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Review article
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A B S T R A C T

As urbanization accelerates, aging infrastructure demands more advanced inspection methods for structural 
health monitoring. The growing integration of artificial intelligence (AI) and computer vision technologies has 
significantly enhanced damage detection accuracy while simultaneously reducing inspection time and opera
tional costs. Despite these advantages, the adoption of AI-based technologies in infrastructure maintenance re
mains limited due to challenges related to data. One major issue is the lack of comprehensive, task-specific 
annotated datasets. Another is the poor quality of images captured by drones or mobile devices, which are often 
affected by noise, blurring, and inconsistent lighting. Although recent advances in generative AI offer promising 
support for structural health monitoring, it remains unclear which models are best suited for specific tasks.

This study examines the use of generative AI in structural health monitoring, focusing on key challenges such 
as limited datasets and low-quality image restoration. The review covers a range of generative AI technologies, 
outlining their principles, strengths, limitations, and representative applications to support the selection of 
appropriate tools for specific tasks. Generative AI models enable accurate image segmentation and structural 
anomaly detection using limited training data. The paper also explores new opportunities for integrating multi- 
modal generative AI to enhance human–computer interaction in support of structural health monitoring. A 
framework is proposed to streamline the use of generative AI technologies for data augmentation, image 
restoration, damage inspection, and human–computer interaction in structural health monitoring.

1. Introduction

Aging infrastructure poses serious risks to public safety, economic 

growth, and the efficient use of resources. According to the ASCE, 6.8 % 
of the 623,000 bridges in the U.S. are in poor condition [1], especially in 
disaster-prone regions. Timely inspection is essential to identify early 
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damage and reduce long-term repair costs. However, traditional in
spection methods are labor-intensive and time-consuming [2]. Recent 
advances in deep learning and computer vision enable faster and more 
automated damage assessments [3]. Drones equipped with cameras can 
capture images of infrastructure [4,5], which are analyzed using AI 
models such as CNNs (e.g., VGG, ResNet) for crack detection [6]. Object 
detection models such as Faster-RCNN and YOLO localize damage [7,8], 
while segmentation models like Transformers, U-Net, and DeepLabV3 +
help measure crack widths from annotated datasets [9–11].

The quality of datasets is critical for both training deep learning 
models and ensuring their ability to generalize across different envi
ronments [12]. Limited data availability remains a major challenge. In 
many scenarios, data may be scarce or difficult to obtain. For example, 
fiber-reinforced concrete tends to generate dense microcracks, which 
models trained on conventional concrete datasets often fail to detect 
accurately [13]. Additionally, small-scale datasets are insufficient for 
training highly accurate detection models, limiting their effectiveness in 
real-world applications. Data imbalance remains a critical issue, as most 
datasets are heavily skewed toward cracks, while defects like corrosion 
and exposed rebar are scarce, reducing model accuracy in detecting 
these underrepresented categories [14]. Additionally, poor image 
quality caused by factors such as inadequate lighting, motion blur, 
shadows, and noise also hinders accurate analysis [15]. These challenges 
highlight the need for synthetic data and image restoration techniques to 
enable reliable AI deployment in real-world scenarios.

Generative AI techniques, especially GANs, have gained extensive 
attention for their capabilities to produce high-quality synthetic data 
through adversarial training between the generator and the discrimi
nator networks [16]. In structural health monitoring, generative AI re
fers to machine learning techniques that generate realistic damage 
representations by learning patterns from existing data. Various GANs 
have already shown promise for multiple tasks [17]. For example, 
DCGAN and WGAN-GP can generate simulated damage data that aug
ments existing datasets, offering more diverse features in terms of 
texture, shape, and pixel intensity [18,19]. StyleGAN has been employed 
to enhance the performance of crack recognition through style transfers, 
thereby improving the accuracy of deep learning models in infrastruc
ture inspection [20]. Additionally, SRGAN has proven effective for 
super-resolution reconstruction, converting low-resolution images into 
high-resolution ones to boost the precision of inspection models [21,22]. 
The primary data analyzed in the reviewed studies are image-based, 
acquired through drones and handheld devices [23,24]. Although 
crack detection remains the most studied application [25,26], some 
works have addressed other damage types, such as corrosion, spalling, 
and exposed rebar [14]. Collectively, these advanced techniques address 
key limitations in current workflows, including data scarcity and image 
quality issues, leading to more efficient and reliable inspection strate
gies. Despite recent advances in generative AI for data augmentation and 
image enhancement, the optimal models for specific tasks remain 
uncertain.

Advanced AI technologies such as vision-language models and LLMs 
are opening new opportunities for innovation in infrastructure inspec
tion. Vision-language models integrate visual and textual data, facili
tating accurate defect classification and automated reporting [27]. In 
computer vision-based structural health monitoring, integrating LLMs 
can improve human–machine interaction and interpretation of complex 
inspection data. A recent study employed multi-modal GPT-4o mini for 
zero-shot detection of fatigue cracks in steel bridges [28]. It enables the 
chatbot to interactively analyze images, interpret damage descriptions, 
and provide real-time feedback on both visual data and textual prompts. 
Contextual object detection with LLMs further enhances inspection 
processes by enabling models to identify and interpret objects within 
complex scenes using contextual information [29]. Together, these 
technologies significantly improve efficiency, precision, and contextual 
understanding of inspection workflows. Notably, vision-language 
models and LLMs are emerging technologies with limited use in 

damage detection. A comprehensive review is needed to explore current 
developments, identify key challenges, and outline future research 
directions.

To address these challenges, this study systematically evaluates the 
application of generative AI in computer vision-based structural health 
monitoring, focusing on bridges, pavements, and buildings. This review 
covers multiple damage types, though most studies focus on cracks, with 
limited studies on cavities, spalling, corrosion, and exposed rebar. The 
contributions of this research are summarized as follows: (1) Provide an 
in-depth analysis of the benefits and limitations of various generative AI 
models and their specific applications in damage assessment. (2) 
Conduct a comprehensive comparison to determine the most suitable 
methods for addressing different scenarios effectively. (3) Review 
innovative methods with potential applications in structural health 
monitoring and propose future directions for leveraging generative AI to 
enhance inspection practices. (4) A framework is proposed to streamline 
the use of generative AI technologies for data augmentation, image 
restoration, damage inspection, and human–computer interaction in 
structural health monitoring.

In summary, generative AI plays a transformative role in computer 
vision-based structural health monitoring by expanding the capabilities 
of image generation, enhancement, and interpretation. It addresses 
limitations such as data scarcity, imbalance, and low image quality by 
generating realistic synthetic data and simulating diverse defect sce
narios. In addition, the advancement of visual language models and 
large language models improves human–computer interaction by 
enabling more intuitive interpretation of visual data. Their integration 
of extensive text-based knowledge supports more informed, context- 
aware decision-making, helping shift infrastructure maintenance from 
reactive to predictive approaches.

2. Overview

2.1. Statistical analysis

Based on the scope of the research, a keyword search was conducted 
focusing on the application of generative AI in damage inspection of 
pavements, building structures, and bridges. The targeted damage types 
include cracks, spalling, cavities, corrosion, and exposed rebar. The 
topics covered include data augmentation, image restoration, image 
segmentation, and multi-modal generative AI. The search utilized 
keyword combinations such as {“Generative AI”} and {“Concrete” or 
“Pavement” or “Bridge”} and {“Damage” or “Crack” or “Defect”}. The 
resulting literature will serve as key references for this review article. To 
ensure the selected research literature exhibits high relevance, the 
following steps will be implemented: (1) An initial keyword search was 
conducted in the Scopus database within the time frame of 2020–2025 
to ensure the selected literature represents the latest research trends. (2) 
All relevant literature identified through the keyword search will be 
exported, including information such as publication year, DOI, and 
keywords. (3) Duplicate entries were removed based on DOI. (4) The 
first 100 articles were reviewed and served as the primary reference 
sources for this study. The keyword search initially retrieved 520 arti
cles. After removing 85 duplicates and 176 irrelevant entries, 259 
unique articles (Fig. 1) were retained. Together with other supplemen
tary references, resulting in 133 references.

Fig. 1 shows the number of publications on generative AI in infra
structure maintenance from 2020 to 2025, highlighting a clear upward 
trend in related research in recent years. There are two main reasons 
behind the rapid development of generative AI in infrastructure main
tenance. First, the scale of real-world data on infrastructure is limited, 
including damage data from bridges, roads, and buildings. Many data
sets only consist of a few hundred to a few thousand images [30–32]. 
This scarcity necessitates the use of generative AI to augment datasets, 
thereby improving the performance of deep learning models tailored for 
structural health monitoring. Second, the rapid advancement of 
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generative AI reflects that performance in tasks like damage detection 
has largely converged around established models such as DeepLabV3+, 
SegFormer, and YOLO. Many practical challenges, such as damage in
spection, pothole detection, and corrosion assessment, have been 
addressed satisfactorily. As a result, it is becoming increasingly difficult 
for new publications to offer novel contributions in these areas. In 

contrast, the field of generative AI remains in a dynamic and fast- 
evolving phase, continually generating fresh concepts and applica
tions. For example, text-to-image generation and large language models 
are not commonly applied in structural health monitoring.

A comprehensive knowledge map for generative AI in structural 
health monitoring is developed by analyzing core concepts such as 
generative adversarial networks and their connections to deep learning, 
crack detection, pavement cracks, image restoration, synthetic data, 
super-resolution, semantic segmentation models, and others. These re
lationships are visualized in Fig. 2. This map visualizes the relationships 
between key concepts, methodologies, and applications within the field. 
Keywords from each reference are categorized and connected, high
lighting the most frequently occurring terms and their linkages to 
related topics. The most frequent keyword in the knowledge map is 
“generative adversarial network,” indicating its prominence as the 
dominant model in the literature. This model is closely associated with 
key civil engineering applications such as “crack “detection,” crack 
segmentation,” “semantic segmentation.” Cracks remain the primary 
focus of structural damage analysis. A temporal analysis of keyword co- 
occurrence reveals clear shifts over time. From 2020 to 2022, research 
was heavily centered on GANs, which appeared in approximately 70 
percent of papers, often in conjunction with terms like “crack detection” 
and “data augmentation,” reflecting their central role in synthetic data 
generation for structural inspection tasks. However, from 2023 to 2025, 

Fig. 1. Publications on generative AI-assisted infrastructure maintenance from 
2020 to 2025.

Fig. 2. Keyword co-occurrence analysis over time.
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keywords like “diffusion model” and “large language model” surged in 
frequency, marking a transition toward higher-fidelity image synthesis, 
such as Stable Diffusion, and AI-assisted analysis and reporting, such as 
ChatGPT. During this period, GAN mentions declined by about 20 
percent. Domain-specific terms such as “bridge inspection” and “pave
ment crack” remained consistently present but showed evolving asso
ciations. Notably, co-occurrences between “LLM” and “visual question 
answering” began to emerge after 2024, suggesting growing interdisci
plinary integration. Meanwhile, core technical terms like “deep 
learning” and “semantic segmentation” persisted across all years, 
underscoring their foundational importance to the field.

2.2. Roadmap of generative AI development

Fig. 3 presents a detailed roadmap outlining the evolution and 
application of generative AI from its inception in 2013 to projected 
advancements through 2025. The roadmap is structured into five main 
periods: the VAE, GANs, Diffusion Models, LLM, and Multi-modal 
generative AI, which are subsequently introduced as follows: (1) VAEs 
combine deep learning with Bayesian inference by mapping inputs to a 
probabilistic latent space and sampling from it to generate variable 
outputs. The decoder reconstructs these to resemble the original data. 
VAEs are widely used in structural health monitoring, damage detection, 
data augmentation, and predictive maintenance [33]. (2) GAN models 
are crucial in structural health monitoring by generating high-quality 
synthetic data, enhancing image resolution, and identifying anomalies. 
They expand training datasets with synthetic images of defects, boosting 
the performance of AI models [34]. GAN models include specialized 
variants tailored to specific tasks, such as DCGANs for data generation 
[35], Conditional GANs for image translation [36], StyleGANs for style 
transfer [37], and SRGANs for image super-resolution [38]. (3) Diffu
sion models are a type of generative model that progressively transform 
simple noise distributions into complex data distributions [39]. Stable 
Diffusion particularly excels in text-to-image generation, which is able 
to convert textual descriptions into highly detailed and realistic images 
[40]. (4) Multi-modal generative AI combines domains like text, 
image, audio, and video generation, enabling cohesive cross-media 
outputs [41]. Examples include DALL⋅E [42] and Imagen [43], which 
convert text into detailed images, and Meta’s Make-a-Video [44], which 
generates videos from text prompts. LLMs like GPT-4, built on trans
former architectures, excel in language tasks such as text generation and 
summarization [45]. In civil engineering, they automate documentation 
[46], assist in design [47], and predict maintenance needs [48], 
enhancing accuracy, efficiency, and innovation in infrastructure devel
opment. In recent years, GPT-4 has evolved into a multi-modal model 
capable of handling not only text data but also processing data related to 
images, audio, and more.

3. Generative AI applications

Section 3 is organized into five main sections that collectively 
represent a progressive workflow for applying generative AI techniques 
in structural health monitoring. Section 3.1 begins with dataset 
augmentation, which addresses the challenge of limited or imbalanced 
training data and lays the foundation for robust model development. 
Section 3.2 covers image restoration, which enhances data quality by 
mitigating issues such as noise and poor lighting conditions. When 
combined, data augmentation and image restoration contribute to the 
creation of high-quality datasets. Building on this, Section 3.3 focuses on 
image segmentation, which relies on improved data quality to accu
rately isolate structural features or defects, enabling precise localization 
of damage. Finally, Section 3.4 discusses multi-modal generative AI, 
which integrates visual and textual modalities to enhance interpreta
tion. Section 3.5 summarizes key challenges and future research di
rections. These sections trace a path from data enhancement to high- 
level insight, highlighting the impact of generative AI on structural 
health monitoring.

3.1. Dataset augmentation

Generative AI models have emerged as a powerful technique for data 
augmentation, providing an effective way to enlarge datasets. The pri
mary issues with the datasets are data scarcity and data imbalance [49]. 
Data scarcity refers to a lack of sufficient data for training, while data 
imbalance occurs when some classes are underrepresented, leading to 
poor performance on those classes. Traditional methods used in com
puter vision tasks for data augmentation include image cropping, flip
ping, rotation, and scaling [50]. These methods are easy to use but limit 
the diversity of augmented images, potentially leading to repetitive 
datasets. In contrast, synthetic data from generative AI models can 
introduce variations that were not present in the original dataset, 
helping to create more robust models that generalize better to unseen 
data [51].

3.1.1. Unsupervised dataset augmentation
The original GAN is a classic unsupervised neural network model 

[52]. To provide a deeper understanding of GANs, this paper will pro
vide a detailed discussion from several perspectives, including the 
fundamental concept and model architecture [16,53]. GANs comprise a 
generator and a discriminator [54]. The objective of GANs is to train a 
generator to create highly realistic data through adversarial training 
[55]. The generator takes random noise as input and generates synthetic 
data, while the discriminator attempts to distinguish between the real 
data and the data generated by the generator [13,56]. Fig. 4 illustrates 
the GAN model used for data generation.

Fig. 3. Roadmap of the development of generative AI techniques.
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A typical GAN used for data generation is DCGAN. DCGAN includes 
both a generator and a discriminator [58]. In the generator, transpose 
convolutional layers (also known as deconvolutional layers) up-sample 
the noise to the desired image size [59]. In the discriminator, convolu
tional layers down-sample the input image, with a Sigmoid function in 
the output layer to produce a probability score indicating whether the 
image is real or fake [60]. DCGAN training begins with initializing 
random weights for both the generator and discriminator. The generator 
creates a fake image from random noise and feeds it to the discriminator 
[61]. The discriminator is trained using both real images and the fake 
images produced by the generator [62]. It calculates the loss based on a 
classification loss function (e.g., BCE loss) and updates its weights to 
minimize this loss [60]. This process is repeated over many epochs until 
the generator produces images that are sufficiently realistic [63]. To 
address the vanishing gradient problem, the WGAN replaces the BCE 
loss with Wasserstein loss [64]. The goal of Wasserstein loss is to 
minimize the Wasserstein distance between the real and generated data 
distributions. Further improvements are made by incorporating a 
gradient penalty term into the Wasserstein loss, resulting in the WGAN- 
GP model [18,65]. This gradient penalty term is added to the critic’s loss 
function to enforce the Lipschitz constraint, which is crucial for stable 
training. The gradient penalty encourages the gradient norm to be close 
to 1, ensuring that the critic adheres to the Lipschitz continuity 
requirement.

StyleGAN introduces a novel style-based generator architecture 
[20,66]. StyleGAN transforms the latent vector z into an intermediate 
latent space w. Intermediate latent space controls the style at each 
convolutional layer through AdaIN [20]. AdaIN enables the application 
of styles at different layers, allowing control over coarse, middle, and 
fine features of the generated images. The network generates images 
from the intermediate latent code w, with styles applied at each layer to 
influence the final image. Additionally, StyleGAN uses progressive 
growing, starts with a low resolution and gradually increases the reso
lution of generated images during training. This technique aids in sta
bilizing the training process and enhances image quality.

The data generation framework is summarized in Fig. 5. Initially, the 
original dataset is collected and fed into a generative AI model. This 
model generates additional synthetic images, expanding the original 
image dataset. The enlarged dataset is then used to train various models: 
classification models (e.g., VGG-16 and ResNet), object detection 
models (e.g., Faster R-CNN and YOLO) using the dataset with bounding 
boxes, and semantic segmentation models (e.g., U-Net and SegNet) using 
the dataset with masks. The DCGAN, WGAN, and WGAN-GP models are 
types of unsupervised GANs designed to generate data without requiring 
labeled datasets. This ability is particularly valuable because acquiring 
labeled data is often a challenging, time-consuming, and costly process. 
By leveraging these unsupervised GANs, researchers can efficiently 
produce high-quality synthetic data, improve the performance of ma
chine learning models, and facilitate various applications where labeled 
data is scarce or unavailable.

Generative AI models have been utilized to enhance datasets for 
various tasks such as classification, object detection, and semantic seg
mentation. In [67], DCGAN was used to generate high-resolution images 
at 256 × 256 pixels. The size of dataset increased from 4,160 to 9,600 
images. This study categorized the dataset into five types of pavement 
defects: horizontal crack, vertical crack, alligator crack, pothole, and 
non-crack. The VGG16 model was employed to classify these pavement 
defects. By augmenting the dataset with images generated using 
DCGAN, the classification accuracy of VGG16 increased from 88.6 % to 
91.4 %, demonstrating the significant impact of generated data on 
improving model performance. In [18], GAN models were used to 
augment datasets for pavement crack detection. This study proposed an 
improved WGAN-GP model to generate 512 × 512 pixels pavement 
images, addressing the issue of data scarcity. The study creates a syn
thesized dataset of grooved pavement crack images by combining 
generated crack images with real images. The robustness of the 
improved WGAN-GP model was validated using Faster R-CNN, YOLOv3, 
and YOLOv4 models for region-level detection, increasing the mAP 
scores from 68.0 %, 75.6 %, and 72.9 % to 74.6 %, 82.0 %, and 80.2 %, 
respectively. In [16], a GAN model was developed to augment a multi- 

Fig. 4. Illustration of a GAN model for data generation [57].

Fig. 5. Illustration of a data generation framework using GANs for improving deep learning performance.
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class image dataset for damage classification. The augmented dataset 
improved the average accuracy of the VGG model from 85.7 % to 97.6 
%. Table 1 summarizes the studies that apply GANs for data augmen
tation, including the specific GAN models used, the types of applica
tions, as well as the corresponding detection and classification models. 
Additionally, it quantitatively presents the performance metrics, high
lighting the accuracy of each model.

3.1.2. Unpaired dataset augmentation
Unpaired data augmentation GANs enhance datasets without 

requiring paired samples. When image-to-image translation pairs are 
hard to obtain, models like CycleGAN use unpaired data from two do
mains, leveraging dual generators and discriminators with cycle con
sistency to preserve original content [75]. A key example is CycleGAN, 
which uses dual generators and discriminators with cycle consistency to 
translate between domains while preserving original content [76–78]. 
In [77], the study addressed the challenge of detecting pavement cracks 
under shadow interference, which hinders the performance of deep 
learning models. The authors used CycleGAN to generate realistic 
shadowed crack images from unshadowed ones, without the need for 
paired training data, leading to improved segmentation performance of 
the U-Net model. In [79], CycleGAN was used to generate 500 synthetic 
damage images, including cracks and spalling in concrete structures. 
Using this augmented dataset, the damage segmentation accuracy of the 
DeepLabV3 + model improved from 75 % to 90 %. In [80], The Cycle
GAN was used to augment pavement damage data, including cracks and 
potholes, while boosting the mAP of YOLOv5 from 77.0 % to 85.0 %. In 
[81], CycleGAN was utilized to generate synthetic images and synthetic 
labels, effectively doubling the crack dataset size from 1,703 to 3,406. 
The expanded dataset improved crack segmentation accuracy of atten
tion U-Net model, raising the mAP score from 95.2 % to 97.5 %. The 
illustration of using CycleGAN for data augmentation is shown in Fig. 6.

3.1.3. Semi-supervised dataset augmentation
In the original GAN, classifiers typically categorize input data into 

real or fake [82]. However, in a semi-supervised GAN, the discriminator 
is enhanced into a multi-class classifier that not only distinguishes be
tween real and fake images but also categorizes real images into one of 
the N + 1 classes, where N represents the number of classes in the 
training dataset, with the additional class representing fake samples 
generated by the generator [83–85]. Compared to supervised learning 
methods, semi-supervised learning significantly reduces the need for 

labeled data while maintaining high classification accuracy [86]. For 
instance, a semi-supervised GAN a semi-supervised GAN can classify 
whether test samples contain a crack or not [87]. The ratio of labeled to 
unlabeled samples can be adjusted as a variable parameter, and addi
tional unlabeled samples can also be incorporated to further enhance the 
performance of the model. The ratio of labeled to unlabeled samples 
ranged from 1/5 to 1/30, resulting in classification accuracy exceeding 
93.5 %. The highest accuracy of 0.953 and F1-score of 0.976 were 
achieved by using only 1/5 of the labeled samples combined with an 
additional 10,000 unlabeled samples [87]. The illustration of semi- 
supervised SGAN is shown in Fig. 7.

3.1.4. Supervised dataset augmentation
Supervised dataset augmentation relies on paired data, where each 

input corresponds directly to a labeled output [88]. In [79], CGANs are 
used to generate concrete damage (cracks and spalling) from hand- 
painted semantic masks. The study utilized models such as pix2pix, 
OASIS, and pix2pixHD for data augmentation, and compared the quality 
of generated images using IS and FID. The pix2pixHD model achieved a 
higher IS score of 2.41 and a lower FID score of 121.3, indicating better 
performance in generating synthetic data. Images generated using the 
pix2pixHD model were further used for crack segmentation. These 
generated images were labeled to train segmentation models such as 
FCN, PSPNet, and DeepLabV3+, resulting in improved mIoU scores from 
82 % to 90 %, 85 % to 89 %, and 75 % to 90 %, respectively [79]. In 
[89], an L1-CGAN was proposed to generate bridge damage images such 
as rebar exposure based on segmentation masks. The model was trained 
using 208 concrete bridge images and produced 840 synthetic samples. 
The augmented dataset increased the mIoU of SegNet from 65.7 % to 
81.4 %. In [36], pix2pix was applied to generate image with crack from 
segmentation map. The augmented dataset was further used to train 
segmentation models, including FCN, U-Net, and DeepLabV3 + . The 
enlarged dataset consisted of 7,800 synthesized crack images and 7,800 
real crack images. The results demonstrated that the models trained with 
synthesized images achieved mIoU scores exceeding 74 %. An illustra
tion of using CGAN for data generation is shown in Fig. 8.

3.1.5. Text to image
Stable Diffusion generates detailed images from text descriptions 

using a latent diffusion process [40]. As an LDM, it combines VAEs, U- 
Net architectures, and transformer-based text encoders to create high- 
quality images. The model employs a forward diffusion process to add 

Table 1 
Summary of GAN models for data generation.

No. Year GAN model Application Task Deep learning Accuracy (%) Ref.

1 2021 DCGAN Pavement crack Object detection Faster R-CNN 84.9 to 87.8 [19]
2 2022 GAN Building crack, rebar exposure, delamination, leakage Classification VGG16 85.7 to 97.6 [16]
3 2022 GAN Building crack, rebar exposure, delamination, leakage classification Classification ResNet-50 75 to 96.1 [16]
4 2022 GAN Building crack, rebar exposure, delamination, leakage classification Classification MobileNetV2 68.9 to 96.9 [16]
5 2022 DCGAN Building crack Classification Deep CNN 91.4 to 92.8 [68]
6 2022 StyleGAN Bridge crack Classification ConvNeXt Up to 100 [20]
7 2022 StyleGAN Bridge crack Classification ResNet-152 Up to 99.9 [20]
8 2023 APC-GAN Pavement crack Semantic 

segmentation
U-Net 81.2 to 83.6 [69]

9 2023 WGAN-GP Pavement crack Object detection YOLOv4 72.9 to 80.2 [18]
10 2023 DCGAN Pavement crack Classification VGG16 88.6 to 91.4 [67]
11 2023 DCGAN Bridge crack and pitting Classification Normal CNN 72.1 to 76.0 [70]
12 2024 HGAN Building crack Semantic 

segmentation
LinkNet 92.5 to 97 [13]

13 2024 HGAN Building crack Semantic 
segmentation

Vision transformer 93.7 to 98.2 [13]

14 2024 SEGAN Building crack Semantic 
segmentation

U-Net 83.4 to 94.5 [71]

15 2024 MCT2GAN Building crack Semantic 
segmentation

DeepCrack 68.4 to 71.8 [72]

16 2025 DCGAN Building crack, spalling, leakage Object detection YOLOv5 75.6 to 81.4 [73]
17 2025 MaskGAN Building crack Object detection YOLOv5-seg 88.2 to 98.6 [74]
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Fig. 6. Illustration of a CycleGAN architecture for image generation [81].

Fig. 7. Illustration of a SGAN architecture for data generation [87].

Fig. 8. Illustration of a CGAN architecture for data generation [36].

Fig. 9. Illustration of a Stable Diffusion architecture for text-to-image generation [90].
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noise and a reverse process to denoise and reconstruct the image. The 
VAE maps images into latent space, while the U-Net handles denoising 
using skip connections, self-attention, and cross-attention, allowing for 
text-conditioned guided image generation. Fig. 9 illustrates the text-to- 
image generation process using a Stable Diffusion model [90]. The 
encoder extracts key information from the input text, which is trans
formed into latent space and decoded into the final image. Stable 
Diffusion holds significant potential for application in computer vision- 
based structural health monitoring. It can generate synthetic data to 
train AI models for anomaly detection, addressing challenges related to 
data scarcity. As reported in [90], the Stable Diffusion model was used to 
generate images of concrete surface damage, including cracks, spalling, 
and exposed rebar. This approach synthesized new damage images by 
pairing text and image data. To fine-tune Stable Diffusion, a training 
dataset of 678 images was assembled, and fine-tuning was performed 
using low-rank adaptation. As a result, a method for synthesizing highly 
diverse and high-quality concrete damage images was developed. In 
[91], crack images were generated by fine-tuning a Stable Diffusion 
model with text prompts. The synthetic images were subsequently used 
to train a crack detection neural network, achieving up to a 35.30 % 
improvement in F1 score and an average increase of 21.34 % compared 
to baseline methods. In conclusion, improving generalizability is crucial, 
as models trained on a single dataset often underperform when applied 
to different datasets or conditions. Stable Diffusion shows strong 
generalization when effectively prompted, enabling image generation 
across diverse textures and environments.

Despite their potential, several challenges limit the widespread 
adoption of text-to-image models. A major obstacle is that models like 
Stable Diffusion typically require paired image-text data for fine-tuning, 
which is often scarce or costly to obtain in specialized domains like 
structural health monitoring. Furthermore, generating high-resolution 
output demands substantial computational resources (e.g., GPU re
sources), posing difficulties for deployment in resource-constrained 
environments.

3.1.6. Performance metrics for dataset augmentation
The performance of data generation is typically assessed using the IS 

and FID [92]. The IS measures image quality and diversity, with higher 
scores indicating better performance. FID assesses the similarity to real 
images, where lower scores indicate better performance. 

IS = expEx∼pG KL(p(y|x)‖p(y)) (1) 

where G represents the generative model, D represents the Inception 
classifier, p(y|x) represents the class distribution generated by a given 
input image x, p(y) is the average class distribution of all input images, 
and KL represents the Kullback-Leibler divergence. 

FID = ‖μr − μg‖
2
+Tr

(

Σr +Σg − 2(ΣrΣg)
1
2

)

(2) 

where μr and μg represent the mean values of real images and synthetic 
images, respectively; Σr and Σg represent the covariance matrices for the 
real images and the synthetic images, respectively.

3.1.7. Summary of dataset augmentation
Compared to traditional data augmentation methods based on image 

processing, data augmentation leveraging generative AI demonstrates 
superior performance in subsequent detection and segmentation tasks. 
Different generative AI models are applied based on specific scenarios, 
as summarized in Table 2: (1) Unsupervised data augmentation: When 
no labeled data is available, models like DCGAN can be utilized. How
ever, these models have limitations in generating high-resolution images 
and often struggle to capture complex data distributions. (2) Unpaired 
dataset augmentation: When labeled data is scarce, unpaired dataset 
augmentation methods, such as CycleGAN, are promising for generating 
data without requiring paired samples. (3) Semi-supervised dataset 
augmentation: This approach is typically used in classification tasks 
involving large amounts of unlabeled data, leveraging both labeled and 
unlabeled data for better model performance (e.g., semi-supervised 
GAN). (4) Supervised dataset augmentation: While capable of gener
ating high-quality images, this method requires paired datasets for 
training (e.g., Conditional GANs), which can be a limiting factor in 
certain applications. (5) Text-to-image: Stable Diffusion is the most used 
text-to-image model for generating images of concrete damage based on 
text prompts. It can produce diverse and highly customizable images. 
However, it is computationally intensive and requires text-image pairs 
for fine-tuning.

3.2. Image restoration

Fig. 10 illustrates various image restoration tasks using generative 
AI, including image denoising, image super-resolution, low-light 
enhancement, overexposure correction, and image deblurring. For 
image denoising, generative AI effectively removes random noise from 
the input, producing a cleaner and more detailed image [93]. In low- 
light enhancement, the model brightens underexposed images, 
revealing hidden details while preserving natural lighting conditions 
[94]. Overexposure correction addresses regions with excessive bright
ness, recovering lost details and restoring image balance. Image 
deblurring improves the sharpness of blurred images by reconstructing 
edges and fine details [94]. Furthermore, super-resolution upscales low- 
resolution images, enhancing details and improving clarity [95]. Each of 
these tasks highlights the capacity of generative AI to transform 
degraded or suboptimal images into visually enhanced outputs, specif
ically tailored to address distinct image restoration challenges. The 
restored images can be utilized for image-based infrastructure 
inspection.

3.2.1. Image denoising
Denoising is a supervised learning task that trains a model using 

noisy images as inputs and clean images as targets. GANs for denoising 
use adversarial training, where a generator creates clean images, and a 
discriminator distinguishes between real images and generated images. 
In [96], GANs were used to remove shadows, and their denoising 
capability significantly enhanced the quality of shadowed crack images 
and boosted U-Net segmentation accuracy (IoU) from 0.152 to 0.879. 
Diffusion models recently demonstrated superior performance in image 

Table 2 
Summary of data augmentation methods (DA: Data augmentation).

No. Strategy Applications Pros Cons Models

1 Unsupervised DA Generates samples from unlabeled data No labeling cost, improves 
diversity

May produce unrealistic samples DCGAN, WGAN- 
GP

2 Unpaired DA Translate styles across unrelated datasets Enables cross-domain 
augmentation

Require complex training, may introduce 
artifacts

CycleGAN

3 Semi-supervised 
DA

Combines few labeled + many unlabeled 
samples

Efficient use of limited labeled 
data

Depending on initial label quality Semi-supervised 
GAN

4 Supervised DA Handwriting mask to generate images High label consistency Less flexible, requires full labels CGANs, DDPM
5 Text-to-image Generates images from text prompts Customizable outputs Computationally expensive, needs text-image 

alignment
Stable Diffusion
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denoising by employing a Markov chain process to progressively add 
and reverse noise, ensuring greater stability in handling large data 
variations [97]. Specifically, diffusion models have been applied to 
crack inpainting, automatically restoring missing crack information and 
preserving detailed features even in high-noise environments [98]. This 
approach outperforms traditional inpainting methods like PatchMatch, 
Contextual Attention, and Repaint, achieving PSNR improvements of 
20.5 %, 13.4 %, and 4.1 %, respectively. Despite advancements in GANs 
and diffusion models, the application of image denoising techniques in 
infrastructure maintenance remains underexplored. To adapt these 
methods for noisy field conditions, domain-specific validation could be 
performed using annotated datasets captured under shadowed envi
ronments or other noisy conditions. Furthermore, combining synthetic 
noise augmentation (e.g., Gaussian noise and random shadows) with 
real-world samples can enhance model robustness and generalizability 
in practical scenarios.

3.2.2. Low-light enhancement
Generative AI enhances visibility and quality in images taken under 

low-light conditions. The goal of such generative AI models is to 
improve brightness, contrast, and detail in low-light images while pre
serving natural colors and reducing noise. In [94], a conditional 
generative model is developed to enhance the illumination of concrete 
crack images. The conditional generative model incorporates a self- 
attention layer in the skip connections and utilizes ResNet as the foun
dational block, while also gradient penalty loss. Evaluation results 
demonstrate that this approach surpasses state-of-the-art methods, 
achieving a SSIM of 0.95 and a PSNR of 31.4. The enhanced images were 
subsequently used to train a deep learning model for crack identification 
and localization in concrete images. The performance metrics for crack 
segmentation, with an IoU exceeding 0.98 and an F1 score surpassing 
0.99, demonstrate exceptionally high accuracy in crack assessment 
tasks. In [99], a model called N-LoLiGan is introduced. This model uti
lizes feature loss to guide training, ensuring the preservation of image 
textures. Experimental results show that the developed model excels in 
enhancing low-light images, greatly improving the visibility and clarity 

of crack features. Moreover, when these enhanced images were used to 
train object detection models like YOLACT and YOLOv5s, the average 
detection accuracy increased from 0.63 to 0.89 and from 0.90 to 0.97, 
respectively, demonstrating a substantial improvement in detection 
performance.

3.2.3. Overexposed correction
Overexposure correction using generative AI restores details in im

ages that are excessively bright or washed out [100]. The overexposure 
correction is also based on conditional generative models. The generator 
reconstructs lost details in overexposed areas by using context from 
better-exposed regions, adjusting luminance and contrast for a natural 
appearance. The discriminator compares these adjustments to real 
properly exposed images and provides feedback to help the generator 
improve over time. This iterative process enhances the overall quality of 
the images by gradually refining the correction. In [94], a generative 
adversarial network is used to restore overexposed images with cracks. 
The segmentation accuracy on overexposed images was initially 
measured with an IoU of 0.934 and an F1 score of 0.941. The accuracy 
improved significantly with the restored images, achieving an IoU of 
0.989 and an F1 score of 0.994.

3.2.4. Image deblurring
In image processing, removing motion blur is a critical but chal

lenging task, often caused by factors like rapid object movement or 
camera shake [101]. Conditional generative models have been proposed 
to address this issue through effective deblurring. In [102], Motion blur 
from robotic car imaging of pavement cracks posed a major challenge, 
reducing deep learning model accuracy. To address this, DeblurGAN 
emerged as a promising solution for deblurring pavement crack images. 
The model was trained using original images and artificially blurred 
images generated by a random trajectory blurring algorithm [103]. 
Deblurred images tested with DeepLabV3 + improved IoU from 0.18 to 
0.43 and F1 score from 0.26 to 0.58. Image deblurring significantly 
improved crack detection on building façades [24]. For instance, 
deblurring raised segmentation accuracy from an IoU of 0.895 and F1 

Fig. 10. Illustration of image restoration tasks using generative AI.

S. Duan et al.                                                                                                                                                                                                                                    Advanced Engineering Informatics 68 (2025) 103719 

9 



score of 0.891 to 0.982 and 0.991, respectively, highlighting its effec
tiveness in restoring blurred images [94].

3.2.5. Super-resolution reconstruction
Low-resolution images often miss fine cracks and subtle defects 

crucial for evaluating structural integrity. SRGAN presents a promising 
solution for addressing this challenge [83]. This model can generate 
high-resolution images from low-resolution inputs, significantly 
enhancing image details. Super-resolution can be applied to enhance the 
resolution of low-resolution crack images, improving image details and 
quality [21]. The reconstructed images achieved a PSNR of 33.1 dB and 
SSIM of 0.820, surpassing Bicubic (30.24 dB, 0.775) in quality. When 
trained on the super-resolution dataset, segmentation models achieved a 
15.6 % higher F1-score and a 23.8 % improvement in IoU compared to 
models trained on Bicubic-reconstructed images [21]. Further en
hancements were made by incorporating a self-attention mechanism 
into the model, resulting in a PSNR of 27.5 dB and an SSIM of 0.865 
[38]. This surpassed both Bicubic interpolation (PSNR: 21.7 dB, SSIM: 
0.663) and the original framework (PSNR: 26.9 dB, SSIM: 0.847). For 
crack classification tasks, ResNet50 trained on these high-resolution 
images achieved 98.2 % accuracy [104]. In conclusion, adversarial 
network-based super-resolution processing has substantially improved 
the accuracy and reliability of crack detection and segmentation [21]. 
The illustration of the super-resolution reconstruction using generative 
AI model is illustrated in Fig. 11.

3.2.6. Performance metrics for image restoration
The performance of image reconstruction, including super-resolution 

and image restoration, is typically assessed using PSNR and SSIM met
rics. The PSNR, defined in Eq. (3), was used to evaluate image quality 
[15]. PSNR quantifies the logarithmic value of the MSE between the 
original and reconstructed images, relative to the maximum possible 
pixel value. A higher PSNR indicates better image quality and lower 
distortion. 

PSNR = 20log10(
MAXI
̅̅̅̅̅̅̅̅̅̅
MSE

√ ) (3) 

where MAXI is the maximum pixel value of the original image; and MSE 
is defined in Eq. (4): 

MSE =
1

mn
∑m− 1

i=0

∑n− 1

j=0
(f(i, j) − g(i, j))2 (4) 

where f is the matrix data of the original image; g is the matrix data of 
the low-quality image; m is the number of rows of pixels with i as the row 
index; and n is the number of columns of pixels with j as the column 
index.

The SSIM, defined in Eq. (5), is a metric used to assess the similarity 

between two images [15]. SSIM evaluates image quality by considering 
three key components: luminance, contrast, and structure. The SSIM 
values range from 0 to 1, with a value of 1 indicating the highest possible 
image quality. 

SSIM(x, y) =

(
2μxμxy + C1

)(
2σxy + C2

)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
(5) 

where x is the matrix data from a window in the target image; y is the 
matrix data from a window in the reference image; C1 and C2 are small 
constants introduced to avoid division by zero, with C1 = 0.0001 and C2 
= 0.0009; μx and μy are the mean values of x and y, respectively; σx and 
σy are the variances of x and y, respectively; and σxy is the covariance 
between x and y.

The SSIM was calculated using a sliding window approach. In each 
calculation, a window of size N × N was taken from the target and 
reference images, and the SSIM index was computed based on the 
window. Small window size (e.g., 5 × 5) captures fine details and local 
variations, and large window size (e.g., 11 × 11) captures broader 
information.

3.2.7. Summary of image restoration
Image restoration includes tasks like denoising, low-light enhance

ment, overexposure correction, deblurring, and super-resolution. 
Table 3 summarizes the case studies on image restoration applications in 
structural health monitoring. Super-resolution is the most common task, 
primarily applied to crack detection and segmentation. Low-light 
enhancement and deblurring show significant performance gains (e.g., 
63.0 % to 97.0 % for YOLOv5s [99]). While crack detection dominates 
the research focus, other critical damage types including spalling and 
corrosion have received significantly less attention. The effectiveness of 
image restoration depends critically on the availability of paired data
sets (input–output pairs) for training. However, such datasets are often 
difficult to obtain because data collection is often time-consuming, 
especially for real-world image degradations such as noise, motion 
blur, and lighting variations. These characteristics pose significant 
challenges for creating comprehensive datasets that encompass all 
possible scenarios, ultimately restricting model generalizability to un
seen conditions. To address these limitations, researchers have 
employed synthetic data augmentation techniques. These include 
adjusting pixel values to simulate overexposure or low-light conditions 
[94], as well as applying convolution kernels to reproduce focus issues 
or motion blur effects [102]. While these methods can increase dataset 
size, ensuring adequate diversity in synthetic datasets.

3.3. Image segmentation

Image segmentation in structural health monitoring, such as damage 

Fig. 11. Illustration of a SRGAN architecture for image reconstruction [105].
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detection, aims to identify and isolate damaged regions within images 
for accurate analysis [107]. This process often relies on deep learning 
models to classify each pixel as either belonging to a damage or the 
background [108]. GAN-based image segmentation has demonstrated 
superior performance compared to CNN-based models like U-Net and 
DeepLabV3+, particularly in addressing the challenge of limited labeled 
training datasets. By leveraging adversarial learning, GANs can achieve 
high-quality segmentation results even with smaller datasets [108,109]. 
In contrast, traditional models such as CNN-based segmentation model 
often require labor-intensive manual segmentation during the data 
preparation phase, making GANs a more efficient and effective alter
native. A GAN for image segmentation requires a paired dataset with 
each input image matched to its corresponding segmentation mask, as 
illustrated in Fig. 12. The generator learns to produce segmentation 
masks from input images, while the discriminator assesses the realism of 
the generated masks. The training process combines adversarial loss 
from the discriminator and pixel-wise loss (such as L1 loss) to guide the 
generator toward producing accurate and realistic segmentation out
puts. This approach enables the direct application of generative models 
for image segmentation. Image segmentation performance is typically 
evaluated using standard metrics such as F1 score and IoU.

In [109], CrackSegAN was developed for crack segmentation, uti
lizing a U-Net-based generator and a discriminator. The generator cre
ates a binary crack map from a given crack image, while the 
discriminator compares the ground-truth masked image with the pre
dicted masked image using a multi-scale L1 loss. A joint loss function 
combining multi-scale L1 loss and Dice loss was introduced for 
addressing the significant class imbalance in pavement crack images. 
The generator aimed to minimize the joint loss while the discriminator 
focused on maximizing the multi-scale L1 loss. Through this process, 
both the generator and discriminator improved, eventually reaching an 
equilibrium where the generator produced crack maps indistinguishable 

from the ground truth. The developed model achieved a F1 score of 
0.978, surpassing models like CU-GAN, pix2pix, and DeepCrack. In 
[110], CrackGAN was developed for direct crack segmentation. The 
generator used asymmetric U-Net architecture to produce binary images 
while the discriminator improved the performance of the model. The 
developed model tested on the CrackForest dataset achieved an F1 score 
of 0.919 and surpassed other models such as FCN. Compared to tradi
tional segmentation networks such as FCN, CrackGAN incorporated a 
discriminator that evaluated the generated crack masks, helping to 
produce more realistic and continuous results with better detail pres
ervation, particularly effective for detecting thin and narrow cracks. In 
[39], a diffusion model was developed for pavement crack segmentation 
and trained on 1,037 images with corresponding binary labels. The 
model achieved the highest IoU score of 0.841, outperforming bench
mark models such as U-Net, DeepLabV3+, and SegFormer. Diffusion 
models outperform conventional deep learning models in challenging 
scenarios with complex backgrounds (e.g., shadows) and discontinuous 
annotations. This advantage stems from the architectural limitations of 
models like U-Net or SegFormer, which rely on local receptive fields, 
either through convolution kernels or window-based attention. These 
models often struggle to capture long-range dependencies, leading to 
fragmented crack detections due to limited contextual understanding. In 
contrast, diffusion models reconstruct clean segmentation masks from 
noise by learning the joint probability distribution of all pixels. This 
enables them to model global crack continuity more effectively. Unlike 
CNN-based models that process image patches independently, diffusion 
models iteratively refine predictions while maintaining structural 
coherence, allowing them to infer and fill in missing crack segments 
based on the learned data distribution [39]. The comparison between 
generative AI models with conventional semantic segmentation models 
is summarized in Table 4.

Table 3 
Summary of generative-AI models for image restoration.

No. Year GAN model Tasks Application Deep learning Metrics (%) Ref.

1 2020 SRGAN Super-resolution Building crack classification ResNet-50 Up to 98.2 [104]
2 2020 CGAN Image deblurring Building crack − − [24]
6 2022 ESRGAN Super-resolution Building crack segmentation CDU-Net 69.5 to 82.3 [21]
4 2022 SRGAN Super-resolution Pavement crack detection Faster-RCNN 76.7 to 87.9 [38]
5 2022 Improved SRGAN Super-resolution Pavement crack detection Faster-RCNN 76.7 to 91.2 [38]
6 2023 Diffusion model Image denoising Pavement crack − − [98]
7 2023 SRGAN Super-resolution Building crack segmentation FDDWNet 75.8 to 77.2 [105]
8 2023 N-LoLiGan Low-light enhancement Building crack detection YOLACT 63.0 to 89.0 [99]
9 2023 N-LoLiGan Low-light enhancement Building crack detection YOLOv5s 90.0 to 97.0 [99]
10 2023 CGAN Image deblurring Pavement crack segmentation MIMO-UNet 31.6 to 60.3 [102]
11 2024 ARCGAN Low-light enhancement Building crack segmentation LinkNet 15.3 to 99.4 [94]
12 2024 ARCGAN Image deblurring Building crack segmentation LinkNet 89.5 to 98.2 [94]
13 2024 CGAN Image deblurring Building crack segmentation UperNet 83.4 to 86.8 [101]
14 2024 ARCGAN Overexposed correction Building crack segmentation LinkNet 93.4 to 98.9 [94]
15 2025 IEnlightenGAN Image denoising Building crack segmentation U-Net 39.9 to 98.6 [96]
16 2025 SRGAN Super-resolution Pavement crack segmentation DeepLabV3+ 85.0 to 90.0 [106]

Fig. 12. Illustration of a GAN architecture for image segmentation.
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3.4. Multi-modal data integration

3.4.1. Visual question answering
The development of VQA systems has been advanced through multi- 

modal models like CLIP, which align visual and textual data in a shared 
feature space [27,111]. CLIP’s architecture includes separate encoders 
for images and text, which are trained using ITC learning to align fea
tures effectively, as illustrated in Fig. 13(a). In [27], the CLIP model was 
trained on 610,197 training samples, 130,122 validation samples, and 
131,774 test samples. The visual encoder options include ResNet and 
Vision Transformers, while the text encoder options include LSTM and 
BERT. The dataset contains 62 possible answer candidates, covering 
bridge member types, and damage classifications. Questions in the 

dataset are categorized into three types: (1) Yes/No Questions (e.g., “Is 
there corrosion?”). (2) Member-Class Questions (e.g., “What is the 
component in the image?”). (3) Damage-Class Questions (e.g., “What 
type of damage is present?”). Among the tested configurations, the 
combination of a Vision Transformer and BERT achieved the highest 
accuracy: 99.4 % on binary tasks, 83.0 % on member identification, and 
77.6 % on damage identification. Fig. 13(b) illustrates the results of the 
Q&A system, where the input consists of an image and a corresponding 
question. The system processed the image through a visual encoder and 
the question through a text encoder, fusing the extracted features to 
generate an accurate answer. This output reflected the ability of the 
system to effectively align visual and textual modalities to address the 
query based on the input image. A similar study was conducted in [112], 
introducing BridgeCLIP, an innovative framework that adapts the pre- 
trained vision-language model CLIP for automatic bridge inspection 
through multi-label image classification. In the BridgeCLIP framework, 
the training phase uses both images and textual descriptions to help the 
model learn domain-specific knowledge. During prediction, only the 
image is provided as input. The model has learned from the text during 
training. It can identify different damage types in the image without any 
extra text input. In [28], the study proposed leveraging a large language 
model to develop a VQA system aimed at enhancing human-robot 
collaboration in UAV-assisted bridge inspections. The system outputs a 
classification result that determines whether a specified object or dam
age type is present in the image. With a peak accuracy of 83.33 %, 
though lower than that of well-trained segmentation models such as 
ResNet (89.4 %), the approach still demonstrates strong potential for 
enhancing the precision and safety of UAV-based bridge inspections. 
This highlights the value of vision-language models in addressing 
specialized, domain-specific tasks where human-robot collaboration and 
semantic understanding are essential. In [113], a study proposed a deep 
learning-based framework for estimating the causes of bridge damage 
using VQA. The dataset includes 22 distinct types of damage. A domain- 
specific VQA model was developed and trained on over 440,000 bridge 
images, enabling it to answer questions related to types of damage. The 
model demonstrated high accuracy (99.1 %) in damage classification 

Table 4 
Comparison between generative AI models with semantic segmentation models.

Models Accuracy Category Note Ref

CrackGAN 91.9 % GAN-based GANs outperform CNN- 
based segmentation 
models, as the 
discriminator enhances 
the realism, continuity, 
and detail of generated 
crack masks, particularly 
for thin and narrow cracks.

[110]
FCN 89.0 % CNN-based
Crackforest 87.7 % CNN-based
CrackSegAN 84.1 % GAN-based [109]
DeepCrack 82.5 % CNN-based

RoadPainter 71.8 % Diffusion 
model

Diffusion models 
outperform CNNs and 
Transformers in complex 
scenes with shadows or 
annotation gaps by 
modeling global pixel 
distributions. They 
capture long-range 
dependencies and 
reconstruct coherent crack 
masks, inferring missing 
segments and correcting 
errors.

[107]

LinkNet 59.5 % CNN-based
PSPNet 55.5 % CNN-based
CrackDiff 84.1 % Diffusion 

model
[39]

SegFormer 83.3 % Transformer- 
based

DeepLabV3+ 83.4 % CNN-based

Fig. 13. Illustration of the VQA system [27]: (a) CLIP model architecture. CLIP employs separate vision and text encoders to map image and text inputs into a shared 
embedding space. The model then selects the text label with the highest similarity score, thereby enabling image classification; (b) Q&A results. The predicted class is 
integrated into the question-answering program, where the answer corresponds to the classification result produced by CLIP.
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based on yes/no questions. In [114], the study explored the feasibility of 
using VQA for post-disaster damage detection based on aerial footage 
captured by UAVs. A VQA model combining a CNN with a Bag of Words 
was proposed to enable image-based question answering. The model 
was evaluated on a custom dataset collected after the hurricane, 
achieving an overall accuracy exceeding 92 %. In [115], the study 
presented the development of a web-based bridge inspection system that 
automatically generates explanatory texts describing bridge damage 
from inspection images using a deep learning-based image captioning 
model. By combining a CNN for visual feature extraction with an LSTM 
for text generation, the system outputs clear descriptions such as 
“cracking detected on the bottom of the slab,” making inspection results 
more accessible to engineers. The system can continuously improve its 
accuracy through user feedback. This approach bridges the gap between 
visual analysis and textual interpretation in structural health monitoring 
and offers practical potential for automating field inspections and report 
generation.

Despite their potential, several challenges hinder the broad adoption 
of VQA. A major limitation is the substantial amount of annotated 
training data required, which is particularly burdensome in resource- 
limited settings where labeling domain-specific engineering imagery is 
both costly and time-consuming. Technically, the reliance on large-scale 
architectures like Vision Transformers and BERT introduces significant 
computational demands, making real-time deployment on edge devices 
such as UAVs or mobile robots difficult. While a few-shot learning can 
alleviate data constraints, it often compromises robustness and accu
racy, limiting its suitability for fully autonomous applications without 
human supervision.

3.4.2. Large language models
In computer vision-based structural health monitoring, integrating 

LLMs can enhance human–machine interaction and data interpretation, 
offering a promising approach to better understand and manage com
plex visual inspection data. In [28], a cascaded crack detection strategy 
using multi-modal LLMs was proposed to enhance zero-shot fatigue 
crack detection in steel bridges. The study systematically evaluated five 
LLMs: Claude, GPT-4o, GPT-4o mini, Grok, and Gemini. The input to the 
crack detection system based on LLMs consisted of images of steel bridge 
components that may contain fatigue cracks, along with textual prompts 
(such as instructions or damage labels) to guide the detection process. 
The output is a classification result for each image or image patch, 
indicating the presence or absence of fatigue cracks. Among the evalu
ated models, GPT-4o mini consistently achieved the best performance in 
image-level crack classification tasks. The advantage of using LLMs lies 
in its ability to perform zero-shot learning, enabling direct predictions 
without the need for task-specific training. However, its prediction ac
curacy is generally lower compared to dedicated classification models 
(e.g., ResNet). If resources are available, fine-tuning an open-source 
multi-modal LLMs (e.g., Llama-3-8B) with domain-specific data is rec
ommended. Even a small set of relevant images can significantly 

enhance prediction accuracy [116]. Fig. 14 illustrates the application of 
LLMs in damage inspection.

In [117], the study presented SDA-Chat, a novel multi-modal LLM- 
based framework designed for rapid post-earthquake structural damage 
assessment. By integrating visual encoders, a query transformer, and 
LLMs (e.g., LLaMA3), the system can interpret structural damage images 
and respond with professional textual evaluations. SDA-Chat was 
trained on 8,195 annotated image–text pairs and supports seven struc
tural assessment tasks, such as damage type, collapse level, and material 
classification. Experimental results demonstrate that SDA-Chat achieves 
an accuracy of up to 76.11 % with an inference speed of 435 tokens per 
second. A recent study explored the use of LLMs, such as ChatGPT, to 
enhance automated post-disaster building damage assessment from 
ground-level images [118]. To integrate visual and textual information, 
a vision-language model called CLIP is used, which employs a dual- 
encoder architecture to separately encode images and text before 
fusing them in a shared embedding space through late fusion. Experi
ments on a curated dataset of hurricane-affected buildings show that 
combining image and LLM-generated captions improves classification 
performance by approximately 4 % for using image alone and 17 % for 
using text alone. These results indicate that the generated textual de
scriptions provide complementary information beyond the visual con
tent, even though the model was not explicitly trained for damage 
assessment tasks. SDIGLM is a novel LLMs for structural damage iden
tification, built on the VisualGLM-6B architecture [119]. It integrates a 
U-Net-based semantic segmentation module with a multi-modal Chain- 
of-Thought reasoning framework to deliver both precise classification 
and detailed natural language descriptions of damage types such as 
cracks, holes, and corrosion. Trained on a curated dataset of 11,722 
image-text pairs and fine-tuned with LoRA, SDIGLM surpasses general- 
purpose models like GPT-4o and GLM-4v, achieving 95.24 % accuracy 
across diverse structural scenarios.

Another potential application of LLMs is the enhancement of 
contextual object detection capabilities. Unlike conventional ap
proaches such as YOLO, which rely solely on visual features to identify 
objects, LLM-enhanced methods incorporate contextual cues, such as 
surrounding objects and scene settings into the detection process. A 
representative example can be found in [120]. In the context of struc
tural health monitoring, this capability allows for precise detection of 
critical structural features such as cracks, joints, and deformations. In
spectors can issue natural language queries like “highlight cracks” or 
“detect corrosion,” and the system responds with accurate and intuitive 
results.

3.5. Discussions

3.5.1. Deployability
Table 5 compares generative AI models across two critical deploy

ability dimensions, including real-time inference capability and field 
deployment readiness. Real-time inference remains a key limitation, as 

Fig. 14. Illustration of zero-shot crack identification using LLMs [28]. Note: − 1 represents “Uncertainty”, 1 represents “crack”, and 0 represents “no-crack”.
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none of the listed models support it, which is a critical requirement for 
applications like UAV-based inspection and robotics. Meeting real-time 
constraints typically requires lightweight architecture such as 
TinyYOLO (< 20 M parameters) [121]. While DCGAN can operate in 
real time, speed is generally less critical for image generation and 
augmentation, where image quality and realism are prioritized. Smaller 
models under 500 M parameters, such as conditional generators and 
CLIP, are more suitable for field deployment on edge devices but still 
require latency optimization. Field deployment refers to models capable 
of running directly on edge devices at the data source, without relying 
on external computing resources such as cloud servers or transmitting 
the data to external systems for processing. In contrast, larger models, 
particularly LLMs with over 8 billion parameters, are designed for high- 
performance computing and are impractical for real-time or embedded 
applications. For instance, fine-tuning an 8B model with parameter- 
efficient methods like LoRA still requires at least one GPU with 12 GB 
of memory [122], and training times can reach 14 h [123]. Even 
inference at FP16 precision requires approximately 12 GB of memory 
[122]. As a result, deployment on resource-constrained platforms like 
UAVs equipped with Raspberry Pi or Jetson Nano remains unfeasible 
[124]. Model distillation offers a promising solution by compressing 
large models into smaller ones (for example, under 1 billion parame
ters), substantially reducing memory and compute requirements [125]. 
However, this often comes at the cost of reduced accuracy and warrants 
further research. In summary, small models that can run on edge devices 
are suitable for field deployment, although some may not achieve real- 
time inference. In contrast, large models are typically utilized by 
uploading data to external computational resources, which limits their 
ability to field deployment and support real-time inference.

3.5.2. Generalizability
Although generative AI models can generate additional images and 

expand the training set, thereby improving the prediction accuracy of 
downstream tasks such as damage detection and segmentation, this 
improvement is often limited to the specific task or domain [131]. The 
transferability of such models to other areas remains underexplored. For 
example, a model trained on an augmented concrete crack dataset may 
exhibit reduced accuracy when applied to asphalt pavement crack 
identification. Furthermore, overfitting synthetic characteristics such as 
uniform lighting, clean backgrounds, and idealized crack patterns can 
significantly degrade model performance in real-world. To address this 
limitation, several strategies can be conducted: (1) cross-dataset evalu
ation has been proposed as a robust validation strategy. For instance, a 
model trained on synthetic concrete crack images can be validated on 
real-world datasets such as pavement cracks or steel bridge cracks. This 
approach provides a more reliable measure of generalization perfor
mance under varying conditions [132]. (2) Other strategies include 
domain randomization techniques, which introduce variations in image 
properties such as lighting conditions and noise. This helps the model 
focus on task-relevant features rather than relying on domain-specific 
artifacts [15]. Without these strategies, models may excel on synthetic 
benchmarks but fail in real-world settings with surface variation, 

shadows, occlusion, and debris. (3) Transfer learning can be used to 
adapt pre-trained models to new domains by fine-tuning them on a small 
set of labeled real-world data. This approach has demonstrated potential 
in enhancing model generalization across various material types and 
surface conditions [133].

3.5.3. Practical application of generative AI
Generative AI has shifted from theory to a practical tool with 

tangible benefits for infrastructure maintenance. One of the most im
pactful applications lies in automated data augmentation. Civil infra
structure systems, such as pavements, bridges, and build structures often 
suffer from sparse and imbalanced datasets. Generative AI can produce 
high-resolution synthetic images of surface damage, including cracks, 
potholes, spalling, and exposed rebars, allowing deep learning models to 
be trained with greater variety and volume. Generative models such as 
DCGAN, WGAN-GP, and StyleGAN effectively address this bottleneck by 
synthesizing diverse and realistic defect images, enriching datasets and 
improving model generalization [18–20]. For example, models trained 
with synthetic data have shown higher accuracy in crack detection tasks. 
The impact spans various model types, including VGG16, YOLOv4, and 
U-Net [16,18,71]. Additionally, the ability to simulate underrepresented 
defect types allows for more balanced training data, which helps reduce 
model bias and enhances detection robustness. In addition to data 
augmentation, generative AI models are also increasingly used for image 
restoration. Damage inspection images are often affected by noise, 
blurriness, low resolution, or poor lighting conditions, especially when 
captured by UAVs. GAN-based restoration models can reconstruct 
missing or corrupted regions, enhance resolution, and improve overall 
image quality. This helps preserve critical structural details, ensuring 
more accurate downstream analysis such as defect detection or seg
mentation. Generative AI also plays a valuable role in semantic seg
mentation of cracks by enabling style translation from RGB images to 
binary masks. This capability is particularly useful in situations where 
pixel-level annotations are scarce or labor-intensive to produce. Models 
like pix2pix can generate accurate segmentation masks from raw RGB 
inputs. Recent advances in multi-modal AI, especially vision-language 
models like CLIP and LLMs, offer practical tools for structural health 
monitoring. These models align visual data with semantic understand
ing, enabling tasks such as question answering, component identifica
tion, and defect classification. CLIP-based systems have achieved high 
accuracy in identifying bridge damage, while frameworks like Bridge
CLIP allow image-only classification after training with text-image pairs. 
In UAV-assisted structural health monitoring, few-shot CLIP models 
detect defects with minimal labeled data, enabling semi-autonomous 
inspection. LLMs like GPT-4o mini further support zero-shot crack 
detection using multi-modal inputs. Together, these tools reduce label
ing demands, speed up assessment, and enhance collaboration between 
AI systems and human inspectors. Based on the above discussion, it is 
feasible to build an automated pipeline that integrates robotic-based 
data collection with generative AI-driven dataset augmentation and 
image restoration. This would enable the creation of a high-quality data 
platform to support damage inspection through segmentation. Further
more, multi-modal generative AI models can align visual data with 
textual information, enabling more comprehensive interpretation of 
structural damage and supporting intelligent interfaces such as chatbots 
for human-AI interaction. The proposed pipeline enables practical, real- 
world implementation of generative AI models in structural health 
monitoring by integrating robotic data collection, synthetic data gen
eration, image restoration, semantic analysis, and human-AI interaction 
into a unified system, as shown in Fig. 15.

3.5.4. Paradigm shift enabled by generative AI
The rise of generative AI is driving a transformative shift in structural 

health monitoring, not only by enhancing performance (e.g., higher IoU 
scores), but also by fundamentally reshaping methodologies and work
flows. Traditionally, computer vision-based structural health 

Table 5 
Deployability of generative AI models.

Models Model 
size

Real-time 
inference

Field 
deployment

DCGANs [126] 6–10 M Yes Yes
Conditional GANs [102] ~105.3 M No Yes
Diffusion models [39] 387 M No Yes
Stable diffusion [127] ~ 860 M No Yes
CLIP [128] 428 M No Yes
LLMs GPT-4o [129] ~200B No No

GPT‑4o mini 
[130]

8B No No

Claude 3.5 [130] ~175B No No
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monitoring has depended on manually curated datasets, expert-designed 
feature extraction, and offline post-processing. In contrast, generative AI 
enables automated and interactive workflows that redefine the pro
cesses of detecting, analyzing, and interpreting structural damage. For 
instance, the generation of diverse and high-resolution synthetic dam
age images reduces reliance on costly and time-consuming field data 
collection, accelerating model development. This shift moves structural 
health monitoring from a data-scarce to a data-abundant paradigm. 
Advanced generative AI models, such as Stable Diffusion, offer prom
ising capabilities for precise control over image content and back
ground. Although their use in structural health monitoring is still 
emerging, they hold significant potential for future research. These 
models facilitate accurate and controllable generation of structural 
damage, aligned with specific expectations or predefined conditions. 
Furthermore, multi-modal models such as CLIP and SDIGLM enable 
intuitive interaction between human inspectors and AI systems through 
natural language, allowing users to ask questions, receive insights, and 
generate inspection reports directly from visual data. By integrating 
visual-language models with LLMs, generative AI facilitates the devel
opment of more interactive, interpretable, and collaborative systems. 
These models go beyond traditional classification and segmentation 
tasks to support advanced capabilities such as visual question 
answering, automated damage description, and AI-assisted decision- 
making. Such features not only improve user experience but also lower 
the technical barrier for field inspectors, enabling non-experts to engage 
with complex AI systems through simple prompts or queries. A critical 
avenue for future research lies in the development of lightweight and 
computationally efficient models that can be seamlessly deployed on 
edge devices. Achieving real-time inference under resource-constrained 
environments is imperative for enabling autonomous, on-site structural 
damage assessment and effective human–computer interaction.

4. Conclusions

This study highlights the transformative role of generative AI in 
advancing infrastructure maintenance by addressing critical challenges 
such as data scarcity and quality issues. By leveraging models like GANs, 
Diffusion models, and multi-modal AI architectures, generative AI en
hances data augmentation, image restoration, damage identification 
capabilities, significantly improving the accuracy and reliability of 
infrastructure inspection. Generative AI is driving a transformative shift 
in structural health monitoring by enabling data-rich, interactive, and 
intelligent workflows. To sustain this transformation, future research 
should prioritize lightweight, deployable models capable of real-time 
performance on edge devices for practical, on-site applications. Based 
on the above investigation, the following conclusions can be drawn: 

• As discussion in Section 3.1, data augmentation is a critical tech
nique for improving the performance of AI models, especially in 
damage inspection tasks where datasets are limited or imbalanced. 
Generative AI models expand datasets, address class imbalance, and 
enhance accuracy and robustness in damage inspection. The gener
ation of diverse, high-resolution synthetic damage images reduces 
dependence on costly and time-consuming field data collection, 
thereby accelerating model development and driving structural 
health monitoring toward a data-rich paradigm.

• Image restoration with conditional generative models improves 
degraded images, for more effective damage detection, as discussed 
in Section 3.2. Techniques such as denoising, super-resolution, low- 
light enhancement, overexposure correction, and deblurring address 
common issues like noise, poor resolution, and lighting in
consistencies. By restoring fine structural details and improving 
overall image clarity, these models significantly enhance the effec
tiveness of downstream detection and segmentation tasks, support
ing robust analysis even under adverse conditions.

Fig. 15. Practical implementation of generative AI models in structural health monitoring.
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• Generative AI (e.g., GANs and diffusion models) achieves higher 
accuracy in image segmentation compared with CNN-based model 
(e.g., DeepLabV3 + ) and transformer-based model (e.g., Seg
Former), as discussed in Table 4. This improvement is largely 
attributed to their ability to model global context and preserve fine 
structural details, especially in challenging conditions such as noise, 
shadows, or fragmented annotations.

• The integration of LLMs and multi-modal systems enables more 
comprehensive defect identification (Section 3.4). By jointly pro
cessing visual and textual inputs, these models enable contextual 
reasoning, generate natural language explanations, and support 
interactive human-AI communication. This advancement improves 
the transparency and reliability of inspection results and contributes 
to a broader transformation of structural health monitoring work
flows into interactive and explainable systems.

Despite advancements in generative AI models, remaining chal
lenges and future research directions are summarized below: 

• Infrastructure inspection is a specialized task requiring tailored 
datasets to train generative models effectively. Collecting defect 
images under varied conditions is time-consuming and resource- 
intensive, limiting the scalability of generative AI approaches in 
structural health monitoring.

• Research on advanced generative AI models such as Stable Diffusion, 
LLMs, and multi-modal systems remains limited due to high 
computational costs. Increased investment is crucial, as these models 
offer superior efficiency and adaptability across varied scenarios.

• Advanced generative AI models can be fine-tuned for specific tasks, 
allowing them to adapt to diverse contexts with minimal additional 
training. This capability represents a key direction for future 
research in this field. Fine-tuning reduces the need for extensive 
retraining, making these models more versatile for infrastructure 
maintenance.
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