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Abstract

Many system-level electromagnetic design problems are multiscale
and very challenging to solve. They remain a significant barrier
to system design optimization for a foreseeable future. Such mul-
tiscale problems often contain three electrical scales, i.e., the fine
scale (geometrical feature size much smaller than a wavelength),
the coarse scale (geometrical feature size greater than a wave-
length), and the intermediate scale between the two extremes. Ex-
isting computational tools are based on single methodologies (such
as finite element method or finite-difference time-domain method),
and are unable to solve large multiscale problems. We will present
our recent progress in solving realistic multiscale system-level EM
design simulation problems in time domain. The discontinuous
Galerkin time domain method is used as the fundamental frame-
work for interfacing multiple scales with finite-element method,
spectral element method, and finite difference method. Numer-
ical results demonstrate significant advantages of our multiscale
method. A more detail discussion of the method is given in [1].
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1 Introduction

Realistic system level electromagnetic problems such as electromagnetic
interference (EMI), electromagnetic compatibility (EMC) ans signal integrity
(SI) are often multiscale. Examples of multiscale problems include small de-
vices under test in a reverberation chamber for EMC/EMI testing, and a
multilayer package-to-chip structure in Fig. 1. Here electrically fine struc-
tures with details much smaller than a typical wavelength (mode stirrers,
devices under testing in the chamber, or on-chip interconnects in the package-
to-chip structure) coexist with electrically coarse structures comparable to
or larger than a typical wavelength (the empty space insider the chamber,
or the package in the multilayer circuit).

Package structure
(mm)

Package interconnects
(100μm)

Solder pads (μm)
On-chip (nm)

Figure 1: Multiscale package-to-chip structure.

Simulating transient multiscale problems can be very challenging for the
conventional finite-difference time-domain (FDTD) method and the finite-
element time-domain (FETD) method. The FDTD method [2, 3] requires
an orthogonal grid. Thus, a high discretization density required to capture
the geometric characteristics of electrically fine structures will lead to a large
number of wasted unknowns in the electrically coarse domains. The subgrid-
ding technique [4] can alleviate this issue of the FDTD method; however,
it will spoil the simple data structure of the standard FDTD scheme and
greatly increase computational complexity. The FETD method [5,6] is more
flexible in geometric modeling. However, this method requires solving ma-
trix equations, either directly or iteratively. A discretized multiscale problem
usually has a large number of unknowns, viz. huge system matrices. It can
be prohibitively expensive to perform operations with huge matrices during
time stepping.

Discontinuous Galerkin time-domain (DGTD) methods [7–17] are
promising in solving multiscale problems. First, for geometric modeling,
DGTD allows for domain decomposition. A multiscale structure can be
divided into several subdomains, and each subdomain can be discretized by
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a specific mesh density based on its geometric characteristics. Based on
the idea of domain decomposition, DGTD is much more flexible than FDTD
and FETD in modeling complex structures because large system matrices are
split into a bunch of smaller matrices. DGTD can easily handle problems
too large to be solved by the conventional FETD method. As for time
integration, DGTD allows for different time stepping schemes to be used in
different subdomains. For example, efficient explicit schemes can be applied
to subdomains with coarser meshes and relatively large CFL numbers, while
unconditionally stable implicit schemes can be employed in subdomains with
dense meshes to overcome CFL restrictions. These flexibilities in both spatial
and temporal discretization make DGTD efficient in multiscale simulations.

Constructing a DGTD system consists of several key steps: (a) decid-
ing on which governing equations the DGTD method will be based on; (b)
choosing element shape and corresponding basis functions for the spatial
discretization of each subdomain; (c) applying numerical fluxes onto inter-
faces to stitch all subdomains together; and (d) selecting a time stepping
scheme based on properties of a discretized system. Each step of the above
procedure has more than one choice. Thus, dozens of DGTD variations have
been proposed with different combinations of implementation schemes. In
this review we provide a discussion of the fundamental issues of each step,
emphasizing the details of one specific scheme based on mixed finite element
discretization and the hybrid implicit-explicit (IMEX) time stepping scheme.

2 The discontinuous Galerkin system for transient
electromagnetic analysis

2.1 Governing equations for time domain electromagnetic
analysis

The transient electromagnetic problems can be governed by different
equations such as first order Maxwell’s equations or a second order wave
equation. Mathematically these governing equations are equivalent, how-
ever, with different discretization schemes they differ greatly in numerical
properties [18].

The second order wave equation uses directly curl-conforming elements
[19–22], which are free of spurious modes and facilitate the imposition of
boundary condition. Despite such advantages, the wave equations have dif-
ficulties in constructing the time-domain perfectly matched layer (PML),
which is believed to be an all-purpose technique to truncate unbounded re-
gions. Moreover, the implementation of numerical fluxes [23–25], a critical
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step in building a DGTD system, is based on both E and H variables.
These limitations make the wave equation with only one discretized field
less suitable for DGTD methods.

To avoid the above difficulties the DGTD systems can be based on first
order Maxwell’s equations with both E and H as field variables

ε
∂E

∂t
+ σE −∇×H = −J s (1)

μ
∂H

∂t
+∇×E = 0 (2)

In the following subsections we will see that it is straightforward to imple-
ment numerical fluxes for this first order system.

2.2 Galerkin’s weak form and numerical fluxes

Denote Φ and Ψ as basis functions for E and H , respectively. With
integration by parts, the Galerkin’s weak forms of Maxwell’s equations are∫

V
Φ ·

(
ε
∂E

∂t
+ σE + J s

)
dV −

∫
V
(∇×Φ) ·H dV

=

∫
S
Φ · (n×H) dS (3)∫

V
Ψ · μ∂H

∂t
dV +

∫
V
(∇×Ψ) ·E dV

= −
∫
S
Ψ · (n×E) dS (4)

where V denotes the volume of a subdomain, which contains one or more
elements, n is the unit normal vector located on surface S and pointing to
the outside of V . The terms on the right hand sides of equations (3) and
(4) are integrals over subdomain interfaces. In DGTD methods they are
evaluated by numerical fluxes.

Choosing different numerical fluxes can lead to different DGTD systems.
One commonly used numerical flux is the Riemann solver [23, 24], which is
a type of upwind numerical flux and is derived from the physical process
of wave propagation and reflection across an interface between two different
media ∫

S
Φ · (n×H) dS =

∫
S
Φ ·

[
n× Z(i)H(i) + Z(j)H(j)

Z(i) + Z(j)

]
dS

+

∫
S
Φ ·

[
n× n× E(i) −E(j)

Z(i) + Z(j)

]
dS (5)
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∫
S
Ψ · (n×E) dS =

∫
S
Ψ ·

[
n× Y (i)E(i) + Y (j)E(j)

Y (i) + Y (j)

]
dS

−
∫
S
Ψ ·

[
n× n× H(i) −H(j)

Y (i) + Y (j)

]
dS (6)

where Z(i) = 1/Y (i) =
√

μ(i)/ε(i) and Z(j) = 1/Y (j) =
√

μ(j)/ε(j) are wave
impedances for the i-th and the j-th subdomains, respectively.

2.3 Discretized system of linear equations

Assuming a multiscale structure is divided into N subdomains, the dis-
cretized system of equations by the DGTD method will be

M (i)
ee

de(i)

dt
= K

(i)
ehh

(i) +C(i)
ee e

(i) + j(i) +

N∑
j=1

(
L(ij)

ee e(j) +L
(ij)
eh h(j)

)
,

i = 1, . . . , N (7)

M
(i)
hh

dh(i)

dt
= K

(i)
hee

(i) +
N∑
j=1

(
L

(ij)
he e(j) +L

(ij)
hh h(j)

)
,

i = 1, . . . , N (8)

where e(i) and h(i) are vectors of the discretized electric and magnetic fields,

M
(i)
ee and M

(i)
hh are the mass matrices, C

(i)
ee is the damping matrix, K

(i)
eh and

K
(i)
he are the stiffness matrices, and j(i) is vector of the discretized excitations

of the i-th subdomain. Matrices L
(ij)
ee , L

(ij)
eh , L

(ij)
he , L

(ij)
hh are obtained from

the interface integrations and can be viewed as the couplings between fields
of the i-th and j-th subdomains. Detailed formulations of these vectors and
matrices are referred to [26].

3 Spatial discretization with different basis func-

tions

3.1 DG-FETD: discontinuous Galerkin finite-element time-
domain method

The discontinuous Galerkin finite-element time-domain (DG-FETD)
method is a very popular DGTD scheme with finite elements employed for
spatial discretization of subdomains. The DG-FETD method can be viewed
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as a combination of discontinuous Galerkin method (DGM) and finite ele-
ment method (FEM) in time domain. All kinds of finite elements, e.g., nodal
or edge elements as basis functions, tetrahedral, prism, or hexahedral ele-
ments as element shapes, have been used in constructing different DG-FETD
schemes [7–15].

3.2 DG-SETD: discontinuous Galerkin spectral-element
time-domain method

Despite its meshing flexibility, the lower order DG-FETD scheme suffers
from a slow convergence rate and a large numerical dispersion. To make
multiscale simulations more efficient, the electrically coarse part can be se-
lected out and discretized by higher order finite elements with a coarser
mesh. The spectral elements are special types of higher order finite ele-
ments with interpolation points chosen based on spectral polynomials, such
as Gauss-Lobatto-Legendre (GLL) polynomials [27, 28]. By doing so the
spectral elements will avoid the Runge phenomenon and lead to diagonal or
block diagonal mass matrices, which are especially favorable to time domain
computations because inversion of such mass matrices becomes trivial.

4 Time stepping schemes

For a DGTD system, time stepping can be performed subdomain by sub-
domain rather than solving a huge matrix system as in FETD schemes. This
advantage of DGTDmethods can save a large amount of memory during time
stepping, and furthermore, it makes parallel computation straightforward for
a DGTD system.

Local time stepping and hybrid implicit-explicit schemes for
multiscale simulations

A discretized multiscale DGTD system usually contains electrically
coarse subdomains with coarse meshes, which have relatively large CFL num-
bers when an explicit time integration scheme is used. Meanwhile the mul-
tiscale system also contains electrically fine subdomains with dense meshes,
whose CFL numbers may be several orders smaller than those of electri-
cally coarse subdomains. Local time stepping methods such as the multirate
Adams-Bashforth scheme [29,30] or hybrid implicit-explicit schemes [31] can
be a good fit for a DGTD system under this circumstance.

Take the hybrid implicit-explicit Runge-Kutta (IMEX-RK) [32] scheme
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as an example, which consists of two parts. The first part is the explicit
Runge-Kutta (ERK) method

0 0 0 . . . . . . 0

c2 aex2,1 0
. . .

. . .
...

c3 aex3,1 aex3,2 0
. . .

...
...

...
...

...
. . . 0

cs aexs,1 aexs,2 . . . aexs,s−1 0

b1 b2 b3 . . . bs

(9)

The second part is for the explicit singly diagonally implicit Runge-Kutta
(ESDIRK) method

0 aim1,1 0 . . . . . . 0

c2 aim2,1 aim2,2 0
. . .

...

c3 aim3,1 aim3,2 aim3,3
. . .

...
...

...
...

...
. . . 0

cs aims,1 aims,2 . . . aims,s−1 aims,s
b1 b2 b3 . . . bs

(10)

Assuming a discretized multiscale problem contains Nex explicit subdo-
mains and Nim implicit subdomains, the time stepping formulation for the
i-th subdomain based on IMEX-RK with s stages is

v
(i)
n+1 = v(i)

n +Δt

s∑
k=1

bku
(i)
k , i = 1, · · · , Nim +Nex (11)

where

M (i)u
(i)
k =

Nim+Nex∑
j=Nim+1

L(ij)

(
v(j)
n +Δt

k−1∑
l=1

aexk,lu
(j)
l

)

+

Nim∑
j=1

L(ij)

(
v(j)
n +Δt

k∑
l=1

aimk,lu
(j)
l

)
+ f (i)(tn + ckΔt) (12)

for explicit subdomains, and

(
M (i) −Δtaimk,kL

(ii)
)
u
(i)
k = f (i) (tn + ckΔt) +L(ii)

(
v(i)
n +Δt

k−1∑
l=1

aimk,lu
(j)
l

)

+

Nim+Nex∑
j=Nim+1

L(ij)

(
v(j)
n +Δt

k−1∑
l=1

aexk,lu
(j)
l

)
(13)
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for implicit subdomains.

The hybrid IMEX scheme does not need temporal interpolation at the
interfaces between explicit and implicit regions. To our understanding, the
hybrid IMEX scheme is very desirable for a DGTD system with well sep-
arated CFL numbers, while the local time stepping scheme may be more
suitable for a DGTD system with CFL numbers spanning continuously from
a very small value to a relatively large one.

5 Conclusions

In this paper we have reviewed some important concepts, formulations,
and implementations of discontinuous Galerkin time domain schemes for
multiscale electromagnetic simulations, in particular, the mixed finite ele-
ment discretization and the hybrid implicit-explicit (IMEX) time stepping
scheme. Numerical examples demonstrate that the proposed method is a
promising time-domain technique for simulating multiscale structures.
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