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Abstract The previous studies on household energy con-

sumption (HEC) are based on an implicit assumption: the

impact of geographic determinants on HEC is uniform

across a given region, and such impacts could be unveiled

regardless of geographic location of households in ques-

tion. Consequently, these studies have searched for global

determinants which explain HEC of all areas. This study

aim at examining validity of this assumption in Randstad

region by putting forward a question regarding households’

gas and electricity consumption: are the determinants

global, stationary across all the areas of the region, or local,

varying from one location to another? By application of

geographically weighted regression, impact of socioeco-

nomic, housing, land cover and morphological indicators

on HEC is studied. It is established that the determinants of

HEC are local. This result led to second question: what are

the main determinants of gas and electricity consumption

in different neighborhoods of Randstad? The results show

that variety of factors could be the most effective deter-

minant of gas consumption in different neighborhoods:

building age, household size and inhabitants’ age, inhabi-

tants’ income and private housing tenure, building com-

pactness. Whereas, in case of electricity consumption the

picture is more deterministic: in most of the neighborhoods

the most effective factors are inhabitants’ income and

private tenure.

Keywords Household energy consumption �
Geographically weighted regression � Gas � Electricity �
Randstad � Netherlands

1 Introduction

The level of household energy consumption (HEC) in

Netherlands is high and unsustainable: calculated per

capita and adjusted for climate, in 2013 HEC in Nether-

lands was about 8% higher than average EU-28 [1, 2];

Dutch households’ greenhouse gas emission per capita was

37% higher than the EU-28 average [3]; and sales of gas in

the residential and commercial sectors per capita was 202%

higher than EU average [2, 4]. Three geographical factors

could be accounted for high level of HEC in Netherlands.

First, the substantial dependency of HEC on natural gas

largely due to the existence of the large amount of natural

gas in the northern parts of the Netherlands, in particular

the so-called ‘Groningen’ or ‘Slochteren’ gas field which,

on its discovery in 1959, seemed abundant enough to sat-

isfy Dutch (and other European countries’) needs for nat-

ural gas. This assumption led to a nationwide

implementation of natural gas infrastructure; all the

households of the country has access to gas and electricity

grid. Additionally, given the highly liberalized and com-

petitive energy retail market, the price of energy for

household, gas and electricity, is relatively low in

Netherlands. In 2012 energy prices for households was 5%

lower than the European average [5], whereas GDP per

capita was more than 30% higher [6]. In this respect, given

the substantial share of HEC from total emission, 16% of
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total in 2015 [7], policies of Netherlands targeted reduction

of HEC by introduction of in Third National Energy Effi-

ciency Action Plan for the Netherlands [8]. The policy

document introduces variety of incentives and regulation

for curbing HEC which are applicable for all the locations

of the Netherlands. The main focus of the introduced

measures is improvement of dwellings’ energy efficiency

e.g. low interest loans for building insolation, tighter

standards for new constructions, restrict measures for

efficiency of heating and ventilation systems.

The necessity of reduction of HEC is also reflected

between scholars. The existing body of literature on HEC is

rich as plenty of previous studies have established links

between HEC and variety of determinants among them

socioeconomic characteristics, urban form, urban micro-

climate, housing. However, these studies are limited in

scale. Most of the previous studies on HEC use surveys

conducted at scale of individual dwellings. Therefore, the

larger geographic pattern of HEC, and its geographic dri-

vers, is barely studied. In this respect, missing the larger

geographic patterns, all the previous studies are conducted

based on an implicit assumption: determinants of HEC are

identical in every and each dwelling regardless of its

geographic location. In other words, it is assumed that the

impact of geographic determinants on HEC is uniform

across a given study area, and such impacts could be

unveiled by application of aspatial methods. In this respect,

vast majority of previous studies have ignored the fact that

impact of a given determinant could vary from one location

to another. Consequently, these studies bring forward one-

size-fits-all type of recommendation for all the areas in

question instead of location-specific ones.

The core objective of this study is to bridge this

knowledge gap by putting forward two research questions:

(a) are the effects of geographic determinant on house-

holds’ gas and electricity consumption vary across the

neighborhoods of Randstad region? In other words, are the

determinants global, stationary across all the areas of the

region, or local, varying from one location to another?

(b) if the determinants are local, what are the main deter-

minant of gas and electricity use in different neighborhoods

of the region? To chase answers to these questions, this

study apply geographically weighted regression (GWR) to

examine the effect of a variety of socioeconomic, housing,

land cover and morphological properties on household’s

gas and electricity consumption. In the next parts, first the

previous studies on HEC are briefly reviewed. Then after,

the methodology, case study and data of this research are

described. Subsequently, results are presented and dis-

cussed. The paper ends up with a brief conclusions

regarding scientific studies and policies on HEC.

2 Previous studies on HEC

Most of the previous studies on HEC are conducted at the

scale of individual dwellings i.e. using household survey

regardless of larger geographic pattern of HEC. At this

scale, previous studies have shown that variety of factors

can affect level of HEC: Inhabitants with higher income

have a higher consumption [9, 10]; due to economies of

scale, larger household size is associated with lower HEC

[11, 12]; age of the inhabitants, particularly presence of

senior residents and children, affect HEC [9, 13]; presence

of retired or disable inhabitants boost level of HEC [11];

HEC in different housing tenure, due to various systems of

paying for energy bills as well as different level of

investment in buildings, is significantly different [10, 14];

HEC soar in the building with higher age [9, 10]; land-

cover of the neighborhoods can affect land surface tem-

perature and consequently HEC [15, 16]; Wind intensity

affect air infiltration and exfiltration of buildings and thus

HEC [17, 18]; building density alter HEC by its effect on

compactness of dwellings [19, 20]; Rugosity affect effec-

tive wind speed and HEC in the neighborhoods [21];

buildings’ surface-to-volume ratio impact HEC by affect-

ing thermal exchange between dwellings [22, 23]; Popu-

lation density affect HEC via altering level of urbanity and

behavior of residents [13, 24]; and solar radiation affect

HEC via impacting indoor temperature [25, 26].

Studies on geographic determinates of HEC (conducted

on aggregated HEC in neighborhoods, cities, regions, etc.)

are few in numbers, however plentiful in amount of

information. These studies enhance a geographic under-

standing of HEC: the locations-specific determinants of

HEC at different locations. For instance, a study on rural

Chinese areas show that energy price and energy trans-

portation (i.e. distance from coal sources) are among the

main determinants of HEC. Furthermore, the study show

these effect of vary in different geographies: energy

transportation is significant only if the distances is greater

than 20 km; impact of energy price soar in high mountains

[27]. A study on determinants of HEC in 64 European

regions, so-called NUTS2 regions concluded that socioe-

conomic (income, education, unemployment, poverty) and

contextual (e.g. climate) variables significantly affect HEC.

The study show that impact of some determinates, e.g.

disposable income, is common for all the regions. However

that of some determinates vary due to regional develop-

ment. For example, GDP has a positive effect on HEC of

less developed region, due to achieving higher living

standard, whereas it has a negative impact on HEC of more

developed region, due to achieving higher energy effi-

ciency [28]. A regional study on household’s final energy

use in the Netherlands show that quality of buildings and
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income has a greater impact on HEC of rural areas than

urbanized areas. The study conclude that in the suburban

areas population density is a significant determinant of

HEC, whereas in highly urbanized areas household size or

building density are the prominent determinants [29].

3 Methodology

Prior to application of GWR models, in order to examine

the generalizable effects of the geographic determinants on

HEC, two conventional linear regression models (OLS) are

developed:

yi ¼ b0 þ
X

k

bkxik þ ei ð1Þ

where yi represents the estimated value of HEC (gas or

electricity consumption) in the location i, b0 shows the

intercept, bk denotes the coefficient slope of the indepen-

dent variable k, xik represents the value of independent

variable k in location i. ei accounts for the random error

term in location i. Subsequently, in order to examine the

location-specific effects, two GWR models [Eq. (2)] are

applied.

yi ¼ b0 li; #ið Þ þ
X

k

bkðli; #iÞxik þ ei ð2Þ

where li; #ið Þ represents the geographic coordination of

location i, bk li; #ið Þ and b0 li; #ið Þ are the local coefficient

and intercept of independent variable k estimated specific

to location i. The local coefficients at location i is calcu-

lated by [Eq. (3)]:

b̂ l; #ð Þ ¼ XTW l; #ð ÞX
� ��1

XTW l; #ð Þy ð3Þ

where W l; #ð Þ is the spatial weighting matrix which con-

ceptualize the importance of adjacent neighborhoods of

location i:

Wij ¼ eð�d2
ij=h

2
i kð ÞÞ; if dij\hi kð Þ

0; otherwise

�
ð4Þ

where Wij denotes the weight of location j for the estima-

tion of the location i coefficients, dij is the geodesic dis-

tance between location i and j. hi kð Þ is an adaptive

bandwidth denoting distance from the kth nearest neighbor.

Using ArcGIS (version 10.2), the bandwidths of the models

are specified so as to minimize the Akaike Information

Criterion (AIC) of the GWR models.

The performance of GWR and OLS models are com-

pared by means of five tests. First, adjusted R2 of the two

models are compared. Second, by comparison between the

AICc (corrected Akaike’s Information Criterion) of the

models. Typically, at least three points decrease in AICc is

seen as a significant improvement (e.g. [30, 31]). Third,

comparison of randomness of the distribution of the

residuals of the models—validated by Moran’s I Index.

The index is a measure of spatial autocorrelation ranged

between - 1 and ? 1; value closer to zero shows more

random distribution. Fourth, in order to examine whether

the effect of the determinants on HEC vary across the study

areas, stationary indices—proposed by Charlton et al.

[32]—of independent variables are calculated. To do so,

interquartile ranges of the standard error of coefficients in

the GWR model are divided by twice the standard error of

coefficients in the OLS model. If value of the stationary

index is equal to or greater than one, it indicates that the

effect of the given independent variable on HEC is spa-

tially non-stationary. Fifth, ANOVA tests, to compare

residuals of GWR and OLS models, are applied.

4 Case study and data

4.1 Case study area and analysis area

The spatial element used in this study are the buurten,

spatial divisions defined by the Dutch central bureau of

statistics (CBS)—what we call as neighborhood. The case

study of this research—what we call as ‘‘study area’’—is

consisted of neighborhoods of the Randstad region. The

Randstad is a highly urbanized metropolitan area located in

the south west of the Netherlands consist of the four major

cities of Amsterdam, Rotterdam, the Hague and Utrecht,

and the areas between them—the so-called ‘‘green heart’’.

In order to avoid the boundary-effect problem in GWR

models, all the calculations are carried out on the ‘‘study

area’’ plus a 20 km buffer—what we call as ‘‘analysis

area’’. Although all calculations are carried out on the

analysis area, ultimately merely the results obtained for

‘‘study areas’’ are taken into consideration (Fig. 1).

4.2 Dependent variables

The dependent variables of the study are gas and electricity

consumption per capita within dwellings [33]. As the

available data does not show the areas equipped with solar

energy supply or district heating, the abnormal values of

gas and electricity use needed to be filtered out (incidents

with z-value B - 2.5 or z-value C ? 2.5) Ultimately, the

‘‘analysis area’’ consists of 3514 neighborhoods and the

‘‘study area’’ of 2413 (Fig. 2a, b). The Moran’s Index test

show that high values of gas and electricity consumption

(both in study and analysis area) are spatially clustered

across the region. The respective Moran’s I z-score is well

beyond the threshold of 2.58 (which indicate spatially

clustered pattern): 36.8 (in case of gas use in study area),
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49.7 (in case of gas use in analysis area), 42.3 (in case of

electricity use in study area), 57.6 (in case of electricity use

in analysis area). Thus, as spatial variation is significant,

application of GWR is essential for enhancing better

understanding of such geographic pattern.

4.3 Independent variables

This study use five dependent variables. The variables

compress the effect of 21 indicators by means of factor

analysis. By choice of the 21 indicators, we tried to include

all the potential effective factors without a priori selection

(see Table 1). Socioeconomic and housing variables are

taken from CBS, 2013 [25]. Land cover variables are

extracted from a Bodemgebruik database, 2012 [34].

Building height database in the Netherlands, 3D BAG [35],

is used to prepare a digital elevation model (DEM). Cell

size of DEM is 10 m. The latter in utilized to prepare urban

form indicators. In the next part, a more detailed expla-

nation of some of the variables is presented.

According to Adolphe [21], the variation of building

height, or what he calls as rugosity, could have a significant

effect on the urban microclimate. We calculated rugosity as

the standard deviation of height values (including those

with zero height) of DEM. The frontal area index (kf) is the

ratio of the total area of external building walls to the total

area of the neighborhood. In order to calculate kf, firstly

external walls need to be identified. To do so, using

Fig. 1 Location map of study

area and analysis area

Fig. 2 Dependent variables of study: a annual gas consumption per capita 2013 (Mega Joule), b annual electricity consumption per capita 2013

(Mega Joule)
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ArcGIS 10.2 Focal Flow tool, 3 9 3 immediate neighbors

of each DEM cell is studied. It is determined that which

sides of each DEM cell are external wall (i.e. are not

occupied with a building cell or are occupied with a shorter

building). The obtained information is used for calculation

of total amount of external walls at each DEM cell. This

has been instrumented for calculation of kf and subse-

quently aerodynamic roughness length (ARL). ARL is the

height in which the effective wind speed is theoretically

zero. Higher values of ARL correspond with lower wind

intensity [36]. The morphometric model introduced by

Macdonald et al. [37], one of the most comprehensive

models according to a review by Grimmond and Oke [38],

is used:

Zd

ZH
¼ 1 þ a�BCR BCR� 1ð Þ ð5Þ

Z0

ZH
¼ 1 � Zd

ZH

� �
exp � 0:5bCDkf

k2
1 � Zd

ZH

� �� ��0:5
 !

ð6Þ

where Z0 is aerodynamic roughness length for momentum,

Zd is zero-plane displacement height, ZH is height of

roughness element (m), BCR is building coverage ratio, kf

frontal area index, a = 4.43, b = 1.0, k = 0.4, and CD % 1.

Deploying the Arcgis 10.2 solar radiation toolbox, the

DEM model is used to calculate solar radiation (SLR) on

summer (21 June) and winter (21 December) solstice of

2013. The average value of the 2 days is used to calculate

two variables: solar radiation per square meters of neigh-

borhoods’ surface [solar radiation on neighborhood (WH/

m2)] and per cubic meters of the buildings [solar radiation

per building volume (WH/m3)].

Table 1 The five Independent variables of the study compress the effect of 21 indicators

Variables Factors

FAC1 population

density and built-up

areas

FAC2 Income

and private

tenure

FAC3 Household size and

population younger than 14 years

old

FAC4

Building

age

FAC5

Building

density

Built-up coverage (%) .977 - .089 - .091 - .177 - .067

Building coverage ratio (%) .905 .075 .005 .177 - .005

Green-coverage (%) - .891 .086 .075 .216 - .065

Frontal area index .750 .021 .064 .201 .291

Population-density (persons per

km2)

.621 - .165 .231 .125 .270

Income per capita (euro) .126 .892 - .304 - .113 .121

Public-rent (%) .050 - .780 - .070 - .047 .183

Property-value (euro) - .276 .739 - .058 .020 - .085

Disability (%) - .147 - .631 - .266 - .024 .088

Unemployment (%) .221 - .481 - .056 - .040 - .014

Population ages 65 ? (%) .019 .037 - .891 - .067 - .064

Population ages 0–14 (%) - .020 .002 .748 - .343 - .125

Household-size - .167 .218 .478 - .338 - .380

Building median age - .061 .110 .046 .855 .119

Floor area after introduction of

1988 building standards (%)

- .013 .205 .283 - .674 .267

Solar radiation per building

volume (WH/m3)

.028 .089 - .055 .002 - .919

Rugosity .288 - .021 .026 .139 .751

Solar radiation on

neighbourhood (WH/m2)

- .260 - .031 - .066 - .273 - .741

Aerodynamic roughness length .175 - .168 - .001 - .143 .721

Floor area ratio (%) .484 .099 .067 .306 .532

Buildings’ surface to volume

ratio (m-1)

.067 - .005 .191 .138 - .379

The pattern matrix show the loading of independent variables on the indicators. Coefficients with absolute value [ 0.400 are marked bold-

underline
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To address the potential multicollinearity between the

21 indicators, factor analysis, with extraction method of

principal component analysis and rotation method of

Oblimin with Kaiser Normalization, is deployed. As result,

the effect of the indicators is compressed in five factors

(Table 1). As the extraction method is principal component

analysis, a small level of independence between the

obtained factors is tolerated. Consequently, one of the

initial variables, floor area ratio (FAR), has made contri-

bution to two of the factors. Whereas the rest of 20 vari-

ables have merely contributed to one factor. The factors

explain almost 75% of the total variance of the 21 vari-

ables. The first factor, FAC1 Population density and built-

up areas, is positively loaded onto built up coverage (%),

BCR, kf, population density and FAR, and negatively on

green-coverage (%). FAC2 Income and private tenure, is

positively loaded onto income per capita and property

value, and negatively loaded onto disability (%), unem-

ployment (%) and public rental (%). FAC3 Household size

and population younger than 14 years old, is positively

loaded onto population ages 0–14 (%) and household-size,

and negatively loaded onto population ages 65 ? (%).

FAC4 Building age, is positively loaded onto building

median age, and negatively onto floor area after introduc-

tion of 1988 building standards (%). FAC5 Building com-

pactness, is and positively onto FAR, rugosity and ARL

and negatively onto solar radiation per building volume

(WH/m3) and solar radiation on neighborhood (WH/m2).

5 Results

5.1 Comparison between performance of GWR

and OLS models

A comparison between adjusted R2 of the two OLS and

GWR models, shows that all three of the GWR models

have a better goodness-of-fit (Table 2). The adjusted R2 of

the GWR model of gas consumption is some 15% higher

than that of OLS. The corresponding number for the

electricity consumption models is about 17%. The local R2

of the GWR models (Fig. 3) show that in more than 76% of

the areas estimation of gas and electricity consumption

produced a better R2 than OLS model.

The comparison between the AICc (corrected Akaike’s

Information Criterion) of the GWR and OLS models shows

a remarkable improvement in the case of GWR models.

The results show that the residuals of GWR models are

more randomly distributed rather than those of OLS

models; the Moran’s Indices of the GWR models are

substantially closer to zero than those of OLS models. The

stationary indices of all the independent variables of the

GWR models are greater than 1. This indicates that the

effect of the variables on HEC is spatially non-stationary

(Table 2).

ANOVA test of the residuals in GWR and OLS models

indicate a significant improvement in case of GWR models

(Table 3).

5.2 Local determinants of HEC

Figure 3 shows the estimated local standardized coeffi-

cients of the independent variables in the two GWR

models. According to the results of the GWR models, the

percentage of the areas with a significant coefficient of

FAC1 Population density and built-up areas is rather small

(Fig. 4a, f). In the case of the gas consumption model the

impact of the factor is significant—at p value\ 0.1 level—

in 63% of the areas. In case of electricity consumption the

percentages is 45%. However, the magnitude of the sig-

nificant coefficients is considerable in a substantial portion

of the areas. The significant coefficients are negatively

signed. The magnitude of the coefficient is almost similar

in case of the two models.

The results of the GWR models of gas and electricity

consumption show that in almost all of the areas, the

coefficients of FAC2 Income and private tenure are sig-

nificant (Fig. 4b, g). Roughly speaking, signs of all the

significant coefficients are positive. The largest effect of

the factor is observed in the case of electricity consumption

model (according to the mean standardized coefficient of

the GWR model).

The results of GWR models of gas and electricity con-

sumption show that in more than 97% of the areas, the

coefficients of FAC3 Household size and population

younger than 14 years old are significant (Fig. 4c, h). The

sign of all the significant coefficients is negative. The

magnitude of the coefficients is almost similar in the two

models.

The results show FAC4 Building age has significant

effect on a gas consumption in more than 95% of the areas

(Fig. 4d, i). However, In case of electricity consumption

the factor is not effective in almost 70% of the areas. The

magnitude of the coefficients (assessed by the mean value

of the GWR models) is remarkably high in the case of gas

consumption model. The sign of all the coefficients is

positive. In the electricity consumption model, though

positive, the magnitude of the coefficients is close to zero.

According to the results of the GWR models, in the case

of the gas consumption model, the impact of FAC5

Building compactness is significant in 70% of the areas

(Fig. 4e, j). In the case of electricity consumption, the

corresponding number is 44%. The coefficients, except in

the case of 5% of the areas in electricity consumption

model, are negative. The largest magnitude of the effect is

observed in the case of the gas consumption model.
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Table 2 Diagnostic statistics in GWR and OLS models

Dependent variable

Gas consumption Electricity consumption

GWR b
mean

OLS b Stationary

index

GWR b
mean

OLS b Stationary

index

Independent variables

FAC1 population density and built-up areas - 0.173 - 0.193*** 1.118 - 0.150 - 0.211*** 1.195

FAC2 Income and private tenure 0.431 0.400*** 1.770 0.594 0.560*** 1.751

FAC3 Household size and population younger than 14

years old

- 0.433 - 0.477*** 1.141 - 0.396 - 0.405*** 1.132

FAC4 Building age 0.451 0.377*** 2.262 0.072 0.024* 2.239

FAC5 Building density - 0.250 - 0.321*** 2.620 - 0.108 - 0.222*** 2.616

R-squared 0.8237 0.6787 0.7915 0.6272

Adjusted R-squared 0.7880 0.6782 0.7502 0.6266

AICc 4918.83 5995.77 5486.74 6518.44

Residuals Moran’s I - 0.0065 0.2709 0.0082 0.2349

Neighbours 108 110

b denotes standardized coefficient

*p value\ 0.05; **p value\ 0.01; ***p value\ 0.001

Fig. 3 Local adjusted R-squared of GWR estimation of: a gas consumption, b electricity consumption

Table 3 ANOVA test of residuals of GWR and OLS models

Dependent variable

Gas consumption Electricity consumption

Df Sum Sq Mean Sq F value Df Sum Sq Mean Sq F value

OLS residuals 6 1128.78 6 1309.8

GWR improvement 92.037 285.03 3.0969 90.297 287.78 3.187

GWR residuals 3415.963 843.75 0.247 12.538 3417.703 1022.02 0.299 10.658

F values are significant at p value\ 0.001
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Figure 4 illustrates the largest local standardized coef-

ficients (in absolute value)—what we call as the most

effective local determinant—in different neighborhoods of

the study area. The results show that, variety of factors

could be the most effective determinant of gas consump-

tion in different neighborhoods: FAC4 Building age in 37%

of the neighborhoods, FAC3 Household size and popula-

tion younger than 14 years old in 29% of the neighbor-

hoods, FAC2 Income and private tenure in 23% of the

neighborhoods, FAC5 Building compactness in 11% of the

neighborhoods (Fig. 5a). In case of electricity use model,

the picture is more deterministic: in 84% of the neighbor-

hoods FAC2 Income and private tenure is the most effec-

tive factors. In the rest of the areas FAC3 Household size

and population younger than 14 years old is found to be

the most effective (Fig. 5b).

6 Discussion

The results of GWR models of gas and electricity con-

sumption show that, in almost all the neighborhoods, sign

of the coefficients is similar. However, the magnitude of

the coefficients remarkably vary across the neighborhoods.

The coefficients of FAC1 Population density and built-up

areas are negative in almost all the areas. This could be due

to higher air temperature, consequent to higher surface

temperature, in the neighborhoods with higher percentage

of built-up areas (similar to what is suggested by [20]).

Also the residents of areas with higher population density,

say more urbanized, could be more engaged with outdoor

activities and spend less time within their dwellings. This

could significantly reduce HEC (similar to the conclusion

drawn by [39, 40]). The coefficients of FAC2 Income and

private tenure are positive in all of the neighborhoods.

Presumably, high-income residents live in larger dwellings

and possess more appliances at their homes (similar to

conclusion drawn by [41]). All the local coefficients of

FAC3 Household size and population younger than 14

Fig. 4 Local standardized coefficients: a–d gas consumption model, f–j electricity consumption model
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years old are negative. This could be due to economies of

scale—as suggested by variety of previous studies (e.g.

[42]).

Increase in FAC4 Building age has a large impact on

increasing gas consumption. This is presumably due to

lower energy efficiency of buildings (as concluded by

variety of previous studies e.g. [23]). The effect of the

factor on electricity consumption is not significant in most

of the neighborhoods. However, if significant, the sign of

coefficients are positive. Almost all of the local coefficients

of FAC5 Building compactness are negative. This could be

due to compactness of buildings and higher heat exchange

between the dwellings in the neighborhoods with higher

FAR (as concluded by variety of authors among them

[10]). It also could be due to lower wind intensity (asso-

ciated with high ARL) which reduce air infiltration/exfil-

tration and therefore buildings’ thermal loss [18].

Additionally, lower solar radiation in the neighborhoods

with higher FAC5 Building compactness, could reduce

electricity consumption for cooling and ventilating [43].

The results show that variety of factors could be the

most effective determinant of gas consumption in different

neighborhoods. Whereas, in case of electricity consump-

tion FAC2 Income and private tenure is the most effective

determinant in vast majority of the neighborhoods. This

could be explained by different final end-uses of gas and

electricity in residential sector.

Eurostat data on final energy consumption of Dutch

households in in 2015 [44], show that gas was the main

source for space heating (87%) and warm water (90%). In

this respect, the results of this study is in line with those of

previous studies which show space and water heating could

be affected by variety of determines among them occupant

characteristics(e.g. [45]), building characteristics (e.g.

[46]), housing tenure (e.g. [47]), urbanization rate (e.g.

[48]), and number of dwellings per buildings (e.g. [49]).

When it comes to electricity consumption, more than 50%

of households’ consumption is for lightening and appli-

ances [44]. In this respect the results of this study is in line

with previous studies which suggest that households with

higher income consume more electricity for lightening—

due to owing larger dwellings—and appliances—due to

possession of greater number of devices (e.g. [41]).

7 Conclusion

HEC has been of interest of many researchers and policy

makers in the last decades. However, there is an eminent

knowledge gap in the existing body of literature on HEC:

all the previous studies have implicitly presumed that HEC

could be explained by set of spatial stationary reasons and

therefore has tried to unveil such everywhere-true reasons.

The results of this study show that such presumption is

questionable. It is obtained that, in the Randstad region, the

of effects of socioeconomic, housing, land cover and

morphological indicators on HEC vary from one location

to another. In this respect, the main conclusion of this

research is: in order to provide a better understanding of

Fig. 5 The most effective local determinants—largest local standardized coefficients (in absolute value)—of: a gas consumption, b electricity

consumption
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HEC, studies in this field need to search for the location

specific factors which affect HEC in a given neighborhood.

It is also obtained that GWR models provide a better

estimation of HEC rather than the OLS models. Previous

studies on HEC have applied a wide range of aspatial

techniques e.g. machine learning, linear regression, struc-

tural equation models, simulation models (see the review

[50]). However, HEC studies lag behind in application of

spatial econometrics methods. This studies concludes that

HEC studies need to be enriched by further application of

spatial statistics.

The results of this study also has a policy implication.

By application of GWR, It is established that variety of

factors could be the main determinants of level of gas and

electricity consumption in different neighborhoods. This

suggests that policy making regarding HEC needs a shift in

perspective: one-size-fits-all type policies need to be enri-

ched by introduction of location-specific strategies. By

proposing such strategies, policy makers could optimally

prioritize different incentives and obligations in different

neighborhoods. Additionally, the policies as like Third

National Energy Efficiency Action Plan [8] need to break

through the narrow perspective of building energy effi-

ciency, and take socioeconomic and morphological aspects

into their consideration. Another policy implication regards

the effect of FAR on household energy consumption, par-

ticularly gas use, within dwellings. It is obtained that FAR

has a dual impact on consumption: On one hand FAR is

associated with level of urbanity (i.e. more population

density and built up surfaces), on the other hand FAR affect

level of compactness (i.e. lower wind speed and solar

radiation). Considering construction of 500,000 new

dwellings in Randstad region according to 2014 vision

[51], further studies need to assess the impact of this extra

FAR on energy household energy consumption.

Further studies need to adopt the existing methods for

studying microclimate factors –i.e. air and surface tem-

perature, humidity—to enrich the estimates of HEC (sim-

ilar to what is applied by [52–54]). Additionally, the effect

of ever growing urbanization patterns (similar to that of

[55, 56]) on HEC need to be further studied. Further

research could also seek for a comprehensive framework

which combine HEC with potential locations for energy

production (similar to the study by [57]). The last, in this

study the determinant of gas and electricity consumption

have been independently studied, the further studies could

investigate the spatial autocorrelation between the two

(similar to the methodology used by [58]).
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