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SUMMARY

Reinforcement learning (RL) models the learning process of humans, but as exciting ad-
vances are made that use increasingly deep neural networks, some of the fundamental
strengths of human learning are still underutilized by RL agents. One of the most ex-
citing properties of RL is that it appears to be incredibly flexible, requiring no model
or knowledge of the task to be solved. However, this thesis argues that RL is inherently
inflexible for two main reasons: 1. If there is existing knowledge, incorporating this with-
out compromising the optimality of the solution is highly non-trivial, and 2. RL solutions
can not be easily transferred between tasks, and generally require complete retraining to
guarantee that a solution will work in a new task.

Humans, on the other hand, are very flexible learners. We easily transfer knowledge
from one task to another, and can learn from knowledge that we learned in other tasks
or that other people share with us. Humans are exceptionally good at abstraction, or de-
veloping conceptual understandings that allow us to extend knowledge to never-before-
seen experiences. No artificial agent nor neural network has displayed the abstraction
and generalization capabilities of humans in such varied tasks and environments. De-
spite this, utilizing the human as a tool for abstraction is commonly done only at the
stage of defining the model. In general, this means making choices about what to in-
clude in the state space that will make the problem solvable without adding unnecessary
complexity. While necessary, this step is not explicitly referred to as abstraction, and it is
generally not considered relevant to how RL is applied. Much of the research in RL is less
focused on how the problem is modelled, and instead centers the development and ap-
plication of computational advances that allow for solving bigger and bigger problems.

Applying abstraction explicitly is highly non-trivial, as confirming that an abstract
problem preserves the necessary information of the true problem can generally only be
done if a full solution is already found, which may defeat the purpose of finding an ab-
straction if such a solution cannot be found. When such a confirmation can be made,
the abstraction can be the result of a very complex function that would be difficult for a
human to define. In this work, human-defined abstractions are used in a way that goes
beyond the initial definition of the problem.

The first approach, presented in Chapter 3, breaks a problem into several abstract
problems, and uses the same experience to solve each at the same time. A meta-agent
learns how to compose the learned policies together to find the optimal policy. In Chap-
ter 4, a method is introduced that uses supervised learning to train a model on partially-
observable experience which is labelled with hindsight. The agent then learns a policy
on predicted states, trading off information gathering with reward maximization. The
last method presented in Chapter 5 is a modular approach to offline RL, where even
with expert data, the method can become ineffective if the given data does not cover the
entire problem space. This method introduces a second problem of recovering the agent
to a state where it can safely follow the expert’s action. The method applies abstraction to

xi
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multiply the given data and safely plan recovery policies. Combining the recovery poli-
cies with the imitation policy maintains high performance even when the expert data
provided is limited.

In the methods developed in this research, a learning-to-learn component enables
the agent to relax the usually strict requirements of abstraction, the parallel processing
allows the agent to learn more from fewer samples, and the modularity means that the
agent can transfer its knowledge to other related tasks.



SAMENVATTING

Reinforcement learning (RL) modelleert het leerproces van mensen, maar ondanks dat
er indrukwekkende vooruitgangen worden gemaakt waarbij steeds diepere neurale net-
werken worden gebruikt, worden sommige van de fundamentele sterke punten van men-
selijk leren nog steeds onvoldoende benut door RL-agenten. Een van de meest fascine-
rende eigenschappen van RL is dat het ongelooflijk flexibel lijkt te zijn, zonder een model
of kennis van de te verrichten taak nodig te hebben. Dit proefschrift betoogt echter dat
RL inherent niet flexibel is om twee belangrijke redenen: 1. Als er voorkennis is, is het
niet triviaal om dat te integreren zonder de optimaliteit van de oplossing aan te tasten,
en 2. RL-agenten kunnen niet makkelijk worden omgeschakeld tussen verschillende ta-
ken, en moeten in het algemeen opnieuw getraind worden om te garanderen dat een
oplossing in een nieuwe taak zal werken.

Mensen daarentegen kunnen zeer flexibel leren. Wij kunnen gemakkelijk kennis
overdragen van de ene taak naar de andere, en kunnen leren van inzichten die wij in
andere taken hebben opgedaan of die andere mensen met ons delen. Mensen hebben
een uitzonderlijk hoog abstractievermogen, zoals het ontwikkelen van conceptuele be-
grippen waarmee we kennis kunnen overdragen naar volledig nieuwe ervaringen. Geen
enkele kunstmatige agent of neuraal netwerk heeft het abstractie- en generalisatiever-
mogen van de mens evenaart in zulke uiteenlopende taken en omgevingen. Desondanks
wordt het abstractievermogen van de mens gewoonlijk alleen benut bij het definiëren
van het model. Over het algemeen betekent dit dat keuzes worden gemaakt over wat
in de toestandsruimte moet worden opgenomen om het probleem oplosbaar te maken
zonder onnodige complexiteit toe te voegen. Hoewel deze stap noodzakelijk is, wordt
het niet expliciet abstractie genoemd, en wordt het over het algemeen niet relevant ge-
acht voor de toepassing van RL. Veel van het onderzoek in RL is minder gericht op hoe
het probleem wordt gemodelleerd, en concentreert zich in plaats daarvan op de ont-
wikkeling en toepassing van computationele vooruitgang die het mogelijk maakt steeds
grotere problemen op te lossen.

Het expliciet toepassen van een abstractie is zeer moeilijk, omdat het bevestigen dat
een abstract probleem de noodzakelijke informatie van het ware probleem behoudt,
meestal alleen kan worden gerealiseerd als er al een volledige oplossing is gevonden,
wat het doel van de abstractie kan ondermijnen als zo’n oplossing niet gevonden kan
worden. Wanneer een dergelijke bevestiging wel mogelijk is, kan de abstractie het re-
sultaat zijn van een zeer complexe functie die voor een mens moeilijk te definiëren zou
zijn. In dit werk worden door mensen gedefinieerde abstracties zodanig gebruikt dat ze
verder gaan dan alleen de initiële definitie van het probleem.

De eerste methode, gepresenteerd in hoofdstuk 3, splitst een probleem op in ver-
schillende abstracte problemen, en gebruikt dezelfde ervaringen om ze allemaal tegelijk
op te lossen. Een meta-agent leert hoe het geleerde gedrag gecombineerd moet worden
om het optimale gedrag te vinden. In hoofdstuk 4, wordt een methode geïntroduceerd

xiii
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die supervised learning gebruikt om een model te trainen op partially-observable erva-
ringen die met kennis van achteraf worden gelabeld. De agent leert dan een strategie op
verwachte states, waarbij het verzamelen van nieuwe informatie wordt afgewogen tegen
het maximaliseren van de beloning. De laatste methode die in hoofdstuk 5 wordt gepre-
senteerd is een modulaire aanpak van offline RL, waarbij zelfs met deskundige data de
methode ineffectief kan worden als de gegeven data niet de gehele probleemruimte be-
strijkt. Deze methode introduceert een tweede probleem om de agent terug te brengen
naar een staat waarin deze veilig de actie van de expert kan volgen. De methode past
abstractie toe om de gegeven data te vermenigvuldigen en de strategie voor terugkeren
veilig te plannen. Door de strategie voor terugkeren te combineren met het imiteren van
de expert blijven de prestaties hoog, zelfs wanneer de verstrekte deskundige data beperkt
is.

De in dit onderzoek ontwikkelde methoden maken het mogelijk voor de agent om,
dankzij een “leren-leren"-component de gewoonlijk strenge eisen van abstractie te ver-
soepelen, dankzij de parallelle verwerking meer te leren uit minder voorbeelden, en
dankzij de modulariteit de geleerde kennis over te dragen naar andere verwante taken.



1
INTRODUCTION

கல்லாத ேமற்ெகாண்ெடாழுகல்கசடற
வல்லதூஉம்ஐயம்தரும்.

- த¦ருக்குறள் 845
Brazenly acting out what one has not learnt
arouses doubts over that they’ve flawlessly mastered.

- Tirukkuraḷ 845

2

Artificial intelligence (AI) has been an idea long thought of only hypothetically. For a
select few, defining and producing it offered a philosophical and theoretical challenge.
In the mainstream, it was a concept contained safely within the walls of science-fiction.
Perhaps the most limiting factor has been the definition itself. Artificial Intelligence: The
Human Brain in a Machine. It could be a natural property of the human ego to resist the
idea that one’s great intelligence can be written to a microchip. This idea of capturing
human intelligence in a computer is a frequently sought-after goal that has taken many
forms in past decades. In 2011, IBM’s supercomputer Watson defeated human contes-
tants in a game of Jeopardy!, armed with 4 terabytes of stored data including the entire
contents of Wikipedia [1]. This idea of intelligence formed by vast deposits of knowledge
has now pivoted toward the concept of learning as intelligence. Turing himself had pos-
tulated that it would be easier to model a child’s mind than that of an adult [2], alluding
to the development of learning systems that would develop conceptual understandings
rather than simply store information for retrieval.

Machine learning models are a departure from the view of intelligence as a deposit
of knowledge and toward systems that are fed data and learn an implicit understand-
ing, represented as a predictive (black-box) model. These days, the definition of arti-
ficial intelligence has softened to encompass an umbrella of analytical and decision-
making methods, with the term often being used synonymously with machine learning
and other long-established statistical tools. This change in terminology, and the recent
advances in the latter, means that AI is no longer a fantasy, but both a necessity and

1



1

2 1. INTRODUCTION

a potential threat. Practical applications of machine learning are now commonplace
and what was once referred to only in science-fiction is now a fact of every day life. As
more people are accepting the benefits that computational analysis of vast deposits of
data brings, the potential downsides and opportunities for abuse are also entering the
conversation. Collecting exhaustive amounts of data results in growing privacy viola-
tion concerns. Data is known to contain the same biases as the systems that created it,
and increasingly complex algorithms are making decisions that can greatly affect day-
to-day life, with little explanation as to how or why. Data collection, storage, analytics
and retrieval has enormous environmental consequences in terms of energy usage. The
emergence of more powerful AI is not necessarily welcomed by all, and certainly there
remains a need for improvement to current methods.

1.1. REINFORCEMENT LEARNING: THE FUTURE OF AI
Machine learning methods are often divided simplistically into two categories: super-
vised and unsupervised. In supervised learning, a computational model is trained by
feeding the model labeled data so that it can predict the labels on data for which the la-
bel is unknown. This encompasses classification and recognition tasks, such as isolating
and identifying faces in a video. In unsupervised learning, a computational model is fed
unlabeled data and tasked with labelling the data in some meaningful way. This could,
for example, refer to a recommender system that groups users into different types in or-
der to suggest films they are likely to enjoy. Both of these categories of machine learning
approaches have proven to be highly applicable to real-world problems [3].

Another line of research lies in modelling and solving problems that require deci-
sions that take into account long-term effects. Termed sequential decision-making prob-
lems, these encompass planning problems such as choosing shipping routes, controlling
power plant operations, or designing the optimal layout of a warehouse. These prob-
lems come with their own set of challenges, and researchers developing methods for
automated planning algorithms have been tackling this class of problems for decades.
These approaches generally require defining a precise model of the problem dynamics
which can be very difficult to craft, making it attractive to use alternative methods that
are capable of learning such a model through experience or data. The machine learning
methods described above, while powerful and effective, are not designed for long-term
sequential decision-making.

This thesis concerns itself with one of the most promising approaches to artificially-
intelligent systems today – sometimes considered a third category of machine learning –
reinforcement learning. Reinforcement learning (RL) embeds the predictive capabilities
of machine learning into the mathematical framework of sequential decision-making
used in classical planning algorithms. Rather than learning to optimize immediate re-
ward signals, as is the general case in supervised learning, RL requires learning multi-
step plans that optimize reward over a longer period of time. In RL, unlike in the classical
planning problem, it is assumed that little or nothing about the environment dynamics
or optimization function is known. The agent learns only with direct access to the envi-
ronment rather than to data or models. Put in the most optimistic terms, RL algorithms
form artificially-intelligent agents that learn to take optimal sequences of actions with-
out any prior knowledge. An RL agent explores its environment, which provides feed-
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action

state, reward

agent environment 

Figure 1.1: Reinforcement learning involves an agent taking actions and learning from how the environment
responds.

back in the form of rewards (or penalties), and learns only through experience how to
optimize its long-term returns.

Reinforcement learning was formed from an understanding of how animals (includ-
ing humans) learn, and its principles were rooting in psychology decades before any
mathematical framework was attached to it [4]. In early literature, the idea emerged that
learning occurs only when the knowledge one has or assumes in the form of a model
is proven to be wrong [5]. This is further elaborated on in the Rescorla-Wagner model,
which speaks of learning as what occurs only when events violate expectations [6]. This
suggests that one can only learn if ones prediction or model of the world is proven wrong.
This type of thinking inspired the temporal difference learning paradigm, which is where
a formulation resembling the current mathematical framework for RL first emerged [7].
The basic idea of temporal difference learning is that the agent maintains an estimate of
how rewarding taking any action is (in the long-term) by trying it out and seeing what
results. From the environmental feedback, it continuously updates its estimates.

At first, the agent can only arbitrarily guess how good any action is, but over time as
it continues to update based on the error between its estimate and its true experience,
the agent learns the true value of all possible actions. What sets this apart from other
types of machine learning is the feedback loop incurred by interacting with the environ-
ment (depicted in Figure 1.1), as well as the temporal aspect. The agent learns how the
environment reacts to the actions taken (either directly or indirectly), and finds the best
sequence of actions to maximize the total of rewards over a period of time.

Temporal difference learning forms the backbone of reinforcement learning as it is
known today. While RL continued to mature and develop a strong theoretical basis [8],
there was little mainstream attention. Even though there was notable progress, such
as the development of TD-Gammon (an RL algorithm that learned to play Backgam-
mon [9]), RL was still unable to match human performance. This has, in many ways, all
changed in the last decade. The field of reinforcement learning has enjoyed immense
success as it benefits from the exponentially growing computational power, and power
of the tools to analyze it, available today. There has been mainstream news coverage
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of RL algorithms surpassing human performance in classical board games [10], Atari
games [11], and complex video games such as Starcraft [12]. However, the reality, which
is explored in this thesis, is that RL agents are limited by a number of factors and the
boom in reinforcement learning is still limited to either theoretical or highly-crafted sce-
narios. Ultimately, this thesis proposes that reinforcement learning needs further de-
velopment that goes back to its roots in human learning, both by incorporating more
understanding of human cognitive processes and by enabling human input.

1.1.1. CHALLENGES IN RL
Reinforcement learning makes a big promise: artificial agents that learn by themselves
without any prior knowledge. However, the framework is attractive mostly for its math-
ematical rigor and strong theoretical basis. Real-world problems, on the other hand,
offer several challenges that limit the applicability of RL in real systems [13]. Some of
the challenges that have been highlighted in literature and are relevant to this thesis are
summarized below.

CURSE OF DIMENSIONALITY

Real-world problems are generally very large and complex. This offers a challenge for
any computational method, as approaches for high-dimensional problems are subject
to the curse of dimensionality [14]. This curse describes the issue of the exponential
increase in the problem space with the linear increase of dimensions in the problem,
which quickly renders even the most effective methods computationally infeasible for
large problems.

SAMPLE COMPLEXITY

One of the benefits of reinforcement learning is also its downfall. In the ideal case, re-
inforcement learning algorithms do not assume anything about the task, making them
promising learners of complex problems that are difficult to formally specify. This re-
quires RL agents to exhaustively explore the environment to find the best policy, requir-
ing huge amounts of data collected by interacting with the environment. To guarantee
convergence to the optimal solution in discrete Q-learning, a popular RL algorithm, the
agent must visit every part of the state-action space an infinite amount of times. This
is, of course, not possible in practice. Whether problems have a tabular (discrete) state
space or continuous state space, the key issue remains that the state-action space must
be sufficiently explored; sub-optimal states and actions must also be experienced thor-
oughly in order to learn an optimal policy. When knowledge is embedded into RL algo-
rithms to improve sample complexity, it might put hard constraints on RL agents that
keep them from exploring sufficiently to find the true optimal policy. This downside can
occur when applying action elimination [15], temporal abstraction [16], state abstrac-
tion [17], and safety constraints [18], to name a few examples.

EXPLAINABILITY

A reinforcement learning agent learns a policy, either directly or indirectly in conjuction
with a value function. During learning, both are updated iteratively and (in the ideal
case) come closer and closer to the true value function and optimal policy. However,
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the error used to steer learning may not correspond to the true error [19]. In addition,
the agent generally explores around its current idea of the optimal policy, reducing the
number of random actions it takes over time. This means that the value function will
not reflect the entirety of the problem and does not provide much insight into what the
agent has learned. In practice, learning has to stop or be used at some point, and at
this point it may not be clear how close the learned policy and value function are to the
ground truth. The policy will provide an action for every state, but with no indication of
how close to optimal the action (or overall policy) is, and why this action was selected.

In general, an RL agent does not explain what features of a current state lead to its
proposed action, nor how certain it is in its proposal, nor the potential risk of taking the
action. A human employing the RL agent may find such insights crucial. The need for
more explainable policies has been highlighted in several works of literature [20].

OFFLINE LEARNING

Reinforcement learning is generally thought as an online algorithm that steers data col-
lection, building up the data set it is trained on as it learns iteratively. Another approach
is offline reinforcement learing, in which a dataset of experience is provided and a pol-
icy must be learned on this exisiting data without any further exploration. When all the
training data is available beforehand, applying reinforcement learning naïvely has been
known to fail for a number of proposed reasons [21], most cited of which is the lack of
coverage of the true problem space available in the data set. This leads to poor estima-
tions of the value of actions that are not represented sufficiently in the data, which are
known to tend toward overestimation [22]. There is great interest in the development
of offline reinforcement learning algorithms designed for this case, as learning from a
static data set would alleviate many of the inherent issues facing RL, some of them listed
above.

1.2. LEARNING FROM HUMANS
While reinforcement learning emerged as a mathematical framework of human learning,
it offers an inflexible and rather poor mimicry of human decision-making power. Inter-
estingly, attempting to formalize more concepts of human learning into the framework
of RL has also led to insights (and sometimes evidence) back into the understanding of
human decision-making [23]. Even so, there is still a major gap between the capabilities
of an RL agent (or any machine learning method) and of even a child.

Humans are masters of efficiency. The sensory input to the human brain includes
high-resolution visual, auditory and tactile cues, to name only a few. Considering our
incredible ability to convert high-dimensional information into long-term plans, one
can quickly determine that there are a number of tools available to humans to manage
the processing of information. Neural networks, the powerhouse tool of most machine
learning algorithms today, are modeled after neurons in the brain and the synapses they
use to communicate information between them. Even so, and after continuous devel-
opment in computational power, humans are much more efficient than methods that
employ neural networks at innumerable tasks, such as understanding speech or lan-
guage [24]. Imagine how easily a child can distinguish between a pineapple and a hair-
brush, even after seeing only one example of each, whereas a neural network may need
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thousands of examples [24]. This efficiency is apparent not only within a single skill, but
between skills. Humans do not learn from scratch or need to be reconfigured every time
things in the environment change [24].

The current trends in RL show that researchers are aware of its limitations and draw-
backs and are actively seeking to address them. Meta-RL [25], lifelong RL [26], combina-
tions of model-based and model-free RL [27], all of these branches of research address
the enormous gap between RL and human learning. Two of the capabilities available
to humans form the basis of this manuscript: abstraction and modularity. By embed-
ding these tools into RL learning systems, we can lower the barrier to applying RL in
real-world problems.

1.2.1. THE POWER OF ABSTRACTION

One of the keys of efficient information processing is inarguably abstraction. While ab-
straction fittingly has no single definition, one that applies broadly is that of Burgoon,
which states that abstraction is the “process of identifying a set of invariant central char-
acteristics of a thing" [28]. Humans, and all naturally occuring intelligent decision-
makers, make great use of abstraction. We are remarkably capable at navigating high-
dimensional spaces, with estimates that our brains are sent 11 million pieces of infor-
mation per second through our many sensory systems [29]. Abstraction allows us to
selectively focus on small subsets of information at a time as needed. It is the tool by
which we turn vast amounts of complex information into manageable and meaningful
concepts on which to base our decisions [30]. This conceptual knowledge allows us to
assign significance to certain features or attributes and use these to induce information
about something not explicitly seen before. For example, we may understand a car to
have four wheels and an engine; we can apply this conceptual understanding to a vehi-
cle seen for the first time, even if it is perceptually quite different from what we have seen
before, and derive some notion of its function. Conceptual understanding not only aids
efficient information processing in a single task, but also is the key to transferring in-
formation between tasks, finding a common axis they share. The ability to extend prior
knowledge in new scenarios is a pillar of human intelligence [31]. This is yet another
downfall of RL agents: their inability to generalize to even only slightly new environ-
ments or tasks.

As sample complexity has been mentioned above as one of the key issues facing rein-
forcement learning algorithms, the ability to apply abstraction is cherished as a direction
in the field [32]. Researchers have been interested in defining abstraction [33], applying
given abstractions [34], and learning abstractions [17, 35]. Abstraction has been applied
to improve sample efficiency [36], to transfer knowledge between tasks [37], devise ex-
plainable policies [38], and learn safely [39].

It is easy to sell the benefits of abstraction, but much harder to apply it. The cost of
abstracting away details is that you can lose important information that may be nec-
essary for optimal (or good) planning. As deep reinforcement learning continues to
achieve impressive results in high-dimensional environments, the need for explicitly
encoding abstraction abilities into RL agents has been moved to the sidelines. Neu-
ral networks are implicit tools of abstraction, iteratively adjusting the weights of their
many nodes during training to combine inputs at each layer in some way that minimizes
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loss. Their power has seemingly removed the need for learning and applying abstrac-
tion in RL. However, there are many drawbacks to this implicit approach. In complex
high-dimensional state spaces, planning in the true space is only possible for short time
horizons [40]. Further, deep RL methods are not achieving the sample efficiency of hu-
mans [23]. Neural networks will also overfit to their training task data, exhibiting very
weak inductive bias that degrades performance in transfer [24]. Finally, it is extremely
difficult to glean any meaning from what neural networks have learned, or whether the
features hidden in their many layers can provide any useful insights.

As the field moves toward hiding abstraction abilities in neural networks, there is still
much to benefit from the natural human ability to devise meaningful subsets from vast
amounts of data, using abstraction to learn efficiently, and extrapolating what they’ve
learned across a lifetime of tasks and experiences.

1.2.2. MODULAR LEARNING

Another concept frequently exercised in natural intelligence and closely tied to abstrac-
tion is that of modularity, or breaking tasks down into separable problems [41]. Any
truly intelligent being should have separable components and capabilities and should
not rely on only a single representation of their world [42]. By learning in a modular
way, insights gained (and packaged into modules) can be distributed across new tasks
and shared with others. With this skill of compositionality, humans show yet again their
ability to be incredibly data-efficient [24]. An example shows up early in children who
quickly exhibit understanding of models such as “intuitive physics” [24]; children do not
have to learn the basic laws of gravity every time they play with a new toy. Reinforcement
learning agents generally assume nothing about the environment, which is both the at-
tractive part of RL and its downfall. It allows them to find an optimal policy purely by
exploring, but renders them inefficient and unable to make use of information provided
in other forms.

Taking a modular approach also allows humans to expand and compress their lo-
cal models seamlessly, adding or removing information input as needed [43]. We can
incorporate knowledge learned from other tasks or given to us by other humans. In re-
inforcement learning, the state space is specified and remains fixed either for the entire
life of the agent, or for a specified task with known boundaries. This means excessive in-
formation must be included in the state that may not be relevant at all times; essentially
the agent must always plan over the union set of information that may be required at any
point in their learning life.

The first emergence of modular methods (by that name) in reinforcement learning
came in 2003, with Modular SARSA(O) [44] and Q-Decomposition [45]. These works
highlighted the potential benefits of modular approaches to RL, such as efficiency, trans-
fer and facilitating abstraction. However, they also showed that these modular approaches
required fine hand-tuning or expert knowledge (in the form of local reward functions
and appropriate arbitration functions), and even then could not be provably optimal.
Since then, the term modular RL has fallen out of use, never forming a clear defini-
tion [23]. Instead, hierarchical RL, which falls under the umbrella of modular meth-
ods, has continued to flourish. Both modular and hierarchical methods share the goal
of breaking up a problem into sub-problems (often to facilitate abstraction and trans-
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fer), but in the latter a hierarchical structure is explicitly imposed. Because of this, the
solution to a sub-task is often closely coupled to the solution of the parent tasks. Both
modular and hierarchical RL have strong ties to the idea of abstraction, as forming sub-
problems provides an opportunity to abstract away details which are irrelevant to local
goals.

A particularly powerful consequence of modular learning is the ability to learn from
knowledge provided in many forms, and that are either learned by oneself in other tasks
or given by another being. Incorporating knowledge into RL algorithms is not trivial,
and as mentioned above can often remove the flexibility RL agents require for optimal-
ity. This means that despite the tools available to humans that allow them to excel over
machine learning, learning to make use of human input is still a missing link in RL today.

1.3. THE ABSTRACTION-GUIDED MODULAR APPROACH:
LEARNING TO LEARN

Reinforcement learning has its roots in human learning, but fails to empower the unique
properties in which humans excel. While RL agents can effortlessly run millions of simu-
lated steps, no artificial agent nor neural network has displayed the abstraction and gen-
eralization capabilities of humans in such varied tasks and environments. In addition,
humans can build on knowledge acquired from many sources and in many ways, while
research in RL often ignores the option to allow for input from other sources, whether
they be human experts or other pre-trained agents. The goal of this thesis is to derive
RL algorithms that empower reinforcement learning agents to learn more like humans,
while at the same time learning from humans by making use of human-defined abstrac-
tions.

In reinforcement learning, abstraction often occurs in the form of a mapping be-
tween a state space and a compact state space that maintains some crucial properties
of the original state space. Exact abstractions for problems modelled as Markov deci-
sion processes (MDPs) are extremely difficult to calculate. This limits the ability to use
human experts as a starting point for providing useful abstractions. Even approximate
abstractions for MDPs can be extremely complex to calculate [46] and provide hardly any
guarantees. This work explores the use of partial abstractions, that is, abstractions that
do not model the entire problem, but can still prove useful to an RL agent in solving the
entire problem. The methods in this thesis take as input human-defined abstractions
and incorporate them as modules into methods which can be used to learn efficiently
and to facilitate the transfer of knowledge between different tasks. While it may sound
trivial to learn from existing knowledge, applying any sort of rigidity or structure into an
RL system can mean the optimal (or even a good) solution is never found. The key goal
of the methods presented here is for RL agents to be able to take in human-definable
knowledge and benefit from it, rather than compromise their own desirable properties.

1.3.1. RESEARCH QUESTIONS

The methods introduced in this thesis have several things in common. They all assume
some human knowledge is given, mainly in the form of a state abstraction mapping,
and aim to mitigate the influence of error in this abstraction on the final policy. They
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all involve multiple learning processes conducted in parallel, and employ the idea of
learning to learn. Learning to learn (or meta-learning) is another straightforward human
ability (also exhibited by monkeys [23]) that is essential to true AI, considered one of the
keys to sample efficient learning in humans [24].

Learning to use abstractions to boost reward while performing policy optimization
is particularly difficult because optimality of an abstraction can only be confirmed when
the correct Q-values, model and/or optimal policy is known. In the general online case,
there is no access to these values, thus the suitability of an abstraction must be either
learned or assumed. This thesis explores these and the issues mentioned previously, by
exploring the following research question:

• How can abstraction and modularization facilitate flexibility in reinforcement learn-
ing?

This question is broken down into the following sub-questions, listed here:

• Is there value to abstraction mappings that are intuitive and human-definable,
even if they form poor abstractions of the MDP? (Chapters 3 and 5)

– This question concerns the use of approximate or conditional abstraction, in
which an abstraction can be useful for certain sub-tasks but is not suitable as
an abstraction of the MDP. Such an abstraction, it is argued, is much easier for
a human to define. In Chapter 3, it is seen whether such abstractions can be
used without compromising the ability to find an optimal policy, and under
which conditions. In Chapter 5, a sub-task is explicitly defined as a separate
MDP formed by a given abstraction, and used only to bring the agent back to
a state where it can continue to carry out its known policy.

• Is it worth the additional computation requirements that learning in several par-
allel processes incurs? (Chapters 3, 4 and 5)

– Learning in a modular way can often introduce additional computation dur-
ing training. This thesis is motivated by the idea that modularity provides
benefits in ways which dwarf the negative effects of such initial computation.
These benefits are explored in each chapter in this thesis.

• How can modular approaches contribute to the goals of lifelong reinforcement
learning, such as robustness, transfer and learning from offline data? (Chapters 4
and 5)

– Lifelong RL seeks to produce agents with the ability to adapt to continuously
changing tasks, with the goal of being robust to fluctuations in the goals or
environment and thus more efficient over a long period of time. This the-
sis argues that modularity and abstraction are key to achieving these goals.
In Chapter 4, transfer is explored by using supervised learning to explicitly
incorporate uncertainty into the policy. In Chapter 5, abstraction is used to
boost learning in the offline setting when only an expert policy is provided.
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1.3.2. THESIS OUTLINE
This thesis explores the use of abstraction and modularity by introducing three novel
approaches to unique but relevant problems. Each of these approaches takes human-
definable abstractions as input, and uses feedback from the environment to learn how
to effectively use them.

First, Chapter 2 introduces necessary background material and notation that will be
referenced throughout the thesis. In Chapter 3, an algorithm is presented that takes
human-devised abstractions as input and uses discounted reward as feedback to learn
how to use these abstractions effectively. The method in Chapter 4 involves an agent that
uses supervised learning to predict states and then learns to take actions that trade off
improving its predictions with maximization of reward. In Chapter 5, the agent uses ab-
straction to navigate in areas where limited data is available in order to return to parts of
the state space where it can follow a given behaviour policy. In all these works, the agent
maintains several learning processes at once, securely maintaining its ground-truth rep-
resentation but learning to benefit from abstraction when possible. The thesis concludes
with Chapter 6, which summarizes the findings and contributions and poses future di-
rections to extend this work.
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BACKGROUND

ெதாட்டைனத்தூறும்மணற்ேகணி மாந்தர்க்குக்
கற்றைனத்தூறும்அற§வு.

- த¦ருக்குறள் 396
The deeper a well is dug, the more the water that springs;
the more one learns, the more the wisdom it brings.

- Tirukkuraḷ 396

3

In this chapter, the foundational concepts upon which this work is built are introduced.

2.1. MARKOV DECISION PROCESSES
This work considers sequential decision making problems that can be modeled as Markov
decision processes (MDPs) [1]. An MDP is a formal framework for solving sequential de-
cision making problems that describes a discrete-time stochastic control problem.

An MDP is a tuple M = 〈S, A,T ,R,γ〉 of the following variables:

S−the state space

A−the action space

T −the state transition probability function

R −the reward function

γ ∈ [0,1)−a discounting factor

A Markov decision process can define a problem with either discrete or continu-
ous state and/or action spaces. At any time step t , the MDP M is in some state st ∈ S.
Upon taking action at ∈ A, the MDP transitions to state st+1 according to the transition
function, which maps state-action pairs to a probability distribution over possible next
states, T : S× A×S 7→ [0,1]. The reward function takes a transition (state, action, next
state) and returns a real-valued number Rt , where R : S× A×S 7→ R. These functions
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dictate the dynamics of a task, and the discounting factor γ is a property of the task that
represents the value of taking an action now rather than later in the future. An MDP must
retain the Markov property which declares that the future state is a function of only the
present state and action and not any previous history. Formally, the following must be
true:

T (st+1|st , at ) = T (st+1|st , at , st−1, at−1, ...)

A solution to an MDP constitutes a policy π(s) that defines, for each state, a proba-
bility distribution over actions. The expected return (called the value) of a policy is given
by

V (π) = E[Σ∞
t=0γRt |s0,π],

where s0 is an initial starting state. Often, one refers to the value of a particular state.
This is then the sum of discounted rewards expected from following policy π beginning
in state st :

Vπ(st ) = ∑
st+1

T (st+1|st ,π(st ))(R(st ,π(st ), st+1)+γV (st+1)),

where actions are selected according to the policy. An optimal policy is one that maxi-
mizes this value for all possible states in S.

FACTORED MDPS

A factored MDP [2] is an MDP in which structure has been encoded through the use of a
dynamic Bayesian network [3]. It offers a principled approach to abstraction in the form
of compressing the transition function by breaking the state space into components. The
result of approaching an MDP as a factored problem can be an exponential reduction in
the problem space over which an optimal solution must be found [2].

In a factored MDP, the state is factored into state variables, thus the state space fac-
tored into k variables can be broken down into its k components:

S = S1×S2×...×Sk .

Each individual state s in the state space is defined by the value of its k state variables.
The advantage comes in defining the transition function as a dynamic Bayesian network
which describes the influence of taking an action on each state variable separately. The
transition of a particular state variable may only depend on a subset of the state vari-
ables before it. This abstracts away components from transitions where they have no
influence, allowing the transition function to be compactly represented. For solutions to
solve factored MDPs efficiently, the reader is referred to [2, 4].

2.1.1. EXACT ALGORITHMS
Two popular approaches for optimally solving Markov decision processes are described
here, suitable when both the state and action spaces are discrete, finite and of “reason-
able" size (this is elaborated on further in the section). Several adaptations of these foun-
dational methods have been developed, and continue to be, to solve MDPs that do not
fit into these terms. In general, finding a solution to an MDP falls into the study of plan-
ning and is commonly approached with dynamic programming, in which solving the
problem is broken into sub-steps and solved iteratively [5].
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POLICY ITERATION

Policy iteration involves continuously evaluating and improving a policy until it con-
verges to the optimal policy. The initial policy and value function are randomly initial-
ized, and the policy is first evaluated by calculating its value. This is referred to as the
policy evaluation step and is computed for every state s ∈ S, repeatedly iterating over the
state space until convergence:

Vπ(s) =∑
s′

T (s′|s,π(s))(R(s′|s,π(s))+γV (s′)), (2.1)

where π(s) is the action suggested by the current policy in state s. Equation 2.1 is an
example of what is known as a Bellman equation.

The policy improvement step then computes a new policy that selects the best action
according to the newly calculated value function, again over all states s ∈ S:

π(s) = argmax
a

∑
s′

T (s′|s, a)(R(s′|s, a)+γV (s′)) (2.2)

The policy evaluation and improvement steps are continuously performed until con-
vergence, at which point the policy and value function do not change. For a finite MDP,
policy iteration is guaranteed to converge to an optimal policy [6].

VALUE ITERATION

In value iteration [7], the process of policy evaluation which generally requires multiple
sweeps over the state space is truncated. The following computations are performed
on an arbitrarily initialized value function that combine this truncated step with policy
improvement:

Vt+1(s) = max
a

∑
s′

T (s′|s, a)(R(s′|s, a)+γVt (s′)), (2.3)

where this is performed over all s ∈ S only once in each iteration step t . While this is
theoretically guaranteed to converge to the optimal value function only after an infinite
number of steps, in practice, the algorithm is stopped when the value function changes
only a small degree between iterations [6]. The optimal policy is then the one which
maximizes this value in every state.

2.1.2. CHALLENGES
Both of the algorithms described above are tabular approaches that maintain the value
function in tabular form. This limits them to discrete MDPs of manageable size, as the
memory requirements for this table can be high and quickly become infeasible. The oft-
mentioned curse of dimensionality describes the exponential increase in the state space
with increase in the number of state variables [7]. This, combined with the multiplicative
effect of the size of the action space can make it very computationally expensive (both
in memory and time) to solve large MDPs optimally.

2.2. REINFORCEMENT LEARNING
Reinforcement learning (RL) is a technique for approaching problems that can be mod-
eled as MDPs, but where the transition and reward functions are unknown [6]. Through
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experiences collected by an agent while interacting with the environment, some repre-
sentation of an environment model is learned and used to choose actions that maximize
long-term rewards. In model-based RL techniques, a model is built (in the form of esti-
mations of the transition function T and reward function R) according to the experience
gathered by an agent when interacting with the environment and used to predict the
value of future states when making decisions. In model-free RL, instead of estimating
the model and using offline planning techniques to solve the MDP, experience is used
directly to estimate the value of taking any action from any state.

2.2.1. ALGORITHMS
The field of algorithms for reinforcement learning is a rich and dynamic one, to which
this thesis aims to contribute. Again, choosing the most suitable algorithm depends on a
number of factors such as whether the state or action spaces are discrete or continuous,
how large they are, how sparse the reward function is, whether there are constraints on
the accumulated reward, and so on. Only some of the most popular and general algo-
rithms are detailed here as they are most relevant to later chapters.

Q-LEARNING

While early methods such as TD-learning centered around calculating state values, Q-
learning isolates calculating the value of each state-action pair [8]. The state-action value
is referred to as the Q-value Q(s, a). At time t , upon taking an action at according to
some policy in state st , the agent receives a reward rt+1 and enters the next state st+1. In
Q-Learning, these values are used to update Q(st , at ) through the update:

Q(st , at ) ← (1−α)Q(st , at )+α(rt+1 +γmax
a

Q(st+1, a)) (2.4)

where α is the learning rate.
Under the following conditions, Q-learning is guaranteed to converge to the optimal

values [9, 10]:

• Every state-action pair is visited infinitely often.

• The learning rate α approaches zero at an appropriate rate.

Practically, there becomes some point at which it may be favourable to take actions
which can already be considered good. The question of when to execute actions in or-
der to gain information (and get closer to the true Q-value) and when to execute ac-
tions to maximize reward according to the information you already have is called the
exploration-exploitation dilemma and occurs persistently in reinforcement learning. A
common approach to this dilemma is to take a random action with probability ε and
otherwise take the action with the highest Q-value. This is called an ε-greedy policy.
The parameter ε is often set according to a schedule that decreases it over timesteps,
approaching zero.

Q-learning uses a tabular representation of the Q-value function, thus is extremely
susceptible to the curse of dimensionality detailed above. As with other tabular meth-
ods, it also has no generalization capability and cannot infer anything about state-action
pairs it has never visited. For problems with very large state-action spaces, it can quickly
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be infeasible to use tabular methods such as Q-learning. In these cases, it becomes nec-
essary to use methods that employ function approximation.

DEEP Q-LEARNING

The use of deep Q-networks uses a neural network representation of the Q-value func-
tion, enabling reinforcement learning to be applied to rich and complex state spaces
such as that of Atari games [11]. In deep Q-learning (DQN), the Q-table is replaced with
a neural network that predicts action-values from state inputs. The problem becomes a
regression problem where the target value is:

y = R(s, a)+γmax
a′ Q(s′, a′ : θ′) (2.5)

and θ′ refers to the weights of the neural network Q. The regression problem is to mini-
mize the difference between this and the predicted value given as ŷ =Q(s, a : θ). Notice
that the parameters (weights) of the estimated ŷ are not the same as the network that
gives the Q-values of the next state-action (called the target network). In practice, using
two different neural networks for the target and prediction Q-values is done to reduce
the effects of non-stationarity on the stability of the method. The non-stationarity arises
as the regression task is done on a iteratively updated target. By freezing the parameters
of the target network and updating them only periodically, the method becomes more
stable. Another technique to improve stability is the use of a replay buffer, which stores
experience and is randomly sampled from periodically in order to obtain a batch of sam-
ples for the Q-network update. Deep Q-learning has many variants and iterations, and
remains a popular approach to discrete-action problems with large state spaces.

POLICY GRADIENT METHODS

In policy gradient methods, the policy is directly represented as a function parameter-
ized by some parameter ω and referred to as πω. The reward function according to the
policy is defined as:

J (πω) = ∑
s∈S

ρπω (s)V (s), (2.6)

where ρπω (s) is the stationary distribution induced by the Markov chain resulting by fol-
lowing the policy. This can also be represented as ρπω (s) = limt→∞ P (s = st |s0,πω), or the
probability that you end up in state s after following policy πω from initial state s0 for an
infinite number of time steps. Equation 2.6 can be expanded into:

J (πω) = ∑
s∈S

ρπω (s)πω(a|s)Qπω (s, a). (2.7)

The general idea of all policy gradient methods is to compute the gradient ∆πω J (ω),
and update the parameter ω to move it in the direction suggested by the gradient that
produces the highest reward.

One popular policy gradient method is REINFORCE, also called Monte-Carlo policy
gradient [12]. REINFORCE works by simulating trajectories in order to calculate an ac-
curate gradient of the policy. The gradient is the expectation of the sample gradient:

∆πω J (πω) = Eπω [Qπω (st , at )∆πω lnπω(at |st )], (2.8)
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where Qπω (st , at ) is the expected return Gt received by following the policy from state st

(starting with action at ) for k time steps (a hyperparameter). By simulating the trajectory
of k steps, one can calculate Gt , then update ω according to:

ω←ω+αγGt∆πω lnπω(at |st ), (2.9)

where α is the learning rate and γ the discount factor.
Another family of policy gradient methods is Proximal Policy Optimization (PPO) [13],

which improved on methods such as REINFORCE. PPO consists of methods that are con-
siderably easier to tune than other policy gradient methods while maintaining high per-
formance. There are several versions and modifications of PPO, but one of the first im-
plementations was notable for applying clipping, which encourages the gradient update
to produce a policy that is close to the previous policy, limiting how much variance can
occur in training thus being quite stable.

For an in-depth look at policy gradient methods, the reader may refer to [6].

2.2.2. OFFLINE REINFORCEMENT LEARNING
The reinforcement learning approaches described above are methods of online rein-
forcement learning. In this setting, the agent interacts with the environment at the same
time as improving its policy (or model, in the case of model-based learning). One of
the main issues with RL is the need to interact exhaustively with the environment. Of-
fline reinforcement learning aims to address mainly this issue. In the offline setting, the
agent does not have access to a simulator or generative model, instead only to a data
set D generated through interactions with an MDP. Without access to the MDP itself, the
agent cannot use further interactions to improve its policy. The MDP that emerges from
the given data is referred to as M̂ , where:

M̂ = 〈Ŝ, Â, R̂, T̂ ,γ〉.

The goal in offline RL is to learn a policy πD on M̂ that maximizes the discounted
rewards of the true MDP M . A policy learned by applying a naïve online RL algorithm
to D is likely to over-estimate the value of state-action pairs that are not well-represented
in the data set [14]. To address this, recent methods aim to steer the learned policy away
from such areas.

2.3. ABSTRACTION IN MDPS
In the loosest sense, abstraction suggests the re-representation of information in a way
that compacts it but maintains (enough) meaning. While there is no single accepted def-
inition, one that is aligned with the ideas and context presented here is given below [15].

Definition 1 (Abstraction). An abstraction operation changes the representation of an
object by hiding or removing less critical details while preserving desirable properties.
By definition, this implies loss of information.

Abstraction in reinforcement learning is often considered in one of two categories:
state abstraction and temporal abstraction [16]. By concept, abstraction is a general term
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that can be applied to many different techniques outside of these two categories, but for
simplicity only the two are described in some further detail. State abstraction refers to
how the state space itself is represented in the problem; it generally involves applying
an abstraction mapping to the state space that maps it to a more compact space, then
solving the smaller resulting problem induced by this mapping. Temporal abstraction
refers to temporal extensions of actions, wherein taking an action triggers a sub-routine
that executes subsequent lower-level actions. This is the approach taken in the devel-
opment of skills [17] and in other hierarchical approaches. With regards to particular
MDPs, abstraction is generally considered as one of two kinds. In state abstraction, the
abstraction operation is applied to the state space. In action abstraction, the abstraction
is in the form of temporally-extended actions [18] that potentially consist of multiple ac-
tions joined together in a sequence [19]. Of the two types, this work focuses solely on
state abstraction.

2.3.1. STATE ABSTRACTION
The goal of state abstraction is to compresses a finite state space into a smaller state
space. This results in a smaller problem that allows faster or more efficient computation
of a policy which can then be applied to the original problem [20]. A state abstraction φ

applied to an MDP M is a mapping from the original state space to an abstract state
space, φ : S 7→ S̄. This mapping takes a state s and returns the corresponding state in the
abstract state space φ(s) = s̄. The inverse mapping φ−1(s̄) returns all the ground states
that map to a particular abstract state.

The result of applying the abstraction mapping φ to the original MDP is the abstract
MDP M̄ = 〈S̄, A, R̄, T̄ ,γ〉 where the original action space and discount factor are main-
tained. The original MDP M is commonly referred to as the ground MDP. In the abstract
MDP, the reward and transition functions are a weighted sum of those pertaining to the
ground states that map to a corresponding abstract state.

TYPES OF STATE ABSTRACTION

There are several types of properties of the original MDP that can be preserved by an
abstract MDP that have theoretical implications on the quality of the solution when it is
applied to the original MDP. The referred-to definition of a state-abstraction type is as
follows ([19]):

Definition 2 (State-abstraction type). A state-abstraction type is a collection of func-
tions φ : S 7→ Sϕ associated with a fixed predicate on state pairs:

p : S×S 7→ {0,1},

such that whenϕ clusters state pairs in MDP M , the predicate must be true for that state
pair:

φ(s1) =φ(s2) =⇒ p(s1, s2).

A predicate is a condition on ground states which is preserved by the abstraction.
From [19], an example of a predicate is:

pQ (s1, s2),max
a

|Q∗
M (s1, a)−Q∗

M (s2, a)| = 0.
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This requires that all states merged to the same abstract state share optimal Q-values.
This can be called a Q∗-value preserving or Q∗-irrelevance abstraction.

Commonly found predicates in literature are the following, listed in order of increas-
ing coarseness (coarser abstractions have looser requirements and merge, in general,
more states) [20]:

• Model-preserving - merges states which share a one-step model (one-step transi-
tion and reward).

• Q-value-preserving - merges states which share the same values for all actions.

• Q∗-value-preserving - merges states which share the same value for optimal ac-
tions.

• a∗-value-preserving - merges states which share an optimal action and its value.

• π∗-preserving - merges states which share an optimal action (but not necessarily
its value).

Note that guaranteeing that a predicate is met requires access to at least part of the
solved value function of the MDP.

Theoretical Implications As mentioned, abstraction implies a loss of information. Ide-
ally, this is a loss of irrelevant information, preserving the minimum required detail to
sufficiently solve a particular task. Depending on the predicate preserved in a state ab-
straction, the ability to recover an optimal policy (optimal in the ground MDP) from the
abstract MDP may suffer. From the list of state abstractions above, only the model, Q-
value, and Q∗-value preserving abstractions are guaranteed to produce an optimal pol-
icy (in the ground MDP) under normal conditions [20].
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- Tirukkuraḷ 677

4

There are several drawbacks to reinforcement learning (RL) that act as barriers to its
wide-spread implementation. These issues are particularly relevant in real-world prob-
lems which are often high-dimensional and have complex dynamics. One of the down-
falls of RL agents is that they require numerous interactions with the environment, some-
times making fatal errors, in order to learn to make optimal or near-optimal decisions
from any state. This limits the applicability of RL agents in real-world problems where
safety and cost are paramount and random or bad actions must be minimized. In dis-
crete domains in particular, where learning is done in tabular form, reinforcement learn-
ing agents do not have the ability to generalize over features in the state space. This
results in learning processes where all states and actions need to be exhaustively visited.

State abstraction has been posited as a way to reduce the size of a the problem, pro-
viding exponential benefits in terms of samples and computation required to finding a
good solution [1]. However, this generally means learning a single abstracted represen-
tation of the MDP. Humans, on the other hand, are capable of selectively abstracting
information as needed during decision-making [2]. One way to apply a similar ability
to reinforcement learning would be to break down the MDP into several MDPs relat-
ing to each task and abstraction, however doing this requires the reward function to be
decomposed into local reward functions. This is difficult to do by hand and requires
extensive expert knowledge, whereas it may be the case that only a global reward func-
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tion is available. In addition, devising abstractions often requires the optimal solution to
the MDP [3]. In reinforcement learning, data is generally collected during the learning
process and not available beforehand, defeating this possibility.

There are many scenarios where different information in an observation is relevant
at different times in an overarching task. Consider an agent that must navigate to a key,
pick it up, and then navigate to a door and unlock it. While looking for the key, the
door location is not needed for decision-making and unnecessarily increases the state
space. Similarly, after the agent has picked up the key, it is no longer relevant where the
key was before it was picked up. Traditional reinforcement learning requires the agent
to use the joint space of all potentially relevant information in its planning. Hierarchi-
cal and other modular reinforcement learning methods aim to break up problems into
sub-tasks, speeding up learning via abstraction and facilitating transfer of knowledge.
However, such methods typically require detailed specification of the sub-tasks, includ-
ing their entry and termination states, decomposition of the reward function and careful
hand-tuning of parameters in order to be used effectively. It is difficult to rely on humans
to perfectly define these properties, especially for large and complex problems.

The parallel learning approach introduced here provides the benefits of hierarchical
and modular learning without the need for highly-crafted deployment. State abstraction
is applied in a novel way, where, rather than seeking a single abstraction of the envi-
ronment, it is assumed that relevant state information varies throughout the task, thus
several abstractions can be composed. By reducing many of the usual constraints on
abstraction definition, the method allows for input of an imperfect human-defined ab-
straction mapping, consisting only of a mapping of states to abstract states. Learning
in the abstractions and learning how to use the abstract policies is done using only the
global reward from the environment as feedback. The aim is to exploit both given human
knowledge and the modular structure inherent in the problem to address issues such as
high sample requirements and inflexibility. In tasks with certain properties (discussed
in the theoretical analysis), this method can make efficient use of experience and reach
a total reward threshold in fewer learning episodes than traditional methods, as well as
facilitate the transfer of modules between related tasks.

One of the benefits of taking a modular approach is the potential for transferring
knowledge in order to bootstrap learning on a new task. Transfer learning forms a large
field of research populated mainly with heuristic methods with limited formal guaran-
tees [4]. The idea is to transfer learning from one task (the source task) to another re-
lated, but different task (the target task). The aim can be to improve any of several dif-
ferent facets of learning in the target task, such as performance of the initial policy or
number of samples required to reach an optimal policy. The problem of transfer learn-
ing is closely related to that of abstraction as the goal is to identify which parts of the
policy or model generalize to new problems and which should be overwritten with new
knowledge. However, even if these parts are known, the problem of re-learning parts of
the new task without strong assumptions on the value function or transition function is
non-trivial. Simply transferring the policy or value function from one task to another can
result in negative transfer, where learning in the new task is hindered by the constraints
or inaccuracies imposed by this information, as the agent does not freely explore parts
of the problem space that may be necessary to learn optimally in the new task. The par-
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allel learning approach avoids the possibility of negative transfer through the use of a
meta-agent that learns where to use the transferred policy (if at all).

In this chapter, a novel approach to state abstraction is defined that facilitates the
use of simple human-definable abstraction mappings in a reinforcement learning algo-
rithm. The method that exploits abstractions of this type is then introduced that allows
for the input of several abstraction mappings. This method can also be used to learn in
which states the abstractions apply (if this information is not given) in conjuction with
solving the MDP. A theoretical analysis follows that explores the optimality conditions of
the method and the conditions of improvement over a flat RL approach. In experiments,
it is shown that not only can gains be made when the states in which the abstraction
mappings apply are known, gains can also be made when no previous knowledge about
when to use the given abstractions is provided. Finally, using this approach to conduct
transfer learning is demonstrated in experiments.

3.1. FORMALISMS
The task or problem to be solved is modeled as a Markov decision process (MDP) M =
{S, A,R,T ,γ}. This will also be referred to as the original or ground MDP. Recall that,
as in any reinforcement learning problem, the transition T and reward R functions are
unknown. The goal is to learn a policy, a mapping from states to actions, that maximizes
long-term reward.

3.1.1. STATE-CONDITIONED ABSTRACTION
Traditionally, finding a state abstraction mapping requires defining the predicate which
it preserves; for example, an abstraction formed by merging states that share the same
Q-values. This generally requires a series of comparative tests to the known value func-
tion of the ground MDP. This is a computationally expensive procedure; even finding an
approximate abstraction for a particular predicate is an NP-Hard problem [5]. Further,
in the reinforcement learning setting, the agent only has access to a generative model
(or simulator), and not to the full MDP itself. These difficulties imply that hand-crafting
such a precise mapping would be nearly impossible. This thesis is interested in making
use of abstraction mappings that can be defined by a human, where they carry semantic
meaning to an expert with knowledge of the problem.

To be able to make use of human-definable abstractions, state abstraction is reframed
in a way that decouples the predicate and the mapping. Rather than seek a mapping
that preserves a predicate over the entire state space, the mapping is given and the
states where the predicate holds are sought. This is a new concept introduced here
as a state-conditioned state abstraction, which consists of a mapping, a predicate, and
the set of states in which the applied mapping preserves the predicate. The term state-
conditioned abstraction is used synonomously with state-conditioned state abstraction
from here forward for conciseness and to remain general to the case of action abstrac-
tion, though only abstracting the state space is considered in this work.

Definition 3 (State-conditioned abstraction). A state-conditioned abstraction 〈φ, p,Sp〉
is defined in relation to a particular MDP M . It contains a single abstraction mapping φ,
a predicate p, and a set of states Sp ∈ S in which the mapping preserves the predicate.
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When φ clusters state pairs in MDP M , the predicate must be true for each state pair
in Sp :

φ(s1) =φ(s2) =⇒ p(s1, s2)∀s1, s2 ∈ Sp .

Consider a discrete MDP with state space S. When considering state-conditioned ab-
stractions, the problem of finding an abstraction changes from computing the abstrac-
tion mapping to learning where a given mapping applies. We first look at the former case
where the aim is to find an abstraction mapping that, applied to the entired state space,
preserves the Q-values of the optimal action in the states it merges. Assuming that we
have the optimal value function, making a comparison requires checking the optimal Q-
value of two states (or clusters, as they are formed) to see if they can be merged. In the
scenario where no two states share optimal Q-values, the number of comparisons that
must be made is |S |!

2!(|S |−2)! , as every state must be compared to every other state (except

itself) once (the equivalent of
(|S |

2

)
).

In the alternate case where state-conditioned abstraction is applied, a candidate ab-
straction mapping φ is given that maps the state space S to abstract state space S̄,
where |S̄| < |S |. Here the goal is to find the states where this mapping merges states
that share optimal Q-values. Comparisons are made between states merged into ab-
stract states. Only a single contradiction is needed before all the merged states can be
dismissed. Thus, in the same scenario where no two states satisfy the predicate, only |S̄|
comparisons are required. In the other extreme where all states satisfy the predicate,
finding an exact abstraction requires |S |−1 comparisons, while finding the states where
a proposed mapping is satisfied requires at most |S | − 1 comparisons. This is not sur-
prising, as in the case of state-conditioned abstraction, it is unlikely to end up with an
abstraction that accomplishes maximum compression of the state space. However, there
is still merit to taking this approach, as it may be infeasible to find an optimal abstraction
due to the high amounts of computation and knowledge required.

If the set of states Sp is known, the state-conditioned abstraction mapping can be
put into the terms of an abstraction mapping definition φ′ applied over the entire state
space (all s ∈ S), given by:

φ′(s) ≡
{
φ(s) if s ∈ Sp ,

s otherwise.

This produces the abstract MDP from the ground MDP and state-condition abstraction.

3.1.2. OPTIMAL-POLICY-PRESERVING ABSTRACTIONS

The coarsest form of state abstraction is considered to be optimal-policy-preserving ab-
straction (which merges states that share an optimal policy), particularly because it is
agnostic of both the model and value function of an MDP [1]. All finer state abstraction
types are optimal-policy-preserving, making it particularly attractive to devise methods
that maintain optimality even in the case of only optimal-policy-preservation. However,
in theoretical literature, the interest using state abstractions which do not have strict
guarantees, such as these, has been limited. This is likely because when no guarantees
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can be made, the performance of a policy learned on such an abstraction of the prob-
lem could be arbitrarily poor [6]. Even so, finer (and more exact) abstraction types re-
quire extensive knowledge of the problem dynamics or data resulting from exhaustive
interactions with the MDP. For many problems, this can be simply impractical or even
impossible to do.

In the case of an optimal-policy-preserving abstraction, the predicate is:

π∗(s1) =π∗(s2)

When the policy π∗ is deterministic, as assumed in this chapter, this implies that
π∗(s1) = π∗(s2) = a∗, i.e., both states share an optimal action (but not necessarily the
value of the action). In the previously mentioned door and key problem, if the agent
needs to pick up the key before going to the door, then regardless of whether the door
is at point A or B, the best action is to go toward the key. This is intuitive and fairly easy
for a human to define. In contrast, knowing that going toward the key will have the exact
same long-term reward no matter the location of the door is not so intuitive. Optimal-
policy-preserving abstractions do not require detailed knowledge of the value function
or model.

3.2. PARALLEL Q-LEARNING IN ABSTRACTIONS
In the parallel learning in abstractions approach, the aim is to take advantage of ab-
stractions that are at least optimal-policy preserving. The method takes a set of abstrac-
tion mappings and uses them to solve an MDP in a way that is both sample efficient
and modular. The agent conducts learning in several abstract problems in parallel, ef-
ficiently using experience to update multiple local Q-value functions at once, each one
representing a piece of the original (ground) MDP. Learning in abstract MDPs is known
to introduce a number of potential problems that make recovering an optimal policy im-
possible in many cases [7]. In this work, two key things mitigate these issues: 1) learning
in the ground MDP is done in parallel at all times, preserving the ground truth, and 2) the
use of a novel Q-update function guarantees that the abstract modules will never over-
estimate the true value of an action, ensuring that they are used only to boost learning
when possible.

The proposed parallel learning approach is built on top of the Q-learning framework
in a method referred to as Parallel Q-Learning in Abstractions (QLiA). Under certain con-
ditions, Q-learning is guaranteed to converge to the optimal policy, providing a solid
foundation for this approach. The method requires a set of J candidate abstraction map-
ping functions Φ = {φ1,φ2, ...,φJ } provided by an expert. In the states where the given
abstraction mappings are optimal-policy-preserving, the optimal policy can be learned
efficiently in the abstract MDP. When the relevant states Sp for each abstraction map-
ping are unknown, a meta-agent uses reinforcement learning to learn how to compose
the policies of each abstraction agent using global reward as feedback. This is the main
case considered for this method, as flexibility is maintained and the optimal policy will
be recovered even when the given abstractions are not optimal-policy-preserving. Later
sections discuss how the approach works if these relevant states are known, and how
sample complexity can be improved further in this case (with some caveats).
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Figure 3.1: Parallel learning in the taxi domain. Though this approach could also provide an opportunity to
abstract the actions available to each abstraction module, this work considers that they share the same actions
available to the ground truth module.

3.2.1. CASE 1: INCOMPLETE ABSTRACTIONS
When the relevant states Sp for each abstraction mapping are unknown, a reinforcement
learning agent (the meta-agent) is tasked with learning which abstract policy to execute
at every state in the state space. The meta-agent models this task MDP where the state
space is the ground state space and the action space is the set of abstraction choices.
The number of abstraction choices is equal to the number of candidate abstractions J
plus 1; this additional candidate is a trivial mapping from each state to itself (so it is not
an abstraction). This trivial mapping, the ground truth, is referred to as φM . The ac-
tion space of the meta-agent is Aφ = {Aφ1

, Aφ2
, ..., AφJ

, AφM
}. Each action, including the

ground truth, corresponds to another RL learning problem which has a local state space
formed by applying its abstraction mapping. In each of these problems (also referred to
as modules), the set of primitive actions A are those that are able to be executed in the
environment.

A meta-agent’s local MDP is defined as:

M̂ = {S,Aφ, R̂, T̂, γ̂},

where R̂ maps state-abstraction-action pairs to real-valued rewards (R̂ : S×Aφ 7→R) and T̂
maps them to a probability distribution over next states (T̂ : S×Aφ×S 7→ [0,1]). Each ab-
straction agent i exists in an abstract MDP:

M̄ i = {S̄i , A, R̄ i , T̄ i , γ̄i }.

The abstract MDP M̄ i is the result of applying the candidate abstraction mapping φi to
the ground MDP for all states.

Example The classical taxi problem was initially introduced in the context of hierar-
chical RL and continues to be used to demonstrate methods that exploit structure [8]. In
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this problem, an agent in a grid world is tasked with picking up a passenger from a speci-
fied location and dropping them off at a specified destination. The state space spans the
variables {x, y, passenger location, destination location}, with one of the
passenger location values indicating that the passenger is in the vehicle. The actions
available are: {up, down, left, right, pick up, drop off}. The agent gets a
+20 reward for successfully dropping the passenger off at the correct destination and
a -1 reward for each action taken; illegal pick up or drop off actions incur a -10 re-
ward penalty. In Figure 3.1, the structure of the parallel learning approach to the taxi
problem is shown. The meta-agent has three action choices; each action corresponds
to an independent learning problem. Two candidate abstractions have been provided
which see only a subset of the ground state, one that ignores both the passenger location
and destination and another which ignores only the destination.

The QLiA system requires the meta-agent to learn which abstract policy to execute
in each state, without knowing what the relevant states are. In Q-learning, at every time
step, new experience is used to update Q-values corresponding to state-action pairs in
a Q-table. In QLiA, multiple learning processes occur in parallel, thus multiple Q-tables
are used. The entire algorithm, summarized in Algorithm 1, is described below.

The meta-agent Q-table Q̂ is of size |S×Aφ | and stores the value of executing a par-
ticular abstract policy in every state. An additional Q-table for each abstraction agent Q̄i
(i = 1,2, ..., J ) has size | S̄i × A | and stores the value of executive primitive actions from
each abstract state φi (s). The ground Q-table, which maintains the ground truth, is re-
ferred to as Q. An ε-greedy policy π is used to choose actions; it takes a Q-table, state,
action set and parameter ε and, with probability ε, returns a random action (drawn from
a uniform distribution), or else returns the action with the highest Q-value for that state.
The two-step action selection process, performed at every time step, is:

1. Given the state st and Q-table Q̂ the meta-agent makes an abstraction choice aφt =
φk that indicates whether an abstract Q-table Q̄k or the ground Q-table Q (if k is
equal to J +1) will be used to select the primitive action.

2. If an abstract Q-table will be used, st is mapped to abstract state s̄t = φk (st ) and
the Q-values for action selection are given by Q̄k (s̄t ). If the ground Q-table will be
used,Q(st ) is used for action selection. Upon executing at in the environment, the
agent receives a reward rt and next state st+1.

The execution of an action and receipt of a reward and subsequent next state trig-
gers a multi-step update process. The Q-tables of all abstraction candidates are updated
after every action taken, regardless of which abstraction was used to choose the regular
action, allowing experience to be shared amongst each module.

The novel update The most important distinction of the QLiA approach over other
modular methods is the update used by the abstraction agents. Rather than performing
a traditional off-policy update that uses the value of the next abstract state, the abstrac-
tion agents update their values according to the value of the ground next state. This is
the key difference in the QLiA approach that mitigates the issues that otherwise occur if
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each abstract problem is solved as an independent MDP. The implications of doing this
are discussed further in the theoretical analysis in Section 3.4.2.

The two-step update process is:

1. For each candidate abstraction i , the experience (φi (st ), at ,rt , st+1) is used to up-
date Q̄i :

Q̄i (φi (st ), at ) ← Q̄i (φi (st ), at )+α(r +γmax
φ

Q̂(st+1,φ)− Q̄i (φi (st ), at )).

For the ground agent, the experience (st , at ,rt , st+1) is used to update Q:

Q←Q(st , at )+α(r +γmax
a
QM(st+1, a)−Q(st , at )).

The two updates are not the same; the ground agent does a traditional off-policy
update but the abstraction agents update their values according to the value of the
ground next state.

2. The reward received is also used to update Q̂, using the state, next state and the
abstraction action chosen. Thus, Q̂ is updated with the experience (st , aφ,rt , st+1):

Q̂(st ,µ) ← Q̂(st ,µ)+α(r +γmax
φ

Q̂(st+1,φ)− Q̂(st ,µ))

This method relies on a human expert providing abstraction mappings that maintain
the predicate in parts of the problem, without guaranteeing that this will be the case as
the agent will converge to an optimal policy even if it is not. If the provided mappings can
be applied to parts of the state space, the abstraction agent will learn the optimal policy
faster in these areas and the meta-agent will learn which abstraction agent chooses ac-
tions that lead to higher long-term reward. By this mechanism, applying QLiA can result
in efficient learning. A key benefit of this approach is that the abstractions are coarse
and do not need to hold for the entire MDP, being much easier for a human to define.
This aligns more with the goals of hierarchical approaches which aim to break up the
problem into sub-problems.

3.2.2. CASE 2: FULLY-SPECIFIED ABSTRACTIONS
In the previous section, the relevant states Sp for each potential optimal-policy-preserving
abstraction mapping are not known. Instead, the meta-agent must learn to choose the
abstractions that are optimal-policy-preserving in each state. In the case where the
expert does provide the full specifications of a set of state-conditioned abstractions,
each with a relevant state set Sp = {S1

p ,S2
p , ...} paired with an abstraction mapping Φ =

{φ1,φ2, ...}, there is no longer a need for the meta-learning layer. The trade-off is that this
results in a more rigid approach that will suffer from any errors in the given specification
and in which optimality is not guaranteed.

The fully-specified state-conditioned abstractions inform a fixed policy Π which se-
lects the appropriate abstraction (from a setΦ) for every state:

Π(s) = {φi ∈Φ |s ∈ Si
p }.
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Algorithm 1: Parallel Q-Learning in Abstractions (QLiA)

Input: Set of J +1 candidate abstraction mappings (including the full state agent)
Φ= {φ1,φ2, ...,φJ ,φM }

Input: Primitive actions A
Input: Abstraction-choice actions Aφ = {µ1,µ2, ...,µJ+1}

1 Initialize parameters α, γ, ε, δα, δε, H ;

2 Initialize Q̂,Q̄1, ..., Q̄J ,Q;
3 Set t = 0;
4 while t < H do
5 Observe state st ;

6 µt =π(Q̂, st , Aφ);
7 at =π(Q̄µt

,φµt
(st ), A);

8 Take action at ;
9 Receive reward r and next state st+1;

10 for φi where i ∈ {1, ..., J } do
11 Q̄i (φi (st ), at ) ← Q̄i (φi (st ), at )+α(r +γmax

φ
Q̂(st+1,φ)− Q̄i (φi (st ), at ))

12 end
13 Q←Q(st , at )+α(r +γmax

a
QM(st+1, a)−Q(st , at ));

14 Q̂(st ,µ) ← Q̂(st ,µ)+α(r +γmax
φ

Q̂(st+1,φ)− Q̂(st ,µ));

15 t = t +1;
16 α← δαα;
17 ε← δεα;
18 end

There is an assumption made that each state is uniquely assigned to the relevant
state set of a single abstraction mapping. If it were the case that a state belongs to sev-
eral mappings, an arbitration criterion can be used to choose which abstraction to favour
(presumably the one that merges more states together, providing a more compact repre-
sentation). The final result acts as a partition, where every state is represented in a set of
relevant states, no state falls into more than one set of relevant states, and there are no
empty sets of relevant states.

With fully-specified state-conditioned abstractions, it is no longer a requirement to
include the ground agent in the abstraction agent candidate set. However, in the likely
case that there exist states which are not a member of any abstraction-relevant state
set, it is necessary to include a trivial abstraction which is a one-to-one mapping of the
state space to an identical state space and whose relevant state set includes all these
states. In the parallel updates, the max term is replaced with the maximum value of the
next abstraction agent (that will be chosen by the fixed policy for the next state), in its
corresponding abstract next state. The implications of no longer maintaining a ground
truth Q-table are discussed in the next section.

The entire method of QLiA when abstractions are fully-specified is summarized in
Algorithm 2.
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Algorithm 2: QLiA with Fully-Specified Abstractions

Input: Set of J +1 candidate abstraction mappings (including the full state agent)
Φ= {φ1,φ2, ...,φJ ,φM }

Input: Abstraction selection policyΠ
Input: Primitive actions A
Input: Abstraction-choice actions Aφ = {µ1,µ2, ...,µJ+1}

1 Initialize parameters α, γ, ε, δα, δε, H ;
2 Initialize Q̄1, ..., Q̄J ;
3 Set t = 0;
4 while t < H do
5 Get state st ;
6 Choose µt usingΠ(st );
7 Choose at using π(Q̄k ,φt (st ), A);
8 Take action at ;
9 Receive reward r and next state st+1;

10 Get µt+1 usingΠ(st+1)
11 for φi where i ∈ {1, ..., J } do
12 Q̄i (φi (st ), at ) ←

Q̄i (φi (st ), at )+α(r +γmax
a

Q̄µt+1
(φi (st+1), a)− Q̄i (φi (st ), at ))

13 end
14 t = t +1;
15 α← δαα;
16 ε← δε ε;
17 end

3.3. EXPERIMENTAL EVALUATION
In this section, experiments are performed to assess QLiA both with unknown and fully-
specified state-conditioned abstractions in two different domains. All environments are
simple discrete grid world domains where the agent navigates using the four cardinal
directions: up, down, left, right.

QLiA requires a set of candidate optimal-policy-preserving abstraction mappings
provided by a human. In theory any type of abstraction mapping between two discrete
state spaces can be applied, however, when a task is represented as a factored MDP there
is an opportunity to define abstraction mappings based on subsets of state variables;
this is more interpretable as the variables carry semantic meaning. This is the type of
abstraction mapping provided in all the following experimental set-ups. In a factored
MDP, an abstraction mapping can be defined as a subset of state variables.

Baselines QLiA is compared to a flat Q-learning agent in order to empirically explore
the potential gains (or losses) in sample efficiency. Another baseline is a Q-learning
agent learning conventionally in the abstract MDP of a single abstraction mapping. In
the taxi domain, MAXQ is introduced as an additional baseline. MAXQ is a hierarchical
RL approach that uses full specifications of both the sub-procedures and their relevant
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(a) No inner walls impede left and right movement. (b) An inner wall impedes some movement to the left and right.

Figure 3.2: Hallway environment where the agent gets reward for reaching a star.

state abstractions [8]. The learning parameters α, ε, and linear decay schedules for pa-
rameters α and ε were chosen by running each algorithm with all combinations from
a discrete set of expert-chosen values and taking the values that resulted in the highest
cumulative reward for each algorithm individually.

3.3.1. HALLWAY ENVIRONMENT
The domain in the first two evaluations is referred to as the hallway environment (pic-
tured in Figure 3.2), wherein an agent must go all the way to the right of the hallway and
take a final right action to receive a +10 reward and end the episode. All actions incur
a penalty of -1 reward to execute. In the first version of this domain, the agent must re-
main on the grid but is otherwise not impeded. In the second version, there is a wall
that impedes the left and right motion of the agent except in the center row. These two
environments demonstrate how QLiA compares when the size of the relevant state sets
for the abstraction candidate differ.

The hallway environment can be modeled as a factored MDP where each square on
the grid is represented by its corresponding row and column coordinate. The abstraction
provided to QLiA is a single candidate mapping which ignores the row variable, meaning
it maps all states that differ only by their row value to the same abstract state (Case 1).
The QLiA_specified agent is given the same abstraction mapping as well as the set of
states in which it preserves the optimal policy (Case 2). In the domain shown in Figure
3.2a, all states share an optimal action (go right). However, in the domain in Figure 3.2b,
the states directly to the left of the wall do not share this optimal action. Finally, the same
abstraction is also applied to the MDP solved by the naïve Abstract Q agent. The initial
domain is small, with a size of 5 rows and 10 columns. To demonstrate the value of the
parallel learning approach in problems of larger sizes, an extra dimension of varying size
is added to the state and/or the action space. This noisy dimension has no actual impact
on the reward or dynamics of the environment but, because a tabular approach is taken,
it makes the problem of learning the value function proportionally bigger and therefore
the exploration requirements higher.

RESULTS

The results of applying QLiA to the hallway domain without an inner wall are pictured
in the plots in Figure 3.3. The plots show regret against the number of learning episodes,
where regret is the difference in total episode reward between an agent that behaves
optimally and the indicated algorithm – lower regret signifies better performance. The
naïve Abstract agent performs as well as the QLiA_specified agent, reaching optimal re-
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Figure 3.3: Results of running experiments on the hallway domain with no inner wall. 200 trials are averaged
with the 90% confidence interval depicted as the shaded region. Note that the orange line (Abstract agent) is
entirely behind the red line (QLiA_specified agent).

wards in few episodes. This is expected as the given abstraction is optimal according to
the strict Q-value preservation criteria, where each merged state shares not only an opti-
mal action but also the Q-values of all actions, and is therefore guaranteed to converge to
an optimal policy [1]. This neat property does not hold in the other experiments. In the
smallest state-action space, the Q agent performs on par with the QLiA agent. However,
as the problem space grows, the benefits of using QLiA become more and more obvious,
as the theoretical analysis revealed.

The hallway environment with an inner wall highlights the benefits that are possible
even when the abstraction candidates provided are approximate or only hold in some
states. The results of the experiments are shown in Figure 3.4. Here it is obvious that the
naïve Abstract agent performs very poorly, and does not converge. Both cases of QLiA
outperform the Q agent, particularly as the state-action space increases.

The policies learned by the meta-agent are plotted in Figure 3.5, for versions of the
hallway domain where the wall is placed in different positions. The states directly to the
left of the wall do not share an optimal action, as the agent must move to the gap in the
wall in order to get to the reward. The black squares indicate the positions where the
meta-agent has greater or equal preference for the abstraction agent over the ground
agent. This visual demonstrates how the meta-agent learns in which states the abstrac-
tion is not suitable for choosing an optimal action (which states do not maintain the
predicate).
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Figure 3.4: Results of running experiments on the hallway domain with an inner wall placed between the 3rd
and 4th columns. 200 trials are averaged with the 90% confidence interval depicted as the shaded region.

Figure 3.5: In the top row, the wall is between the 3rd and 4th columns, in the middle row between the 5th and
6th columns, and in the bottom row between the 7th and 8th columns. Squares depict the policy of the meta-
agent where black indicates equal or greater preference of the abstract agent and white indicates preference of
the ground agent.
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3.3.2. TAXI
QLiA was applied to a stochastic version of the taxi problem, where there is a 20% chance
of moving in a random perpendicular direction each time a directional action is taken
before the passenger has been picked up and a 30% chance of the destination randomly
changing when the passenger is picked up [9]. The QLiA agent is given a single abstrac-
tion mapping corresponding to the subset of state variables {x, y, passenger}, ignor-
ing the destination. It is compared against a Q agent (with no abstraction), and MAXQ,
which requires the full definition of the sub-procedures and their pertaining state ab-
stractions by an expert. The algorithms were both tuned to bring out their best respective
performance.

RESULTS

The experimental results are plotted in Figure 3.6. The biggest advantage of MAXQ is
seen in the earliest few episodes, as it has a significantly higher initial reward. This huge
gain is due to the limited action set available in each subtask, which keeps the agent
from exploring the illegal penalty-inducing actions pick up or drop off. With the
same knowledge, this could easily be incorporated by limiting the actions available to
each module in QLiA. Even with extensive parameter tuning, it was not possible to have
MAXQ reach the same top performance as the other algorithms in the same number of
episodes.

There is no benefit seen to using QLiA with unspecified relevant states over standard
Q-learning. The reduction in problem size under the QLiA architecture can be looked
at analytically. The original problem is size 3000 (500 states × 6 actions) and QLiA has a
problem size of 2200. This reduction appears to be too small to produce a visible benefit
when applying QLiA if the relevant states are not known. However, it is worth noting that
the performance did not falter even with the added learning layers of QLiA and the other
benefits of the approach still stand, most notably that it empowers the reuse of a learned
abstract module in a new related problem, as is discussed in the next section.

3.4. THEORETICAL DISCUSSION
Q-learning is guaranteed to converge under the assumption that each state-action pair
is visited infinitely often and that the learning rate α approaches zero [10]. However,
in the proposed method, the application of abstraction and the layered approach taken
compromise the properties of traditional Q-learning. In this section, the theoretical im-
plications of the parallel learning in abstractions approach are evaluated by investigating
the following questions:

1. Does this approach maintain assumptions of stationarity?

2. Under which conditions is it guaranteed that the abstraction modules will learn
the (or an) optimal policy?

3. Under which conditions is convergence to the optimal policy guaranteed?

4. Under which conditions is decreased regret over standard Q-learning expected?

5. How do these theoretical results change in the case of fully-specified subtasks (Case
2)?
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Figure 3.6: Results depicting the average of 200 trials on the stochastic taxi domain. Shaded region indicates
90% confidence interval.
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3.4.1. NON-STATIONARITY
When the relevant states for each abstraction mapping are not fully-specified, QLiA in-
volves two layers of simultaneous reinforcement learning. A meta-agent learns to opti-
mize its choice of abstraction at the same time as the abstraction agents learn to opti-
mize their choice of action subject to the distribution induced by the policy of the meta-
agent. This breaks the assumptions of stationarity required for convergence of the Bell-
man equation to the optimal policy. However, the included ground agent is not subject
to the same non-stationarity as it observes the full state description and is updated with
a regular off-policy Q-learning update. In this section, it is shown that the meta-agent is
guaranteed to converge to a policy where choosing the ground agent is the (or an) op-
timal action and that the ground agent itself is guaranteed to converge to the optimal
policy. Thus, this source of non-stationarity in the abstraction agents is tolerated, know-
ing that with enough experience the system will converge to an optimal solution. In the
case where subtasks are fully-specified, there remains a source of non-stationarity that
occurs in abstract MDPs due to the clustering of states with different dynamics [11].

3.4.2. CONDITIONS OF MODULE OPTIMALITY
To investigate the optimality of the method, it is first considered whether the abstraction
agents will learn meaningful policies both in merged states where the predicate holds
and in merged states where it does not hold. If each abstract space is treated as an ab-
straction of the entire MDP, a typical Bellman update for an abstract state would be the
following:

Q̄(φi (s)t , at ) ← (1−α)Q̄(φi (s)t , at )+α(r (st , at )+γmax
a

Q̄(φi (s)t+1, a))

There is a glaring issue here, which is that this assumes that the state space in the abstract
MDP contains all the necessary information to produce a Markovian problem for which
the optimal policy can be learned with Q-learning. However, the abstractions considered
are not expected to maintain optimal-policy-preservation for the full problem, thus this
update attempts optimize a partially observable problem – naïvely applying Q-learning
to a partially observable MDP can result in an arbitrarily bad solution [6]. The loss of
stationarity due to merging states with different state distributions has been cited as a
major contributor to this issue [11].

This issue results in a potential to over-estimate actions due to the max operator
which performs a max over the action values of the next abstract state. Therefore, in the
parallel learning scheme, the max is applied according to the entire system, considering
both the actions of the meta-agent as well as the possible actions of the other modules.
This means the max is performed on the next state value according to the meta-agent:

Q̄i (φi (s)t , at ) ← (1−α)Q̄i (φi (s)t , at )+α(r (st , at )+γmax
φ

Q̂(st+1,φ))

This small change (highlighted in red) does several things. First, it means updates are
made according to the value assigned to the true next state (i.e. the next state accord-
ing to the flat representation), avoiding the repeated insertion of noise into the feedback
loop that can occur if the next abstract state is used, and the resulting problems de-
scribed above. Second, it means the distribution over next states that occurs as a conse-



3.4. THEORETICAL DISCUSSION

3

41

quence of the meta-agent policy is embedded into the calculated Q-values. This second
point requires further expansion.

Each abstraction module observes only a partial observation, thus each parallel Bell-
man update is performed on a different local state for each abstraction. The meta-agent
policy sees the full observation and decides which abstraction will choose the executed
action. The transition to the next (true) state is not only the consequence of the abstrac-
tion agent action, but also of the meta-agent action, which is a consequence of the cur-
rent (true) state that the abstraction agent cannot observe. The definition of the Q-value
for the abstraction agent i can be decomposed into:

Q̄i (φi (s), a) = ∑
s∗∈φ−1

i (φi (s))

∑
s′
ρi (s∗|φi (s))T (s′|s∗, a)[R(s∗, a)+γV (s′)], (3.1)

where ρi (s∗|φi (s)) is the probability that the abstraction agent i is in the true state s∗
given its local observation φi (s). This is determined by both the initial state distribution
inherent in the environment and the behaviour of the QLiA agent. In contrast to the tra-
ditional definition of the Q-value, the sum is over all possible true current states in addi-
tion to summing over the next states. Recall that the inverse abstraction function φ−1

i (s̄)
returns all ground states that map to the same abstract observation s̄:

φ−1
i (s̄) = {s ∈ S |φi (s) = s̄}.

Putting this in terms of the traditional Q-value definition:

Q̄i (φi (s), a) = ∑
s∗∈φ−1

i (φi (s))

ρi (s∗|φi (s))Q(s∗, a). (3.2)

First consider the states inφ−1
i (φi (s)) that satisfy the optimal-policy-preserving pred-

icate pπ∗ (i.e., the states in Sp ). This means an action a∗ which optimizes the Q-value
for any state in φ−1

i (φi (s)) also optimizes the Q-value for all other states in φ−1
i (φi (s)).

While it is expected that the particular Q-values learned by the abstraction agent are not
necessarily meaningful, the question of interest is whether the abstraction agents will
indeed learn the optimal action for these states. Notation is simplified from this point by
referring to an abstract state as s̄, where s̄ =φ(s).

Theorem 1. Consider any abstraction mapping function φ : S 7→ S̄. It holds that for states
that map to the same abstract state and that share an optimal action a∗ in the ground
MDP, this action a∗ that maximizes the Q-value of state s in the ground MDP Q(s) also
maximizes the Q-value of state s̄ in the abstraction agent function Q̄(s̄).

Proof. By definition, an action a∗ is optimal in state s if it maximizes the Q-value of
state s:

∀a[Q(s, a∗) ≥ Q(s, a)].

Under the conditions described above, each ground state given by the inverse map-
ping function s∗ ∈ φ−1(s̄) shares an optimal action a∗. Recall two basic properties of
the argmax function.
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Axiom 1. If argmax
x

f (x) = argmax
x

g (x) then

argmax
x

( f (x)+ g (x)) = argmax
x

f (x) = argmax
x

g (x).

Axiom 2. If c > 0, then argmax
x

f (x) = c argmax
x

f (x).

From Equation 3.2, the Q-values of the abstraction agent for abstract state s̄ are a
linear combination of the true Q-values for each ground state s∗ and a probability. As
long as each next state is visited (thus the probability is non-zero), by the properties
of the argmax function above, it holds that the action a∗ that maximizes Q(s∗, a) for
all s∗ ∈φ−1(s̄) also maximizes Q̄(s̄, a).

The above shows that the abstraction agent will learn the optimal action for abstract
states that fall within the relevant set Sp . The case for states outside of Sp that map to a
single abstract state but do not share an optimal action is considered in the next section,
which investigates whether the entire system will produce an optimal solution, given
that this second case is likely to emerge often.

3.4.3. CONDITIONS OF GENERAL OPTIMALITY

When merged states do not share an optimal policy, the action that maximizes the Q-
values learned by the abstraction agents may be arbitrary. However, the set of abstraction
agents always includes an agent which observes the full state and performs standard Q-
updates. This section describes how with enough experience, the meta-agent will learn
to favour this ground agent and that this agent will preserve the true optimal policy.

Theorem 2. With sufficient experience, given any abstraction mapping function φ : S 7→
S̄, the value assigned by the meta-agent to the action aφi

of choosing any abstraction
agent i will not exceed the value of choosing the ground agent aM . That is:

∀s ∈ S,∀aφi
∈ Aφ[Q̂(s, aφi

) ≤ Q̂(s, aM )]

Proof. The Q-value for a state s according to the meta-agent is, by definition:

Q̂(s,φi ) =∑
s′

T (s′|s,φi )[R(s,φi )+γV (s′)].

However, the reward and transition functions are defined over states and actions, not
states and abstraction agents. Therefore, in the T and R functions,φi is rather the action
that will be chosen by the abstraction agent, which is the action that optimizes its local
Q-value:

argmax
a

Q̄i (φi (s), a).

This results in the revised definition:

Q̂(s,φi ) =∑
s′

T (s′|s,argmax
a

Q̄i (φi (s), a))R(s,argmax
a

Q̄i (φi (s), a))+γV (s′). (3.3)
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This is equivalent to the value abstraction agent i assigns to local state φi (s) when
there is a fixed state s, meaning ρi (s|φi (s)) = 1 (see Equation 3.2). The value is the state-
action value of its highest valued action:

Q̂(s,φi ) = max
a

Q̄i (φi (s), a)

This is the case of the ground agent, where s̄ = s = s∗ =φ−1(s). By Equation 3.2, when this
is true, then ρ(s∗|s̄) = 1 and the converged Q-values of the ground agent match the true
Q-values in the ground MDP. By the same equation, the maximum value any abstraction
agent can assign to an action is the true value of taking the action in ground state of the
true MDP. In the case of the ground agent, where s =φM (s) for all s ∈ S:

Q̄M (φM (s), a) =Q(s, a).

With sufficient experience, the ground agent learns the true values of every (s, a) pair
and the value the meta-agent can assign to any abstraction is upper-bounded by this
value.

∀φ ∈ Aφ[Q̂(s,φ)] ≤ Q̄M (φM (s), a) =Q(s, a).

It is important to note that the above holds regardless of whether any abstraction
satisfies optimal-action-preservation for any states it merges. This means that, again
with sufficient experience, arbitrary abstraction candidates will never be favoured over
the ground truth.

3.4.4. SAMPLE COMPLEXITY AND MEMORY
QLiA will converge to the solution of the ground MDP under the same conditions as Q-
learning. However, this says nothing for whether a solution will be reached with fewer
interactions with the environment. In fact, by incorporating a second learning prob-
lem into the method, it is possible to have increased the learning requirements. Sample
complexity scales linearly with the size of the state-action space [12], therefore the size
of the problem space is used as a proxy measure of whether sample complexity has been
reduced.

In QLiA, what would be a single learning task is transformed into two parallel learn-
ing problems: 1) the meta-agent learns which abstractions optimize each state, 2) each
abstraction agent learns which actions optimize each abstract state. The size of the ab-
straction set |AΦ| is the number of abstractions available to the agent and |S̄i | the size
of the abstract state space resulting when abstraction φi is applied to S. The first prob-
lem has a size of |S×Aφ | and the second a size of

∑J+1
i |S̄i × A | for each abstraction i .

The abstraction agents learn in parallel, thus the one with the largest problem space will
dominate the problem size. A reduction in state space comes when abstractions can
learn the optimal action for a sufficient number of merged states. The problem of learn-
ing the optimal action in abstract space reduces to a size of |1× A | for each set of states
that were merged into a single abstract state for the corresponding abstraction agent.
The total size of the problem is dependent both on the number of states merged by a
candidate abstraction that maintain the optimal-policy-preserving predicate as well as
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the number of candidate abstractions. Therefore, there are situations wherein the prob-
lem size can be increased, if the number of candidate abstractions is too high and the
number of merged states with appropriate abstractions too few.

The total size of the QLiA problem is the size of the problem of learning which ab-
straction agent to select for each state (|S×Aφ |) plus the problem of learning the cor-
rect action for each state that does not get merged by an abstraction where the optimal-

policy-preserving predicate is held (|(S−∑|AΦ|
j=1 S j

p )×A |), plus the problem of learning the

correct action for each state correctly merged under the predicate in the correspond-
ing abstract space, which can be approximated as the problem size of each abstract
MDP. This last term will be dominated by the size of the largest abstract MDP, given by:

|maxk∈{1,...,|Aφ |} S
k
p × A |. The problem size is summarized in the following:

|S×Aφ |+ | A ||S−
|AΦ|∑
j=1

S j
p + max

k∈{1,...,|Aφ |}
S

k
p | (3.4)

In the case where no states that share an optimal action are merged by any of the
abstractions, the second term is dominated by the largest abstraction (i.e. the non-
abstraction) and becomes |S× A |, showing a clear increase in the total problem size.
A reduction in the problem space occurs when the entirety of Equation 3.4 sums to less
than |S× A |. This is only possible when the number of abstractions is strictly fewer than
the number of actions available in the MDP. Imagine a task with 10 states and 4 actions,
where a single abstraction exists that merges 4 states which share an optimal action un-
der an abstraction φ. This abstraction plus the full state brings the total number of can-
didate abstractions to 2. The problem space is then (10×2)+4((10−4)+1) = 48, greater
than |S× A | = 10 × 4 = 40. However, consider the same problem but instead 8 states
share an optimal action and are merged into a single abstract state; the problem space
becomes (10×2)+4((10−8)+1) = 32 which means that QLiA will solve a smaller prob-
lem and is more likely to fewer samples to reach the optimal solution over a ground
Q-learning agent. Whether this is actually the case is problem-specific and will depend
on the actual transition and reward dynamics of the environment 1. The memory and
computation requirements of applying the QLiA algorithm (when subtasks are not fully-
specified) are higher than that of standard Q-learning. Each abstraction agent must have
its own Q-table stored in addition to the meta-agent table. Further, the number of Bell-
man updates is multiplied by a factor of the number of abstraction candidates.

3.4.5. FULLY-SPECIFIED ABSTRACTIONS
When the state-conditioned state abstractions are fully specified and the meta-agent
policy is fixed, there is also less flexibility as the agent cannot recover the optimal policy
if any relevant state sets are incorrectly specified. This raises the question of whether the
correct specification of the relevant-states affects convergence to the optimal policy.

1There is an opportunity for additional use of experience that is not investigated in detail in this thesis, but
is enabled by the parallel learning approach and worth noting. The policy of each abstraction agent can be
queried from any state s to see which action each agent would execute. Then, upon taking an action suggested
by the chosen abstraction, additional updates using the same experience can be made to the Q̂-table at state s
for all abstractions that would have taken the same action.
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In the trivial scenario where a single state-conditioned abstraction mapping pre-
serves the optimal-action for all states in S, applying QLiA is equivalent to applying
regular Q-learning in the resultant abstract MDP. If two states s1 and s2 share an opti-
mal action and are merged under the single abstraction, the value of s1 can be overesti-
mated if the value of s2 is higher; the merged state will have a value higher than the true
value of s1. This overestimation can cause convergence to a sub-optimal policy [1]. It is
therefore not possible to prove that QLiA will converge to the optimal policy under this
particular predicate. Even so, taking this approach can greatly improve learning speed
over both ground Q-learning and QLiA without specified relevant states, as was demon-
strated empirically in experiments. Further, it may be possible to guarantee converged
to optimality when stricter predicates are preserved, though this is outside the focus of
the current work.

REDUCTION IN PROBLEM SIZE

The fully-specified abstraction case potentially causes a large reduction of the problem
space of a task, particularly because the first term of the problem size (given in Equation
3.4) no longer applies. This results in a size of:

| A ||S−
|AΦ|∑
j=1

S j
p + max

k∈{1,...,|Aφ |}
S

k
p |

The computation and memory requirements are also lower than when abstractions
are not specified, as there is no longer a need to maintain and train the meta-agent.

3.5. TRANSFER LEARNING
A benefit of taking a modular approach is the potential for transfer learning, as each
module could be re-used in related tasks which share abstract sub-tasks. The problem is
formalized as follows: consider two related tasks as source and target MDPs M s and M t .
An abstraction mapping function φs that maps the source state space to a local abstract
state space is provided as a candidate abstraction and QLiA is performed in the source
MDP, resulting in the learned Q-table Q̄s . A transformation τ is given that, when ap-
plied to the abstraction mapping maps states from the target state space to the same
local abstract state space. In the target task, this candidate abstraction uses the map-
ping τ(φs ) and the Q-table Q̄s is directly used to choose actions without further updat-
ing. The meta-agent must learn, for every state, the value of choosing this pre-trained
module to choose actions.

An issue with many approaches to transfer learning is that the agent can perform
worse than an agent that starts from scratch [4]. By taking the parallel learning approach,
this issue is mitigated because the meta-agent learns the value of the transferred mod-
ule in the target task, without assuming anything about how the transition and rewards
differ between the target MDP and the source MDP in which the module was trained. A
pre-trained module can be re-used without fear of negative transfer, as the meta-agent
will learn to avoid the choices of this module if they are sub-optimal.
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Figure 3.7: The mini taxi with fueling domain, where the taxi must pick up the indicated passenger and drop
them off at their specified destination without running out of fuel. The taxi can refuel at the fueling station.

3.5.1. EMPIRICAL EVALUATION

The potential for transfer learning is demonstrated on a modified version of the taxi
problem, where the taxi has a limited fuel capacity and faces a -20 reward penalty if it
runs out of fuel during an episode (after which the episode ends) [13]. In this domain,
the taxi can refuel by visiting the fuel station and executing the refuel action, which is
appended to the original action space. The state space is expanded to include a state
variable that indicates the fuel level. In these experiments, the environment acts de-
terministically and is miniaturized to the 3x3 grid pictured in Figure 3.7.

For the transfer agent, QLiA is first applied to the original problem without the fueling
task, meaning the taxi has unlimited fuel and the fuel level is not a part of the state
space. In this original learning task, the QLiA agent was given a single abstraction mod-
ule pertaining to the subset of variables {x, y, passenger location}. After learning
in the task without fueling, the module and its policy were provided to the QLiA_transfer
agent. The module uses the same mapping function in the new task, additionally ignor-
ing the fuel level. The transfer agent is compared to Q, QLiA, and QLiA_specified agents
that all learned from scratch. The results of learning in the new fueling task are plotted
in Figure 3.8.

This experiment demonstrates how QLiA facilitates transfer learning without making
assumptions on how the source and target tasks are similar or where the transferred
knowledge can be used. The QLiA_transfer agent converges to a near-optimal solution
in the fewest number of episodes, even when it has to learn how to use the transferred
module using the meta-learning layer. In this environment, the Q agent performs better
than the QLiA agent when both are learning from scratch. The QLiA_specified agent
outperforms both Q and QLiA.

3.6. RELATED WORK
The proposed method of parallel learning in abstractions is closely related to the con-
cepts of learning state abstractions, hierarchical RL and the more loosely-defined mod-
ular reinforcement learning.

Hierarchical approaches focus on identifying sub-goals and trying to reach these
in compact ways. The aim is often abstraction via the use of temporally-extended ac-
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Figure 3.8: Results showing the average of 200 trials of experiments on taxi with fueling domain. The shaded
region indicates the 90% confidence interval.
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tions, rather than state abstraction. QLiA differs from other hierarchical approaches as
it does not employ temporal abstraction, rather a different state abstraction can be acti-
vated at every time step. Generally, hierarchical approaches assume perfect knowledge
of the structure and the appropriate abstractions. MAXQ, a famous early hierarchical
RL method, is one such approach that was specifically adapted to be used in conjuction
with state abstraction [14]. In QLiA, the root agent learns to use (or not use) appropri-
ate reward-maximizing abstractions, thus the method is robust to being given poorly-
designed sub-spaces. In this way, some structure is proposed, but not assumed, lending
more flexibility.

Modular RL has become more of an umbrella term that can emcompass many differ-
ent types of methods, but the term was popularized by two approaches that were intro-
duced around the same time [15, 16]. Both methods employ a multi-layered approach
where an arbitrator (similar to the meta-agent in QLiA) decides which module should
choose an action based on its local information. These works are significantly different
from the setting described above as the assumption is that each module forms a com-
plete MDP with a local reward function. Even though this still has implications over
whether an optimal policy can be learned (generally, no), it has none of the complica-
tions introduced in the scenario where each module is given a partial abstraction of a
single MDP and only the global reward function can be used.

Existing research on reinforcement learning with state abstractions is often concerned
with finding abstractions that preserve qualities of the entire MDP. Generally, these can
only be applied when the solution to the MDP is already available [3, 9, 17]. The most
relevant literature to the parallel learning in abstractions approach are reinforcement
learning algorithms that aim to discover abstractions or that learn how to apply them
online. Some have used statistical measures to determine whether an abstraction cor-
rectly predicts observations [18] or to find abstractions that contain the minimum state
variables relevant to learning the optimal policy [9]. In [19], they learn relevant features
of state space at every time step via demonstration from humans. In contrast, the paral-
lel learning approach uses global reward as the feedback signal for learning the quality
of a particular abstraction, which is represented in a state-conditioned decomposition,
and does this in an online fashion without access to the optimal solution.

The parallel learning in abstractions approach is most closely related to the work
of [20] on abstraction selection. In their work, they augment the state space with abstrac-
tions and the action space with ‘switching’ actions. In an episodic MDP version, they
demonstrated empirically that their method is promising even when a switching action
is taken at every time step. However, in this method candidate abstractions must retain
the Markov property in regards to the full problem. In the parallel learning paradigm,
several abstractions can be used at once that reduced the state space but, if used on
their own, would not allow for the full task to be solved. In arguably more domains, this
is likely the case and it requires a more flexible solution.

3.7. LIMITATIONS
While the parallel learning in abstractions paradigm offers a simple approach to incor-
porating human knowledge that can potentially drastically decrease the size of the prob-
lem space, it suffers some drawbacks that are shared by many hierarchical or modular
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methods. Because of the layered and parallel learning approach, the number of hyperpa-
rameters to be tuned grows with each added module. This can make tuning much more
difficult, and burdens the designer with finding good values. It was seen in experiments
that the choice of learning rate should not be too high even in deterministic problems
where this is not an issue for Q-learning. This approach however, has not been found to
be more sensitive to the choice of other hyperparameters than standard Q-learning, and
performs robustly.

It is not guaranteed that applying the parallel learning approach will reduce the prob-
lem space, which means it will not always improve sample efficiency over a naïve Q-
learning agent. It is noted in particular that, if the primitive action space is smaller than
the number of candidate abstractions, the problem space has actually been increased
(potentially significantly). However, the approach can still facilitate other benefits such
as transfer learning and transparency, even if sample efficiency in the source task is not
achieved, as was demonstrated in the taxi with fueling domain.

Another limitation mentioned is that in the method when state-conditioned abstrac-
tions are fully specified, it is not possible to guarantee convergence to the optimal solu-
tion, though empirically it has been seen that great improvements can be made in this
case.

3.8. CONCLUSION
Parallel learning in abstractions exploits the existence of optimal-policy-preserving ab-
stractions with minimal knowledge of the problem beforehand. It does this in an online
fashion using only global reward signals distinguishing the approach from most modu-
lar and hierarchical approaches. By applying state-conditioned state abstraction, much
simpler human-definable abstraction mappings can be used which do not necessarily
hold for the entire state-space.

This chapter introduces an approach to making use of state abstractions that do not
encompass the entire MDP, reminiscent of the goals of hierarchical reinforcement learn-
ing. The devised method allows for the use of candidate abstractions provided by an
expert that can potentially speed up learning, but where the optimal policy can still be
recovered if these abstractions are not sound or otherwise useful. This parallel learning
approach allows experience to be used efficiently, updating the local models of each ab-
straction candidate, which still takes into account the entire layered system that it aims
to optimize. By taking a modular approach, the policies learned by the meta-agent can
be reviewed to gain insight into which state abstractions are being used at any state.
This method also enables transfer learning when a related problem shares an abstract
state space with the source environment, but is otherwise different. The notion of state-
conditioned state abstraction was also introduced, which is argued to be a much easier
approach to encorporating information from an expert over abstractions that preserve a
predicate over the entire MDP.

While QLiA was demonstrated to improve sample efficiency, the layered learning ap-
proach can potentially insert noise into the layers that take large amounts of experience
to unlearn. The additional computation and memory required can also result in a signif-
icant load when state-action spaces grow exponentially. Nonetheless, it offers a method
that provides insight into which parts of the state space are used to make decisions and
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can make use not only of partial abstractions (abstractions that do not apply to the en-
tire MDP), but of the coarsest form of abstraction which is easiest for humans to define,
without requiring extensive knowledge about how or where to use it.
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- த¦ருக்குறள் 429
The wise who are perceptive and take preventive measures,
will not be staggered by any harm.

- Tirukkuraḷ 429

5

In the previous chapter, several benefits to developing modular approaches to reinforce-
ment learning were touted. Among these was the potential to create RL agents that are
flexible and can adapt to new scenarios. Humans do not learn from scratch every time
they find themselves in a new context, instead they can use knowledge from past expe-
riences and learn to adapt to new information. These adaptations are considered this
chapter, in which the goal is to equip reinforcement learning agents with the ability to
transfer learning between state-spaces in order to efficiently adapt to the addition of new
information.

Humans have the ability to expand and compress their local models seamlessly,
adding or removing information input as needed [2]. For reinforcement learning agents,
facing a problem where not all the information is available at every time step puts the
agent in a partially-observable MDP. Even if additional information is there during train-
ing, this cannot be used if it is not available during policy deployment. In a partially-
observable MDP, parts of the state space cannot be observed directly, and finding a so-
lution becomes significantly more complicated. Many idealized problems are partially-
observable when realized in the real-world, making the ability to learn from information

Elements of this chapter are published in [1].
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that is not present at decision-making time something that can be beneficial in many
ways.

In this chapter, a modular approach is introduced which geared toward partially-
observable problems that fit into a special case; they are fully-observable during training
but not during deployment. Two distinct possibilities for encountering this scenario are
provided as examples: 1) There is extra information available during training such as
hindsight knowledge (for example, in fraud mitigation it could be possible to label fraud
at some point in the future but this label will not be available when the policy needs to
choose actions) or 2) Information can be deliberately limited or removed during training
(for example, lab conditions may be noiseless but sensor readings can be purposefully
perturbed to simulate the real-world). This allows the reinforcement learning agent to
benefit from supervised learning advances, as labeled data is available, reducing some
of the burden on policy optimization to implicitly predict informative states.

The method Uncertainty-Aware PREdicted STate ReinfOrcement Learning (PRESTO)
explicitly decouples the tasks of state prediction and policy optimization, producing a
modular method that facilitates transfer between related problems. PRESTO trains a
predictive model on labeled data to predict the true state from a history of observations
and actions. During training, this label is available, but during testing the agent sees
only its observations and actions. The policy is learned over both the predicted state
and a measure of confidence provided by the model. This and the details of the problem
setting differentiate the proposed approach from a Predictive State Representation [3],
which has otherwise similar goals. As the agent gains more data and more confidence
in its predictions, it learns to take information-gathering actions when doing so will im-
prove its value-maximizing policy.

The approach considered here applies to partially-observable problems that can be
cast as History MDPs (closely related to k-order Markov models [3]). Many types of
partially-observable problems fall under this class, and in literature it is common to
use histories to create a Markov state without formalizing the approach. When deep
Q-learning had its breakthrough debut solving Atari games [4], the practice of stacking
observations was popularized and has continued since. This is how many existing meth-
ods absorb the task of predicting the true state into the policy optimization task, stacking
observations into histories or attempting to model latent parameters. These methods do
not have a mechanism to learn to directly map histories to partially-observable state in-
formation, thus the belief of the agent is implicit. By separating out the prediction task,
the proposed approach preserves this information and makes it available along with the
policy. In contrast to using Long Short-Term Memory neural networks (another com-
mon way to handle such problems), this offers explicit insight into the decision making
of an agent and simplifies an otherwise costly and difficult training process. The modu-
larity of the approach also enables transfer of both the predictor or the policy between
related tasks, along with a formalization of the required relationship between tasks to
successfully do so. This makes the method robust to changes in the environment and
able to make use of existing prediction models or policies.

This chapter introduces PRESTO and describes its several benefits: it (1) conducts
policy optimization over a compact prediction, (2) facilitates transfer of either the policy
or predictor between related tasks, and (3) makes explicit the agent’s prediction of the
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hidden state at every time step. These benefits are demonstrated in tabular and con-
tinuous state space experiments, showing sample-efficient convergence to an optimal
policy and effective transfer learning.

4.1. HISTORY MARKOV DECISION PROCESSES
A partially-observable MDP (POMDP) generalizes the MDP described above to problems
where the full state cannot be observed [5]. A POMDP is a 7-tuple 〈S, A,T ,R,Ω,O,γ〉,
where: S, A, and Ω are the sets of states, actions and observations, T and R are the tran-
sition and reward functions as described above, O is the observation function which
maps state-actions to observations O : S× A×O → [0,1], and γ is the discount factor.
In a POMDP, the environment transitions according to the hidden true state and emits
an observation according to the observation function ot ∼ O( · | st , at ). When the state
space S and observation spaceΩ are equivalent, this is equivalent to the definition of an
MDP.

A history h is a k-length sequence of observations and actions, h : (Ω× A)k ×Ω. The
set of histories is denoted H . The belief state of a POMDP b is the probability distribution
over states given history h, b(s,h) = Pr (st = s|ht = h).

A POMDP can be cast to an MDP by observing a history of experience at every time
step, rather than a single observation. The result is a History MDP, formed by a tuple
H= 〈H , A,T ,R,γ〉, where

T (ht at ot |ht , at ) = ∑
st∈S

∑
st+1∈S

b(st ,ht )T (st+1|st , at )O(ot |st+1, at )

and

R(ht , at ) = ∑
st∈S

b(st ,ht )R(ht , at )

[6]. This work focuses on a common subclass of POMDPs where history length k is finite.

4.2. UNCERTAINTY-AWARE PREDICTED STATE REINFORCEMENT

LEARNING (PRESTO)
This section introduces a method that decouples state prediction from policy optimiza-
tion, called Uncertainty-Aware PREdicted STate ReinfOrcement Learning (PRESTO). This
method is aimed at problems where the state is partially-observable by the agent during
testing, but fully-observable during training. One reason for this could be that informa-
tion is limited during training on purpose. For example, in a real-world problem, taking
high accuracy measurements may require an expensive and fragile sensor, whereas it
is preferred to equip an RL robot with a cheaper, more robust sensor. With only the
cheap sensor, the problem is partially-observable because a single reading does not of-
fer a Markov state; with the highly accurate sensor the problem is fully-observable. The
expensive sensor can be used in tandem with the cheap sensor in a lab environment,
providing the real values along with those expected in deployment. Once deployed, the
robot no longer has access to the high accuracy readings and must use only its equipped
sensor.
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The second type of problem pointed to in this chapter, which is fully-observable dur-
ing training but not at action selection, is one where information is revealed in hindsight.
This is motivated with the example task of fraud mitigation. Consider the problem of de-
ciding which bank accounts to suspend based on corresponding lists of recent transac-
tions, where the objective is to minimize disruption to customers while preventing fraud.
It is not possible to see which accounts are committing fraud when choosing which to
suspend, however, after an investigation is completed it is revealed whether a particu-
lar account was indeed committing fraud or not. This type of revealed information is
referred to as hindsight knowledge.

This approach is formalized as a transfer learning task where the source task (fully-
observable) and target task (partially-observable) have different observation spaces.

4.2.1. LEARNING FROM HISTORY
The problem of learning a policy for a partially-observable MDP in a fully-observable
MDP is modelled as transfer learning task between two POMDPs. Consider the tar-
get task as a POMDP M T = 〈S, A,T ,R,Ω,O,γ〉. The source task is defined as another
POMDP M S = 〈S, A,T ,R,Ω,O,γ〉, which shares the same state and action space, but
whereΩ= S ×Ω, O : S × A×Ω, and

O(〈s′,o〉|s, a) =
{

O(o|s, a) s = s′,
0 otherwise.

This augmentation formalizes the receipt of an observation and the true state in the
source POMDP at every time step, whereas in the target POMDP, the agent receives only
the observation.

An important assumption is made here that the source and transfer POMDPs can
be cast to History MDPs HS and HT (respectively) by maintaining the same k-length
history of observations and actions, where k is an expert-determined parameter. This
is the approach taken when observations are stacked, such as is common when solving
Atari games where k is often an empirically-validated hyperparameter. Note that only
the observations (thus not the state available in the source task) are stored in the history,
making HS and HT equivalent.

The general approach to learning in a History MDP would be to treat it as an MDP
and learn a policy over the history space. In PRESTO, the agent’s prediction of the cur-
rent state (given the history) is instead explicitly modeled. The agent’s predictive model
is trained at the same time as learning a policy that maximizes rewards. The policy is
learned over the predicted state and confidence in the prediction. This makes explicit
the agent’s understanding over which state it is in (an insight which is lost otherwise),
while training a policy that takes the model uncertainty into account, learning to favour
information-gathering actions when necessary for reward maximization. Separating out
the prediction in this way forms a stationary task suitable for supervised learning algo-
rithms. Figure 4.1 depicts these two approaches, one which learns directly from history
and the other which uses the history to predict a state, learning on the joint space of state
prediction and confidence.

The value function (V π) according to following policyπ is defined over the joint space
of predicted states and confidence values, mapping pairs of predicted state and confi-



4.2. UNCERTAINTY-AWARE PREDICTED STATE REINFORCEMENT LEARNING (PRESTO)

4

57

ot−2
ot−1

ot

History-based policy

πht at

ot+1

PRESTO policy
ot−2
ot−1

ot

ot+1

atπht ŝt ,ζtφ

Figure 4.1: An overview of the proposed method in comparison to learning from a history. The history-based
policy maps stacks of observations to actions. The PRESTO policy takes a predicted state and model confidence
as input and maps this to actions.

dence to actions, π(ŝt ,ζt ) = at . The predicted state and confidence correspond closely
to a belief state in the solution to a POMDP, however depending on how they are defined,
they could be less informative than a belief; for example, by only showing the probability
of being in the most likely state and not how this probability is distributed over the entire
state space.

4.2.2. THE PREDICTIVE MODEL
A PRESTO agent has a predictive model φ(h), that maps histories to both the predicted
true state (ŝ) and a confidence (ζ) in this prediction (a value greater than or equal to 0)
φ : H 7→ (S×R≥0). During training, the model is updated at each time step t :

φ(ht ) ← st .

The model output given history ht is:

φ(ht ) = (ŝt ,ζt ).

The choice of model is dependent on the specifics of the problem, including, for ex-
ample, whether the history space and the predicted state space are discrete, continous,
low- or high-dimensional, and whether the prediction task can be presented by a lin-
ear or non-linear model. Particularly for high-dimensional and complex state spaces or
highly non-linear prediction tasks, the progress made in supervised machine learning
offers the opportunity to tackle difficult prediction tasks. A measure of confidence ζ is
also required with each prediction. As with the choice of model, the way to represent
model confidence is something that must be chosen by a designer as suitable for the
problem. In a Bayes-Adaptive POMDP, a measure of uncertainty is represented by visi-
tation counts [7]. While this can be effective, it requires an extra parameter to scale the
number of counts into a meaningful number. Other options, such as extracting class
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probabilities or predicting with an ensemble of models and calculating their deviation,
were preferred in this work and are detailed below.

The specifics of model selection are considered out of scope of this work, but two
possible methods are highlighted which were applied in experiments.

BINARY CLASSIFIER

In the case where the true state can only take on a small number of discrete values, a
classifier may be used. In the tiger problem, which is detailed in the experiment section,
this is the case. With only two possible true states, a binary classifier was used as the
state predictor. The underlying model is a multilayer perceptron, where the activation of
the output layer g is the sigmoid function which gives a value between 0 and 1.

For a multiclass classifier, this can be the softmax function which normalizes the
outputs to sum to 1, giving the probability for each possible class (corresponding to each
possible hidden state). The parameters of the model (the weight of each unit) are trained
on labeled data using backpropagation. This labeled data consists of pairs of histories
and the true hidden states that the agent was in.

The output of the model is the probability that an input (history of observations)
belongs to a certain class (hidden state). In PRESTO, this probability ρ predicts the state
(whichever class has the highest predicted probability) and itself forms the confidence
measure.

REGRESSION ENSEMBLES

In the case where the predicted state lies in a continous space, a regression model is more
suitable. In experiments, again a multilayer perception as described above was used, but
where the output layer uses the identity function as its activation function, meaning the
output is simply the linear combination of the last layer.

In the case of such a regression model, deriving some measure of uncertainty is less
obvious. There has been some success in using an ensemble of models to provide a
practical heuristic for uncertainty [8, 9]. This is the approach utilized in the continuous
state-space experiments, where the variance between the ensemble members is used
as a measure of confidence (less variance = more confidence). The ensemble E q thus
consists of q models:

E q = {φ1, ...,φq },

where it is assumed that the models are identical before initialization. Each model is
initialized independently and trained on unique batches of the dataset. This causes the
models to deviate, the idea being that the deviation will be greater in areas where the
dataset coverage is sparse or highly varied (therefore deemed low in confidence).

The predicted state ŝ given a history h is the average of the ensemble outputs:

ŝ = 1

q

q∑
i=0

(φi (h)),

and the confidence then is the inverse of the standard deviation of each ensemble mem-
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Algorithm 3: PRESTO: Training in HS with Q-Learning

Input: Length of history k
Input: A value to represent empty history elements ι
Input: Number of training steps N
Input: Learning rates for Q and φ as α and β
Input: Batch of episode trajectories D = (d0,d1, ...), where

di = (o0, s0, a0,r0,o1, s1, ...)
1 Initialize policy π
2 Initialize predictor φ
3 Set t = 0
4 while t < N do
5 d̂ ∼ Uniform(D)
6 h = {ι0, ..., ιk }
7 i = 0
8 h ← PushToQueue(h,oi )

9 while i < length(d̂) do
10 (ŝi ,ζi ) =φ(h)
11 φ← Train(h, si ) ; . Training can be done in batches instead of

every time step
12 h ← PushToQueue(h, ai )
13 h ← PushToQueue(h,oi+1)
14 (ŝi+1,ζi+1) =φ(h)
15 Q(ŝi ,ζi , ai ) ← (1−α)Q(ŝi ,ζi , ai )+α(ri +γmaxa Q(ŝi+1,ζi+1, a))
16 i ← i +1
17 end
18 t ← t +1
19 end
20 π(φ(h)) = argmax

a
Q(φ(h), a),∀h ∈ H

Result: State predictor φ and policy π

ber’s prediction

ζ= 1√
q∑

i=0
(φi (h)−ŝ)2

q

.

4.2.3. ALGORITHM

The method is summarized in Algorithms 3 and 4 where the base RL algorithm is Q-
learning [10]. In these examples, it is shown how the raw output of the environment
(observations, actions and – during training – states) is used to build the history which
the policy is trained on.

In Algorithm 3, the initialization of the history as an empty queue (Line 6) is neces-
sary at the start of each episode so that the agent learns to take into account that it has
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Algorithm 4: PRESTO: Testing in HT

Input: PRESTO policy π
Input: Predictor φ
Input: A value to represent empty history elements ι
Input: Number of testing steps N

1 t = 0
2 h = {ι0, ..., ιk }
3 while t < N do
4 Observe ot

5 h ← PushToQueue(h,ot )
6 (ŝt ,ζt ) =φ(h)
7 at =π(ŝt ,ζt )
8 Execute at

9 Receive rt

10 h ← PushToQueue(h, at )
11 t ← t +1
12 end

no (or little) information. In the experiments, the indication of an empty history element
ι is set to 0, but the best choice may differ according to the context.

The Q-value function of the PRESTO agent is defined over the predicted state ŝt , con-
fidence ζt and action at , and is updated iteratively (given experience (ht , at ,rt ,ht+1))
with:

Q(ŝt ,ζt , at ) ←Q(ŝt ,ζt , at )+α(rt +γmax
a

Q(ŝt+1,ζt+1, a)−Q(ŝt ,ζt , at )),

where (ŝt+1,ζt+1) = φ(ht+1). This Q update (Line 15) could be replaced with the policy
optimization step of other RL methods.

During training (Algorithm 4), the agent learns on trajectories containing both ob-
servations and true states, allowing the model φ to be trained to predict the state from
history along with training the Q-function. If the task is not episodic in nature, the batch
D will be a single trajectory rather than a set of episodes. In the online setting, D comes
from the experience during training, and is iteratively fed back into the algorithm. In the
offline setting, this set could come from another behaviour policy. While PRESTO could
have potential as an offline method, to what extent it falls prey to the common pitfalls of
offline RL is left to future work.

During testing (Algorithm 4), the agent sees only observations. It uses the model to
predict the state and probes the learned policy to provide actions given its experience of
observations and executed actions.

SIMPLIFYING THE PREDICTION TASK

The proposed method relies on the predictive model being able to predict states from
histories. This task is enabled by the existence of labeled data which is independent of
the policy, but it is recognized that predicting high-dimensional states may require very
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powerful models or large data-sets. One way to reduce this potentially complex task
of predicting states is to predict only the un-observable state information. A partially-
observable problem can be modelled as a decoupled POMDP [11]. This is identical in
concept to the mixed observability MDP [12], but the notation of the decoupled POMDP
is adopted here. In this formulation, the state space is factored into observable and un-
observable parts. A decoupled POMDP is represented by a tuple 〈U , Z ,Ω, A,T ,R,O,γ〉,
where U and Z consist of an un-observed and observed finite state space, respectively.
If the mapping between histories and only the un-observable part of the state space is
relatively easy to model, applying PRESTO will no longer be complicated by the observ-
able state space. In such a case, the joint state the policy is defined on is formed by the
observation, predicted un-observed state, and confidence.

4.2.4. MITIGATING UNCERTAINTY
The prediction confidence can be improved in two ways: improve the prediction model
or provide a more informative history. As the agent interacts with the environment, it
collects more data which is used to train the model. In theory, with this continuous
training the model will improve until it can no longer be improved with additional (or
more diverse) data, forming a perfect predictor.

Definition 4 (Perfect hidden parameter predictor). A hidden parameter prediction model
φ is considered a perfect hidden parameter predictor φ∗ for a History MDP when, for all
states h ∈ H , the model returns a predicted state and confidence φ∗(h) = (ŝ,ζ) and:

ŝ = max
s

Pr (s|h), ζ= Pr (ŝ|h).

This means that the model returns the most likely state given history h and that the con-
fidence corresponds to the probability of being in the predicted state given the same
history. This probability is equivalent to the belief b(ŝ,h).

There is some amount of uncertainty that is irreducible given a particular history. For
example, without any observations, a predictor will be (at best) as uncertain in its pre-
diction as dictated by the initial state distribution of the environment. After exhaustive
data collection and model training produces the ideal model, the remaining confidence
forms a measure of how certain a prediction can be made given the input. This con-
fidence can only be improved by taking informative actions (changing the history). By
conditioning the policy on the model confidence, the agent learns to take information-
gathering actions when doing so will improve its policy.

4.2.5. TRANSFERRING THE PREDICTOR AND THE POLICY
A crucial benefit and perhaps best motivation to taking a modular approach is that sepa-
rable pieces are maintained that can be reused for new tasks, avoiding the need to learn
again from scratch. This method facilitates transfer of both the predictor and the pol-
icy. Consider the case where the source task (casted to a History MDP) H and target task
(casted to a History MDP) H̃ share the same k-history and action space. Under the fol-
lowing sufficient conditions, the predictor φ and the policy learned when optimizing H
can be re-used when optimizing H̃.
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PREDICTOR TRANSFER

The problem of predicting the true state from a history h is preserved between two tasks
H and H̃ if, given the same k-length history of observations and actions, a perfect hidden
parameter predictor φ∗ would yield the same prediction and confidence:

(ŝt ,ζt ) =φ∗(ht ) =φ∗(h̃t ) = (˜̂s, ζ̃t )

In this case, assuming the model φ trained in task H has converged to φ∗, it can
immediately be injected as φ̃ when training on task H̃, requiring only the policy π̃ to
be trained.

POLICY TRANSFER

The policy can be transferred between tasks if the same policy optimizes both tasks. Two
tasks H and H̃ with value functions V and Ṽ share an optimal policy π∗(· | 〈ŝ,ζ〉), if:

V (π∗) ≥V (π′) ∀π′, and

Ṽ (π∗) ≥ Ṽ (π̃′) ∀π̃′.

Under these conditions, the policy π∗ learned from taskH can be directly applied to task
H̃ requiring only the predictor to be retrained during policy optimization of task H̃.

4.3. EMPIRICAL DEMONSTRATION
PRESTO was evaluated in two problems, a continuous control task and a discrete task. In
these experiments, it is shown how explicitly predicting the true state allows for efficient
use of data and facilitates reliable transfer of both the policy and the predictor.

4.3.1. SIM2REAL - CARTPOLE
The following experiments are performed on a modified version of the cartpole problem
from OpenAI Gym [13]. The cartpole problem is a continuous control task, in which the
RL agent controls a platform which has a pole balanced on top of it. The agent can move
the platform either left or right (applying a fixed force) and aims to keep the pole bal-
anced as long as possible. The agent observes the cart position and velocity and the pole
angle and angular velocity. There is a reward of +1 for every step where the pole remains
upright, and the episode ends if the pole falls down. In the modified cartpole environ-
ment, the sensor which provides the angle and angular velocity of the pole has a lower
sampling frequency and only provides a reading at certain intervals. Using PRESTO
means that intermittent data from the sensors with a higher sampling frequency does
not need to be thrown out.

All test agents are running Proximal Policy Optimization (PPO) as provided by the
stable-baselines3 library [14]. The figures plot the episode reward according to the
number of training steps, during which both the predictor and policy are training. The
reward is averaged over 25 test episodes. A maximum episode length of 200 steps is
imposed on the environment.

The experiments show the performance of four RL agents. The Oracle agent can see
the sensor readings at every time step, regardless of any sensor limitations. This provides
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Figure 4.2: Average of 25 trials on the modified cartpole problem when the angle sensor sample frequency
is the same as for the position sensor (every time step). Shaded region depicts the 96% confidence interval
between trials.

an idea of the expected performance of the agent in the laboratory/simulator setting.
The MDP agent treats the environment as though it is an MDP, even if it not. The History
agent learns a policy over the problem cast to a History MDP, formed by observing a his-
tory of length 3. The PRESTO agent treats the problem as a decoupled POMDP and trains
a predictive model to predict the unknown angle and angular velocity (and confidence)
from the same history of observations as given to the History agent. The PRESTO agent
combines the prediction with the observation, forming the predicted state. An ensemble
of 3 linear regression models are used as the prediction model, with the ensemble mean
providing the predicted angle and angular velocity and the inverse standard deviation
between ensemble members acting as a measure of confidence. The policy is learned
over the joint space of the predicted state and this model confidence. The PRESTO agent
trains its predictor on the labelled data-set every 25 steps, training the policy every step.

Figure 4.2 shows the performance of each agent when the sensor has a reading ev-
ery time step (i.e., highest possible sampling frequency). The MDP and Oracle agents
are identical in this case, as the problem is fully observable. The PRESTO agent, which
performs similarly, has to train its predictor and learn a policy over the joint space of
the prediction and the confidence. However it is also given the true state in the form of
labelled data, something which the History agent cannot make use of.

The same agents were run on the same task but with a reading of angle and angular
velocity provided every other time step (the sample frequency is reduced by a half). The
results are shown in Figure 4.3. In this experiment, the difference between the agents
is clear. The MDP agent treats the environment as fully observable, which it is not, and
does not converge. The History agent has a larger state space over which its policy must
be optimized over but does perform well. The PRESTO agent learns an optimal policy
slightly faster than the History agent, which is unsurprising as the History agent does
not receive feedback about the true state. However, one of the main benefits of PRESTO
is providing a mechanism to learn from such feedback when it is available, as well as the
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Figure 4.3: Average of 25 trials on the modified cartpole problem where the sensor sample frequency is
1
2 /timestep, i.e., it gets a reading every other time step. Shaded region depicts the 96% confidence interval
between trials.

opportunities for transfer which is demonstrated further.

PRESTO offers robustness to sensor degradation (through policy transfer) In a real-
world example, a sensor may degrade or break after some time. Generally, this would
require replacement of the sensor or for an RL agent to be trained from scratch with
the degraded sensor. If the degradation effects on the sensor are known, this is still a
non-stationary problem, requiring time to be included as a state component in order
to maintain the Markov property. This is where another benefit of PRESTO comes into
play. If the sensor degrades, the supervised learner can be retrained without retraining
the policy. This transferability is demonstrated in experiments where the sensor sample
frequency in the source task is 1

2 /timestep and in the target task is 1
3 /timestep (now once

every 3 timesteps). The results are pictured in Figure 4.4.
In these experiments, the PRESTO-PolicyTransfer agent reuses the policy learned by

the PRESTO agent in the source task, and retrains only its predictor in the target task.
As a comparison, the PRESTO-NoTrainTransfer agent uses both the policy and predictor
from the source task.

The History agent, which is trained from scratch in the target task, performs relatively
well, but is still outperformed by the PRESTO agent without transfer. The benefits of
learning on the compact predicted state space are more clear as the implicit mapping of
histories to relevant information becomes more difficult for the History agent.

The PRESTO-PolicyTransfer agent shows a very successful result from transferring
the source policy. In this case, the policy is robust to uncertainty in the predictor, show-
ing good performance even when the predictor has not seen much data in the target
environment, and improving quickly to an optimal policy. The benefits of knowing what
it does not know are quite clear here.

The PRESTO-NoTrainTransfer agent shows how poorly the policy would perform if
the source predictor was used in the target environment. The reason for this is believed
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Figure 4.4: Average of 25 trials on the modified cartpole problem where the sensor sample frequency is
1
3 /timestep. The policy is transferred from the task problem but where the sample frequency is 1

2 /timestep.
Shaded region depicts the 96% confidence interval between trials.

to be because the deviation between the predictor ensemble members is low (thus, con-
fidence is high), even though the predictions are incorrect, leading to the predictor being
undeservedly confident about its output. In this case, the agent does not know what it
does not know.

PRESTO enables transfer learning (via predictor transfer) If a sensor is used on an-
other agent, or for a different task, the predictor can be reused. This is demonstrated by
transfer from the original problem to another version of the cartpole problem where the
agent must keep the pole balanced while keeping the cart within 1 unit from the middle
position; the results from this experiment are pictured in Figure 4.5.

Again, the PRESTO-NoTrainTransfer agent depicts the results if both the predictor
and policy from the old environment are reused. The PRESTO-PredictorTransfer reuses
just the predictor, but retrains its policy.

The PRESTO-PredictorTransfer performs similarly to the PRESTO agent without trans-
fer in this particular example; most importantly, it still finds an optimal policy and is not
subject to the negative transfer experienced by the PRESTO-NoTrainTransfer agent. This
is an important case to show in transfer learning, as it is often impossible to guarantee
no negative transfer, where the transfer agent cannot converge to a good (ideally opti-
mal) solution. By re-training only the sub-task that changed (the policy), performance is
guaranteed.

4.3.2. HINDSIGHT - TIGER

The cartpole problem is not an ideal environment to demonstrate the need for including
information-gathering actions in the policy. This is because the actions for gathering in-
formation (trying to keep the pole up so that more sensor readings can be obtained) are
the same actions required for reward maximization. To better show how PRESTO pro-
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Figure 4.5: Average of 25 trials on a different version of the modified cartpole, showing transfer of the predictor
from the original problem. In this experiment, the task has changed and the cart must be kept in the center of
the field. The shaded region depicts the 96% confidence interval between trials.

duces a policy that effectively trades off gathering information with gathering rewards,
this is demonstrated in the tiger problem.

The tiger problem is a classic POMDP [5], where an agent is faced with two doors and
must decide which of two doors to open. Behind one of the doors is a dangerous tiger
and behind the other a treasure. The agent cannot observe the location of the tiger, but it
can execute listening actions which reveal the location of the tiger with some probability
of noise. An episode ends when the agent opens a door, with the goal being to open the
door to the treasure.

This problem fits nicely into the idea of hindsight knowledge. After the agent opens a
door and ends the episode, it is immediately obvious where the tiger was located based
on the reward received. In the tiger problem, hindsight can be used to label past expe-
rience, producing trajectories that contain observations and the true states. These are
used to train both the model and Q-value function in batches.

A PRESTO agent is compared to a Q-learning agent and a deep Q-learning (DQN [4])
agent that both observe a history of observations which form the new state space. The
history-based space grows exponentially with the history length and a tabular agent can
quickly outgrow the memory capacity of a standard machine. The deep Q-learning agent
serves as a second baseline as it uses the same neural network as the PRESTO agent to
compress the large history-based observation space, avoiding the memory issues of the
tabular agent.

The PRESTO agents use a multi-layer perceptron as a classifier that predicts the true
location of the tiger, trained on experiences labelled in hindsight. The class probabil-
ity output by the model is used as the measure of confidence in the prediction; it is
discretized into three bins ([0 - 0.50), [0.50 - 0.99), [0.99 - 1.0]). While this can intro-
duce some approximation errors, it also makes the solution more compact, ensuring the
method remains scalable [15]. The state space of the PRESTO agent grows linearly with
the number of bins used in this discretization, thus its size is independent of the length
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of history. The input to predictor is the same history as the one used by the tabular agent
and the deep Q-learning agents.

PRESTO agents and history-based agents with different history input lengths k were
compared in versions of the problem with varying noise probabilities. All parameters
were tuned individually to ensure good performance for each agent. Hyper-parameters
used with the DQN and PRESTO agents are provided in Table 4.1.

Table 4.1: Experimental hyper-parameters for PRESTO agents in tiger domain

Parameter
Noise

0.15 0.20 0.25

Training frequency (steps) 30 50 50
Batch size 50 50 100

k (Hidden layer size)
4 (20,) 5 (50,) 6 (60,)
5 (25,) 6 (60,) 7 (84,)
6 (36,) 7 (70,) 8 (112,)

Learning rate 0.01 0.001 0.0005

The performance of Partially-Observable Upper Confidence Bound (PO-UCT) [6] is
also plotted, which was implemented using the pomdp_py library [16]. The performance
of PO-UCT is not achievable by a reinforcement learning agent, as applying it requires
complete knowledge of the observation, transition and reward functions, thus it simply
gives some reference of an upper performance bound. The expected return of the policy
returned by PO-UCT is plotted after 15000 simulations.

PRESTO FINDS A BETTER POLICY

The results of the first experiments are shown in Figure 4.6 where only the best perform-
ing value of k corresponding to each agent for each noise probability is shown. The
PRESTO agents converge to a better performing policy in each of the tasks. The perfor-
mance of the tabular and deep Q-learning agents are very similar (with the lines almost
completely overlapping), and both initially achieve a faster increase in performance, but
ultimately they do not converge to the same policy found by the PRESTO agent within
the 500 episodes shown. The initial speed-up in this task may to be due to the higher
learning rates these agents can use, whereas the PRESTO agent requires a lower learning
rate, as it experiences oscillatory behaviour with similarly high learning rates. It is be-
lieved that this occurs because two learning processes are happening at once (training
the predictor and training the policy); when the predictor converges, the learning of the
policy becomes more stable. The PRESTO agents all avoid the lowest rewards at the very
start of learning, as this approach enables them to quickly plan against the worst case
scenario (where uncertainty is high).

THE PREDICTOR UNCERTAINTY CONVERGES TO THE ENVIRONMENT STOCHASTICITY.
Another experiment investigates empirically whether the uncertainty output of the su-
pervised learner is converging to the irreducible uncertainty in the environment as ex-
pected. In Figure 4.7, the prediction probability for hidden state “tiger left" is plotted
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Figure 4.6: Results comparing PRESTO agents to history-based agents in the tiger domain for three different
noise probabilities and history lengths 6, 7 and 8 respectively. Total episode rewards are averaged over 100 trials
with the 96% confidence interval depicted by the shaded region. The plot is smoothed by a moving average
window of 10.

against training iterations of the predictor φ. In the top plot, it is seen that the predictor
cannot improve beyond 50% certainty when the agent has not received any observa-
tions; this aligns with the initial distribution of the two hidden parameter values (uni-
formly random). When the agent has heard the tiger behind the left door 10 times in
a row, the predictor is almost certain (this is expected to converge to 1−0.1010). When
the agent has received one observation that the tiger was heard behind the left door, the
certainty converges to around 90%. This aligns with the noise in the environment, i.e.
the probability of incorrectly observing where the tiger is.

In the bottom plot of Figure 4.7, this last case is investigated further. The prediction
probability given a single observation of the tiger behind the left door is shown against
training iterations for four different noise probabilities exhibited in the environment.
The uncertainty reflects the environment noise, albeit with a small deviation from the
theoretical expectations.

TRANSFERRING THE PRESTO POLICY CAN SPEED-UP LEARNING IN NEW TASKS

In another experiment, transfer of the policy is demonstrated considering two versions
of the tiger domain where the noise probabilities differ. The policy is first trained by
applying PRESTO to the tiger task with noise probability 0.15. The Q-values are then
transferred to another PRESTO agent faced with a new task where the probability has
been changed to 0.20. Only the predictor is retrained in the second task while the Q-
values remain fixed; this also means that exploration is not necessary. The PRESTO-
PolicyTransfer agent to another PRESTO agent that learns a new policy from scratch to
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Figure 4.7: Visualizing the uncertainty output of the supervised learner φ averaged over 25 trials with shaded
areas depicting the 98% confidence interval.

show the effectiveness of the transfer. All non-transfer agents were ensured start with
as low an exploration factor as possible and it was found that setting an initial ε of 0.1
resulted in the best performance; higher and lower values affected the speed of conver-
gence negatively.

The results of the transfer learning experiment are presented in Figure 4.8. There is a
considerable benefit to using the pre-trained policy in the new environment (even in this
small problem), and it converges to the same performance as the PRESTO agent trained
from scratch.

4.4. RELATED WORK
The idea of learning a POMDP policy on a prediction of the true state has been men-
tioned as the “Most Likely State" heuristic [17]. This is expanded on by learning on a
prediction (output by a supervised learning model) and confidence, addressing the is-
sues that otherwise arise, and bringing it to the reinforcement learning setting. Predic-
tive State Representation (PSR) [3] has a similar goal of bypassing the limitations of the
POMDP formulation and conducting policy optimization over a compact state, however
PSR requires the definition of tests and cannot make explicit which state the agent thinks
it is in (as no labeled data is ever available).
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Figure 4.8: Results for transfer of the policy learned from the tiger domain with 0.15 probability of noise and
applied to a new task where noise probability is changed to 0.20. The average of 50 trials is shown with shaded
areas depicting the 98% confidence interval. The plot is smoothed by a moving average window of 5.

The proposed approach has similarities to learning on a latent space or with hidden
parameters. Other methods that model learning with hidden parameters commonly in-
volve reasoning over the latent parameter space to facilitate transfer learning between
related tasks [18–20] or reason about an opponent strategy modeled by those latent vari-
ables [21]. This setting is conceptually related to the idea of influence-based abstrac-
tion [22]. The hidden observations can be considered as the ‘influence source’ and the
supervised learning model φ is related to the idea of an influence predictor [23]. How-
ever, this method explicitly outputs a measure of uncertainty that is used to encourage
information-gathering actions in the policy. Deep anticipatory networks are another ap-
proach that focus on this goal of information-gathering, combining the goals of maxi-
mizing prediction rewards and information gain [24]. The method presented here con-
siders the case where extra information is available during training and provides a mech-
anism to make use of it. A similar setting also motivates an actor-critic method that
makes use of additional latent information that is only available during offline training,
but this method does not consider explicit state prediction [25].

There has been recent emergence of methods that label experience after action exe-
cution and use this labelled experience to learn. Hindsight Experience Replay involves
saving trajectories in memory in order to reuse the experience after re-labeling these tra-
jectories according to different goals they may be better suited for [26]. This approach
has been extended to policy gradient methods [27] and was later generalized to tasks
which are not specifically goal-oriented by applying techniques from inverse reinforce-
ment learning [28]. These approaches have in common that they label saved trajectories
in order to reuse data and learn multiple tasks more efficiently. In their case, the labels
are reflected in the rewards of a trajectory, which differ between tasks while the tran-
sition dynamics are unaffected. In contrast, this work considers additional knowledge
not in terms of the goal but in the form of state information. This enables the PRESTO
agent to benefit from information that is not there at the time of action selection, which
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may come in the form of hindsight knowledge but can also be artificially removed during
training in order to create a more robust policy.

4.5. CONCLUSION

This chapter introduced a modular reinforcement learning algorithm for POMDPs named
Uncertainty-Aware Predicted State Reinforcement Learning (PRESTO). PRESTO learns
on the joint state space of predicted states and confidence in the prediction, finding a
policy that trades off information gathering with reward maximization. This method
is suitable for problems which are partially-observable at the time of action selection,
but can be labelled with full observability during training. By incorporating a predictive
model, a PRESTO agent makes explicit its knowledge of the state it is currently in, infor-
mation which is otherwise lost in the policy optimization of a traditional RL agent. Fur-
ther, taking a decoupled approach facilitates transfer of both the policy and the predictor
between different tasks. The conditions that must be satisfied in order to safely transfer
are explicitly stated, something which is often hard to determine in transfer learning
problems but is necessary to avoid negative transfer [29].

PRESTO is promising as a method that can enable designers to apply predictors or
policies learned on offline data-sets to further improve the efficiency of reinforcement
learning agents. One interesting question that remains is whether a predictor learned
on an offline data-set would be as subject to the same issues of data distribution mis-
match (which plague other offline RL approaches). The proposed approach offers one
way to make use of offline data while making explicit the confidence the model has in its
predictions, possibly being less susceptible to such issues.

The PRESTO approach combines the strengths of model-free and model-based rein-
forcement learning, using a supervised learner to build a partial model of the unobserv-
able state components, and applying model-free policy optimization on this prediction.
By creating a joint state space of the predicted state and uncertainty in the prediction,
the agent learns a policy that tradesoff information gathering with reward maximization.
However, PRESTO is also limited by some of the same issues facing model-based learn-
ing, namely the difficulty of learning a model to predict states. As demonstrated in the
cartpole experiments, one way to reduce this burden is to model the problem as a decou-
pled POMDP and instead learn on the joint state of the observation, predicted state and
prediction confidence. Another interesting direction to explore is whether this method
can use the supervised learning model to learn a compact representation of state that
preserves sufficient information without the overhead of learning the true state, some-
thing left for future work. Overall, the PRESTO approach is an important step in devel-
oping methods that do not rely solely on learning from scratch, by either labelling data
in hindsight, or purposefully perturbing training environments to hide information that
is unobservable in the real-world.
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Without letting the mind to wander on its own will,
wisdom steers it away from harm, and towards good.

- Tirukkuraḷ 422

6

Reinforcement learning is an attractive approach to automating decision-making in in-
creasingly complex systems. As highlighted, learning methods often fall short of meeting
the requirements of real-world problems. One of the main limitations to this is the need
to take random actions, which in several domains, particularly safety-critical applica-
tions, is not feasible. However, learning algorithms get much of their power from this
ability to explore. The case where no exploration is possible and agents can only learn
from a given data set is the offline reinforcement learning paradigm. Offline reinforce-
ment learning is notoriously difficult, as the agent cannot use exploration to fill in gaps
in its knowledge.

One way to assuage the difficulties of offline RL is to incorporate demonstrations by
an expert and train agents to copy and deploy exemplar behavior with as little human su-
pervision required as possible. This is the idea behind behavioral cloning [2], where the
agent is expected to directly replicate the demonstrated behavior rather than develop its
own understanding of how to complete the task. This is the case considered in this chap-

Elements of this chapter are published in [1].
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ter; an expert has provided examples of correct behavior that and the goal is to automate
the decisions of the expert without any exploration or further learning done in the real
environment.

In a typical behavior cloning scenario, a predictive model can be used to supply ex-
pert actions trained on the example data provided by the expert [3]. As with any predic-
tive model, the ability to generalize over data never seen before is not guaranteed. If the
model is used for planning, the error will accumulate over every planning step. It may
be infeasible for a human to define the correct behavior for every state even in relatively
small problems. When presented with a state far from its expert data set, an agent can
either follow its potentially very incorrect model or take random actions, both of which
may be undesirable. Another option is to facilitate human intervention whenever the
agent is lost; this is effective but compromises the overall autonomy of the system. All of
these issues limit the applicability of behavior cloning.

The method presented in this chapter aims to remedy this by producing a robust
behavior cloning method that can recover from parts of the state space not covered by
its imitation policy. State abstraction is applied to expert trajectories, effectively multi-
plying the available data. This new data set is then used to generate a simulator for the
problem of recovering the agent to a state covered by its imitation policy. Optimizing
for expected reward in the simulator results in a recovery policy which does this opti-
mally. Instead of generalizing over the entire decision-making task, the agent focuses on
the simpler problem of getting back to states covered by the demonstrations, thus mini-
mizing the effect of model error. Even with a biased data set (containing only successful
trajectories) and without making potentially dangerous conclusions about never-before-
seen states, the lost agent can be recovered back to a known policy.

This method, named RECO (from policy RECOvery), boosts the ability of behavior
cloning agents and makes efficient use of offline data. It is aimed at problems where ex-
pert demonstrations have limited coverage of the problem space and where un-modelled
effects may take an agent to a state outside of the given data. For example, an au-
tonomous vehicle (AV) may encounter construction on the road and be forced to a state
outside of its planned route. A RECO AV will adjust its goal to first aim to get back on
track, using data from previous routes to do so, and then continue to execute the origi-
nal plan.

In this chapter, the policy recovery problem is formally defined and it is demon-
strated how data from expert trajectories can be used to specify and solve it. This chapter
includes a discussion on criteria for suitable abstraction selection and how to use several
candidate abstractions to generate the best recovery policy. The performance of RECO is
assessed against several baselines in tabular and continuous problems, demonstrating
its ability to make use of fewer trajectories while maintaining good performance in the
environment. Finally, related methods in the literature are discussed and the chapter
concludes with several ideas for extending this work.

5.1. RECO: ABSTRACTION-GUIDED POLICY RECOVERY
The aim in this work is to automate the process of making decisions in an environment
given examples of good behavior provided by an expert. Trajectories of expert decisions
include states and corresponding expert actions, but given the size of realistic problems,
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do not cover the entire space of possible states and actions. The behavior cloning agent
must use the given data to compute a policy that will be deployed online without any
additional data collection or computation.

The first focus is on the discrete state-space (tabular) case, where the lack of function
approximation renders a behavior cloning agent policy-less in states outside the data set.
It is assumed that a human supervisor is available to provide an action when the agent
has no policy to follow. The goal of the RECO method in these problems is to reduce
the number of calls to the human supervisor using only the data provided by the expert
without a substantial loss in performance.

In subsequent sections, the method is extended to continuous state-space problems
and the modifications required to do so are introduced. With the help of function ap-
proximation in continuous domains, the agent can use its model to choose actions from
a state even if the expert has not visited the same state; however, as demonstrated in the
experiments, this can lead to sub-optimal behavior when the model is inaccurate. Here
the goal is to recover the agent from states where the imitation policy is uncertain due to
lack of coverage by the expert data.

5.1.1. PROBLEM FORMALIZATION
The problem considers optimizing a task represented as a Markov decision process,
where the state and action space are known but the transition and reward function are
unknown. The data set of trajectories provided by an expert is in the form

D = {(s1, a1, s2), (s2, a2, s3), ..., (sT , aT , sT+1)}

containing T (state, action, next state) tuples. The set of states found in D with actions
provided by the expert is called SD , where SD = {s ∈ S | (s, a, s′) ∈ D} and SD ⊆ S. An
imitation policy πD (s) that aims to directly copy the expert behavior is defined for all
s ∈ SD .

An abstraction mapping function

µ : S 7→ S̄

maps the state space S to a state space S̄, where S̄ ⊆ S. It is assumed that the state space
of the task is factored, thus the state space S is the space spanned by the domains of k
state variables [4]:

S = {S0 × ...×Sk−1}.

The factored MDP description facilitates hand-design of state abstractions where µ(s) is
a masking function that returns only the variables in s that are relevant to the recovery
task: µ(s) = s̄. The inverse function µ−1(s̄) returns the set of ground states that map to
the abstract state s̄ under the mapping function µ.

RECO uses state abstraction to generate data for learning a recovery policy πρ that
returns an agent to a state in the expert trajectories from states outside SD .

EXAMPLE

Recall that in the classical taxi problem, a taxi agent in a grid world is tasked with picking
up a passenger from a given location and dropping them off at their destination [5]. The
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Figure 5.1: Examples of expert trajectories are shown in (a) and (b), given for two problem instances of the
classical taxi domain where the grid location is the location of the taxi, P indicates the passenger location, and
D the destination of the passenger. The RECO policy for initial state o is shown in (c), learned from the data in
(a) and (b).

variables in the factored state description indicate the x- and y-coordinate of the taxi and
the locations of the passenger and destination, such that s = {x,y,passenger,destination}.
The actions available are A = {south,north,east,west,pickup,drop-off }. Figures 5.1(a)
and (b) indicate given expert behavior for different locations of the taxi in the grid, when
the passenger and destination locations are as shown. Suppose the agent finds itself at
location o, pictured in red, with the passenger and destination shown in black. For this
particular state of the passenger and destination, the expert has not provided an exam-
ple, only the path given by the black arrows in Figure 5.1(a). However, another trajectory,
shown as the blue arrows in Figure 5.1(b), for a different configuration of passenger and
destination does contain this taxi location. By ignoring irrelevant information (the pas-
senger and destination), the agent can reason about actions that return it to a known
state. A RECO agent leverages the actions in the blue path, taking them from its position
at o and getting back to the known policy (black path) which it then executes, depicted
in Figure 5.1(c). It does this by applying what it knows in the abstract state space (x- and
y-position) to get back to a known state. In this case, µ= {x, y}.

First, the mechanics of RECO when a single state abstraction is provided are de-
scribed. In the section titled Abstraction Selection, the conditions for suitable abstrac-
tions are layed out, and RECO is adapted to the case where several candidate abstrac-
tions have been provided and can be used in parallel.

5.1.2. RECO IN TABULAR DOMAINS

In tabular domains, the imitation policy πD (s) samples an action a according to a
weighted distribution, weighted by the number of times a was executed by the expert
from state s. This generalizes to the case where the expert policy may be stochastic. The
environment is considered to be deterministic to simplify notation, and the extension
to stochastic domains is described later in this section. In a deterministic setting, the
agent can find itself in an unknown state only when an episode begins according to the
initial state distribution. The given abstraction mapping function µ is applied to each
state entry in the data set to get an abstracted data set

D̄ = {(s̄1, a1, s̄2), (s̄2, a2, s̄3), ..., (s̄T , aT , s̄T+1)}.
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The recovery problem of getting back to a state in the data set from a state outside of SD

is modelled as an MDP.

RECOVERY MDP
The recovery MDP Mρ is defined over the entire state space S augmented with an ad-
ditional sink state z. The action space is copied from the original MDP. Any transition
from a state in the expert trajectories transitions to the sink state, as the goal of recov-
ery has been reached. Abstract transitions are projected onto all the ground states that
map to the abstract state; this means the abstract transitions are copied for all possible
combinations of the un-abstracted variables. Transitions that are not represented in the
abstracted data set also transition to the sink state, as there is no data available for these.
The reward for taking action at from state st is 1 if st is present in SD , otherwise 0.

Definition 1 (Recovery MDP Mρ for tabular domains). Given a deterministic MDP, a
data set D generated by an expert policy and an abstraction function µ, recovery MDP
Mρ = (Sρ , Aρ ,T ρ ,Rρ ,γρ) is specified as:

Sρ = S∪{z},

Aρ = A,

Rρ(st , at , st+1) =
{

1, if st ∈ SD ,

0,otherwise.

T ρ(st , at , st+1) =



1, if st ∈ SD ∧st+1 = z,

1,else if (s̄t , at , s̄t+1) ∈ D̄ ,

1,else if (s̄t , at ) ∉ D̄ ∧ st+1 = z,

1,else if st = st+1 = z,

0,otherwise.

γρ = (0,1).

To describe the transition function in plain terms, the agent transitions from states
found in the data set to the sink state. All transitions in the abstract data set (from ab-
stract states to abstract next states) are projected back onto the recovery transition func-
tion. All other transitions transition to the sink state, including from the sink state itself.

When the environment is stochastic, the transition function of Mρ is defined by its
maximum likelihood estimate. This means that instead of assuming abstract transitions
happen with probability 1, the 1 on the second line of the transition function in Defini-
tion 1 is replaced with: ∑

s∗t ∈µ−1(s̄t )
N (s∗t , at , st+1)∑

s∗t ∈µ−1(s̄t )
N (s∗t , at )

,

where recall that µ−1(s̄) returns all the ground states that map to the same abstract state
as s.
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POLICY RECOVERY USING THE RECOVERY MDP
The fully-defined recovery MDP can be solved using an off-the-shelf method such as
Value Iteration, producing the recovery policy πρ which maximizes the expected dis-
counted reward in the recovery problem. The recovery policy takes actions that corre-
spond to finding the shortest path back to a state in the expert trajectories. When acting
online, if a RECO agent is presented with a state outside of its expert trajectories, it has
the option of executing the recovery policy.

The success of recovery depends on the data given, and there may not be the ability
to control how or how much data is collected. Fortunately, there is a simple way to check
for which states the recovery policy is able to recover the agent. The definition of a recov-
erable policy is adapted from the proper policy definition applied to stochastic shortest
path problems (SSPs) [6]. The recovery problem is similar to an SSP except instead of
no discounting and a negative reward for every action taken, it is an infinite-horizon
discounted-reward problem with a discount factor 0 < γρ < 1, a reward of 1 for taking
any action from a goal state, and a reward of 0 everywhere else.

Definition 2 (Recoverable policy). A policy π applied to Mρ is recoverable over a set of
states SP if, when following π from any state s ∈ SP , there is a positive probability that
some goal state sd ∈ SD will be reached in a finite number of steps.

The set of states SP can be found as defined below.

Definition 3 (Recoverable states). With the solution to a recovery MDP πρ , the set of
recoverable states SP ∈ S is defined as the set of states where πρ has a positive value, i.e.,
where V (π)s0=s > 0.

With this satisfied, every state in SP has some path under policy πρ that leads to a
state in the expert trajectories. Another difference between the recovery problem and
SSPs is that there is no guarantee that the recovery policy can recover from any state,
thus it must be assessed whether a policy πρ is recoverable. Without access to the reward
function, one can make no conclusions about the value of the policy in the real environ-
ment. However, it is known that the only way for a policy to have a non-zero value in the
recovery MDP is if it reaches a state in the expert trajectories.

By checking the value of a policy in a particular state in the recovery MDP, non-
recoverable policies can be eliminated in which the destination is not reached from that
state. For states without a recoverable policy, the agent executes an emergency action
that requests an action from an expert. Combined, the overall RECO policy is defined as
follows.

Definition 4 (RECO policy in tabular environments). A tabular RECO agent given an
expert data set D and a single recovery abstraction µ follows the aggregated policy from
state st :

πRECO(st ,D ,µ) =


πD (st ), if st ∈ SD ,

πρ(st ), if st ∈ SP ,

r equest ,otherwise.

The state spaces SD and SP in the taxi example are highlighted in Figure 5.2.
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Figure 5.2: For the same two instances of the passenger and destination locations (P and D respectively) and
given the expert trajectories shown in Figures 5.1(a) and 5.1(b), green indicates the states in SD over which the
imitation policy is defined and red indicates the states in SP for which there is a recoverable policy.

5.1.3. ABSTRACTION SELECTION

The method requires an abstraction in the form of a subset of state variables relevant to
recovery, but not necessarily relevant to finding the optimal policy in the true environ-
ment. In this section, the conditions on the abstraction are introduced that ensure that
a recoverable policy will recover an agent in the ground MDP. This includes a discussion
on emergent trade-offs in choosing an appropriate abstraction as well as how to manage
these trade-offs.

Two important concepts that require introduction are recovery-relevant actions and
model-consistency in the recovery MDP. In the recovery MDP, abstract transitions are
projected back onto ground states, transitioning only the abstracted variables accord-
ing to the data set. A recovery-relevant action is defined as one that, in the recovery
MDP (which is dependent on the data set), results in a change of state with a non-zero
probability (excluding transitions to or from the sink state). This leads to the following
definition:

Definition 5 (Recovery-relevant actions). The set of recovery-relevant actions ∆ for Mρ

is defined as:

∆Mρ = {a ∈ Aρ |∃s∗∈Sρ T ρ(s, a, s∗) > 0∧ s 6= s∗∧ s 6= z}.

In other words, any action that does not have any effect on the abstract state is irrel-
evant to recovery. The set of recovery-relevant actions is a function of both an abstrac-
tion mapping and the expert trajectories to which it is applied. In the taxi problem, if
the abstraction µ= {x, y} is selected, then the pickup and drop-off actions are recovery-
irrelevant as they have no effect on the x- or y-coordinate of the agent.

Model-consistency refers to whether the behavior in the abstract space is obeyed for
all the ground states which map to an abstract state. The bar notation is again used to
simplify notation, thus s̄ =µ(s).

Definition 6 (Model-consistent recovery MDP). A recovery MDP Mρ is model-consistent
with the ground MDP M if the transition function agrees for all relevant actions in all
ground states that map to the same abstract state (excluding transitions to the sink state z):

TO(st , at , st+1) = T (s∗t , at , s̄t+1),

where st+1 6= z,∀at ∈∆Mρ∀s∗t ∈µ−1(s̄t ).
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Figure 5.3: Recovery-relevant actions from the expert trajectories for the {x, y} (left) and {y} (right) abstractions
projected back onto the taxi domain where the expert data set covers solutions for all possible locations of
passenger and destination.

The method assumes the transition model in the recovery MDP is model-consistent
with the transitions in the ground MDP for relevant actions. With this criteria met, it is
guaranteed that a recoverable policy will return the agent in the ground MDP to a state
in the expert trajectories. In the taxi example, the model-consistency criteria is not met
by any abstraction that includes {x} without {y} because of the walls in the environment;
in some cases, a right movement will take the agent right but if a wall is present, it will
not. It is assumed that expert knowledge of the domain can produce abstractions that
meet this criteria, though they can also be determined empirically with some confidence
depending on the amount and coverage of expert data given. It is also important to note
that if the domain of any state variable is increased (exponentially increasing the size of
the state space), the abstraction definition will remain fixed and no further burden is put
on the designer.

DYNAMIC POLICY RECOVERY WITH PARALLEL ABSTRACTIONS

It is possible that several abstractions fit the criteria for model-consistency. A finer ab-
straction (i.e., smaller abstract state space, more compression) might require less cover-
age of the state space in the expert trajectories but then have a lower recovery potential.
This is depicted graphically in Figure 5.3, where it is clear that a {y} abstraction can only
recover to states with the same x-position. A coarser abstraction takes into account more
information when determining the closest state, thus potentially recovering to more rel-
evant states, however finding recoverable policies requires more coverage of the state
space in the expert data. While several abstractions may fit the defined criteria for suit-
ability, their success is highly dependent on the actual data available. This brings us to
the question: given a fixed set of expert trajectories, how can one determine the best
abstraction for recovery?

As the recovery MDP is defined and solved offline, there is an opportunity to gener-
ate and solve the recovery problem for several candidate abstractions. This set of policies
can be used, which is called Π, to choose the most suitable for a state encountered on-
line. Upon deployment, presented with a state s outside of the trajectories, a recovery
policy is chosen from the set of policies which are recoverable in s. This dynamic policy
recovery is presented in Algorithm 5. It is assumed that the recoverable policy produced
by the coarsest abstraction is the best choice as it incorporates the most state informa-
tion in planning its path, and thus lies nearer to the expert behavior. Therefore, the func-
tion RecoveryPolicySelection() on line 15 returns the recoverable policy produced
by the abstraction with the largest abstract state space. In empirical evaluations, it is
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shown how taking a dynamic abstraction approach can improve performance of a RECO
agent by effectively trading off abstraction size with the coverage of the data set.

Algorithm 5: Dynamic Tabular RECO

Result: Policy πRECO

1 Given a set of expert trajectories D ;
2 Given a set of suitable candidate abstractions µC ;
3 Given number of test steps N ;
4 Initialize empty set of recovery policiesΠ=;;
5 foreach µ ∈µC do
6 πρ = GetRecoveryPolicy(µ,D) ;
7 Π=Π∪ {πρ} ;
8 end
9 t = 0;

10 while t < N do
11 Receive state st ;
12 if st ∈ SD then
13 at = ImitationPolicy(D , st );
14 else if RecoverablePolicies(Π, st ) 6= ; then
15 πR = RecoveryPolicySelection(Π, st );
16 at =πR (st );
17 else
18 at = RequestExpert(st );
19 end
20 Execute action at ;
21 t = t +1;
22 end

5.1.4. RECO IN CONTINUOUS DOMAINS
In this section, RECO is adapted to continuous-state discrete-action problems. With the
use of function approximation and the now continuous state-space, the assumptions
and formal definitions presented in tabular RECO are no longer applicable. This section
is meant to touch on the changes necessary in adapting tabular RECO to continuous
problems as well as their current limitations. Continuous RECO is presented assuming
a single abstraction has been given, though in principle, dynamic switching between
abstractions could still be applied.

MODEL DEFINITION

The imitation policy is learned with a supervised approach, predicting expert actions for
a given state, trained on the data in D . This policy is again called πD . As in the tabular
version, a given abstraction functionµ(s) is applied to the data set resulting in abstracted
trajectories D̄ .

To gauge how close an encountered state is to the expert trajectories, a distance mea-
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sure d(s,D) is calculated. For this measure, a simple weighted L1 norm is used where the
weight vector is the size of the number of state variables. This returns the norm between
state s and the closest state in D (i.e., the smallest weighted norm). A second distance
measure da((s, a),D) returns the distance between a (state, action) pair and the trajec-
tory. For da , the norm is calculated considering only states in the trajectory from which
action a was taken. Many other distance measures are possible and can replace the one
described [7–9]. In general, the issue of determining when a state is out-of-distribution
is an orthogonal problem to the one presented here.

The transition and reward functions (see Definition 7) of the continuous recovery
problem can no longer be represented in tabular form. However, the transitions must
be captured in the abstract space, thus a supervised learning model is trained on D̄ to
predict abstract next states from abstract states and actions. This predictor is called φT ,
where φT (s̄t , at ) = s̄t+1. In the tabular setting, the abstract transition was copied for all
possible combinations of the un-abstracted variables to effectively multiply the data set,
whereas enumeration over a discrete number of combinations is no longer possible in
the continuous case. For simplicity, an assumption is instead made that the abstract
state will transition according to φT and the other variables remain unchanged. The
transition function T ′

ρ thus takes a full state st and action at and transitions only the
abstract variables, resulting in st+1.

The reward function takes a (st , at , st+1) tuple and gives a reward of 1 for entering
a state only if the distance between it and the closest state in the expert trajectories is
lower than a threshold ζD . The reward is 0 if (s̄t , at ) is within a second distance threshold
ζµ of the closest abstract state in the abstract data set and -1 if neither is true. An episode
ends if the agent reaches such a state or gets a reward of -1.

This leads to the following definition.

Definition 7 (Recovery MDP M ′
ρ for continuous domains).

Recovery MDP M ′
ρ = (S′

ρ , A′
ρ ,T ′

ρ ,R ′
ρ ,γ′ρ) is defined as:

S′
ρ = S,

A′
ρ = A,

T ′
ρ(st , at ,φT (s̄t , at )) = st+1,

R ′
ρ(st , at , st+1) =


1, if d(st+1,D) < ζD ,

0,else if da((s̄t , at ),D̄) < ζµ,

−1,otherwise,

γ′ρ = (0,1).

With the transition and reward function defined, the recovery environment can be
simulated. First, a random starting state is initialized by sampling a state from the ex-
pert trajectories and replacing the abstracted variables (those in mapping µ) with a uni-
formly random value within their bounds. Given an action, the environment transitions
according to the transition function, producing a next state and reward from the reward
function. In practice, it was found that learning can be sped up if an episode ends when
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a maximum number of steps is reached with a large reward penalty. The simulator can
be used to solve the recovery problem with a standard continuous state-space, discrete
action-space reinforcement learning method, obtaining πρ . For the continuous experi-
ments presented in the next section, a variant of Proximal Policy Optimization was used
[10].

In the continuous case, function approximation is commonly used to generalize the
policy to states outside the trajectories, thus avoiding the need for a human supervisor,
activating the recovery policy when the agent is far from the expert trajectories. As in
the tabular case, the recovery policy is used only if it has a positive value in the simu-
lated MDP, meaning that it found a path from the particular state the agent is in to a
state appropriately close to the trajectories. This also stops us from trusting the recovery
policy if the simulator was not run long enough to solve for a particular state. The space
which spans the states over which the recovery policy is recoverable is again called SP .
The combined RECO policy is defined below.

Definition 8 (RECO policy in continuous environments). A continuous RECO agent given
data set D , abstraction mapping function µ, and distance thresholds ζD and ζµ takes an
action from st according to the following policy:

πRECO(st ,µ,D ,ζD ,ζµ) =


πD (st ), if d(st ,D) < ζD ,

πρ(st ), if st ∈ SP ,

πD (st ),otherwise.

The recovery policy is used to safely guide the agent closer to the given expert tra-
jectories when the agent is in a state far from the given data and it is confident that the
recovery policy can do so.

5.2. EMPIRICAL EVALUATION
Experiments were conducted in the classic taxi problem [5] and a continuous problem
where the agent is tasked with navigating to a given location in an environment with
obstacles. In each trial, the learning for each agent was done offline on the same set of
given expert trajectories (a trajectory is one episode). Agents were then deployed and
evaluated on their performance online in the test environment, initialized to a random
starting state every episode ensuring each agent is given the same starting state.

5.2.1. TABULAR EXPERIMENTS
The taxi problem consists of a 5x5 grid and has 4 possible passenger locations (plus 1 for
when the passenger is in the taxi) and 4 destination locations, leading to a total of 500
states. Expert trajectories were generated by initializing the agent in a random state and
following a trained and converged Q-learning greedy policy until episode termination.

The performance of four RECO agents is compared: three use a single abstraction
and the last is the dynamic approach which chooses the best abstraction for every state
according to Algorithm 5. All RECO agents use a discount factor of 0.95 in solving the
recovery MDP. The RECO agents are then compared to three baselines on their perfor-
mance in 100 trials of 100 test episodes. The Imitation agent follows the imitation policy
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Figure 5.4: Performance on 100 test episodes of the 5x5 taxi problem averaged over 200 trials of random initial
states. 98% confidence interval indicated by shaded regions.

and calls for help in any state outside the expert trajectories given. The Nearest Neighbor
agent uses a crude nearest neighbor approach to choose actions when outside the expert
trajectories, sampling an action from the nearest Cartesian state in the given data set.
In order to maximize the performance of this simple model, the agent uses the nearest
abstract Cartesian state according to the abstraction function that gave the best perfor-
mance in experiments (in this case: {x, y}). The Factored Batch RL approach is a method
that has been used as a baseline in other offline RL work [11]. It uses complete knowledge
of the transition dynamics in the form of a dynamic Bayesian network and calculates the
parameters of the model with the offline data. This baseline acts as the upper bound of
offline learning performance in a factored MDP.

RESULTS

Figure 5.4 presents the results from the tabular experiment. The top plot shows the per-
cent of episodes in which at least one request for an expert action was made and the
bottom plot displays the average episode reward over 100 test episodes. Note that the
Expert, Nearest Neighbor and Factored Batch RL agents never call the expert. All RECO
agents show substantially fewer calls to the expert than the Imitation agent, with the Im-
itation agent calling for an expert in 60% of test episodes even after 150 trajectories are
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Figure 5.5: Actions taken by the RECO agent in one test episode of the continuous problem. Translucent lines
depict the 100 expert trajectories provided to the agent, where color denotes the goal location. Solid points are
actions taken online; X marks the recovery policy and circles indicate the imitation policy.

provided. In comparing the RECO agents, the choice of abstraction has a substantial
effect on the performance. As expected, there is a higher reward loss with the smallest
abstraction when given few expert trajectories; this is due to the high loss of informa-
tion, where recovery is planned using actions less related to the expert behavior. The
largest abstraction slightly dominates the reward performance when few trajectories are
provided. The biggest difference between RECO agents is seen in the number of calls to
a supervisor. Dynamic RECO effectively trades off the number of calls to the expert with
performance, demonstrating the fewest calls (of the RECO agents) while maintaining
high rewards. It can also be seen that Dynamic RECO is on par with the upper baseline
Factored Batch RL, converging to near-expert performance around 80 trajectories with
almost no calls to the expert. If a threshold is allowed of around 10% calls to an expert,
RECO reaches near-optimal performance with almost half the amount of data required
as the upper baseline. The Nearest Neighbor approach, despite attempts to tune it to be
as good as possible, performs very poorly.

5.2.2. CONTINUOUS EXPERIMENT

In the continuous problem (pictured in Figure 5.5), an agent is tasked with navigating
to one of 4 possible goal locations in an environment that includes walls. There is a -
1 reward every time step to encourage the agent to solve the task in as few time steps
as possible and a large penalty for hitting a wall or for reaching a maximum number
of time steps, all of which end the episode. The agent receives a +100 reward when it
reaches the goal (also ending the episode). The factored state is made up of the vari-
ables {x,y,x-displacement,y-displacement,goal x,goal y} and the agent must choose an
action from {north,south,west,east}. Each action results in a discrete magnitude of ac-
celeration propelling the agent in the corresponding direction, with acceleration decay-
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Figure 5.6: Performance on 100 test episodes of the continuous problem averaged over 200 trials of randomly
initialized episodes. 98% confidence interval indicated by shaded regions.

ing each time step. The initial position is purposefully forced to be always on the same
vertical half (in terms of x-position) as the goal to ensure that parts of the state space are
left un-demonstrated by the expert.

The “expert" is a reinforcement learning agent trained with Proximal Policy Opti-
mization (PPO) on 3e6 time steps of this task. In order to preserve reproducibility, all
executions of PPO use the standard PPO2 implementation of the Stable Baselines library
[12]. A weighting for the distance measures of (1,1,0.1,0.1,10,10) is used, meaning that
the goal location is weighed heavily and the displacement much less so when consider-
ing distance between states. The distance thresholds are set to ζD = 10 and ζµ = 6 and
the discount factor is 0.99. The abstraction used is {x,y,x-displacement,y-displacement}.
Both the imitation agent and the transition functions are trained neural networks with a
single hidden layer of 100 neurons. PPO ran on the simulated recovery domain for 3e4
time steps to obtain the recovery policy. The performance of RECO is compared against
the Imitation agent, which follows the imitation policy for any state encountered.

RESULTS

Figure 5.5 is a visualization of a single test episode in the continuous environment, show-
ing how RECO guides an agent back to known states using actions that are similar to
those taken before in an abstract state. The imitation policy is then executed and the task
solved. The results of the experiments are plotted in Figure 5.6. The RECO agent is supe-
rior to the Imitation agent once it has enough data to leverage, indicating the success of
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the recovery policy in retrieving the agent from states where its imitation model would
be incorrect. Both agents converge to sub-optimal performance due to the purposeful
limiting of the state space covered by the expert demonstrations. When the expert is al-
lowed to initialize trajectories from any random state, the imitation policy converges to
near-expert performance after around 1000 given trajectories and the RECO policy does
not have a noticeable advantage. This emphasizes that RECO is especially suited to im-
prove behavior cloning in problems where the expert demonstrations do not have good
coverage of the state space.

5.3. RELATED WORK
In behavior cloning or imitation learning, the offline data is produced by an expert who
is assumed to follow an optimal policy. The focus here is on agents that, once deployed,
cannot execute random actions (exploration) in the environment nor learn from their
online interactions. All offline reinforcement learning techniques must deal with the is-
sue of what to do when the agent encounters an out-of-distribution or anomalous state
during execution. This issue of distributional shift is a well-studied problem in the lit-
erature [13–15]. Several solutions have been proposed, such as reverting to a safe pol-
icy [16], forcefully resetting the agent [17], or requesting human intervention [18, 19]. In
the problem definition, it is assumed that a safe policy is not known outside of the expert
trajectories provided, that resetting the agent is not possible and that human supervision
in the true environment is very costly and therefore undesirable.

The notion of recovery has recently been applied to safe reinforcement learning,
where offline data is used to identify unsafe zones and a learned recovery policy steers
the agent back to safe states [20], though here the goal is to satisfy safety constraints dur-
ing online learning rather than follow policies learned on expert demonstrations. An-
other online method involves an agent simultaneously learning to perform a task and
learning to undo the actions it has done [21]. In this way it learns policies that avoid irre-
versible states and aims to minimize the need for human intervention. There have been
several imitation learning methods more related to the problem setting that aim to steer
the agent towards the expert behavior [22, 23]. In soft Q imitation learning, the learning
agent is incentivized to take actions that lead back to states in given expert demonstra-
tions [24]. Similarly to RECO, they define a sparse reward function that provides reward
for taking demonstrated actions from demonstrated states, training the agent to favor
behavior close to the expert. They do not, however, isolate the planning problem of re-
turning the agent to known states. Doing this in conjunction with state abstraction to
facilitate simulation of the recovery problem from a fixed data set is the novel contribu-
tion to existing work.

5.4. CONCLUSION
Safety-critical or otherwise costly real-world applications are unlikely to allow automated
decision-making algorithms to freely take random actions online. Encoding existing
knowledge can make automated methods more applicable in such scenarios. RECO
does this by applying state abstraction to expert trajectories to learn a recovery policy
that steers an agent from states outside of the given data back to states where it can



5

90 REFERENCES

confidently execute its imitation policy. It was shown in experiments that RECO can
drastically improve the performance of a behavior cloning agent in tabular domains, re-
quiring far fewer calls to a human supervisor than a naïve behavior clone and achieving
near-optimal performance on par with the baseline. It was also demonstrated how a
RECO agent can be implemented in continuous domains to recover from states where
a supervised-learned-based imitation policy would otherwise fail. This method is espe-
cially equipped for scenarios where there are un-modelled effects in the environment
that force the agent into a state where its imitation policy is poorly trained or defined. In
future work, it would be fruitful to investigate more efficient distance measures in con-
tinuous problems, including measures that take into account the uncertainty in the im-
itation model. This novel approach will hopefully inspire tangential research into more
generalized problem descriptions.
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The emergence (and re-emergence) of reinforcement learning is one of the most promis-
ing advances in artificial intelligence, bringing forth agents that learn, through only their
own experience, how to perform tasks optimally. The potential is great, and with increas-
ing data and computation power, RL is being posed as the solution to many important
societal and technological problems. In healthcare, it could be used to develop effective
treatment plans [1], detect lung cancer and offer clinical decision support [2]. In educa-
tion, RL could be used to personalize lesson plans [3] or teaching strategies [4]. RL could
improve industrial control algorithms and lead to better train scheduling [5], reservoir
management [6], and power and energy systems operations [7].

The reality is that the landscape of applied RL is quite different from the exciting
potential described above. There are working examples of RL algorithms being used to-
day in financial trading by IBM [8], to determine discount pricing in Walmart [9] and
to suggest content to Netflix subscribers [10]. However, in arguably more impactful ar-
eas such as healthcare, education or industrial control, reinforcement learning is not
penetrating real-world systems. Significant road blocks keep it from being widely ap-
plied in practice, particularly in safety-critical or high-risk fields. These are varied and
many, but speak mainly to the challenges mentioned in the introduction of this the-
sis [11]. In the time this thesis was under review, the introduction of ChatGPT, a natural
language-processing chat bot trained in part with reinforcement learning, has promised
immense disruption and brought AI to the forefront of mainstream conversation. While
inarguably impressive and a feat of technology, the discourse often credits ChatGPT as
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being more intelligent than it can be made out to be. Noam Chomsky recently wrote that
humans are not “statistical engine[s] ... extrapolating ... the most probable answer to a
scientific question”, but are efficient machines that seek to create explanations [12]. This
work suggests researchers take a few steps back from massive data-hungry models and
continue to draw inspiration from the fundamental principles of human intelligence ly-
ing in the gap between RL and Real-Life.

6.1. THESIS CONTRIBUTIONS

This thesis centers around a belief that reinforcement learning without
human-interpretable abstraction will continue to be susceptible to several pitfalls no
matter how far advancements are made in computation power or black-box prediction
methods.

Deep learning methods, which have several powerful properties, are not perfect. The
sheer amount of data needed in order to train new deep reinforcement learning meth-
ods can make them an impractical, infeasible or even irresponsible approach (when one
accounts for ethical and environmental considerations). Current deep reinforcement
learning advances are celebrated for moving further and further away from the use of
expert knowledge, but the price is that trust and safety assurances can be lost. Whether
or not humans are purposefully included in the loop, the decisions made by an RL algo-
rithm are ultimately developed for humans and must be ultimately accepted by humans.
Another important point is that humans are required in order to define the state space of
an environment either by building a simulator or by making decisions about the sensing
capabilities of the automated system. In this way, humans are already imposing their
ideas of the correct model or information needed in order to act optimally. The ideas
proposed in this thesis only allow human knowledge to be incorporated even more, of-
fering safe ways to empower the reinforcement learning agent with abstractions that it
can learn to use effectively.

Modularity can be used in conjunction with abstraction to make model-free learning
less goal-dependent and more flexible and transferable. It enables the use of several state
abstractions in tandem, making more explicit on which features a decision is made. By
using expert knowledge to enable modularity and abstraction, reinforcement learning
can be made more transferable, more efficient and more transparent.

6.1.1. TRANSFER

Reinforcement learning is inflexible to changing environments. To maintain theoretical
guarantees, it assumes the problem is stationary. In practice, even very small pixel-level
changes have caused working deep RL agents to fail [13]. Taking a modular approach
to learning imparts an element of robustness to this issue. When changes in the en-
vironment affect only one module, which might represent a part of the state space, a
subtask, or both, ideally only that module needs to be retrained. This was demonstrated
in the transfer learning capabilities of Parallel Learning in Chapter 3 and in the PRESTO
method (Chapter 4).
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6.1.2. EFFICIENCY
The aspect of efficiency has been mentioned several times in this thesis, most often re-
ferring to the number of samples required to learn high-performing policies. In RECO
(Chapter 3), this can mean the difference between learning a good policy and a bad one,
as the size of the given data set is fixed. In online methods such as Parallel Learning and
PRESTO (Chapters 3 and 4), sample efficiency of the approach may come at the expense
of increased computation in small problems. However, in larger problems, the benefits
of abstraction and modularity can be greater and reach a point where, compared to ap-
proaching the problem in a naïve way, the amount of computation required to learn a
good policy is less in addition to the number of samples required.

Finally, modularity enables tranferring of knowledge between AI systems, which fa-
cilitates reusable parts that eliminate the need for retraining, potentially having a much
larger effect on efficiency in terms of both computation and amount of data.

6.1.3. TRANSPARENCY
One of the biggest problems facing many machine learning solutions today is that of
transparency. Neural networks are extremely susceptible to reinforcing biases inherent
in the data or the data collection policy (e.g., in healthcare [14]). Model-free reinforce-
ment learning, even when applied without function approximation, chooses a policy
that maximizes a learned value function, which, especially in complex and long-horizon
problems is not interpretable. It can quickly become impossible to glean why a partic-
ular decision is chosen as optimal, and due to which facets of the problem. Abstraction
simplifies the problem, but also the solution. Particularly when a task is broken down
and decisions are chosen according to one of several abstractions, the problem space
upon which a certain action was chosen is smaller. This can provide interesting or cru-
cial information about factors that were and were not used to make a certain decision.

6.1.4. RESEARCH QUESTIONS
A summary of how the work in this thesis attempts to answer the research questions
presented in the introduction is provided below:

• Is there value to abstraction mappings that are intuitive and human-definable,
even when they form poor abstractions of the MDP?

– In Chapter 3, the approach takes potentially several human-defined map-
pings as input and makes no assumptions of their correctness. The agent
learns to use what it learns in each abstract space to solve the main task ef-
fectively, using the long-term rewards as the metric on which to judge each
abstract policy. When the human-defined mappings have merit, it will learn
faster (with fewer interactions). When they do not, the agent will still recover
the optimal ground truth policy. The method in Chapter 5 uses abstractions
that are again not assumed to hold for the MDP, but rather for a sub-problem
that can be used to return the agent to a state where it can confidently exe-
cute its learned policy. This is found to be very effective in maintaining high
performance in offline problems where the given expert data has poor cov-
erage of the problem space.
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• Is it worth the additional computation requirements that learning in several par-
allel processes incurs?

– Every approach contained in this thesis employs some kind of parallel learn-
ing process. In the method in Chapter 3, it is found that if the number of par-
allel problems initiated is strictly less than the number of actions, then for
large problems the gains made can be so great that the additional computa-
tion is dwarfed by the saved computation. In Chapter 4, one learning process
is simplified by the decomposition into two simpler problems. This means
the potential additional overhead is problem-dependent, but not guaran-
teed, and there may even be lower computational demands. Finally, in Chap-
ter 5, the addition of the recovery problem allows the agent to reach a level of
performance that would otherwise be impossible with the data given, requir-
ing more data to be collected. Collecting data can be a very expensive and
timely procedure, and the additional computational demand would likely be
welcome as an alternative. Finally, one of the biggest motivations for these
parallel learning approaches is modularity. The long-term computational
savings of modular learning are very difficult to quantify, as each module
can potentially be used in several problems, resulting in even more compu-
tational savings down the line.

• How can modular approaches contribute to the goals of lifelong RL, such as ro-
bustness, transfer and learning from offline data?

– Modular learning allows the agent to be flexible to changing environments,
evident most obviously in the approach of Chapter 4, where both the pol-
icy and the state-predictor can be transfered or retrained. This is also rele-
vant to robustness, as when assumptions made about the environment are
incorrect, the agent can adapt only the relevant part of its learning. Again
in Chapter 4, the policy considers the agent’s uncertainty over the state its
in, meaning if the problem has been modelled incorrectly, some of this can
be accounted for. The concepts of robustness and transfer are related, in
that problems can be parameterized according to a range of potential mod-
els they may fall into, forming a family of potential MDPs. The MDPs in the
family can be treated as separate problems that share some modules that can
be reused between them, reducing the amount of necessary learning to solve
them all. Finally, there is and remains a big gap in literature regarding the
use of explicit abstraction for offline RL. In Chapter 5, one method that uses
abstraction to make intelligent use of a limited data set is provided and has
great potential when expert data is given.

6.2. WHERE TO NEXT?
This thesis is not in any means considered the end of the journey, but rather should act
as an invitation and motivation for development into reinforcement learning methods
that explicitly put abstraction and modularity at their core. There are several directions
which this work should consider in its next steps.
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6.2.1. DEEP RL
The methods in this thesis are largely targeted toward discrete MDPs with some attempts
made to demonstrate how they could be extended to continuous problems. There is a
justification for first considering discrete problems (which, it should be noted, does not
mean the problems are small); devising abstractions for high-dimensional and continu-
ous problems may not actually be possible for humans and thus the benefits are much
more likely in tabular, and particularly factored, domains. Especially when abstractions
are defined as sub-sets of factored state variables, a nice property follows where the set of
possible abstraction definitions is only dependent on the number of state variables and
not the size of the state space. This means that problems large in size but with relatively
few state variables can see great improvements from methods such as QLiA (Chapter 3)
and RECO (Chapter 5). In the PRESTO approach (Chapter 4), this depends on how much
history is needed and how difficult the prediction task is overall.

Methods that have shown incredible progress in large, high-dimensional problems
have often relied on implicit abstraction in the form of deep neural networks. The tech-
niques shown here are not touted as a replacement for neural networks as abstractors,
but rather show that it is possible to devise modular methods that give a more explicit
understanding as to which parts of the observation are used in their decisions. Such ap-
proaches can compliment the impressive abilities of neural networks to compress huge
and complex states (such as images) into implicitly meaningful features. Not only could
abstraction-guided modular approaches boost the power of neural networks by remov-
ing unnecessary information when possible (thus reducing the data required for training
and avoiding the tendency to overfit), they could also bring more control over what in-
formation is used for decisions, exposing or limiting inherent biases that may be present
in the data.

Further, modular approaches may be a necessary next step to enable RL agents to
learn from given information or even from each other. Lake et al. suggested that “more
structure and inductive biases could be built into the networks or learned from previ-
ous experience with related tasks, leading to more human-like patterns of learning and
development. Networks may learn to effectively search for and discover new mental
models or intuitive theories, and these improved models will, in turn, enable subsequent
learning, allowing systems that learn-to-learn – using previous knowledge to make richer
inferences from very small amounts of training data.” [15]. Neural networks are built on
the idea of interconnected nodes; these large complex networks of dependencies go pre-
cisely against any sense of modularity. Only with intention can methods be developed
that have such a property.

6.2.2. MODEL-BASED RL
This thesis presents methods that are all model-free approaches (with the exception of
PRESTO which combines elements of both model-free and model-based learning). In
model-free RL, the general aim is to estimate the value of taking certain actions, and
then plan according to this estimation. While they form some of the most impressive
examples of RL, model-free approaches also require much more data (in principle) than
model-based approaches. It was previously noted that preserving the value function is
crucial to maintaining optimality of abstract MDPs when solving with traditional meth-
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ods [16]. It was also noted that devising abstractions that preserve the value of actions
can be unintuitive, particularly in hierarchically-structured tasks with a global reward
function, where the value of an action is dependent on all the following subtasks. This
was one motivation for creating methods that made use of policy-preserving-abstractions,
which are easier to devise.

However, there is another way to preserve optimality in an abstract MDP without
preserving the value function, which is to preserve the model. The angle of inserting
abstractions in model-based methods was not explored, but has potential. What is par-
ticularly promising is that checking whether an abstraction is suitable should not require
learning a complex value function. However, in practice, model-based methods can be
difficult to implement, and crucially the best model-preserving abstraction at a single
state (according to prediction accuracy) is not necessarily the best for reward optimiza-
tion overall.

Research in neuroscience has supported the idea that humans employ multiple dif-
ferent types of decision-making processes, some model-based and other model-free, in
parallel. It has been further theorized that they trade-off the use of these processes based
on uncertainty [17]. Uncertainty as a metric was explored in both Chapter 4 and 5, in the
former both classification probability and ensemble deviation were used as a represen-
tation of uncertainty, and in the latter a simple Euclidean distance measure. Further
development could be made in using such measures to trade off the use of abstraction
when the ground truth is too uncertain.

6.2.3. LIFELONG RL
Finally, this work is seen as contributing to the goals of Lifelong RL. In the Lifelong RL
paradigm, an agent continuously receives tasks from a distribution of possible MDPs,
and must learn a policy or family of policies that takes this into account. This is challeng-
ing for several reasons, such as issues of non-stationarity and effective transfer learning.
A modular abstraction-guided approach would allow an RL agent to train only the parts
of its knowledge that differ between tasks, and to be efficient in learning the parts that
are shared. Applying state abstractions for Lifelong RL has been explored in existing lit-
erature [18], but there is much more to be learned from using abstraction in the more
loose and flexible terms which are introduced in this work.
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