Time series of topographic data are becoming increasingly widespread for monitoring geomorphic 19 

activity. Dense 3D time series are now obtained by near-continuous terrestrial laser scanning 20 

(TLS) installations, which acquire data at high frequency (e.g. hourly) and over long periods. Such 21 

datasets contain valuable information on topographic evolution over varying spatial and temporal 22 

scales. Current analyses however are mostly conducted based on pairwise surface or object-23 

based change, which typically require the selection of thresholds and intervals to identify the 24 

processes involved and fail to account for the full history of change. Detected change may 25 

therefore be difficult to attribute to one or more underlying geomorphic processes causing the 26 

surface alteration. We present an automatic method for 4D change analysis that includes the 27 

temporal domain by using the history of surface change to extract the period and spatial extent of 28 

changes. A 3D space-time array of surface change values is derived from an hourly TLS time 29 

series acquired at a sandy beach over five months (2,967 point clouds). Change point detection 30 

is performed in the time series at individual locations and used to identify change processes, such 31 

as the appearance and disappearance of an accumulation form. These provide the seed to 32 

spatially segment ‘4D objects-by-change’ using a metric of time series similarity in a region 33 

growing approach. Results are compared to pairwise surface change for three selected cases of 34 

anthropogenic and natural processes on the beach. The obtained information reflects the 35 

evolution of a change process and its spatial extent over the change period, thereby improving 36 
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upon the results of pairwise analysis. The method allows the detection and spatiotemporal 37 

delineation of even subtle changes induced by sand transport on the surface. 4D objects-by-38 

change can therefore provide new insights on spatiotemporal characteristics of geomorphic 39 

activity, particularly in settings of continuous surfaces with dynamic morphologies. 40 

Keywords: Terrestrial laser scanning, high-frequency observation, spatiotemporal analysis, 41 

beach monitoring, temporal domain 42 

 43 

1. Introduction 44 

Earth surface morphology is continually shaped by dynamic processes. Induced surface changes 45 

within a natural landscape occur at varying locations and at different spatial scales, frequencies, 46 

and movement rates. Monitoring of geomorphic activity therefore requires the observation of a 47 

multitude of individual, often superimposed processes. Alterations to surface morphology are 48 

often quantified based on the distance between surface locations recorded at successive points 49 

in time, referred to as epochs in geospatial analysis (Eitel et al., 2016; Lindenbergh & Pietrzyk, 50 

2015). At present, such change analyses are mostly conducted as pairwise comparisons, 51 

referring to the quantification of change between two epochs. Pairwise analysis involves the 52 

drawback that change information is obtained as an aggregated representation of individual 53 

underlying processes. When observed as local surface changes at single points in space and 54 

between only two snapshots of the topography, it is not possible to infer which process led to the 55 

current state of the surface and how it evolved through time. At the same time, the underlying 56 

change is not necessarily distinguishable into deposition, erosion, and transport without ambiguity 57 

(Fig. 1). Relating quantified local surface change to the processes that shaped the surface is 58 

therefore a widespread challenge in the analysis of geomorphic activity (Fey et al., 2019; Mayr et 59 

al., 2018). 60 

Analysing time series of geospatial data has the potential to increase insight into the mechanisms 61 

of geomorphic activity (Eltner et al., 2017; O’Dea et al., 2019). This study focuses on the 62 

morphodynamics of a sandy beach, where sediment transport is driven by an interplay of agents, 63 

including wind and wave forcing, as well as anthropogenic modifications. The resulting multi-64 

process characteristics of periodic, gradual and continual change processes occurring at different 65 

time scales apply to a range of natural topographies, including rock slopes (Kromer et al., 2015a), 66 

glaciers (Rossini et al., 2018), rock glaciers (Zahs et al., 2019) or permafrost coasts (Obu et al., 67 

2017). The observation of individual change processes and analysis of their contribution to the 68 

geomorphic system requires data acquired at spatial and temporal resolutions that account for 69 

the range of scales at which the induced changes occur (Rumson et al., 2019).  70 
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Figure 1: Pairwise observation of change types ‘deposition’, ‘erosion’, and ‘transport’ co-occurring in a 

geomorphic system. The processes that underlie single values of local surface height change are ambiguous. 

A) Observed change can result from superimposed surface alterations (e.g. D1 and D2). The spatial extent of 

accumulation form D2 on the continuous surface is not distinct. B) Local surface height decrease at the source 

of transported material and increase at the target location cannot be attributed unambiguously to the respective 

change types erosion E and transport T.  

As the research on and the variety of applications of geospatial monitoring grow, more series of 71 

multitemporal data are being acquired at repetition rates that are annual, monthly, or even shorter 72 

(Eitel et al., 2016) with a range of topographic survey techniques. High-frequency (sub-hourly to 73 

weekly repetition intervals) time series of high spatial resolution (sub-centimetre to metre) and 74 

long acquisition periods (months to years) are becoming increasingly available through near-75 

continuous terrestrial laser scanning (TLS; e.g. Kromer et al., 2017; O’Dea et al., 2019; Vos et al., 76 

2017; Williams et al., 2018). 77 

While datasets are being captured at increasing temporal resolution, methods for analysing 78 

surface change from geospatial time series mostly follow the described approach of pairwise 79 

analysis of local surface changes. This approach is well-established in analysing conventional 80 

multitemporal LiDAR data of several epochs (typically < 100; e.g., Corbí et al., 2018; Fey et al., 81 

2019; Mayr et al., 2018; Zahs et al., 2019). Pairwise analyses are also suitable in settings where 82 

surface change is progressing in a more or less uniform direction, i.e. deposition or erosion is the 83 

dominant change type, and the effect on surface morphology is irreversible. This applies, for 84 

example, in the case of continuous erosion on a slope or rockfall on a cliff (e.g. Kromer et al., 85 

2017; Williams et al., 2018). In such settings, the possible change processes are mostly known a 86 

priori and pairwise surface change can be attributed to the respective (expected) process. 87 

An alternative approach to surface change quantification is object-based geomorphic change 88 

analysis (Anders et al., 2013; Liu et al., 2010). These methods quantify the surface or volume 89 

change and displacement of individual geomorphic features or objects within a scene. Such 90 

features are extracted from each epoch of the multitemporal data and are typically based on 91 

morphometric properties, such as breaks in curvature at edges or planar surfaces on objects. The 92 

approach is used, for example, to monitor the change of characteristic units or structures on 93 

beaches (Corbí et al., 2018; Fabbri et al., 2017; Le Mauff et al., 2018) or the displacement of 94 

breaklines as geomorphic features, representing scarps or ridges (Mayr et al., 2018; Pfeiffer et 95 
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al., 2018). The required identification and classification of objects typically implies the definition of 96 

morphometric properties for target objects from the outset. This becomes particularly challenging 97 

when monitoring over long periods, where features can occur in many variations of their spatial 98 

properties. It also requires that objects can be spatially delineated within each epoch, which is 99 

only possible if they have a distinct morphology. In the flat and gently sloping surface morphology 100 

of a sandy beach, for example, the exact spatial extent of an accumulation form is difficult to 101 

determine even to a human observer both on site and in high-resolution topographic data.  102 

Binary surface change information (change/no change) between successive epochs has been 103 

considered for the spatial delineation of objects in the segmentation of morphometric features 104 

(Mayr et al., 2017). Change objects are defined as spatially connected areas of pairwise change, 105 

which has been introduced into coastal monitoring (Liu et al., 2010). If such object-based 106 

assessment considers change between only two epochs, the spatial boundary of individual 107 

change types may remain concealed by coinciding surface alterations caused by multiple 108 

processes. For example, localised accumulations within an area of large-scale accretion will be 109 

aggregated into a single change object of combined extent. The spatial and temporal properties 110 

of the processes involved, however, often differ over time. Accretion is a slow, continual process 111 

while local accumulation may occur more rapidly and, from this, become distinct in the evolution 112 

of surface change at the location. This additional information that can be gained from the 113 

temporal domain, and in particular the history of change of each point on the surface is difficult to 114 

integrate into the interpretation of change for a given location at a single, specific point in time. 115 

The identification of objects therefore requires the entire history of change of a given point on the 116 

surface.  117 

Our research develops a novel approach to 4D (3D + time) change analysis that fully 118 

incorporates the temporal domain, with the aim of improving the identification of change 119 

processes in time series of geospatial data. We make use of the full available history of surface 120 

change for the purpose of spatiotemporal object segmentation, in doing so advancing the concept 121 

of pairwise change objects to ‘4D objects-by-change’. Spatial neighbourhoods that experience 122 

similar surface change within certain periods are delineated based on their similarity in the 123 

temporal domain. This removes the requirement of object detection and re-identification in single 124 

or pairwise snapshots and removes the need of having a strict definition of object in terms of 125 

temporal processes or morphometric properties, such as size and shape. Integrating time series 126 

into surface change analysis allows the inclusion of a variety of spatial and temporal scales 127 

(extent, magnitude and duration) in the identification of geomorphic change. A metric of time 128 

series similarity integrates flexibility of spatial extent in object extraction. Otherwise, spatial 129 

delineation of change may mainly depend on the definition of threshold values even if object 130 

boundaries are difficult to determine conceptually.  131 
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Our method provides a novel view on time series-based surface change analysis, which allows 132 

automatic and generic extraction of the 4D geoinformation present in time series of 3D 133 

topographic data. 4D objects-by-change generate more detailed histories of identified surface 134 

change as compared to pairwise surface change analysis. This will provide a basis for relating 135 

individually identified change types to specific geographic processes, and to assess their 136 

contribution to the dynamic shaping of a landscape. 137 

2. Study Site and Data 138 

We present our method using a time series of 3D point clouds acquired at the sandy beach of 139 

Kijkduin (52°04’14” N, 4°13’10” E; Fig. 2), the Netherlands. A Riegl VZ-2000 TLS (Riegl LMS, 140 

2017) was mounted in a stable reference frame overlooking the beach during the winter of 2016-141 

2017 (Vos et al., 2017). The scene was scanned every hour with a vertical and horizontal point 142 

spacing of 9 mm at 10 m measurement range. The target area of the beach ranges between 143 

100-600 m from the sensor resulting in point densities of 2-20 points/m².  144 

 

Figure 2: (A) Terrain elevation of the study site (based on TLS data) with extent designated in (B) aerial 

imagery of the beach at Kijkduin with map of the study site location in the Netherlands. Data: Aerial imagery © 

pdok.nl 2017, World Borders © thematicmapping.org 2017. 

The period examined starts on 2017-01-15 at 13:00 (Central European Time; UTC+1), following a 145 

storm event in the days before, and ends on 2017-05-26 at 8:00, which is the end date of the 146 

fixed TLS acquisition at this site. Several epochs are missing due to rainfall that prevented any 147 

data from being acquired at the measurement range of the target area. In total, the time series 148 

comprises 2,967 point clouds. Gaps in local areas of an epoch may exist due to missing data in 149 

the respective point cloud caused by occlusion of the ground surface (e.g. temporary objects 150 

such as machinery and people) or the presence of water on the surface (e.g. at high tides) during 151 

scan acquisitions. 152 
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Pre-processing of the TLS data consists of fine alignment of each point cloud to a global 153 

reference point cloud of the first day (2017-01-15, 15:00). This fine alignment is conducted with 154 

an Iterative Closest Point method (Besl and McKay, 1992). The alignment accuracy is assessed 155 

based on point-to-plane distances for planar surfaces distributed in the stable region of the point 156 

cloud scene, which are distinct from the surfaces used for fine alignment. The method of fine 157 

alignment and the determination of alignment accuracy are described in detail in Anders et al. 158 

(2019). The pre-processed TLS time series has a mean alignment accuracy of 4 mm with a 159 

standard deviation of 2 mm. The minimum detectable change is further limited due to a range-160 

dependent refraction effect in the LiDAR measurements that varies over time with atmospheric 161 

conditions (cf. Friedli et al., 2019). At the measurement range of the beach area, the minimum 162 

detectable change is estimated to reach up to 0.05 m (cf. Anders et al., 2019). The temporally 163 

dense measurements of the dataset can be leveraged to reduce uncertainty from the quantified 164 

change. We make use of this in a temporal averaging step (Section 3.1). Each point cloud is 165 

filtered to remove off-terrain points based on the relative height of points over the local minimum 166 

in a neighbourhood of 1.0 m raster cells. The filtering threshold is set to a maximum relative 167 

height of 0.2 m to account for surface roughness and the slightly sloping terrain morphology. We 168 

use the software OPALS (Pfeifer et al., 2014) for the pre-processing steps of fine alignment and 169 

terrain filtering. This time series of pre-processed point clouds is used for all subsequent analyses 170 

in this paper. 171 

3. Methods 172 

For the extraction of 4D objects-by-change, we develop a method of spatial segmentation with 173 

respect to the history of surface change. The method identifies change processes as temporal 174 

features within the time series of surface change. The features include both raising of the surface 175 

followed by lowering and lowering of the surface followed by raising. The locations are used in a 176 

regular grid structure, derived from point cloud distances per epoch. Local neighbourhoods are 177 

then spatially grown into 4D objects-by-change based on the similarity of time series segments 178 

(Fig. 3). The methodological steps are presented in detail in the following sub-sections (Sections 179 

3.1 to 3.3). We evaluate the results of our approach in comparison to the current standard 180 

procedure of pairwise, binary threshold-based analysis (Section 3.4), which provides single 181 

images of surface change between two epochs instead of the full history of surface change 182 

contained in our approach. 183 
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Figure 3: Approach for the extraction of 4D objects-by-change. A change process is detected and delineated in 

the time series of surface change at one location. The temporal change feature is used as seed for spatial 

region growing. The homogeneity criterion for region growing is the similarity of time series in the period of the 

temporal change feature. The segmented 4D object-by-change has a temporal and spatial extent in the space-

time array. 

3.1 Deriving a Space-Time Array of Surface Change 184 

For the developed approach, the time series of 3D point clouds is processed into a time series of 185 

surface change in a regular grid structure. Re-sampling into this 3D space-time array of surface 186 

change values facilitates data access along the temporal domain. 187 

We quantify surface change on the beach as the vertical distance of the surface between each 188 

epoch and a reference point cloud on the first day of the analysed period (2017-01-15, 13:00). 189 

The epoch at this time of day was selected due to the low tide, enabling measurements over a 190 

large extent of the beach area. Point cloud distances are derived using the Multiscale Model to 191 

Model Cloud Comparison (M3C2) algorithm (Lague et al., 2013). We use a regular grid with 0.5 m 192 

horizontal spacing to define the 2D locations at which distances between the two point clouds are 193 

calculated. This spacing is chosen regarding the lowest point spacing in the target scene 194 

(Section 2). The projection radius (Lague et al., 2013), representing the neighbourhood within 195 

which the position of each point cloud is averaged during distance calculation, was set to 1.0 m. 196 

The distance calculation at the regular grid locations uses all original TLS points within the 197 

projection radius. 198 

Using the obtained space-time array of surface change, we perform averaging of the surface 199 

change values for every 2D point location on the beach along the temporal domain, i.e. based on 200 

the values at previous and successive points in time. This enables the identification of values that 201 

notably deviate from their temporal neighbours and are less likely to represent actual change 202 
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rather than measurement errors in the point cloud. Each surface change value in the time series 203 

of a location is averaged by setting it to the median of its temporal neighbourhood in a window of 204 

defined size. The approach benefits from sampling redundancy in the temporal domain 205 

particularly if the acquisition frequency exceeds the rate of observed surface change. 206 

Accordingly, the averaging window needs to be sufficiently small to avoid smoothing out the 207 

temporal trend of the actual surface change (Kromer et al., 2015b). We use a temporal averaging 208 

window of one week (168 h) on the beach data in this study. This offers a compromise between 209 

removing temporal measurement effects from variable atmospheric conditions (Anders et al., 210 

2019) and preserving morphologic change, providing an interdependent combination of 211 

exceeding the minimum detectable change (in terms of magnitude) and the temporal scale (in 212 

terms of duration). 213 

3.2 Identification of Temporal Change Features 214 

Our approach to 4D change analysis begins by identifying the occurrence of a change-inducing 215 

process in the time series of change values (Fig. 4). We first determine the points in time at which 216 

the height change values in the time series change with respect to the mean. These change 217 

points are used to delineate change features in the temporal domain based on the shape of the 218 

time series. 219 

 

Figure 4: Schematic representation of temporal change feature delineation using the earliest change point that 

is not within a previous change feature as a starting point. The end point is increased as long as the volume of 

surface change (area under the curve) increases with respect to the starting point’s change value as baseline. 

Change point detection can be performed by comparing the distribution of values between two 220 

successive periods, i.e. segments of the time series. The instants at which this relationship 221 

changes are to be detected as change points (Kawahara & Sugiyama, 2012; Truong et al., 2019). 222 

Segments are derived based on changes in the median of the change values, i.e. the central 223 

point of the value distribution within a segment, with least absolute deviation as measure of 224 

homogeneity (Bai, 1995; Truong et al., 2019). The change point detection method uses a sliding 225 

temporal window to compute the discrepancy between two adjacent windows that move along the 226 

signal. This sliding temporal window is subsequently referred to as change point detection 227 
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window. Peaks in the discrepancy curve determine the position of change points (Truong et al., 228 

2019). As the number of change points to be detected is unknown in our application, a constraint 229 

needs to be introduced for dividing the time series into increasingly small segments. We use a 230 

complexity penalty in the time series segmentation which acts in relation to the amplitude (i.e. 231 

magnitude) of changes to detect. The higher the penalization, the stricter the change point 232 

detection. Conversely, the lower the penalization value, the more change points are detected 233 

down to discrepancies that derive from noise in the signal (Maidstone et al., 2017; Truong et al., 234 

2019). 235 

We use a change point detection window of 24 h, considering that change values are smoothed 236 

in an averaging window of one week (Section 3.1). This ensures that the smallest temporal scale 237 

of change occurrences that are contained in the time series dataset are detected. We set the 238 

penalty for change point detection to 1.0, such that the number of detected change points does 239 

not strongly alter with an increase or decrease of the penalty. The step size of the change point 240 

detection window is 1 h, so change points can potentially be detected at each epoch of the time 241 

series. We constrain the change point detection by setting a minimum distance of 12 h between 242 

change points so that there is no overlap between temporal windows of detected change points. 243 

The change point detection is performed using the implementation in the Python library ruptures 244 

(Truong et al., 2018). 245 

Change processes are identified within the time series of surface elevation change by using a 246 

normalised volume maximization approach to identify their start and end times (Piltz et al., 2016). 247 

From a detected change point as starting point, the change feature is grown along the temporal 248 

axis by increasing the time of the end point for as long as the area under the curve of surface 249 

change values is increasing. The increase or decrease of the change volume is determined 250 

relative to the value of the starting point as baseline. In the process, the cumulative surface 251 

change of the change feature is maximized. As soon as adding another epoch of surface change 252 

has the effect of decreasing this cumulative value, the process is stopped (Fig. 4). This step is 253 

applied to all change points detected in the time series, starting from the earliest. Successive 254 

change points are only used as new starting points if they do not lie within a previously detected 255 

change feature. By this, over-sensitively detected change points are automatically discarded. To 256 

be able to delineate both positive and negative change features, we include a check if the surface 257 

change in epochs following the starting point is negative (relative to the starting point). For 258 

negative features, the time series is inverted so the same procedure of delineation can be 259 

applied. All time series are shifted to contain only positive values for this step. Once a change 260 

feature is delineated in the temporal domain of a location, the next step is to segment the 4D 261 

object-by-change spatially based on neighbouring locations of similar temporal change features. 262 
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3.3 Spatial Segmentation of 4D Objects-By-Change 263 

We assume that geomorphic change at a given location causes similar surface alterations within 264 

a local neighbourhood. We use this to group spatially contiguous locations with a similar history of 265 

surface change in the period of a temporal change feature. In a region growing approach, an area 266 

is segmented based on the similarity of neighbouring time series as homogeneity criterion 267 

(Fig. 5), to form a 4D object-by-change.  268 

For the period of features derived in Section 3.2, we derive the similarity of the time series for 269 

each point in the grid using Dynamic Time Warping (DTW, Berndt & Clifford, 1994). This method 270 

finds the alignment between two time series by stretching and shrinking a reference time series 271 

along the temporal domain. The sum of minimized distances between point pairs in the time 272 

series yields the DTW distance as a similarity measure (Berndt & Clifford, 1994; Salvador & 273 

Chan, 2007). We subtract the median value from each input time series segment for this 274 

calculation to assess the time series similarity independent from the previous history of surface 275 

change. As surface change is quantified using a fixed epoch as reference, this history may differ 276 

between neighbouring locations but they still belong to the same 4D object-by-change. We 277 

compute the DTW distance using the implementation of the Fast DTW algorithm (Salvador & 278 

Chan 2007) in the Python library fastdtw (Tanida, 2019). 279 

 

Figure 5: Spatial segmentation of a 4D object-by-change starting from the location of the detected 

temporal change feature as seed and computing the Dynamic Time Warping (DTW) distance as 

similarity criterion for adding locations to the segment and using them as additional search 

locations for region growing. 
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The spatial region growing starts at a seed location by computing the DTW distance to all eight 280 

connected spatial neighbours of the 2D time series locations. If the distance of a compared 281 

location exceeds a defined similarity threshold, it is discarded. Otherwise, the similar locations are 282 

added to the current segment. We use a stricter, but adaptive criterion of using a segmented 283 

location as a new search location based on the distribution of distance values in the current 284 

segment. A location for searching further spatial neighbours as candidates is added if the DTW 285 

distance of the segmented location is smaller than the 95th percentile of all distance values 286 

segmented so far (Rabbani et al., 2006). The percentile threshold of adding candidates as 287 

additional search locations initiates when the segment reaches a minimum segment size of 10, 288 

corresponding to an area of ~2.5 m² for the dataset in this study. Before this segment size is 289 

reached, all segmented locations are used as neighbour search locations. After checking all 290 

neighbours of a current search location, the candidate with the lowest DTW distance is used. The 291 

growing of a segment is stopped when no more search locations are available. 292 

For the segmentation threshold, there is no single DTW distance that can be used as general 293 

similarity value, as the order of DTW distance values between two time series that are regarded 294 

as similar relate to the overall change energy, i.e. the total surface height changes within the 295 

process, as well as magnitude and duration of the respective change process. We therefore 296 

selected a threshold by assessing the distribution of DTW values within the 10 × 10 m 297 

neighbourhood of initial seeds. According to the results of this assessment, we set the threshold 298 

to the mean of DTW distance values. 299 

3.4 Test Cases and Comparison to Pairwise Surface Change Analysis 300 

To evaluate the time series-based change analysis compared to results from simple pairwise 301 

analysis, we pick representative cases of change processes with different spatial and temporal 302 

properties to examine the improvement in information obtained from the 4D approach. The 303 

following cases are selected from the acquisition period at the Kijkduin beach scene: 304 

1) An accumulation of sand that was later removed by heavy machinery. The change has a 305 

high magnitude (> 1.5 m surface height increase) and is limited to a small spatial extent 306 

(~4 × 4 m). Both accumulation and removal of the sand occur quickly relative to the time 307 

interval of monitoring.  308 

2) A sand bar that forms and later disappears near the shoreline. The sand bar has a high 309 

magnitude of change (> 0.8 m) but does not have distinct spatial borders (Section 1) as it 310 

translates and deforms over time. 311 

3) A mass of sand transported towards the upper beach area on destruction of the sand bar. 312 

The resulting temporary surface height increase (> 0.15 m) is well above the minimum 313 

detectable change but only subtly visible in the topography, which makes it difficult to 314 

spatially delineate.  315 
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For comparison to a pairwise analysis, we use individual 2D slices from the 3D space-time array, 316 

which represent pairwise surface height change of an epoch to the reference epoch. These 317 

change rasters are derived from the epochs in the beginning and end of a segmented 4D object-318 

by-change, and at the highest magnitude of surface change within the period of the change 319 

process.  320 

4. Results 321 

In this section, we present the results of the change feature delineation and spatial segmentation 322 

based on time series similarity. We then present the extracted 4D object-by-change of selected 323 

cases as compared to pairwise surface change. 324 

4.1 Identification of Temporal Change Features 325 

The examples of change described in Section 3.4 were detected from the time series of surface 326 

change (Fig. 6). Additional change features were detected in the time series of cases 1 and 3. In 327 

case 3, the second change feature is not completed with an end point, as the time series ends 328 

before completion. 329 

 

Figure 6: Result of temporal change feature delineation for the selected cases of (A) an accumulation of sand 

shifted by heavy machinery works, (B) a sand bar forming and disappearing near the shoreline, and (C) a 

mass of sand being transported that is manifested in local surface height increase and decrease at the 

selected location. Starting and end point of change features are marked by triangles. Dates are provided as 

month-day. 

The method for change point detection accurately delineates the periods of change in the 330 

selected cases. These cases show that the spatial scale and temporal pattern of surface change 331 

does not influence the delineation of the targeted features. The placement of starting and end 332 

points in the change features may not provide the optimal positions to determine the onset and 333 

end of a change process for all types. For example, the starting point of accumulation in a change 334 

feature may be set at a point after surface height increase of the process has already started 335 

(Fig. 6, case 1). This does not influence the extraction of 4D object-by-change, but can become 336 

relevant to subsequent analyses, for example to quantify the contribution of individual change 337 

processes to the volume budget in the geomorphic system. 338 
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For the dataset at hand, we perform retrospective change point detection, that is, all data has 339 

been collected and the full time series is processed. As we use a window-based approach that 340 

can continuously advance into the future independently from past occurrences, the method can 341 

be applied in an operational, online setting to detect change processes as soon as possible after 342 

or even while they occur.  343 

4.2 Spatial Segmentation of 4D Object-By-Change 344 

We show the result for the three selected cases as time series plots of all segmented locations 345 

within the period of the change feature, and the spatial extent on the beach area (Fig. 7). We 346 

additionally show the distribution of DTW distance values, which altogether provides a visual 347 

summary of the information contained in a 4D object-by-change. 348 

 

Figure 7: 4D object-by-change for three example cases resulting from region growing segmentation based on 

Dynamic Time Warping (DTW) distance as time series similarity in the period of a temporal change feature at a 
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seed location. (A) Time series of all 2D locations included in the segment coloured by DTW distance, with the 

reference time series (in blue) as seed location marked with star in (C) overview map. (B) Distribution of DTW 

distances in the segment with Gaussian kernel density estimate. 

The time series plots (Fig. 7, subfigures A) show the constellation of (i) the temporal course of 349 

surface change values and (ii) the spatial scale of surface change values within the segment. The 350 

skewness in the distribution of DTW distance values (Fig. 7, subfigures B) expresses the 351 

characteristics of continuous change of the sandy surface. Starting from a central seed location of 352 

high magnitude in a local elevation maximum, the similarity will gradually decrease mainly with 353 

increasing spatial distance. Limiting the region growing into space by the percentile threshold of 354 

adding new search locations (Section 3.3) provides a suitable means of constraining the 355 

segmentation. 356 

The decisive factor in the spatial delineation of 4D objects-by-change is the parametrization of the 357 

segmentation, i.e. the selection of a suitable DTW distance threshold for adding locations to the 358 

segment. The segmentation threshold influences the strictness in the spatial delineation of 359 

change processes. A larger threshold increases the spatial extent of a segmented change object, 360 

which is expressed in the distribution of DTW distance values, i.e. similarities in the history of 361 

surface change over time. However, no definition of spatial object boundaries for individual 362 

change processes is required. A variation of similarities within the area of a 4D object-by-change 363 

represents the degree of vagueness in its spatial extent. 364 

The spatial extents resulting for the selected cases show that the determination of the DTW 365 

distance threshold is independent of the spatial scale of a change process. Both a small area 366 

(case 1) and larger areas (cases 2 and 3) with different ranges of DTW distance values are 367 

spatially delineated (Fig. 7, subfigures C). Automatic parametrization is important for the 368 

application of the approach in operational geomorphic monitoring, where multiple process types 369 

can be detected. The transferability of the parameter determination method to other types of 370 

change processes and use cases requires investigation. 371 

The spatial segmentation of the different change processes for the selected cases is compared to 372 

pairwise surface change in the following section and shows how the 4D objects-by-change in our 373 

use case represent the change forms. 374 

4.3 Evaluation of 4D Objects-By-Change in Relation to Pairwise Change Detection 375 

In this section we compare the results obtained from the pairwise analysis to the 4D objects-by-376 

change. Animated visualizations are provided to illustrate the temporal evolution of surface 377 

change reflected in the time series segments of respective 4D objects-by-change (Supplements I-378 

III). 379 

The sand accumulation shifted by heavy machinery (case 1) is a case of surface change that is 380 

easily identifiable in the pairwise change detection as a spatially contiguous area of surface 381 
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change increase. Our approach is able to extract the change process at least as well in its spatial 382 

extent (Fig. 8). 383 

In comparison to the pairwise surface change analysis, the 4D objects-by-change provides 384 

additional information on the detected change process, such as its temporal evolution. It 385 

becomes apparent that the accumulation occurred rapidly and only little material was removed or 386 

shifted subsequently (Fig. 8A). From the simultaneous appearance and disappearance in the 387 

time series at all locations within the 4D object-by-change, we can deduce that it is a local 388 

accumulation form and no movement of the sand body occurred. 389 

 

Figure 8: 4D object-by-change extracted for an accumulation of sand built up and removed by heavy machinery 

(case 1). (A) Time series of all 2D locations included in the segment coloured by the similarity metric (Dynamic 

Time Warping distance). (B) Spatial extent and location of the reference time series (seed location, marked by 

star). (C) Rasters of pairwise surface height change at the start, maximum magnitude, and end of the temporal 

change feature compared to the first epoch of the time series. Start and end are marked by the triangles in the 

time series plot (A). Axes grid has a spacing of 20 m. 

The sand bar (case 2) is a natural accumulation that is visible in the topography but is not easily 390 

detected in the surface change data, as its spatial extent is difficult to define quantitatively. The 391 

segmented 4D object-by-change presents the spatial extent of the form with increasing 392 
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vagueness towards the borders, while the elongated core area shows high inner-segment 393 

similarity regarding the time series of surface change during existence of the sand bar (Fig. 9B). 394 

 

Figure 9: 4D object-by-change extracted for a sand bar (case 2). (A) Time series of all 2D 

locations included in the segment coloured by the similarity metric (Dynamic Time Warping 

distance). (B) Spatial extent and location of the reference time series (seed location, marked by 

star). (C) Rasters of pairwise surface height change at the start, maximum magnitude, and end 

of the temporal change feature compared to the first epoch of the time series. Start and end 

are marked by the triangles in the time series plot (A). Axes grid has a spacing of 50 m. 

The pairwise raster of the sand bar shows a state where the change object becomes 395 

distinguishable as a high-magnitude accumulation object (Fig. 9C, 2017-02-21). However, the 396 

visible pattern in the course of time series segments indicates that the sand bar deformed. 397 

Further, the sand bar moved over the time of its existence. This becomes visible in the animation 398 

of pairwise surface change, where the sand body is shifted in the bounding box of the 4D object-399 

by-change (Supplement II). The 4D change analysis therefore provides a more comprehensive 400 

assessment on the spatial extent of the sand bar than individual epochs of positive surface height 401 

change. 402 
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Figure 10: 4D object-by-change extracted for a form expressed through sand transport 

(case 3). (A) Time series of all 2D locations included in the segment coloured by the similarity 

metric (Dynamic Time Warping distance). (B) Spatial extent and location of the reference 

time series (seed location, marked by star). (B) Rasters of pairwise surface height change at 

the start, maximum magnitude, and stop of the temporal change feature compared to the first 

epoch of the time series. Start and stop are marked by the triangles in the time series plot 

(A). Axes grid has a spacing of 50 m. 

This aspect is advanced with the third case of sand material transported on destruction of a sand 403 

bar. This is only subtly manifested in the areal surface change, although it is well-delineable in 404 

the time series at individual locations (Fig. 10A). The relevance of considering the temporal 405 

domain for identifying this change process becomes particularly evident here. The change does 406 

not appear as distinctly delineable in the pairwise surface change and would likely not be 407 

identified from such analysis. Particularly in contrast to the surrounding higher magnitude 408 

changes, the surface change is hardly identifiable in individual rasters as spatially contiguous, 409 

delimited area of an individual change process (Fig. 10C). With this, time series-based change 410 

analysis improves the detection of change processes. To illustrate the representation of the 411 
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change process in the combined spatial and temporal domain, we refer to the animation provided 412 

in Supplement III.  413 

5. Discussion 414 

At present, standard approaches to geospatial change analysis are based on pairwise 415 

comparison between epochs. In multi-process geomorphic settings, this will often lead to 416 

quantified surface change being ambiguous to the underlying geomorphic change. Observed 417 

change can then not be linked to individual change processes.  418 

5.1 Improvement over Pairwise Surface Change and Implications for Geomorphic 419 

Analyses 420 

Existing methods of pairwise surface and object-based change analysis mostly require epochs to 421 

be selected for change quantification and thresholds to be set to detect and delineate observed 422 

objects and changes, which is typically based on their morphometric parameters. This 423 

requirement is difficult to meet on continuous surfaces, as given by the morphology of sandy 424 

beaches. Beach morphology and changes therein have conventionally been examined using 425 

surface elevation profiles (Smith & Zarillo, 1990), with multitemporal LiDAR being used to 426 

supplement these data in recent years (e.g. Miles et al., 2019; Stockdon et al., 2009; van 427 

Houwelingen et al., 2006). Accumulation forms, such as sand bars, can be localised in profiles 428 

based on their crests, and troughs in between, and their migration can be detected from the 429 

displacement of crests in repeatedly sampled profiles (Cohn et al., 2018; Levoy et al., 2013; Miles 430 

et al., 2019, Reichmüth & Anthony, 2008). This approach is convenient as the shaping and 431 

migration of forms is mainly wave-driven in a cross-shore direction. Sampling of parallel cross-432 

shore profiles accounts for long-shore variability in beach morphology (Grunnet & Hoekstra, 433 

2008; Masselink & Anthony, 2001). However, it has become evident that more comprehensive 434 

consideration of 3D morphology is required, for example, to understand the evolution of bar 435 

systems from their individual width and volume (Miles et al., 2019). LiDAR data provide high-436 

resolution 3D morphology of surfaces, yet describing morphologic forms from these data requires 437 

an approach for spatial delineation. When analysing the evolution of change forms, our method 438 

enables delineation directly in the spatial domain by making use of the surface change history, 439 

removing the need to localise morphometric parameters as is done in terrain profiles. Obtained 440 

4D objects-by-change provide a basis for analysing the spatial properties of extracted forms. 441 

In addition to improved spatial delineation, we obtain information regarding the evolution of the 442 

surface for all change types delineated in a 4D object-by-change in drawing upon the temporal 443 

domain. The temporal evolution of surface change can be used to interpret detected change 444 

processes. Considering the representative cases of morphologic change on the beach shown in 445 

this paper, cases 2 and 3 in particular require change evolution as information to deduce the 446 
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types of geomorphic activity involved. The transport of a sand mass given in case 3 does not 447 

become evident in either the spatial or temporal domain. If considered as image of pairwise 448 

surface change, the process would likely be interpreted as overall accretion on the surface within 449 

the spatial domain. Considering the time series of surface change at a single location, the change 450 

process may represent local accumulation and disappearance of material, formed naturally or by 451 

anthropogenic modification as in case 1. These aspects highlight the enhanced level of 452 

information given by a 4D object-by-change. The method uses this information in combining the 453 

spatial and temporal domains for spatiotemporal delineation, while current methods consider 454 

smaller subsets of data (pairwise) or information (only spatial or temporal domains). The further 455 

interpretation of identified and extracted change processes holds potential for improved 456 

comprehensiveness in the analysis and interpretation of geomorphic activity, for example by 457 

linking the transported sand mass as consequence to the destruction of a sand bar. Identifying 458 

and understanding relations between change processes is an important task in geomorphology, 459 

which is supported by our method. A prominent example is the detection of pre-failure 460 

deformation leading up to a rockfall event (Kromer et al., 2017; Royán et al., 2014). By spatially 461 

segmenting the area affected by pre-failure deformation using our method, the spatiotemporal 462 

properties of the resulting 4D object-by-change can provide information on the mechanisms of 463 

failure evolution. The detection of precursors to geomorphic change events and their 464 

spatiotemporal delineation represents an opportunity to apply our method, which can be 465 

integrated to increase the understanding of geomorphic process dependencies and the 466 

realization of early warning systems in hazard management (cf. Abellán et al., 2016). 467 

The ability to detect and delineate increasingly subtle change forms is a useful addition to the 468 

interpretation of change. We show this in our use case with the example of a mass of sediment 469 

being transported on destruction of a sand bar (case 3). Time series-based surface change 470 

analysis enables the capture of transient forms, which are important features of temporary 471 

sediment mobility particularly in the context of aeolian sand transport (Nield et al., 2011). Such 472 

short-term mobility and resulting displacement of sand mass was identified from linear trends in 473 

surface height change by de Vries et al. (2017) using short-term sub-hourly TLS time series 474 

acquired in a beach plot. Applying the extraction of 4D objects-by-change to the time series data 475 

could provide additional information on the behaviour of mobilised sand in this setting. Similar to 476 

case 3 in this paper, migrating features would be delineated as individual objects and can be 477 

separated from locations that are subject to local erosion or accumulation only. By delineating 478 

change forms spatiotemporally, our approach enables to decouple them from other potentially 479 

overlapping changes, such as longer-term overall accretion on the beach co-occurring with the 480 

transient change form of case 3.  481 
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5.2 Methodological Considerations for 4D Objects-By-Change  482 

We present the detection and delineation of surface change acting bidirectionally on a location, 483 

such as the formation and disappearing of an accumulation form (cases 1 and 2) or the transient 484 

form of a transported sand mass that appears in local surface change only temporarily (case 3). 485 

The methodological aspect to be highlighted here is that the temporal delineation of bidirectional 486 

change is independent from the temporal scale, i.e. definitions of timing and duration of a change 487 

process. Given a topographic time series, bidirectional change can therefore be captured and 488 

considered in the analysis of volume change in a geomorphic system. The effect of such changes 489 

being lost to the observation was highlighted in Anders et al. (2019), where observed volume 490 

change on a sandy beach was reduced by a factor of five if temporary accumulation forms, such 491 

as the existence of a sandbar over few weeks, are not included in the analyses. The application 492 

of our method is not necessarily exclusive to surface change values, as it may also be used 493 

directly upon time series of gridded elevation data (e.g. Digital Elevation Models) and then does 494 

not require a decision on the reference epoch. The strength of our approach and previously 495 

outlined improvements over current approaches of surface change analysis apply particularly in 496 

geomorphic settings where material is deformed and transported over predominantly continuous 497 

surface morphology.  498 

While focusing on the detection of bidirectional change which characterises complex geomorphic 499 

settings, the temporal change delineation in our presented method can be extended to include 500 

further geomorphic change types. Generically, this regards the identification of unidirectional 501 

changes such as erosion being permanent after a discrete event or on conclusion of a continual 502 

change process. This will require application-dependent definitions of when a change is 503 

considered permanent to conclude a change process, such as continuous surface height 504 

increase through accretion on the beach. Discrete events on the beach can be erosion induced 505 

by heavy storms, which often interrupt continual processes (O’Dea et al., 2019). While time 506 

series-based surface change analysis thereby provides an approach for comprehensive 507 

observation of geomorphic activity in multi-process systems, it might be less useful to replace 508 

current approaches in settings where morphologic change occurs predominantly unidirectionally 509 

and event-driven. For example, in rockfall monitoring on a coastal cliff – in contrast to rockfall 510 

events embedded in the multi-process setting of an active landslide – discrete events are 511 

distinctly identifiable in the three-dimensional surface morphology and their volume can be 512 

quantified from pairwise comparison of the pre- and post-event state of the surface (Williams et 513 

al., 2018). For general applicability to the analysis of geomorphic activity, we expect our method 514 

to be useful as soon as the temporal sampling of the topographic data exceeds the movement 515 

rate of change, i.e. the transition from the initial to the altered surface morphology is represented 516 

in several epochs of the time series. To what temporal resolution the time series can be reduced 517 

for different change types and use cases will require investigation. 518 
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In addition to the spatial and temporal properties of a surface change process, the spatial-519 

temporal grouping of time series segments provides a new information layer given in the similarity 520 

metric of DTW distance. Grouping change processes extracted from large geospatial time series 521 

builds the basis for identifying patterns, such as periodicity in the timing of occurrence or spatial-522 

temporal sequences of change types. For example, sand bar evolution can be investigated on the 523 

level of single objects, but also regarding patterns of migration within the system for different 524 

object types (cf. Section 5.1). For this, the inner-segment distribution of similarities provides an 525 

attribute for semantic classification of process types for a number of objects, even generically 526 

where not all occurrences are known. This renders the approach advantageous also for change 527 

analysis where the delineation of areas or objects underlying morphologic change is distinct and 528 

defined. Where spatial boundaries are not definite, the distribution of DTW distances in the area 529 

of an identified change process reflects extensional uncertainty, for example in case of 530 

decreasing similarity towards the spatial boundary of an object. This vagueness in the spatial 531 

extent of objects has been subject to research particularly for the case of sandy beaches 532 

(Molenaar & Cheng, 2000; Stein et al., 2004). When handling geomorphic objects or change 533 

forms as vague spatial objects (Dilo et al., 2007), DTW distances could be used as quantification 534 

of vagueness provided in a 4D object-by-change. 535 

6. Conclusion 536 

We have presented a technique to extract 4D objects-by-change using time series-based change 537 

analysis of natural surfaces within settings of spatially and temporally variable change. The 538 

approach improves the level of information that can be gained from time series of topographic 539 

data compared to standard pairwise analysis. It enables the detection of processes of change 540 

over a range of timescales and without requiring a selection of epochs to use for surface change 541 

quantification. Change forms are spatially delineated, which is independent of thresholds that are 542 

typically required for extracting objects from epochs of surface change. The extracted 4D objects-543 

by-change provide information on the characteristics of change processes with detailed histories 544 

of identified surface change that are present in geospatial time series. Several fields of 545 

application are discussed where the method can improve change analysis and provide new 546 

insights on spatiotemporal properties of geomorphic activity. This methodological advancement is 547 

particularly relevant in light of the growing availability of time series data both through continued 548 

survey repetitions and increasing numbers of near-continuous TLS acquisitions at increased 549 

temporal resolution. 550 
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