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Introduction

Regular maintenance of an aircraft assists the airline to monitor its health while maintaining the operations
of the airline overall. However, with unplanned maintenance and component failures, the operations are
disturbed and have a negative impact on the airline’s expenses. To identify these failures beforehand, predictive
methods are used to solve such issues. Physics-based methods have been effective, but they are expensive
and require immense experience. With the growing data-driven techniques for maintaining the health of a
system, the maintenance activities are cost effective and do not require in-depth knowledge of each component.
The predictions are made based on a collective data processed from identical components and a trained
model to predict the behavior of component’s life. The models are usually used to predict the remaining
useful life (RUL) of the components to plan maintenance before its failure/damage. With this method, it is
possible for aircraft maintenance to carry out its operations with safety and cost effectiveness.

Although, the data-based models do not predict RULs accurately. This causes a state of worry for implementing
such methods as having wrong predictions would result in heavy damage to the airlines and a concern for
safety. Extensive research and experimentation are carried out to better the accuracy of predictions and
continue to improve the technology. The goal is to predict RUL on time, so it is not dangerous and still cost
effective. This project aims to further add value to this goal. Fault progression data can have unwanted and
unnecessary information, which is not required for a machine learning (ML) algorithm to learn. This extra
data can be treated with monotonic constraints and then cleaner data can be injected into the ML model.
The main objective of the project is:

To check if posing monotonicity on the data before inputting in the ML model would improve the predictions
of RUL for fault progression

The above objectives will be addressed in this report with the following structure. The Part I presents a
scientific paper that amalgamates the literature review required for the topic, the experimentation carried
out, the methodology followed, and evaluation of results. Part II deep dives in the literature review and
provides background information on prognostics and case studies. Lastly, Part III gives an overview of the
initially planned methodology to address the goals and objective of the research.

vii
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Treatment of non-monotonic trends in fault progression of turbofan
engine

Sumant Malekar
Chair: dr. ir. B.F. Santos, Supervisor: dr. M. Baptista
Delft University of Technology, Delft, The Netherlands

This research aims to investigate and experiment on a state-of-the-art problem to treat the non-monotonic
behavior of fault progression trends in predictive maintenance. Well-established algorithms and literature
are researched for fault progression prognostics, however, not considerable attention has been given to
monotonic constraints at a preprocessing stage. A non-monotonic trend carries complex information which
has outliers and nonessential signal values. The goal of the project is to motivate the usage of monotonic
constraints to treat non-monotonic signals of a degrading component. The problem is presented as follows:
Determining if the monotonic constrained method at a preprocessing step shall assist prognostics to estimate
the remaining useful life of a component accurately. To explore this research, a monotonic constraint -
Average Conditional Displacement (ACD) is used at the preprocessing step of a model, in comparison with
regular preprocessing methods. The model is experimented on the NASAs simulated C-MAPSS datasets
of turbofan engine and modelled with two prognostics algorithms. The model performance is measured
with performance metrics. The results showcase that by treating non-monotonic trends with monotonic
constraints does improve the prognostics. However, they are not significantly advanced compared to other
preprocessing steps.

I. Introduction
Scheduling incorrect maintenance of flights has costed
substantial damage to the airline industry [1]. Disasters
have occurred because of an equipment failure or a
component of an aircraft which was not monitored
properly. It is vital to predict the occurring failures of
components and structures before time. Maintenance
activities have to further consider regular operation of
flight, crew availability, availability of labor for mainte-
nance, and ensuring business stability; the scheduling of
maintenance activities needs to be precise. Forecasting
capability and strategically planning are the reason for the
precision of scheduling. With the growing involvement of
data-driven methods in aircraft maintenance, a significant
number of researchers are developing methods to improve
prognostics.

Predictive maintenance has evolved from a standalone
niche case to fast-growing, high return on investment
applications delivering the right value. The data volume
has risen significantly. Its market size is predicted to
grow to 28 billion in the next 5 years [2]. It shows how
important and cost-effective data-driven techniques have
become for predictive maintenance, along with other
methods (like physics-of-failure-based). Data-driven
approaches are more suitable and do not rely on any

domain knowledge of a component. However, these
methods are not yet in power with the physics of failure
yet. There are many advanced technologies developed in
data-driven methods for airline maintenance everyday, yet
it is critical to optimize the prediction further in the next
few years to meet the demand of growing operations [3].

This paper discusses an important step for improving
the prognostic of fault progression. A component’s life
degrades after every use and ultimately reaches to the
end of life (EoL). However, signals extracted from the
sensors of the component are not entirely insightful for
prediction [4]. The data is scattered and has no clear
patterns that could be used for ML models to learn
form. Even though the health of the components would
only degrade over time, uncertainties and inefficient
sensors could disturb the montone behavior of signals and
induce an unwanted spike in the health of the component.
The ML model would learn and imbed this behavior
and eventually predict incorrect RULs. Therefore, to
avoid such discrepancies and non-monotonic behavior,
the author explores extraction of the monotonic trend
from the fault progression before the model is trained
with an ML algorithm. The hypothesis is that having
a monotonically constrained signals would improve
the training of ML models and eventually generate
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better prognostics. The objective of the paper is
to identify and establish the benefits of constraining
a non-monotonic fault progression signals to a mono-
tonic signals to avoid uncertainty and improve predictions.

The remainder of the paper follows the given structure.
Section II gives an overview of the literature and related
work on monotonicity of signals. Section III describes the
datasets and evaluation metrics used for the experiment.
Section IV explains the steps taken for preprocessing and
modeling of the algorithms. Section V displays the results
and analysis. Finally, Section VI summarizes the paper
and concludes with recommendations for future work.

II. Background
The end goal of prognostics, specifically degradation-
based algorithms, is to accurately predict the RUL of
individual components based on their performance and
use. Degradation measurements could be sensed from
temperature or vibration level, or inferred measurements
like model residuals and physics-based model predictions
[5]. These performances can be compared to the trends of
extracted features from raw data to serve the requirements
of degradation modeling. In a real world scenario, the
performance of the prognostic model are due to the
critical issues limiting its applicability. For example, its
acceptable uncertainty level, human interventions, and
expected accuracy [6]. These aspects must be considered
for prognostics models.

The data of degrading component consists of signals
and stochastic variations (noise). The noise is a fea-
ture which has to be minimized during the feature ex-
traction [7]. Feature selection requires a large amount
of exhaustive research for choosing the relevant features
[8]. There are well-researched feature extraction tools
(like [7][8]) to display clear degradation trends. However,
comparatively less research and attention has been given to
non-monotonic degradation features in prefailure repairs.
These repairs could be a result of even human interven-
tion. Nonlinear behaviors do not indicate the state of the
machinery under operations [6]. Unplanned maintenance
activities can also change the usual degradation signals
and hence cause non-monotonic fault progression of sig-
nals. Developing uncertainty in signals lead to the ML
algorithm deviating from predicting accurately [9].

A. Non-monotonic & Monotonic signals
Non-monotonic signals are noisy and there is no consistent
change in the mean level of degradation [10]. The trends

of a non-monotonic signal carry complex information
which is not entirely insightful for prediction. The data are
scattered and do not necessarily follow a pattern for a ML
model to train and replicate for a fault progression process.

Uncertainty in signals has been an issue for successful
PHM models [9]. According to Baraldi [11], imper-
fections in the predictability of prognostic models can
be caused from three different sources. Randomness
related to future degradation, modeling errors and
inaccuracies in degradation data. This paper focuses
on inaccuracies in degradation signals, primarily due to
non-monotonic fault progression and compares it to the
effect of constraining on monotonic fault progression.
Research papers like [8] express how monotonicity in
data can avoid the exhaustive search without sacrificing
optimality. It is also recommended by [5] and [12] to
quantify and consider monotonicity in the systematic
construction of PHM models. Feelders [13] mentions that
models trained on monotonic datasets often have better
predictive performance than models trained on original
data. Monotonic datasets could be created by generat-
ing artificial data or by relabeling of real data [14][15][16].

A monotonic signal is defined by the unidirectional and
consistent change in the mean level of degradation data.
Monotonicity as a property states that an increase in
input cannot result in a decrease in the related output
[10]. So, adding a monotonic constraint over a model
would reconstruct the signals to guarantee a monotone
relation between explanatory variables and dependent
variables. Monotonicity poses a monotonic trend where
the condition is fulfilled if and only if the trend is either
entirely non-increasing or entirely non-decreasing. In
other words, if the signal is monotonically increasing or
decreasing with time, corresponding to an improving or
deteriorating system, there is supposed to be a monotone
trend, otherwise the trend is non-monotone [17]. This
behavior of the trend would be useful for prognostics as
the signals would reduce the uncertainty and deduce the
actual life cycle of the component for the algorithm to
learn and predict (as can be seen in Fig. 1). It was also
shown by [18] and [19] in their experiments that monotone
prediction outperforms the standard counterparts due to
successfully avoiding overfitting.

On the contrary, Ben-David [20] mentions that adding
monotonic constraints to ordinal regressors can reduce ac-
curacy. To counter the hypothesis, the author of [10] says
that the explanatory variables in the datasets used for the
experiments by Ben-david were not in a monotone rela-
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Figure 1. Monotonic vs non-monotonic signals and the
hypothesis of prediction windows of RUL values

tionship with the labels. One can take away from this
discussion that making use of monotone models inappro-
priately can result in a poor performance. The author
[10] further says that the benefits of monotone or partially
monotone data models can be fully beneficial when one
can be sure of the relations present in the data.

B. Monotonic improvement techniques
There are techniques available to improve the mono-
tonicity of data and they are discussed in the following.
Monotonic classification and regression model ap-
proaches have been proposed in the specialized literature
[20] [21] [22]. Also, Monotonic neural networks [23][24]
and hybridizations. The authors of [18] show a class
of neural networks that is monotone. This is obtained
with nonnegative weights and a multilayer neural network.

Ben-david [25], proposes an attribute selection metric
which considers the monotonicity and error while
building decision trees. The paper shows how the metric
reduces the non-monotonicity of decision trees while
maintaining the inductive accuracy. Ben-david also
discusses monotonic classification models in the paper
[20]. He discusses how adding monotonicity can help
algorithms learn and impair their accuracy.

As ranking functions are used for decision making
applications, the authors of [26] propose transparent
participation metrics to clarify the ranking process of
monotonicity. There are authors who have tried to
improve the monotonicity of data in the data mining
process. The author of [27] describes the measures
to express the degree of monotonicity of data and an
alogirthm to clean non-monotonicity. The algorithm
relabels the dependent variable in non-monotonic datasets

and transforms into a monotonic dataset. The paper
also shows the best methods to enforce monotonicity of
decision models. In the paper [28], the author Barile
also focuses on data mining algorithms which enforce
montonic restrictions while learning from data.

These models were successful in predicting accurate
prognostics compared to their counterparts with non-
monotonic models. The question arises if one has the
datasets constrained on monotonicity already before inject-
ing into a ML-model, how different would the performance
be compared to the dataset that was not constrained? In
theory, the simplification and filteration beforehand would
reduce the computational time and yield the results of pre-
dictions in simple steps. Having a clean signal against
time and its simple monotonic behavior, would be easier
to learn than an uncertain one. However, there is possibil-
ity of missing out valuable information and could reduce
the overall prediction.

C. Monotonic constraints in preprocessing
Preprocessing step in prognostics has been important
for reducing randomness in data for injecting the right
information to the algorithm to reduce discripencies. This
process reduces the computational time and increases
accuracy in prognostics. There are different methods
of preprocessing. For example, feature engineering is
a process where unclassified and unlabeled data are
clustered into a group with similar trends or examples.
It results in identifying correlations and dependencies
existing between their features [29]. Similarly, for
analyzing features, Principal component analysis (PCA) is
available. This method’s goal is to analyze the covariance
and reduce the complexity of data. In [9], the PCA
was used for smoothing acoustic emission signals by
eliminating highly correlated variables. Smoothing is
an extracting technique applied to time series to extract
variations between time steps [29].

Preprocessing step is also responsible to reduce the noise
in the signal trends. To identify and learn the behavior
of a signal during the training of the model, the high
noise in the signal would be inco-operated and studied.
However, for degrading material or identifying the RUL
of a material, the noise factor does not add a value to
identify the EoL. It increases the computational steps and
the window of prediction. There are methods available
which help to reduce the noise, such as data cleansing,
rolling mean or moving average.
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Rolling mean operations results in cleaner and under-
standable trends for the ML model to learn and perform
prognostics accurately. However, these processed trends
still have considerable distortion and noise [29]. Moving
average develops a new series with average values of raw
data along the time series. While computing, it assumes
the time series to be stationary and the signal does not
have monotonic behavior or seasonality. The moving
average depends on the window width defined by the raw
observations and calculates the average per window width
[29].

Regarding the monotonic behavior of data, monotonicity
poses a trend where the condition is fulfilled if and only if
the trend is either entirely nonincreasing or entirely nonde-
creasing. The series is unidirectional too. Implementing
monotonicity to the signals will result in the updated
signal. As the component’s state replaces a healthy to
an unhealthy state, the features of the component show a
degrading trend in the data (with time). In other words,
changing monotonously in the decreasing propagation.
The monotonic constraint used in this thesis is discussed
in the following.

The algorithm average conditional displacement (ACD),
was introduced by Vamos [30]. The algorithm is based
on a signal value interval and it is able to estimate the
monotonic trends of a stationary noise-filled time series
data [9]. The algorithm has two folding advantages. First,
this algorithm does not require any initial subjective
assumptions and approximates monotonic trends as a
piecewise linear curve by dividing into subintervals
of signal intervals [30]. Secondly, it is an automated
algorithm which is comparable with known methods like
moving average and polynomial fitting [9]. The numerical
quantities of ACD is presented in the following literature
[30][31].

The algorithm considers small intervals randomly placed
across a signal. The extreme ends of the intervals are
selected and an average line is drawn through the points.
This is illustrated in the Fig. 2. The figure describes
a small interval of the pieces of 𝑥𝑛 that enter into the
computation of sample average. Whereas the thick
continuous red-line denotes the ACD approximation of
monotonic trend from an interval of (𝑋𝑎, 𝑋𝑎+1]. The
sample average slope of the given points in the interval
can be estimated by the Eq. 1. Where �̂� is the slope and
𝑁 𝑗 is the number of 𝑥𝑛 values of interval (𝑋𝑎, 𝑋𝑎+1].
Increased number of 𝑁 results in improved accuracy of
trend estimation. The iterations of intervals are carried out

Figure 2. A step variation of time series where the thick
line describes the ACD approximation of monotonic trend
[9]

throughout the trend. Resulting in a smooth monotonic
curve. The author [9] says the ratio between the noise
fluctuation and the amplitudes of trend variation is the
major contributor to the accuracy of the ACD algorithm.
ACD has the potential benefits to treat non-monotonicity
and stationary noise in PHM applications.

�̂� =
1

2𝑁𝑎

( ∑
𝑥𝑛 𝜖 𝐼𝑎

𝛿𝑥𝑛 +
∑

𝑥𝑛+1 𝜖 𝐼𝑎

𝛿𝑥𝑛

)
(1)

Imposing a monotonic constraint on the non-monotonic
signal and improving the monotonicity of the dataset
would be discussed in the following. The question, "Can a
monotonic constraint impose monotonicity on a nonmono-
tonic fault regression and improve prognostic accuracy
eventually?" is primerily important for the research, It will
be answered in the Section IV. "Can a montonic constraint
as a preprocessing method add value to the prognostics
compared to other methods?" is another important ques-
tion to be answered.

III. Experimental framework

A. C-MAPSS Dataset
The dataset chosen for the experiment is the NASA de-
veloped simulated Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) dataset [32]. The dataset
was developed for prognostics research with actual RUL
values available to use, hence run-to-failure data sets and
fault evolution failure. The dataset comprises of simulated
engine degradation sampling multivariate sensor data over
a given time cycle, divided into 4 different sub-datasets.
Each dataset has different operational conditions and fault
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modes. Training, Testing, and RUL sets are available for
each sub-dataset, each containing a set number of engines.
The operation of the engine deteriorates with increasing
cycles until the end of life (EOL). This information
is captured by 21 available sensors on the engine’s
components.

For training sets, all available sensor values from the en-
gines can be used for training and testing samples. While
for testing sets, only one data point corresponds to the
last recorded operational cycle. Hence, it is only used for
test samples. In summary, the training sample depends on
both the number of engines and the number of data points
per engine, while the number of test samples only depends
on the number of engines [32]. The dataset used is train-
FD001 for the research. The research is limited to one
operating condition and fault mode. FD001’s application
fits with the purpose of experiments. The goal of the topic
does not require to perform on each dataset and hence it
would have been time consuming to use all.

B. Monotonic metric
Coble [5], describes Local Gradient-Based (LGB) method
as, "The average difference of the fraction of positive and
negative derivatives of the time series of a feature over
time". The formula used to compute the monotonicity
metric is given by Eq. 2. Where 𝐺+ and 𝐺− represent
vector positive and negative derivatives respectively (seen
in Eq. 3). 𝑦𝑖 is the value of the sensor at a given time
and 𝑁 represents the total number of sensor points in the
interval.

MM1 = mean
(����# [𝐺+]
𝑁 − 1

− # [𝐺−]
𝑁 − 1

����) (2)

where,

𝐺+
𝑖 =

Δ𝑦+𝑖
Δ𝑡𝑖

= 𝑦𝑖−𝑦𝑖−1
Δ𝑡 | (𝑦𝑖 − 𝑦𝑖−1) > 0

𝐺−
𝑖 =

Δ𝑦−𝑖
Δ𝑡𝑖

= 𝑦𝑖−𝑦𝑖−1
Δ𝑡 | (𝑦𝑖 − 𝑦𝑖−1) < 0

(3)

The same formula can be rewritten as Eq. 4[5]. The differ-
ences of adjacent points of a signal are compared for iden-
tifying monotonicity. 𝑁 𝑗 is representing the total points,
𝑥 𝑗 (𝑘) represents a point of the signal and 𝑥 𝑗 (𝑘 + 1) is the
subsequent point. Each step of the signal is compared and
an average score is determined. For each trend, the mono-
tonicity adjusts from a value of zero to one. Zero being
the least monotonic and one with the highest monotonicity.
The formula would be used for checking the monotonicity
of the signal. It will also be useful for comparing different
preprocessing datasets for their monotonicity check.

monotonicity =
1
𝑀

𝑀∑
𝑗=1

������
𝑁 𝑗−1∑
𝑘=1

sgn
(
𝑥 𝑗 (𝑘 + 1) − 𝑥 𝑗 (𝑘)

)
𝑁 𝑗 − 1

������
(4)

C. Performance metric
For evaluating predictions from the model, the following
performance metrics would be useful for analysing and
proving hypotheses. Firstly, the error while predicting
RUL is calculated by subtracting the true RUL from the
predicted RUL value. The errors are bound to be either
positive and negative. Having a positive error (late pre-
diction) would be more damaging as the component could
fail before the predicted time, hence the scoring function
penalizes the positive error [33]. The scoring function is
given by Eq. 5, where ℎ𝑖 represents the prediction error
and 𝑁 the test sample size. The scoring function is fur-
ther developed to estimate the total score over a complete
dataset. The score value is multiplied with the number of
test units and divided by testing samples. This score value
is useful while estimating the last sample for comparing
the complete set [32].

𝑆 =


∑𝑁

𝑖=1

(
𝑒−

ℎ𝑖
13 − 1

)
for ℎ𝑖 < 0∑𝑁

𝑖=1

(
𝑒

ℎ𝑖
10 − 1

)
for ℎ𝑖 ≥ 0

(5)

Mean Absolute Error (MAE) is the average magnitude
of the errors of prediction. The error scales linearly and
reports for each diversion of prediction are made. MAE is
defined by Eq. 6[34].

𝑀𝐴𝐸 =
1
𝑁

𝑁∑
𝑖=1

|ℎ𝑖 − ℎ̂𝑖 | (6)

Root Mean Square Error (RMSE) is given by the Eq. 7.
It penalizes early and late prediction errors equally and
indications how many time cycles the predictions are off
on average [32]. Furthermore, the error is squared and
hence the weight of the error would be larger compared to
MAE.

𝑅𝑀𝑆𝐸 =

√
1
𝑁

¤∑𝑁

𝑖=1
ℎ2
𝑗 (7)

Coefficient of determination or the regression score
function (𝑅2) is an asymmetric function. It indicates
what proportion of our dependent variable can be
explained by the independent variables we use. The best
value for R2 would be 1 and the least value can be negative.
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To evaluate the accuracy of the models and compare the
overall accuracy with varying bounds over time, the alpha-
lambda accuracy is selected. The quality of a prediction
falls within specific limits at particular times with respect
to a performance measure [35]. The bounds of the cones
are determined and the score is calculated based on the
Eq. 8, where 𝛼 is accuracy modifier and 𝜆 is the time
modifier.

𝛼−𝜆A𝑐𝑐𝑢𝑟𝑎𝑐𝑦=


1, (1+𝛼) ·𝑅𝑈𝐿≤ Predicted 𝑅𝑈𝐿≥(1−𝛼) ·𝑅𝑈𝐿

0, otherwise

(8)

IV. Methodology
The steps taken for the research problem are discussed
in this section. The data of the case study discussed in
the section III will be used for the experiment. Two ML-
algorithms and 3 preprocessing methods are compared in
the experiment.

A. Preprocessing
To understand the effectiveness of proposed preprocessing
method, the models are carried out parallely with four
different methods. Applying a rolling mean to the raw
data (original data), applying exponential moving average
(EMV) to the raw data, monotonic constraints (ACD in
this case) on the raw data and the raw data itself. The
preprocessing operators discussed in the Section II, are
implemented individually during this step. However,
the first step involves selecting the available sensors for
applying filters. The sensor 1, 5, 6, 10, 16, 18, and 19 in
dataset FD001 exhibit a constant value throughout the life
of the engine. Firstly, a constant value does not add value
to the algorithm [31]. Secondly, as ACD filter is unable
to produce monotonic trends for seasonal trends, these
sensors are excluded from the filtering dataset. After
processing into a monotonic behavior, the sensors are
added back to the dataset.

Similarly, the original FD001 training dataset is filtered
with rolling mean and exponential moving average. An
engine’s time cycle for each dataset is compared with their
monotonic metric. For these four data types, following
were the results shown in Table 1. The ACD filter
applied to the raw dataset shows the optimal result for
a monotonic constraint, while the raw dataset, rolling
mean and exponential moving average dataset have a
significantly smaller monotonic value. The results can
be visualised in Fig. 3, which represents a sensor value

trend for the different types of datasets. The table and the
figure confirm that ACD filter managed to monotonically
constraint the signals. The trend in the figure also shows
the upward heading curve throughout. Hence, it manages
to comply with the rules of monotonicity and essentially
answers the first part of question addressed in Section II.

Table 1. Coble’s monotonic metric [5] of sensor 2 (T21)
unit 1 of training datasets

Dataset Monotonic metric
Raw data 0.068
EMV 0.089
Rolling mean 0.111
ACD 1

Figure 3. Sensor plots of each data type, sensor 2 (T21)
engine 1

The rolling mean and exponential moving average data
types have lesser noise compared to the original signal
(Raw data). Although, the rolling mean is much closer to
the monotonic constraint signal than the exponential mov-
ing average signal. Furthermore, these modified data types
and the original dataset would be compared in the follow-
ing steps for their predictions and performances. These
labels will be used throughout the report to maintain con-
sistency.

B. Splitting train-test dataset
Splitting of dataset is used to understand the performance
of ML-models and evaluate the behavior of the results.
The available training dataset is split into training and
testing dataset. The test dataset can be used for following

6



the trends of the predicted value and each sensor value can
be compared. It also helps to identify the RUL error at
each signal value for this experiment. The FD001 training
dataset will be split into into 80-20% training and testing
datasets, respectively. For the size of the dataset and the
overall variance can be presented for testing within the
20% of the dataset. The preprocessing methods will be
applied to the training datasets and the testing dataset (raw
dataset) will be common to all methods for analysing the
output.

C. ML-algorithm
Two algorithms are chosen for experimentation. First, the
random forest regression model is chosen as it should
be a good fit for providing accurate results for the large
time-series dataset [36]. It is also a common and widely
used regression model. Secondly, a combination model of
convolution neural network (CNN) and Long-short-term
memory (LSTM) model is implemented based on the work
of [33]. The paper experiments on CMAPSS dataset and
shows the benefit of using the best of both types of neu-
ral networks for estimating RUL. CNN model exceeds in
extracting features and LSTM is capable of building long-
term time dependencies. They both are used in combina-
tion in the paper of [33]. To avoid unnecessary noise, the
paper uses 1D convolution to extract features and feeds
it to LSTM for learning long-term dependencies. This
neural network model is trained and tested similar to the
random forest algorithm. The numerical results and an er-
ror visualisation for the model are shown in the section V.
This model is also used to validate the results from the first
model.

V. Results
This section discusses the results obtained after applying
the two models on 4 different dataset types. Performance
evaluations are also made in this section.

A. Performance metric for random forest regressor
The numerical results of the RF regressor can be seen in
the Table 2. This table represents the performance of the
RF regressor for each data type. The error calculated from
the difference of predicted RULs over the actual RULs is
represented with various metrics. As can be seen from
the table, the regressor performs best on the ACD filtered
dataset when comparing the mean metric amongst the rest.
The 𝑅2 score is higher for the ACD filter too. It is not a
large difference but it is noticeable how the error is higher
for the datasets with less monotonic value already.

Table 2. Numerical metrics of RF regressor for each data
type

Data type MAE RMSE 𝑅2

Raw data 32.52 47.85 0.63
EMV 32.11 47.91 0.63
Rolling mean 32.10 49.59 0.61
ACD 31.28 49.64 0.64

The visualisation in Fig. 4 describes the RUL prediction
compared to the actual groundtruths for the test engine
number 19. It is observable how close the trends are
to the groundtruth. However, the ACD type has signals
which are alternatively diverging and converging towards
the groundtruth. Which is not a good sign. This example
shows how the ACD causes errors in the prediction because
of the monotonic data that fed into the model. Although,
the second half of the predictions are stable and are closer
to the groundtruth. To identify the size of errors in terms
of fitting of the predictions compared to groundtruth, the
scoring function is used further for analysis.

Figure 4. RUL prediction vs time for engine number 19

The error between the predicted and the actual RULs is
substituted in the scoring function formula discussed in
the section III. The errors with bigger magnitude increase
the scoring function. The visualisation for the error can
be seen in the Fig. 5. The score for the predictions is seen
in the Table 3.

The average score for the engine unit 19 shows that it is
highest for the rolling mean and then followed with ACD.
Interestingly and as observed in the Fig. 4, the ACD signal
doesn’t match to the ground truth. However, maintaining
the rules of montonicity, it sticks out through its middle
phase and maintains distance from the groundtruth.
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Figure 5. RUL prediction score vs time for engine number
19

Table 3. Scoring function and overall average score

Data type Average score Overall average score
engine no. 19 for 20 test engines

Raw data 8.05 3575.37
EMV 9.811 4386.18
Rolling mean 20.69 2872.70
ACD 20.48 9551.14

Causing larger gap and hence increasing the score value.
Furthermore, this can be reflected for all the 20 test units
as the overall average score column represented in the
Table 3.

The score value is the lowest for the raw dataset, which
indicates less amount of noise and non-monotonicity. The
reason is the calculation steps of the scoring function.
The calculations for underestimates and overestimates
add the scoring value depending on which side of the
groundtruth the prediction value lies on. If the RUL
prediction is higher for underestimation, the values would
be negative. To check how the RULs have been predicted,
a simple distribution histogram is visualised to check if
the predictions are made earlier or later than the actual
RULs.

The Fig. 6 is an histogram of prediction errors. The
errors occuring to the left of "0 RUL error" (x-axis)
are early estimates of RULs and to its right are the late
estimates. The early estimates are better than the late
estimates as it will help to plan a maintenance activity
before failure. However, being closer to the on-time
prediction point (0-error) would yield the best results
for prognostics. As seen in Fig. 6, the magnitude of
ACD datasets are maximum near the on-time prediction.

Figure 6. Distribution of number of errors to identify the
early/late predictions

Raw dataset and rolling mean are also close. However,
their values of errors are higher on the right of on-time
performance, whereas it is considerably low for ACD.
This result suggests that ACD filter has performed better
in its competition.

The discussed metrics showcase the performance of
the model. To understand how accurately the regressor
predicts RUL for each dataset type, the alpha-lambda
curves are utilized. The graph is presented with the
following variables, the alpha ’+’ bound is represented by
the blue straight line, and the alpha ’-’ is represented by
the orange straight line. The dotted green line passing
through the middle of alpha ’+’ and alpha ’-’ is the
groundtruth line. Predicted points lying inside the bounds
are counted as accurate. The end tapers as the value of
RUL has to be predicted accurately as possible. For the
examples used in the figures below, alpha was chosen as
0.3 as it was the standard value used. However, this value
was varied after this step for further analysis.

For the same engine test unit 19, the alpha-lambda bounds
are superimposed as seen in the Fig. 7 on the RUL
prediction vs time. The prediction for this set of unit is
lower in terms of metric as seen earlier. With the total
points lying inside the bounds, an overall accuracy is
calculated for each dataset and is seen in the Table 4. As
seen in the visualisation, the ACD has the lowest accuracy.
The reason for this inaccuracy is the same as mentioned
before. However, an interesting observation can be made
towards the end of the time index. The ACD manages to
predict very close to the RUL value. Which is the most
important requirement for the model. To further analyse
and compare, engine test unit 16 is visualised.
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Figure 7. Alpha-lambda metric of engine unit no. 19.
𝛼 = 0.3, 𝜆 = 0.5

Table 4. Overall accuracy of engine unit no. 19. 𝛼 = 0.3 ,
𝜆 = 0.5

Data type Overall accuracy
Raw data 70.96 %
EMV 68.66 %
Rolling mean 73.27 %
ACD 67.74 %

As can be seen from the Fig. 8 and the accuracy values
in Table 5, the datatypes do not perform according to the
previous metrics. The visualisation in this figure shows
how predictions from ACD datasets have steared towards
the groundtruth and maintained it throughtout life cycle.
The model was able to predict the trend and align the
RUL prediction closer to the actual RUL. The table also
shows the accuracy of the ACD dataset prediction to be
maximum. In cases as such, the real potential of mono-
tonic constrained filters can be noticed. The prediction
accuracy increased and the performance eventually would
be better for these outputs. The prediction from the
raw data did not manage to stay under the alpha-lambda
bounds until the quarter of the time index.

Two engine cases with different accuracy results were
observed. All test engines need to be examined for
their accuracy and an overall result has to be concluded.
Therefore, a combination of visualisation for the accuracy
of each test engine at each time interval is developed. The
visualisation would not only help to understand the overall
accuracy for all test units, but it would also benefit in
understanding if the accuracy of prediction is high or low

Figure 8. Alpha-lambda metric of engine unit number 16.
𝛼 = 0.3 , 𝜆 = 0.5

Table 5. Overall accuracy of engine unit no. 16. 𝛼 = 0.3 ,
𝜆 = 0.5

Data type Overall accuracy
Raw data 64.32 %
EMV 63.81 %
Rolling mean 70.35 %
ACD 82.41 %

at a given point in time. The Fig. 9 describes the overall
prediction accuracy over time intervals as the percentage
of component’s life for alpha is 0.3. The bar chart shows
the accuracy for each dataset and compares its accuracy
for each time interval.

The prediction accuracy of ACD dataset is maximum
throughout (mostly). Initially, the accuracy is low and
the models are out of bounds. Nevertheless, the overall
prediction accuracy of the test samples is highest for ACD
dataset. Again, proving monotonic constraint datasets
helped the predictions to be more accurate.

To conclude, one last step is taken to measure the accuracy
of predictions with changing alpha (from 0.1 to 0.9).
Each alpha value is iterated over the test engine and the
results are observed in the Fig. 10. Here it is possible
to assess the accuracy of the models over cone size
and percentage of accuracy. The predictions from ACD
dataset outperforms other dataset predictions. Except for
the alpha of 0.1, the ACD dataset manages to help the
regressor to predict accurate RULs. Which means, with
very precise and small bounds, the predictions of ACD
dataset are not as accurate. The reason is that the RUL
predictions are not as accurate in the first half of the time
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Figure 9. Overall prediction accuracy as a function of time intervals for each datatype. 𝛼 = 0.3 and 𝜆 = 0.5

intervals from the ACD datasets The ACD filter observes
the extreme ends of the trends and apply monotonic
constraints to restructure the signal. The trained model
picks up values which are off-setted from the groundtruth
and eventually causes it to underfit the predictions too.

In conclusion, insights in the process of adding a pre-
processing monotonic constraint are seen and interesting
results and outcomes are derived. Deep performance un-
derstanding of the predictions from ACD filtered dataset
is made and compared with known preprocessing meth-
ods. The comparisons helped to understand how better or
worse the ACD performed. For the next step, a complex
algorithm is modelled (as mentioned in Section III) with
the same dataset to analyse the results and validate the
process.

B. Performance metrics of CNN-LSTM model
The CNN-LSTM model depends on the combination of
temporal convolution layers and LSTM layers with data
augmentation. The target function is followed accurately
by the LSTM. This algorithm has a good accuracy and
effective prediction. With increasing number of epochs,
the weights are changed in a neural network and the curves
go from underfitting to optimal curves. Thus, a constant
number of 100 epochs were used. This could be a solution
to the underfitting predictions of ACD filters from the
previous model and improve the prediction accuracy
overall. The splitted dataset (mentioned in section IV,
similar to the RF model, is loaded into the CNN-LSTM

model. The results are discussed in the subsequent
section. The test dataset FD001 is also performed on and
experimented in Appendix B.

Table 6. Numerical metrics of CNN-LSTM for each data
type

Data type MAE RMSE 𝑅2

Raw data 21.02 35.51 0.8
EMV 15.07 23.33 0.89
Rolling mean 14.59 24.97 0.87
ACD 14.18 25.45 0.86

The metric in Table 6 shows that the CNN-LSTM model
performs exceedingly well compared to the RF regressor
(Table 2). Moreover, ACD has performed better than
the rest datatypes for MAE. The MAE value is the least
for ACD datatype, similar to RF regressor model. Raw
data has the most amount of error, as the noise level
would be maximum for the data type. Next, the scoring
functions will be discussed to see how far off the errors
were underfitting the predictions repeated in this model
too.

As can be seen in the Fig. 11 the predictions made by
the model are exceedingly well and much better than
RF regressor model. ACD predicted RULs are almost
resembling to the groundtruth line and are even scored
well (as seen in Table 7). In comparison to the raw data
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Figure 10. Overall prediction accuracy at varying cone size

Figure 11. RUL prediction vs time for engine no. 19

type or the EMV, ACD rectifies the error and maintains
its predictions throughout the time index. Therefore, the
score value is also low and shows how it does not deviate
much from the actual RUL.

Table 7. Scoring function and overall average score.

Data type Average score Overall score
no. 19 engine for 20 test engines

Raw data 22.41 1326.45
EMV 87.52 318.22
Rolling mean 12.22 745.1
ACD 0.48 493.8

Similar to the first ML-model, the accuracy of the
CNN-LSTM model will be evaluated with 𝛼-𝜆 curves.

The engine unit 19 is visualised with 𝛼-𝜆 bounds in the
Fig. 12 and the accuracy for each model is seen in Table 8.
The accuracy has increased exponentially when compared
with the RF regressor models. The models have predicted
and shown better results. This is also seen in the overall
prediction accuracy graph seen in Fig. 13. Each engine
maintains its accuracy until the very last time interval.
The accuracy is low in the end interval because the final
RUL prediction is not yet perfected. The last interval
shows that raw data performed better than the ACD model,
however, the raw data was performing the worst since the
first few intervals. The second best performce is seen
from the ACD model.

Figure 12. Alpha-lambda metric of engine unit no. 19 𝛼
= 0.3 and 𝜆 = 0.5

Lastly, the overall prediction accuracy for varying cone
size can be seen in Fig. 14. The ACD has again performed
well. However, other preprocessing methods (EMV and
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Figure 13. Overall prediction accuracy as a function of time intervals for each datatype. 𝛼 = 0.3 and 𝜆 = 0.5

Figure 14. Overall prediction accuracy at varying cone size

Table 8. Overall accuracy of engine unit no. 19 𝛼 = 0.3
and 𝜆 = 0.5

Data type Overall accuracy
Raw data 99.53 %
EMV 99.07 %
Rolling mean 96.77 %
ACD 99.53 %

Rolling mean) are very close to the accuracy of ACD. The
EMV is closest to the ACD filter and it can be seen in the
graph that it catches up from the 𝛼 = 0.4. An interesting

question arises here, what level of monotonic constraint is
required for the best input to the model. Does it need to be
entirely monotonic or can we modulate the monotonic con-
straint metric to achieve the best input. However, this is not
the scope of the thesis and should be explored in the future.

Furthermore, comparing the two ML-models and their nu-
merical results, the neural network performed significantly
better, it can be compared with the Fig. 14 and Fig. 10.
The accuracy has gone up for every data type with CNN-
LSTM model. More improtantly, it also proves that using
a monotonic constraint for fault progression data would
improve the prediction and accuracy of the model but not
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signaficantly. A combination of monotonic constraint with
CNN-LSTM would yield the better results. The impact
of improving even smaller predictions increases the accu-
racy of RUL predictions and is on the cost of predictive
maintenance and safety of flight. Accurate scheduling
of maintenance activities could be called for and materi-
als/components can have a longer life without hinderence
to maintenance operations or the life of an aircraft.

VI. Conclusion
The proposal of the paper was to confirm if treating
nonmontonic signals with monotonic constraints at
preprocessing step in fault progression can improve
accuray of predictions of RUL. The aim was successfully
obtained by utilizing a monotonic constraint algorithm
in preprocessing step that improved the prediction of
RULs with high accuracy. The proposed ACD model
was compared with other preprocessing methods for its
performance and accuracy. Precise predictions were
usually not possible, but having a range closer to the
actual residual time was achievable with this method.
Ultimately, improving the fault progression datasets
by improving their quality of data to train and predict
better. The proposed model would help the industry
to avoid unwanted computing, increase lead time and
improve predictions of RULs for the unwanted failure of
components.

The tests carried out in the paper were to compare differ-
ent preprocessing steps to enable the use of monotonic
constraints. The nonmonotonic signal modulated to a
monotonic signal by the ACD filter enabled machine
learning models to learn and perform prognostics with
higher accuracy. Most uncertainities occurred in the time
cycle of a component’s life were avoided while training
the model. Estimating the trend’s path of identifying
RULs is much easier to interpret. As seen in the regressor
and neural network model, the predicted error of the
models was lowest for the monotonically constraint
dataset, followed by rolling mean, exponential moving
average, and the raw datasets. However, for the scoring
functions, the overall average score was not the lowest
for ACD model, which gave insights about its limitations.
This causes the RUL predictions to overestimate the
output and misalign from the groundtruth for a few
cases. It causes underfitting in predictions. However,
the prediction towards the end of the cycle is maintained
and the final value is predicted closer to the groundtruth,
which is of utmost importance.

Furthermore, ACD filter has its limitations while com-
puting and forming monotonically constrained signals.
The filter is applicable to only sensor values that are
time-dependent and the sensor values have to be non-
monotonic in behaviour. The ACD filter has the ability
to discard outliers and do not consider their properties
while applying monotonic constraints. This could have
However, the advantages of the ACD filter are very
promising and have shown positive results.

In the future, it will be interesting to compare the
proposed model with a monotonic regression model. The
differences of preprocessing of monotonic constraints over
a monotonic regression model would provide insights
into the effectiveness of this process. Furthermore,
complex datasets with more operating conditions could
be experimented with this process. Even advancing into
modulating monotonicity of data is a very interesting
topic. As discussed before, the performance of ACD
are very firm and the metric value is one. There
wasn’t a scope to modulate the metric value for this
thesis. As it was seen, the EMV datatype (not fully
monotonic) was accurately predicting close to the ACD
datatype with the CNN-LSTM model. The optimal mon-
tonic constraint can be deduced from this experimentation.

A hybrid combination of physics-based model and the
discussed data-based model will bring new possibilities
for the industry of maintenance. Hybrid modelling are
becoming popular and being experimented to bring the
best of both worlds [37]. The data-based models can learn
and improve exponentially with insights of the material
properties and its physics.

Lastly, implementing monotonic constraint in phases of
time cycles. Taking an example from the thesis, the ac-
curacy of predictions was very low in the beginning of
the time cycle for ACD datatype in RF regressor. If the
monotonic constraints were not applied during the phase
and only applied after the first few time cycles, an overall
higher accuracy could be achieved.
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1. Introduction
The scheduled regulatory aircraft maintenance are performed periodically and it serves the purpose of monitoring
components of the aircraft. However, unexpected failures or unanticipated breakdowns of components cause
disruption in operations, the cause of safety, and eventually affect the cost structure of the airline [34]. Preventive
maintenance was performed for the longest time in the past and eventually the industry diverted towards
predictive maintenance for its cost benefits and effective operations [15]. Operations of maintenance of
aircrafts are very complex and require attention to detail [26]. Constant research and experiments are carried
out to perfect the prognostics and perform predictive maintenance robustly and effectively. This research
aims to add further to improve the predictive maintenance for degrading components of an aircraft.

The prognostics and health management (PHM) have multiple approaches to perform prognostics and schedule
accurate maintenance. In this research, the data-driven approach is opted for its cost-effective benefits,
growing interest, and popularity in the industry. The materials and components that degrade overtime theoretically
have a logarithmic behavior in their sensor data. Due to the noise and disturbances processed by the sensors
of the component, monotonic trends are not obtained. These uncertainties cause failure in prediction as the
ML-models possess unwanted extra information. Therefore, through this literature study, the author explores
prognostics and used cases to prepare and develop a plan to execute this research effectively.

The literature review explores multiple topics: predictive maintenance, Prognostics and health management
(PHM), Remaining Useful life (RUL), Machine learning (ML), non-monotonic and monotonic signals, monotonic
improvement techniques, and evaluating the monotonic signals and their performances. The conceptual
research model is presented with the research questions and objectives in Section 3. The methodology and
experimental setup are discussed in Section 4. Finally, the work break-down is explained in a Gantt chart.

2. Literature Review
In this section, the growth of predictive maintenance in aviation are discussed. The current prognostics
methods and the data-driven methods used to estimate RUL are studied. Machine learning models are
presented that are used on a regular basis. The section deep dives into monotonicity and its methods for
treating non-monotonic signals. The used cases for monotonic metric and monotonic constraints are presented.
Lastly, the dataset to be experimented with is discussed.

2.1. Predictive maintenance in Aviation
The increasing aviation population results in demand for more aircraft. More aircraft result in growing complexity
in each department of operations of an airline. Specifically in the scheduling department. The planning
and execution of multiple fleets and crew requires an organized system for smooth functioning of the airline
company. Similarly, aircraft are maintained and checked periodically to avoid any harm to the aircraft and
the human life on board. For economic and safety purposes, the maintenance activities of an aircraft must
be robust [18].

The scheduled regulatory maintenance is known to perform periodically and it serves the purpose of checking
up and monitoring components of the aircraft. However, the unexpected failure maintenance or unanticipated
breakdowns cause disruption in operations and affect the airline heavily on cost and safety. The airline
industry used preventive maintenance for an extended period of time to avoid such unwanted failures. It
works best when there is a solid relationship between equipment age and failure rate. For example, when a
material property changes due to fatigue. The probability of failure can be estimated and a maintenance can
be scheduled before breakdown [18][36]. For the health of the system, the analytical solutions are not able to
predict failures but provide an alert with sensor data as a baseline indicator [71]. Therefore, it increases the
initial costs and requires frequent access to equipment [44].

Predictive maintenance prevents unwanted failure by keeping a constant watch on the system and providing
alerts with condition monitoring [36]. Data collection and analyses programs could be substantial, but the
recovery and savings would offset the costs easily [44].

Predictive maintenance promotes prognostics based life extension and has been effective compared to other
models. The aerospace industry is the most vibrant research and development activity in systems prognostics.
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Figure 1: Difference in reactive, preventive and predictive [18]

The algorithms monitor aircraft structures, avionics, propulsion systems, etc, and their functionality is embedded
into the health management system to reduce life-cycle cost and improve flight readiness [57].

PHM- Prognostics and Health Management
The goal of a PHM is to have a reduction of operation and support costs while maintaining or increasing
the availability of systems in an industry. "PHM is an approach to system life-cycle support that seeks to
reduce or eliminate inspection and time-based maintenance through accurate monitoring, incipient fault
detection, and prediction of impending faults" [14][59]. It ensures detecting and informing system faults for
maintenance. Along with fault detection and fault isolation, the PHM detects fault prediction on selected
components, fault filtering and reporting, predicting Remaining Useful Life (RUL), health management, and
recommended actions to pilot when necessary [27]. It is important for PHM systems to obtain the actual
time condition information of the subsystems. For example, to predict RUL of a system, the PHM system
must initially combine the interpretation of the environment. After which, the operational and performance
parameters are deduced to assess the health of the product [14].

According to [51], PHM consists of the following features: Raw data, Diagnostics, Prognostics, and health
management. The model is designed by Sandia National Laboratories (SNL), which is shown in the paper
[51] Figure A.1. The evidence engine aims for feature extraction, trend detection, and estimation of RUL,
whereas the consequence engine can analyze the end result of the maintenance action [14]. This thesis will
explore the evidence engine and specifically the estimation of RUL.

Remaining Useful Life
The remaining useful life of a subsystem can be analyzed by using sensor data and using the prognostics
technique [2]. RULs provide decision makers with information about the health of the component which
would allow them to make repairs or changes in the regular operational characteristics (like load) and eventually
increase the life cycle of the component. The estimation of RUL helps planners to transition smoothly from
faulty equipment to a fully functional one by informing the upcoming maintenance [58]. Algorithms of
prognostics predicting RUL are classified as degradation-based or Type III prognostics [16].

The degradation-based modeling of a system or component is defined as the length from the current time to
the end of its useful life and it can be used to characterize the system current health status [13]. From Figure 1,
at (t0) current time, the RUL estimation shows that the health of the component would deteriorate until the
decided threshold level, that is when the component reaches t1. The difference between the two points is
the RUL estimation of the component at t0. As the estimations are not very accurate due to uncertainty, the
probability distribution function (pdf) is approximated for the precision of prediction [13].

RUL is further classified into three different types of methods based on [13]. The model-based approach
for RUL merges the system behavior and the measured data. Types of models in this approach are physical
failure models, stochastic filtering models, and statistical models. The advantage of model-based approaches
is the ability to understand the physical fundamentals of the monitored system. Hence, it would show higher
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Figure 2: Estimating RUL of a Degrading component from its signal values from the data[13]

accuracy than a data-driven model. However, it is more often costly, complex, and difficult to achieve the
accuracy required for the system [13].

Data-driven approaches, on the other hand, use past recorded data to analyse and then predict future. It does
not incorporate physical models to estimate RUL. The only source of understanding of degradation is through
the measured input/output data. The most frequently used models of the approach are machine learning
methods and graphical models. A graphical model represents and indicates the conditional independence
between the random variables. Whereas machine learning methods train samples and identify the cross-dependencies
between the variables [13].

The accuracy of the approach depends on the quality and quantity of the data. The advantage of the approach
is to convert the complex noisy data into usable and understandable data for the prognostics and estimation
of RUL. "The process of traceability and capitalization of data is a key element in the context of the evolution
of the maintenance towards predictive strategies" [23]. The disadvantage is that it is not easy to apply data-driven
approaches because there is no specific or efficient procedure to obtain training data [13][74].

Lastly, the fusion approach, combination of the prior two approaches establish an effective way to overcome
the limitation of each method and predict the RUL with an improved accuracy. The method for the approach
is that the first one would estimate RUL and improve accuracy. The second part is where each approach
predicts the RUL individually and they are combined with probabilistic methods to obtain a better predicted
RUL [13].

For the scope of the research, the data-driven approach would be further explored. Machine learning methods
are going to be adopted for the process and therefore will be discussed in brief in the following.

2.2. Machine learning
Machine learning is a tool of optimizing methods that are used to train models with collected data and predict
the future based on the information known [9]. The system can be used for cautioning the user and making
aware of the possibilities that can be experienced [47].

The data sets available for modeling are divided into training, testing, validating data set. Training set is
used for fitting the different models and making the model work, the validation set helps to evaluate model
selection and estimate predictive performance. Testing data is the data that the model has never seen before,
hence it helps in evaluating the output. The more the available data, the better quality will be the models [47].
There are four stages in machine learning methods which require human intelligence. Out of these stages,
the most time consuming and resource driven are the data collection and optimization stages [9].
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Machine learning group
Machine learning algorithms are organized into groups: supervised, unsupervised, and reinforcement learning
[47].

Supervised learning closely experiences with the help of labels given already. The purpose of the labels in
the data aids the algorithm to correlate their features [47]. So, a training data x has label y. Labeling the data
helps the algorithm to automate complex tasks. Therefore, reducing the loss function by training a model by
labeling data (with the Equation 1). Hence, Root mean square error (RMSE) is one of the considering factors
for evaluating the results of the model. The availability of an extensive and high-quality labeled data set is
crucial and can enable the training of even a deep convolutional neural network. The two common tasks
applications of the group are classification and regression [9].

L = ||y −ϕ(x;θ)|| (1)

Classification: If the labels are discrete, then the task is classification. Applications of classification could be
recognized if the image is of a dog or cat, the stock market would rise or fall tomorrow, or a component would
fail before a particular day or not [47][9].

Regression: If the labels are continuous, then the task is regression. Application of regression includes
predicting sales for a new product or a lift profile for an airfoil shape [47][9].

In unsupervised learning, or data mining or pattern extraction from data are used when there are unclassified
and unlabeled data. The clustering of common tasks to group similar examples together enables more insights
into the data and the correlations and dependency existing between their features. Three common techniques
of clustering are k-means, mixture model, and hierarchical clustering [8][70]. To find a low-dimensional
subspace, parameterized by a latent variable z, which shows a high-dimensional state x, a goal could be set
to find two functions, encoder z = ϕ and a decoder x̂ =ψ(z), so that x̂ =ψ(ϕ(x)) ≈ x [9]. The functions ϕ and ψ

are implicitly parameterized by weights θ that must be tuned to minimize the following loss function (seen in
Equation 2 [9]. When a encoder and decoder are linear functions, then the optimal embedding recovers the
classical singular value decomposition (SVD) or principal component decomposition (PCA) [8][10].

L = ||x −ψ(ϕ(x))|| (2)

Reinforcement learning (RL) is related to goal-oriented algorithms. It has the ability to learn from interactions
with the environment [63]. The method allows the algorithm to automatically identify the natural behavior of
the environment and contextualize it to improve performance by taking decisions [47]. RL agents are capable
of learning challenging delayed rewards. An example of a delayed reward would be a self-driving car that can
only be rewarded if it completes its task of reaching the final destination safely. "Simple reward feedback is
required for the agent to learn which action is the best and this is known as the reinforcement signal" [47].

Deep Learning is based on neural networks and is one another type of ML models. Neural networks (NN)
are powerful because of the vivid expressive representation of data and their diverse architecture [33]. NNs
require a large amount of data for processing the models. However, it also important to know that they tend
to overfit to data [9].

Data mining

Figure 3: KDD process [43]
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Knowledge about the database is of utmost importance. Data mining (DM) is a very powerful tool which
identifies with automated data analysis. The DM occurs in the process of Knowledge discovery in databases
(KDD) as seen in the Figure 3. To ensure the right data is passed on to data mining, the steps before DM have
to be taken. DM is desired because it increases the ease of collecting data over networks with reduced cost,
robust ML algorithms are developed to process this data, and lastly, it enables the use of computationally
intensive methods [43][45].

Neural Networks
According to [43], for the longest time, soft computing methodologies like neural networks did not suffice
the data mining criteria because of their black-box nature [64]. However, with recent progress in extracting
embedded knowledge in trained networks, neural networks have an advantage over other machine learning
algorithms in terms of scaling. Neural networks are indeed very suitable in data-rich environments. They are
used for quantitative evaluation, clustering, classification, and regression.

Type of models for data mining
The author of [43], classifies different models used for various situations.

1. Classification [42][3]: A data item is grouped into several predefined categorical classes. It is the most
simple binary classification. There can be multiple categorical classes in multi class classification.

2. Regression [19][22]: Focuses on displaying a sensor data to a real valued prediction variable. This one
predicts variable and not the class.

3. Clustering [68][35]: A grouping of data sets depending on on their metrics and probability density
models are called as clusters. It sets each data item into these clusters.

4. Sequence analysis[43]: The time series data set results in patterns which are sequential. The idea is to
use these sequences for further extraction and deviation reporting.

Under-fitting and over fitting
Under-fitting The bias of such models is very high. The reason is because the model poses fewer features and
therefore cannot learn from the data very well [47].

Over-fitting The variance of the model is very high. The model has complex functions for fitting to the data
accurately but not generalized enough to be able to learn from trends for predicting new data. The Figure 4
describes the generalization error, bias, and optimal capacity for a model to be able to fit just enough for a
robust fit [47]. The test set data of machine learning is used to avoid the overfitting of model. Over fitting as
a phenomenon can be controlled by addressing a few options. Firstly, reduce the number of features. Make
decisions on why to remove the selected feature. Secondly, regularization is useful with a lot of useful features.
Lastly, early stopping can be used while training the learning algorithm iterative (as seen in Figure 5) [47].

Figure 4: Bias and Variance [33].
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Figure 5: Early stopping feature to avoid over-fitting [47].

2.3. Monotonicity vs Non-monotonicity

In supervised learning, the assumption on the functional relation between a feature space and target space
is approximated. Otherwise, the inductive learning task cannot be estimated because not enough domain
knowledge is present. However, in many applications, prior knowledge is frequently available.

These applications could be represented by monotonicity when there is an increasing or decreasing relation
between the target variable and the predictor variable. Hence, monotonic behavior represents as a good
feature for prognostics [50]. This section shows insights into the topic of (non)monotonicity in machine
learning and provides a monotonic metric for identifying and analyzing results.

Monotonic constraint poses a monotonic trend where the condition is fulfilled if and only if the trend is
either entirely nonincreasing or entirely non-decreasing [50]. The degradation of material is irreversible and
eventually the component’s state replaces a healthy to an unhealthy state. Which suggests that a feature of
the component or system would show a degrading trend in the data. Therefore, changing monotonously
in the decreasing propagation as illustrated in Figure 6 [50][37]. However, feature trends have noisy data
and it is difficult to extract the right data for this method to be accurate [16]. Furthermore, a monotonic
fault progression has been considered as a vital assumption for a lot of prognostics models [16][46][61][48].
Therefore, non-monotonic degradation features increase uncertainty in machine learning models compared
to a monotonic unidirectional degradation data set. The Figure 6’ hypothesis is the output of monotonic
trend vs nonmonotonic trend. As the fault progression would be monotonic, the window of pdf would be
smaller compared to the nonmontonic output. Therefore, we will be able to predict the RUL accurately. This
hypothesis will experimented in this thesis.

To treat non-monotonic data, few steps are required. Firstly, a metric that calculates monotonicity has to
be established for each feature trend. Furthermore, a method to analyze the effect on feature trends of
monotonic metric due to noise level. As the computation of monotonicity changes when the noise level
increases [50]. Finally, a model to treat the trends which will achieve monotonicity. "Imposing monotonicity
acts as a regularizer, improves generalization to test data, and makes the end-to-end model more interpretable,
debuggable, and trustworthy" [72].

The impact of change points and regime shift leads to the existence of non-monotonic degradation. A prognostic
capable system improves maintenance and one can expect a result of non-monotonic prognostic parameters
upon post-prognostic maintenance. The prefailure repairs caused due to human intervention or self-healing
are also an example of the same (fatigue crack closure) [48][40]. These non-monotonic degradation appears
in the modeling process and increase the uncertainty of the prognostics and disrupt the failure predictions
[75]. These degradation parameters need to be assessed and a monotonic metric needs to be evaluated first.
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Figure 6: Trends of entirely non-decreasing and non-increasing functions.

2.4. Non-monotonic trends in components
In the aviation industry, maintenance checks are carried out on different physical parts and technical software
checks too. The body of the aircraft, engines, actuators, etc are all maintained regularly. In today’s time,
aircraft are wired with multiple sensors around the aircraft. It improves the task of a maintenance engineer
dramatically. With more sensor data, a better check could be kept on aircraft health.

These individual sensor outputs do not necessarily provide the health situation of a component of the aircraft.
Some require to be in combination with others to make sense of the degradation patterns of the component.
As established in the previous section, it is vital to have the data monotonic in terms of propagation, to have a
good prediction. The sensors that show non-monotonic behavior can be treated with algorithms to improve
the accuracy. However, it is important to first identify these parameters which are non-monotonic. In this
research, the data set of a 90k turbofan engine from C-MAPSS is considered (discussed in section 2).

Therefore, the different 21 sensor data have to be individually analyzed by graphing them and using the
monotonic metric (from subsection 2.5) to check their monotonicity. Evaluation on the requirement of an
extreme non-monotonic sensor can be then decided based on modeling of the algorithm. If extreme outliers
occur in the final health management output, further analysis has to be done on the sensor data.

2.5. Trend detection for monotonicity and noise reduction
"The quality of feature parameters extracted from the monitoring signal determines the complexity degree
of prognostic methods."[73] The system degradation progression can be evaluated by estimating the feature
quality with monitoring monotonicity. Following are a few methods to compute a monotonic metric for
finding out the best health indicators or features for prognostics

Statistical outlier detection techniques
The author of [6], proposes a method for monotonic decision trees via information-theoretic top-down induction
decision tree (TDIDT) algorithm which uses entropy for attribute selection. This method does not guarantee
to be effective as the non-monotonic trends are not outliers.

Local Gradient Based (LGB) method
Author of [16] describes, "The average difference of the fraction of positive and negative derivatives of the
time series of a feature over time." The idea is to smooth the data to give accurate estimates, but the noise
makes the method impractical and inaccurate. The formula used to compute the monotonicity metric is
given by Equation 3. Where G+ and G− represent vector positive and negative derivatives respectively (seen
in Equation 3).

MM1 = mean

(∣∣∣∣#
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The same formula can be rewritten in the following Equation 4[16]

Monotonicity = 1
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Improved Separability/RMI Based Method
Separability index sk , obtained by segmenting time-series features into equal distances, as shown in the
Figure 7. The d is distance between 25th and 75th percentile at window index k and a is non-overlapping in
consecutive window frames. After calculating the separability indices, performance of the feature is calculated
with the Equation 6 and defined as the average of separability indices sk [50][73][11].

Figure 7: Visual representation of feature separation [50].

MM2 = 1

M
ΣM

k=1sk (6)

Furthermore, a ranking mutual Information (RMI), derived from Shannon entropy is a measure of classification
consistency. The technique is proposed from [28]. It is the index between two rankings of a random variable.
A combination of the two methods can evaluate features and even select features in case of ordinal classification
[28].

Euclidean distance and correlation coefficient
The same steps as the previous model would be carried out, but the separable distance sk is replaced with
Euclidean distance and RMI is replaced by Pearson’s correlation coefficient. The improved RMI reduces a
significant amount of noise. The Euclidean distance Dk between two vectors is given by Equation 7. The
values are based on the comparison between 75th percentile of two successive segmented feature vectors.
The flow chart and step can be seen in the Figure 8 and further information on the procedure can be found
in [50].

Dk (Xk , Xk−1) =
√√√√ L∑

j=1

(
xk

j −xk−1
j

)2
(7)
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Figure 8: Calculation flowchart for the improved euclidean distance and Pearson’s correlation [50].

2.6. Case studies
The prediction of RUL in degradation signals has been tested with several state-of-art algorithms. To improve
on the accuracy of the predictions, these are methods and models performed in the past.

Feature extraction using trigonometric and cumulative function
In the paper of [31], the author preprocessed the data for feature selection with three characteristics, namely,
monotonicity, trendability, and predictability. The features were extracted by trigonometric and cumulative
functions, which help to transform the raw data into selective features which improve the long-term prognostics.
The following steps suggested were to use the Summation Wavelet Extreme Learning Machine (SW-ELM) for
improving prediction performance. For further improvement, an unsupervised classification approach is
adopted, Subtractive Maximum Entropy Fuzzy Clustering (S-MEFC). Maximum entropy inference is used to
identify the uncertain unlabeled data and label the number of states. The paper was successful in setting
failure thresholds and estimating RUL.

Synthesized Structural health prognostics for identifying health conditions
The paper [69], proposes a generic health index system framework for structural health prognostics. It includes
Synthesized health index technique (SHI) for enabling heterogeneous sensory signals; an offline learning
scheme using Sparse Bayes Learning (SBL) technique for enabling kernel functions in real-time for RUL; an
online learning scheme using Similarity-based interpolation (SBI) for predicting RUL with background health
knowledge and a map for managing the prognostic’s uncertainty for involving the statistical characteristics of
the RUL. Regardless of the complexity and size of the data, the SHI health index proved to define the degree
of health conditions. Two case studies performed with the method showed promising results .

Deep convolution neural network based regression
A convolution neural network was used for computer vision tasks or natural language processing in the [2]
paper. The authors used the pooling filter technique for automation of multichannel sensor raw data for
feature learning systematically. It helped to learn the salient features automatically. The data set used for
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experiments was the NASA C-MAPSS data set and PHM 2008 data challenge data set. The scoring function
(S) is given by Equation 8. Compared to RMSE, this function considers the actual risk of estimating RUL. It
disciplines late predictions compared to early predictions. However, there are a few issues with this method.
Firstly, A single outlier with late prediction dominates the overall score. Which can be misleading as there are
outliers in the data now and then. Secondly, this function would prefer the algorithms that lower the score by
underestimating RUL.

S =


∑N

i=1
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13 −1
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for hi < 0∑N
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e

hi
10 −1

)
for hi ≥ 0

(8)

Multivariable prognostic models
These types of models with techniques that are not polished, usually show worse performance to fit the data
set into the model and eventually predict inaccurate results. The authors of [25], discuss an interpretable
index of predictive discrimination and methods for identifying the calibration of predicted survival probabilities.
They also elaborate on issues with a poorly fitted regression model. The paper also warned about the pitfalls
while modeling a multivariable prognostic model.

Monotonic constraining methods
Principal component analysis (PCA)

PCA is primarily used for analyzing features. PCA was performed in [49] for multivariate trend analysis,
along with Independent Component Analysis (ICA) for degradation signals. The goal of PCA is to analyze the
covariance structure and reduce the complexity of data. In [49], PCA smoothed acoustic emission signals by
eliminating highly correlated variables. However, it was not able to entirely convert the signals into complete
monotonic behavior.

Average conditional displacement (ACD)

This algorithm is used to automatically estimate the monotonic trends. The algorithm is based on a signal
value interval, but it works fairly well for estimating the monotonic trends of a stationary noise-filled time
series data [48]. The algorithm results in linear estimations which have a slope proportional to the average
of time series values. The two advantages of the algorithm are that no initial assumptions of the trend are
required and the algorithm is developed automatically [65]. The autoreffig:acd shows the variation of time
series in one step indicated with the thick line.

Figure 9: ACD approximation in an interval [48]
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Monotonicity of tree-based methods

A monotonic trend could be splitted when tree-based methods like random forest or decision trees are used
to fit the data set as seen in the Figure 10. Here the red line tries to fit the data and fails to give a monotonic
trend. By using monotonicity constraints in LighGBM and XGBoost algorithms, it is possible to generate the
monotonic trends as seen in Figure 11 [52][17]. However, there is noise existing in the graph and the signal is
not smooth enough for to compute prognostics.

Figure 10: Model with non-monotonicity constraint algorithms[17]

Figure 11: LighGBM and XGBoost algorithms used on the data set[17]

2.7. Dataset chosen for experimentation
The author chooses to develop a process that improves on the accuracy of prognostics of degradation of
the component, it is essential to experiment with the data that have the final results (RULs in this case)
for approval and understanding. Testing for such data is selected that replicates the real life scenarios and
enables the algorithm to be used in a generalized format. Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) is a simulated data set used for replicating real-life commercial turbofan engines. The
description of the engine model 90K is given below [21]:

• 90,000 lb thrust which is 400,340 N

• Atmospheric model altitude from sea level to 40,000 ft,

• Mach 0 to 0.9,

• Sea-level temperature -60 to 103 F
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Engine control system [21]:

• Throttle-resolver angle (TRA) specific to a fan speed controller

• Three high-limit regulators prevented from exceeding its threshold limit for core speed, engine pressure
ratio, High-pressure turbine (HPT) exit temperature

• Regulator to avoid static pressure at high pressure compressor (HPC) exit from going too low

• Moreover, to control the core speed, acceleration and deceleration limiters also exist

The data set inputs, output, and equilibrium values for all flight conditions are given in the Appendix A. The
simplified turbo engine design is represented in Figure A.2 and the workflow of the engine with ducts and
bleed omitted is seen in Figure A.3.

Figure 12: A 90k turbofan engine, simplified version[21]

Figure 13: Working of the engine divided in simulation boxes [21]

Data-set characteristics
The purpose of selecting the C-MAPSS data set was because it has varied characteristics and are very helpful
to compute realistic prognostic models. These publications do not focus on the physics-of-failure of turbofan
engines but describe the generation of these data sets and various practical aspects when using C-MAPSS data
sets for prognostics. Characteristic of the data set is provided from [54][58] as follows:

1. To replicate a real system of the aircraft engine, a data of non-linear system of high fidelity is created for
a multi-dimensional response

2. The data consist high level of noise

3. Fault conditions are in-cooperated in operational systems

4. Data of different level of complexities are given for training and testing the algorithms. The description
of the data-sets is given in the Figure A.4
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5. The data sets number 1-4 consists of training and testing data with increasing complexity. Already
available separated data for analysis.

6. The ground truth RULs are also available to analyze the results of predictions

7. Number 5T and 5V are more complex and bigger data sets which were used for a competition. The
RULs were not available at first, but after the completion of the competition, the results were made
public

8. These data sets are designed for fault degradation analyses and hence fit perfectly in the authors experimental
setup

Figure 14: 90K turbofan degradation data-set types [54]

Guidelines to process the data and build a fault degradation analysis is given in Figure A.5. This will be used
as a reference for the process of developing a model.

Figure 15: Guidelines to use C-MAPSS data sets [54]

Damage-propagation-model data
Referring to [58], the degradation models of the fault evolution have an exponential trend [32]. As physical-inspired
data generation is concerned, the wear is calculated with Equation 9. It avoids the microlevel process but
considers the macrolevel once.
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w = AeB(t ) (9)

Furthermore, for the health index and the trajectories for flow and efficiency vary for different modes. The
data has to be further addressed with different issues like wear to simulate the data in monotonic trends.
These applications to be followed are initial wear, noise, data generation and health index calculation. After
which, the data can be finally classified if the fault propagation trajectories cross the failure threshold. The
health index calculates on how far the engine can be operated before stall or temperature limits are crossed.
These failure modes would have to be compared with RUL and check scoring functions. Multiple models can
be tested and checked for the best case possible.

3. Research aim
The goals of the proposed research based on the literature gap are discussed in this chapter. The research
questions will be based on the research objectives of the thesis.

3.1. Research gap
As seen and discussed in research papers and articles in the previous sections, fault progression in aviation
industry and specifically in predictive maintenance are dealt regularly. However, not much research was
carried out in for improving the fault progression prognostics by improving the monotonic signals of the
sensor data. The improvement techniques were usually used after the preprocessing of data with the help
of decision tree models. Pre-processing of the data is carried out with feature engineering and methods like
PCA to clean the trends. However, imposing monotonicity on the raw data to simplify and generate noise-free
data for modeling is still not used.

3.2. Research objectives and scope
The objective is to check if imposing monotonicity on the data before inputting in the ML model would
improve the predictions of RUL for fault progression. The scope is to analyze the proposed method and
compare the results with existing preprocessing methods to see if the proposed method proves to have benchmarking
outputs.

3.3. Research questions
Answering the following questions is of critical importance for achieving the goal of the thesis. SMART
principle was used to generate these questions.

1. Is it possible to achieve monotonicity from non-monotonic signal dataset?

(a) What is the monotonic metric value of the monotonic constraint signals? Is it entirely monotonic?

(b) How does it compare with other pre-processing methods?

(c) How much difference is noticed in the final values (end-of-life) of the monotonic signals of the
component?

2. If the monotonic trends can be maintained, are they able to perform better prognostics? Which algorithm
performs better and why?

(a) How does it perform in terms of MAE, RMSE and R2?

(b) What is the impact of the solution (in comparison)?

3. When considering the accuracy of a model, does the monotonically constrained model perform better
than its counter part?

(a) Which time-interval shows the least accuracy of monotonically constrained data? and why?

(b) Does avoiding outliers help in accuracy of predictions?

(c) Why does the monotonic constrained model perform better/worse?
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4. Research Methodology
The project is planned to answer the research questions mentioned in the previous section with the help
of the literature study. Modeling of the project and the approach for satisfying all research questions are
discussed in this section.

4.1. Model approach
To first check if monotonicity in signals can be achieved, the ACD algorithm will be performed on the CMAPSS
dataset. To check the results, a monotonic metric can be used to answer the first main research question.
Other preprocessing methods should also be applied similarly and the results must be compared with the
monotonically constrained dataset. Evaluation of monotonicity will give insights on the method of ACD. The
dataset of CMAPSS will be splitted into 80-20 for training and testing results. The reason to do this split is to
have the groundtruth values of RUL and the evaluation of the method can be observed through each sensor
value.

It is also important to know how the newly constrained dataset would perform for prognostics. ML models
which are time dependent can be used for the prediction of RUL. RUL estimation has to be established
before estimating the predictions. The preprocessed datasets can be now trained and prognostics can be then
performed for estimating RUL using different methods. The comparisons should reveal the observations for
the proposed and already established methods. Evaluation metrics will be necessary for identifying the result.

5. Conclusion
The literature review provided an overview of the literature available and gave a structure to the methodology
to be followed during the rest of the project. Unplanned maintenance has caused greater damage to the
airline industry and data-based models is one of the solutions to this issue. By improving the prognostics,
the window of probability distribution function of predictions will reduce and this report suggests multiple
methods for it.

The non-monotonic signals present in fault progression were addressed by many authors to be unnecessary
and therefore suggested to treat it with monotonicity for improving the prediction of RUL. The hypothesis
presented in the literature review and the objective of the research are modeled in the approach. The objective
of the research is to check if posing monotonicity on the non-monotonic data before inputting in the data into
ML model would improve the predictions of RUL for fault progression.

Monotonic treatment technique ACD, is selected and will be used for experimenting with the CMAPSS dataset.
The monotonic metric of Coble will be used for evaluating the range of monotinicity and the evaluation
metrics will be used for establishing the performance of the models. After training of model, the model will
be tested with a ML model and then planned to be validated with another ML model. These tests will be
evaluated with a performance metric. The validity of the model will allow to test the model in the test data
set. After evaluation of the new model, the other set of models are evaluated too and a comparison metric is
defined. With the comparison metric, the pros and cons of the model can be evaluated and a conclusion can
be made by answering the research questions. The work breakdown is defined in the following section.

6. Work-breakdown and Gantt chart
The work breakdown shall be carried out for the upcoming tasks of the thesis after the Kick-off meeting. The
plan of execution for the given complexity of the problem is divided into 4 phases (as seen in Figure 16. At the
end of each phase, a milestone is planned for keeping track of the work.

6.1. Phase 1 and 2
First two phases, namely "data preparation C-MAPSS" and "preparation for models" have the same ending
period, the end of March. By the end of these phases, the author should have :

• Identified non-monotonic trends in the data

• Training, testing, and validation data must be separated and ready for modeling,
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• A setup for recognizing the performance has to be modeled,

• The monotonic metric must be selected so that the best suit for estimating the monotonicity of a trend

• Selection of models from the case study need to studied and decided on which models and algorithms
to use for comparison

• A verification of model and the algorithm needs to be setup

A delay of the maximum week is acceptable, but the modeling process has to start after that. Use the two
meetings with supervisor that occurred in the phase.

6.2. Phase 3
The third phase represents the modeling period which begins from the end of March to the end of June (mid
term).

• Algorithm for imposing monotonicity on trends, the model has to be tested on the data set

• Model testing for other ML algorithm

• The setup of the modeling would be designed as sprint. Each sprint would be for each model per week.
At the end of a week, the model behavior and the results have to be reported.

• After validation, the knowledge has to be written in the report form and prepared for mid-term.

Phases 1, 2, and 3 must be completed by then. An extra week is given as a buffer week but included in the
modeling phase itself. The midterm report has to be submitted before July begins.

6.3. Phase 4
Phase 4 lasts for just over 2 months. It begins in June and ends at the beginning of September.

• Include all suggestions and comments and submit the modeling and draft report

• Prepare for green light, and after that prepare for defense.

Green light meeting has to be done 1 month before the defense. Therefore, it has to be done before September
begins.
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Figure 16: Project execution with the help of Gantt chart
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1. Executive Summary
This research aims to investigate a state-of-the-art problem to treat the non-monotonic behavior of fault
progression trends. Well-established algorithms and literature are researched for fault progression prognostics,
however, not considerable attention has been given to monotonic constraints at a preprocessing stage. A
non-monotonic trend carries complex information which has outliers and nonessential signal values. Such
values can be refrained with monotonic constraints and only data which is insightful could be imported into
the Machine learning (ML) algorithm. It is hypothesized that it will improve the accuracy of predictions. The
goal of the project is to motivate the usage of monotonic constraints for improved and optimized predictive
maintenance of a degrading component. Insights from literature studies and case studies will be explored to
perform effective solutions on the test case of NASA CMAPSS dataset. The problem is presented as follows:
Determining if the monotonic constrained method at a preprocessing step shall assist ML-algorithms to
estimate the remaining useful life (RUL) of a component accurately, eventually optimizing maintenance
activities and scheduling. For comparison, other preprocessing methods will be explored. Limitations and
strengths will be studied and understood with the performance metrics.

2. Introduction
The scheduled regulatory aircraft maintenance are performed periodically and it serves the purpose of monitoring
components of the aircraft. However, unexpected failures or unanticipated breakdowns of components cause
disruption in operations, the cause of safety, and eventually affect the cost structure of the airline [34]. Preventive
maintenance was performed for the longest time in the past and eventually the industry diverted towards
predictive maintenance for its cost benefits and effective operations [15]. Operations of maintenance of
aircrafts are very complex and require attention to detail [26]. Constant research and experiments are carried
out to perfect the prognostics and perform predictive maintenance robustly and effectively. This research
aims to add further to improve the predictive maintenance for degrading components of an aircraft.

The prognostics and health management (PHM) have multiple approaches to perform prognostics and schedule
accurate maintenance. In this research, the data-driven approach is opted for its cost-effective benefits,
growing interest, and popularity in the industry. The materials and components that degrade overtime theoretically
have a logarithmic behavior (as seen in Figure 1) in their sensor data. Due to the noise and disturbances
processed by the sensors of the component, monotonic trends are not obtained. These uncertainties cause
failure in prediction as the ML-model possess unwanted extra information. Therefore, through this project
plan, the author proposes the steps planned to improve the uncertainty by treating the non-monotonic
signals with monotonic signals and validating better performance.

The literature review in Section 2 explores four researched topics: non-monotonic and monotonic signals,
monotonic improvement techniques, preprocessing steps in ML, and evaluating the monotonic signals and
their performances. The conceptual research model is presented with the research questions and objectives
in Section 3. The methodology and experimental setup are discussed in Section 4 and Section 5, respectively.
Finally, the expected outcome of the research is in Section 6 and the work break-down is explained in a Gantt
chart in Section 7.

3. Literature Review
The scope of the research proposal is discussed before hand. The research is focused on identifying the
benefits of treating non-monotonic signals to monotonic signals for fault progression data. Key concepts
of the research include the importance of monotonicity in data, identifying the monotonicity of signals,
and monotonic improvement techniques and preprocessing. Evaluation and performance techniques are
discussed towards the end of the section. These concepts will be reviewed and discussed in this section.

3.1. Prognostics and health management
Prognostics ensure detecting and informing system faults and failures for maintenance. Along with fault
detection and fault isolation, PHM detects fault prediction on selected components, fault filtering and reporting,
predicting RUL, health management, and recommended actions to pilot when necessary [27]. PHM process
has different stages and features; namely, raw data from sensors, diagnostics, prognostics, and health management.
These are modeled for determining the health stage of a component. The PHM process can be modeled
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Figure 1: Degradation state of a component and its estimated prediction of RUL after its actual state

for two different types of maintenance. A model from Sandia National laboratories (SNL) [56] explains the
difference of evidence and consequence maintenance scenarios [? ]. The evidence establishes the feature
extraction, trend detection, and estimation of RUL while the consequence analyzes the end result of maintenance
actions. In the research, the evidence scenario is going to be explored, and specific cases of RUL estimation.
The reason is to explore the component’s life and determine the best time for scheduling maintenance to
avoid accidents and prolong its life.

RULs provide decision makers with information about the component health life. The estimation of RUL
helps scheduling the maintenance before time. The algorithms of prognostics predicting RUL are classified
as degradation-based prognostics [16]. The degradation-based modeling of a system or component is defined
as the length from the current time to the end of its useful life and it can be used to characterize the system’s
current health status [13]. The RUL value can be identified in the Figure 1 from duration of t0 to t1.

RULs can be estimated with two approaches in prognostics, model-based approach and data-driven approach
[13]. Examples of model-based approaches are physical failure models, stochastic filtering models, and
statistical models. Data-driven approaches use past data to predict the future and their examples are ML
models and graphical models. Both approaches are used in PHM. The advantage of model-based approaches
is the ability to understand the physical fundamentals of a monitored system and therefore have higher
accuracy in prediction. Whereas the source of understanding of data-driven approaches is through the measured
input/output data from sensors. The data-driven approaches are less accurate in comparison to model-based
approaches as the data of the components are complex, noisy, and full of uncertainty [13]. On-the-other-hand,
model-based approaches require experienced engineers who have an understanding of each component’s
physical state and can operate to extend their life cycle. However, this process requires specific tools, machinery,
and experience players to operate and therefore is costly. Data-driven approaches have seen immense growth
in the development of methods to improve the accuracy of predictions and are inexpensive in comparison
to model-based approaches. This research should further add to the development and existing body of
knowledge of data-driven approaches.

3.2. Non-monotonic and monotonic signals
Signals from the sensor data of the components describe the health state and the conditions it has gone
through. Multiple cycles of the sensor data provide patterns for the ML-algorithm to learn and estimate the
RUL of a component. A component’s life degrades over time and reaches it’s end of life. The health of the
component should linearly decrease to its end of life theoretically. However, many discrepancies in data
cause the signal to be nonlinear and the degradation trend is not monotonic. The non-monotonicity of the
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Figure 2: Hypothesis of prediction window of monotonic signals vs non-monotonic signals

signal causes difficulty in identifying patterns for an ML algorithm, especially towards end of the component’s
life. This data could deviate from the hypothesized results and is thus unreliable for prediction. Hence, causes
wrong maintenance scheduling. A visual example is shown in Figure 2 where the predictions from monotonic
constrained data have a smaller size of the hypothesis and are thus more powerful for degrading components.

In principle, monotonic signals do not change their directions, the signal will maintain one direction. On
the contrary, non-monotonic signals will change direction and values as more time cycles are added and
invalidate the previous conclusions. The signals of a non-monotonic dataset carry complex information
which are not insightful for prediction. The data are scattered and do not necessarily follow a pattern for
the ML-model to train and replicate for fault progression.

Irregularity and uncertainty are the main causes of failing PHM models [48]. Imperfections in the predictability
of prognostic models can be caused from three different sources, according to Baraldi [4]; Randomness
related to future degradation, modeling errors and inaccuracies in degradation data. Researchers of [38]
emphasizes how monotonicity in data can avoid the exhaustive search without sacrificing optimality. It is
also recommended by [16] and [1] to quantify and consider monotonicity in the systematic construction of
PHM models. Feelders [20], claims that models trained on monotonic datasets often have better predictive
performance than models trained on original data. Monotonic datasets could be created by generating
artificial data or by relabeling of real data [41][12][29].

Monotonicity as a property states that an increase in input cannot result in a decrease in the related output
[5]. So, adding a monotonic constraint to a model would reconstruct the trends of the model to guarantee a
monotone relation between explanatory variables and dependent variables. Monotonicity poses a monotonic
trend where the condition is fulfilled if and only if the trend is either entirely non-increasing or entirely
non-decreasing. In other words, if the signal is monotonically increasing or decreasing with time, corresponding
to an improving or deteriorating system, there is supposed to be a monotone trend, otherwise the trend is
non-monotone [30]. This behavior of the trend would be eventually useful for prognostics as the trend would
reduce the uncertainty and can deduce the actual life cycle of the component for the algorithm to learn and
predict. It was also proven in [62] paper that monotone prediction outperforms the standard counterparts
due to successfully avoiding overfitting.

On-the-other hand, the paper by Ben-David mentions that adding monotonic constraints to ordinal regressors
can reduce their accuracy. In this case, the author of [5] says that the explanatory variables in the data sets
used for the experiments were not in a monotone relationship with the labels. Therefore, making use of
monotone models inappropriately results in a poor performance. The author further says that the benefits
of monotone or partially monotone data models can be fully beneficial when one can be sure of the relations
present in the data.
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Figure 3: Application of Average conditional displacement(ACD) on an interval of non-monotonic signal [48]

3.3. Monotonic improvement techniques
Techniques were researched in depth for choosing the apt method for the research. They are discussed in this
section.

Enforcing monotonicity of decision models for data mining: Purpose of data mining is to derive the right
information from available datasets to propel decision making. Credit loan approvals, risk analysis need
the models to be monotone in relation to decision variables. The authors of [67] propose a method to enforce
monotonicity and clean up non-monotonic data by maintaining monotonic relationship between dependent
variables and explanatory variables for domain knowledge. They relabel the non-monotonic dependent
variables into monotonic one with the degree of monotonicity of data and an algorithm to clean non-monotone
data sets. The performance achieved was better and proved its capability in economic decision making.

Non-parametric time series are used to develop and extract features representing the nominal behavior of
the monitored component and derive smoother trends to represent critical components of health evolution
over time [46]. Empirical mode decomposition algorithm is applied and ridge regression to extract the trend
for RULs. The developer of the model was successful in demonstrating a smooth accelerated degradation
dataset.

Average conditional Displacement (ACD) introduced by Vamos [65]. The algorithm is based on a signal
value interval, but it works fairly well for estimating the monotonic trends of a stationary noise-filled time
series data [48]. The algorithm is used for removing monotone trend from non-monotonic data and reveals
one of the possible monotonic version of the non-monotonic trend. The advantage to use this algorithm
is two-folded. First, this algorithm does not require any initial subjective assumptions and approximates
monotonic trends as a piecewise linear curve by dividing into sub-intervals of signal intervals [65]. Secondly,
it is an automated algorithm which is comparable with known methods like moving average and polynomial
fitting [48].

The algorithm considers small intervals randomly placed across a trend. The extreme ends of the intervals
are considered and an average line is drawn through the points. This is illustrated in the Figure 3. The figure
describes a small interval of a signal from a sensor. The blue dots represent the original sensor value and the
red thick line represents the monotonic signal after application of ACD approximation for the interval. The
average sample of the slope is estimated with Equation 1[66]. Where, xn represents the pieces of interval,
Na is the number of xn values of the interval and g is the slope. The iterations of the intervals are carried
out throughout the trend for a smooth and monotonic curve. The author of [48] says the ratio between
the noise fluctuation and the amplitudes of trend variation is the major contributor to the accuracy of the
ACD algorithm. ACD has the potential benefits to treat non-monotonic signals and stationary noise in PHM
applications.
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Monotonic classification and regression model approaches have been considered in the literature of [53]
and [52]. Also, monotonic neural networks in [24] and hybridization. These models were successful in
predicting accurate prognostics compared to their counterparts with non-monotonic models. The question
is raised from the techniques mentioned before, if one has the dataset constrained to monotonicity already
and applies a regular regression model to it, should it perform better in comparison to the dataset that was not
constrained? This is the hypothesis for the research. In theory, the simplification and filtration beforehand
would reduce the computational time and yield the results of predictions in simple steps. Having a clear
trend of the time for a component to degrade would be easier to learn than an uncertain one. Therefore,
a monotonic constraint at a preprocessing step is advised through this research. A comparison with other
preprocessing methods should be made too.

3.4. Preprocessing
Data cleaning has been of interest since the growing size of the database and the requirement for turning the
data into useful knowledge. Preprocessing is a type of data cleaning in prognostics, which has been important
for reducing randomness in data and importing the right information into the algorithm. This procedure
reduces the computational time and increases accuracy in prognostics. There are different methods of preprocessing.
For example, feature engineering is a process where unclassified and unlabeled data are clustered into a group
with similar trends or examples. It results in identifying correlations and dependencies existing between their
features [7]. Similarly, for analyzing features, Principal component analysis (PCA) is available. The goal of
PCA is to analyze the covariance and reduce the complexity of data. In [48], the PCA was used for smoothing
acoustic emission signals by eliminating highly correlated variables. Smoothing is an extracting technique
applied to time series to extract variations between time steps [7].

Preprocessing step is also responsible to reduce the noise in the signal trends. To identify and learn the
behavior of a signal during the training of the model, the high noise in the signal would be incorporated
and studied. However, for fault progression and identifying the RUL of a component, the noise in the data
causes uncertainty. It does not add value for identifying the end of life. It merely increases the computational
steps and the hypothesis window of prediction (as seen in Figure 2). There are methods available which
help to reduce the noise, such as rolling mean or moving average. Rolling mean operations results in cleaner
and understandable trends for the ML model to learn and perform prognostics accurately. However, these
processed trends still have distortion and noise [7]. Moving average develops a new series with average values
of raw data along the time series. It assumes the time series to be stationary while computing and the signal
does not have monotonic behavior or seasonality. The moving average depends on the window width defined
by the raw observations and calculates the average per window width [7]. These preprocessing steps will be
compared with the monotonic constrained model.

Adding a monotonic constraint during a preprocessing step to a fault progression data type is hypothesized to
result in a smoother and monotonic dataset. The updated dataset of the components state replaces a healthy
with an unhealthy state within time, the features of the component show a degrading trend in the data. In
other words, changing monotonously in the decreasing propagation. Any regressor model can be used to
train the model.

3.5. Evaluation
Performance metrics like Root mean square error (RMSE), Mean absolute error (MAE) can determine the
prediction errors and how far are they off. However, to measure the monotonicity of a signal, the following
metrics were researched.

Coble [16]: showcases the Local Gradient-Based method as the "The average difference of the fraction of
positive and negative derivatives of the time series of a feature over time". The monotonic metric is calculated
with Equation 2. Where G+ and G− represent vector positive and negative derivatives respectively (seen in
Equation 3). ∆y represents the difference between two consecutive points on the signal.
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The same formula can be rewritten as Equation 4 [16]. The differences of adjacent points of a signal are
compared for identifying monotonicity. N j is representing the total points, x j (k) represents a point of the
signal and x j (k + 1) is the subsequent point. Each step of the signal is compared and an average score is
determined. For each trend, the monotonicity adjusts from a value of zero to one. Zero being the least
monotonic and one with the highest monotonicity. The formula would be used for checking the monotonicity
of the signal. It will also be useful for comparing different preprocessing datasets for their monotonicity
check.

Monotonicity = 1
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Verification based testing: The technique used in [60], approximates the black-box model by a white box
model. SMT solving techniques are used for computing the monotonicity metric of white-box model. "The
term black-box is mainly used for labeling all those machine learning models that are (from a mathematical
point of view) very hard to explain and to be understood by experts in practical domains."[39][55] "The
terms white-box, understandable model, and explainable artificial intelligence (XAI) are used for labeling
all those machine learning models, providing results associated to their models that are easy to understand
by experts in the application domain. Usually, these models provide a good trade-off between accuracy and
explainability."[39][55]

4. Research Question, Aim/Objectives and Sub-goals
This section discusses the goals of the thesis project. The goals are explained through implementing research
questions and objectives.

4.1. Research Question(s)
1. Is it possible to achieve monotonicity from non-monotonic signal dataset?

(a) What is the monotonic metric value of the monotonic constraint signals? Is it entirely monotonic?

(b) How does it compare with other pre-processing methods?

(c) How much difference is noticed in the final values (end-of-life) of the monotonic trend of the
component?

2. If the monotonic trends can be maintained, are they able to perform better prognostics? Which algorithm
performs better and why?

(a) How does it perform in terms of MAE, RMSE and R2?

(b) What is the impact of the solution (in comparison)?

3. When considering the accuracy of a model, does the monotonically constrained model perform better
than its counter part?

(a) Which time-interval shows the least accuracy of monotonically constrained data? and why?

(b) Does avoiding outliers help in accuracy of predictions?

(c) Why does the monotonic constrained model perform better/worse?
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4.2. Research Objective
"To investigate if applying monotonic constraints to non-monotonic trends of a fault progression dataset can
improve prediction accuracy of the ML-model for predicting RULs"

The objective of the research focuses on improving maintenance scheduling and operations process with
optimized ML-model. The objective is achieved by insights from literature, experimentation of the proposed
models and evaluation of the method. It is firstly crucial to check if applying an algorithm in preprocessing
step can produce monotonic constrained datasets. Thereafter, the performance of the model has to be
evaluated. It can be achieved with performance metrics and comparison with competitive methods.

5. Theoretical Content/Methodology
There are multiple methods available to test and figure the research questions. In this research, the method
will be to focus on using a monotonic constrained algorithm in the preprocessing step to strategically reduce
the unwanted data and improve the prediction further for the degrading component.

It is important to understand that this thesis focuses on proving monotonicity in data, specifically fault
progression data, can improve overall accuracy of predictions. Monotonic data models need to be compared
with non-monotonic data models, as well as other types of preprocessing methods for in-depth evaluation
and comparison. The original dataset shall be split into training and testing datasets. Multiple versions of
this training dataset will be generated by applying the different methods proposed in the literature. First
will be the original dataset untouched. The second will be the monotonically constrained dataset with the
ACD algorithm, then the one with moving average and the last one with rolling mean. Each type of trained
dataset will be subjected to the same random forest regressor(ML-algorithm). The testing dataset will remain
common and unchanged to compare the outcomes and evaluate results.

RUL formulations need to be programmed for prediction. The RUL estimation method will remain constant
for each data type. Lastly, it is important to check different ML methods to analyze the best performance.
Therefore, the case of CNN-LSTM algorithm will be programmed to validate the results of the random forest
regressor. Optimized solution will directly impact the objective of the research, and the results will validate
the method to be useful for maintenance methods or not.

6. Experimental Set-up
The experiment is designed for estimating if monotonically constrained data can successfully improve prognostics
and to analyze their behavior. The dataset of NASA CMAPSS of turbo-fan engine will be split into training and
testing datasets with the ratio 8:2. The reason for splitting the training and testing datasets is to have the actual
values of the test signals to analyze and compare the results. The implementation of ML-algorithm will be
carried out in Python. A MATLAB program is required for ACD. An input of the training dataset will be made
to the constraint method and the resulting monotonically constraint dataset will be the output. This data will
be compared with the original non-monotonic dataset and other performed preprocessed methods.

For analyzing the results, first a monotonic metric is selected to identify if a monotonic behavior can be
obtained from a non-monotonic signal. Secondly, the analysis will be carried out on performance metrics
and scoring functions. Over-estimation and underestimation can be understood based on the results of the
scoring values. Furthermore, alpha-lambda curves will be used to identify the accuracy of the models.

7. Results, Outcome and Relevance
If altering data to monotonically constrained signals can perform optimized results that would positively
answer all three research questions. It would validate the methodology and will be a step forward for PHM.
The results of the model should be accessed further if performed and must be recorded for further analysis.
It is also important to know "why" for the outcomes of the model. Therefore, a deeper analysis on the
performance will guide the answer for the results of the model. The performance for each research question
would yield important insights for key indicators. The project is limited for fault progression trends.

It is paramount to verify and validate the optimized model, and therefore two ML-algorithms will be tested
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on the same dataset to validate the model. Lastly, the system tests for the model and the complete models
have to be verified.

8. Project Planning and Gantt Chart
The project planned during the literature review phase is showcased in Appendix A. From preparing the
model and datasets to the reporting of the final paper has been planned and shall be carried out for maximum
efficiency. The meetings with the supervisor until now have been carried out online due to COVID. The
meetings are carried out biweekly and should be continued to do so during the rest of the project. Except
for a sprint phase during the midterm which shall have meetings weekly with the supervisor.

9. Conclusions
The project plan for the treatment of non-monotonic signals in fault progression of a turbo-fan engine combines
the thorough literature review, conceptual research design, and technical research design. The aim of the
proposal is to add value to data-driven approaches of predictive maintenance by improving the data processed
from the sensors. The goal derived from this project plan is to determine if the monotonic constrained
method at the preprocessing step shall improve the predictions of ML algorithm to estimate RUL of the fault
progression dataset.

The insights gained from the literature review showcased considerable support for the treatment of non-monotonic
signals. Researchers described the irregularity and uncertainty of data causes failure in the predictions of
RUL values. Increasing the quality of data improves the prognostics process and the models can be trained
effectively. Multiple monotonic improvement techniques were proposed in the literature which improves
quality of data. Introducing monotonicity of data in data mining, monotonic classification models, monotonic
neural networks, and enforcing monotonicity in the preprocessing step of prognostics were a few addressed
in the review. For this project, it is decided to use the ACD model in the preprocessing step to treat non-monotonic
signals and confirm the benefits of treating non-monotonic data by implementing them in ML-models.

The method chosen is to optimize the process for modeling a fault progression ML model. The analysis of the
results, limitations and evaluations will be carried out with performance metrics and additional monotonic
metrics. The NASA CMAPSS dataset of a turbofan engine will be used for experimentation. The model will be
coded in MATLAB and Python. The model will be tested with 2 ML algorithms. Finally, the proposed project
is planned into 4 steps for completion in the next 7 months.

Having the research performed, a notable contribution will be added to the research catalog and it shall fill
up the answer to the question which is still empty. No research has been carried out on CMAPSS dataset with
ACD algorithm in the preprocessing step for an ML-algorithm.

10. Gantt Chart
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Figure 4: Project execution described with gantt chart
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A
Appendix

1. RUL Estimation process

Figure A.1: SNL model which showcases the different engines that drive the RUL estimation process[51]

2. Dataset chosen for experimentation
The author chooses to develop a process that improves on the accuracy of prognostics of degradation of
the component, it is essential to experiment with the data that have the final results (RULs in this case)
for approval and understanding. Testing for such data is selected that replicates the real life scenarios and
enables the algorithm to be used in a generalized format. Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) is a simulated data set used for replicating real-life commercial turbofan engines. The
description of the engine model 90K is given below [21]:

• 90,000 lb thrust which is 400,340 N

• Atmospheric model altitude from sea level to 40,000 ft,

• Mach 0 to 0.9,

• Sea-level temperature -60 to 103 F
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Engine control system [21]:

• Throttle-resolver angle (TRA) specific to a fan speed controller

• Three high-limit regulators prevented from exceeding its threshold limit for core speed, engine pressure
ratio, High-pressure turbine (HPT) exit temperature

• Regulator to avoid static pressure at high pressure compressor (HPC) exit from going too low

• Moreover, to control the core speed, acceleration and deceleration limiters also exist

The data set inputs, output, and equilibrium values for all flight conditions are given in the Appendix A. The
simplified turbo engine design is represented in Figure A.2 and the workflow of the engine with ducts and
bleed omitted is seen in Figure A.3.

Figure A.2: A 90k turbofan engine, simplified version[21]

Figure A.3: Working of the engine divided in simulation boxes [21]

Data-set characteristics
The purpose of selecting the C-MAPSS data set was because it has varied characteristics and are very helpful
to compute realistic prognostic models. These publications do not focus on the physics-of-failure of turbofan
engines but describe the generation of these data sets and various practical aspects when using C-MAPSS data
sets for prognostics. Characteristic of the data set is provided from [54][58] as follows:

1. To replicate a real system of the aircraft engine, a data of non-linear system of high fidelity is created for
a multi-dimensional response

2. The data consist high level of noise

3. Fault conditions are in-cooperated in operational systems

4. Data of different level of complexities are given for training and testing the algorithms. The description
of the data-sets is given in the Figure A.4
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5. The data sets number 1-4 consists of training and testing data with increasing complexity. Already
available separated data for analysis.

6. The ground truth RULs are also available to analyze the results of predictions

7. Number 5T and 5V are more complex and bigger data sets which were used for a competition. The
RULs were not available at first, but after the completion of the competition, the results were made
public

8. These data sets are designed for fault degradation analyses and hence fit perfectly in the authors experimental
setup

Figure A.4: 90K turbofan degradation data-set types [54]

Guidelines to process the data and build a fault degradation analysis is given in Figure A.5. This will be used
as a reference for the process of developing a model.

Figure A.5: Guidelines to use C-MAPSS data sets [54]

2.1. Dataset tables
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Figure A.6: Input to 90k [21]
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Figure A.7: List of 27 output variables and their units[21]
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Figure A.8: Non-output variables[21]
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Figure A.9: Equilibrium values[21]





B
Appendix

1. CNN-LSTM model on test units FD001 dataset
This model is used for validating the results of the experiment carried out with the training dataset. For this
model, the entire training dataset is trained and the test FD001 is used for testing the model. RUL FD001 has
the final values which is used for validating the process. In this experiment, the entire values of test datasets
are not available, only the first few sensor values for each engine is available. Therefore, all the visual analysis
carried out in the paper cannot be carried out in this experiment. The 4 preprocessed datasets are again used
for comparison. However, the test dataset is not converted by any preprocessing step. This step would be
better for evaluating the right accuracy as the test dataset would resemble the real-life scenario. Now, after
implementing the 4 different data types at three different epochs, the following results in the Table B.1 were
seen.

Table B.1: Numerical evaluation of each experimentation step.

Datasets 5 Epochs 50 Epochs
MAE RMSE R2 Score MAE RMSE R2 Score

Raw 11.57 17.15 0.75 7.34e4 18.47 26.89 0.81 3.23e5
EMV 11.27 16.42 0.72 1.17e5 19.20 25.45 0.78 3.42e5
Rolling mean 13.24 18.45 0.79 1.81e5 12.47 21.29 0.84 2.01e5
ACD 10.66 14.47 0.81 7.08e4 10.75 17.40 0.87 1.41e5

At a first glance of the table, one can already say that the ACD dataset has outperformed its competition.
The error score for each epoch has shown improvement. It is also worth noticing that the result of 5 epoch
category has performed better than that of the 50 epochs. Therefore, more iterations of the data do not
necessarily improve the predictions.

With a complex algorithm which improves on underfitting, it essentially improves on the pitfalls of monotonic
constraints. It can also be seen visually in Figure B.1, where the histogram chart of the ACD dataset shows the
least amount of errors on the late prediction side. There is a bigger peak in the center and followed by a
smaller peak in the early prediction side. Early prediction, which is not very far from the actual RUL, is still
acceptable. It would not result in a big loss. Whereas for the raw and EMV, the results show that most of the
predictions were made early and quite a few were also made later than the actual values. The combination of
the ACD dataset and the CNN-LSTM model worked well and the results can be seen. One of the reasons for
it to work so well is because the neural network model develops a piecewise linear curve for predicting RUL.
As the ACD filter would have already developed a monotonic dataset, the ML model manages to learn faster
and produce predictions accurately.

Furthermore, comparing the two models and their numerical results, the neural network performed significantly
better. Moreover, the RF regressor was trained and tested on the same dataset. While it was not the same for
the complex model. A direct comparison can not be made, although with the predicted results, it proves that
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Figure B.1: Error distribution function to identify if failures are predicted early or late

using a monotonic constraint for fault progression data would improve the prediction and accuracy of the
model. The impact of producing more accurate predictions is on the cost of predictive maintenance. Accurate
maintenance could be called for and self-healing materials can also have a longer life without hinderence to
maintenance operations.
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