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ARTICLE INFO ABSTRACT
Keywords: As urbanization accelerates, aging infrastructure demands more advanced inspection methods for structural
Generative artificial intelligence health monitoring. The growing integration of artificial intelligence (AI) and computer vision technologies has

Structural health monitoring
Image restoration

Data augmentation
Multi-modal generative Al
Large language model

significantly enhanced damage detection accuracy while simultaneously reducing inspection time and opera-
tional costs. Despite these advantages, the adoption of Al-based technologies in infrastructure maintenance re-
mains limited due to challenges related to data. One major issue is the lack of comprehensive, task-specific
annotated datasets. Another is the poor quality of images captured by drones or mobile devices, which are often
affected by noise, blurring, and inconsistent lighting. Although recent advances in generative Al offer promising
support for structural health monitoring, it remains unclear which models are best suited for specific tasks.

This study examines the use of generative Al in structural health monitoring, focusing on key challenges such
as limited datasets and low-quality image restoration. The review covers a range of generative Al technologies,
outlining their principles, strengths, limitations, and representative applications to support the selection of
appropriate tools for specific tasks. Generative Al models enable accurate image segmentation and structural
anomaly detection using limited training data. The paper also explores new opportunities for integrating multi-
modal generative Al to enhance human-computer interaction in support of structural health monitoring. A
framework is proposed to streamline the use of generative AI technologies for data augmentation, image
restoration, damage inspection, and human-computer interaction in structural health monitoring.

1. Introduction growth, and the efficient use of resources. According to the ASCE, 6.8 %
of the 623,000 bridges in the U.S. are in poor condition [1], especially in
Aging infrastructure poses serious risks to public safety, economic disaster-prone regions. Timely inspection is essential to identify early
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damage and reduce long-term repair costs. However, traditional in-
spection methods are labor-intensive and time-consuming [2]. Recent
advances in deep learning and computer vision enable faster and more
automated damage assessments [3]. Drones equipped with cameras can
capture images of infrastructure [4,5], which are analyzed using Al
models such as CNNs (e.g., VGG, ResNet) for crack detection [6]. Object
detection models such as Faster-RCNN and YOLO localize damage [7,8],
while segmentation models like Transformers, U-Net, and DeepLabV3 +
help measure crack widths from annotated datasets [9-11].

The quality of datasets is critical for both training deep learning
models and ensuring their ability to generalize across different envi-
ronments [12]. Limited data availability remains a major challenge. In
many scenarios, data may be scarce or difficult to obtain. For example,
fiber-reinforced concrete tends to generate dense microcracks, which
models trained on conventional concrete datasets often fail to detect
accurately [13]. Additionally, small-scale datasets are insufficient for
training highly accurate detection models, limiting their effectiveness in
real-world applications. Data imbalance remains a critical issue, as most
datasets are heavily skewed toward cracks, while defects like corrosion
and exposed rebar are scarce, reducing model accuracy in detecting
these underrepresented categories [14]. Additionally, poor image
quality caused by factors such as inadequate lighting, motion blur,
shadows, and noise also hinders accurate analysis [15]. These challenges
highlight the need for synthetic data and image restoration techniques to
enable reliable Al deployment in real-world scenarios.

Generative Al techniques, especially GANs, have gained extensive
attention for their capabilities to produce high-quality synthetic data
through adversarial training between the generator and the discrimi-
nator networks [16]. In structural health monitoring, generative Al re-
fers to machine learning techniques that generate realistic damage
representations by learning patterns from existing data. Various GANs
have already shown promise for multiple tasks [17]. For example,
DCGAN and WGAN-GP can generate simulated damage data that aug-
ments existing datasets, offering more diverse features in terms of
texture, shape, and pixel intensity [18,19]. StyleGAN has been employed
to enhance the performance of crack recognition through style transfers,
thereby improving the accuracy of deep learning models in infrastruc-
ture inspection [20]. Additionally, SRGAN has proven effective for
super-resolution reconstruction, converting low-resolution images into
high-resolution ones to boost the precision of inspection models [21,22].
The primary data analyzed in the reviewed studies are image-based,
acquired through drones and handheld devices [23,24]. Although
crack detection remains the most studied application [25,26], some
works have addressed other damage types, such as corrosion, spalling,
and exposed rebar [14]. Collectively, these advanced techniques address
key limitations in current workflows, including data scarcity and image
quality issues, leading to more efficient and reliable inspection strate-
gies. Despite recent advances in generative Al for data augmentation and
image enhancement, the optimal models for specific tasks remain
uncertain.

Advanced Al technologies such as vision-language models and LLMs
are opening new opportunities for innovation in infrastructure inspec-
tion. Vision-language models integrate visual and textual data, facili-
tating accurate defect classification and automated reporting [27]. In
computer vision-based structural health monitoring, integrating LLMs
can improve human-machine interaction and interpretation of complex
inspection data. A recent study employed multi-modal GPT-40 mini for
zero-shot detection of fatigue cracks in steel bridges [28]. It enables the
chatbot to interactively analyze images, interpret damage descriptions,
and provide real-time feedback on both visual data and textual prompts.
Contextual object detection with LLMs further enhances inspection
processes by enabling models to identify and interpret objects within
complex scenes using contextual information [29]. Together, these
technologies significantly improve efficiency, precision, and contextual
understanding of inspection workflows. Notably, vision-language
models and LLMs are emerging technologies with limited use in
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damage detection. A comprehensive review is needed to explore current
developments, identify key challenges, and outline future research
directions.

To address these challenges, this study systematically evaluates the
application of generative Al in computer vision-based structural health
monitoring, focusing on bridges, pavements, and buildings. This review
covers multiple damage types, though most studies focus on cracks, with
limited studies on cavities, spalling, corrosion, and exposed rebar. The
contributions of this research are summarized as follows: (1) Provide an
in-depth analysis of the benefits and limitations of various generative Al
models and their specific applications in damage assessment. (2)
Conduct a comprehensive comparison to determine the most suitable
methods for addressing different scenarios effectively. (3) Review
innovative methods with potential applications in structural health
monitoring and propose future directions for leveraging generative Al to
enhance inspection practices. (4) A framework is proposed to streamline
the use of generative Al technologies for data augmentation, image
restoration, damage inspection, and human-computer interaction in
structural health monitoring.

In summary, generative Al plays a transformative role in computer
vision-based structural health monitoring by expanding the capabilities
of image generation, enhancement, and interpretation. It addresses
limitations such as data scarcity, imbalance, and low image quality by
generating realistic synthetic data and simulating diverse defect sce-
narios. In addition, the advancement of visual language models and
large language models improves human-computer interaction by
enabling more intuitive interpretation of visual data. Their integration
of extensive text-based knowledge supports more informed, context-
aware decision-making, helping shift infrastructure maintenance from
reactive to predictive approaches.

2. Overview
2.1. Statistical analysis

Based on the scope of the research, a keyword search was conducted
focusing on the application of generative Al in damage inspection of
pavements, building structures, and bridges. The targeted damage types
include cracks, spalling, cavities, corrosion, and exposed rebar. The
topics covered include data augmentation, image restoration, image
segmentation, and multi-modal generative AL The search utilized
keyword combinations such as {“Generative AI”} and {“Concrete” or
“Pavement” or “Bridge”} and {“Damage” or “Crack” or “Defect”}. The
resulting literature will serve as key references for this review article. To
ensure the selected research literature exhibits high relevance, the
following steps will be implemented: (1) An initial keyword search was
conducted in the Scopus database within the time frame of 2020-2025
to ensure the selected literature represents the latest research trends. (2)
All relevant literature identified through the keyword search will be
exported, including information such as publication year, DOI, and
keywords. (3) Duplicate entries were removed based on DOIL. (4) The
first 100 articles were reviewed and served as the primary reference
sources for this study. The keyword search initially retrieved 520 arti-
cles. After removing 85 duplicates and 176 irrelevant entries, 259
unique articles (Fig. 1) were retained. Together with other supplemen-
tary references, resulting in 133 references.

Fig. 1 shows the number of publications on generative Al in infra-
structure maintenance from 2020 to 2025, highlighting a clear upward
trend in related research in recent years. There are two main reasons
behind the rapid development of generative Al in infrastructure main-
tenance. First, the scale of real-world data on infrastructure is limited,
including damage data from bridges, roads, and buildings. Many data-
sets only consist of a few hundred to a few thousand images [30-32].
This scarcity necessitates the use of generative Al to augment datasets,
thereby improving the performance of deep learning models tailored for
structural health monitoring. Second, the rapid advancement of
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Fig. 1. Publications on generative Al-assisted infrastructure maintenance from
2020 to 2025.

generative Al reflects that performance in tasks like damage detection
has largely converged around established models such as DeepLabV3+,
SegFormer, and YOLO. Many practical challenges, such as damage in-
spection, pothole detection, and corrosion assessment, have been
addressed satisfactorily. As a result, it is becoming increasingly difficult
for new publications to offer novel contributions in these areas. In
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contrast, the field of generative Al remains in a dynamic and fast-
evolving phase, continually generating fresh concepts and applica-
tions. For example, text-to-image generation and large language models
are not commonly applied in structural health monitoring.

A comprehensive knowledge map for generative Al in structural
health monitoring is developed by analyzing core concepts such as
generative adversarial networks and their connections to deep learning,
crack detection, pavement cracks, image restoration, synthetic data,
super-resolution, semantic segmentation models, and others. These re-
lationships are visualized in Fig. 2. This map visualizes the relationships
between key concepts, methodologies, and applications within the field.
Keywords from each reference are categorized and connected, high-
lighting the most frequently occurring terms and their linkages to
related topics. The most frequent keyword in the knowledge map is
“generative adversarial network,” indicating its prominence as the
dominant model in the literature. This model is closely associated with
key civil engineering applications such as “crack “detection,” crack
segmentation,” “semantic segmentation.” Cracks remain the primary
focus of structural damage analysis. A temporal analysis of keyword co-
occurrence reveals clear shifts over time. From 2020 to 2022, research
was heavily centered on GANs, which appeared in approximately 70
percent of papers, often in conjunction with terms like “crack detection”
and “data augmentation,” reflecting their central role in synthetic data
generation for structural inspection tasks. However, from 2023 to 2025,
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keywords like “diffusion model” and “large language model” surged in
frequency, marking a transition toward higher-fidelity image synthesis,
such as Stable Diffusion, and Al-assisted analysis and reporting, such as
ChatGPT. During this period, GAN mentions declined by about 20
percent. Domain-specific terms such as “bridge inspection” and “pave-
ment crack” remained consistently present but showed evolving asso-
ciations. Notably, co-occurrences between “LLM” and “visual question
answering” began to emerge after 2024, suggesting growing interdisci-
plinary integration. Meanwhile, core technical terms like “deep
learning” and “semantic segmentation” persisted across all years,
underscoring their foundational importance to the field.

2.2. Roadmap of generative Al development

Fig. 3 presents a detailed roadmap outlining the evolution and
application of generative Al from its inception in 2013 to projected
advancements through 2025. The roadmap is structured into five main
periods: the VAE, GANs, Diffusion Models, LLM, and Multi-modal
generative Al, which are subsequently introduced as follows: (1) VAEs
combine deep learning with Bayesian inference by mapping inputs to a
probabilistic latent space and sampling from it to generate variable
outputs. The decoder reconstructs these to resemble the original data.
VAE:s are widely used in structural health monitoring, damage detection,
data augmentation, and predictive maintenance [33]. (2) GAN models
are crucial in structural health monitoring by generating high-quality
synthetic data, enhancing image resolution, and identifying anomalies.
They expand training datasets with synthetic images of defects, boosting
the performance of AI models [34]. GAN models include specialized
variants tailored to specific tasks, such as DCGANs for data generation
[351, Conditional GANs for image translation [36], StyleGANs for style
transfer [37], and SRGANSs for image super-resolution [38]. (3) Diffu-
sion models are a type of generative model that progressively transform
simple noise distributions into complex data distributions [39]. Stable
Diffusion particularly excels in text-to-image generation, which is able
to convert textual descriptions into highly detailed and realistic images
[40]. (4) Multi-modal generative AI combines domains like text,
image, audio, and video generation, enabling cohesive cross-media
outputs [41]. Examples include DALL-E [42] and Imagen [43], which
convert text into detailed images, and Meta’s Make-a-Video [44], which
generates videos from text prompts. LLMs like GPT-4, built on trans-
former architectures, excel in language tasks such as text generation and
summarization [45]. In civil engineering, they automate documentation
[46], assist in design [47], and predict maintenance needs [48],
enhancing accuracy, efficiency, and innovation in infrastructure devel-
opment. In recent years, GPT-4 has evolved into a multi-modal model
capable of handling not only text data but also processing data related to

images, audio, and more.
2014-2020
2013-2015

Generative
Adversarial
Variational Networks
Autoencoders (GANs)
(VAEs)
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3. Generative Al applications

Section 3 is organized into five main sections that collectively
represent a progressive workflow for applying generative Al techniques
in structural health monitoring. Section 3.1 begins with dataset
augmentation, which addresses the challenge of limited or imbalanced
training data and lays the foundation for robust model development.
Section 3.2 covers image restoration, which enhances data quality by
mitigating issues such as noise and poor lighting conditions. When
combined, data augmentation and image restoration contribute to the
creation of high-quality datasets. Building on this, Section 3.3 focuses on
image segmentation, which relies on improved data quality to accu-
rately isolate structural features or defects, enabling precise localization
of damage. Finally, Section 3.4 discusses multi-modal generative Al,
which integrates visual and textual modalities to enhance interpreta-
tion. Section 3.5 summarizes key challenges and future research di-
rections. These sections trace a path from data enhancement to high-
level insight, highlighting the impact of generative Al on structural
health monitoring.

3.1. Dataset augmentation

Generative Al models have emerged as a powerful technique for data
augmentation, providing an effective way to enlarge datasets. The pri-
mary issues with the datasets are data scarcity and data imbalance [49].
Data scarcity refers to a lack of sufficient data for training, while data
imbalance occurs when some classes are underrepresented, leading to
poor performance on those classes. Traditional methods used in com-
puter vision tasks for data augmentation include image cropping, flip-
ping, rotation, and scaling [50]. These methods are easy to use but limit
the diversity of augmented images, potentially leading to repetitive
datasets. In contrast, synthetic data from generative AI models can
introduce variations that were not present in the original dataset,
helping to create more robust models that generalize better to unseen
data [51].

3.1.1. Unsupervised dataset augmentation

The original GAN is a classic unsupervised neural network model
[52]. To provide a deeper understanding of GANSs, this paper will pro-
vide a detailed discussion from several perspectives, including the
fundamental concept and model architecture [16,53]. GANs comprise a
generator and a discriminator [54]. The objective of GANs is to train a
generator to create highly realistic data through adversarial training
[55]. The generator takes random noise as input and generates synthetic
data, while the discriminator attempts to distinguish between the real
data and the data generated by the generator [13,56]. Fig. 4 illustrates
the GAN model used for data generation.

2020-2023

Diffusion
Models

2020-present

Multi-Modal
Generative Al

Fig. 3. Roadmap of the development of generative AI techniques.
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Fig. 4. Illustration of a GAN model for data generation [57].

A typical GAN used for data generation is DCGAN. DCGAN includes
both a generator and a discriminator [58]. In the generator, transpose
convolutional layers (also known as deconvolutional layers) up-sample
the noise to the desired image size [59]. In the discriminator, convolu-
tional layers down-sample the input image, with a Sigmoid function in
the output layer to produce a probability score indicating whether the
image is real or fake [60]. DCGAN training begins with initializing
random weights for both the generator and discriminator. The generator
creates a fake image from random noise and feeds it to the discriminator
[61]. The discriminator is trained using both real images and the fake
images produced by the generator [62]. It calculates the loss based on a
classification loss function (e.g., BCE loss) and updates its weights to
minimize this loss [60]. This process is repeated over many epochs until
the generator produces images that are sufficiently realistic [63]. To
address the vanishing gradient problem, the WGAN replaces the BCE
loss with Wasserstein loss [64]. The goal of Wasserstein loss is to
minimize the Wasserstein distance between the real and generated data
distributions. Further improvements are made by incorporating a
gradient penalty term into the Wasserstein loss, resulting in the WGAN-
GP model [18,65]. This gradient penalty term is added to the critic’s loss
function to enforce the Lipschitz constraint, which is crucial for stable
training. The gradient penalty encourages the gradient norm to be close
to 1, ensuring that the critic adheres to the Lipschitz continuity
requirement.

StyleGAN introduces a novel style-based generator architecture
[20,66]. StyleGAN transforms the latent vector z into an intermediate
latent space w. Intermediate latent space controls the style at each
convolutional layer through AdaIN [20]. AdaIN enables the application
of styles at different layers, allowing control over coarse, middle, and
fine features of the generated images. The network generates images
from the intermediate latent code w, with styles applied at each layer to
influence the final image. Additionally, StyleGAN uses progressive
growing, starts with a low resolution and gradually increases the reso-
lution of generated images during training. This technique aids in sta-
bilizing the training process and enhances image quality.

GAN:Ss for data generation

The data generation framework is summarized in Fig. 5. Initially, the
original dataset is collected and fed into a generative Al model. This
model generates additional synthetic images, expanding the original
image dataset. The enlarged dataset is then used to train various models:
classification models (e.g., VGG-16 and ResNet), object detection
models (e.g., Faster R-CNN and YOLO) using the dataset with bounding
boxes, and semantic segmentation models (e.g., U-Net and SegNet) using
the dataset with masks. The DCGAN, WGAN, and WGAN-GP models are
types of unsupervised GANs designed to generate data without requiring
labeled datasets. This ability is particularly valuable because acquiring
labeled data is often a challenging, time-consuming, and costly process.
By leveraging these unsupervised GANs, researchers can efficiently
produce high-quality synthetic data, improve the performance of ma-
chine learning models, and facilitate various applications where labeled
data is scarce or unavailable.

Generative Al models have been utilized to enhance datasets for
various tasks such as classification, object detection, and semantic seg-
mentation. In [67], DCGAN was used to generate high-resolution images
at 256 x 256 pixels. The size of dataset increased from 4,160 to 9,600
images. This study categorized the dataset into five types of pavement
defects: horizontal crack, vertical crack, alligator crack, pothole, and
non-crack. The VGG16 model was employed to classify these pavement
defects. By augmenting the dataset with images generated using
DCGAN, the classification accuracy of VGG16 increased from 88.6 % to
91.4 %, demonstrating the significant impact of generated data on
improving model performance. In [18], GAN models were used to
augment datasets for pavement crack detection. This study proposed an
improved WGAN-GP model to generate 512 x 512 pixels pavement
images, addressing the issue of data scarcity. The study creates a syn-
thesized dataset of grooved pavement crack images by combining
generated crack images with real images. The robustness of the
improved WGAN-GP model was validated using Faster R-CNN, YOLOv3,
and YOLOv4 models for region-level detection, increasing the mAP
scores from 68.0 %, 75.6 %, and 72.9 % to 74.6 %, 82.0 %, and 80.2 %,
respectively. In [16], a GAN model was developed to augment a multi-
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Fig. 5. Illustration of a data generation framework using GANs for improving deep learning performance.
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class image dataset for damage classification. The augmented dataset
improved the average accuracy of the VGG model from 85.7 % to 97.6
%. Table 1 summarizes the studies that apply GANs for data augmen-
tation, including the specific GAN models used, the types of applica-
tions, as well as the corresponding detection and classification models.
Additionally, it quantitatively presents the performance metrics, high-
lighting the accuracy of each model.

3.1.2. Unpaired dataset augmentation

Unpaired data augmentation GANs enhance datasets without
requiring paired samples. When image-to-image translation pairs are
hard to obtain, models like CycleGAN use unpaired data from two do-
mains, leveraging dual generators and discriminators with cycle con-
sistency to preserve original content [75]. A key example is CycleGAN,
which uses dual generators and discriminators with cycle consistency to
translate between domains while preserving original content [76-78].
In [77], the study addressed the challenge of detecting pavement cracks
under shadow interference, which hinders the performance of deep
learning models. The authors used CycleGAN to generate realistic
shadowed crack images from unshadowed ones, without the need for
paired training data, leading to improved segmentation performance of
the U-Net model. In [79], CycleGAN was used to generate 500 synthetic
damage images, including cracks and spalling in concrete structures.
Using this augmented dataset, the damage segmentation accuracy of the
DeepLabV3 + model improved from 75 % to 90 %. In [80], The Cycle-
GAN was used to augment pavement damage data, including cracks and
potholes, while boosting the mAP of YOLOV5 from 77.0 % to 85.0 %. In
[81], CycleGAN was utilized to generate synthetic images and synthetic
labels, effectively doubling the crack dataset size from 1,703 to 3,406.
The expanded dataset improved crack segmentation accuracy of atten-
tion U-Net model, raising the mAP score from 95.2 % to 97.5 %. The
illustration of using CycleGAN for data augmentation is shown in Fig. 6.

3.1.3. Semi-supervised dataset augmentation

In the original GAN, classifiers typically categorize input data into
real or fake [82]. However, in a semi-supervised GAN, the discriminator
is enhanced into a multi-class classifier that not only distinguishes be-
tween real and fake images but also categorizes real images into one of
the N + 1 classes, where N represents the number of classes in the
training dataset, with the additional class representing fake samples
generated by the generator [83-85]. Compared to supervised learning
methods, semi-supervised learning significantly reduces the need for

Table 1
Summary of GAN models for data generation.
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labeled data while maintaining high classification accuracy [86]. For
instance, a semi-supervised GAN a semi-supervised GAN can classify
whether test samples contain a crack or not [87]. The ratio of labeled to
unlabeled samples can be adjusted as a variable parameter, and addi-
tional unlabeled samples can also be incorporated to further enhance the
performance of the model. The ratio of labeled to unlabeled samples
ranged from 1/5 to 1/30, resulting in classification accuracy exceeding
93.5 %. The highest accuracy of 0.953 and F1-score of 0.976 were
achieved by using only 1/5 of the labeled samples combined with an
additional 10,000 unlabeled samples [87]. The illustration of semi-
supervised SGAN is shown in Fig. 7.

3.1.4. Supervised dataset augmentation

Supervised dataset augmentation relies on paired data, where each
input corresponds directly to a labeled output [88]. In [79], CGANs are
used to generate concrete damage (cracks and spalling) from hand-
painted semantic masks. The study utilized models such as pix2pix,
OASIS, and pix2pixHD for data augmentation, and compared the quality
of generated images using IS and FID. The pix2pixHD model achieved a
higher IS score of 2.41 and a lower FID score of 121.3, indicating better
performance in generating synthetic data. Images generated using the
pix2pixHD model were further used for crack segmentation. These
generated images were labeled to train segmentation models such as
FCN, PSPNet, and DeepLabV3+, resulting in improved mIoU scores from
82 % to 90 %, 85 % to 89 %, and 75 % to 90 %, respectively [79]. In
[89], an L1-CGAN was proposed to generate bridge damage images such
as rebar exposure based on segmentation masks. The model was trained
using 208 concrete bridge images and produced 840 synthetic samples.
The augmented dataset increased the mIoU of SegNet from 65.7 % to
81.4 %. In [36], pix2pix was applied to generate image with crack from
segmentation map. The augmented dataset was further used to train
segmentation models, including FCN, U-Net, and DeepLabV3 + . The
enlarged dataset consisted of 7,800 synthesized crack images and 7,800
real crack images. The results demonstrated that the models trained with
synthesized images achieved mlIoU scores exceeding 74 %. An illustra-
tion of using CGAN for data generation is shown in Fig. 8.

3.1.5. Text to image

Stable Diffusion generates detailed images from text descriptions
using a latent diffusion process [40]. As an LDV, it combines VAEs, U-
Net architectures, and transformer-based text encoders to create high-
quality images. The model employs a forward diffusion process to add

No. Year GAN model Application Task Deep learning Accuracy (%) Ref.

1 2021 DCGAN Pavement crack Object detection Faster R-CNN 84.9 to 87.8 [19]

2 2022 GAN Building crack, rebar exposure, delamination, leakage Classification VGG16 85.7 to 97.6 [16]

3 2022 GAN Building crack, rebar exposure, delamination, leakage classification Classification ResNet-50 75 to 96.1 [16]

4 2022 GAN Building crack, rebar exposure, delamination, leakage classification Classification MobileNetV2 68.9 to 96.9 [16]

5 2022 DCGAN Building crack Classification Deep CNN 91.4 to 92.8 [68]

6 2022 StyleGAN Bridge crack Classification ConvNeXt Up to 100 [20]

7 2022 StyleGAN Bridge crack Classification ResNet-152 Up to 99.9 [20]

8 2023 APC-GAN Pavement crack Semantic U-Net 81.2to 83.6 [69]
segmentation

9 2023 WGAN-GP Pavement crack Object detection YOLOv4 72.9 to 80.2 [18]

10 2023 DCGAN Pavement crack Classification VGG16 88.6 to 91.4 [67]

11 2023 DCGAN Bridge crack and pitting Classification Normal CNN 72.1 to 76.0 [70]

12 2024 HGAN Building crack Semantic LinkNet 92.5 to 97 [13]
segmentation

13 2024 HGAN Building crack Semantic Vision transformer 93.7 to 98.2 [13]
segmentation

14 2024 SEGAN Building crack Semantic U-Net 83.4 to 94.5 [71]
segmentation

15 2024 MCT2GAN Building crack Semantic DeepCrack 68.4 to 71.8 [72]
segmentation

16 2025 DCGAN Building crack, spalling, leakage Object detection YOLOvV5 75.6 to 81.4 [73]

17 2025 MaskGAN Building crack Object detection YOLOvV5-seg 88.2 t0 98.6 [74]
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noise and a reverse process to denoise and reconstruct the image. The
VAE maps images into latent space, while the U-Net handles denoising
using skip connections, self-attention, and cross-attention, allowing for
text-conditioned guided image generation. Fig. 9 illustrates the text-to-
image generation process using a Stable Diffusion model [90]. The
encoder extracts key information from the input text, which is trans-
formed into latent space and decoded into the final image. Stable
Diffusion holds significant potential for application in computer vision-
based structural health monitoring. It can generate synthetic data to
train Al models for anomaly detection, addressing challenges related to
data scarcity. As reported in [90], the Stable Diffusion model was used to
generate images of concrete surface damage, including cracks, spalling,
and exposed rebar. This approach synthesized new damage images by
pairing text and image data. To fine-tune Stable Diffusion, a training
dataset of 678 images was assembled, and fine-tuning was performed
using low-rank adaptation. As a result, a method for synthesizing highly
diverse and high-quality concrete damage images was developed. In
[91], crack images were generated by fine-tuning a Stable Diffusion
model with text prompts. The synthetic images were subsequently used
to train a crack detection neural network, achieving up to a 35.30 %
improvement in F1 score and an average increase of 21.34 % compared
to baseline methods. In conclusion, improving generalizability is crucial,
as models trained on a single dataset often underperform when applied
to different datasets or conditions. Stable Diffusion shows strong
generalization when effectively prompted, enabling image generation
across diverse textures and environments.

Despite their potential, several challenges limit the widespread
adoption of text-to-image models. A major obstacle is that models like
Stable Diffusion typically require paired image-text data for fine-tuning,
which is often scarce or costly to obtain in specialized domains like
structural health monitoring. Furthermore, generating high-resolution
output demands substantial computational resources (e.g., GPU re-
sources), posing difficulties for deployment in resource-constrained
environments.

3.1.6. Performance metrics for dataset augmentation

The performance of data generation is typically assessed using the IS
and FID [92]. The IS measures image quality and diversity, with higher
scores indicating better performance. FID assesses the similarity to real
images, where lower scores indicate better performance.

IS = expEx,, KL(p(y1x)|p(y)) W

where G represents the generative model, D represents the Inception
classifier, p(y|x) represents the class distribution generated by a given
input image x, p(y) is the average class distribution of all input images,
and KL represents the Kullback-Leibler divergence.

1
FID = [, — g +Tr(zr+zg—2<zrzg>z) @

where y, and y, represent the mean values of real images and synthetic
images, respectively; X, and X, represent the covariance matrices for the
real images and the synthetic images, respectively.
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3.1.7. Summary of dataset augmentation

Compared to traditional data augmentation methods based on image
processing, data augmentation leveraging generative Al demonstrates
superior performance in subsequent detection and segmentation tasks.
Different generative Al models are applied based on specific scenarios,
as summarized in Table 2: (1) Unsupervised data augmentation: When
no labeled data is available, models like DCGAN can be utilized. How-
ever, these models have limitations in generating high-resolution images
and often struggle to capture complex data distributions. (2) Unpaired
dataset augmentation: When labeled data is scarce, unpaired dataset
augmentation methods, such as CycleGAN, are promising for generating
data without requiring paired samples. (3) Semi-supervised dataset
augmentation: This approach is typically used in classification tasks
involving large amounts of unlabeled data, leveraging both labeled and
unlabeled data for better model performance (e.g., semi-supervised
GAN). (4) Supervised dataset augmentation: While capable of gener-
ating high-quality images, this method requires paired datasets for
training (e.g., Conditional GANs), which can be a limiting factor in
certain applications. (5) Text-to-image: Stable Diffusion is the most used
text-to-image model for generating images of concrete damage based on
text prompts. It can produce diverse and highly customizable images.
However, it is computationally intensive and requires text-image pairs
for fine-tuning.

3.2. Image restoration

Fig. 10 illustrates various image restoration tasks using generative
Al including image denoising, image super-resolution, low-light
enhancement, overexposure correction, and image deblurring. For
image denoising, generative Al effectively removes random noise from
the input, producing a cleaner and more detailed image [93]. In low-
light enhancement, the model brightens underexposed images,
revealing hidden details while preserving natural lighting conditions
[94]. Overexposure correction addresses regions with excessive bright-
ness, recovering lost details and restoring image balance. Image
deblurring improves the sharpness of blurred images by reconstructing
edges and fine details [94]. Furthermore, super-resolution upscales low-
resolution images, enhancing details and improving clarity [95]. Each of
these tasks highlights the capacity of generative Al to transform
degraded or suboptimal images into visually enhanced outputs, specif-
ically tailored to address distinct image restoration challenges. The
restored images can be utilized for image-based infrastructure
inspection.

3.2.1. Image denoising

Denoising is a supervised learning task that trains a model using
noisy images as inputs and clean images as targets. GANs for denoising
use adversarial training, where a generator creates clean images, and a
discriminator distinguishes between real images and generated images.
In [96], GANs were used to remove shadows, and their denoising
capability significantly enhanced the quality of shadowed crack images
and boosted U-Net segmentation accuracy (IoU) from 0.152 to 0.879.
Diffusion models recently demonstrated superior performance in image

Table 2
Summary of data augmentation methods (DA: Data augmentation).
No. Strategy Applications Pros Cons Models
1 Unsupervised DA Generates samples from unlabeled data No labeling cost, improves May produce unrealistic samples DCGAN, WGAN-
diversity GP
2 Unpaired DA Translate styles across unrelated datasets ~ Enables cross-domain Require complex training, may introduce CycleGAN
augmentation artifacts
3 Semi-supervised Combines few labeled + many unlabeled  Efficient use of limited labeled = Depending on initial label quality Semi-supervised

DA samples data
4 Supervised DA Handwriting mask to generate images
5 Text-to-image Generates images from text prompts

High label consistency
Customizable outputs

GAN
CGANs, DDPM
Stable Diffusion

Less flexible, requires full labels
Computationally expensive, needs text-image
alignment
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Fig. 10. Illustration of image restoration tasks using generative Al

denoising by employing a Markov chain process to progressively add
and reverse noise, ensuring greater stability in handling large data
variations [97]. Specifically, diffusion models have been applied to
crack inpainting, automatically restoring missing crack information and
preserving detailed features even in high-noise environments [98]. This
approach outperforms traditional inpainting methods like PatchMatch,
Contextual Attention, and Repaint, achieving PSNR improvements of
20.5 %, 13.4 %, and 4.1 %, respectively. Despite advancements in GANs
and diffusion models, the application of image denoising techniques in
infrastructure maintenance remains underexplored. To adapt these
methods for noisy field conditions, domain-specific validation could be
performed using annotated datasets captured under shadowed envi-
ronments or other noisy conditions. Furthermore, combining synthetic
noise augmentation (e.g., Gaussian noise and random shadows) with
real-world samples can enhance model robustness and generalizability
in practical scenarios.

3.2.2. Low-light enhancement

Generative Al enhances visibility and quality in images taken under
low-light conditions. The goal of such generative AI models is to
improve brightness, contrast, and detail in low-light images while pre-
serving natural colors and reducing noise. In [94], a conditional
generative model is developed to enhance the illumination of concrete
crack images. The conditional generative model incorporates a self-
attention layer in the skip connections and utilizes ResNet as the foun-
dational block, while also gradient penalty loss. Evaluation results
demonstrate that this approach surpasses state-of-the-art methods,
achieving a SSIM of 0.95 and a PSNR of 31.4. The enhanced images were
subsequently used to train a deep learning model for crack identification
and localization in concrete images. The performance metrics for crack
segmentation, with an IoU exceeding 0.98 and an F1 score surpassing
0.99, demonstrate exceptionally high accuracy in crack assessment
tasks. In [99], a model called N-LoLiGan is introduced. This model uti-
lizes feature loss to guide training, ensuring the preservation of image
textures. Experimental results show that the developed model excels in
enhancing low-light images, greatly improving the visibility and clarity

of crack features. Moreover, when these enhanced images were used to
train object detection models like YOLACT and YOLOVS5s, the average
detection accuracy increased from 0.63 to 0.89 and from 0.90 to 0.97,
respectively, demonstrating a substantial improvement in detection
performance.

3.2.3. Overexposed correction

Overexposure correction using generative Al restores details in im-
ages that are excessively bright or washed out [100]. The overexposure
correction is also based on conditional generative models. The generator
reconstructs lost details in overexposed areas by using context from
better-exposed regions, adjusting luminance and contrast for a natural
appearance. The discriminator compares these adjustments to real
properly exposed images and provides feedback to help the generator
improve over time. This iterative process enhances the overall quality of
the images by gradually refining the correction. In [94], a generative
adversarial network is used to restore overexposed images with cracks.
The segmentation accuracy on overexposed images was initially
measured with an IoU of 0.934 and an F1 score of 0.941. The accuracy
improved significantly with the restored images, achieving an IoU of
0.989 and an F1 score of 0.994.

3.2.4. Image deblurring

In image processing, removing motion blur is a critical but chal-
lenging task, often caused by factors like rapid object movement or
camera shake [101]. Conditional generative models have been proposed
to address this issue through effective deblurring. In [102], Motion blur
from robotic car imaging of pavement cracks posed a major challenge,
reducing deep learning model accuracy. To address this, DeblurGAN
emerged as a promising solution for deblurring pavement crack images.
The model was trained using original images and artificially blurred
images generated by a random trajectory blurring algorithm [103].
Deblurred images tested with DeepLabV3 + improved IoU from 0.18 to
0.43 and F1 score from 0.26 to 0.58. Image deblurring significantly
improved crack detection on building facades [24]. For instance,
deblurring raised segmentation accuracy from an IoU of 0.895 and F1
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score of 0.891 to 0.982 and 0.991, respectively, highlighting its effec-
tiveness in restoring blurred images [94].

3.2.5. Super-resolution reconstruction

Low-resolution images often miss fine cracks and subtle defects
crucial for evaluating structural integrity. SRGAN presents a promising
solution for addressing this challenge [83]. This model can generate
high-resolution images from low-resolution inputs, significantly
enhancing image details. Super-resolution can be applied to enhance the
resolution of low-resolution crack images, improving image details and
quality [21]. The reconstructed images achieved a PSNR of 33.1 dB and
SSIM of 0.820, surpassing Bicubic (30.24 dB, 0.775) in quality. When
trained on the super-resolution dataset, segmentation models achieved a
15.6 % higher Fl-score and a 23.8 % improvement in IoU compared to
models trained on Bicubic-reconstructed images [21]. Further en-
hancements were made by incorporating a self-attention mechanism
into the model, resulting in a PSNR of 27.5 dB and an SSIM of 0.865
[38]. This surpassed both Bicubic interpolation (PSNR: 21.7 dB, SSIM:
0.663) and the original framework (PSNR: 26.9 dB, SSIM: 0.847). For
crack classification tasks, ResNet50 trained on these high-resolution
images achieved 98.2 % accuracy [104]. In conclusion, adversarial
network-based super-resolution processing has substantially improved
the accuracy and reliability of crack detection and segmentation [21].
The illustration of the super-resolution reconstruction using generative
Al model is illustrated in Fig. 11.

3.2.6. Performance metrics for image restoration

The performance of image reconstruction, including super-resolution
and image restoration, is typically assessed using PSNR and SSIM met-
rics. The PSNR, defined in Eq. (3), was used to evaluate image quality
[15]. PSNR quantifies the logarithmic value of the MSE between the
original and reconstructed images, relative to the maximum possible
pixel value. A higher PSNR indicates better image quality and lower
distortion.

MAX;
PSNR = 20log,,(—= 3
10 MSE) 3

where MAX; is the maximum pixel value of the original image; and MSE
is defined in Eq. (4):

Fo 2o )

where f is the matrix data of the original image; g is the matrix data of
the low-quality image; m is the number of rows of pixels with i as the row
index; and n is the number of columns of pixels with j as the column
index.

The SSIM, defined in Eq. (5), is a metric used to assess the similarity

MSE = — (i,7))? (4)
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between two images [15]. SSIM evaluates image quality by considering
three key components: luminance, contrast, and structure. The SSIM
values range from O to 1, with a value of 1 indicating the highest possible
image quality.

(Zux,uxy + Cl> (204 + C2)

SSIM =
Y = e Tt 2 1 G

)

where x is the matrix data from a window in the target image; y is the
matrix data from a window in the reference image; C; and C; are small
constants introduced to avoid division by zero, with C; = 0.0001 and C»
= 0.0009; yx and py, are the mean values of x and y, respectively; oy and
oy are the variances of x and y, respectively; and oyy is the covariance
between x and y.

The SSIM was calculated using a sliding window approach. In each
calculation, a window of size N x N was taken from the target and
reference images, and the SSIM index was computed based on the
window. Small window size (e.g., 5 x 5) captures fine details and local
variations, and large window size (e.g., 11 x 11) captures broader
information.

3.2.7. Summary of image restoration

Image restoration includes tasks like denoising, low-light enhance-
ment, overexposure correction, deblurring, and super-resolution.
Table 3 summarizes the case studies on image restoration applications in
structural health monitoring. Super-resolution is the most common task,
primarily applied to crack detection and segmentation. Low-light
enhancement and deblurring show significant performance gains (e.g.,
63.0 % to 97.0 % for YOLOv5s [99]). While crack detection dominates
the research focus, other critical damage types including spalling and
corrosion have received significantly less attention. The effectiveness of
image restoration depends critically on the availability of paired data-
sets (input-output pairs) for training. However, such datasets are often
difficult to obtain because data collection is often time-consuming,
especially for real-world image degradations such as noise, motion
blur, and lighting variations. These characteristics pose significant
challenges for creating comprehensive datasets that encompass all
possible scenarios, ultimately restricting model generalizability to un-
seen conditions. To address these limitations, researchers have
employed synthetic data augmentation techniques. These include
adjusting pixel values to simulate overexposure or low-light conditions
[94], as well as applying convolution kernels to reproduce focus issues
or motion blur effects [102]. While these methods can increase dataset
size, ensuring adequate diversity in synthetic datasets.

3.3. Image segmentation

Image segmentation in structural health monitoring, such as damage
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Fig. 11. Illustration of a SRGAN architecture for image reconstruction [105].
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Table 3

Summary of generative-Al models for image restoration.
No. Year GAN model Tasks Application Deep learning Metrics (%) Ref.
1 2020 SRGAN Super-resolution Building crack classification ResNet-50 Up to 98.2 [104]
2 2020 CGAN Image deblurring Building crack - - [24]
6 2022 ESRGAN Super-resolution Building crack segmentation CDU-Net 69.5 to 82.3 [21]
4 2022 SRGAN Super-resolution Pavement crack detection Faster-RCNN 76.7 to 87.9 [38]
5 2022 Improved SRGAN Super-resolution Pavement crack detection Faster-RCNN 76.7 to 91.2 [38]
6 2023 Diffusion model Image denoising Pavement crack - - [98]
7 2023 SRGAN Super-resolution Building crack segmentation FDDWNet 75.8 to 77.2 [105]
8 2023 N-LoLiGan Low-light enhancement Building crack detection YOLACT 63.0 to 89.0 [99]
9 2023 N-LoLiGan Low-light enhancement Building crack detection YOLOV5s 90.0 to 97.0 [99]
10 2023 CGAN Image deblurring Pavement crack segmentation MIMO-UNet 31.6 to 60.3 [102]
11 2024 ARCGAN Low-light enhancement Building crack segmentation LinkNet 15.3t0 99.4 [94]
12 2024 ARCGAN Image deblurring Building crack segmentation LinkNet 89.5 to 98.2 [94]
13 2024 CGAN Image deblurring Building crack segmentation UperNet 83.4 to 86.8 [101]
14 2024 ARCGAN Overexposed correction Building crack segmentation LinkNet 93.4 to 98.9 [94]
15 2025 IEnlightenGAN Image denoising Building crack segmentation U-Net 39.9 to 98.6 [96]
16 2025 SRGAN Super-resolution Pavement crack segmentation DeepLabV3+ 85.0 to 90.0 [106]

detection, aims to identify and isolate damaged regions within images
for accurate analysis [107]. This process often relies on deep learning
models to classify each pixel as either belonging to a damage or the
background [108]. GAN-based image segmentation has demonstrated
superior performance compared to CNN-based models like U-Net and
DeepLabV3+, particularly in addressing the challenge of limited labeled
training datasets. By leveraging adversarial learning, GANs can achieve
high-quality segmentation results even with smaller datasets [108,109].
In contrast, traditional models such as CNN-based segmentation model
often require labor-intensive manual segmentation during the data
preparation phase, making GANs a more efficient and effective alter-
native. A GAN for image segmentation requires a paired dataset with
each input image matched to its corresponding segmentation mask, as
illustrated in Fig. 12. The generator learns to produce segmentation
masks from input images, while the discriminator assesses the realism of
the generated masks. The training process combines adversarial loss
from the discriminator and pixel-wise loss (such as L1 loss) to guide the
generator toward producing accurate and realistic segmentation out-
puts. This approach enables the direct application of generative models
for image segmentation. Image segmentation performance is typically
evaluated using standard metrics such as F1 score and IoU.

In [109], CrackSegAN was developed for crack segmentation, uti-
lizing a U-Net-based generator and a discriminator. The generator cre-
ates a binary crack map from a given crack image, while the
discriminator compares the ground-truth masked image with the pre-
dicted masked image using a multi-scale L1 loss. A joint loss function
combining multi-scale L1 loss and Dice loss was introduced for
addressing the significant class imbalance in pavement crack images.
The generator aimed to minimize the joint loss while the discriminator
focused on maximizing the multi-scale L1 loss. Through this process,
both the generator and discriminator improved, eventually reaching an
equilibrium where the generator produced crack maps indistinguishable

Generator ——

Image

Predicted

from the ground truth. The developed model achieved a F1 score of
0.978, surpassing models like CU-GAN, pix2pix, and DeepCrack. In
[110], CrackGAN was developed for direct crack segmentation. The
generator used asymmetric U-Net architecture to produce binary images
while the discriminator improved the performance of the model. The
developed model tested on the CrackForest dataset achieved an F1 score
of 0.919 and surpassed other models such as FCN. Compared to tradi-
tional segmentation networks such as FCN, CrackGAN incorporated a
discriminator that evaluated the generated crack masks, helping to
produce more realistic and continuous results with better detail pres-
ervation, particularly effective for detecting thin and narrow cracks. In
[39], a diffusion model was developed for pavement crack segmentation
and trained on 1,037 images with corresponding binary labels. The
model achieved the highest IoU score of 0.841, outperforming bench-
mark models such as U-Net, DeepLabV3+, and SegFormer. Diffusion
models outperform conventional deep learning models in challenging
scenarios with complex backgrounds (e.g., shadows) and discontinuous
annotations. This advantage stems from the architectural limitations of
models like U-Net or SegFormer, which rely on local receptive fields,
either through convolution kernels or window-based attention. These
models often struggle to capture long-range dependencies, leading to
fragmented crack detections due to limited contextual understanding. In
contrast, diffusion models reconstruct clean segmentation masks from
noise by learning the joint probability distribution of all pixels. This
enables them to model global crack continuity more effectively. Unlike
CNN-based models that process image patches independently, diffusion
models iteratively refine predictions while maintaining structural
coherence, allowing them to infer and fill in missing crack segments
based on the learned data distribution [39]. The comparison between
generative Al models with conventional semantic segmentation models
is summarized in Table 4.

Discriminator

Ground truth

Real Fake

Fig. 12. Illustration of a GAN architecture for image segmentation.
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Table 4
Comparison between generative Al models with semantic segmentation models.
Models Accuracy  Category Note Ref
CrackGAN 91.9 % GAN-based GANs outperform CNN- [110]
FCN 89.0 % CNN-based based segmentation
Crackforest 87.7 % CNN-based models, as the
CrackSegAN 84.1% GAN-based discriminator enhances [109]
DeepCrack 82.5% CNN-based the realism, continuity,
and detail of generated
crack masks, particularly
for thin and narrow cracks.
RoadPainter 71.8 % Diffusion Diffusion models [107]
model outperform CNNs and
LinkNet 59.5 % CNN-based Transformers in complex
PSPNet 55.5 % CNN-based scenes with shadows or
CrackDiff 84.1 % Diffusion annotation gaps by [39]
model modeling global pixel
SegFormer 83.3 % Transformer- distributions. They
based capture long-range
DeepLabV3+  83.4 % CNN-based dependencies and

reconstruct coherent crack
masks, inferring missing
segments and correcting
errors.

3.4. Multi-modal data integration

3.4.1. Visual question answering

The development of VQA systems has been advanced through multi-
modal models like CLIP, which align visual and textual data in a shared
feature space [27,111]. CLIP’s architecture includes separate encoders
for images and text, which are trained using ITC learning to align fea-
tures effectively, as illustrated in Fig. 13(a). In [27], the CLIP model was
trained on 610,197 training samples, 130,122 validation samples, and
131,774 test samples. The visual encoder options include ResNet and
Vision Transformers, while the text encoder options include LSTM and
BERT. The dataset contains 62 possible answer candidates, covering
bridge member types, and damage classifications. Questions in the
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dataset are categorized into three types: (1) Yes/No Questions (e.g., “Is
there corrosion?”). (2) Member-Class Questions (e.g., “What is the
component in the image?”). (3) Damage-Class Questions (e.g., “What
type of damage is present?”’). Among the tested configurations, the
combination of a Vision Transformer and BERT achieved the highest
accuracy: 99.4 % on binary tasks, 83.0 % on member identification, and
77.6 % on damage identification. Fig. 13(b) illustrates the results of the
Q&A system, where the input consists of an image and a corresponding
question. The system processed the image through a visual encoder and
the question through a text encoder, fusing the extracted features to
generate an accurate answer. This output reflected the ability of the
system to effectively align visual and textual modalities to address the
query based on the input image. A similar study was conducted in [112],
introducing BridgeCLIP, an innovative framework that adapts the pre-
trained vision-language model CLIP for automatic bridge inspection
through multi-label image classification. In the BridgeCLIP framework,
the training phase uses both images and textual descriptions to help the
model learn domain-specific knowledge. During prediction, only the
image is provided as input. The model has learned from the text during
training. It can identify different damage types in the image without any
extra text input. In [28], the study proposed leveraging a large language
model to develop a VQA system aimed at enhancing human-robot
collaboration in UAV-assisted bridge inspections. The system outputs a
classification result that determines whether a specified object or dam-
age type is present in the image. With a peak accuracy of 83.33 %,
though lower than that of well-trained segmentation models such as
ResNet (89.4 %), the approach still demonstrates strong potential for
enhancing the precision and safety of UAV-based bridge inspections.
This highlights the value of vision-language models in addressing
specialized, domain-specific tasks where human-robot collaboration and
semantic understanding are essential. In [113], a study proposed a deep
learning-based framework for estimating the causes of bridge damage
using VQA. The dataset includes 22 distinct types of damage. A domain-
specific VQA model was developed and trained on over 440,000 bridge
images, enabling it to answer questions related to types of damage. The
model demonstrated high accuracy (99.1 %) in damage classification

CLIP architecture
Text data

» Abnormal detected on the bearing
» Corrosion detected on the bearing

(b) Q: Question
A: Answer
Test GT: Ground truth
image-1

Image Text
encoder encoder

| Image features | | Text features |
I |
| Projection head |
! I
Image Text
embeddings embeddings

| |

| Ensemble module |

|

Classification
results

Q: Are there any crack?
A: Yes
GT: Yes

Test
image-2

Q: What is the member in the image?
A: Bearing
GT: Bearing

Test
image-3

Q: What is the damage in the image?
A: Exposed rebar
GT: Exposed rebar

Fig. 13. Illustration of the VQA system [27]: (a) CLIP model architecture. CLIP employs separate vision and text encoders to map image and text inputs into a shared
embedding space. The model then selects the text label with the highest similarity score, thereby enabling image classification; (b) Q&A results. The predicted class is
integrated into the question-answering program, where the answer corresponds to the classification result produced by CLIP.
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based on yes/no questions. In [114], the study explored the feasibility of
using VQA for post-disaster damage detection based on aerial footage
captured by UAVs. A VQA model combining a CNN with a Bag of Words
was proposed to enable image-based question answering. The model
was evaluated on a custom dataset collected after the hurricane,
achieving an overall accuracy exceeding 92 %. In [115], the study
presented the development of a web-based bridge inspection system that
automatically generates explanatory texts describing bridge damage
from inspection images using a deep learning-based image captioning
model. By combining a CNN for visual feature extraction with an LSTM
for text generation, the system outputs clear descriptions such as
“cracking detected on the bottom of the slab,” making inspection results
more accessible to engineers. The system can continuously improve its
accuracy through user feedback. This approach bridges the gap between
visual analysis and textual interpretation in structural health monitoring
and offers practical potential for automating field inspections and report
generation.

Despite their potential, several challenges hinder the broad adoption
of VQA. A major limitation is the substantial amount of annotated
training data required, which is particularly burdensome in resource-
limited settings where labeling domain-specific engineering imagery is
both costly and time-consuming. Technically, the reliance on large-scale
architectures like Vision Transformers and BERT introduces significant
computational demands, making real-time deployment on edge devices
such as UAVs or mobile robots difficult. While a few-shot learning can
alleviate data constraints, it often compromises robustness and accu-
racy, limiting its suitability for fully autonomous applications without
human supervision.

3.4.2. Large language models

In computer vision-based structural health monitoring, integrating
LLMs can enhance human-machine interaction and data interpretation,
offering a promising approach to better understand and manage com-
plex visual inspection data. In [28], a cascaded crack detection strategy
using multi-modal LLMs was proposed to enhance zero-shot fatigue
crack detection in steel bridges. The study systematically evaluated five
LLMs: Claude, GPT-40, GPT-40 mini, Grok, and Gemini. The input to the
crack detection system based on LLMs consisted of images of steel bridge
components that may contain fatigue cracks, along with textual prompts
(such as instructions or damage labels) to guide the detection process.
The output is a classification result for each image or image patch,
indicating the presence or absence of fatigue cracks. Among the evalu-
ated models, GPT-40 mini consistently achieved the best performance in
image-level crack classification tasks. The advantage of using LLMs lies
in its ability to perform zero-shot learning, enabling direct predictions
without the need for task-specific training. However, its prediction ac-
curacy is generally lower compared to dedicated classification models
(e.g., ResNet). If resources are available, fine-tuning an open-source
multi-modal LLMs (e.g., Llama-3-8B) with domain-specific data is rec-
ommended. Even a small set of relevant images can significantly

Role: Chatbot _a_
You are an expert in detecting fatigue cracks in steel smlcnlres“;]@"‘
Task:
You will be provided with {batch size} image sequences that may
contain fatigue cracks in steel structures. Carefully examine these
images for fatigue cracks and output your judgment in a 1 x {
batch size } list. Strictly adhere to the following output
requirements.

Mgt

Output requirements:

Output —1 if the presence of a fatigue crack cannot be determined.
Output 1 if a fatigue crack is detected. Output 0 if no fatigue crack
is detected.
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enhance prediction accuracy [116]. Fig. 14 illustrates the application of
LLMs in damage inspection.

In [117], the study presented SDA-Chat, a novel multi-modal LLM-
based framework designed for rapid post-earthquake structural damage
assessment. By integrating visual encoders, a query transformer, and
LLMs (e.g., LLaMA3), the system can interpret structural damage images
and respond with professional textual evaluations. SDA-Chat was
trained on 8,195 annotated image-text pairs and supports seven struc-
tural assessment tasks, such as damage type, collapse level, and material
classification. Experimental results demonstrate that SDA-Chat achieves
an accuracy of up to 76.11 % with an inference speed of 435 tokens per
second. A recent study explored the use of LLMs, such as ChatGPT, to
enhance automated post-disaster building damage assessment from
ground-level images [118]. To integrate visual and textual information,
a vision-language model called CLIP is used, which employs a dual-
encoder architecture to separately encode images and text before
fusing them in a shared embedding space through late fusion. Experi-
ments on a curated dataset of hurricane-affected buildings show that
combining image and LLM-generated captions improves classification
performance by approximately 4 % for using image alone and 17 % for
using text alone. These results indicate that the generated textual de-
scriptions provide complementary information beyond the visual con-
tent, even though the model was not explicitly trained for damage
assessment tasks. SDIGLM is a novel LLMs for structural damage iden-
tification, built on the VisualGLM-6B architecture [119]. It integrates a
U-Net-based semantic segmentation module with a multi-modal Chain-
of-Thought reasoning framework to deliver both precise classification
and detailed natural language descriptions of damage types such as
cracks, holes, and corrosion. Trained on a curated dataset of 11,722
image-text pairs and fine-tuned with LoRA, SDIGLM surpasses general-
purpose models like GPT-40 and GLM-4v, achieving 95.24 % accuracy
across diverse structural scenarios.

Another potential application of LLMs is the enhancement of
contextual object detection capabilities. Unlike conventional ap-
proaches such as YOLO, which rely solely on visual features to identify
objects, LLM-enhanced methods incorporate contextual cues, such as
surrounding objects and scene settings into the detection process. A
representative example can be found in [120]. In the context of struc-
tural health monitoring, this capability allows for precise detection of
critical structural features such as cracks, joints, and deformations. In-
spectors can issue natural language queries like “highlight cracks” or
“detect corrosion,” and the system responds with accurate and intuitive
results.

3.5. Discussions

3.5.1. Deployability

Table 5 compares generative Al models across two critical deploy-
ability dimensions, including real-time inference capability and field
deployment readiness. Real-time inference remains a key limitation, as

Predictions
LLMs {
SR :
Q S _ S l
» Claude = ’
« GPT-40 Claude: Claude: Uncertaint
« GPT-40 mini GPT-4o: GPT-4o0: Crack
« Grok GPT-40 mini: GPT-40 mini: Crack
« Gemini Grok: Crack Grok:
Gemini: Crack Gemini: Crack

Fig. 14. Illustration of zero-shot crack identification using LLMs [28]. Note: —1 represents “Uncertainty”, 1 represents “crack”, and O represents “no-crack”.
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Table 5
Deployability of generative Al models.
Models Model Real-time Field
size inference deployment
DCGANSs [126] 6-10 M Yes Yes
Conditional GANs [102] ~105.3M No Yes
Diffusion models [39] 387 M No Yes
Stable diffusion [127] ~ 860 M No Yes
CLIP [128] 428 M No Yes
LLMs GPT-40 [129] ~200B No No
GPT-40 mini 8B No No
[130]
N Claude 3.5 [130] ~175B No No

none of the listed models support it, which is a critical requirement for
applications like UAV-based inspection and robotics. Meeting real-time
constraints typically requires lightweight architecture such as
TinyYOLO (< 20 M parameters) [121]. While DCGAN can operate in
real time, speed is generally less critical for image generation and
augmentation, where image quality and realism are prioritized. Smaller
models under 500 M parameters, such as conditional generators and
CLIP, are more suitable for field deployment on edge devices but still
require latency optimization. Field deployment refers to models capable
of running directly on edge devices at the data source, without relying
on external computing resources such as cloud servers or transmitting
the data to external systems for processing. In contrast, larger models,
particularly LLMs with over 8 billion parameters, are designed for high-
performance computing and are impractical for real-time or embedded
applications. For instance, fine-tuning an 8B model with parameter-
efficient methods like LoRA still requires at least one GPU with 12 GB
of memory [122], and training times can reach 14 h [123]. Even
inference at FP16 precision requires approximately 12 GB of memory
[122]. As a result, deployment on resource-constrained platforms like
UAVs equipped with Raspberry Pi or Jetson Nano remains unfeasible
[124]. Model distillation offers a promising solution by compressing
large models into smaller ones (for example, under 1 billion parame-
ters), substantially reducing memory and compute requirements [125].
However, this often comes at the cost of reduced accuracy and warrants
further research. In summary, small models that can run on edge devices
are suitable for field deployment, although some may not achieve real-
time inference. In contrast, large models are typically utilized by
uploading data to external computational resources, which limits their
ability to field deployment and support real-time inference.

3.5.2. Generalizability

Although generative AI models can generate additional images and
expand the training set, thereby improving the prediction accuracy of
downstream tasks such as damage detection and segmentation, this
improvement is often limited to the specific task or domain [131]. The
transferability of such models to other areas remains underexplored. For
example, a model trained on an augmented concrete crack dataset may
exhibit reduced accuracy when applied to asphalt pavement crack
identification. Furthermore, overfitting synthetic characteristics such as
uniform lighting, clean backgrounds, and idealized crack patterns can
significantly degrade model performance in real-world. To address this
limitation, several strategies can be conducted: (1) cross-dataset evalu-
ation has been proposed as a robust validation strategy. For instance, a
model trained on synthetic concrete crack images can be validated on
real-world datasets such as pavement cracks or steel bridge cracks. This
approach provides a more reliable measure of generalization perfor-
mance under varying conditions [132]. (2) Other strategies include
domain randomization techniques, which introduce variations in image
properties such as lighting conditions and noise. This helps the model
focus on task-relevant features rather than relying on domain-specific
artifacts [15]. Without these strategies, models may excel on synthetic
benchmarks but fail in real-world settings with surface variation,
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shadows, occlusion, and debris. (3) Transfer learning can be used to
adapt pre-trained models to new domains by fine-tuning them on a small
set of labeled real-world data. This approach has demonstrated potential
in enhancing model generalization across various material types and
surface conditions [133].

3.5.3. Practical application of generative Al

Generative Al has shifted from theory to a practical tool with
tangible benefits for infrastructure maintenance. One of the most im-
pactful applications lies in automated data augmentation. Civil infra-
structure systems, such as pavements, bridges, and build structures often
suffer from sparse and imbalanced datasets. Generative Al can produce
high-resolution synthetic images of surface damage, including cracks,
potholes, spalling, and exposed rebars, allowing deep learning models to
be trained with greater variety and volume. Generative models such as
DCGAN, WGAN-GP, and StyleGAN effectively address this bottleneck by
synthesizing diverse and realistic defect images, enriching datasets and
improving model generalization [18-20]. For example, models trained
with synthetic data have shown higher accuracy in crack detection tasks.
The impact spans various model types, including VGG16, YOLOv4, and
U-Net [16,18,71]. Additionally, the ability to simulate underrepresented
defect types allows for more balanced training data, which helps reduce
model bias and enhances detection robustness. In addition to data
augmentation, generative Al models are also increasingly used for image
restoration. Damage inspection images are often affected by noise,
blurriness, low resolution, or poor lighting conditions, especially when
captured by UAVs. GAN-based restoration models can reconstruct
missing or corrupted regions, enhance resolution, and improve overall
image quality. This helps preserve critical structural details, ensuring
more accurate downstream analysis such as defect detection or seg-
mentation. Generative Al also plays a valuable role in semantic seg-
mentation of cracks by enabling style translation from RGB images to
binary masks. This capability is particularly useful in situations where
pixel-level annotations are scarce or labor-intensive to produce. Models
like pix2pix can generate accurate segmentation masks from raw RGB
inputs. Recent advances in multi-modal Al, especially vision-language
models like CLIP and LLMs, offer practical tools for structural health
monitoring. These models align visual data with semantic understand-
ing, enabling tasks such as question answering, component identifica-
tion, and defect classification. CLIP-based systems have achieved high
accuracy in identifying bridge damage, while frameworks like Bridge-
CLIP allow image-only classification after training with text-image pairs.
In UAV-assisted structural health monitoring, few-shot CLIP models
detect defects with minimal labeled data, enabling semi-autonomous
inspection. LLMs like GPT-40 mini further support zero-shot crack
detection using multi-modal inputs. Together, these tools reduce label-
ing demands, speed up assessment, and enhance collaboration between
Al systems and human inspectors. Based on the above discussion, it is
feasible to build an automated pipeline that integrates robotic-based
data collection with generative Al-driven dataset augmentation and
image restoration. This would enable the creation of a high-quality data
platform to support damage inspection through segmentation. Further-
more, multi-modal generative Al models can align visual data with
textual information, enabling more comprehensive interpretation of
structural damage and supporting intelligent interfaces such as chatbots
for human-AI interaction. The proposed pipeline enables practical, real-
world implementation of generative AI models in structural health
monitoring by integrating robotic data collection, synthetic data gen-
eration, image restoration, semantic analysis, and human-Al interaction
into a unified system, as shown in Fig. 15.

3.5.4. Paradigm shift enabled by generative Al

The rise of generative Al is driving a transformative shift in structural
health monitoring, not only by enhancing performance (e.g., higher IoU
scores), but also by fundamentally reshaping methodologies and work-
flows. Traditionally, computer vision-based structural health
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Fig. 15. Practical implementation of generative Al models in structural health monitoring.

monitoring has depended on manually curated datasets, expert-designed
feature extraction, and offline post-processing. In contrast, generative Al
enables automated and interactive workflows that redefine the pro-
cesses of detecting, analyzing, and interpreting structural damage. For
instance, the generation of diverse and high-resolution synthetic dam-
age images reduces reliance on costly and time-consuming field data
collection, accelerating model development. This shift moves structural
health monitoring from a data-scarce to a data-abundant paradigm.
Advanced generative Al models, such as Stable Diffusion, offer prom-
ising capabilities for precise control over image content and back-
ground. Although their use in structural health monitoring is still
emerging, they hold significant potential for future research. These
models facilitate accurate and controllable generation of structural
damage, aligned with specific expectations or predefined conditions.
Furthermore, multi-modal models such as CLIP and SDIGLM enable
intuitive interaction between human inspectors and Al systems through
natural language, allowing users to ask questions, receive insights, and
generate inspection reports directly from visual data. By integrating
visual-language models with LLMs, generative Al facilitates the devel-
opment of more interactive, interpretable, and collaborative systems.
These models go beyond traditional classification and segmentation
tasks to support advanced capabilities such as visual question
answering, automated damage description, and Al-assisted decision-
making. Such features not only improve user experience but also lower
the technical barrier for field inspectors, enabling non-experts to engage
with complex Al systems through simple prompts or queries. A critical
avenue for future research lies in the development of lightweight and
computationally efficient models that can be seamlessly deployed on
edge devices. Achieving real-time inference under resource-constrained
environments is imperative for enabling autonomous, on-site structural
damage assessment and effective human-computer interaction.

15

4. Conclusions

This study highlights the transformative role of generative Al in
advancing infrastructure maintenance by addressing critical challenges
such as data scarcity and quality issues. By leveraging models like GANS,
Diffusion models, and multi-modal AI architectures, generative Al en-
hances data augmentation, image restoration, damage identification
capabilities, significantly improving the accuracy and reliability of
infrastructure inspection. Generative Al is driving a transformative shift
in structural health monitoring by enabling data-rich, interactive, and
intelligent workflows. To sustain this transformation, future research
should prioritize lightweight, deployable models capable of real-time
performance on edge devices for practical, on-site applications. Based
on the above investigation, the following conclusions can be drawn:

e As discussion in Section 3.1, data augmentation is a critical tech-
nique for improving the performance of Al models, especially in
damage inspection tasks where datasets are limited or imbalanced.
Generative Al models expand datasets, address class imbalance, and
enhance accuracy and robustness in damage inspection. The gener-
ation of diverse, high-resolution synthetic damage images reduces
dependence on costly and time-consuming field data collection,
thereby accelerating model development and driving structural
health monitoring toward a data-rich paradigm.

e Image restoration with conditional generative models improves
degraded images, for more effective damage detection, as discussed
in Section 3.2. Techniques such as denoising, super-resolution, low-
light enhancement, overexposure correction, and deblurring address
common issues like noise, poor resolution, and lighting in-
consistencies. By restoring fine structural details and improving
overall image clarity, these models significantly enhance the effec-
tiveness of downstream detection and segmentation tasks, support-
ing robust analysis even under adverse conditions.
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Generative Al (e.g., GANs and diffusion models) achieves higher
accuracy in image segmentation compared with CNN-based model
(e.g., DeepLabV3 + ) and transformer-based model (e.g., Seg-
Former), as discussed in Table 4. This improvement is largely
attributed to their ability to model global context and preserve fine
structural details, especially in challenging conditions such as noise,
shadows, or fragmented annotations.

The integration of LLMs and multi-modal systems enables more
comprehensive defect identification (Section 3.4). By jointly pro-
cessing visual and textual inputs, these models enable contextual
reasoning, generate natural language explanations, and support
interactive human-Al communication. This advancement improves
the transparency and reliability of inspection results and contributes
to a broader transformation of structural health monitoring work-
flows into interactive and explainable systems.

Despite advancements in generative Al models, remaining chal-

lenges and future research directions are summarized below:

Infrastructure inspection is a specialized task requiring tailored
datasets to train generative models effectively. Collecting defect
images under varied conditions is time-consuming and resource-
intensive, limiting the scalability of generative AI approaches in
structural health monitoring.

Research on advanced generative Al models such as Stable Diffusion,
LLMs, and multi-modal systems remains limited due to high
computational costs. Increased investment is crucial, as these models
offer superior efficiency and adaptability across varied scenarios.
Advanced generative Al models can be fine-tuned for specific tasks,
allowing them to adapt to diverse contexts with minimal additional
training. This capability represents a key direction for future
research in this field. Fine-tuning reduces the need for extensive
retraining, making these models more versatile for infrastructure
maintenance.
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