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Abstract 1 
The co-existence of traditional docked bike-sharing and emerging dockless systems presents new 2 
opportunities for sustainable transportation in cities all over the world, both serving door to door 3 
trips and accessing/egressing to/from public transport stations. However, most of previous studies 4 
have separately examined the travel patterns of docked and dockless bike-sharing schemes, 5 
whereas the difference in travel patterns and the determinants of user demand for both systems 6 
have not been fully understood. To fill this gap, this study firstly compares the travel characteristics, 7 
including travel distance, travel time, usage frequency and spatio-temporal travel patterns by 8 
exploring the smart card data from a docked bike-sharing scheme and trip origin-destination (OD) 9 
data from a dockless bike-sharing scheme in the city of Nanjing, China over the same spatio-10 
temporal dimension. Next, this study examines the influence of the bike-sharing fleets, socio-11 
demographic factors and land use factors on user demand of both bike-sharing systems using 12 
multi-sourced data (e.g., trip OD information, smart card, survey, land use information, and 13 
housing prices data). To this end, geographically and temporally weighted regression (GTWR) 14 
models are built to examine the determinants of user demand over space and time. Comparative 15 
analysis shows that dockless bike-sharing systems have a shorter average travel distance and travel 16 
time, but a higher use frequency and hourly usage volume compared to docked bike-sharing 17 
systems. Trips of docked and dockless bike-sharing on workdays are more frequent than those on 18 
weekends, especially during the morning and evening rush hours. Significant differences in the 19 
spatial distribution between docked and dockless bike-sharing systems are observed in different 20 
city areas. The results of the GTWR model reveal that hourly docked bike-sharing trips and 21 
dockless bike-share trips influence each other throughout the week. The density of Entertainment 22 
points of interest (POIs) is positively correlated with the usage of dockless bike-sharing, but 23 
negatively correlated with docked bike-sharing usage. On the contrary, the proportion of the 24 
elderly has a positive association with the usage of docked bike-sharing, but a negative association 25 
with the usage of dockless bike-sharing. Finally, policy implications and suggestions are proposed 26 
to improve the performance of docked and dockless bike-sharing systems, such as increasing the 27 
flexibility of docked bike-sharing, designing and promoting mobile applications (APP) for docked 28 
bike-sharing, improving the quality of dockless shared bikes, and implementing dynamic time-29 
based pricing strategies for dockless bike-sharing. 30 
 31 
Keywords  32 
Docked bike-sharing, Dockless bike-sharing, Travel behavior, Land use, 33 
Spatiotemporal variation, Geographically and temporally weighted regression (GTWR) model 34 
  35 
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1. Introduction 1 

As a short-term bike rental service, bike-sharing has become common in many cities around 2 
the world during the last decade. It has not only been regarded as an economical, flexible, 3 
convenient and sustainable travel mode, but also as a means to mitigate problems like air pollution 4 
and traffic congestion, to promote a healthy lifestyle by involving more physical activity benefits 5 
and to support multimodal transport connections (Maizlish et al., 2013; Yang et al., 2016). Bike-6 
sharing systems enable smooth door-door transport by itself or by serving as access/egress mode 7 
of public transport (Mil et al., 2018; Shelat et al., 2018). This will increase the catchment areas of 8 
rail transit stops and thereby increasing ridership (Brand et al., 2017). By October 2019, more than 9 
2080 bike-sharing schemes are already in operation and 360 others are under construction in more 10 
than 50 countries (Meddin and Demaio, 2019). 11 

Currently, the bike-sharing systems operated worldwide can be divided into two categories: 12 
docked bike-sharing and dockless bike-sharing (Liu et al., 2018b). In the docked bike-sharing 13 
system, users have to rent bikes from designated docking stations and then return them to the 14 
available lockers in docking stations. As a result, the docked bike-sharing system cannot provide 15 
door-to-door services. Another challenge in operating a docked bike-sharing system is that the 16 
numbers of bikes and docks required at some stations are often insufficient to satisfy the 17 
corresponding cycling demand (Szeto et al., 2018). Compared with the traditional docked systems, 18 
the dockless bike-sharing system is connected to the internet with a mobile phone application 19 
(APP) to help users rent dockless bikes (Shaheen et al., 2010). The dockless bike-sharing system 20 
allows the users to park the bikes in the physical or geo-fencing designated parking areas (Pal and 21 
Zhang, 2017). Without being constrained by docking-station infrastructure, it saves users the last-22 
mile walking distance from nearby bike stations to final destinations (Cheng and Gao, 2018) and 23 
strengthens the seamless connection with public transport (Ai et al., 2018; Shelat et al., 2018). 24 
However, dockless bike-sharing could also bring negative societal effects. Because it is often 25 
lacking an adequate demand estimation, dockless bike-sharing often experiences oversupply of 26 
bike fleets in high population density areas, which hurts its economic sustainability, occupies urban 27 
space resources, harms the urban transport system and causes visual pollution (Du and Cheng, 28 
2018). While in low population density areas, dockless bike-sharing often experiences low bike 29 
utilization levels (Shen et al., 2018).  30 

The joint deployment of traditional docked and emerging dockless bike-sharing systems 31 
presents new opportunities for sustainable transportation in cities all over the world.  In order to 32 
provide users with better services and to help operators enhance the bike fleet reallocation, it is 33 
necessary to compare and comprehend the travel characteristics and influential factors between 34 
docked and dockless bike-sharing (Gu et al., 2019; Shen et al., 2018). However, most of previous 35 
studies have separately examined different aspects of docked and dockless bike-sharing schemes, 36 
whereas the investigation of the similarities and differences in travel patterns between the two 37 
systems is scarce, due to the difficulty of acquiring historical trip data of both systems over the 38 
same spatio-temporal dimension. The aim of this paper is to better understand the difference 39 
between the travel patterns of bike-sharing users of the two systems and to examine the influence 40 
of bike-sharing fleets, socio-demographic factors and land use factors on user demand. This is 41 
achieved by using a state-of-the-arts regression model - geographically and temporally weighted 42 
regression (GTWR), based on multi-sourced data (e.g., trip origin-destination (OD) data, smart 43 
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card, survey, land use information, Gross Domestic Product (GDP) and housing prices data) from 1 
the city of Nanjing, China. Particularly, the main contributions of this paper lie in:  2 

1) Revealing the difference in travel characteristics, including riding distance, riding time, 3 
usage frequency and spatio-temporal usage patterns by mining smart card data from docked bike-4 
sharing and the trip OD data from dockless bike-sharing over the same spatio-temportal dimension; 5 

2) Establishing a GTWR model to analyze the influential factors (bike-sharing fleets, socio-6 
demographic, points of interest (POIs), etc.) associating with user demand of docked and dockless 7 
bike-sharing. 8 

The remainder of this paper is structured as follows. In Section 2, a literature review of the 9 
evolution history, usage patterns and influential factors of both docked and dockless bike-sharing 10 
is provided. In Section 3, the study area and dataset are introduced. In section 4, the basic 11 
frameworks of GTWR model and its counterpart models (ordinary least squares model and 12 
geographically weighted regression model) used in the study are described. In Section 5, the results 13 
of historical data analysis are discussed, and the results of three regression models are compared. 14 
Next, the regression coefficients of the GTWR model are analyzed in detail spatially and 15 
temporally. The conclusions and suggestions for future research are summarized in the last part of 16 
the paper.  17 

2. Literature review 18 

Compared with docked bike-sharing, dockless bike-sharing is different in terms of operating 19 
and management mode, user demand, travel characteristics, user demographics and the influential 20 
factors. A brief review that focuses on the evolution history, usage patterns and influential factors 21 
of docked and dockless bike-sharing systems is provided below. 22 

2.1 A short history of docked and dockless bike-sharing  23 

Regarding docked bike-sharing schemes, they firstly started in 1991 at Denmark with coin-24 
deposit locks at bike-sharing stations (Mack et al., 1993). Until 1995, this kind of bike-sharing 25 
program began to develop in a large-scale in Copenhagen called as Bycyklen. This scheme 26 
introduced docking stations and deposits to the bike-sharing model and had been operated by a 27 
nonprofit organization (Shaheen et al., 2010). Then in 1996, magnetic stripe card opened the gate 28 
of IT-based bike-sharing systems at Portsmouth University in England (Demaio et al., 2014). This 29 
new IT technology enabled cashless payment, real-name registration, and dynamic pricing 30 
schemes, which encouraged these IT-based systems with docking stations to rapidly spread from 31 
Europe to Asia Pacific, North America, and South America (Shaheen et al., 2010).  32 

The first dockless bike-sharing scheme, known as “White Bikes”, was launched in 33 
Amsterdam in July 1965. The bicycles were painted in white and distributed around the city, and 34 
they could be freely used by anyone. This program lasted for only a short time, ultimately 35 
succumbing to a series of problems such as theft and vandalism (Demaio et al. 2014; Shaheen et 36 
al., 2010). In 2000, a call-a-bike system is launched in Germany, which eliminated the need for a 37 
docking station and used GPS technology and geofencing to enable “dockless” bike access (Lin et 38 
al. 2019b; Parkes et al., 2013; DeMaio, 2014). Other examples include the Bixi system in Canada 39 
and the Social Bicycles (SoBi) in the US (Shaheen et al., 2013). In 2015, two start-up companies, 40 
Ofo and Mobike, initiated an innovative generation of fully dockless bike-sharing services in 41 
China. This newest type of dockless bike-sharing system integrated mobile payment and GPS 42 
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tracking technology into the system so that users can pick up and drop off bikes almost everywhere 1 
in the transportation network (Zhang & Mi, 2018). Similar dockless systems such as Obike in 2 
Singapore, LimeBike in the United States and Gobee Bike in Hong Kong also adopted Ofo and 3 
Mobike’s concept and launched in 2017 (Yu and Paul, 2018).  4 

2.2 Travel patterns and influential factors of docked bike-sharing 5 

There is a vast body of literature on docked bike-sharing. Earlier studies examined docked 6 
bike-sharing from different perspectives, including its history and evolution, optimization of the 7 
location of bike-sharing stations, impacts on other transportation modes, measures to promote 8 
bike-sharing, demand analysis and rebalancing problems (Fishman et al., 2016). Several studies 9 
analyzed different aspects of users and usage of docked bike-sharing. Generally speaking, docked 10 
bike-sharing users are more likely to possess the following characteristics: male, employed, 11 
younger, more affluent and more educated and more likely to have non-motorized vehicles (Ricci, 12 
2015; Shaheen et al., 2013). In contrast, the applications in China show different user 13 
characteristics. Zhang (2015) concluded that people with lower income were more willing to use 14 
docked shared bikes in China. Shaheen et al. (2011) revealed that older people were more willing 15 
to use docked bike-sharing in China. Fishman et al. (2013) discovered that travelers owning cars 16 
were more likely to use the docked bike-sharing. Regarding usage rate, it was found that the 17 
number of trips per day per docked shared bicycle varies between 0.22 and 8.4 worldwide (Boor, 18 
2019). Work-related trips dominate docked bike-sharing usage, however, the prevalence of 19 
different purposes may be influenced by gender and temporal variables, such as time of the day 20 
and day of the week (Ricci, 2015; Shaheen et al., 2013). In general, docked bike-sharing usage 21 
rate is higher for weekdays compared to weekends, and on weekdays there are a morning peak and 22 
an evening peak in passenger flow (Kaltenbrunner et al., 2010; Nair et al., 2013), indicating that 23 
commuting is the main purpose for using the docked bike-sharing on weekdays (O’Brien et al., 24 
2014; Rixey, 2013). The acceptable travel distance for docked bike-sharing is between 1 km and 25 
5 km (Du and Cheng, 2018; Rahul and Verma, 2014), and the critical travel time for cycling is 26 
within half an hour (Zhao et al., 2015). Several studies also investigated the factors influential the 27 
docked bike-sharing user demand. The most common factors considered in the literature are 28 
temporal, socio-demographic, meteorological, land use and preference factors (Xin et al., 2018; 29 
Zhao et al., 2015; Zhaoyang et al., 2018). Recently, McKenzie (2018, 2019) found that docked 30 
bike-sharing trips tend to be more commuting oriented and these trips are generated in central 31 
business district whereas dockless bike-sharing and scooter-share trips reflect more non-32 
commuting related activities (e.g. leisure, recreation, or tourism). Similarly, Lazarus et al. (2020) 33 
explored the complementary and competitive relationship between docked bike-sharing and 34 
dockless ebike-sharing systems. They found that docked bike-sharing trips tended to be 35 
commuting trips, and mostly to connect with public transit stations and dense employment areas.  36 

2.3 Travel patterns and influential factors of dockless bike-sharing 37 

Compared with traditional docked systems, only few studies have been conducted for 38 
dockless bike-sharing, because these systems mainly exist in China and large amount of trip data 39 
cannot be shared to the public due to privacy issues. These studies discovered that dockless users 40 
were more likely to possess the following characteristics: male, younger, more educated, single, 41 
middle-income level and mobile internet preferred users (Li et al., 2018; Xin et al., 2018). 42 
Regarding occupation, company employees constitute the main body of dockless bike-sharing 43 
users, followed by university students and the self-employed (Xin et al., 2018). On weekdays, 44 
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there are two obvious usage peaks, namely, the morning and evening rush hours, whereas a 1 
completely different pattern is observed at weekends that the demand trend is much smoother 2 
without clear commuter peaks (Bao et al., 2017a; Shen et al., 2018). This result can be explained 3 
by the fact that during peak hours on weekdays, trips are dominantly made by commuting users, 4 
while more bike-sharing trips for leisure-related purposes take place at weekends (Liu et al., 2018a; 5 
Shen et al., 2018). Link et al. (2020) analyzed user characteristics and usage patterns of dockless 6 
bike-sharing. They found that 44% of dockless bike-sharing trips are for leisure purpose, followed 7 
by commuting purpose (36%). For the spatial distribution of dockless shared bikes, the results 8 
from previous studies are inconsistent across different cities around the world. Liu et al. (2018c) 9 
found that city central areas and business center surroundings had more dockless bike users than 10 
suburban areas. However, Shen et al. (2018) found that the number of dockless bikes in the central 11 
business district was lower than that in peripheral residential areas with high population density. 12 
Lin et al. (2020) analyzed the spatio-temporal distributions of dockless bike-sharing around metro 13 
stations by using metro station-related data and dockless bike trajectory data. They found that more 14 
dockless bike-sharing trips for accessing/egressing metro were generated during the morning peak 15 
than the afternoon peak, and more trips were generated at the city center. The average riding time 16 
of dockless bike-sharing in different cities is less than 20 min and the average travel distance is 17 
within 3 km (Bao et al., 2017a; Xin et al., 2018; Zhang and Mi, 2018). Recently, Younes et al. 18 
(2020) compared the temporal determinants between docked and dockless bike-sharing systems. 19 
It was found that dockless bike-sharing users were less sensitive to weather changes than docked 20 
bike-sharing user. Therefore, dockless bike-sharing is more competitive with car and public 21 
transportation modes, which are less affected by the weather factors. Several studies also 22 
investigated the factors influential the dockless bike-sharing user demand, including attitudes 23 
attributes, socio-demographic, weather conditions, surrounding built environment and bike 24 
infrastructure factors (Du and Cheng, 2018; Li et al., 2018; Ma,et al., 2020; Mooney et al., 2019; 25 
Shen et al., 2018;).    26 

2.4 Research gaps  27 

In sum, most of the aforementioned studies have separately examined different aspects of 28 
docked and dockless bike-sharing schemes. Although previous studies have compared the usage 29 
difference between docked and dockless bike-sharing, most of them have used survey data, and 30 
thus have a series of problems, such as inadequate sample size, restricted study generalizability, 31 
and failure to analyze the travel behavior from a dynamic variation of the spatio-temporal pattern 32 
perspective (Chen et al., 2018; Li et al., 2019c; Li & Tang, 2019). In addition, by using the 33 
historical trip data of both systems, a few studies have applied for instance choice models, Ordinary 34 
Least Squares (OLS) models and count time series models to unravel the complex relationship 35 
between docked and dockless bike-sharing user demand with temporal variables, built 36 
environment, weather conditions and urban density (Ji et al., 2020; Lazarus et al., 2020; Younes 37 
et al., 2020). However, none of the methods consider spatial and temporal heterogeneity 38 
simultaneously. As a result, we do not know how the effects of influential factors vary over 39 
different time periods of the day and spatial locations. This study pioneers to address these issues 40 
by exploring the smart card data from a docked bike-sharing scheme and the trip OD data from a 41 
dockless bike-sharing scheme over the same spatio-temporal dimension, and next applying a 42 
GTWR model to explore the spatiotemporal influence of the bike-sharing fleets, socio-43 
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demographic factors and land use factors on the usage demand of docked and dockless bike-1 
sharing using multi-sourced data.   2 

3. Description of study area and data  3 

This section introduces the study area and multiple data sources with their descriptive 4 
statistics. 5 

3.1 Study area 6 

As the capital of Jiangsu province and a core city of Yangtze River Delta economic zone, 7 
Nanjing, following Shanghai, has long been famed as the second largest commercial center in the 8 
East China region. Covering an area of 6,587 km2, it has population of 8.33 million with 6.85 9 
million being urban residents. Thanks to its good infrastructure, people here are able to travel by 10 
private car, bus, subway, taxi, private bike, docked sharing-bike, dockless sharing-bike and 11 
walking. By end-2017, ten metro lines were operating on 377 km and 705 bus lines operating on 12 
more than 10,000 lane km (Baidu Encyclopedia, 2018; Wikipedia, 2018). For better travel 13 
experience and convenience of citizens, Nanjing launched the docked and dockless bike-sharing 14 
programs in January, 2013 and January, 2017, respectively. There is only one docked bike-sharing 15 
service in Nanjing. Nanjing docked bike-sharing system is classified as a third-generation bike-16 
sharing system, which enables smartcards for automated check-in and check-out (Shaheen et al., 17 
2011). Supported by the government as a non-profit project for citizens, Nanjing docked bike-18 
sharing system has launched 60,000 docked shared bikes by the end of 2017. This docked bike-19 
sharing system can be used for free of charge within the first two hours after delivering a deposit 20 
of $35 (250 CNY). At the same time, a total of 10 dockless bike-sharing systems operated by 21 
companies have been used in Nanjing, launching 450,000 dockless shared bikes (Nanjing Planning 22 
Bureau, 2018). The dockless shared bikes can be used at a cost of $0.14 or 0.28 (1 or 2 CNY) per 23 
hour with a deposit varying from $13.86 (99 CNY) to $41.86 (299 CNY) for different companies 24 
(Tian et al., 2018). Mobike is one of the largest systems, launching approximately 160,000 25 
dockless shared bikes in Nanjing (Nanjing Planning Bureau, 2018). The study area of this paper 26 
focuses on five urban districts (Xuanwu, Qinhuai, Gulou, Jianye and Yuhua), where there is a good 27 
development of both docked and dockless bike-sharing. Statistics from the historical trip data 28 
provided by Nanjing docked bike-sharing system and Mobike showed that there were 35,683 29 
docked shared bikes and 146,505 dockless shared bikes (Mobike) in the study area. The geospatial 30 
unit of analysis is a traffic analysis zone (TAZ) defined by Nanjing Urban Planning Bureau, and 31 
the total number of TAZs is 176. Figure 1 shows the TAZ distribution map of study area. 32 

 33 
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 1 
Fig. 1. Map of study area. 2 

3.2 Data  3 

Numerous types of data sources, such as docked bike-sharing data (smart card data), dockless 4 
bike-sharing data (trip OD data), travel survey data, land use data, GDP data and housing prices 5 
data employed in this study are introduced here. Subsequently, the descriptive statistics of the 6 
dependent and explanatory variables are described.  7 

Smart card data of docked bike-sharing from September 18th to 24th, 2017 obtained from 8 
Nanjing Public Bicycle Company includes two profiles: Trips and Stations. Trips profile 9 
anonymously includes: member ID, trip starting date and time, trip ending date and time, trip 10 
starting station ID, trip ending station ID. Stations file includes station ID, station name, and the 11 
longitude/latitude of the docking station. However, some data needs pre-processing before further 12 
analysis. Trips with the following properties have been removed: trips started or ended outside the 13 
study area; trip length shorter than 100 m or longer than 5 km, as suggested by Shen et al. (2018); 14 
trip duration less than 30 s or longer than 2 hours, as suggested by Pal et al. (2018); trips without 15 
complete journey details. Then a valid sample of 890,369 docked bike-sharing records is obtained. 16 

Trip OD data of dockless bike-sharing from September 18th to 24th, 2017 (the same period 17 
as the one from the docked system) is provided by Mobike company. Each Mobike trip contains a 18 
member ID, user ID, starting timestamps, starting latitude, starting longitude, ending timestamps, 19 
ending latitude, ending longitude. Trip OD data of dockless bike-sharing is pre-processed in the 20 
same way as smart card data of docked bike-sharing. In this way, a valid sample of 2,058,819 21 
dockless bike-sharing records is obtained. Table 1 and Table 2 show the typical sequence of docked 22 
and dockless transaction records. 23 

 24 
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Table 1 A sequence of docked bike-sharing transaction records 1 
User ID Starting 

Timestamps 
Starting  
Longitude 

Starting 
Altitude 

Ending 
Timestamps 

Ending 
Longitude 

Ending 
Altitude 

NJ1120000*** 2017/9/19 19:25:56 119.791 32.097 2017/9/19 19:39:04 119.909 32.102 
NJHX00099*** 2017/9/19 19:25:56 119.732 32.016 2017/9/19 19:34:51 119.725 32.022 
NJHX00095*** 2017/9/19 19:25:56 119.741 32.049 2017/9/19 19:33:49 119.749 32.040 
NJHX00134*** 2017/9/19 19:25:56 119.734 32.033 2017/9/19 19:41:57 119.737 32.036 
NJ1110000*** 2017/9/19 19:25:55 119.925 32.101 2017/9/19 19:31:49 119.913 32.103 

Note: User ID are not fully presented in this table to ensure privacy of bike-sharing users. 2 
 3 
Table 2 A sequence of dockless bike-sharing transaction records 4 

User ID Starting 
Timestamps 

Starting  
Longitude 

Starting 
Altitude 

Ending 
Timestamps 

Ending 
Longitude 

Ending 
Altitude 

990a6979e*** 2017-09-19 19:25:55 119.734 32.151 2017/9/19 19:32:20 119.726 32.149 
39e3fcf29*** 2017-09-19 19:25:39 119.754 32.074 2017/9/19 19:31:19 119.754 32.073 
113a647be*** 2017-09-19 19:25:31 119.969 32.010 2017/9/19 19:49:07 119.966 32.011 
5602e1cfa*** 2017-09-19 19:25:50 119.799 31.911 2017/9/19 19:33:23 119.790 31.916 
0227997b*** 2017-09-19 19:25:19 119.757 31.962 2017/9/19 19:32:56 119.752 31.967 

Note: User ID are not fully presented in this table to ensure privacy of bike-sharing users.  5 

Land use data of 2015 are provided by Jiangsu Institute of Urban Planning and Design and 6 
the Jiangsu Institute of Urban Transport Planning, including: 7 

• the distance from each TAZ to the central business district (CBD); 8 
• the density of bus stops, the density of docked bike-sharing stations in TAZ;  9 
• the density of metro stations in TAZ; 10 
• the density of minor local streets in TAZ; 11 
• the density of Cultural, Residential, Governmental, Entertainment and 12 

Commercial/Industrial POIs in TAZ. Detailed POIs facilities within each category are 13 
listed in Table A1 in the Appendix. 14 

Socio-demographic data used for this research is obtained from the 2015 Nanjing Household 15 
Travel Survey conducted by Jiangsu Institute of Urban Transport Planning. The Household Travel 16 
Survey consists of household characteristics and social-demographics of each household member. 17 
Household characteristics include household location (longitude and latitude), household income 18 
level and the ownership of private bike, e-bike and car. The social-demographics of each member 19 
contain gender, age, education level. Populations are segregated in each TAZ by gender, age cohort, 20 
education level, household income level and the ownership of private bike, e-bike and car. 21 

Additionally, the density of local population and GDP data are obtained from Nanjing Urban 22 
Planning Bureau and the average housing prices data are obtained from Lianjia Housing Prices 23 
Report (Lianjia, 2018) in each TAZ. The final number of TAZs for modeling analysis is 127 (after 24 
removing TAZs where the docked bike-sharing data or household travel survey data cannot cover). 25 

Hourly docked and dockless bike-sharing usage volume for each TAZ (as the dependent 26 
variable) is computed based on the same period from Monday to Friday for weekdays, and two 27 
weekend days (Ma et al., 2018). In this study, we chose the number of rentals of two bike-sharing 28 
systems as the indicator for the approximate user demand as suggested by Pal et al. (2018). 29 
Explanatory variables used in the multivariate analysis fall into three main categories: docked 30 
(dockless) bike-sharing trips, urban land use variables and socio-demographic variables (Buehler 31 
et al., 2019; Chen et al., 2018; Li et al., 2019a; Shen et al., 2018; Wang et al., 2019; Wang et al., 32 
2015). Both the dependent and explanatory variables for each TAZ were measured using the 33 
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ArcGIS platform as Ji et al. (2018) used. We provide a descriptive summary of the variables in 1 
Table 3. It can be seen that hourly docked bike-sharing trips on weekends are around half of that 2 
on weekdays, and similar observation applies to the hourly dockless bike-sharing trips. 3 

Table 3 Definition of dependent and explanatory variables. 4 

Type Variables Description Mean St.Dev. 

Docked bike-
sharing trips  

Hourly docked bike trips on 
weekdays in TAZ 

Average hourly docked bike-sharing 
trips for each TAZ on weekdays 52.680 92.504 

Hourly docked bike trips on 
weekends in TAZ 

Average hourly docked bike-sharing 
trips for each TAZ on weekends 38.407 60.372 

Dockless bike-
sharing trips 

Hourly dockless bike-sharing 
trips on weekdays  

Average hourly dockless bike-sharing 
trips for each TAZ on weekdays 101.258 121.665 

Hourly dockless bike-sharing 
trips on weekends   

Average hourly dockless bike-sharing 
trips for each TAZ on weekends 57.530 63.300 

Land use 
variables 

Density of metro stations  Number of metro stations per km⁠2 in 
each TAZ  0.408 0.780 

Density of docked bike-sharing 
stations  

Number of docked bike-sharing 
stations per km⁠2 in each TAZ 5.504 3.502 

Density of bus stations   Number of bus stations per km⁠2 in 
each TAZ 7.837 4.658 

Density of road  Length of road per km⁠2 in each TAZ 13.244 4.853 

Distance to CBD  Distance between each TAZ center to 
CBD 4.820 2.785 

Density of Cultural POIs  Number of Cultural POIs per km⁠2 in 
each TAZ 70.481 79.009 

Density of Residential POIs   Number of Residential POIs per km⁠2 
in each TAZ 31.485 41.399 

Density of Governmental POIs   Number of Governmental POIs per 
km⁠2 in each TAZ 43.801 41.373 

Density of Entertainment POIs   Number of Entertainment POIs per 
km⁠2 in each TAZ 112.808 121.152 

Density of 
Commercial/Industrial POIs  

Number of Commercial/Industrial 
POIs per km⁠2 in each TAZ 246.541 287.834 

Socio-
demographic 
variables 

GDP  GPD in each TAZ (100 million CNY 
=US$ 14 million) 1.117 0.319 

Housing Prices  Average housing price in each TAZ 
(1,000 CNY =US$ 140) 31.052 8.403 

Proportion of Car ownership Proportion of Car ownership in each 
TAZ 0.242 0.102 

Proportion of Private bike 
ownership  

Proportion of Private bike ownership 
in each TAZ 

0.350 0.121 

Proportion of E-bike ownership Proportion of E-bike ownership in 
each TAZ 0.373 0.092 

Density of Non-locals  Density of Non-locals in each TAZ 
(Thousands/km2) 3.431 2.431 

Density of Locals  Density of Locals in each TAZ 
(Thousands/km2) 8.325 5.994 

Proportion of Male Proportion of Male in each TAZ 0.478 0.069 
Proportion of Female Proportion of Female in each TAZ 0.507 0.073 
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Proportion in population 
under18 years old   

Proportion in population under18 
years old in each TAZ 0.043 0.034 

Proportion in population 
between 18 and 35 years old   

Proportion in population between 18 
and 35 years old in each TAZ 0.285 0.096 

Proportion in population 
between 35 and 45 years old  

Proportion in population between 35 
and 45 years old in each TAZ 0.220 0.075 

Proportion in population 
between 45 and retirement age  

Proportion in population between 45 
and retirement age in each TAZ 0.190 0.098 

Proportion of the elderly  Proportion of the elderly in each 
TAZ 0.245 0.095 

Proportion of senior high school 
or bellow  

Proportion in population graduated 
from senior high school or bellow in 
each TAZ 

0.285 0.111 

Proportion of junior college or 
college  

Proportion in population graduated 
from junior college or college in 
each TAZ 

0.673 0.127 

Proportion of graduate and 
above  

Proportion in population with 
graduate degree and above in each 
TAZ 

0.027 0.033 

Proportion of low-income level 
(Household annual income 
0~80,000 CNY) 

Proportion in population with low-
income level in each TAZ 0.524 0.173 

Proportion of middle-income 
level (Household annual 
income 80,000~160,000 CNY) 

Proportion in population with 
middle-income level in each TAZ 0.450 0.163 

Proportion of high-income level 
(Household annual income: 
more than 160,000 CNY) 

Proportion in population with high-
income level in each TAZ 

0.010 0.020 

4. Research methodology 1 

One of the primary objectives of this study is to explore the factors that influence bike-sharing 2 
user demand from a spatiotemporal perspective. Multicollinearity and spatial autocorrelation are 3 
briefly introduced to reveal the relations amongst various explanatory variables, and then three 4 
methods (OLS, GWR and GTWR) developed for comparisons are briefly illustrated as follows. 5 

4.1 Multicollinearity  6 

Multicollinearity means that several particular explanatory variables have a strong linear 7 
correlation with each other, which might cause bias when interpreting the significance and 8 
influence of other explanatory variables. To eliminate this phenomenon, we adopted the variance 9 
inflation factor (VIF), which is an indicator that represents the severity of multicollinearity. 10 
Variables with VIF values greater than ten are assumed to be multicollinearity variables and should 11 
be removed from the models (Kutner et al., 2004). 12 

4.2 Spatial autocorrelation 13 

The most commonly used spatial variability test is called Moran’s I test, which shows the 14 
spatial autocorrelation of each explanatory variable and can be expressed as follows (Moran, 15 
1950): 16 
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where n is the number of spatial units; 𝑤)* is the weight between location i and j; 𝑦) , 𝑦* represents 2 
the selected attribute value at locations i and j, respectively; and 𝑦& is the average value of all 3 
observations. 4 

The range of Moran’s I statistic is between -1 and +1. Higher positive values mean that close 5 
observations tend to have similar attribute values while distant observations have different attribute 6 
values, which indicates spatial aggregation. However, a negative value indicates spatial dispersion, 7 
and a value near zero indicates a spatially random distribution. The null hypothesis of Moran’s I 8 
test is that the explanatory variables are spatially independent, which means that Moran’s I statistic 9 
is close enough to zero. A Z-score is usually used as the indicator of significance of the Moran’s I 10 
statistic to verify the null hypothesis, and it can be calculated as follows (Moran, 1950):  11 

𝑍(𝐼) = +&,(+)
-./0(+)

    (2) 12 

where E (I) and Var (I) are the expectation and the standard deviation of the Moran’s I statistic, 13 
respectively. The significance level in this study is set as P < 0.05. 14 

4.3 Regression models  15 

Several regression models revealing the relationships between user demand of docked and 16 
dockless bike-sharing and other influential variables have been developed, including ordinary least 17 
squares (OLS) models (El-Assi et al., 2017; Lin et al., 2019a; Zhao et al., 2014) and geographically 18 
weighted regression (GWR) models (Ma et al., 2018; Xu et al., 2017; Bao et al., 2017a). Notably, 19 
the user demand pattern of both docked and dockless bike-sharing systems shows highly and 20 
spatiotemporally dynamics, and the shared bikes of the two schemes scatter across their service 21 
territory and their positions may change during the day and from day to day. Thus, both location 22 
and time can be considered as important determinants of the user demand of docked and dockless 23 
bike-sharing. Compared to the traditional OLS and GWR models, a geographically and temporally 24 
weighted regression (GTWR) model proposed by Huang (Huang et al., 2010) can combine 25 
temporal and spatial characteristic when modeling the relationship between explanatory  variables, 26 
thereby it will be chosen to explore the relationship between bike-sharing user demand and its 27 
influential factors considering spatial and temporal heterogeneity simultaneously. In this study, 28 
three models namely OLS, GWR and GTWR model are deployed to conduct the empirical analysis 29 
for both weekdays and weekends. Also, the explanatory powers of the three statistical models are 30 
compared.  31 

OLS regression is conducted in which the dependent variable is modelled as a linear function 32 
of multiple predictors using least square approach (Brunsdon et al., 1996). However, the 33 
applicability of the OLS approach has been criticized for neglecting the spatial variations of the 34 
bike-sharing usage (Shen et al., 2018). GWR is specifically designed to deal with spatial data 35 
regression, allowing for coefficients to vary across spaces. It can be viewed as an extension of 36 
OLS models by associating explanatory variables with geographical locations, which takes the 37 
following form (Brunsdon et al., 1996):  38 

𝑌) = 𝛽1(𝑢) , 𝑣)) + ∑ 𝛽2(𝑢) , 𝑣))2 𝑋)2 + 𝜀)  (3) 39 
where (  =1, 2, …, n) denotes a TAZ, which is a most common regionalism in transportation 40 
studies; (𝑢) , 𝑣)) are the coordinates of TAZ ; 𝑌) is the bike-sharing usage volume in TAZ ; 𝑋2 is 41 
the kth explanatory variable; 𝜀)	is the error term for TAZ ; 𝛽1(𝑢) , 𝑣)) represents the intercept; and 42 
𝛽2(𝑢) , 𝑣)) is the regression coefficient between bike-sharing usage volume and the explanatory 43 
variable. The distinct characteristic of GWR model is that coefficient 𝛽2(𝑢) , 𝑣)) varies across the 44 
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model to measure the spatial variations of observations compared with the OLS model in which 1 
parameter estimation is fixed for each observation. 2 

As a temporal extension of GWR, GTWR embeds temporal data into regression parameters 3 
to measure spatial and temporal variation simultaneously (Brunsdon et al., 1996). This condition 4 
is particularly valid when modeling bike-sharing usage volume in a TAZ where the obvious tidal 5 
property of passenger flows exists, especially during morning and evening peaks. The general 6 
structure of the GTWR model developed in this study to depict the spatiotemporal quantitative 7 
relationship of bike-sharing usage volume is described as follows (Brunsdon et al., 1996):  8 

𝑦) = 𝛽1(𝑢) , 𝑣) , 𝑡)) + ∑ 𝛽2(𝑢) , 𝑣) , 𝑡))2 𝑋)2 + 𝜀)  (4) 9 
where  ( =1, 2, …, n) denotes a TAZ; the dependent variable 𝑌) refers to the hourly bike-sharing 10 
usage volume for TAZ ; 𝑋) represent the explanatory variables, including hourly docked bike-11 
sharing usage volume, socio-demographic and urban land uses variables. 𝑢) , 𝑣)  and 𝑡)  are the 12 
longitude, latitude and time respectively of TAZ ; (	𝑢),	𝑣), 𝑡)) are the coordinates of TAZ  in the 13 
spatiotemporal dimensions (ST); 𝑋)2 is the k45 variable for TAZ ; 𝛽1 (ui, 𝑣),	𝑡)) is the intercept 14 
value; and 𝛽2 ( 	𝑢) , 	𝑣) , 	𝑡) ) denotes a set of parameter values at TAZ . Similar to GWR, the 15 
regression coefficients of GTWR are estimated based on local weighted least squares. The 16 
estimated parameters can be expressed as follows (Brunsdon et al., 1996): 17 

	𝛽5 (𝑢) , 𝑣) , 𝑡)) = [𝑋6𝑊(𝑢) , 𝑣) , 𝑡))𝑋]&7𝑋6𝑊(𝑢) , 𝑣) , 𝑡))𝑌  (5) 18 
where the spatiotemporal weight matrix 𝑊(𝑢) , 𝑣) , 𝑡))  is an n×n diagonal matrix and 19 
𝑊(𝑢) , 𝑣) , 𝑡))=diag (Wi1, Wi2…Wij…Win). Wij(1≤j ≤n) is the spatiotemporal distance decay function, 20 
which is described as follows (O'Sullivan, 2003) : 21 

𝑊)* = exp	[−
(8!"

'()&

5&
]    (6) 22 

Here, d)*96 is the spatiotemporal distance between TAZs i and j , which is calculated as follows 23 
(Brunsdon et al., 1996): 24 
 25 

 d)*96 = >𝜆 @A𝑢) − 𝑢*B
: − A𝑣) − 𝑣*B

:C + 𝜇(𝑡) − 𝑡*):  (7) 26 

 27 
where 𝜆 and 𝜇 are the weights for balancing different effects because space distance and time are 28 
measured using different units. 29 
h in Eq. (6) is a nonnegative parameter called spatiotemporal bandwidth, and the optimal 30 
bandwidth is chosen based on the minimum cross-validation (CV) value (Hurvich et al., 1998). 31 
The CV value is the sum of the squared error between the actual value 𝑦) and predicted value 𝑦;E(ℎ): 32 

𝐶𝑉(ℎ) = ∑ (𝑦) − 𝑦;E) (ℎ)):   (8) 33 
The Corrected Akaike Information Criterion (AICc) is a commonly used metric in the 34 

bandwidth selection and the decision of final model (Hurvich et al., 1998; O'Sullivan, 2003). 35 
Models with the lowest AICc are selected.  A GTWR plugin of ArcGIS was employed to construct 36 
OLS, GWR and GTWR models in this study. The GTWR plugin is accessible online (Huang & 37 
Wang, 2020). 38 

5. Results  39 

This section explores and compares differences in travel patterns and the determinants of user 40 
demand between docked and dockless bike-sharing systems. Specifically, section 5.1 reveals the 41 
difference in travel characteristics, including travel distance and time (section 5.1.1), usage 42 
frequency (section 5.1.2), temporal pattern (Section 5.1.3) and spatial pattern (section 5.1.4). Next, 43 
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section 5.2 firstly compares the model fit of OLS, GWR and GTWR models (section 5.2.1), and 1 
then GTWR model results are analyzed by visualizing the coefficients of explanatory variables 2 
from the temporal perspective (5.2.2) and spatial perspective (5.2.3), respectively. 3 

   4 

5.1 Comparative analysis on usage patterns  5 

In this first section, we explain the difference in travel patterns (travel distance, travel time, 6 
usage frequency and spatio-temporal distribution) between docked and dockless bike-sharing 7 
systems by mining the smart card data of docked bike-sharing and the trip OD data of dockless 8 
bike-sharing. 9 

5.1.1 Travel distance and travel time 10 

By analyzing the historical trip data of docked and dockless bike-sharing systems, we found 11 
that the average travel distances (Manhattan Distance (Li et al., 2020)) and travel times are 1286.8 12 
m and 10.4 min respectively for dockless bike-sharing whereas for docked bike-sharing, the related 13 
quantities are larger, namely 1808.4 m and 15.9 min respectively during the week.  14 

Figure 2 visualizes the distribution of travel distance of docked and dockless bike-sharing. It 15 
shows that 56.68 % of docked bike-sharing users and 37.70 % of dockless bike-sharing users 16 
completed their trips within 1 km.  For trips within 2 km and 3 km, the ratios for the two kinds of 17 
users reach 73.30% and 85.56%, 88.46% and 94.49% respectively. This indicates a longer average 18 
travel distance by docked bike-sharing users. The interval that records the highest proportion of 19 
riding is 750-1000 m for docked bike-sharing and the value for dockless bike-sharing is 500-750 20 
m. The proportion gap between two modes reaches the peak in the interval of 250 - 500 m. Within 21 
the travel distance of 1000 m, the proportion of dockless bike-sharing is higher than that of docked 22 
bike-sharing, yet when the distance exceeds 1000 m, the situation is exactly the opposite. This can 23 
be explained by the fact that dockless bike-sharing, as convenient as it is, is more popular when 24 
trips are within 1000 m, as people can simply look for the nearest bike, rather than the nearest 25 
docking station. As for distance over 1000 m, docked bike-sharing is more attractive because in 26 
Nanjing, riding within two hours is free of charge.  27 

 28 
Fig. 2. Distribution of the travel distances of docked and dockless bike-sharing. 29 

 30 
As shown in Figure 3, 67.78% of the docked bike-sharing trips and 83.43% of dockless bike-31 

sharing trips last less than 15 minutes, and trips within 30 minuses take up 90.31% for docked 32 
bike-sharing and 96.82% for dockless bike-sharing of all trips respectively. This higher proportion 33 
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of dockless bike-sharing riding within 30 minutes compared to docked bike-sharing riding is 1 
credited to the price policy: cost of $0.14 (1 CNY) for dockless bike-sharing trips within half an 2 
hour, whereas the first two hours of riding of docked bike-sharing is free of charge, which is 3 
consistent with the result of Bao et al. (2017a). This can also be explained by that, compared with 4 
docked bike-sharing users, dockless bike-sharing users are generally younger and riding faster 5 
(Chen et al. 2018). 6 

 7 
Fig. 3. Distribution of the travel times of docked and dockless bike-sharing. 8 

5.1.2 Usage frequency 9 

Usage frequency (UF) is adopted to measure the effectiveness degree of docked and dockless 10 
bike-sharing systems and is calculated as follows:  11 

		𝑈𝐹) =
6<4/=	!>?@A0	<B	@)2AC5/0)!D	40)EC!	FG	HGI	JIIK	

6<4/=	!>?@A0C	<B	C5/0A8	@)2AC	
                             (9) 12 

Here 𝑈𝐹) is the usage frequency of shared bikes (trips generated per bike per week) of bike-sharing 13 
type i (either docked or dockless system). Regarding the usage frequency, dockless shared bikes 14 
are used at an average number of 44 times in one week whereas for docked shared bikes the value 15 
is only 17. The possible reason could be that dockless shared bikes are more convenient for not 16 
being restricted by docking stations (Younes et al., 2020). As shown in Figure 4, the usage 17 
frequency distribution of docked and dockless shared bikes in a week records significant difference. 18 
In terms of docked shared bikes, more than 30% are used less than 5 times in a week, and 96.54% 19 
used less than 50 times, indicating a very low utilization rate for docked bike-sharing systems. For 20 
dockless bike-sharing, usage frequency reaches its peak at 30-35 times and concentrates at the 21 
range between 20 and 80 times during one week. Thus, the turnover rate of dockless bike-sharing 22 
is higher than the docked one.  This may be owing to the convenience and effectiveness of using 23 
mobile phones to unlock dockless bikes and their flexibility of borrowing and returning, although 24 
their usage is charged. This finding is consistent with the result of Li and Tang (2019), who 25 
concluded that more than 53.7% of the docked bike-sharing users thought that the available bikes 26 
and parking docks were not sufficient. On the contrary, 63.7% of the users thought that it was more 27 
convenient to borrow or return a dockless shared bike. In addition, Li and Tang (2019) found that 28 
most docked and dockless bike-sharing users cycle to commute. They have had strict time 29 
requirements and prefer dockless bike-sharing to avoid the drawback of the docked bike-sharing 30 
system if they were forced to return the bike at a perceptibly significant distance from their 31 
destinations. 32 
 33 
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 1 
Fig. 4. Distribution of usage frequency of docked and dockless shared bikes. 2 

5.1.3 Temporal usage pattern   3 

Figure 5 compares the temporal patterns of docked and dockless bike-sharing. Darker color 4 
in the figure indicates a higher usage volume of shared bikes. In Figure 5 (a) and (b), the maximum 5 
hourly usage of docked bike-sharing is 22,505 (trips), which is much lower than 62,293 (trips) of 6 
dockless bike-sharing. One possible reason may be that, the total number of dockless shared bikes 7 
(146,505 as indicated in Section 3.1) is significantly larger than that of docked shared bikes (35,683 8 
as indicated in Section 3.1) in the study area. In addition, dockless shared bikes are more efficient 9 
and flexible than docked bicycles. The daily distribution of bike-sharing trips during weekdays 10 
shows that both types of bike-sharing systems have a morning and afternoon peak usage periods, 11 
from Monday to Friday, which are 7:00-9:00 and 17:00-19:00, indicating that trips on weekdays 12 
are mainly commuting journeys, which is consistent with the previous research (Cai et al., 2019; 13 
Martin and Shaheen, 2014). In addition, during weekdays, a small peak of dockless bike-sharing 14 
is observed between 11:00 and 13:00, which may because some corporation employees ride for 15 
lunch near their workplaces. In contrast, docked bike-sharing cycling has no such a characteristic, 16 
which may because docked bike-sharing stations are generally a bit far away from working sites. 17 
Still, during off-peak hours, the number of docked bike-sharing users is lower than that of dockless 18 
bike-sharing users, which indicates that dockless bike-sharing not only facilitates daily commuting 19 
but also plays an important role in relation to other activities (e.g., leisure and social activities), 20 
perhaps due to their flexibility and availability in space and time (Chen et al., 2018; Wang et al., 21 
2019). On weekends, there are no significant peak hours for both systems and the volume is 22 
significantly lower than that on weekdays. Compared to the docked one, dockless bike-sharing 23 
users did not show sharp decline on weekends, reaffirming the same finding in the previous 24 
literature (Kiana et al., 2019). 25 
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 1 
(a) Docked bike-sharing 2 

 3 
(b) Dockless bike-sharing 4 

Fig. 5. Docked (a) and Dockless (b) bike-sharing usage with aggregation levels of 1 hour for 5 
dimension time and one calendar day for dimension date. 6 

5.1.4 Spatial usage pattern 7 

It can be seen from Section 5.1.3 that both bike-sharing systems have the highest demand 8 
during the morning and evening rush hours on weekdays. To make the difference obvious, the 9 
morning and afternoon peak hours on weekdays were chosen as the two representative time periods, 10 
as used in Kiana et al. (2019). Figure 6 visualizes the spatial distribution of average hourly bike-11 
sharing usage in the peak hours on weekdays based on traffic analysis zone (TAZ), as Xu et al. 12 
(2018)  used.  13 

In general, the average hourly cumulative usage of dockless bike-sharing is much higher than 14 
the docked one. The main reasons can be found in the previous analysis in Section 5.1.2 and 15 
Section 5.1.3. More shared bikes are used during morning peak hours than afternoon peak hours 16 
for both dockless and docked bike-sharing. This is reasonable because during morning rush hours, 17 
travelers are more likely to choose shared bikes to avoid traffic jams and save travel time. Whereas 18 
people usually travel for multiple purposes with enough travel time during afternoon peak hours. 19 

Figure 6 shows that both docked and dockless bike-sharing usage remains at a high level in 20 
the northern and southern suburban. The main reason is that there is a large demand of commuters 21 
who live in the suburban area and use both docked and dockless bike-sharing for 22 
accessing/egressing trips. In the northeast, where many national-level scenic spots are located, the 23 
supply of both kinds of bike-sharing is low due to the challenging topography for cycling. There 24 
is little use for docked bike-sharing in this area. As for the dockless bike-sharing, some trips 25 
generated in the area. It can be explained that commuters who work in this area will use the 26 
dockless bike-sharing due to the advantages of free registration and flexibility (Li and Tang, 2019). 27 
In the center, dockless bike-sharing is more popular than docked bike-sharing because of the larger 28 
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supply of dockless shared bikes and their flexibility, convenience, and door-to-door services (Li 1 
et al., 2018). Docked bike-sharing usage concentrates in the center-west, which is consistent with 2 
the development features of this area. This area is a newly built area with well-designed bike 3 
infrastructure and public transport system, particularly the docked bike-sharing system. 4 

  5 
(a) Docked bike-sharing usage during morning peak hour     (b) Docked bike-sharing usage during afternoon peak hour 6 

  7 
(c) Dockless bike-sharing usage during morning peak hours     (d) Dockless bike-sharing usage during afternoon peak hours  8 

Fig. 6. Spatial distribution of the average docked and dockless bike-sharing usage 9 
 (Note: As the usage volume of dockless bike-sharing is much more than docked bike-sharing, 10 

the Legend is not unified.) 11 

5.2 GTWR model results     12 
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This section firstly proves that the GTWR model outperforms the other two counterpart 1 
models (OLS and GWR) when explaining the spatiotemporal data, and then the GTWR model 2 
results are illustrated by analyzing the influence of the bike-sharing fleets, socio-demographic 3 
factors and land use factors on user demand of docked and dockless bike-sharing over space and 4 
time.   5 

5.2.1 Model comparison 6 

To avoid multicollinearity between explanatory variables, VIF indicators of explanatory 7 
variables are calculated and variables with VIF greater than 10 are eliminated. The results of VIF 8 
values of significant explanatory variables are given in Table A2 (for the docked system) and Table 9 
A3 (for the dockless system) in the Appendix. Additionally, Moran’s I statistics were conducted 10 
for determining if the significant explanatory variables in Table A2 and Table A3 are spatially 11 
associated (Bao et al., 2017b; Cardozo et al., 2012; Calvo et al., 2019; Pan et al. 2020). The results 12 
of the Moran’s I tests are given in A3 in the Appendix.  Variables with a p-value below 0.05 are 13 
included in the regression models, indicating that all the chosen variables are spatially 14 
autocorrelated.  15 

After the test of the multicollinearity and spatial autocorrelation, a comparison with two 16 
traditional models (OLS and GWR) was conducted to observe the performance of the GTWR 17 
model on the same dataset. As shown in Table 4, GTWR outperforms OLS and GWR in terms of 18 
model fit, indicating that GTWR better explained the spatiotemporal data. Taking the docked bike-19 
sharing model for weekday as an example, R⁠2 values increase from 0.799 in the OLS model and 20 
0.885 in the GWR model, to 0.911 in the GTWR model. The AICc values reduce from 8107.49 in 21 
the OLS and 6571.23 in the GWR model, to 6114.31 in the GTWR model. The explanatory power 22 
increases significantly given that spatial information and temporal information are considered in 23 
the model. In the rest of the paper, we will only analyze the results from the GTWR model.   24 

Table 4 Comparison results of OLS, GWR, and GTWR models. 25 

 Docked bike-sharing Dockless bike-sharing 

 Weekday Weekend Weekday Weekend 
AICc R2 AICc R2 AICc R2 AICc R2 

OLS 8107.49 0.799 7417.88 0.783 7745.08 0.761 7636.79 0.751 
GWR 6571.23 0.885 5764.15 0.880 6123.75 0.866 6337.09 0.846 
GTWR 6114.31 0.911 5375.38 0.905 5304.54 0.908 5527.12 0.895 

 26 
The estimation of the GTWR models for docked and dockless bike-sharing are given in Table 27 

A5 and A6 in the Appendix. The model results share some similarities with other findings from 28 
previous work, for instance, the positive effect of male proportion on docked bike-sharing (Ji et 29 
al., 2016), the negative effect of bus station density on docked bike-sharing usage (Zhao et al., 30 
2017), the positive effect of road density on dockless bike-sharing (Chen et al., 2018), the positive 31 
effect of distance to the CBD on dockless bike-sharing (Shen et al., 2018) and the negative effect 32 
of individual motorized modal share on both docked and dockless bike-sharing usage (Audikana et 33 
al., 2017). In addition, the study also reveals some new insights, for instance, the negative effect of 34 
non-local proportion on dockless bike-sharing usage and the positive effect of housing prices on 35 
docked bike-sharing.  36 

In next section, we have decided to analyze the temporal and spatial variation of several key 37 
variables using their average values, including hourly docked bike-sharing trips, hourly dockless 38 
bike-sharing trips, the density of Entertainment POIs for both docked and dockless bike-sharing 39 
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(land use variables), proportion of the elderly for both docked and dockless bike-sharing (socio-1 
demographic variables). These selected variables cover the three categories of explanatory 2 
variables (see Table 4), and their associations with the user demand of two types of bike-sharing 3 
are not fully revealed in previous studies. For the brevity of the analysis, the other variables in the 4 
models will not be discussed in detail in this work.  5 

5.2.2 Temporal features of variable coefficients  6 

The aforementioned improvement of GTWR is extended by incorporating the temporal 7 
dimension into the traditional GWR model. From the GTWR model results, we can obtain the time 8 
series of the hourly coefficient over time. Figure 7 presents the fluctuation of average coefficients 9 
of explanatory variables over time of a day. The negative coefficients indicate the reverse 10 
correlation between the dependent and explanatory variables and vice versa. The solid line 11 
represents weekday, and the dashed line represents weekend.  12 

Bike-sharing fleet for each other: As Figure 7 (a) and (b) show, hourly docked bike-sharing 13 
trips and dockless bike-share trips effect each other throughout the week in Nanjing. This is in line 14 
with the finding of Gu et al. (2019). They concluded that in Hangzhou and Zhuzhou, China, the 15 
usage rate of docked bike-sharing kept increasing along with the high dockless bike-sharing 16 
penetration. However, Li et al. (2019c) found that the majority of docked bike-sharing trips were 17 
replaced by the dockless bike-sharing trips in London, because dockless shared bikes were cheaper 18 
than docked shared bikes for short trips for casual users. This situation is different from Nanjing, 19 
where the docked bike-sharing can be used for free of charge within the first two hours. The 20 
positive effects on the usage at weekdays are generally larger than those of weekends. A likely 21 
reason for this is that both docked and dockless bikes are mainly used for commuting on weekdays 22 
and the demand on weekdays is much higher than that on weekends (see the temporal usage pattern 23 
as revealed in Section 5.1.3).  24 

The positive effect of docked bike-sharing trips on dockless bike-sharing in the morning is 25 
larger than that in the afternoon (see Figure 7 (a)). The reason can be explained as follows. Low 26 
convenience has been identified as a major cause of low docked bike-sharing performance 27 
(Fishman, 2014; Fishman et al., 2012; Fishman et al., 2014). Docked bike-sharing users complain 28 
that docks are often unavailable when they want to return bikes, or there are no available bikes 29 
when users want to rent them (Ji et al., 2016). Thus, dockless bike-sharing could supplement 30 
docked bike-sharing, especially during morning peak hour. In this period, people have limited 31 
tolerance time, so dockless sharing bikes help them free from the trouble of getting docking bikes, 32 
especially when the docks are far from their destinations (Buehler et al., 2019; Li and Tang, 2019).  33 
Both types of bike-sharing systems can work together to reduce the pressure of commuting for 34 
short distances or through the integration with public transport (Chen et al., 2018). In the afternoon, 35 
dockless bike-sharing has larger positive effects on docked bike-sharing (see Figure 7 (b)). The 36 
reason can be explained as follows. The redistribution of shared bikes across the network using a 37 
fleet of vehicle(s) is known as bike-sharing rebalancing. Static rebalancing usually happened at 38 
night, in which the intervention by bike-sharing users is negligible. If user intervention is 39 
considered, it is regarded as dynamic rebalancing (Pal and Zhang, 2017). Both static and dynamic 40 
rebalancing strategies are proposed for meeting the morning usage demand. However, only 41 
dynamic rebalancing schemes are used for the docked bike-sharing usage demand in the afternoon, 42 
this leads to serious docked bike-sharing rebalancing problems in the afternoon. For this, dockless 43 
bike-sharing can be a supplement choice. Interestingly, dockless bike-sharing promoting docked 44 
bike-sharing usage decreases after 20:00 (see Figure 7 (b)).  45 
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Density of Entertainment POIs for both systems: The density of Entertainment POIs has a 1 
positive association with the usage of dockless bike-sharing (see Figure 7 (c)), but a negative 2 
association with docked bike-sharing usage (see Figure 7 (d)). This may be because docked sharing 3 
bikes have to be returned to stations, which reduces their flexibility and applicability compared 4 
with dockless bike-sharing (Gu et al., 2019; Li et al., 2019a). Entertainment POIs encourage 5 
dockless bike-sharing usage for working purpose most significantly at 8:00 on weekdays, also the 6 
effects of the density of Entertainment POIs on the dockless bike-sharing usage for entertainment 7 
activities increase after 14:00 both on weekdays and weekends (see Figure 7 (c)). This is consistent 8 
with the findings of studies (Chen et al., 2018; Wang et al., 2019; Wang et al., 2018). They found 9 
that dockless bike-sharing usage is more leisure-related during the afternoon, especially at 10 
weekends. For docked bike-sharing, the influential patterns of the density of Entertainment POIs 11 
are similar on weekdays and weekends (see Figure 7 (d)). The negative peak values appear during 12 
early morning, and in the evening, when people seldom use docked bike-sharing for entertainment 13 
activities (see Figure 7 (d)).  14 

The proportion of the elderly for both systems: The proportion of the elderly is negatively 15 
associated with the usage of dockless bike-sharing (see Figure 7 (e)) while positively associated 16 
with the usage of docked bike-sharing (see Figure 7 (f)). Its effects on the usage of both bike-17 
sharing systems are greater on weekdays than on weekends. This conclusion is consistent with the 18 
previous findings (Buehler et al., 2019; Chen et al., 2018; Li and Tang, 2019; Li et al., 2019a). 19 
Dockless bikeshare, which requires phone-registration and unlocking, is quite popular among 20 
young people who are inclined to embrace new innovations and are more familiar with smart phone 21 
and social media (Gu et al., 2019). However, the elderly are generally insensitive to and less 22 
interested in technological innovations and thus they are more willing to use docked bike-sharing 23 
by smart card (Li et al., 2019a). This result is probably caused by three reasons: 1) Dockless bike-24 
sharing requires users to download mobile phone App and need to pay a refundable deposit through 25 
the mobile online payment system (Alipay and Wechat payment service). After the registration is 26 
verified, users need to scan the QR code to unlock the bike and start riding. This is complex for 27 
most old people (Gu et al., 2019); 2) Riding a dockless shared bike costs $0.14 or 0.28 (1 or 2 28 
CNY) per hour, which is relatively expensive for retirees. However, riding docked sharing bike 29 
within the first two hours in Nanjing is free of charge (Ji et al., 2016). In addition, older people 30 
need longer cycling time than youngsters because of weaker physical conditions. Thus docked 31 
bike-sharing is more suitable for the elderly due to the two-hour free usage time; 3) Compared 32 
with the heavy weight of dockless bikes (25kg per Mobike) (Gu et al., 2019), and high damage 33 
rate (Li et al., 2019a), good quality of docked bikes and regular bike maintenance are seen as the 34 
main motivations for the elder users (Li and Tang, 2019). The coefficient peaks at 6:00 in the 35 
morning. The possible reason for this may be that the elderly would regularly use the docked bike-36 
sharing for exercises in parks or squares near their places of residence (see Figure 7 (f)). Woodcock 37 
et al. (2014) concluded that cycling is regarded as a healthy travel mode for the elderly. Leden 38 
(2010) also found in a survey study that 94% of the elderly ride bikes for exercising. The 39 
coefficient increases after 14:00. We suspect that the elderly may ride the docked bikes for visiting 40 
friends or shopping (see Figure 7 (f)).   41 

 42 
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 1 
Fig. 7. Temporal distribution of average coefficients of the explanatory variables. 2 

5.2.3 Spatial feature of variable coefficients 3 

One important feature of GWR-based models is that the estimated coefficients are mappable 4 
for visual analysis. The spatial distributions of the effects of explanatory variables on weekdays 5 
and weekends are visualized in Figures 8-11. This study sets zero as a threshold to distinguish the 6 
positive and negative effects.     7 

The effect of docked bike-sharing on dockless bike-sharing: as discussed in Section 5.2.2, 8 
hourly docked bike-sharing trips are positively associated with dockless bike-sharing usage 9 
throughout the week. The coefficient peaks in the northern and southern suburban (Figure 8). In 10 
these areas, dockless bike-sharing takes advantages of much spare public space for launching 11 
dockless shared bikes. Docked bike-sharing users in suburban area will shift to dockless bike-12 
sharing when the docked shared bikes are can be found. The positive effects are smaller in the 13 
center due to high density of road and metro/bus stations and heavy on-road traffic, and people 14 
have other travel mode alternatives. (Gu et al., 2019; Ji et al., 2018; Shaheen and Cohen, 2019). In 15 
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addition, the effects on weekdays are greater than on weekends, which is in line with the high 1 
usage for commuting feature of bike-sharing system (Buehler et al., 2019; Shaheen et al., 2012).  2 

 3 

  4 
(a) Hourly Docked bike-sharing trips for dockless (Weekday)     (b) Hourly Docked bike-sharing trips for dockless (Weekend) 5 

Fig. 8. Spatial distribution of the average coefficients of hourly docked bike-sharing trips in the 6 
GTWR model for dockless bike user demand. 7 

The effect of dockless bike-sharing on docked bike-sharing: as shown in Figure 9, dockless 8 
bike-sharing has positively associated with the usage of docked bike-sharing on both weekdays 9 
and on weekends. This positive effect is most evident in the northern and southern suburban. Both 10 
docked and dockless bike-sharing play important roles in integrating with public transport, 11 
especially for commuting purpose on weekdays in suburban areas (Li et al., 2019b; Ma et al., 12 
2018a; Yang et al., 2016). Because of the popularity of dockless bike-sharing, many people who 13 
ignored docked bike-sharing before gradually start to accept docked bike-sharing. Different from 14 
the influence of docked bike-sharing on dockless bike-sharing, dockless bike-sharing has a 15 
stronger impact on docked bike-sharing in the center, while a smaller impact in the northeast. The 16 
docking stations of docked bike-sharing systems in the center are dense, so users can borrow and 17 
return bikes more easily for short-distance travels and for transferring to public transport. This 18 
result is consistent with the result of Chen et al. (2018), who found that it is most difficult to find 19 
car parking places in crowded city center, so users are likely to turn to docked bike-sharing for 20 
easier usage. On the contrary, the docking stations in the northeast are not as densely arranged as 21 
in downtown and the terrain in this area is not attractive for cycling (Li et al., 2019a). Therefore, 22 
the positive effect of dockless bike-sharing on docked bike-sharing is not significant. In all, 23 
dockless bike-sharing brings greater benefits in the areas with higher density of docking station 24 
and good accessibility. 25 
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  1 
(a) Hourly Dockless bike-sharing trips (Weekday)             (b) Hourly Dockless bike-sharing trips (Weekend) 2 

Fig. 9. Spatial distribution of the average coefficients of hourly dockless bike-sharing trips in the 3 
GTWR model for docked bike user demand. 4 

Density of Entertainment POIs for both systems: the spatial effect of the density of 5 
Entertainment POIs on docked and dockless bike-sharing is similar in the northern and southern 6 
suburban in Figure 10. The negative effect may be explained by that there are fewer cycling 7 
facilities in the suburbs than in the city center and that suburban roads are mainly built for 8 
motorized vehicles while local metro lines do not access to most large-scale entertainment sites (Ji 9 
et al., 2018; Zhao and Li, 2017). Another reason could be that both docked and dockless bike-10 
sharing schemes in suburban areas are not as popular and convenient as those in urban areas (Li et 11 
al., 2017). As a result, people have to travel to entertainment sites by car or taxi instead of by 12 
shared bikes. In the center, Entertainment POIs encourage the usage of both docked and dockless 13 
bike-sharing. This is because the land is highly mixed-used in the center and most major shopping 14 
centers are established here. Travelers who prefer convenient and time-saving travel modes are 15 
more likely to choose dockless bike-sharing to reach entertainment destinations (Li et al., 2017). 16 
Specifically, the density of Entertainment POIs has a stronger positive effect on dockless bike-17 
sharing than on docked bike-sharing in the center. This is reasonable because dockless shared bikes 18 
have a larger number of available bikes and do not have to be docked at stations. The density of 19 
Entertainment POIs is negatively associated with the user demand of both systems in the northeast, 20 
except for dockless bike-sharing at weekends. This is because that the bus service is relatively 21 
limited in this scenic area. On weekends, people (especially non-local tourists) prefer riding 22 
dockless bike-sharing to walking or taking a bus or taxi, mainly because they can use dockless 23 
shared bikes with their phone and return the bikes wherever they like within the parking area, 24 
although the terrain is not conducive to biking. 25 
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  1 
(a) Density of Entertainment POIs for Docked (Weekday)         (b)  Density of Entertainment POIs for Docked  (Weekend) 2 

       3 
        (c) Density of Entertainment POIs for Dockless (Weekday)        (d)  Density of Entertainment POIs for Dockless  (Weekend) 4 

Fig. 10. Spatial distribution of the average coefficients of Entertainment POIs. 5 

The proportion of the elderly for both systems: the proportion of the elderly is positively 6 
correlated with the docked bike-sharing usage, except for in the northeast (see Figure 11 (a) and 7 
(b)). For dockless bike-sharing, the proportion of the elderly is negatively associated with usage 8 
of dockless bike-sharing, except for in the center-west (see Figure 11 (c) and (d)). In this area, both 9 
docked and dockless bike-sharing are popular among the elderly people, which is consistent with 10 
the development features of this area. In 2013, this area launched the first docked bike-sharing 11 
system in Nanjing. One year later, it witnessed over 95% of the city’s docked bike-sharing trips, 12 
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with the average daily usage of the docked bikes significantly higher than that in other districts (Ji 1 
et al., 2016). The stable performance of docked bike-sharing makes the concept of sharing mobility 2 
popular among the elderly and helps them develop the habit of riding shared bikes. In light of this, 3 
elder people are willing to try the dockless bike-sharing. They may use both docked and dockless 4 
bike-sharing for short-distance trips, transferring to public transport, or for physical exercises 5 
because of good riding conditions in this area. In the northeast, the effects on the usage are negative 6 
due to the challenging topography for cycling. 7 

  8 
(a) Proportion of the elderly for Docked (Weekday)     (b)  Proportion of the elderly for Docked (Weekend) 9 

  10 
(c) Proportion of the elderly for Dockless (Weekday)       (d) Proportion of the elderly for Dockless  (Weekend) 11 

Fig. 11. Spatial distribution of the average coefficients of the proportion of the elderly users 12 
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6. Conclusions and recommendations 1 

This section firstly summarizes the main findings of this paper. Next, recommendations are 2 
proposed to improve bike-sharing services. Finally, limitations and suggestions for future research 3 
are presented. 4 

6.1 Findings and conclusions 5 

The co-existence of docked and dockless bike-sharing systems provides new opportunities 6 
for supplementing sustainable transportation modes. In order to provide better bike-sharing 7 
services, it is necessary to compare and comprehend the travel characteristics and influential 8 
factors between docked and dockless bike-sharing systems. This study is one of the pioneers to 9 
compare the usage patterns and the determinants of both systems using multi-sourced data. The 10 
results of this analysis yield policy and planning recommendations to help operators/providers of 11 
both bike-sharing systems to improve their operations.   12 

To compare travel patterns of these two systems, this paper first compares the travel 13 
characteristics, including travel distance, travel time, usage frequency and spatio-temporal travel 14 
patterns by exploring the smart card data from a docked bike-sharing scheme and the trip OD data 15 
from a dockless bike-sharing scheme in the city of Nanjing, China over the same time period. By 16 
mining the historical trip data, travel patterns including travel distance, travel time, usage 17 
frequency and spatio-temporal usage pattern for both systems have been compared. Next, OLS, 18 
GWR and GTWR models are built to examine the influence of the bike-sharing fleets, socio-19 
demographic factors and land use factors on the user demand of the two systems over space and 20 
time. As the GTWR model can simultaneously incorporate spatial and temporal heterogeneity of 21 
a system, the GTWR outperforms the traditional OLS and GWR models significantly in terms of 22 
model fit. In addition, the spatial and temporal variations of coefficients are visualized and 23 
analyzed. Results show that hourly docked bike-sharing trips and dockless bike-share trips are 24 
positively associated with each other throughout the week. The density of Entertainment POIs is 25 
positively corelated with the usage of dockless bike-sharing, but impedes docked bike-sharing 26 
usage. On the contrary, the proportion of the elderly promotes the usage of docked bike-sharing 27 
while hinders the usage of dockless bike-sharing.  28 

 29 
6.2 Policy implications 30 

The findings yield important policy implications for government agencies, docked and 31 
dockless bike-sharing companies to improve bike-sharing services, especially in the context of 32 
cities where both docked and dockless bike-sharing are heavily invested, and consequently, 33 
improve the city service quality and liveability. The main implications are given as follows: 34 

1) Improving docked bike-sharing service  35 

1.1) Designing and promoting a mobile App for docked bikes-haring 36 
As Wu and Xue (2017) pointed out, the complex registration procedure and the need for 37 

deposit hinder high-rate adoption of docked bike-sharing service, especially for tourists. It is 38 
recommended that a mobile App should be designed to simplify the registration process and a “no-39 
deposit” strategy could be considered to attract users like youths and tourists. Currently, smart-40 
phone applications linking to citizen identity cards have been developed for docked bike-sharing 41 
system in Nanjing so that users can rent bikes from either their card or the dedicated App. However, 42 
it still cannot satisfy the demand during peak hours due to limited mobile App related docking 43 
stations. It is necessary to expand the App-based docked bike-sharing system to cover all docking 44 
stations.  45 
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1.2）Increasing the flexibility of docked bike-sharing 1 
Docked shared bikes can only be borrowed and returned at fixed stations. This inconvenience 2 

has been regarded as a major barrier for docked bike-sharing (Fishman et al., 2014). In order to 3 
improve its flexibility, it is suggested that the electric fence parking area (Zhang & Mi, 2018) 4 
and/or locks for docked bike-sharing could be introduced.  5 
 6 
1.3）Increasing number of docking stations in suburban areas  7 

Docked bike-sharing is popular among commuters in suburban areas. They would need to 8 
walk a long time or wait for a long time for a bus to access/egress metros without using docked 9 
bike-sharing. To replace car/bus with share-bike in last/first mile trips and reduce high 10 
transportation costs, it is necessary to build more docking stations near metro stations and 11 
residential areas in suburban areas. 12 

2) Improving the dockless bike-sharing service  13 

2.1）Establishing maintenance service for dockless bikes 14 
As docked bike-sharing are managed and maintained by governments, docked bike-sharing 15 

users are usually satisfied with the quality and they ride comfortably (Li and Tang, 2019). However, 16 
for dockless bike-sharing system, the maintenance of bikes is one of the biggest problems because 17 
the profit-orient companies cut down the maintenance and management costs and leave broken 18 
bikes to users. (Chen et al., 2018).  Encountering bike malfunctions will reduce user satisfaction 19 
and thus the loyalty to dockless bike-sharing (Ma et al., 2019). Therefore, it is necessary to improve 20 
the quality of dockless shared bikes and strengthen their maintenance mechanism. Meanwhile, an 21 
effective mechanism for supervision and complaint feedback could be established to improve 22 
dockless bike-sharing service. In addition, dockless bike-sharing companies could install lighting 23 
devices to improve the safety performance of their bikes for riding at night (dockless bike-sharing 24 
usage is observed at night in Figure 5.  25 
 26 
2.2）Implementing price-related strategies to adjust users’ travel behavior  27 

It has been revealed that discount scheme manages to attract dockless bike-sharing users (Li 28 
et al., 2019a). Dockless bike-sharing companies can design price strategies to adjust users’ travel 29 
behaviors. For instance, they can provide discounts for regular users to maintain their loyalty to 30 
dockless bike-sharing system. They can encourage users to participate in the rebalancing process 31 
through incentive policies. In order to make the dockless bike-sharing friendlier to elderly 32 
population groups, they could also develop specialized mobile App and offer discounted deposit 33 
and rental price to the elderly groups. More meaningfully, they can design a dynamic time-based 34 
pricing system to ease transaction floods during peak hours.  35 
 36 
2.3）Launching more dockless bikes near Entertainment POIs and tourist spots 37 

Entertainment POIs promote dockless bike-sharing usage in urban areas, especially during 38 
weekend afternoons, while it impedes its usage in suburban areas. It is suggested that dockless 39 
bike-sharing companies could launch more shared bikes near entertainment places in urban areas. 40 
The government could enhance the construction of public transport in suburban districts to 41 
improve the accessibility of some entertainment places and in turn to increase dockless bike-42 
sharing demand. In addition, more dockless bike-sharing bikes should be launched in some tourist 43 
spots to promote their modal shift from taxi and car-sharing to dockless bike-sharing for short trips.     44 
 45 
2.4）Education and design for the elderly  46 
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The limited use of dockless bike-sharing among the elderly is reasonable: the mobile phone 1 
based dockless bike-sharing system may not be friendly to the tech-insensitive elders (Gu et al., 2 
2019). Social marketing campaigns and public education efforts that target the elderly might help 3 
them learn how to use dockless bike-sharing. Additionally, another challenge for the elderly is 4 
physical strength due to heavy bike weight of dockless shared bikes (25 kg for a Mobike for 5 
instance). It is necessary to design the old age-friendly bikes (e.g. lighter bike) to remove barriers 6 
of dockless bike-sharing use among elderly population groups. 7 
 8 
6.3 Limitations and future research 9 

This study has several limitations. First, only four coefficients of the GTWR models are 10 
chosen to reflect spatiotemporal characteristics of the bike-sharing systems due to the limitation 11 
of article length. More insights based on other coefficients could be expected. Second, the authors 12 
used only one dockless bike-sharing vendor data which provides somewhat of an incomplete 13 
picture of dockless usage patterns. Third, since the data used in this study only cover a one-week 14 
period, the variations of influential factors in time dimension for a higher aggregation level (such 15 
as weekly, monthly, seasonal or annual level) can be conducted if the data collected over months 16 
and years. Fourth, it is necessary to recognize the travel purpose among different user groups (e.g. 17 
gender, age cohort, commuter and non-commuters) over time (e.g. weekdays, weekends, morning 18 
and evening rush hours). This helps for better understanding the usage pattern of both docked and 19 
dockless bike-sharing systems. Additionally, this work could be extended by obtaining bike-20 
sharing data and land use data from other cities to examine and cross-compare the difference in 21 
travel patterns and their influential factors. Further studies on the interaction between bike-sharing 22 
and public transport usage, rebalancing strategies of docked and dockless bike-sharing in a 23 
synergistic way and modal shift behavior from car to docked and dockless bike-sharing are 24 
necessary.  25 
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Appendix 1 

Table A1. POIs data classification 2 

Preliminary category Secondary category Tertiary category 

Density of Cultural POIs 

Culture services Museums, libraries, cultural palaces, 
exhibition halls, arts galleries, etc. 

Media services 
TV/broadcasting stations, 
newspaper office, magazine office, 
publishing houses, etc. 

Density of Residential POIs 
Residential area  Apartment buildings, communities，

house estates etc.  

Accommodation services Hotels, rest houses, youth hostels, 
serviced apartments, etc. 

Density of Governmental POIs Governmental services 
Government offices, government-
affiliated institutions, industrial & 
commercial tax authorities, etc. 

Density of Entertainment POIs 
Sports & leisure services Gymnasiums, amusement parks, 

cinemas, karaoke, etc. 

Shopping & catering services   Clothing stores, supermarkets, 
restaurants, convenience stores, etc.  

Density of Commercial/Industrial POIs  

Companies & enterprises 

Petrochemical/mining enterprises, 
manufacturing companies, 
commercial and trading companies, 
small service companies, etc. 

Financial services Securities companies, insurance 
companies, banks, etc. 

Industries 
Factories (metallurgical & chemical 
producing factories, mechanical & 
electronics producing factories, etc.) 

 3 
Table A2. VIF values of significant explanatory variables of OLS model for docked bike-sharing 4 

Variables Weekday Weekend 
Coef. P-Value VIF Coef. P-Value VIF 

Dockless bike-sharing 
Hourly dockless bike-sharing trips 0.975 0.000 1.080 0.836 0.000 1.060 
Land use variables 
Density of docked bike-sharing stations  0.590 0.000 2.430 0.628 0.000 2.840 
Density of bus stations   - - - 0.149 0.000 3.090 
Density of road  0.250 0.000 1.870 0.156 0.000 1.890 
Distance to CBD  - - - -0.100 0.010 3.540 
Density of Cultural POIs -0.202 0.000 7.370 -0.197 0.000 6.380 
Density of Residential POIs   -0.187 0.000 5.740 -0.168 0.000 4.900 
Density of Governmental POIs   0.171 0.000 4.320 0.133 0.000 4.310 
Density of Entertainment POIs -0.237 0.000 7.710 -0.133 0.000 7.470 
Socio-demographic variables 
Housing Price 0.355 0.000 2.270 0.152 0.000 2.360 
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Proportion of Car ownership 0.250 0.000 2.890 0.217 0.000 3.040 
Proportion of Private bike ownership  -0.353 0.000 2.340 -0.425 0.000 2.380 
Proportion of Female -2.180 0.000 1.900 -1.792 0.000 1.800 
Proportion in population between 35 and 45 years 
old  0.169 0.017 2.660 0.127 0.042 2.660 

Proportion in population between 45 and retirement 
age  -0.333 0.000 2.270 -0.287 0.000 1.760 

Proportion of the elderly  0.599 0.000 2.620 0.438 0.000 2.520 
Proportion of junior college or college -0.415 0.016 2.880 - - - 
Proportion of high-income level -0.026 0.001 1.320 -0.046 0.000 1.320 

Note: Insignificant variables of OLS model for docked bike-sharing are not included. 1 
The sign “-” means insignificant variables for either weekday or weekend. 2 
   3 
Table A3. VIF values of significant explanatory variables of OLS model for dockless bike-sharing   4 

Variables Weekday Weekend 
Coef. P-Value VIF Coef. P-Value VIF 

Docked bike-sharing trips 
Hourly docked bike-sharing trips 0.785 0.000 1.150 0.886 0.000 1.230 
Land use variables 
Density of metro stations  -0.224 0.000 1.680 -0.109 0.006 1.920 
Density of docked bike-sharing stations  -0.363 0.000 3.070 -0.493 0.000 3.240 
Density of bus stations   -0.107 0.006 2.700 -0.170 0.000 3.070 
Density of road  -0.152 0.001 1.920 -0.129 0.006 1.890 
Distance to CBD  0.124 0.002 3.370 0.203 0.000 3.530 
Density of Cultural POIs 0.321 0.000 5.690 0.299 0.000 7.270 
Density of Residential POIs   0.202 0.000 4.180 0.286 0.000 4.910 
Density of Governmental POIs   -0.099 0.000 3.850 -0.104 0.000 4.140 
Density of Entertainment POIs 0.087 0.026 7.010 0.146 0.000 7.660 
Density of Commercial/Industrial POIs - - - -0.098 0.010 7.380 
Socio-demographic variables 
Housing Price -0.703 0.000 1.980 -0.290 0.000 2.370 
Proportion of Car ownership -1.709 0.000 2.430 -2.352 0.000 2.750 
Proportion of E-bike ownership  -2.265 0.000 1.840 -2.424 0.000 2.430 
Density of Non-locals -0.074 0.001 1.790 -0.065 0.003 1.820 
Proportion in population under18 years old   - - - -5.283 0.000 2.590 
Proportion in population between 35 and 45 years 
old  -1.308 0.000 1.450 1.198 0.001 3.540 

Proportion in population between 45 and 
retirement age  1.547 0.000 1.680 1.744 0.000 2.090 

Proportion of the elderly  -1.493 0.000 2.170 -1.211 0.000 3.160 
Proportion of senior high school or bellow  2.117 0.000 2.770 1.116 0.001 5.670 
Proportion of junior college or college  - - - -0.952 0.000 3.940 
Proportion of middle-income level 0.821 0.000 2.290 1.063 0.000 2.630 

Note: Insignificant variables of OLS model for dockless bike-sharing are not included. 5 
The sign “-” means insignificant for either weekday or weekend. 6 
 7 

 8 

 9 
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Table A4. Moran’s I test result for significant explanatory variables in Table A2 and Table A3 1 

Variables Moran’s I Z-score P-value 
Bike-sharing trips 
Hourly dockless bike-sharing trips on weekday 0.082 6.687 0.000 
Hourly dockless bike-sharing trips on weekend 0.077 6.367 0.000 
Hourly docked bike-sharing trips on weekday 0.021 2.194 0.028 
Hourly docked bike-sharing trips on weekend 0.021 2.191 0.028 
Land use variables 
Density of metro stations  0.117 9.617 0.000 
Density of docked bike-sharing stations  0.125 10.023 0.000 
Density of bus stations   0.159 12.484 0.000 
Density of road  0.199 15.567 0.000 
Distance to CBD  0.511 38.925 0.000 
Density of Cultural POIs 0.303 23.341 0.000 
Density of Residential POIs   0.261 20.123 0.000 
Density of Governmental POIs   0.270 20.833 0.000 
Density of Entertainment POIs   0.279 21.543 0.000 
Density of Commercial/Industrial POIs  0.306 23.524 0.000 
Socio-demographic variables 
Housing Price 0.029 3.007 0.003 
Proportion of Car ownership 0.145 11.491 0.000 
Proportion of Private bike ownership 0.119 9.605 0.000 
Proportion of E-bike ownership 0.045 4.047 0.000 
Density of Non-locals 0.182 14.279 0.000 
Proportion of Female 0.022 2.389 0.017 
Proportion of the elderly 0.089 7.349 0.000 
Proportion of senior high school or bellow 0.042 3.747 0.000 
Proportion of junior college or college 0.038 3.599 0.000 
Proportion of middle-income level 0.030 2.864 0.004 
*Proportion of high-income level 0.008  1.207  0.227  
*Proportion in population under18 years old -0.005 0.229 0.819 
*Proportion in population between 35 and 45 years old -0.010 -0.182 0.855 
*Proportion in population between 45 and retirement age -0.009 -0.056 0.956 

* explanatory variables with p-value larger than 0.05 not included in the GTWR models  2 

Tables A5 and A6 show several characteristic values of the estimated coefficients of GTWR 3 
models to describe the influential extent of each variable for weekday and weekend respectively. 4 
In this study, six statistics, namely, minimum value (MIN), lower quartile (LQ), median (MED), 5 
upper quartile (UQ), maximum value (MAX) and average value (AVG) are selected. 6 

Table A5. Estimation of the GTWR model for docked bike-sharing. 7 

 Min LQ MED UQ MAX AVG 
Weekday 
Dockless bike-sharing 
Hourly dockless bike-sharing trips 0.535  0.934  0.988  1.057  1.311  0.990  
Land use variables 
Density of docked bike-sharing stations -0.495  0.351  0.551  0.705  1.734  0.555  
Density of road -1.674  -0.060  0.244  0.358  0.692  0.079  
Density of Cultural POIs -1.094  -0.301  -0.043  0.190  1.370  -0.053  
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Density of Residential POIs -1.236  -0.309  -0.065  0.075  0.369  -0.130  
Density of Governmental POIs -0.896  0.006  0.168  0.283  0.625  0.130  
Density of Entertainment POIs -0.997  -0.476  -0.243  0.045  1.446  -0.189  
Socio-demographic variables 
Housing Prices -3.564  0.194  0.424  0.649  1.628  0.395  
Proportion of Car ownership -1.685  -0.033  0.119  0.289  1.105  0.116  
Proportion of Private bike ownership -4.043  -0.703  -0.502  -0.260  1.422  -0.520  
Proportion of Female -12.227  -1.554  -0.642  0.044  3.441  -0.888  
Proportion of the elderly -0.449  0.116  0.381  0.731  2.861  0.495  
Proportion of junior college or college -3.514  -0.825  -0.204  0.399  2.906  -0.249  
Intercept -10.082  -4.411  -2.656  -0.943  13.367  -2.662  
Weekend 
Dockless bike-sharing 
Hourly dockless bike-sharing trips 0.326  0.764  0.823  0.862  1.115  0.803  
Land use variables 
Density of docked bike-sharing stations -0.938  0.457  0.655  0.768  2.136  0.634  
Density of bus stations -0.460  -0.106  0.028  0.208  0.996  0.069  
Density of road -1.436  -0.008  0.165  0.276  0.783  0.089  
TAZ Distance to CBD  -3.622  -0.167  -0.043  0.145  1.736  -0.036  
Density of Cultural POIs -1.295  -0.301  -0.184  -0.052  1.610  -0.164  
Density of Residential POIs -1.744  -0.289  -0.020  0.078  0.232  -0.129  
Density of Governmental POIs -0.798  0.031  0.133  0.209  0.545  0.105  
Density of Entertainment POIs -0.696  -0.332  -0.165  0.145  1.348  -0.075  
Socio-demographic variables 
Housing Prices -2.002  -0.029  0.175  0.347  1.224  0.162  
Proportion of Car ownership -0.762  -0.101  0.009  0.127  1.610  0.037  
Proportion of Private bike ownership -3.258  -0.645  -0.508  -0.354  1.043  -0.524  
Proportion of Female -9.247  -0.987  -0.430  0.066  14.439  -0.422  
Proportion of the elderly -0.566  -0.063  0.153  0.535  2.918  0.306  

 1 

Table A6. Estimation of the GTWR model for dockless bike-sharing. 2 

 Min LQ MED UQ MAX AVG 
Weekday 
Docked bike-sharing trips       
Hourly docked bike-sharing trips 0.477 0.662 0.721 0.797 1.276 0.735 
Land use variables       
Density of metro stations -1.302 -0.403 -0.244 -0.103 0.658 -0.281 
Density of docked bike-sharing stations -1.634 -0.510 -0.371 -0.195 0.441 -0.392 
Density of bus stations -1.024 -0.093 0.036 0.123 1.769 -0.005 
Density of road -0.648 -0.188 -0.087 0.172 1.581 0.042 
Distance to CBD -1.605 -0.172 0.088 0.267 6.746 0.109 
Density of Cultural POIs -1.245 -0.138 0.088 0.242 1.166 0.060 
Density of Residential POIs -0.247 -0.031 0.061 0.263 1.699 0.149 
Density of Governmental POIs -0.645 -0.260 -0.154 -0.001 1.524 -0.102 
Density of Entertainment POIs -1.750 -0.033 0.313 0.529 1.093 0.230 
Socio-demographic variables       
Housing Prices -1.302 -0.549 -0.426 -0.242 4.775 -0.305 
Proportion of Car ownership -15.899 -1.935 -1.356 -0.293 2.894 -1.360 
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Proportion of E-bike ownership -10.527 -2.608 -1.547 -0.294 5.470 -1.568 
Proportion of Non-locals -0.604 -0.092 -0.045 0.015 1.634 -0.020 
Proportion of the elderly -6.826 -1.297 -0.629 0.093 6.181 -0.579 
Proportion of senior high school or 
bellow -2.204 0.038 0.773 1.624 16.822 1.131 

Proportion of middle-income level -0.820 0.181 0.509 0.836 13.285 0.733 
Intercept -12.647 1.122 1.938 2.412 7.706 1.598 
Weekend      
Docked bike-sharing trips       
Hourly docked bike-sharing trips 0.449 0.686 0.761 0.908 1.670 0.796 
Land use variables       
Density of metro stations -1.003 -0.338 -0.180 -0.009 2.598 -0.162 
Density of docked bike-sharing stations -2.257 -0.557 -0.393 -0.223 0.297 -0.421 
Density of bus stations -0.803 -0.139 -0.007 0.120 0.947 -0.020 
Density of road -0.629 -0.116 -0.025 0.140 1.587 0.017 
Distance to CBD -3.518 -0.087 0.053 0.162 6.045 0.068 
Density of Cultural POIs -0.467 0.065 0.203 0.318 1.918 0.203 
Density of Residential POIs -0.208 -0.001 0.097 0.235 1.185 0.150 
Density of Governmental POIs -0.450 -0.241 -0.157 -0.039 1.130 -0.120 
Density of Entertainment POIs -1.450 -0.025 0.257 0.422 0.889 0.172 
Density of Commercial/Industrial POIs -2.638 -0.180 -0.040 0.125 0.719 -0.032 
Socio-demographic variables       
Housing Prices -1.007 -0.420 -0.321 -0.207 2.319 -0.283 
Proportion of Car ownership -10.011 -2.054 -1.480 -0.450 11.158 -1.268 
Proportion of E-bike ownership -15.436 -2.519 -1.646 -0.984 7.630 -1.928 
Proportion of Non-locals -0.785 -0.093 -0.031 0.022 1.930 -0.021 
Proportion of the elderly -9.399 -1.119 -0.436 0.342 4.538 -0.458 
Proportion of senior high school or 
bellow -19.365 -0.603 0.260 1.461 11.401 0.518 

Proportion of junior college or college -6.151 -1.188 -0.306 0.975 18.481 0.263 
Proportion of middle-income level -8.315 0.232 0.600 0.881 3.161 0.506 
Intercept -9.738 0.186 2.371 4.002 6.685 1.912 

1 
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