
Model Checking the
XMM Memory Model

Matteo Meluzzi

Thesis committee:

Chair: Prof. dr. Arie van Deursen TU Delft
Supervisor: Dr. Soham Chakraborty TU Delft

submitted in partial fulfillment of the requirements for the degree of
Master of Science

in
Computer Science

Abstract

XMM is a newly designed multi-execution memory model that solves the out-of-thin-air exe-
cutions problem, enables the most efficient compilation to all hardware platforms, and allows
common compiler optimizations. Promising and Weakestmo are similar multi-execution models
proposed recently. However, due to their complex semantics, they do not have an accompany-
ing model checker with a proof of soundness. XMM is significantly less complex, which paved
the way for implementing an XMM model checker.

In our work, we present our design of a model checker algorithm for the XMM memory model
called GenMC-XMM. Due to practical limitations of algorithmic time complexity, we could not
design a complete model checker. However, we provide a proof of soundness. In other words,
we cannot guarantee that our tool will find all possible executions of a program, but we can
guarantee that the ones it finds are all XMM consistent. To our knowledge, GenMC-XMM
is the first multi-execution model checker proven to be sound. We evaluated our tool against
the state-of-the-art model checking tools for RC11, IMM, and Weakestmo2. We determined
that GenMC-XMM explores the same or more executions than every other tool in all our
tests. GenMC-XMM is only marginally slower than the other tools in real-world lock-free data-
structure benchmarks. In synthetic tests designed to have thousands of data races, GenMC-
XMM does not scale as well as the other tools as the number of races increases.

GenMC-XMM is the next milestone in the automatic verification of multi-execution memory
models. Based on our work on GenMC-XMM, other researchers may improve its performance
and design a sound and complete algorithm.

Preface

I am deeply grateful to Soham and Evgenii for guiding me while I was working on this project.
I could not have done it without their invaluable insights, suggestions, and feedback.

To Arie who agreed to chair my thesis committee and took the time to listen to my midterm
presentation, green light review, and thesis defence.

To Blanca and my uncle Alessandro for reading my thesis and giving me feedback.

To my friends Bobe, Alex, Chelsea, and Bogdan, whom I met daily to work together on our
theses. They made it a very enjoyable routine.

To my family for their unconditional support, constant encouragement, and belief in me.

Matteo Meluzzi
Delft, June 2024

Contents

Contents i

List of Figures iii

List of Tables iv

1 Introduction 1

2 Background 3
2.1 Sequential Consistency . 3
2.2 The C++ Memory Model . 4
2.3 Execution Graphs . 5
2.4 Load Buffering Data Races . 6

3 GenMC-XMM’s parent: GenMC 8
3.1 Overview . 8
3.2 Step-by-Step Example . 9
3.3 Assumptions . 10

4 GenMC-XMM’s sibling: WMC 11
4.1 Algorithm Outline . 11
4.2 Step-by-Step Example . 12
4.3 Certification Locality . 12
4.4 Results . 13

5 The XMM Memory Model 15
5.1 Execution Step . 17
5.2 Re-Execution Step . 17
5.3 Step-by-Step Example . 18
5.4 Stable Uncommitted Reads Constraint . 18
5.5 Load Buffering Race Freedom . 19
5.6 Supported Transformations . 19

6 The GenMC-XMM Model Checker 21
6.1 Algorithm Outline . 23
6.2 Step-by-Step Example . 24
6.3 Revisiting Reads Outside the Cycle . 25
6.4 Revisiting Reads in the LB Racy Read Thread 26
6.5 R⊥ rf matching . 27
6.6 Consistency . 29

i

6.7 Duplicates . 29
6.8 Stable Uncommitted Reads . 30
6.9 Embedded Sub-Graph Check . 31
6.10 Soundness of GenMC-XMM . 32
6.11 Limitations: Completeness and Optimality . 35

7 Evaluation 38
7.1 Testing the completeness of GenMC-XMM [RQ1] 39
7.2 Comparing GenMC-XMM and WMC on litmus tests [RQ2] 39
7.3 Evaluating GenMC-XMM on data-structure benchmarks [RQ3] 40
7.4 Evaluating GenMC-XMM on synthetic benchmarks [RQ4] 42
7.5 Evaluating the number of duplicate graphs explored by GenMC-XMM [RQ5] . . 44

8 Related Work 46
8.1 Language Memory Models . 46
8.2 Model Checkers . 47

9 Conclusion 48

Appendices 49

A Evaluation Reproduction Instructions 50

B Benchmark descriptions 51
B.1 Litmus tests . 51
B.2 Data Structure Benchmarks . 52
B.3 Synthetic Benchmarks . 52
B.4 Load Buffering Benchmarks . 52

ii

List of Figures

2.1 Sequentially consistent thread interleavings of Store Buffer test 4
2.2 Program that causes an OOTA execution to be allowed by C11, but forbidden

by RC11. 5
2.3 Program that causes a valid cyclic execution to be allowed by C11, but forbidden

by RC11. 5

4.1 Example of LBn-pairs(4) test. Four threads are divided into two pairs. Each
pair reads and writes two variables assigned to it. 14

5.1 Rules of XMM execution graph construction . 16

6.1 Transitions between RC11 and XMM graphs . 21
6.2 LB+coh-cyc test: GenMC-XMM fails to produce the graph on the right from

the one on the left. 36
6.3 LB+porf-suffix test: GenMC-XMM fails to produce the graph on the right from

the one on the left. 37

7.1 Execution times and LB races on data structure tests. GenMC-XMM’s execution
time is comparable to other tools, except when the number of LB races exceeds
10,000. 42

7.2 Execution times and LB races on synthetic tests. As the number of LB races
increases, so does the difference in execution time between GenMC-XMM and
other tools. 44

iii

List of Tables

7.1 Number of executions found by GenMCRC11, GenMCIMM, WMC, and GenMC-
XMM on litmus tests where XMM has different consistent executions than
Weakestmo2 . 40

7.2 Number of executions explored on data structure benchmarks. GenMC-XMM
explores more executions than other tools in the chase-lev and dq tests. 41

7.3 Execution time on data structure benchmarks. GenMC-XMM’s execution time
is comparable to that of the other tools, except in the ticketlock and mpmc-
queue-bnd tests where it takes longer. 41

7.4 Number of executions explored on synthetic benchmarks. GenMC-XMM finds
the same number of executions as other tools except in the szymanski test. . . . 43

7.5 Execution times on synthetic benchmarks. GenMC-XMM does not scale well on
tests with many LB races and can take much longer than other tools. 43

7.6 Load Buffering benchmarks. GenMC-XMM finds the same number of cyclic
executions as other tools. The number of duplicates visited is slightly less than
that of WMC. 45

7.7 Load Buffering time benchmarks. GenMC-XMM takes the same time as other
tools when there are few LB races. It takes longer when the number of LB races
increases. 45

iv

Chapter 1

Introduction

How can software engineers design lock-free concurrent data structures with compiler optimiza-
tions while ensuring consistent program behavior, irrespective of the compiler used and target
architecture? Verifying the code with a relaxed memory model checker is one solution to this
challenging engineering problem.

Memory models are a formal definition of the concurrency behavior of a program. Modern
programming languages often have a built-in memory model to ensure consistent compilation
across hardware architectures. The adjective relaxed refers to a memory model that allows
memory operations to not strictly follow the order they are written in the source code. On the
one hand, this enables the compiler and the hardware platform to perform optimizations, but on
the other, it can confuse the programmer with odd program behaviors. The role of the memory
model is to establish a common ground between the programmer, compiler, and hardware
architectures on what program outcomes are possible. Examples of standard relaxed memory
models are TSO [32] (Total Store Order), Arm [37], and RC11 [24]. The model that only allows
interleavings of memory operations without reorderings is SC (Sequential Consistency), and it
is the most intuitive to the programmer but allows a minimum amount of optimizations.

There exist two classes of memory models: per-execution models and multi-execution models.
The per-execution class is closer to SC and, therefore, simpler. The multi-execution class
deviates significantly from SC, even allowing cyclic execution graphs. This increases their
complexity but also enables more program optimizations. The complexity is reflected in their
accompanying model checker tools, which have not been proven sound or complete as of our
writing [28, 30, 36].

In the per-execution approach, multiple programs can share an execution graph. Depending
on the consistency constraints, an execution may be permitted or prohibited. Prohibiting the
execution could prevent a valid program execution, which affects possible program optimiza-
tions. On the other hand, allowing the execution might lead to an out-of-thin-air execution
in another program. An example of this trade-off are the C11 and RC11 models. C11 allows
out-of-thin-air executions in certain cases. RC11 forbids all cyclic executions and prevents some
optimizations like read-write reordering, resulting in sub-optimal compilation to Arm, Power,
and RISCV due to extra fences needed.

In the multi-execution approach, each program is identified by all of its possible executions.
Typically, multi-execution models allow cyclic execution graphs, whereas per-execution models
do not. This allows multi-execution models to surpass the limitations of per-execution mod-
els but adds complexity because multiple executions are examined together to derive another
consistent execution.

1

In the past decade, there have been several attempts at defining a multi-execution model that
could be easily verified automatically by a model checker. Promising Semantics [19] has a
verification tool for part of the model [36]. Weakestmo [9] has a model checking algorithm,
called WMC [28] for a slightly strengthened version of the model. Neither of them has been
proven to be sound or complete. Despite the effort to manage their complexity, these models
and model checkers are difficult to reason about.

We introduce a new, simpler model checker algorithm for the XMM memory model [34] called
GenMC-XMM. Our model checker is simpler than the current state-of-the-art multi-execution
models because the XMM model lends itself to be checked in a single-execution style while
at the same time allowing for weak behaviors that permit the compiler to perform common
optimizations. Due to algorithmic time complexity limitations, we could not design GenMC-
XMM to be complete. However, we prove that GenMC-XMM is sound. In other words, GenMC-
XMM is not guaranteed to output all XMM consistent executions, but all the outputted ones
are guaranteed to be XMM consistent. In our evaluation of GenMC-XMM, we found that its
performance is on par with the current state-of-the-art model checkers in tests without data
races. In tests with data races, GenMC-XMM’s performance is not as good as that of tools
limited to acyclic executions.

In this work, we discuss the state-of-the-art GenMC [21] model checker tool upon which GenMC-
XMM is based and the WMC [28] model checker due to its many similarities with GenMC-
XMM. We give an overview of the XMM model. We get into the details of the design of
GenMC-XMM. Lastly, we compare its performance and behavior with other state-of-the-art
memory model checker tools.

For all the examples in this paper, we assume that variables are initialized to 0 and that memory
accesses are relaxed (as defined in the C++ memory ordering: ”there are no synchronization
or ordering constraints imposed on other reads or writes, only this operation’s atomicity is
guaranteed”).

2

Chapter 2

Background

In this chapter, we discuss background knowledge that is useful for understanding the remainder
of this paper. We discuss the sequential consistency memory model, the C++ memory model,
execution graphs, and load buffering races (LB races).

2.1 Sequential Consistency
The concept of sequential consistency was first introduced by Leslie Lamport in 1979 [25]:
”Consider a computer composed of several such [sequential] processors accessing a common
memory. The customary approach to designing and proving the correctness of multiprocess
algorithms for such a computer assumes that the following condition is satisfied: the result
of any execution is the same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor appear in this sequence in
the order specified by its program. A multiprocessor satisfying this condition will be called
sequentially consistent.”

A possible mental model that can be used to imagine a sequentially consistent computer is a
machine with multiple threads, one shared memory that serves one thread at a time, and no
caches. In this model, the two following properties hold:

1. There are no local reorderings, meaning that the instructions of a single thread are exe-
cuted exactly in the order they are written in the program.

2. Every write becomes immediately available to all other threads.

Sequential consistency is the most intuitive model for programmers since simply interleaving
the threads without reordering operations can explain a program outcome.

Consider the following Store Buffer litmus test:

X := 1
r1 := Y

Y := 1
r2 := X

There are only six possible executions of this program on a sequentially consistent machine:

3

X := 1
r1 := Y

Y := 1
r2 := X

X := 1

r1 := Y
Y := 1

r2 := X

X := 1

r1 := Y

Y := 1
r2 := X

X := 1
r1 := Y

Y := 1

r2 := X
X := 1
r1 := Y

Y := 1
r2 := X X := 1

r1 := Y

Y := 1

r2 := X

Figure 2.1: Sequentially consistent thread interleavings of Store Buffer test

From Figure 2.1, we can determine that there is no sequentially consistent execution where
r1 = 0, r2 = 0. However, this outcome could occur if this program were executed on a modern
multiprocessor computer without special synchronization instructions. All modern multiproces-
sor computers have registers and caches, and they can execute some instructions out-of-order.
This is very important for performance, but as a consequence, no modern computer operates
under the SC model. However, it is possible to compile this program to appear as though it
is executing in a sequentially consistent manner because all architectures provide special syn-
chronization instructions. These instructions allow us to write concurrent programs. Still, they
are often quite expensive to use in terms of CPU cycles and cache misses, so their use should
be kept to a minimum while maintaining program correctness.

2.2 The C++ Memory Model
The C++ language received its first memory model in 2011 with the release of the C++11
standard. The C11 model defines atomic variables that, by default, behave according to the
Sequential Consistency model. Other memory order options are release/acquire and relaxed
semantics.

An acquire load is guaranteed that no subsequent reads or writes can be reordered before it and
that if a same-location release store was executed in another thread, all writes in that thread
become visible to the acquire load’s thread. Similarly, a release store is guaranteed that no
previous reads or writes can be reordered after it and that all writes in its thread will be visible
to other threads that perform a same-location acquire load.

A relaxed memory access does not impose any synchronization or ordering constraints. Only
its atomicity is guaranteed. Relaxed memory accesses proved to be not well-defined in the
C11 memory model because it allows out-of-thin-air (OOTA) values in some cases, and certain
common compiler optimizations proved to be incorrect [41]. Out-of-thin-air values are partic-
ularly harmful to program reasoning because they create self-validating cycles that allow any
value to be read ”out-of-thin-air”. In Figure 2.2, no rule in the C++11 model prevents r1
and r2 from having any value. The consequence of ”out-of-thin-air” values is that the C++
model can not be effectively model-checked by an algorithm without some form of patching for
this problem. Notably, the RC11 (Repaired C11) [24] model is commonly used and solves this
issue by forbidding all cyclic executions. Consequently, some optimizations, such as load-store
reordering, are not allowed under RC11. In figure Figure 2.3, we show one such example.

4

r1 = X;
Y = r1;

r2 = Y ;
X = r2;

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

cannot happen with any optimization
forbidden by RC11, allowed by C11

Figure 2.2: Program that causes an OOTA execution to be allowed by C11, but forbidden by
RC11.

r1 = X;
Y = 1;

r2 = Y ;
X = r2;

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

can happen with reordering optimization
forbidden by RC11, allowed by C11

Figure 2.3: Program that causes a valid cyclic execution to be allowed by C11, but forbidden
by RC11.

2.3 Execution Graphs
The possible outcomes of a program can be represented as a set of execution graphs. Each
graph has events (nodes) of type read (R) or write (W) and edges of type po and rf:

• po (program order) edges relate events in the same thread based on the order in which
they appear in the program’s source code. They are represented as solid black arrows.

• rf (reads-from) edges relate a read to the write from which it reads. They are represented
as dashed green arrows.

For example, the Store Buffer test we showed in section 2.1 had six possible program interleav-
ings under SC. Each of the interleavings can be represented as an execution graph. We show
two examples below:

X := 1
r1 := Y

Y := 1
r2 := X

X := 1
r1 := Y

Y := 1
r2 := X

[X = Y = 0]

W(X, 1)

R(Y, 0)

W(Y, 1)

R(X, 1)

5

X := 1

r1 := Y
Y := 1

r2 := X

[X = Y = 0]

W(X, 1)

R(Y, 1)

W(Y, 1)

R(X, 1)

Additional useful relations defined on execution graphs are:

• mo (memory order or equivalently co coherence order) orders two same-location writes.

• sw (synchronizes-with) a release event a synchronizes with an acquire event b, whenever
b (or, if b is a fence, some po-prior read) reads from the release sequence of a (or, if a is
a fence, of some po-later write).

• hb (happens-before) an event a happens-before event b if there is a path between a and b
consisting of po and sw edges.

• fr (from-read) relates a read event R(X, i) to a same-location write event Wafter(X, j) if
W(X, i)

rf−→ R(X, i) ∧W(X, i)
mo−→ Wafter(X, j).

• rmw (read-modify-write) relates a read event to a po-immediate same-location write event
when they correspond to a read-modify-write atomic operation.

The following operations can be used on a relation R ⊆ E × E:

• R−1 is the inverse relation of R. R−1 = {(y, x) | (x, y) ∈ R}

• R? is the reflexive closure of R: R? = R ∪ {(x, x) | x ∈ E}

• R1;R2 is the sequential composition operation: R1;R2 = {(x, y) | ∃z s.t. (x, z) ∈ R1 ∧
(z, y) ∈ R2}.

• R1 ∪R2 is the union operation: R1 ∪R2 = {(x, y) | (x, y) ∈ R1 ∨ (x, y) ∈ R2}.

• The sequential composition operator (;) takes precedence over union (∪): R1 ∪ R2;R3 =
R1 ∪ (R2;R3)

• R is irreflexive if it does not relate any element to itself: ∄x s.t. (x, x) ∈ R.

2.4 Load Buffering Data Races
For the remainder of this paper, we will use the concepts of load buffering data race (LB race)
and load buffering race freedom (LB race freedom). We begin by defining the related concept
of data race.

Definition 2.4.1 (Data Race). Two concurrent events are in race if they access the same
location, and at least one of them is a write event. Let G.Race be the set of all racy events of
execution G:

G.Race ≜ (G.E× G.E) \ G.hb=)|loc ∩ one(W)

where one(A) is the relation where at least one of its components belongs to the set A:
one(A)(x, y) ≜ (x ∈ A ∨ y ∈ A).

Let G.Race(o) ⊆ G.Race be the set of races where at least one of the involved events has a
weaker or equal memory order than o. We define G.Race(o) as follows:

G.Race(o) ≜ G.Race ∩ one(G.E⊑o)

6

Definition 2.4.2 (Load buffering race). A pair of events r and w form a load buffering race
(LB race) in an execution graph G if r is a read, w is a concurrent write to the same location,
and there is a porf path from r to w

LBRace ≜ Race(Rlx) ∩ ([R]; porf; [W])

Definition 2.4.3 (Load buffering race-free program). A program P is LB-race-free under a
memory model M if no consistent execution graph of P under M has a load buffering race.

Definition 2.4.4 (Load buffering race freedom). A memory model M provides the load buffer-
ing race freedom guarantee with respect to a stronger memory model M ′ (written as LBRF(M ′))
if, for any LB-race-free program P under M ′, its consistent executions under M are exactly the
same as under M ′.

7

Chapter 3

GenMC-XMM’s parent: GenMC

Suppose that we would like to verify that a concurrent program always satisfies the assertions
contained in it or whether it is data-race-free. An effective way of solving this problem is
to use a stateless model checker like GenMC [20], which enumerates all possible executions
according to a memory model and checks each one. One issue that model checkers face is that
the set of valid executions depends on the targeted memory model. For example, an execution
might be valid under C11 [6] but not under SC (sequential consistency). GenMC tackles this
issue by being parametric on the memory model choice. It supports SC, RC11 [24], and IMM
[33]. GenMC is designed to be extended to work with any model under the assumption of
porf-acyclicity.

3.1 Overview
GenMC takes as input a C++ program, interprets it with llvm, and constructs execution graphs
with events, po edges, rf edges, and mo ordering. GenMC incrementally records which reads
can be modified to read from a different write as the graphs get built. Once an execution
graph is constructed, GenMC picks one of these reads, changes its rf edge, and re-executes the
program. The authors of GenMC have proved that their algorithm is sound: no false positives,
complete: explores all executions, and optimal: no execution is visited twice [20].

Due to the high number of executions a program can generate, maintaining an in-memory graph
for each execution is costly. GenMC approaches this issue by memorizing only which read and
write should be revisited instead of immediately generating a new graph. To this end, GenMC
maintains a work queue for each graph. A work queue is a list of pairs of reads and writes that
should be revisited.

When a graph G is fully constructed, GenMC picks a revisit 〈R,W 〉 from the work queue of
G. G is restricted to only events added to the graph after R, resulting in graph G′. Finally, G′

is re-executed, and the process is repeated. If a revisit was added to the work queue due to a
write added to G, that revisit is a backward revisit. If it was added because of a new read, then
it is a forward revisit. These two classes of revisits differ in that backward revisits can lead to
duplicated execution and should not be removed from the work queue but instead marked as
”explored”. Forward revisits, on the other hand, do not lead to duplication and can safely be
removed.

8

3.2 Step-by-Step Example
Let us run the GenMCRC11 algorithm on the Load Buffering litmus test shown below.

a := X
Y := 1

b := Y
X := b

We begin with a graph containing only the initialization writes W(X, 0) and W(Y, 0) represented
by [X = Y = 0]. Suppose we execute threads from left to right, starting from thread one.

[X = Y = 0]

R(X, 0)

W(Y, 1)

Work queue:
∅

Now thread one has completed, so we schedule thread two and run b := Y

[X = Y = 0]

R(X, 0)

W(Y, 1)

R(Y, 1)
Work queue:
〈R(Y, 1),W(Y, 0)〉

The newly added R(Y, 1) can either read-from W(Y, 1) or from the initialization write W(Y, 0).
The former case is represented directly in the graph. The latter is recorded in the work queue.
Since the event we just added is a read, it is a forward revisit.

[X = Y = 0]

R(X, 0)

W(Y, 1)

R(Y, 1)

W(X, 1)

Work queue:
〈R(Y, 1),W(Y, 0)〉

We continue execution and reach statement X := b, which adds W(X, 1) to the graph. We
do not add a backward revisit 〈R(X, 0),W(X, 1)〉 to the work queue because W(X, 1) is in the
porf-suffix of R(X, 0) which would result in a cycle.

We reached the end of the execution, so we pop an item from the work queue. We pop
〈R(Y, 1),W (Y, 0)〉. The next step is restricting the graph to only events added before the read
event. The rf edge of R(Y, 1) is changed to read-from the initialization write W (Y, 0).

[X = Y = 0]

R(X, 0)

W(Y, 1)

R(Y, 0)
Work queue:
∅

We reach statement X := b, which results in W(X, 1) to be added to the graph. R(X, 0) can
read from it without creating a cycle, so we record the backward revisit 〈R(X, 0),W(X, 1)〉 in
the work queue.

9

[X = Y = 0]

R(X, 0)

W(Y, 1)

R(Y, 0)

W(Y, 1)

Work queue:
〈R(X, 0),W(X, 1)〉

We have found another complete execution graph. Once again, we pop an item from the work
queue, restrict the graph, and re-execute. Since 〈R(X, 0),W (X, 1)〉 is a backward revisit, we
do not remove it. Instead, we mark it as ”explored”. The result is our third and last complete
execution graph:

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 0)

W(Y, 1)

Work queue:
〈R(X, 0),W (X, 1)〉 explored

3.3 Assumptions
According to [20], GenMC makes the following four assumptions on the underlying memory
model:

1. porf acyclicity: this requirement is satisfied by models like SC, TSO, PSO, and RC11.
The C11 model does not meet it and sometimes allows problematic out-of-thin-air (OOTA)
values to be generated from porf cycles. Other weak models such as ARM, Power,
Weakestmo, Promising, and XMM do not satisfy the condition but avoid OOTA val-
ues.

2. prefix-closedness: There exists a partial order R that includes reads-from and (pre-
served) program order such that, if a graph is consistent, so is every R-prefix of it.
Thanks to this property, GenMC can check consistency every time an event is added to
a graph, which is a more efficient approach compared to checking only once a graph is
complete.

3. extensibility: Given a consistent execution G, a po-maximal event can always be added
to G to yield a consistent execution (with an appropriate rf edge when applicable). Thanks
to this property, GenMC can be certain that discarding an inconsistent execution will not
lead to missed exploration options.

4. well-blocking: Given a consistent execution G: 1) blocking reads in G have no porf
successors, and 2) if G contains a blocking read, then all writes in G are read from.

10

Chapter 4

GenMC-XMM’s sibling: WMC

WMC [28] is a model checker designed for the Weakestmo [9] multi-execution memory model.
Multi-execution style models differ from per-execution in that they consider multiple execu-
tions together to evaluate program outcomes. This has the benefit of allowing weak program
behaviors that enable the compiler to perform optimizations. Still, their formal semantics are
complex, and therefore also designing a model checker for them. Similarly to Promising Se-
mantics [19], WMC generates weak out-of-order behaviors by letting threads promise to write
a value speculatively, as long as they can justify the promise with an execution that proves
that it is possible to execute that write.

To facilitate the design of a model checker, the authors of the WMC paper introduced two
properties to Weakestmo: load buffering race freedom (LBRFRC11) and certification locality
(CL), and called this strengthened model Weakestmo2. The first property states that there
can only be cyclic executions in the presence of Load Buffering Data Races (LB races). Since
Weakestmo2 satisfies LBRFRC11, Weakestmo2 is equivalent to RC11 for LB-race-free programs.
The second property states that once a thread depends on an external (from another thread)
write to justify a promise, it should not be able to ignore that write in favor of a new one. This
property rules out certain OOTA behaviours. The authors show that Weakestmo2 preserves
the efficient compilation mappings [29] and the soundness of local program transformations [9]
of Weakestmo.

The Weakestmo model uses event structures [43] to represent multiple program outcomes in a
single graph: they can contain several execution branches that can be used to analyze the out-of-
order executions. An execution graph G is Weakestmo-Consistent if there exists a Weakestmo-
Consistent event structure S such that G can be extracted from S. In Weakestmo2, a graph is
consistent if it is Weakestmo-Consistent and satisfies certification locality.

4.1 Algorithm Outline
WMC is based on the GenMC model checker (Chapter 3), adapted to the Weakestmo2 memory
model as follows:

1. When calculating the set of revisitable reads, GenMC excludes those porf-before the
revisiting write. WMC includes them if there is an LB race between the read and the
revisiting write.

2. When revisiting a write w and a porf-earlier read r, WMC restricts the graph to remove
the porf-prefix of w that is po-after r. The writes that are po-after r and are read externally

11

are kept in a promise set that consists of pairs of promised writes and the execution graph
as it was when the promise was issued.

3. WMC enters a certification phase when a new event is added to the graph, and the
promise set is not empty. In this phase, all non-local explorations are postponed until all
promises are fulfilled.

4. At the end of the certification phase, WMC calculates a new promise set and the next
set of revisits.

Unlike GenMC, WMC has to deal with duplicate executions being explored due to the cy-
cles created in the execution graphs. WMC gives the option to either explore them again or
memorize which graphs have already been explored in a hash map and discard them.

4.2 Step-by-Step Example
Let us run WMC on the Load Buffering litmus test:

a := X
Y := 1

b := Y
X := b

This is the first execution produced by WMC. It is acyclic, but it contains a Load Buffering
race between R(X, 0) and W(X, 1).

[X = Y = 0]

R(X, 0)

W(Y, 1)

R(Y, 1)

W(X, 1)

Thread 1 can promise W(Y, 1). This allows R(Y, 1) to read from it when deriving the next
graph.

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

The last step is promise certification, which ensures that thread one can fulfill its promise of
writing 1 to Y . Since in this example the promise is fulfilled, this execution is considered
consistent.

4.3 Certification Locality
Certification Locality (CL) is a strengthening condition in the Weakestmo2 model, which forbids
certain out-of-thin-air behaviors. The CL constraint ensures that read events created during
promise certification can only read-from writes in the porf-prefix of the promise.

Take, for example, the following program and corresponding acyclic execution:

12

Z := 1

if (X == 1) {
Y := Z
}
else{
Y := 1
}

if (Y == 1) {
X := 1

}

[X = Y = Z = 0]

W(Z, 1) R(X, 0)

W(Y, 1)

R(Y, 1)

W(X, 1)

Assume that WMC did not enforce the CL property. If thread 2 promises W(Y, 1), this promise
could be certified by taking the else branch and reaching Y := 1, or through the if branch when
Z == 1, and reaching Y := Z.

However, in WMC, W(Z, 1) cannot be used for certifying the promised W(Y, 1) because W(Z, 1)
is not in the porf-prefix of W(Y, 1) in the graph above. The following execution is, therefore,
forbidden by WMC:

[X = Y = Z = 0]

W(Z, 1) R(X, 1)

R(Z, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

4.4 Results
The authors of WMC evaluated their algorithm and obtained the following (among other)
results.

1. How often do LB races appear in practice? What overhead is there for detecting them?

Realistic implementations of lock-free data structures rarely contain LB races. Out of 29
evaluated realistic data structures, only 2 had LB races. For LB race-free programs, the
overhead of looking for the races in WMC was 25% more compared to GenMC.

2. How well does WMC perform against other tools that handle similar memory models?

The authors found that WMC’s performance is comparable to GenMC, CDSChecker [30],
HMC [22], and Nidhugg [3] for some synthetic and data-structure benchmarks. The main
overheads of WMC compared to GenMC are the search for LB races and the fact that
Weakestmo2 allows a greater number of executions than RC11.

3. How does WMC scale in synthetic benchmarks containing many load buffering races?

In a purposely crafted synthetic benchmark with many LB races, called LBn-pairs(14),
WMC explores as much as 61 741 duplicate executions out of 16 384 consistent ones. In
this test, 14 threads are divided into seven pairs. Each pair reads and writes two variables
assigned to it, creating an LB race. Since each pair has 3 RC11 executions and one cyclic
execution, there are 4n executions where n is the number of pairs.

13

r1 := a
b := 1

r2 := b
a := 1

r3 := c
d := 1

r4 := d
c := 1

pair 1 pair 2

Figure 4.1: Example of LBn-pairs(4) test. Four threads are divided into two pairs. Each pair
reads and writes two variables assigned to it.

14

Chapter 5

The XMM Memory Model

In this chapter, we discuss the XMM memory model [34] that GenMC-XMM is designed to
model check. XMM is an axiomatic model with two operational steps that define how execution
graphs can be built. The first step is Execution, which defines how RC11 acyclic graphs are
constructed. To derive a cyclic graph from an RC11 graph, we arbitrarily choose a set of events
to commit and perform the second step: Re-Execution. If an event is committed, it will be in
the derived graph.

The operational semantics of graph construction use configurations and execution graphs de-
fined as follows:

Definition 5.0.1 (Configuration). A configuration is a tuple 〈G,G′, C〉 where G and G′ are
execution graphs, and C ⊆ G′.E is a set of committed events.

Definition 5.0.2 (Execution Graph). An execution graph G ≜ 〈E, lab, po, rf,mo, rmw〉 is a
tuple, where E is a set of events, lab : E → LAB is a labelling function, po ⊆ E × E is the
program order, rf ⊆ W × R is the reads-from relation, mo ⊆ W ×W is the modification order,
and rmw ⊆ R ×W is the read-modify-write relation. We say that the graph is well-formed if
the following conditions are met:

WellFormed(G) ≜
∀0 6= t ∈ TID. G.po|t is a total order
∀〈e1, e2〉 ∈ po. tid(e1) = 0 ∧ tid(e2) 6= 0 ∨ tid(e1) = tid(e2)
∀〈w, r〉 ∈ rf. loc(w) = loc(r) ∧ val(w) = val(r)
∀〈w1, r〉, 〈w2, r〉 ∈ rf. w1 = w2

∀x ∈ loc. G.mo|x is total
∀〈w1, w2〉 ∈ mo(w1, w1). loc(w1) = loc(w2)
rmw ⊆ imm(po) and ∀〈r, w〉 ∈ rmw(r, w). loc(a) = loc(b)

The formal rules of the XMM semantics are the following:

15

G ⟨e,ℓ⟩===⇒ G′
RfComplete(G′)

Consistent(M,G′)
(Execute)

G ⟨e,ℓ⟩−−−→
exec

G′

G′.E = G.E] {e}
G′.lab = G.lab[e 7→ ℓ]

G′.po = G.po ∪∆po(G, e)
G′.rf = G.rf ∪∆R

rf(G, w, e) ∪∆W
rf (G, R, e)

G′.mo = G.mo ∪∆mo(G,W1,W2, e)

G′.rmw = G.rmw ∪∆rmw(G, r, e) (Add Event)
G ⟨e,ℓ⟩===⇒ G′

D ⊆ f ↑ C C ⊆ G′.E
WellFormed(G|D,G′, C)
〈G′, C〉 ` G|D =⇒∗ G′

Consistent(M,G′)

EmbeddedSubGraph(G,G′, C, f)
StableUncommitedReads(G′, C)

(Re-Execute)
G ⟨f,C⟩−−−−−→

re-exec
G′

Gi
⟨e,ℓ⟩===⇒ Gi+1 WellFormed(Gi+1,G′, C)

(Guided Step)
〈G′, C〉 ` Gi

⟨e,ℓ⟩===⇒ Gi+1

Figure 5.1: Rules of XMM execution graph construction

Definition 5.0.3 (RfComplete). Execution graph G is reads-from complete, denoted as
RfComplete(G), if each read event in the graph reads from some write event belonging to
the same graph:

G.R ⊆ codom(G.rf).

Definition 5.0.4 (Consistent). The execution graph G is C11 consistent if the following con-
ditions are met:

(Coherence) G.hb;G.eco? is irreflexive;

(Atomicity) G.rmw ∩ (G.fr;G.mo) = ∅; and

(SC) G.psc is acyclic.

The eco relation is defined as follows:

eco = rf ∪mo; rf? ∪ fr; rf?

Definition 5.0.5 (WellFormed Configuration). A configuration 〈G,G′, C〉 is well-formed if it
satisfies the following predicate:

WellFormed(G,G′, C) ≜
WellFormed(G) ∧
∀c ∈ C. G.tid(c) = G′.tid(c) ∧
∀c ∈ C. G.lab(c) = G′.lab(c) ∧
[G.C];G′.po; [G.C] ⊆ G.po ∧
[G.C];G′.rf; [G.C] ⊆ G.rf ∧
[G.C];G′.mo; [G.C] ⊆ G.mo ∧
G.R ⊆ codom(G.rf) ∪ C
G′.R ∩ C ⊆ codom([C];G′.rf) ∧

where G.C ≜ G.E ∩ C.

16

Definition 5.0.6 (EmbeddedSubGraph). Given two graphs: G, G′; a set of events C ⊆ G′.E
and a partial event mapping function f : G′.E ⇀ G.E, we say that a subgraph of G′ restricted to
subset of events C is embedded into graph G under f, if the following conditions are met:

EmbeddedSubGraph(G,G′, C, f) ≜
f is injective ∧
∀c ∈ C. f(c) 6= ⊥ ∧
∀c ∈ C. G.tid(f(c)) = G′.tid(c) ∧
∀c ∈ C. G.lab(f(c)) = G′.lab(c) ∧
f ↑ ([C];G′.rpo; [C]) = [f ↑ C];G.rpo; [f ↑ C] ∧
f ↑ ([C];G′.rf; [C]) = [f ↑ C];G.rf; [f ↑ C] ∧
f ↑ ([C];G′.mo; [C]) = [f ↑ C];G.mo; [f ↑ C]

Definition 5.0.7 (StableUncommittedReads). Given a graph G′ and a set of its committed
events C ⊆ G′.E, let U ≜ G′.E\C be a set of uncommitted events. We say that uncommitted reads
are stable, denoted as StableUncommitedReads(G′, C), if there exists a partial order relation �

tid
,

which orders events from different threads, that satisfies the following conditions:

• =
tid

?;�
tid
; =

tid
? ⊆ �

tid
— the given order is closed with respect to same-thread events;

• rf; [U] ⊆ �
tid

— uncommitted reads are aligned with the given order.

5.1 Execution Step
When executing a graph G with a set of committed events C, we perform in-order execution
of instructions by adding a new event e to G, resulting in G′. G′ is checked for consistency and
possibly discarded.

If e ∈ R ∧ e /∈ C (e is an uncommitted read), it is required to read from an existing write
event, preventing the formation of po ∪ rf cycles. If C = ∅, then G′ will be an RC11 consistent
execution.

If e ∈ R ∧ e ∈ C (e is a committed read), it can temporarily read from ”nowhere” until
a corresponding committed write is added to G. A committed read can only read from a
committed write and should read from the same thread as in the original graph.

5.2 Re-Execution Step
Once a graph G is complete, we choose a subset of determined events D from the events of G
and a set of committed events C. Committed events will be preserved during re-execution.

We then re-execute starting from the configuration 〈G|D,G′, C〉 and arrive at the resulting graph
G′, checking its consistency at the end.

Finally, G′ has three additional constraints:

1. EmbeddedSubGraph ensures that the subgraph of committed events is contained in the
original graph G;

2. CausalRestriction assures that the causality relation G′.porf has an expected shape;

3. StableUncommitedReads restricts the reads-from relation G′.rf for uncommitted reads.

17

5.3 Step-by-Step Example
Let us demonstrate the semantics of XMM on the LB litmus test:

a := X
Y := 1

b := Y
X := b

We begin the Execution step with an empty graph G and an empty set of committed events.
One of the executions we can obtain is the following:

[X = Y = 0]

R(X, 0)

W(Y, 1)

R(Y, 1)

W(X, 1)

We can now choose the set of committed events C highlighted in blue and the set of determined
events D highlighted in purple. With C and D, we can begin re-execution:

[X = Y = 0]

R(Y, 1)

W(X, 1)

Next, we add the read event corresponding to a := X in thread 1. We choose its rf edge to
come from W(X, 1).

[X = Y = 0]

R(X, 1) R(Y, 1)

W(X, 1)

Lastly, the committed W(Y, 1) is added to thread 1:

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

This graph G′ satisfies the constraints: Consistent, EmbeddedSubGraph, and StableUncommit-
tedReads, therefore, it is valid according to XMM.

5.4 Stable Uncommitted Reads Constraint
The XMM model defines an additional constraint on graphs, called StableUncommittedReads(G,
G’) (Definition 5.0.7). This constraint is required for the reordering transformations to be
sound.

18

Take, for example, the following graph, where committed events are highlighted in blue. This
graph is not XMM consistent because its uncommitted events are not stable: from W(V, 1) in
thread 1, there is an rf edge to R(V, 1) in thread 3, and from W(W, 1) in thread three we can
go back to thread one via the rf edge to R(U, 1).

[U = V = X = Y = 0]

R(X, 1)

W(V, 1)

R(U, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

R(V, 1)

W(U, 1)

This constraint is needed because graphs that do not satisfy this constraint may get different
XMM consistent executions if some of their events are reordered:

a := X
if (a == 0) {

Y := 1
}
else{

V := 1
b := U
Y := b
}

r1 := Y
X := r1

r2 := V
U := r2

Suppose that XMM did not have the StableUncommitedReads(G′, C) constraint. Then, the
execution shown above would be a consistent XMM execution of this program. However, if
we reordered the statements V := 1 and b := U in thread 1, that execution would not be a
consistent XMM execution anymore.

5.5 Load Buffering Race Freedom
In [34], the authors proved that XMM satisfies the Load Buffering Race Freedom RC11 property.
This property guarantees that, for a program with no load buffering races, its behavior under
XMM is the same as under RC11.

Theorem 1 (LBRF-RC11). XMM provides load buffering race freedom guarantee with respect
to the RC11 model:

XMM ∈ LBRF(RC11)

5.6 Supported Transformations
XMM’s lax rules allow the compiler to perform several optimizations. The proof of the correct-
ness of the optimizations listed below can be found in [34].

19

• Store-Store, Store-Load, Load-Store, Load-Load Reorderings: the compiler is free to re-
order any two adjacent events as long as they access different memory locations and there
is no fence between them.

• Load-Load, Store-Load, Store-Store Elimination: some loads and stores can be eliminated.
Local variables are used instead, or in the case of store-store elimination, the first store
is dropped completely.

• Sequentialization: two threads can be merged into one by appending one to the other.

20

Chapter 6

The GenMC-XMM Model Checker

In this chapter, we present GenMC-XMM, a new model checker designed for the XMM relaxed
memory model [34]. XMM allows a wide range of compiler optimizations, and it lends itself to be
easily verified by a model checker. We built GenMC-XMM on top of GenMCRC11 (Chapter 3).
While GenMC was designed to be parametric in the choice of the underlying memory model,
extending GenMC to work for XMM required extensive modifications because GenMC assumes
that the underlying model is po + rf acyclic, which XMM is not. The main principle behind
GenMC-XMM is to let GenMC find the RC11 executions, look for load buffering races, and
explore cyclic executions only when such races are found. This is possible because of the
LBRFRC11 property of XMM (Section 5.5) that states that cyclic executions are present only if
the program has one or more load buffering races. We represent the transitions between RC11
graphs and XMM graphs in Figure 6.1.

RC11 XMM
Load Buffering Race

Figure 6.1: Transitions between RC11 and XMM graphs

The main issue we encountered while designing GenMC-XMM is that the XMM model specifies
that committed and determined events can be chosen arbitrarily. This translates to trying all
subsets of events in the current graph. The resulting algorithmic time complexity is O(2n).
We discarded this approach because it would not have scaled to graphs with hundreds or
thousands of events that current state-of-the-art model checkers can handle. Instead, we opted
for a heuristic approach driven by the patterns we found in test programs and our goal of
facilitating the proof of soundness. Our tests found that this sound but incomplete approach
is enough to find all executions in 71 out of 73 tests (Section 7.1).

We provide a detailed pseudocode representation of GenMC-XMM in Algorithm 2. The pseu-
docode uses a special notation a ← A to indicate that a can be any element of set A. This
notation is inspired by the non-deterministic ”do” notation of some functional languages. Reg-
ular variable assignment uses notation x := 2 + 2.

21

Algorithm 1: Helper Functions
1 G.poSuffix(e) = [{e}];G.po∗
2 G.porfPrefix(e) = G.po∗ ∪ G.rf∗; [{e}]
3 G.reads() = R
4 G.writes() = W
5 G.lbRaces() = {(r, w) | G.LBRace(r, w)}
6 G.numThreads() = | TID |
7 r.rf = dom(G.rf; [{r}])

Algorithm 2: GenMC-XMM
// In this pseudocode:
// a ← A indicates that we non-deterministically pick any element a from set A
// x := 2+2 is a normal variable assignment

1 func visit(P, G):
2 return set of graphs that GenMC can construct by adding events to G, following program P
3
4 func matchRfEdges(GXMM, Goriginal):
5 r⊥ ← GXMM.reads().filter(r⊥.rf = ⊥)
6 roriginal := Goriginal.get(r⊥)
7 w ← GXMM.writes().filter(w.value = r⊥.value ∧ w.loc = r⊥.loc ∧ w.tid = roriginal.rf.tid)
8 return matchRfEdges(GXMM.changeRf(r⊥, w), Goriginal)
9

10 func visitLBRaces(P, G): // called every time an RC11 graph is found
11 〈racyW, racyR〉 ← G.lbRaces()
12
13 D := G \ G.poSuffix(racyR)
14 GXMM ← visit (P, D)
15 GXMM ← matchRfEdges (GXMM, G)
16 visitXmmGraph (P, GXMM)
17

// revisit reads outside porf cycle
18 DrOutCycle := GXMM.porfPrefix(racyR)
19 GrOutCycle ← visit (P, DrOutCycle)
20 visitXmmGraph (P, GrOutCycle)
21

// revisit reads in the thread of racyR
22 r ← GXMM.poPrefix(racyR).reads
23 DracyRThread := GXMM \ GXMM.poSuffix(r)
24 GracyRThread ← visit (P, DracyRThread)
25 GracyRThread ← matchRfEdges (GracyRThread, GXMM)
26 visitXmmGraph (P, GracyRThread)
27
28 func visitXmmGraph(P, G):
29 if ¬ G.consistent() ∨ ¬ G.areUncommittedReadsStable() ∨ ¬ G.embeddedSubGraph() ∨

G.duplicate():
30 return
31 output (G)
32 visitLBRaces (P, G)

22

6.1 Algorithm Outline
The GenMC-XMM algorithm is divided into three phases:

1. Create a cycle from an RC11 graph (lines 11-16) (Section 6.2).

2. Revisit reads outside the generated cycle (lines 18-20) (Section 6.3).

3. Revisit reads in the thread of the LB racy read (lines 22-26) (Section 6.4).

We now explain the pseudocode of each phase.

Phase 1:

1. GenMC-XMM exploits the LBRFRC11 property of XMM: we only construct cyclic exe-
cutions if we encounter an LB race in a RC11 execution. When an RC11 execution is
complete, visitLBRaces is called. Argument P represents the current program, and G the
RC11 graph.

2. At lines 11-13, we scan the graph for LB races by applying Definition 2.4.2. For each LB
race found between a read racyR and a write racyW , we restrict the original graph G,
removing all the events in the po-suffix of racyR (including itself), resulting in a restricted
graph D.

3. At lines 14-15, we re-execute D by calling visit(P, D). visit returns the set of all graphs
that GenMCRC11 can construct from D following program P. We non-deterministically
pick any graph from that set and call it GXMM. At this point, GXMM can have some reads
that do not have an rf edge (R⊥) because the graph restriction could have removed the
corresponding write. We use helper function matchRfEdges to complete GXMM with the
missing rf edges.

4. At line 16, GXMM is complete. We call visitXmmGraph, which outputs GXMM if it is
consistent (Section 6.6), not a duplicate (Section 6.7), and the stableUncommittedReads
(Section 6.8) and embeddedSubGraph (Section 6.9) constraints are satisfied. Lastly, vis-
itXmmGraph calls visitLBRaces to check if GXMM has any new LB races we can use to
derive a new graph.

Phase 2:

1. At lines 18-20, we restrict GXMM. We remove all events not in the porf-prefix of racyR
and re-execute by calling visit. Because we maintain the porf-prefix of racyR, and thus
the cycle, the re-executed graph GrOutCycle does not have any R⊥, so we do not need to
call matchRfEdges. We call visitXmmGraph, which outputs GrOutCycle and looks for new
LB races in it.

Phase 3:

1. At lines 22-24, we non-deterministically pick a read from the po-prefix of racyR and call
it r. We restrict GXMM once more by removing the po-suffix of r, and we re-execute by
calling visit. The re-executed graph GracyRThread can have R⊥, so we add the missing rf
edges with matchRfEdges. We call visitXmmGraph, which outputs GracyRThread and looks
for new LB races in it.

matchRfEdges helper function:

1. The matchRfEdges helper function takes as arguments two graphs: GXMM is the graph
with R⊥, and Goriginal is the graph from which we derived GXMM. At line 5, we non-
deterministically pick a read that misses its rf edge from GXMM and call it r⊥. At line 6,

23

we find the equivalent of r⊥ in Goriginal and call it roriginal. The only difference between
r⊥ and roriginal is that, unlike the former, the latter has an rf edge. At line 7, we non-
deterministically pick from GXMM a same-value, same-location write w in the thread
from which roriginal reads. Lastly, we add an rf edge between r⊥ and w in GXMM and call
matchRfEdges recursively to complete the rest of the R⊥.

In our algorithm, the sets of committed events C and determined events D are not arbitrary
like in the XMM semantics, but they are chosen heuristically:

CGenMC-XMM = Grestricted.E ∪ {w ∈ G′ | w is a write matched to some R⊥}

Events are committed if they are part of the graph after it is restricted or matched to a R⊥ by
the matchRfEdges function. The intuition behind this is that events in the restricted graph and
matched writes are, by definition, both in G and G′, like committed events in XMM semantics.

DGenMC-XMM = Grestricted.E

Events are determined if they are part of the graph after it is restricted. The intuition behind
this is the restricted graph is the starting point of re-execution in GenMC-XMM, like determined
events in XMM semantics.

6.2 Step-by-Step Example
Let us run the GenMC-XMM algorithm (Algorithm 2) on the LB litmus test shown below:

a := X
Y := 1

b := Y
X := b

The visitLBRaces function is called with the complete RC11 execution found by GenMCRC11
shown below. We enumerate the LB races (line 11) and find the pair of racy events highlighted
in red. We do not consider 〈R(Y, 1),W(Y, 1)〉 as an LB race because an rf edge already links
them.

[X = Y = 0]

R(X, 0)

W(Y, 1)

R(Y, 1)

W(X, 1)

We remove the po-suffix of R(X, 0), resulting in a restricted graph D shown below (line 13).
Notice that R(Y, 1) is now an R⊥ because it misses its rf edge. We highlighted in blue the
”XMM semantics committed” events.

[X = Y = 0]

R⊥(Y, 1)

W(X, 1)

At line 14, we call visit with the previous graph as argument. One of the graphs returned by
visit is the following (variable GXMM in the pseudocode):

24

[X = Y = 0]

R(X, 1)

W(Y, 1)

R⊥(Y, 1)

W(X, 1)

At line 15, we call matchRfEdges with the previous graph as argument. matchRfEdges finds
R⊥(Y, 1) in thread 2 and compatible write W(Y, 1) in thread 1, so it adds an rf edge between
them. W(Y, 1) is considered committed from now on because it was matched to a committed
read. The resulting GXMM is the following:

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

Since this graph is consistent (Section 6.6), it is not a duplicate (Section 6.7), stableUncom-
mittedReads (Section 6.8) holds, and embeddedSubGraph (Section 6.9) holds, visitXmmGraph
outputs it.

In lines 18-26 (Algorithm 2), we further restrict GXMM, but in this example, we do not find any
further XMM graphs.

The rest of the execution graphs are acyclic and are obtained from GenMCRC11 as shown in
Section 3.2.

6.3 Revisiting Reads Outside the Cycle
After obtaining an XMM execution, it is possible that some reads that are not in the cycle or
its porf-prefix can be revisited to read-from happens-before (hb) previous writes. We achieve
this by restricting the graph, keeping all events that are part of the LB cycle and its porf-prefix,
and removing everything else (lines 18-20 in Algorithm 2). To derive new graphs, we re-execute
the restricted graph.

Let us take as an example Java causality test 10:

r1 := X
if (r1 == 1) {

Y := 1
}

r2 := Y
if (r2 == 1) {
X := r2
}

r3 := Z
if (r3 == 1) {

X := r3
}

Z := 1

This is the first XMM consistent execution explored by GenMC-XMM:

[X = Y = Z = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(Y, 1)

R(Z, 1)

W(X, 1)

W(Z, 1)

25

We want to revisit R(Z, 1) to read from the initialization write Z = 0 instead of W(Z, 1), so we
remove all events that are not part of the porf-prefix of the LB racy read R(X, 1):

[X = Y = Z = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(Y, 1)

By re-executing this graph, we obtain the desired graph shown below. We highlighted in blue
the committed events according to XMM semantics.

[X = Y = Z = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(Y, 1)

R(Z, 0) W(Z, 1)

6.4 Revisiting Reads in the LB Racy Read Thread
A read in the thread of the LB racy read may get a new potential rf edge after the creation
of a cycle in the graph. Let us call racyR the LB racy read and r the read in the thread
of racyR that we wish to revisit. We restrict the graph, removing the po-suffix of r. After
restriction, some reads become R⊥. We re-execute the restricted graph by calling visit (lines
22-24 in Algorithm 2). On line 25, we call matchRfEdges, which completes the missing rf edges.

Take, for example, this test case taken from [28]:

Z := 1

r := Z
s := X
if (r == 0 ∨ s == 1) {

Y := 1
}

a := Y
X := a

GenMC-XMM produces the following cyclic execution:

[X = Y = Z = 0]

W(Z, 1) R(Z, 0)

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

Now that we obtained s := 1 through the cycle, r == 0 is not necessary anymore for the if
statement to be true, so we can change the rf edge of R(Z, 0) to read from W(Z, 1) without
breaking the cycle. We restrict the graph, removing the po-suffix of R(Z, 0), and obtain:

26

[X = Y = Z = 0]

W(Z, 1) R⊥(Y, 1)

W(X, 1)

The visit function at line 24 with the previous graph as argument produces the following graph:

[X = Y = Z = 0]

W(Z, 1) R(Z, 1)

R(X, 1)

W(Y, 1)

R⊥(Y, 1)

W(X, 1)

At line 25, we call matchRfEdges, which finds R⊥(Y, 1) and compatible write W(Y, 1), and adds
an rf edge between them. The committed events according to XMM semantics are highlighted
in blue.

[X = Y = Z = 0]

W(Z, 1) R(Z, 1)

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

6.5 R⊥ rf matching
In this section, we show an example where the matchRfEdges function (lines 4-8 in Algorithm 2)
finds multiple writes compatible with a R⊥. matchRfEdges returns a set containing one graph
for each option.

Let us take the following test:

Z := 1

r1 := Z
M := 1
M := 1
r2 := X
if (r1 == 0 ∨ r2 == 1) {

Y := 1
}

r3 := M
r4 := Y
X := r4

GenMC-XMM first generates the following cyclic execution:

27

[M = X = Y = Z = 0]

W(Z, 1) R(Z, 0)

W(M, 1)

W(M, 1)

R(X, 1)

W(Y, 1)

R(M, 1)

R(Y, 1)

W(X, 1)

When GenMC-XMM revisits R(Z, 0) to read from W(Z, 1), it restricts the previous graph,
removing the po-suffix of R(Z, 0). Re-executing the restricted graph results in:

[M = X = Y = Z = 0]

W(Z, 1) R(Z, 1)

W(M, 1)

W(M, 1)

R(X, 1)

W(Y, 1)

R⊥(M, 1)

R⊥(Y, 1)

W(X, 1)

At this point, the matchRfEdges function is called with the above graph as GXMM, and the
graph shown above that one as Goriginal. At line 5, we non-deterministically pick a R⊥. This
example has two options: R⊥(M, 1) and R⊥(Y, 1). In line 7, we non-deterministically pick a
compatible write w. R⊥(M, 1) is compatible with either one of the two W(M, 1). R⊥(Y, 1) is
compatible only with W(Y, 1). Each combination of matches results in a different graph, shown
below. Adding a new rf without restricting and re-executing the graph is sufficient since the
value read by R⊥(M, 1) and R⊥(Y, 1) does not change.

[M = X = Y = Z = 0]

W(Z, 1) R(Z, 1)

W(M, 1)

W(M, 1)

R(X, 1)

W(Y, 1)

R(M, 1)

R(Y, 1)

W(X, 1)

[M = X = Y = Z = 0]

W(Z, 1) R(Z, 1)

W(M, 1)

W(M, 1)

R(X, 1)

W(Y, 1)

R(M, 1)

R(Y, 1)

W(X, 1)

28

6.6 Consistency
The XMM consistency predicate has three conditions (Definition 5.0.4): Coherence, Atomicity,
and SC. GenMC-XMM does not need extra checks for Atomicity and SC because it uses GenMC
to construct graphs, and GenMC already provides these two guarantees. For the coherence
property, GenMC performs coherence checks progressively as the execution graph gets built.
GenMC-XMM cannot easily do the same due to the possible presence of R⊥ in the graph.
Instead, it performs a single check when the graph is complete.

Following coherence definition 5.0.4, GenMC-XMM labels a graph G as coherent if there are
no two events X and Y in G such that: X →hb Y ∧ Y →eco X (Algorithm 3).

Since all pairs of events need to be enumerated, this coherence check takes O(n2) time complex-
ity, considering n as the number of events in graph G. This approach on complete graphs is
not as efficient as the step-by-step approach taken by GenMC since the latter discards graphs
earlier while they are still being constructed. In the future, it would be interesting to design a
step-by-step approach for GenMC-XMM and measure the performance speed-up.

Algorithm 3: Consistency Check
1 func isCoherent(Graph g):
2 for e1 ∈ g.events():
3 for e2 ∈ g.events():
4 if e2.hb.contains(e1) ∧ e1.eco.contains(e2):
5 return false
6 return true
7 func isConsistent(Graph g):

// the Atomicity and SC constraints are guaranteed by GenMC
8 return isCoherent(g)

6.7 Duplicates
As explained in GenMC’s paper [21], forward revisits of a read R do not lead to duplication
because only events added after R are removed from the graph. Backward revisits, on the
other hand, can lead to duplicate executions. To tackle this issue, GenMCRC11 marks explored
backward options as visited and does not consider them in the future. This design allows
GenMC to never re-execute a graph that would result in a duplicate.

Due to cyclic graphs, GenMC-XMM cannot use the same strategy. A naive approach would
be to record which LB races have been explored, but different LB races can lead to the same
resulting graph. Instead, GenMC-XMM memorizes the entire graph in a hash set and discards
it if it is already present (Algorithm 4). This strategy is not as efficient as GenMC’s because it
does not allow to know whether a graph is a duplicate until it is fully re-executed, and it adds
the overhead of hashing the graphs. In the future, it may be interesting to research a more
efficient solution to prevent duplicates and compare the performance speed-up.

29

Algorithm 4: Duplicate Graph
1 func isDuplicate(G):

// visitedGraphs is a global set of graphs
2 if G ∈ visitedGraphs:
3 return true
4 else:
5 visitedGraphs := visitedGraphs ∪ {G}
6 return false

To show how two different LB races lead to the same graph, take, for example, the simplest LB
test:

a := X
Y := 1

b := Y
X := 1

From the RC11 graph on the left, we get the cyclic execution on the right.

[X = Y = 0]

R(X, 0)

W(Y, 1)

R(Y, 1)

W(X, 1)

→

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

But from this different RC11 graph, with a different LB race, we obtain the same cyclic graph:

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 0)

W(Y, 1)

→

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

GenMC-XMM even creates a second duplicate execution because the algorithm checks whether
reads outside the cycle can be revisited (lines 18-20 in Algorithm 2). The graph is restricted to
contain only events in the cycle, resulting in the same graph in this example.

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(Y, 1)

→

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

For this particular example, GenMC-XMM explores four valid unique executions and discards
two duplicates.

6.8 Stable Uncommitted Reads
The XMM semantics specify that any XMM consistent graph should satisfy the StableUncom-
mittedReads constraint (Definition 5.0.7).

Following the definition, we have implemented the constraint as shown in Algorithm 5. The
algorithm constructs a ”data flow” graph with one node for each tid and edges between them
if there is an uncommitted read with an rf edge between them. The algorithm returns true if
this graph is acyclic.

30

Algorithm 5: Stable Uncommitted Reads
1 func constructDataflow(graph, uncommittedReads):
2 dataFlow := Graph()
3 for uncommittedRead ∈ uncommittedReads:
4 if uncommittedRead.rf.tid 6= uncommittedRead.tid:
5 dataFlow.addEdge(uncommittedRead.rf.tid, uncommittedRead.tid)
6 return dataFlow
7
8 func areUncommittedReadsStable(G, uncommittedReads):
9 dataFlow := constructDataflow(G, uncommittedReads)

10 return isAcyclic(dataFlow)

We demonstrate how this algorithm works on the following test program:

if (X == 0) {
Y := 1
}
else{

V := 1
Y := U
}

X := Y U := V

In the graph on the left below, committed events are highlighted in blue, and the others are
uncommitted. The graph on the right is the ”data flow” graph corresponding to the execution
graph on the left. Since it has a cycle, this execution is not allowed by XMM and is discarded
by GenMC-XMM.

[U = V = X = Y = 0]

R(X, 1)

W(V, 1)

R(U, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

R(V, 1)

W(U, 1)
TID 1 TID 2 TID 3

data flow graph:

6.9 Embedded Sub-Graph Check
The XMM semantics impose the EmbeddedSubGraph constraint (Definition 5.0.6) on a graph
G′ obtained by re-executing G with a set of committed events C, and event mapping function f.
All conditions of the EmbeddedSubGraph constraint are satisfied by GenMC-XMM without the
need for extra checks (as proved in Section 6.10), except the following two:

1. f ↑ ([C];G′.mo; [C]) = [f ↑ C];G.mo; [f ↑ C]
2. f ↑ ([C];G′.rpo; [C]) = [f ↑ C];G.rpo; [f ↑ C]

We have added an extra check in GenMC-XMM that discards graphs that do not satisfy the
above two conditions (Algorithm 6).

31

Condition 1 is checked at lines 2-7:

1. We non-deterministically get a committed write w from the po-suffix of the LB racy read
in the derived graph.

2. We get an equivalent write woriginal in the po-suffix of the LB racy read in the original
graph.

3. Calculate the mo-prefixes of w and woriginal, removing events in the po-suffix of the LB
racy read, and check that they are equal.

Condition 2 is checked at lines 9-11:

1. We non-deterministically get an event e in the po-path between the LB racy read, and
the committed write w.

2. We check that e no new rpo edges between e and w are created.

Algorithm 6: Embedded Subgraph Check
1 func createsRpoEdge(e, w):
2 if e.order = Acquire:
3 return true
4 if e.order = Release:
5 if e.type = Fence:
6 return true
7 if e.type = Write ∧ e.loc = w.loc:
8 return true
9 return false

10
11 func embeddedSubgraph(G, Goriginal, racyR):

// check mo preserved
12 w ← G.poSuffix(racyR).writes().filter(w → w.isCommitted())
13 woriginal := Goriginal.poSuffix(racyR).find(w)
14 moPrefix := G.moPrefix(w).filter(p → p /∈ G.poSuffix(racyR)
15 moPrefixoriginal := Goriginal.moPrefix(woriginal).filter(p → p /∈ Goriginal.poSuffix(racyR)
16 if moPrefix 6= moPrefixoriginal:
17 return false
18

// check rpo preserved
19 e ← G.poSuffix(racyR) ∩ G.poPrefix(w)
20 if createsRpoEdge(e, w):
21 return false
22
23 return true

6.10 Soundness of GenMC-XMM
The XMM model uses a notion of committed events, while GenMC-XMM uses a notion of
restricted graphs and R⊥ matching. So, how are they related? Is GenMC-XMM sound?

GenMC-XMM cannot use a non-deterministic approach when selecting the set of committed
events C like XMM prescribes. Trying all subsets of events would only work for small tests since
the time complexity would be O(2|C|) where C is the set of events in a graph. Instead, GenMC-
XMM assumes that all the events in a restricted graph Grestricted and the writes matched to a R⊥

32

are committed. The same reasoning applies to the set of determined events D. GenMC-XMM
always chooses D equal to all events in the restricted graph Grestricted.

CGenMC-XMM = Grestricted.E ∪ {w ∈ G′ | w is a write matched to some R⊥}

DGenMC-XMM = Grestricted.E

Theorem 2.

GenMC-XMM is sound.

Proof.

GenMC-XMM is sound if, given the above definitions of CGenMC-XMM and DGenMC-XMM, when
GenMC-XMM derives a graph G′ from G, the following properties hold:

• WellFormed(G|DGenMC-XMM ,G′, CGenMC-XMM)

• WellFormed(Gi+1,G′, CGenMC-XMM)

• EmbeddedSubGraph(G,G′, CGenMC-XMM, f)
• StableUncommitedReads(G′, CGenMC-XMM)

• Consistent(G′)

Each of the above properties are proved to hold in Theorems 4 to 8.

Theorem 3.

Whenever GenMC-XMM adds an event to a graph, the resulting graph is WellFormed (see
Definition 5.0.2).

Proof.

GenMC-XMM uses GenMC to add events to graphs. By design, GenMC ensures that the result-
ing graph is WellFormed. Since GenMC-XMM starts from an empty graph, which is trivially
WellFormed, all graphs explored by GenMC-XMM and their prefixes are also WellFormed.

Theorem 4.

C = CGenMC-XMM D = DGenMC-XMM G|D
(f,C)−−−−−→

GenMC-XMM
G′

WellFormed(G|D,G′, C)

Proof.

We show that WellFormed(G|D,G′, C) holds by unfolding Definition 5.0.5 and showing that each
of its conditions holds:

• WellFormed(G|D) follows from Theorem 3 because G|D is a prefix of G′.

• ∀c ∈ C. G|D.tid(c) = G′.tid(c) because G|D is a prefix of G′

• ∀c ∈ C. G|D.lab(c) = G′.lab(c) because G|D is a prefix of G′

• [G|D.C];G′.po; [G|D.C] ⊆ G|D.po because G|D is a prefix of G′

33

• [G|D.C];G′.rf; [G|D.C] ⊆ G|D.rf because G|D is a prefix of G′

• [G|D.C];G′.mo; [G|D.C] ⊆ G|D.mo because G|D is a prefix of G′

• G|D.R ⊆ codom(G|D.rf) ∪ C because D ⊆ C

• G′.R ∩ C ⊆ codom([C];G′.rf) because D ⊆ C ∧ (∀r ∈ G′.R ∩ C. dom(G′.rf; r) ∈ D ∨
r is matched to a committed write)

Theorem 5.

Gi
(e,l)−−−−−−−−−−−−→

GenMC-XMM add event
Gi+1 C = CGenMC-XMM

WellFormed(Gi+1,G′, C)

Proof.

We show that WellFormed(Gi+1,G′, C) holds by unfolding Definition 5.0.5 and showing that
each of its conditions holds:

• WellFormed(Gi+1) follows from Theorem 3 because Gi+1 is a prefix of G′.

• ∀c ∈ C. Gi+1.tid(c) = G′.tid(c) because Gi+1 is a prefix of G′.

• ∀c ∈ C. Gi+1.lab(c) = G′.lab(c) because Gi+1 is a prefix of G′.

• [Gi+1.C];G′.po; [Gi+1.C] ⊆ Gi+1.po because Gi+1 is a prefix of G′.

• [Gi+1.C];G′.rf; [Gi+1.C] ⊆ Gi+1.rf because Gi+1 is a prefix of G′.

• [Gi+1.C];G′.mo; [Gi+1.C] ⊆ Gi+1.mo because Gi+1 is a prefix of G′.

• Gi+1.R ⊆ codom(Gi+1.rf)∪C because, when a read r is added to Gi to obtain Gi+1, GenMC-
XMM always creates an rf edge ending in r. Alternatively, if r was not added, it means
that r ∈ D, and thus r ∈ C.

• G′.R ∩ C ⊆ codom([C];G′.rf) holds, as we showed in the proof of Theorem 4.

Theorem 6.

G (f,C)−−−−−→
GenMC-XMM

G′ C = CGenMC-XMM

EmbeddedSubGraph(G,G′, C, f)

Proof.

We show that EmbeddedSubGraph(G,G′, C, f) holds by unfolding Definition 5.0.6 and showing
that each of its conditions holds:

• Grestricted ⊆ G by definition of the GenMC-XMM restriction step.

• Grestricted ⊆ G′ by definition of the GenMC-XMM restriction step.

34

• f is injective, because only one write is matched to a R⊥, so no two committed events in
G can correspond to the same committed event in G′.

• ∀c ∈ C. f(c) 6= ⊥ because if there are left-over R⊥ at the end of execution, GenMC-XMM
discards the graph.

• ∀c ∈ C. G.tid(f(c)) = G′.tid(c) because either c ∈ Grestricted, or c is a write matched to a
R⊥ that read from a write in G in the same thread as c.

• ∀c ∈ C. G.lab(f(c)) = G′.lab(c) because either c ∈ Grestricted, or c is a write matched to a
R⊥ that read from a write in G with the same label.

• f ↑ ([C];G′.rpo; [C]) = [f ↑ C];G.rpo; [f ↑ C] because we have added a specific check
(Section 6.9) that discards executions that do not satisfy this condition.

• f ↑ ([C];G′.rf; [C]) = [f ↑ C];G.rf; [f ↑ C] because Grestricted ⊆ G′ so all rf edges in Grestricted
remain the same. Committed writes matched to a R⊥ in G’ have an equivalent write in
G, so their rf edges are also the same.

• f ↑ ([C];G′.mo; [C]) = [f ↑ C];G.mo; [f ↑ C] because we have added a specific check (Sec-
tion 6.9) that discards executions that do not satisfy this condition.

Theorem 7.

G (f,C)−−−−−→
GenMC-XMM

G′ C = CGenMC-XMM

StableUncommitedReads(G′, C)

Proof.

We have implemented the stable uncommitted reads Definition 5.0.7 using the pseudocode shown
in Algorithm 5. The function areUncommittedReadsStable is called every time an execution is
completed. If it returns false, the execution is discarded.

Theorem 8.

G (f,C)−−−−−→
GenMC-XMM

G′

Consistent(G′)

Proof.

We have implemented the consistency check from Definition 5.0.4, using the pseudocode shown
in Algorithm 3. The atomicity and SC constraints are not checked directly by GenMC-XMM
because GenMC already ensures that they are respected when it constructs the graphs.

6.11 Limitations: Completeness and Optimality
GenMC-XMM is limited in the following aspects:

35

• GenMC-XMM is not a complete model checker because it approximates the set of com-
mitted events. A complete model checker would have to try all subsets of committed
events, which would not scale since it requires O(2n) time complexity. A possible solu-
tion to this problem would be to prove that only certain subsets of committed events lead
to XMM consistent executions, but so far, we have not found this true. In our tests, avail-
able in the artifact (Appendix A), we found that GenMC-XMM finds all XMM consistent
executions in 73 tests, and misses an execution in 2: LB+coh-cyc and LB+porf-suffix.

• In the LB+coh-cyc test, GenMC-XMM misses an XMM consistent execution, shown in
Figure 6.2 on the right. In order to obtain this execution, one should choose C = {W(Y, 1),
R(Y, 1), W(X, 3)} (highlighted in blue in the figure) and D = ∅. Doing so allows W(X, 1)
in thread 2 to be added to the graph before W(X, 2) in thread 1, which results in a change
in mo order.

X := 2
r1 := X
if (r1! = 2) {

Y := 1
}

X := 1
r2 := X
r3 := Y
if (r3! = 0) {

X := 3
}

[X = Y = 0]

W(X, 2)

R(X, 3)

W(Y, 1)

W(X, 1)

R(X, 1)

R(Y, 1)

W(X, 3)

mo:
X: [W(X, 2); W(X, 1); W(X, 3)]

→

[X = Y = 0]

W(X, 2)

R(X, 3)

W(Y, 1)

W(X, 1)

R(X, 2)

R(Y, 1)

W(X, 3)

mo:
X: [W(X, 1); W(X, 2); W(X, 3)]

Figure 6.2: LB+coh-cyc test: GenMC-XMM fails to produce the graph on the right from the
one on the left.

• Also, in the LB+porf-suffix test, which we have designed, GenMC-XMM is unable to
produce the XMM consistent execution shown in Figure 6.3 on the right. The XMM
semantics allow the graph on the right to be derived from the one on the left by selecting
the committed events, highlighted in blue in the figure below, as C = {W(Y, 1), W(Z, 1),
R(Y, 1), W(X, 1)}. However, GenMC-XMM over-approximates C, and selects all events
highlighted in purple below: C = {W(A, 1), W(Y, 1), R(A, 1), W(Z, 1), R(Y, 1), W(X, 1)}.
Because GenMC-XMM also selects R(A, 1), the execution on the right cannot be derived.
R(A, 1) should change to R(B, 1), and therefore should not be committed.

• GenMC prevents duplicates by marking backward revisits as ”visited”. This strategy
enables GenMC to determine whether a revisit would lead to a duplicate graph before
the re-execution step. GenMC-XMM cannot adopt this same strategy because different
Load Buffering races can lead to the same execution (Section 6.7). Instead, it uses a
hash set to record visited graphs. This strategy is less efficient because duplicate graphs
must be fully built before being discarded, and it adds the overhead of having to hash
the graphs.

36

r1 := X
if (r1 == 0) {

A := 1
Y := Z
}
else{

B := 1
Y := Z
}

if (A == 1 ∨B == 1) {
Z := 1
}

X := Y

[A = X = Y = Z = 0]

R(X, 0)

W(A, 1)

R(Z, 1)

W(Y, 1)

R(A, 1)

W(Z, 1)

R(Y, 1)

W(X, 1) →

[A = X = Y = Z = 0]

R(X, 1)

W(B, 1)

R(Z, 1)

W(Y, 1)

R(B, 1)

W(Z, 1)

R(Y, 1)

W(X, 1)

Figure 6.3: LB+porf-suffix test: GenMC-XMM fails to produce the graph on the right from
the one on the left.

• GenMC checks the coherence property every time an event is added to a graph. GenMC-
XMM cannot do the same because some reads may not have an rf edge. Instead, GenMC-
XMM performs the check only once a graph is complete. GenMC’s strategy is more
efficient since it allows discarding incoherent graphs earlier.

37

Chapter 7

Evaluation

In this chapter, we evaluate the GenMC-XMM algorithm by comparing it to GenMCRC11,
WMC, and GenMCIMM.

We are answering the following questions:

RQ1 How often does GenMC-XMM miss some XMM consistent executions? (Section 7.1)

RQ2 How is XMM different from Weakestmo2 in litmus tests? (Section 7.2)

RQ3 How effective is GenMC-XMM in verifying real-world lock-free data structures? (Sec-
tion 7.3)

RQ4 How does GenMC-XMM scale in synthetic benchmarks compared to similar tools? (Sec-
tion 7.4)

RQ5 How many duplicates does GenMC-XMM explore in load buffering tests? (Section 7.5)

The tools we are using for comparison with GenMC-XMM are:

• GenMCRC11 [21] (Chapter 3) is the stateless model checker that GenMC-XMM is based
upon.

• Old GenMCRC11 is the old version of GenMC upon which WMC is based. We in-
cluded this version in the data-structure benchmarks because we found some differences
in running time and outputted executions compared to the current version.

• WMC [28] (Chapter 4) is a multi-execution stateless model checker based on Old GenMCRC11.
It model checks the Weakestmo2 multi-execution memory model [9].

• GenMCIMM [22] is a model checker based on GenMC, for the IMM (Intermediate Memory
Model) [33]. It allows some cyclic executions by tracking dependencies. IMM is an
abstraction over hardware memory models and allows language memory models such as
RC11 and Promising Semantics to prove compilation correctness to IMM instead of to
each hardware model.

The tests are well-known tests used in this field of research. They are taken from the benchmark
suites of GenMC [21], WMC [28], Nidhugg [3], and RCMC [23]. We explain each test/bench-
mark we used in Appendix B.

The benchmarks were run in a Docker container on a macOS machine with a 2.9 GHz Intel
Core i9 CPU and 32 GB of memory. The container is available for download by following

38

the instructions in Appendix A. The execution times reported in Tables 7.3, 7.5 and 7.7 are
averaged over five runs.

7.1 Testing the completeness of GenMC-XMM [RQ1]
Unfortunately, it is tough to assess the completeness of an algorithm. We cannot provide
mathematical guarantees about how many executions GenMC-XMM misses. The next best
approach is to select a set of tests and manually verify whether GenMC-XMM finds all XMM
consistent executions.

We have selected 73 tests, all containing load buffering races and relaxed atomics, and we found
that GenMC-XMM missed an XMM consistent execution only in two cases: LB+coh-cyc and
LB+porf-suffix. We explain why GenMC-XMM fails those tests in Section 6.11.

All tests, together with the manually computed XMM consistent executions, are available in
the Docker container with the other benchmarks.

7.2 Comparing GenMC-XMM and WMC on litmus tests
[RQ2]

Litmus tests are small, carefully crafted programs designed to expose and understand the
behavior of concurrent systems under weak memory models.

How does the XMM model differ from Weakestmo2? To answer this question, we have compared
the output of GenMC-XMM and WMC on 73 litmus tests with LB races taken from the GenMC-
XMM benchmark suite. We found that in 12 of them, the two model checkers explored a
non-equal number of executions (Table 7.1). In addition to the executions found by WMC and
GenMC-XMM, we added the ones found by GenMCRC11 and GenMCIMM in the two leftmost
columns.

XMM finds more executions than the other model checkers in all 12 tests. RC11 and IMM
have the same number of executions in all cases. RC11 and Weakestmo2 differ only in 5 tests:
R-bot-multi-matching, java-test19, java-test20, LB+seq-src, and java-test5.

The test where Weakestmo2 and XMM diverge the most is LB+coh+RR+cf. In this test, RC11,
IMM, and Weakestmo2 allow 24 executions, but XMM allows 36. This is because Weakestmo2
enforces a global event-structure level mo relation, whereas XMM does not have this constraint.

39

Number of Executions
Test Name GenMCRC11 GenMCIMM WMC GenMC-XMM
LB+coh-cyc 5 5 5 6
LB+equals 9 9 9 10
LB-invis-write+dep 2 2 2 3
R-bot-multi-matching 15 18 20 21
java-test9a 10 10 10 12
LB+coh-cyc+Wd 10 10 10 12
java-test10 5 5 5 8
java-test19 14 14 17 20
java-test20 14 14 17 20
LB+seq-src 14 14 17 20
java-test5 20 20 24 28
LB+coh+RR+cf 24 24 24 36

Table 7.1: Number of executions found by GenMCRC11, GenMCIMM, WMC, and GenMC-XMM
on litmus tests where XMM has different consistent executions than Weakestmo2

7.3 Evaluating GenMC-XMM on data-structure bench-
marks [RQ3]

In this section, we compare GenMC-XMM to GenMCRC11 and WMC on real-world lock-free
data structures. Since WMC is based on an old version of GenMC, we also included this version
under the name ”Old GenMCRC11”. This older version does not support the symmetry reduction
optimization [21], so we disabled it for GenMCRC11, GenMCIMM, and GenMC-XMM to have a
fairer comparison.

In Table 7.2, we reported the number of executions explored by each model checker. We
highlighted in blue the tests where GenMC-XMM’s output was different from GenMCRC11, and
in red the ones where the results of the model checkers differed. In Table 7.3, we reported
the time it took to verify each test. The last column of each table is called ”LB races” and
represents the number of Load Buffering races explored by GenMC-XMM. The timeout was
set to 60s.

All selected tests have load buffering races, but GenMC-XMM finds more executions than
GenMCRC11 only in two tests: chase-lev and dq. In chase-lev, GenMCRC11 finds 3639 executions,
and GenMC-XMM 3821. In dq GenMCRC11 finds 1924, and GenMC-XMM 2065.

In all tests, GenMC-XMM finds more, or the same, executions compared to the other tools.
We expected this, because XMM is in general a weaker model compared to RC11, IMM, and
Weakestmo2.

In chase-lev and dq, Old GenMCRC11 reports different executions than GenMCRC11. This is due
to bug fixes and improvements added to GenMCRC11 after WMC was released. Old GenMC does
not complete linuxrwlocks and fcombiner-async within the timeout, and consequently neither
does WMC.

WMC reports the same executions as Old GenMCRC11, except for chase-lev where Old GenMCRC11
outputs 3809 executions, and WMC 3975.

GenMCIMM reports the same executions as GenMCRC11.

40

As shown in Figure 7.1, in all tests with many load buffering races, GenMC-XMM performs
worse than GenMCRC11. The tests where the performance of GenMC-XMM performs worst
are mpmc-queue-bnd and ticketlock, the tests with the most LB races. A plausible reason is
that each load buffering race leads to a new execution to explore, even if it may be discarded.
Additionally, GenMC-XMM is designed to create a copy of the current graph whenever an
LB race is encountered, which is an expensive operation. In tests with few LB races, the
performance of the two algorithms is comparable.

WMC performs surprisingly well in all tests and does not appear to be affected by LB races as
much as GenMC-XMM. It performs worse than GenMCRC11 only when Old GenMCRC11 also
performs worse.

Number of Executions
Test Name Old GenMCRC11 WMC GenMCRC11 GenMCIMM GenMC-XMM LB Races
mpmc-queue-bnd 15752 15752 15752 15752 15752 24240
ticketlock 720 720 720 720 720 10800
chase-lev 3809 3975 3639 3639 3821 6530
buf-ring 1218 1218 1218 1218 1218 2172
dq 1802 1802 1924 1924 2065 1616
stc 183 183 183 183 183 1515
linuxrwlocks ⌛ ⌛ 216 216 216 384
twalock 96 96 96 96 96 288
fcombiner-async ⌛ ⌛ 24 24 24 32
mutex 12 12 12 12 12 30

Table 7.2: Number of executions explored on data structure benchmarks. GenMC-XMM ex-
plores more executions than other tools in the chase-lev and dq tests.

Execution Time
Test Name Old GenMCRC11 WMC GenMCRC11 GenMCIMM GenMC-XMM LB Races
mpmc-queue-bnd 4.00s 4.31s 4.81s 9.26s 12.64s 24240
ticketlock 3.40s 3.65s 0.34s 2.01s 48.43s 10800
chase-lev 0.58s 0.66s 0.74s 1.91s 1.95s 6530
buf-ring 1.54s 1.59s 1.72s 3.92s 2.28s 2172
dq 0.14s 0.15s 0.18s 0.28s 2.79s 1616
stc 0.05s 0.07s 0.14s 0.15s 0.30s 1515
linuxrwlocks ⌛ ⌛ 0.23s 0.40s 0.81s 384
twalock 0.03s 0.03s 0.34s 0.34s 0.41s 288
fcombiner-async ⌛ ⌛ 0.33s 0.36s 0.34s 32
mutex 0.02s 0.02s 0.03s 0.05s 0.04s 30

Table 7.3: Execution time on data structure benchmarks. GenMC-XMM’s execution time is
comparable to that of the other tools, except in the ticketlock and mpmc-queue-bnd tests where
it takes longer.

41

Figure 7.1: Execution times and LB races on data structure tests. GenMC-XMM’s execution
time is comparable to other tools, except when the number of LB races exceeds 10,000.

7.4 Evaluating GenMC-XMM on synthetic benchmarks
[RQ4]

In this section, we compare how GenMC-XMM, ”Old GenMCRC11”, WMC, and GenMCRC11
scale on synthetic benchmarks designed to have thousands of executions to explore (tables
7.4 and 7.5). In the last column on the right, we report the number of Load Buffering races
explored by GenMC-XMM. The rows where GenMC-XMM’s output differed from GenMCRC11
are highlighted in blue. The rows where any model checker outputs a different result are
highlighted in red. Some tests have a number in parentheses next to their name that indicates
how many threads were created in that test. The timeout was set to 60s.

Table 7.4 shows the number of executions explored by each tool. We make the following
considerations about the number of executions explored by the tools:

• GenMCRC11and Old GenMCRC11explored different executions in tests szymanski, and
dekker-bnd. This is due to fixes and improvements introduced after WMC was released.

• WMC explored the same executions as Old GenMCRC11 in all tests, except in szymanski.

• GenMC-XMM also finds cyclic executions only in szymanski. In szymanski(1) and szy-
manski(2), Old GenMCRC11finds more executions than GenMCRC11. This causes WMC
also to have more total executions than GenMC-XMM. However, if we count only the
cyclic executions for szymanski(1), we get that WMC found 44−40 = 4 cyclic executions,
and GenMC-XMM found 36−32 = 4. For szymanski(2), WMC found 6344−5738 = 606
cyclic executions, and GenMC-XMM found 2930− 2216 = 714.

Table 7.5 shows the execution time of each tool. We make the following considerations about
the execution time of the tools:

• In all tests without LB races, GenMC-XMM has a slight performance overhead compared
to GenMCRC11because GenMC-XMM has to look for LB races while GenMCRC11does not.
This overhead is so small that it was not accurately measured in the execution times.

• In all tests with LB races and a parameter that defines the number of threads created
(szymanski, ainc, casrot, casw), the number of LB races encountered grows with the
number of threads created. This significantly impacts the execution time of GenMC-
XMM: while GenMC and WMC finish most tests in under a second, GenMC-XMM

42

finishes in tens of seconds. We have plotted the number of LB races and execution times
of GenMC-XMM and GenMC in Figure 7.2.

These tests show that GenMC-XMM does not scale as well as GenMC and WMC as the number
of load buffering races increases. After investigating the algorithm with a CPU profiler, we
found that this is caused by GenMC-XMM making a copy of the current graph each time an
LB race is encountered. This copy is needed for the current algorithm design to work, but
it is possible that the design could be modified to avoid copying the graph. However, we do
not expect many real-world scenarios to have this many load buffering races, so we leave this
performance improvement for future work. WMC appears to be much less affected by the
number of LB races than GenMC-XMM. After inspection of the WMC code, we found that
WMC does not copy the current graph every time an LB race is found, which would explain
its better scalability compared to GenMC-XMM.

Number of Executions
Test Name Old GenMCRC11 WMC GenMCRC11 GenMCIMM GenMC-XMM LB Races
szymanski(1) 40 44 32 32 36 40
szymanski(2) 5738 6344 2216 2216 2930 15176
dekker-bnd 59 59 55 55 55 123
reorder2 1296 1296 1296 1296 1296 0
fib-bench 34205 34205 34205 34205 34205 0
indexer(14) 512 512 512 512 512 0
indexer(15) 4096 4096 4096 4096 4096 0
ainc(6) 720 720 720 720 720 10800
ainc(7) 5040 5040 5040 5040 5040 105840
casrot(9) 8597 8597 8597 8597 8597 42320
casrot(10) 38486 38486 38486 38486 38486 223701
casw(4) 1200 1200 1200 1200 1200 4800
casw(5) 32880 32880 32880 32880 32880 192480

Table 7.4: Number of executions explored on synthetic benchmarks. GenMC-XMM finds the
same number of executions as other tools except in the szymanski test.

Execution Time
Test Name Old GenMCRC11 WMC GenMCRC11 GenMCIMM GenMC-XMM LB Races
szymanski(1) 0.02s 0.00s 0.04s 0.04s 0.04s 40
szymanski(2) 0.30s 0.36s 0.23s 0.47s 2.03s 15176
dekker-bnd 0.01s 0.01s 0.04s 0.04s 0.04s 123
reorder2 0.11s 0.17s 0.13s 0.18s 0.12s 0
fib-bench 1.21s 1.12s 0.85s 0.86s 0.91s 0
indexer(14) 0.33s 0.35s 0.63s 1.69s 0.69s 0
indexer(15) 2.90s 2.89s 5.44s 13.11s 5.20s 0
ainc(6) 0.03s 0.04s 0.07s 0.10s 1.24s 10800
ainc(7) 0.25s 0.36s 0.34s 0.59s 14.59s 105840
casrot(9) 0.44s 0.47s 0.23s 0.35s 6.87s 42320
casrot(10) 2.34s 2.20s 0.95s 1.51s 42.11s 223701
casw(4) 0.06s 0.06s 0.06s 0.10s 0.34s 4800
casw(5) 1.62s 1.84s 0.76s 1.27s 13.29s 192480

Table 7.5: Execution times on synthetic benchmarks. GenMC-XMM does not scale well on
tests with many LB races and can take much longer than other tools.

43

Figure 7.2: Execution times and LB races on synthetic tests. As the number of LB races
increases, so does the difference in execution time between GenMC-XMM and other tools.

7.5 Evaluating the number of duplicate graphs explored
by GenMC-XMM [RQ5]

In this section, we compare GenMC-XMM, WMC, and GenMCRC11 on a set of artificial tests
designed to contain load buffering races, taken from [28]. In Table 7.6, we report the number
of executions explored by GenMCRC11, GenMCIMM, WMC, and GenMC-XMM, the number of
duplicates explored by WMC and GenMC-XMM, and the number of load buffering races found
during exploration by GenMC-XMM. In Table 7.7, we report the execution time of each model
checker.

In LBn+ctrl, LBn+data, and LBn, GenMCIMM, WMC, and GenMC-XMM report only one
more execution than GenMCRC11. The number of duplicates explored in these tests stays low,
with GenMC-XMM reporting one more than WMC for all these test cases.

LBn-pairs consists of n threads, divided into pairs of (writer, reader), writing/reading to/from
pairs of variables. This causes 4n, where n is the number of pairs, executions to be allowed by
GenMCIMM, WMC, and GenMC-XMM. Neither WMC nor GenMC-XMM scale well due to this
test’s exponential number of outcomes, with the number of duplicate executions growing faster
than the number of consistent executions. In LBn-pairs(14), WMC explores 61741 duplicates
and GenMC-XMM 48250.

GenMCRC11 is the faster model checker overall. GenMCIMM, WMC, and GenMC-XMM are
comparable in terms of performance, except for the LBn-pairs test, where GenMC-XMM is
considerably slower than the other tools. The performance penalty of GenMC-XMM in this
test is due to the high number of LB races, which causes many graph copies to be created like
in the synthetic tests of Section 7.4.

44

Number of Executions Number of Duplicates
Test Name GenMCRC11 GenMCIMM WMC GenMC-XMM WMC GenMC-XMM LB Races
LBn+ctrl(10) 9 11 11 11 0 1 1
LBn+ctrl(12) 10 11 11 11 0 1 1
LBn+ctrl(14) 10 11 11 11 0 1 1
LBn+data(10) 19 1024 1024 1024 0 1 10
LBn+data(12) 1023 1024 1024 1024 0 1 10
LBn+data(14) 1023 1024 1024 1024 0 1 10
LBn(10) 1023 1024 1024 1024 9 10 10
LBn(12) 4095 4096 4096 4096 11 12 12
LBn(14) 16383 16384 16384 16384 13 14 14
LBn-pairs(10) 243 1024 1024 1024 2101 2184 2560
LBn-pairs(12) 729 4096 4096 4096 11529 10379 12288
LBn-pairs(14) 2187 16384 16384 16384 61741 48250 57344

Table 7.6: Load Buffering benchmarks. GenMC-XMM finds the same number of cyclic execu-
tions as other tools. The number of duplicates visited is slightly less than that of WMC.

Execution Time
Test Name GenMCRC11 GenMCIMM WMC GenMC-XMM LB Races
LBn+ctrl(10) 0.06s 0.05s 0.01s 0.04s 1
LBn+ctrl(12) 0.05s 0.04s 0.01s 0.04s 1
LBn+ctrl(14) 0.04s 0.04s 0.01s 0.05s 1
LBn+data(10) 0.04s 0.19s 0.10s 0.15s 10
LBn+data(12) 0.10s 0.18s 0.10s 0.13s 10
LBn+data(14) 0.11s 0.17s 0.10s 0.11s 10
LBn(10) 0.11s 0.14s 0.12s 0.13s 10
LBn(12) 0.33s 0.55s 0.46s 0.40s 12
LBn(14) 1.37s 2.40s 1.68s 1.47s 14
LBn-pairs(10) 0.06s 0.19s 0.34s 1.43s 2560
LBn-pairs(12) 0.12s 0.65s 2.27s 7.06s 12288
LBn-pairs(14) 0.34s 3.19s 11.60s 38.12s 57344

Table 7.7: Load Buffering time benchmarks. GenMC-XMM takes the same time as other tools
when there are few LB races. It takes longer when the number of LB races increases.

45

Chapter 8

Related Work

This work builds on top of a series of attempts at designing a language memory model and
accompanying model checker that does not suffer from the ”out-of-thin-air” (OOTA) problem
[8] and allows for the most efficient compilation on all computer architectures. This has been
the ”holy grail” of weak memory consistency, and after decades of work by researchers, a perfect
solution still does not exist.

8.1 Language Memory Models
The first mainstream language to receive a memory model was Java [27] back in 1996, and
then a revised version in 2004. This model was criticized for not supporting certain desirable
program transformations [35, 38].

On the contrary, the original C++ memory model [6] was criticized because, for the sake of
supporting more program transformations, it allowed OOTA executions. These are undesirable
because they render logical reasoning about programs ineffective [40]. Consider the following
LB+deps example:

if (X == 1)
Y := 1;

if (Y == 1)
X := 1;

Because of the dependencies created by the if statements, the only possible outcome of this
program is X = Y = 0. Nonetheless, the original C11 model allows the OOTA outcome
X = Y = 1, invalidating the thread-local reasoning of constant propagation [42].

A new model called Repaired C11, or RC11 [24], was proposed to patch this issue. This model
aimed to strengthen the C11 model enough to exclude OOTA outcomes, even if this entailed
slightly less efficient compilation. Part of the solution proposed by the authors is to require
po∪rf to be acyclic. This has the undesirable effect of also ruling out the following LB behavior:

a := X
Y := 1

b := Y
X := b

On Arm and Power architectures, the outcome a = b = 1 is possible, but not according to
RC11. To make Arm and Power comply with RC11, the compilation to these architectures
must add fences to prevent reordering of instructions. The performance overhead of this less

46

efficient compilation has been estimated in [31] and was found to be as high as 17% in some
benchmarks, but on average, about 3%.

The Java memory model was updated [7] when Java was extended with different memory access
modes. This new model adopts a per-execution style, and like RC11, it forbids po∪rf cycles.

Since then, researchers have strived to design a weak memory model that did not exhibit OOTA
executions and enabled as many compiler optimizations as possible by allowing weak behaviors.
These new advanced models had to adopt a multi-execution reasoning style to achieve this goal.
With this paradigm, multiple executions are considered together to justify a program outcome
[28]. Notable examples are:

• Promising Semantics [19], achieves efficient compilation by allowing threads to promise
a write and other threads to read from either a normal write or a promise. Each promise
must be certified, i.e., show that the thread that made the promise can perform the write
it promised. In a later paper, this model was updated to support transformations based
on global analysis [26]. On the downside, both versions suffered from a high degree of
complexity, which may be why no model checking algorithm for the entire model has been
designed.

• Weakestmo [9], represents multiple executions together explicitly in a event structure
graph [43]. In other words, a single event structure graph can contain multiple execution
branches of the program. The original model was presented without a model checker.
Still, a slightly strengthened Weakestmo2 model was proposed years later [28] with an
automatic checker tool called WMC (Chapter 4).

The downside of multi-execution models is that they are significantly more complicated than
their single-execution counterparts. Researchers are now trying to design simpler models that
achieve the same or better results. We believe the XMM memory model [34] and our GenMC-
XMM model checker tool are yet another step towards this goal.

8.2 Model Checkers
From the perspective of program verification, much work has been put into developing model
checker tools for porf-acyclic models (e.g. [1, 2, 4, 5, 11, 14, 15, 17, 18, 20, 23, 44]). GenMC
[21], which forms the basis of GenMC-XMM, belongs to this category. This state-of-the-art
tool is a stateless [15] model checker, meaning that it explores the states of a program without
recording the past ones. It does so by keeping track of the current execution and deriving the
next consistent execution directly from it.

Compared to acyclic model checking, porf-cyclic models have been explored less. This could be
because this class of models allows weak outcomes that result in extra complexity for the model
checker. One of the first porf-cyclic models was designed in 2013 and is called CDSChecker [30].
This tool was designed for the original C11 memory model, allowing loads to read from future
stores with a system of promises similar to Promising Semantics [19]. Another notable tool
is WMC [28], which targets the Weakestmo2 memory model. Like our solution, it is based on
GenMC [21], and it makes use of the Load Buffering Race Freedom theorem [28] to determine
when to explore cyclic executions. A limitation of Weakestmo2 compared to XMM is that it
does not support the sequentialization transformation.

47

Chapter 9

Conclusion

XMM [34] is a new memory model designed to rule out OOTA behaviors while supporting
common compiler optimizations such as reorderings and sequentialization. Compared to the
state-of-the-art multi-execution relaxed memory models, such as Weakestmo [9] and Promising
[19], XMM is considerably simpler and supports the sequentialization optimization. Weakestmo
is based on Event Structure Theory and uses Event Structures to represent multiple program
branches together. Promising uses a concept of thread promises and certification to enable
reading from speculative writes. XMM uses the concept of committing events and graph re-
execution. The Promising model lacks a complete model checker. Weakestmo has a model
checker called WMC [28], designed for a strengthened version of the model called Weakestmo2.

In this work, we have presented a model checker for the XMM memory model called GenMC-
XMM. Our algorithm is based on GenMC, a stateless model checker for RC11 [24] and IMM
[33]. It uses XMM’s Load Buffering Race Freedom property, which states that in the absence
of Load Buffering Races, XMM behaves like RC11. When a Load Buffering race is present in
an execution graph, GenMC-XMM restricts the graph and re-executes it, obtaining a cyclic
execution. A cyclic graph can be further restricted to obtain new executions. With this simple
design based on 1. searching for Load Buffering races, 2. restricting the graph, 3. re-executing,
and 4. repeating, GenMC-XMM outputted all XMM executions on 71 litmus tests with load
buffering races. However, in two cases, GenMC-XMM did not enumerate all of them: LB+coh-
cyc and LB+porf-prefix.

GenMC-XMM is not a complete algorithm. Due to an algorithmic time complexity issue, a
complete model checker tool for XMM would have required O(2n) where n is the size of a
graph. However, we have proven that it is sound. We do not know of any other model checker
algorithm for a multi-execution memory model that has been proven sound until now.

Our evaluation determined that GenMC-XMM takes more time to verify a program when it
exhibits upwards of thousands of Load Buffering data races, which should be rare. We believe
that GenMC-XMM’s performance could be improved by avoiding copying the current graph at
each LB race, discarding duplicates before re-executing, and checking for consistency during
re-execution.

XMM and GenMC-XMM are a significant step towards simpler multi-execution memory models
that allow more compiler optimizations and no unnecessary fences when compiling to weak
architectures.

48

Appendices

49

Appendix A

Evaluation Reproduction Instructions

We provide a Docker image with the GenMC-XMM code, and all the necessary tools to repro-
duce our results. The instructions to set this up are the following:

1. Download and install Docker and Docker Compose from https://docs.docker.com/
engine/install.

2. Clone the GitHub repository with the Docker image from https://github.com/matteo-meluzzi/
xmm-benchmarks.

3. In the cloned ”xmm-benchmarks” folder, enter the following command:
$ docker compose up

4. Docker should now start building the image. Once it is finished, the benchmarks can be
accessed via a web browser at http://localhost:8888.

5. Each .ipynb file corresponds to a different benchmark. The ”run-tests.py” file can be run
to verify the GenMC-XMM output against its test suite.

50

https://docs.docker.com/engine/install
https://docs.docker.com/engine/install
https://github.com/matteo-meluzzi/xmm-benchmarks
https://github.com/matteo-meluzzi/xmm-benchmarks
http://localhost:8888

Appendix B

Benchmark descriptions

B.1 Litmus tests
• LB+acq is like the classic LB test, but the loads use acquire memory order.

• LB+coh-cyc is taken from [10]. In this example, the outcome r1 = 3 ∧ r2 = 2 ∧ r3 = 1
is allowed by Promising, and forbidden by Weakestmo and XMM.

• LB+equals is a test where a compiler could potentially find invariant X = Y , and
remove the redundant if statement if (X == Y).

• LB+rel is like the classic LB test, but the stores use release memory order.

• LB-invis-write+dep is a test designed to verify that the execution obtained after ap-
plying the sequentialization optimization is outputted.

• R-bot-multi-matching is a test designed to verify that all writes that are compatible
with a certain Rbot are matched.

• java-test9a is equal to Java causality test 9, taken from [27], except that variable X is
initialized to 2, and thread 3 writes 0 to X instead of 2.

• LB+coh-cyc+Wd is similar to LB+coh-cyc, but with a read from a distinct location in
the second thread and a write to this location in a separate thread. r1 = 3∧r2 = 2∧r3 = 1
should be still forbidden.

• java-test10 is Java causality test 10 [27]. The Java model forbids outcome r1 = 1∧r2 =
1 ∧ r3 = 0, but it is allowed by XMM.

• java-test19 is Java causality test 19 [27]. Both the Java model, and XMM allow outcome
r1 = 42 ∧ r2 = 42 ∧ r3 = 42.

• java-test20 is Java causality test 20 [27]. Both the Java model, and XMM allow outcome
r1 = 42 ∧ r2 = 42 ∧ r3 = 42.

• LB+seq is a test taken from the Promising paper [19]. It tests whether the sequential-
ization optimization is allowed.

• java-test5 is Java causality test 5 [27]. The Java model forbids outcome r1 = 1 ∧ r2 =
1 ∧ r3 == 0, but XMM allows it.

• LB+coh+RR+cf this test shows between the global mo order of the Weakestmo model,
and the absence of such constraint in the XMM model. Due to the absence of this

51

constraint, XMM allows more executions than Weakestmo in this test.

B.2 Data Structure Benchmarks
• mpmc-queue-bnd is a multi-producer multi-consumer queue.

• ticketlock is an implementation of a ticketlock algorithm.

• chase-lev is a dynamic circular work-stealing deque [12].

• buf-ring is a multi-producer multi-consumer ring buffer.

• dq is a multi-producer multi-consumer deque.

• stc is a stack implementation using Treiber’s algorithm.

• linuxrwlocks is a read-write lock ported from the Linux kernel [20].

• twalock is a ticket lock augmented with a waiting array [13].

• fcombiner implements concurrent access to a set data structure using the flat combiner
access paradigm [16].

• mutex is a mutual exclusive lock.

B.3 Synthetic Benchmarks
• reorder2: 2 threads write to 2 variables, while 2 other threads read from them.

• fib-bench: 2 threads compute the Fibonacci sequence using two shared variables.

• szymanski: is an implementation of Szymański’s Mutual Exclusion Algorithm [39].

• dekker-bnd: is an implementation of Dekker’s Mutual Exclusion algorithm.

• indexer: N threads modify a shared array.

• ainc: N threads increment a shared variable by 1.

• casrot: N threads compare-and-swap a shared variable, rotating its value.

• casw: N threads compare-and-swap a shared variable, and write a new value to it.

B.4 Load Buffering Benchmarks
• LBn+ctrl: N threads with a load buffering pattern spanning through all threads. All

threads except the first one have a real control dependency between the load and the
store.

• LBn+data: N threads with a load buffering pattern spanning through all threads. All
threads except the first one have a real data dependency between the load and the store.

• LBn: N threads with a load buffering pattern spanning through all threads.

• LBn-pairs: N threads divided in pairs. Each pair reads/writes from/to a unique pair of
variables forming a load buffering race.

52

Bibliography

[1] Parosh Abdulla et al. “Optimal dynamic partial order reduction”. In: SIGPLAN Not. 49.1
(Jan. 2014), pp. 373–384. doi: 10.1145/2578855.2535845.

[2] Parosh Aziz Abdulla et al. “Optimal stateless model checking under the release-acquire se-
mantics”. In: Proc. ACM Program. Lang. 2.OOPSLA (Oct. 2018). doi: 10.1145/3276505.

[3] Parosh Aziz Abdulla et al. “Stateless Model Checking for POWER”. In: Computer Aided
Verification. Ed. by Swarat Chaudhuri and Azadeh Farzan. Cham: Springer International
Publishing, 2016, pp. 134–156. doi: 10.1007/978-3-319-41540-6_8.

[4] Parosh Aziz Abdulla et al. “Stateless Model Checking for TSO and PSO”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Christel Baier and
Cesare Tinelli. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 353–367. doi:
10.48550/arXiv.1501.02069.

[5] Elvira Albert et al. “Constrained Dynamic Partial Order Reduction”. In: Computer Aided
Verification. Ed. by Hana Chockler and Georg Weissenbacher. Cham: Springer Interna-
tional Publishing, 2018, pp. 392–410. doi: 10.1007/978-3-319-96142-2_24.

[6] Mark Batty et al. “Mathematizing C++ concurrency”. In: Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’11. Austin, Texas, USA: Association for Computing Machinery, 2011, pp. 55–66. doi:
10.1145/1926385.1926394.

[7] John Bender and Jens Palsberg. “A formalization of Java’s concurrent access modes”. In:
Proc. ACM Program. Lang. 3.OOPSLA (Oct. 2019). doi: 10.1145/3360568.

[8] Hans-J. Boehm and Brian Demsky. “Outlawing ghosts: avoiding out-of-thin-air results”.
In: Proceedings of the Workshop on Memory Systems Performance and Correctness.
MSPC ’14. Edinburgh, United Kingdom: Association for Computing Machinery, 2014.
doi: 10.1145/2618128.2618134.

[9] Soham Chakraborty and Viktor Vafeiadis. “Grounding thin-air reads with event struc-
tures”. In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019). doi: 10.1145/3290383.

[10] Soham Chakraborty and Viktor Vafeiadis. “Grounding thin-air reads with event struc-
tures”. In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019). doi: 10.1145/3290383.

[11] Marek Chalupa et al. “Data-centric dynamic partial order reduction”. In: Proc. ACM
Program. Lang. 2.POPL (Dec. 2017). doi: 10.1145/3158119.

[12] David Chase and Yossi Lev. “Dynamic circular work-stealing deque”. In: Proceedings of
the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures.
SPAA ’05. Las Vegas, Nevada, USA: Association for Computing Machinery, 2005, pp. 21–
28. doi: 10.1145/1073970.1073974.

[13] Dave Dice and Alex Kogan. “TWA – Ticket Locks Augmented with a Waiting Array”. In:
Euro-Par 2019: Parallel Processing. Ed. by Ramin Yahyapour. Cham: Springer Interna-
tional Publishing, 2019, pp. 334–345. doi: 10.1007/978-3-030-29400-7_24.

[14] Cormac Flanagan and Patrice Godefroid. “Dynamic partial-order reduction for model
checking software”. In: SIGPLAN Not. 40.1 (Jan. 2005), pp. 110–121. doi: 10.1145/
1047659.1040315.

53

https://doi.org/10.1145/2578855.2535845
https://doi.org/10.1145/3276505
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.48550/arXiv.1501.02069
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3360568
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3158119
https://doi.org/10.1145/1073970.1073974
https://doi.org/10.1007/978-3-030-29400-7_24
https://doi.org/10.1145/1047659.1040315
https://doi.org/10.1145/1047659.1040315

[15] Patrice Godefroid. “Model checking for programming languages using VeriSoft”. In: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’97. Paris, France: Association for Computing Machinery, 1997,
pp. 174–186. doi: 10.1145/263699.263717.

[16] Danny Hendler et al. “Flat combining and the synchronization-parallelism tradeoff”. In:
Proceedings of the Twenty-Second Annual ACM Symposium on Parallelism in Algorithms
and Architectures. SPAA ’10. Thira, Santorini, Greece: Association for Computing Ma-
chinery, 2010, pp. 355–364. doi: 10.1145/1810479.1810540.

[17] Jeff Huang. “Stateless model checking concurrent programs with maximal causality reduc-
tion”. In: SIGPLAN Not. 50.6 (June 2015), pp. 165–174. doi: 10.1145/2813885.2737975.

[18] Shiyou Huang and Jeff Huang. “Maximal causality reduction for TSO and PSO”. In:
SIGPLAN Not. 51.10 (Oct. 2016), pp. 447–461. doi: 10.1145/3022671.2984025.

[19] Jeehoon Kang et al. “A promising semantics for relaxed-memory concurrency”. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages. POPL ’17. Paris, France: Association for Computing Machinery, 2017, pp. 175–
189. doi: 10.1145/3009837.3009850.

[20] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. “Model checking for weakly
consistent libraries”. In: Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI 2019. Phoenix, AZ, USA: Association
for Computing Machinery, 2019, pp. 96–110. doi: 10.1145/3314221.3314609.

[21] Michalis Kokologiannakis and Viktor Vafeiadis. “GenMC: A Model Checker for Weak
Memory Models”. In: Computer Aided Verification. Ed. by Alexandra Silva and K. Rustan
M. Leino. Cham: Springer International Publishing, 2021, pp. 427–440. doi: 10.1007/
978-3-030-81685-8_20.

[22] Michalis Kokologiannakis and Viktor Vafeiadis. “HMC: Model Checking for Hardware
Memory Models”. In: Proceedings of the Twenty-Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. ASPLOS ’20.
Lausanne, Switzerland: Association for Computing Machinery, 2020, pp. 1157–1171. doi:
10.1145/3373376.3378480.

[23] Michalis Kokologiannakis et al. “Effective stateless model checking for C/C++ concur-
rency”. In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017). doi: 10.1145/3158105.

[24] Ori Lahav et al. “Repairing sequential consistency in C/C++11”. In: Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation.
PLDI 2017. Barcelona, Spain: Association for Computing Machinery, 2017, pp. 618–632.
doi: 10.1145/3062341.3062352.

[25] Lamport. “How to Make a Multiprocessor Computer That Correctly Executes Multipro-
cess Programs”. In: IEEE Transactions on Computers C-28.9 (1979), pp. 690–691. doi:
10.1109/TC.1979.1675439.

[26] Sung-Hwan Lee et al. “Promising 2.0: global optimizations in relaxed memory concur-
rency”. In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI 2020. London, UK: Association for Computing Ma-
chinery, 2020, pp. 362–376. doi: 10.1145/3385412.3386010.

[27] Jeremy Manson, William Pugh, and Sarita V. Adve. “The Java memory model”. In:
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’05. Long Beach, California, USA: Association for Computing
Machinery, 2005, pp. 378–391. doi: 10.1145/1040305.1040336.

[28] Evgenii Moiseenko, Michalis Kokologiannakis, and Viktor Vafeiadis. “Model checking for
a multi-execution memory model”. In: Proc. ACM Program. Lang. 6.OOPSLA2 (Oct.
2022). doi: 10.1145/3563315.

54

https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/1810479.1810540
https://doi.org/10.1145/2813885.2737975
https://doi.org/10.1145/3022671.2984025
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/3563315

[29] Evgenii Moiseenko et al. “Reconciling Event Structures with Modern Multiprocessors”.
In: 34th European Conference on Object-Oriented Programming (ECOOP 2020). Ed. by
Robert Hirschfeld and Tobias Pape. Vol. 166. Leibniz International Proceedings in Infor-
matics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020, 5:1–5:26. doi: 10.4230/LIPIcs.ECOOP.2020.5.

[30] Brian Norris and Brian Demsky. “CDSchecker: checking concurrent data structures writ-
ten with C/C++ atomics”. In: SIGPLAN Not. 48.10 (Oct. 2013), pp. 131–150. doi:
10.1145/2544173.2509514.

[31] Peizhao Ou and Brian Demsky. “Towards understanding the costs of avoiding out-of-
thin-air results”. In: Proc. ACM Program. Lang. 2.OOPSLA (Oct. 2018). doi: 10.1145/
3276506.

[32] Scott Owens, Susmit Sarkar, and Peter Sewell. “A Better x86 Memory Model: x86-TSO”.
In: Theorem Proving in Higher Order Logics. Ed. by Stefan Berghofer et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 391–407. doi: 10.1007/978-3-642-
03359-9_27.

[33] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. “Bridging the gap between program-
ming languages and hardware weak memory models”. In: Proc. ACM Program. Lang.
3.POPL (Jan. 2019). doi: 10.1145/3290382.

[34] Anton Podkopaev et al. “JMM-Like Relaxed Memory Model”. In review. 2024.
[35] William Pugh. “Fixing the Java memory model”. In: Proceedings of the ACM 1999 Con-

ference on Java Grande. JAVA ’99. San Francisco, California, USA: Association for Com-
puting Machinery, 1999, pp. 89–98. doi: 10.1145/304065.304106.

[36] Christopher Pulte et al. “Promising-ARM/RISC-V: a simpler and faster operational con-
currency model”. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI 2019. Phoenix, AZ, USA: Association for
Computing Machinery, 2019, pp. 1–15. doi: 10.1145/3314221.3314624.

[37] Christopher Pulte et al. “Simplifying ARM concurrency: multicopy-atomic axiomatic and
operational models for ARMv8”. In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017). doi:
10.1145/3158107.

[38] Jaroslav Ševčík and David Aspinall. “On Validity of Program Transformations in the Java
Memory Model”. In: ECOOP 2008 – Object-Oriented Programming. Ed. by Jan Vitek.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 27–51. doi: 10.1007/978-3-
540-70592-5_3.

[39] B. K. Szymanski. “A simple solution to Lamport’s concurrent programming problem with
linear wait”. In: Proceedings of the 2nd International Conference on Supercomputing. ICS
’88. St. Malo, France: Association for Computing Machinery, 1988, pp. 621–626. doi:
10.1145/55364.55425.

[40] Viktor Vafeiadis and Chinmay Narayan. “Relaxed separation logic: a program logic for
C11 concurrency”. In: SIGPLAN Not. 48.10 (Oct. 2013), pp. 867–884. doi: 10.1145/
2544173.2509532.

[41] Viktor Vafeiadis et al. “Common Compiler Optimisations are Invalid in the C11 Memory
Model and what we can do about it”. In: SIGPLAN Not. 50.1 (Jan. 2015), pp. 209–220.
doi: 10.1145/2775051.2676995.

[42] Mark N. Wegman and F. Kenneth Zadeck. “Constant propagation with conditional
branches”. In: ACM Trans. Program. Lang. Syst. 13.2 (Apr. 1991), pp. 181–210. doi:
10.1145/103135.103136.

[43] Glynn Winskel. “Event structures”. In: Petri Nets: Applications and Relationships to
Other Models of Concurrency. Ed. by W. Brauer, W. Reisig, and G. Rozenberg. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1987, pp. 325–392. doi: 10.1007/3-540-17906-
2_31.

55

https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
https://doi.org/10.1145/2544173.2509514
https://doi.org/10.1145/3276506
https://doi.org/10.1145/3276506
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3290382
https://doi.org/10.1145/304065.304106
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3158107
https://doi.org/10.1007/978-3-540-70592-5_3
https://doi.org/10.1007/978-3-540-70592-5_3
https://doi.org/10.1145/55364.55425
https://doi.org/10.1145/2544173.2509532
https://doi.org/10.1145/2544173.2509532
https://doi.org/10.1145/2775051.2676995
https://doi.org/10.1145/103135.103136
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31

[44] Naling Zhang, Markus Kusano, and Chao Wang. “Dynamic partial order reduction for
relaxed memory models”. In: SIGPLAN Not. 50.6 (June 2015), pp. 250–259. doi: 10.
1145/2813885.2737956.

56

https://doi.org/10.1145/2813885.2737956
https://doi.org/10.1145/2813885.2737956

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Sequential Consistency
	The C++ Memory Model
	Execution Graphs
	Load Buffering Data Races

	GenMC-XMM's parent: GenMC
	Overview
	Step-by-Step Example
	Assumptions

	GenMC-XMM's sibling: WMC
	Algorithm Outline
	Step-by-Step Example
	Certification Locality
	Results

	The XMM Memory Model
	Execution Step
	Re-Execution Step
	Step-by-Step Example
	Stable Uncommitted Reads Constraint
	Load Buffering Race Freedom
	Supported Transformations

	The GenMC-XMM Model Checker
	Algorithm Outline
	Step-by-Step Example
	Revisiting Reads Outside the Cycle
	Revisiting Reads in the LB Racy Read Thread
	bottom read reads-from matching
	Consistency
	Duplicates
	Stable Uncommitted Reads
	Embedded Sub-Graph Check
	Soundness of GenMC-XMM
	Limitations: Completeness and Optimality

	Evaluation
	Testing the completeness of GenMC-XMM [RQ1]
	Comparing GenMC-XMM and WMC on litmus tests [RQ2]
	Evaluating GenMC-XMM on data-structure benchmarks [RQ3]
	Evaluating GenMC-XMM on synthetic benchmarks [RQ4]
	Evaluating the number of duplicate graphs explored by GenMC-XMM [RQ5]

	Related Work
	Language Memory Models
	Model Checkers

	Conclusion
	Appendices
	Evaluation Reproduction Instructions
	Benchmark descriptions
	Litmus tests
	Data Structure Benchmarks
	Synthetic Benchmarks
	Load Buffering Benchmarks

