
Extending Null Embedding for Deep Neural Network (DNN) Watermarking
Improving the accuracy of the original classification task in piracy-resistant DNN watermarking

Kaan Altınay1

Supervisor(s): Dr. Zeki Erkin1, Devriş İşler2,3

1EEMCS, Delft University of Technology, The Netherlands
2IMDEA Networks Institute

3 Universidad Carlos III de Madrid, Spain

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2024

Name of the student: Kaan Altınay
Final project course: CSE3000 Research Project
Thesis committee: Zeki Erkin, Devriş İşler, Asterios Katsifodimos

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

The advancement of Machine Learning (ML) in
the last decade has created new business prospects
for developers working on ML models. Mod-
els that are expensive and time-consuming to de-
sign and train can now be outsourced from oth-
ers to reduce costs using Machine Learning as a
service (MLaaS). Deep Neural Networks (DNNs)
are particularly expensive to train, therefore many
who need a DNN utilize the services of an MLaaS
provider. This creates the possibility of piracy of
this valuable asset, and the need to prevent piracy to
assure a fair market. To address this need, research
has been conducted on protecting DNNs using var-
ious watermarking techniques. A work by Li et al.
has proposed null-embedding, a technique that ren-
ders the DNN useless if it is subject to a piracy
attack. Despite being effective, this method was
shown to reduce classification performance when
embedding a watermark into the model. This paper
suggests modifications to the null-embedding tech-
nique that reduce this impact and keep the classifi-
cation accuracy close to that of a non-watermarked
model.

1 Introduction
As Machine Learning (ML) becomes more prominent and
is used for an increasing number of tasks, ML developers
have built business models around outsourcing their models
[4]. Since ML models are costly to train, both in terms of
time and effort, many users opt to use third-party services
to cover their ML needs [8]. Machine Learning as a service
(MLaaS) brings with it the risk of piracy of expensive deep
neural network (DNN) models. To protect DNNs against
theft and piracy, the watermarking research community has
recently suggested techniques to provide proof of ownership
for a given DNN model.

Existing research can be classified into two broad cate-
gories: white-box and black-box verifiable watermarking
techniques [5]. The former assumes the verifier has white-
box access to the model under investigation. In scenarios
where a third-party is suspected to have pirated a model,
this assumption does not hold. Instead, watermarks that can
verify ownership of a model with only black-box access (i.e.
using only input and output) are needed to prove ownership.

Most black-box verifiable watermarking techniques [14] [5]
stem from the idea of using ’backdoor attacks’ on DNNs to
embed the watermark. These techniques add watermarks to
the training data. This enables the model to classify certain
watermarked data points to a different label than it normally
would, hence verifying a watermark exists. But this type of
watermarking can cause disputes in ownership if someone
else discovers this backdoor. Therefore Li et al. suggested
a novel technique that utilizes null embedding to embed the
watermark [7].

Even though this novel technique is resistant to piracy
attacks, it reduces the accuracy of the DNN’s original
classification task by a factor of up to 1.5% [7], which is
an undesirable increase in error for accuracy-critical DNN
applications. This can be related to the fixed, square-shaped
filters used for null embedding (detailed description of null
embedding is presented in Section 3.2). This paper aims to
improve the DNN’s classification accuracy while maintaining
the robust ownership watermark. Our contribution can be
summarized as:

• Introducing four new methods of null-embedding a wa-
termark to image data.

• Assessing the classification accuracy of DNN models
trained with data watermarked using the said methods.

• Comparing the accuracy of DNNs watermarked with the
new methods with the original method proposed by Li et
al.

By showing that the modified methods increase clas-
sification accuracy, this paper strengthens the existing
piracy-resistant DNN watermarking technique and brings it
closer to deployment in the industry.

The report is structured as follows: Section 2 outlines
previous research in the area and highlights critical papers.
Section 3 explains key terms and concepts, and Section 4
describes our modifications to the state-of-art. Section 5.1
states the experimental procedure and results are presented
in Section 5.2. Section 6 discusses the significance of the
results and presents ideas for future work. Section 7 outlines
the ethical implications and Section 8 contains concluding
remarks.

2 Previous Work
This section briefly describes other papers in the field that
have been published and points out their significance.

The first paper on DNN watermarking was by Uchida
et al. and it proposed a white-box verifiable technique
based on embedding a watermark in the parameters of the
model [11]. This paper was later taken as the benchmark
for requirement definitions such as fidelity and robustness in
the DNN watermarking domain. Soon after this suggestion
of a white-box verifiable DNN watermark, Zhang et al.
proposed a black-box verifiable DNN watermarking method
[14]. Their technique used an idea from backdoor attacks on
DNNs to embed the watermark. A train image is embedded
with a pattern and this image has a label that it should not
have (ex. a car image embedded with a watermark results in
the label ’Plane’).

Despite its limitations in terms of verification, white-
box watermarking techniques were further investigated. The
reason for this is that studies have shown that every black-
box watermarking technique will negatively influence model
accuracy as they modify the training set [9]. This makes
them inapplicable to accuracy-critical DNN applications,



such as those used in medical diagnosis. One such study by
Wang et al. uses another DNN trained using an adversarial
network to perform watermark extraction from the white-box
watermarked original network [12].

Most black-box watermarking techniques have built
upon the backdoor attack technique proposed in [14]. Guo et
al. has investigated the requirements of DNN watermarking
in an embedded systems context [5]. Their work proposes
making use of cryptography by incorporating the author’s
signature into the training process. Xu et al. has extended
watermarking using the backdoor attack technique to Graph
Neural Networks (GNNs) [13]. Szyller et al. has developed
a watermarking technique that is specifically resiliant against
model extraction intellectual property theft [10].

None of the research above addresses the threat of piracy
like Li et al. does in their paper. Li et al. suggests null
embedding, a technique that uses a bit sequence to build
a strong dependency between the normal classification
accuracy of the model and the watermark. This makes it
impossible for attackers to remove the watermark or insert
their own. This unique resistance against piracy is why their
technique was chosen to study further in this paper.

3 Preliminaries
This section explains the main concepts relevant to the re-
search topic.

3.1 Digital Watermarking
The origins of electronic watermarking can be traced back to
1954, when the Muzak Corporation filed a patent describing
a method for embedding a pattern into a music track for
purposes of proving ownership [3]. Digital watermarking
became a more significant research topic with the rise of
the technology age and the web, allowing the distribution of
knowledge instantaneously [2]. The main idea of watermark-
ing remains the same: Insert data that is imperceptible in
normal use, but that can be used later to verify ownership. It
is essential that a watermark does not hinder the original task
of the data, is robust against modifications in the data, and is
easily verifiable after embedding.

In the 2000s, researchers started looking into water-
marking of non-media assets such as map databases and 3D
models [6] [1]. Watermarking DNNs is a newer area and has
started attracting research in the 2010s.

3.2 Null and True Embedding
As mentioned in Section 2, this paper is based on the
technique of null embedding a watermark into the training
data of a DNN proposed by Li et al. [7]. The algorithms
used for embedding are derived from the pseudocode given
in their paper, therefore we refer readers who are interested
in further details of the embedding/verification procedure to
their paper. Nonetheless, we provide a high-level description
below.

Figure 1: 4x4 and 3x3 Null Embedding Patterns on a 12x12 Image.
White squares are at value λ = 2000, blacks at −λ.

Null embedding consists of applying a filter to a matrix-like
data format which disguises part of the matrix as having
extreme values outside the normal dataset range. This effec-
tively reduces the learning space of the model. For example,
a 32x32 image is null-embedded by a 6x6 square filter with
pixel color values of either λ = 2000 or −λ = −2000,
depending on the bit pattern. Because both values are far
from the normal color range of [0, 255], these pixels no
longer serve a purpose in the image classification. A sample
illustration is shown in Figure 1.

The model owner generates a watermark as a tuple of
the square’s position, and the bit pattern embedded in it. The
owner first signs a verifier string v, which is a combination
of an arbitrary string and the current timestamp. Afterwards,
this signed string is hashed and its modulos determine the
tuple of (bits, pos), as shown in Algorithm 1. S is the length
of one side of the square filter to be embedded, h and w are
the dimensions of the matrix being modified.

Algorithm 1 Generate Watermark (str, h, w, S)

v ← str + timestamp
sig ← Sign(PrivKey, v)
bits← hash(sig) mod 2n

2

pos(x, y) ← (hash(sig) mod (h - S), hash(sig) mod (w -
S))

Verification of the watermark is achieved by first checking
if the owner’s public key can verify the signature. Afterwards,
a new set of watermarked data points are generated. This can
be done by anyone who has access to the generation algorithm
described in Algorithm 1. After generation, the trained model
is asked to guess labels for the newly generated data points.
The verification succeeds if the model returns an accuracy
higher than a certain pre-determined threshold T .

Algorithm 2 Verify Watermark (PubKey, str, h, w, S, T )

if Verify(PubKey, sig) then
(bits, pos)← Generate Watermark (str, h, w, S)
NewData← Embed Watermark (bits, pos)
if [Accuracy of Model on NewData] ≥ T then

Verification Success
end if

end if



Algorithm 2 above demonstrates the verification proce-
dure. Any outcome that does not lead to Verification Success
is not included in the algorithm, and verification fails.

In the original paper, verification of a watermark in a
model is supported by embedding some images with the
inverse of the bit pattern used for null embedding. These
images are then mapped to a specific label (not equal to
their original label). This process is called true embedding,
and is supposed to help verify the existence of a watermark
in cases where the null embedding alone can yield false
positives. From our experimentation, we have seen that
the null embedding is a very reliable method to verify a
watermark, and that adding this true embedded data is not
necessary for verification.

4 Modifications of Null Embedding
To improve the classification accuracy of the DNN while
maintaining a watermark, we have experimented with
varying the shape of the embedding pattern on the image.
Because a regular shape like a square has the potential to hide
entire features of a matrix-like data structure, irregularizing
the shape of the pattern can reduce the number of significant
features left outside the training domain. The filter patterns
tested are the following four: Random, Peripheral, Circular,
and Triangular.

To keep the training domain at a similar size to images
embedded with the original square pattern, all filters below
were made to have the same pixel count (or close, if the same
is not possible) as the original pattern.

4.1 Random Filter
The random embedding pattern chooses the same number of
pixels as the square filter (36 in our test scenario) at random
throughout the image. This has the effect of not blocking any
significant features for the human eye, but is very similar to
introducing noisy training samples into the training dataset.
This can cause lower verifiability of the watermark as it is not
perceivable, and potentially harm the classification accuracy
of the DNN. A visualization is shown in Figure 2.

4.2 Peripheral Filter
This filter is constructed by selecting the top-most and
left-most pixels possible in the image for pattern embedding.
This pattern was chosen as the extremes of a matrix-like data
structure can be cropped without disturbing the coherency
of the rest of the data. A sample visualization is shown in
Figure 2.

Especially in image datasets like the ones used in this
paper, the peripherals of the image tend to not have parts of
the object being labeled from the image. This should mean
that the classification accuracy is affected less compared to
other methods of reducing the training domain.

4.3 Circular Filter
To embed this filter, a circle is chosen with a center pixel
determined similarly to the filter position determination

Figure 2: Random and Peripheral Null Embedding Patterns on a
12x12 Image. White squares are at value λ = 2000, blacks at −λ.

described in Algorithm 1. Afterwards, the radius of a circle
with equal surface area to the square is calculated, and pixels
with centers within this circle are used to embed the bit
pattern. Algorithm 3 below demonstrates this procedure.

This method was chosen as it will have the effect of
minimizing the perimeter of the watermark shape. As
DNNs use adjacent pixels to learn patterns, we believe this
will prove to result in better classification accuracies in
comparison to a square filter. A sample visual can be found
in Figure 3.

Algorithm 3 Embedding a Circular Watermark

(MSB = Most Significant Bit)
pixelcount← Area Of Square Filter
radius←

√
(pixelcount/π)

for image in subset do
for (i, j) in image do

if (i,j) is in circle then
pixel value←MSB of bit pattern
shift bit pattern to the left to change MSB

end if
end for

end for

4.4 Triangular Filter
The triangular filter uses a triangle with an area less than or
equal to that of the square to embed the bit pattern. Its reason
for inclusion is to see if there are significant classification
differences between using different regular polygon shapes
for null embedding.

Data in matrix form does not tend to have features that
can be derived from a diagonal along the matrix. Therefore,
we predict that it is less likely for a triangle to block a
significant feature in comparison to a square.

k =
−1 +

√
1 + 8n

2
(1)

The number of rows in the triangular filter is determined by
Equation 1 above. The goal is to create the largest triangle
where the ith row has i elements, with the number of pixels
not exceeding the number of pixels in the equivalent square



Figure 3: Circular and Triangular Null Embedding Patterns on a
12x12 Image. White squares are at value λ = 2000, blacks at −λ.

filter. Given the number of pixels in the square filter as n, we
want to find the largest integer k such that:

k(k + 1)

2
≤ n (2)

Rearranging the inequality in Equation 2 gives k2+k−2n =
0, and plugging a = 1, b = 1, c = −2n into the quadratic
formula yields Equation 1:

k =
−1±

√
12 − 4 · 1 · (−2n)

2
=
−1 +

√
1 + 8n

2
(3)

Algorithm 4 below shows how this equation is used in the
embedding of the watermark.

Algorithm 4 Embedding a Triangular Watermark

(MSB = Most Significant Bit)
pixelcount← Area Of Square Filter
rowcount← Equation 1 where n = pixelcount
for image in subset do

for i in range rowcount do
for j in range i do

pixel value←MSB of bit pattern
shift bit pattern to the left to change MSB

end for
end for

end for

5 Experimental Setup
In this section, we describe our experimental procedure and
an overview of the results obtained. The datasets used for
demonstrating proof of concept is the University of Toronto’s
publicly available CIFAR-10 dataset1 and the MNSIT hand-
written digit dataset. The former consists of 60000 images
with 10 class labels, and the latter of 70000 images with 10
class labels (corresponding to 10 digits). Experiments were
performed on a personal workstation, an HP ZBook Power
G7 with an NVIDIA Quadro T1000 GPU.

5.1 Experimental Procedure
The DNN was constructed using the Tensorflow Keras frame-
work available in Python, using version 2.16 of Tensorflow.

1CIFAR-10 and CIFAR-100 datasets.
https://www.cs.toronto.edu/ kriz/cifar.html

Windows Subsystem for Linux (WSL2) was used to support
Tensorflow’s GPU capabilities as Tensorflow has discontin-
ued GPU device support on Windows systems in version 2.10.

Data Split and DNN Structure
Both datasets were split according to the recommended
dataset split by the dataset providers, and these are as
follows:

The CIFAR-10 dataset was split to have 50000 data
points in the training set and 10000 in the validation set.
The MNIST dataset was split to have 60000 data points in
the training set and 10000 in the validation set. 10% of the
training dataset was selected randomly before each training
to be embedded with the watermark. With the addition of the
watermarked data, the total training set has a size of 55000
for CIFAR-10 and 66000 for MNIST.

To be in keeping with the experimental setup used by
[7], the DNN for training on the CIFAR-10 dataset was
constructed with 6 convolutional and 3 dense layers. The
DNN for training on the MNIST dataset was constructed
with 2 convolutional and 2 dense layers. Further detailed
specifications can be found in the Appendix of [7].

The CIFAR-10 DNN was trained for 50 epochs in each
round, while the MNIST DNN was trained for 20 epochs.
This is because the MNIST dataset is a lot simpler, and
thus the DNN achieves higher accuracies quickly. For both
datasets, the results obtained from 5 rounds of training
were averaged out for each configuration presented in the
following section.

Trials
Before experimenting with the proposed filter types men-
tioned in Section 4, the square filter used by Li et al. was
implemented following the pseudocode procedure in their
paper. The results obtained from the DNN watermarked
with the square pattern were then used as the benchmark to
compare the performance of the proposed pattern varieties.
Additionally, the model was trained with the same parameters
but without a watermark to be able to compare the loss of
accuracy on the validation set.

The DNN model was watermarked using training data
embedded with the Random, Peripheral, Circular, and
Triangular null-embedding patterns. The results from
these trials, the square pattern watermarked DNN, and the
non-watermarked DNN are present in the tables in Section
5.2

5.2 Results
The experiments focus on 6 measures. These can be cate-
gorized into 3 as each of the 3 categories mentioned in the
following subsections have their respective accuracy and
loss measures. The accuracies are presented in Table 1 in
percentages, with the standard deviations given after the
plus/minus sign, i.e. mean ± SD. The loss function used
is Sparse Categorical Cross-Entropy. This loss function was



Table 1: Accuracy and Loss for Each Watermarking Method. Best accuracy values are bolded.

CIFAR-10 Training Data Validation Data Watermark Verification
Accuracy
(%)

Loss Accuracy
(%)

Loss Accuracy
(%)

Loss

No Watermark 98.56±0.12 0.0415±0.0032 82.91±0.19 0.8503±0.0118 12.14±1.26 73.6109±27.7472
Square WM 98.41±0.39 0.0467±0.0114 82.44±0.39 0.8569±0.0496 96.67±1.78 0.1077±0.0607
Random WM 98.36±0.23 0.0481±0.0070 82.61±0.20 0.8423±0.0152 66.48±5.30 1.5524±0,3326
Peripheral WM 98.74±0.15 0.0367±0.0044 82.60±0.30 0.8823±0.0164 99.50±0.18 0.0170±0.0063
Circular WM 98.56±0.28 0,0419±0.0090 83.01±0.27 0.8295±0.0373 95.50±1.17 0.1429±0.0426
Triangular WM 98.73±0.08 0.0379±0.0017 82.79±0.17 0.8720±0.0164 99.44±0.25 0.0175±0.0075

MNIST Training Data Validation Data Watermark Verification
Accuracy
(%)

Loss Accuracy
(%)

Loss Accuracy
(%)

Loss

No Watermark 99.86±0.03 0.0047±0.0007 99.42±0.03 0.0195±0.0015 95.15±4.37 0.1660±0.1729
Square WM 99.83±0.07 0.0053±0.0022 99.43±0.03 0.0192±0.0012 99.60±0.52 0.0128±0.0157
Random WM 99.85±0.03 0.0051±0.0006 99.44±0.03 0.0191±0.0005 99.17±0.67 0.0252±0.0198
Peripheral WM 99.87±0.01 0.0042±0.0002 99.41±0.04 0.0206±0.0009 99.98±0.02 0.0011±0.0003
Circular WM 99.83±0.06 0.0052±0.0015 99.38±0.03 0.0215±0.0015 99.62±0.32 0.0124±0.0102
Triangular WM 99.88±0.02 0.0045±0.0005 99.43±0.03 0.0197±0.0007 99.99±0.01 0.0009±0.0002

chosen to keep the results comparable with the experimenta-
tion performed in [7].

After each training round, the epoch after which the
model yielded the highest accuracy for the validation set was
used as the representative data for that round. This epoch
was usually between the 40th-50th for the CIFAR-10 dataset
and the 15th-20th for the MNIST dataset. The reason that
later epochs sometimes perform worse than earlier epochs is
the model overfitting to the training set after a certain number
of training epochs.

Table 1 above shows the average values from 5 trials
for each watermarking method. The results from the mod-
els on the training data, validation data, and watermark
verifiability are explained below.

Results from Training Data

The accuracy and loss of each embedding method on the
training data are shown in Table 1 under Training Data. For
models trained for the same number of epochs on the same
size dataset, these values are expected to be similar regardless
of the embedding method. They were included for complete-
ness and verifiability of a replication of the experimentation.

Results from Validation Data

The accuracy and loss of each embedding method on the val-
idation data are shown in Table 1 under Validation Data. This
data is the most interesting for answering the research ques-
tion as comparing the accuracy of the watermarked models
with that of the non-watermarked model will show how ef-
fective the proposed modifications are in reducing accuracy
loss in comparison to the square filter that was originally pro-
posed.

Results on Watermark Verifiability
The accuracy and loss of each embedding method in detecting
the watermark are shown in Table 1 under Watermark Valida-
tion. This data is important as it is a hard requirement for any
watermarking method to be verifiable in the models they are
embedded in. If a watermarking method yields excellent ac-
curacy in the original classification task, but is not verifiable,
then that is not a functioning watermark.

6 Discussion
This section provides an analysis of the results obtained from
the experiments in 6.1, including a comparison with the re-
sults from [7] and the effectiveness of the newly proposed
watermarking methods. Afterwards, recommendations for re-
searchers on how to continue and extend this work is given in
6.2.

6.1 Analysis
Before discussing the results, it must be noted that some
watermarked models have a higher accuracy than the non-
watermarked (non-WM) model on the training set. This
indicates that the high number of epochs used for training has
made the accuracies of watermarked and non-WM models
indistinguishable. Therefore, we can assume that the training
set accuracy has converged and would not benefit from
further training.

It should also be noted that the Random watermarked
model performed significantly worse than other watermarked
models in terms of watermark verifiability. Therefore, it is
excluded from verifiability threshold calculations for either
dataset.

From the results, it is clear that some of the proposed



Figure 4: Accuracies of square watermarked DNN on the CIFAR-10
dataset over 50 epochs. Y-axis begins at 0.40.

null-embedding patterns perform better than the original
square watermark in several aspects.

Analysis of Results from the CIFAR-10 Dataset
From the models trained with the CIFAR-10 dataset, the
model watermarked using a circular pattern has yielded
the best classification accuracy on the validation data. Its
average accuracy is higher than that of the non-watermarked
model, but it falls within one standard deviation (SD) of
the non-watermarked model’s accuracy. This suggests that
the classification accuracies of the models are statistically
comparable and could be used interchangeably.

The validation classification accuracy of the model wa-
termarked using the triangular pattern is also within one
SD of the accuracy of the non-WM model, and has a lower
SD than the model watermarked using the circular pattern.
This consistency can make it preferable over the circular
pattern watermark. Regardless, both the triangular and cir-
cular patterns have yielded lower SDs than the square pattern.

The convergence speed of a square watermarked DNN
model to a validation accuracy value of around 82% can
be seen in Figure 4, this trend holds for all the tested methods.

The results show that a verification threshold T=90% is
appropriate for use. In terms of verifiability, the peripheral
pattern has yielded the best result, with the triangular pattern
being a close second. Therefore, the triangular pattern is the
best pattern choice overall.

Analysis of Results from the MNIST Dataset
As the MNIST dataset is much simpler than the CIFAR-10
dataset, the classification task was significantly easier for
the trained DNNs. Therefore, it can be seen in Figure 5 that
the training set classification accuracies quickly converge
to values higher than 99%. A similar trend is observed in
the validation set accuracy: all watermarking methods have
yielded an accuracy of around 99.4%.

The fact that almost all of the validation accuracies lie

Figure 5: Accuracies of square watermarked DNN on the MNIST
dataset over 20 training epochs. Y-axis begins at 0.95.

within an SD of each other means that it is difficult to infer
much from these values. A look at the losses shows that the
Square and Random watermarked models have performed
closest to the non-WM model. Even though the Random
watermarked model appears to have the most accurate and
reliable validation set classification, its performance in
verifiability is significantly lower than the other watermarked
models.

The results show that a verification threshold of T=99%
is appropriate for use. The Triangular watermarked model
has the best watermark verifiability of the tested methods.
Combined with the validation accuracy close to the non-WM
model, it is the best choice out of the models tested.

Comparison with Results from Li et al.
When compared with the original results presented in [7],
our results highlight a few significant differences.

Firstly, the disagreement between the final normal clas-
sification (NC) accuracies of the datasets must be noted.
Even though we followed the procedure outlined in [7] to the
best of our ability, our DNNs have not been able to achieve
the CIFAR-10 NC accuracy of around 88%. This can be
explained by the small number of epochs (50), but training
up to 100 epochs has not been able to surpass an average of
84% during our trials. A more powerful machine and more
training epochs could resolve this discrepancy.

A disagreement towards the other side is observed in
the MNIST NC accuracies. Our models have quickly
yielded NC accuracies above 99%, while [7] quotes a 98.7%
accuracy for the non-WM model.

The original paper has used an embedding rate of 50%
for the MNIST dataset, yet our trials have shown that this
does not lead to an improvement neither in validation set
accuracy nor in watermark detection. Therefore, we used
the same embedding rate of 10% for models trained on both
datasets.



Based on the results gathered from models trained on
the CIFAR-10 dataset, we observe that the Circular and
Triangular watermarked models yield around a 0.5% in-
crease in NC accuracy over the Square watermarked model.
While small, this does show that using a different shape
than a square for null embedding is better to preserve the
classification accuracy of the DNN on the original task.

6.2 Future Work
This paper has proposed new ways of null embedding a
watermark into a DNN, but has not been able to conduct the
robustness analysis present in [7]. Even though there is no
reason to suspect that changing the shape of the embedding
pattern will affect the robustness of the watermark against
piracy attacks, this should be checked in a follow up to
this work for completeness. This work should include
testing whether transfer learning, fine-tuning, and model
compression affect the accuracy of watermark detection.

We have only tested the modified watermarking tech-
niques on two fairly simple image datasets. Future work
should test whether the results hold with larger image
datasets and with matrix-like data formats that are not
images.

With the currently used technique, embedding the wa-
termark entails enlarging the training set of the DNN by
10%, leading to an increase in model training times by an
equivalent amount. This is not an issue for small datasets
used for a proof-of-concept in this research. But for busi-
nesses outsourcing their DNNs, a 10% overhead in training
time can be too much of a compromise for the added security
of a watermarked model. Future research should look into
methods of embedding a piracy-resistant watermark that
does not introduce such a large training overhead.

7 Responsible Research
Throughout this paper, we have paid special attention to pre-
serving clarity and transparency for the reader. Work that
has been borrowed or inspired by others has been cited,
and our contributions have been described in detail to al-
low reproducibility. Additionally, the Python code used to
run the experiments can be found at https://github.com/kaan-
altinay/rp kaltinay. The datasets used are public im-
age datasets commonly used for proof-of-concept research.
Therefore, there is no cause for privacy or copyright concerns
for any party. Finally, as the research subject concerns digital
security, the lack of robustness analysis on the newly pro-
posed methods has been made clear and has been suggested
as future work in Section 6.2.

8 Conclusion
This paper has introduced four new methods of embedding
a watermark into a DNN model using the null embedding
technique described by [7]. The results from testing these
methods on models trained using the CIFAR-10 dataset in-
dicate that the circular pattern for null embedding a water-
mark into a model is the best out of the proposed methods in

order to preserve the classification accuracy of the DNN on
the original task. This yields a classification improvement of
around 0.5% over the model watermarked using the square
pattern, making it as accurate as the non-watermarked model.
When watermark validation is taken into account, the triangu-
lar pattern presents the best trade-off for models trained both
on CIFAR-10 and MNIST datasets.

References
[1] O. Benedens and C. Busch. Towards blind detection

of robust watermarks in polygonal models. Computer
Graphics Forum, 19(3):199–208, 2000.

[2] Ingemar J. Cox and Matt L. Miller. The First 50 Years
of Electronic Watermarking. EURASIP Journal on Ad-
vances in Signal Processing, 2002(2):1–7, December
2002. Number: 2 Publisher: SpringerOpen.

[3] Hembrooke Emil Frank. Identification of sound and like
signals, October 1961.

[4] I. Grigoriadis, E. Vrochidou, I. Tsiatsiou, and G.A. Pa-
pakostas. Machine Learning as a Service (MLaaS)—An
Enterprise Perspective. Lecture Notes in Networks and
Systems, 552:261–273, 2023. ISBN: 9789811966330.

[5] Jia Guo and Miodrag Potkonjak. Watermarking Deep
Neural Networks for Embedded Systems. In 2018
IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–8, November 2018.
ISSN: 1558-2434.

[6] Sanjeev Khanna and Francis Zane. Watermarking maps:
hiding information in structured data. In David B.
Shmoys, editor, Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, Jan-
uary 9-11, 2000, San Francisco, CA, USA, pages 596–
605. ACM/SIAM, 2000.

[7] Huiying Li, Emily Wenger, Shawn Shan, Ben Y.
Zhao, and Haitao Zheng. Piracy Resistant Water-
marks for Deep Neural Networks, December 2020.
arXiv:1910.01226 [cs, stat].

[8] M. Ribeiro, K. Grolinger, and M.A.M. Capretz. MLaaS:
Machine learning as a service. pages 896–902, 2016.

[9] M. Shafieinejad, N. Lukas, J. Wang, X. Li, and F. Ker-
schbaum. On the Robustness of Backdoor-based Wa-
termarking in Deep Neural Networks. pages 177–188,
2021.

[10] S. Szyller, B.G. Atli, S. Marchal, and N. Asokan.
DAWN: Dynamic Adversarial Watermarking of Neural
Networks. pages 4417–4425, 2021.

[11] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh. Em-
bedding watermarks into deep neural networks. pages
269–277, 2017.

[12] Tianhao Wang and Florian Kerschbaum. RIGA: Covert
and Robust White-Box Watermarking of Deep Neural
Networks. In Proceedings of the Web Conference 2021,
WWW ’21, pages 993–1004, New York, NY, USA, June
2021. Association for Computing Machinery.



[13] Jing Xu, Stefanos Koffas, Oguzhan Ersoy, and Stjepan
Picek. Watermarking Graph Neural Networks based on
Backdoor Attacks, November 2022. arXiv:2110.11024
[cs].

[14] J. Zhang, Z. Gu, J. Jang, H. Wu, M.Ph. Stoecklin,
H. Huang, and I. Molloy. Protecting intellectual prop-
erty of deep neural networks with watermarking. pages
159–171, 2018.


	Introduction
	Previous Work
	Preliminaries
	Digital Watermarking
	Null and True Embedding

	Modifications of Null Embedding
	Random Filter
	Peripheral Filter
	Circular Filter
	Triangular Filter

	Experimental Setup
	Experimental Procedure
	Data Split and DNN Structure
	Trials

	Results
	Results from Training Data
	Results from Validation Data
	Results on Watermark Verifiability


	Discussion
	Analysis
	Analysis of Results from the CIFAR-10 Dataset
	Analysis of Results from the MNIST Dataset
	Comparison with Results from Li et al.

	Future Work

	Responsible Research
	Conclusion

