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A B S T R A C T

Socially Assistive Robots (SARs) are increasingly used in dementia and elderly care. In order to provide
effective assistance, SARs need to be personalized to individual patients and account for stimulating their
divergent thinking in creative ways. Rule-based fuzzy logic systems provide effective methods for automated
decision-making of SARs. However, expanding and modifying the rules of fuzzy logic systems to account for
the evolving needs, preferences, and medical conditions of patients can be tedious and costly. In this paper, we
introduce EFS4SAR, a novel Evolving Fuzzy logic System for Socially Assistive Robots that supports autonomous
evolution of the fuzzy rules that steer the behavior of the SAR. EFS4SAR combines traditional rule-based fuzzy
logic systems with evolutionary algorithms, which model the process of evolution in nature and have shown
to result in creative behaviors. We evaluate EFS4SAR via computer simulations on both synthetic and real-
world data. The results show that the fuzzy rules evolved over time are not only personalized with respect to
the personal preferences and therapeutic needs of the patients, but they also meet the following criteria for
creativity of SARs: originality and effectiveness of the therapeutic tasks proposed to the patients. Compared
to existing evolving fuzzy systems, EFS4SAR achieves similar effectiveness with higher degree of originality.
. Introduction

Socially Assistive Robots (SARs) (Van Wynsberghe, 2016; Broekens
t al., 2009; Syriopoulou-Delli and Gkiolnta, 2022) are growingly used
o help implementing non-pharmaceutical therapies in dementia care,
ith positive effects on the cognitive, psychological, and global func-

ioning of patients (Van Mierlo et al., 2010; Sharif et al., 2018; Rebok
t al., 2014).

To ensure the effectiveness of the implemented therapies, the be-
avior of SARs must be personalized to individual patients (Ascensão
nd Jamshidnejad, 2022; Abdi et al., 2018; Sabanovic et al., 2013).
ersonalization can take place either during individual therapeutic ses-
ions (short-term personalization (Tsiakas et al., 2018)) via adaptation
f the difficulty and type of tasks proposed to patients based on their
apabilities and personality (Syriopoulou-Delli and Gkiolnta, 2022;
bdi et al., 2018; Sabanovic et al., 2013; Ramachandran et al., 2018),
r over the course of multiple sessions (long-term personalization), by
xplicitly accounting for the (evolving) cultural and social background
f patients (Van Mierlo et al., 2010; Epp, 2003) and by regularly and
reatively stimulating patients to explore new activities so to preserve
heir divergent thinking and cognitive capacities (Palmiero et al., 2012;
iberati et al., 2012; Hannemann, 2006).

While a large corpus of solutions for short-term personalization of
ARs exists in the literature, only few works report on long-term per-
onalization and decision-making of SARs (Moro et al., 2018; Umbrico

∗ Corresponding author.
E-mail addresses: d.dellanna@tudelft.nl (D. Dell’Anna), a.jamshidnejad@tudelft.nl (A. Jamshidnejad).

et al., 2020; Rossi et al., 2017). Existing works are either tailored
to specific tasks (Moro et al., 2018), or they address general user
groups (e.g., extrovert or introvert patients (Sabanovic et al., 2013)).
Clabaugh et al. (2019), for instance, propose a hierarchical framework
for human–robot learning tailored for specific tasks for children with
autism spectrum disorder. Tapus et al. (2008), use the degree of extro-
version of the patients to adjust the volume and pitch of the voice, the
distance from the patients, and the speed of movements of a SAR.

Fuzzy logic and Fuzzy Inference Systems (FISs) (Bai and Wang,
2006) have identified as appropriate tools for encoding and leveraging
the necessary cultural, social, and medical knowledge in the automated
decision-making of SARs (Bruno et al., 2017; Mobahi and Ansari, 2003;
Vitiello et al., 2017). Indeed, in socially assistive contexts, the available
and relevant knowledge (e.g., the preference, needs, and background
of a patient) is often expressed via (fuzzy and ambiguous) linguistic
terms. SARs that operate based on fuzzy logic allow the domain experts
(e.g., therapists or caregivers) to express their knowledge via linguistic
IF-THEN fuzzy rules for the robot, and to easily explain the resulting
behavior of the robot (Garibaldi, 2019). Furthermore, FISs support
the representation of social and cultural aspects that are essential for
effective culture-aware robots (Bruno et al., 2017).

Despite their expressiveness and adequacy, approaches based on
fuzzy logic generally require a tedious process to expand and adapt
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the rules to new cases and to the evolving needs of the patients (Moro
et al., 2018). For this reason, more dynamic learning-based approaches,
e.g., based on Interactive Reinforcement Learning (Tsiakas et al., 2018)
or supervised learning (Tapus et al., 2009) have generally been pre-
ferred to rule-based ones in the literature for the decision-making of
SARs (Moro et al., 2018; Hemminghaus and Kopp, 2017; Liu et al.,
2014). Learning-based approaches, however, suffer from a lack of
expressiveness when it comes to representing social, verbal, or cultural
aspects, which are crucial for long-term personalization and decision-
making of SARs (Bruno et al., 2017).

In the last decade, numerous solutions for automated evolution of
fuzzy rule-based systems have emerged (Skrjanc et al., 2019; Lughofer,
2015). Evolving Fuzzy Systems (EFSs) are powerful tools capable of
self-adapting and self-developing in order to reflect the dynamical
changes in the input data. EFSs autonomously evolve the fuzzy rules
of a fuzzy system by identifying and refining the antecedent and con-
sequent parts of the rules, and by dynamically adapting the parameters
of the membership functions characterizing the linguistic terms in the
rules. The evolution of the rules is based, for the antecedents, on
the density of the data (Angelov and Filev, 2004, 2005), or the dis-
tance, error, and statistical contribution of new data w.r.t. the current
model (Lughofer, 2008; Rong et al., 2006; Pratama et al., 2014b), and,
for the consequent, on the fuzzily weighted recursive least squares
and maximum correntropy criterion (Brüggemann and Bitmead, 2021;
Angelov and Filev, 2004; Bao et al., 2018) approaches. The numer-
ous (neuro-) fuzzy evolving systems in the literature include, but are
not limited to, DENFIS (Kasabov and Song, 2002), eTS (Angelov and
Filev, 2004), SAFIS (Rong et al., 2006), FLEXFIS (Lughofer, 2008),
PANFIS (Pratama et al., 2014a), GENEFIS (Pratama et al., 2014b),
McIT2FIS (Subramanian et al., 2014), SAFL (Gu and Shen, 2021),
MEEFIS (Gu, 2021), CEFNS (Bao et al., 2018), and PENsemble (Pratama
et al., 2018).

EFSs learn from data in a one-pass fashion, i.e., from data sam-
ples that arrive as a stream, and quickly react to changes in the
patterns in the input data (Lughofer and Angelov, 2011). This per-
mits EFSs to continuously self-improve their performance, and makes
them particularly effective when dealing with nonlinear, non-stationary
problems (Skrjanc et al., 2019). However, this real-time reactiveness
can also lead to poor global predictions and to the so-called ‘‘unlearning
effect’’ (Gu et al., 2021). To overcome this limitation, the more recent
literature employs evolutionary algorithms as a mechanism underlying
the evolution of the fuzzy systems (Skrjanc et al., 2019; Hidalgo et al.,
2020). Evolutionary algorithms (Mitchell, 1998), which include for
example Genetic Algorithms (GA) (Mitchell, 1998) and Particle Swarm
Optimization (PSO) algorithms (Kennedy and Eberhart, 1995), are
inspired by the process of natural selection, where the fittest individ-
uals in a population are naturally selected for reproduction and pro-
duce offspring of the next generation. Existing nature-inspired evolving
fuzzy systems include for example PSO-ALMMo (Gu et al., 2021), a
PSO-based enhancement of the original autonomous learning multi-
ple model (ALMMo) fuzzy system (Angelov et al., 2018), ANFIS-GA
and ANFIS-PSO (Moayedi et al., 2020). Furthermore, Multi-Objective
Evolutionary Fuzzy Systems (MOEFSs) (Fazzolari et al., 2013) such as
D-MOFARC (Fazzolari et al., 2014) and SKMOEFS-MPAES_RCS (Gallo
et al., 2020) are Multi-Objective Evolutionary Algorithms (MOEAs) that
concurrently optimize the two conflicting objectives of accuracy (to
be maximized) and explainability (to be maximized by minimizing the
number of rules learned) of the EFS.

EFSs are successfully applied to a wide variety of real-world appli-
cations related to system identification and streaming data processing
(e.g, classification and regression) (Giannoglou et al., 2015; Chua
and Tan, 2011; Lu, 2015; Sharkawy, 2010; Skrjanc et al., 2019) in
contexts such as volatility forecasting (Maciel et al., 2017), actions
recognition (Skrjanc et al., 2018), brain signals classification (de Jesús
Rubio et al., 2019), etc. However, up until now, EFSs have not been
applied for the control and long-term personalization of SARs.
2

In this paper, we introduce EFS4SAR (Evolving Fuzzy logic System
for Socially Assistive Robots), an evolving fuzzy rule-based system
specifically tailored for long-term personalization and creative decision-
making of SARs. EFS4SAR employs genetic algorithms to autonomously
evolve over time the rule base of a fuzzy system used for the decision-
making of a SAR during interactions with patients. EFS4SAR introduces
autonomous dynamics into traditional rule-based approaches for SARs,
which otherwise, despite their expressiveness and adequacy, are usu-
ally excluded from dynamic SAR applications due to their lack of
dynamicity. Evolutionary algorithms, furthermore, including genetic al-
gorithms, have been shown to stimulate creativity (Cluzel et al., 2012),
and to lead to surprising and original effective outcomes (Hornby
et al., 2006), which makes them in line with the standard definition
of creativity (Runco and Jaeger, 2012) – which states that creativity
requires both originality (i.e., novelty) and effectiveness (i.e., capability
to achieve satisfactory performance) (Lehman et al., 2020). By leverag-
ing genetic algorithms as a long-term evolutionary fuzzy mechanism,
therefore, EFS4SAR permits to creatively challenge the patients via
non-obvious and non-repetitive suggestions, while at the same time
optimizing the rules to be personalized to the particular patient.

Since the rules used for the decision-making of a SAR actively
nfluence the feedback of the patients, an effective EFS for SARs needs
o explicitly account, in evolving such rules, for the needs and prefer-
nces of the patients, for the differences between different therapeutic
pproaches, and for the need of diversity in the activities proposed
o patients. These aspects are not considered in existing EFSs, which
ainly focus on the (passive) task of approximating a target system and

re optimized to maximize the accuracy of the fuzzy rule base (e.g., for
lassification and regression tasks) (Skrjanc et al., 2019).

The following aspects distinguish EFS4SAR from existing EFSs and
haracterize the contributions of this paper.

1. EFS4SAR evolves the fuzzy rules that steer the behavior of SARs
so that the resulting therapeutic activities proposed to patients
are personalized, effective, and diverse. To evolve the fuzzy
rules, in addition to searching for fuzzy rules that accurately
characterize a target system (in our case, the patient), as com-
monly done by EFSs, EFS4SAR also considers the therapeutic
activities that have been performed in previous interactions in
order to account for diversity of the resulting fuzzy rules.

2. EFS4SAR uses a novel fitness function specifically tailored to the
SAR domain. This fitness function efficiently assesses new fuzzy
rules based on (i) a second fuzzy logic rule base encoding the
indications of the therapists as well as the available knowledge
about patients, (ii) the evolving needs and preferences of pa-
tients, encoded via a dynamic credit assignment approach, and
(iii) a diversity index that is important for cognitive stimulation
of patients.

3. In addition to EFS4SAR, this paper also presents a novel ap-
proach for integrating EFSs in the long-term decision-making
and personalization of SARs.

e report experimental results of EFS4SAR for both synthetic and real-
orld data (the latter consisting of 15 data sets of human preferences
bout daily activities, which are released in the supplementary material
f this paper (Dell’Anna and Jamshidnejad, 2022)), and we perform
omparisons with commonly used state-of-the-art EFSs. In addition to
tandard metrics (i.e., accuracy and number of rules), we also consider
etrics that are specifically related to two characteristic features of

reativity (i.e., originality and effectiveness of the therapeutic tasks
roposed to patients (Runco and Jaeger, 2012)). In doing so, we also
ssess for the first time the creativity of several state-of-the-art EFSs
ethods.

The rest of the paper is organized as follows. Section 2 describes
he proposed approaches. Section 3 focuses on the evolution of fuzzy
ules via evolutionary algorithms. In Sections 4.1 and 4.2, we evaluate
he developed approaches via the results obtained from computer
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Table 1
Frequently-used mathematical notations.
𝐻 Set of all possible therapies
𝑎∗𝑡 Therapeutic activity suggested by the SAR at time 𝑡
𝐻𝑎 Therapeutic category to which activity 𝑎 corresponds
𝐴 Set of all possible activities
c-FIS Creative Fuzzy Inference System
a-FIS Assessor Fuzzy Inference System
𝑉 Set of input variables of the c-FIS
𝑣𝑥 Number of possible realizations of variable 𝑥
𝐿 List of all possible realizations of the output variables of the c-FIS
𝐼𝑡 Vector of crisp inputs of the c-FIS at time 𝑡
𝑂𝑡 Vector of crisp outputs of the c-FIS at time 𝑡
𝑐𝑟,𝑡 Credit of c-rule 𝑟 at time 𝑡
𝑤ℎ Weight of therapy ℎ ∈ 𝐻
𝑒𝑎,𝑡 Average value of the outputs of the a-FIS at time 𝑡, given activity 𝑎
𝑅𝑡 Rule base of the c-FIS at time 𝑡
𝑠𝑟,𝑡 Firing strength of rule 𝑟 at time 𝑡
𝑅+

𝑡 Set of the rules in 𝑅𝑡 with 𝑠𝑟,𝑡 > 0
𝑓𝑡,𝑎,𝐼𝑡 Feedback received by the SAR from the patient about the activity 𝑎

suggested at time 𝑡 given 𝐼𝑡
𝑞𝑡 Payoff computed for the feedback 𝑓𝑡,𝑎,𝐼𝑡
𝛽 Learning rate for the credit of the rules
𝜒𝑟 Chromosome encoding c-rule 𝑟
𝐹𝑟,𝑡 Fitness of c-rule 𝑟 at time 𝑡
𝑅max Maximum size of the rule base of the c-FIS
𝜂 Repetition cost
𝑧𝑎,𝑛 Number of times the activity 𝑎 was suggested in the last 𝑛 time

steps
𝑁 Number of samples required by the fitness function
𝑃 List of populations of chromosomes
𝑝∗ Best population in 𝑃
𝛾 Weight in [0, 1] given to 𝑑𝑝 for the evaluation of a population 𝑝;

1 − 𝛾 is the weight given to 𝐹 𝑝
𝑑𝑝 Diversity index of population 𝑝
𝐹 𝑝 Average fitness of chromosomes in population 𝑝, normalized in [0, 1]
𝑔𝑝,𝑆 Gini-Simpson index of population 𝑝 w.r.t. a set of species

𝑆 ∈ {𝐻,𝐴}
𝑛𝑝,𝑠 Number of individuals in 𝑝 belonging to a species 𝑠 ∈ 𝑆
𝜅 Weight in [0, 1] given to 𝑔𝑝,𝐴 in the calculation of 𝑑𝑝; 1 − 𝜅 is the

weight given to 𝑔𝑝,𝐻

simulations on synthetic and real-world data. Finally, in Section 5 we
conclude the paper and propose topics for future research.

In the rest of the paper, we follow the mathematical notations given
in Table 1.

2. An integrated AI-based approach for creative personalized So-
cially Assistive Robots

In this section, we describe the approach that we propose for
creative long-term personalization and decision-making of SARs (see
Figs. 1 and 2). We distinguish three phases, described in details below,
which are meant to, respectively, (i) provide the SAR with the available
knowledge about the personal preferences, physical and mental status,
and needs of the patient, and about the therapeutic interventions
relevant for the patient, (ii) steer the behavior of the SAR during the
interactions with the patients, (iii) use the knowledge acquired during
the interactions to evolve the SAR’s fuzzy rules via EFS4SAR.

2.1. Human set-up phase

During the human set-up phase, the expert (e.g., the therapist or
caregiver) performs the following three tasks: First, the expert decides
which therapeutic categories should be considered during the interac-
tions with a particular patient, and associates weights to the therapeutic
categories in order to express the priorities for the SAR. In the example
given in Fig. 1, among the five therapeutic categories, cognitive stimu-
lation (Jang et al., 2015), music/video therapy (Woods et al., 2018) and
multimodal exercise program (Vaughan et al., 2014; Trautwein et al.,
2017) are chosen (indicated by the colored boxes), while the others
 a

3

(reminiscence therapy (Woods et al., 2018), and CBT (Anon, 0000)) are
excluded.

Secondly, the expert defines an initial set of c-rules (from creative
ules, since these are the rules that will evolve over time as per Sec-
ion 3) based on the available knowledge from the patients, including
he existing norms and guidelines (e.g., based on Anon, 0000) and
ommon practices in accepted therapeutic interventions. C-rules are
uzzy IF-THEN rules that constitute the rule base of the creative fuzzy
nference system c-FIS which is used to steer the behavior of the SAR
uring interactions with patients.

The premise of a c-rule is a conjunction of terms, each of them
ssigning a linguistic value to a linguistic variable from the set of
ossible input variables 𝑉 . The consequent is a single term assigning a
inguistic value to one of the possible outputs of the SAR, i.e., to one of

the activities that the SAR can undertake with the patients (e.g., playing
a difficult tic-tac-toe game).

The c-rules relate relevant information to activities that should
be suggested and performed by the SAR. Relevant information is de-
fined, during the set-up phase, by linguistic variables and membership
functions that can be interpreted by the fuzzy inference system, and
includes environmental factors (e.g., time of the day, weather con-
ditions, etc.), personal preferences, personal physical conditions, and
personal mental conditions of the patients (i.e., four factors relevant
for effective personalization of non-pharmaceutical interventions in
dementia care (Van Mierlo et al., 2010)). An example of a c-rule is
‘‘IF temperature is moderate AND boredom is very high THEN take a long
walk’’.

A c-rule 𝑟 is assigned a credit 𝑐𝑟, which is a numerical value that
expresses the importance and expected effectiveness of 𝑟. The credits of
the initial rules are tuned by the expert to reflect the available knowl-
edge, and they will be automatically updated by the SAR over time via
EFS4SAR based on the experience acquired during the interactions, to
provide long-term personalization of the SAR’s suggestions to patients.

Finally, the expert defines a set of fuzzy a-rules (from assessor rules),
hich characterize the preferences of patients (e.g., the patient likes to
ave a long walk when it’s sunny), and encode personalized indications
iven by the caregivers (e.g., the patient should not have long walks) and
he available medical knowledge concerning the different therapeutic
ategories. In addition to the variables that can be used for the inputs
f c-rules, the input of a-rules also includes the activities that constitute
he output of c-rules. The consequent of a-rules assigns linguistic values
o feedback measures, i.e., variables that represent an evaluation of the
nteraction with the patient. These measures constitute the feedback
hat the patients may explicitly provide to the SAR during and after an
nteraction or that may be detected by the SAR. Examples of these mea-
ures that are relevant for dementia care (Tsiakas et al., 2018) include
he level of boredom and agitation of the patient during the interac-
ions, any problems for falling asleep, the emotions expressed during
nteractions, and the level of engagement of the patient (Marti et al.,
006). Such feedback can be both explicit (e.g., a verbal statement, or
ests and questionnaires (Anon, 0000)) and implicit (e.g., expressed and
easured by means of the tone of the voice, the level of participation,

acial expressions, eye contact (Webb et al., 2020)). An example of an
-rule is ‘‘IF boredom is very high AND game activity is difficult THEN
articipation is very low’’.

The a-rules compose the rule base of the a-FIS, which is used during
he interactions with patients to predict the expected outcome of an
ctivity and help selecting the activities, and to define the fitness
unction that guides the evolution of the c-rules so that the new rules,
hile selected in a creative way, are also in line with the patient’s
references, physical and mental health condition, etc.

.2. Interaction phase

We define an interaction as one continuous session during which
atients and the SAR interact by performing joint activities for a given
mount of time (Marti et al., 2006; Tapus et al., 2009).
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Fig. 1. Overview of the proposed framework. The colored input boxes indicate four of factors relevant in dementia care and that can be used as input for the FISs. Purple boxes
indicate possible activities of the robot, and dark blue ones indicate feedback measures.
p
F

Fig. 2. Creative personalization phase.

During an interaction, the c-FIS determines the candidate activities
that suit the current inputs to the c-FIS. Suppose that for the input
vector 𝐼𝑡 received by the SAR at time 𝑡, two c-rules are activated,
nd the c-FIS outputs two suggested activities: to take a 40 min walk
r to play a tic-tac-toe game with the robot with the difficulty level 3. The
uggested activities1 go through a selection block (Activity Selector in
ig. 1), which selects the activity 𝑎∗𝑡 from the set of possible activities
outputs of the c-FIS) 𝑂𝑡 suggested for the current time 𝑡 that maximizes
combination of three factors, according to the following relationship:

∗
𝑡 = arg max

𝑎∈𝑂𝑡

(

𝑒𝑎,𝑡 ⋅𝑤𝐻𝑎
⋅

∑

𝑟𝑎∈𝑅+
𝑡
𝑐𝑟𝑎 ,𝑡

|𝑅+
𝑡 |

)

(1)

n (1), 𝑒𝑎,𝑡 is the average value of the outputs of the a-FIS for activity 𝑎
t time 𝑡, which we call expected feedback for the input given to the
-FIS at time 𝑡 and a candidate activity 𝑎; 𝑤𝐻𝑎

indicates the weight
ssociated to the therapeutic category to which activity 𝑎 corresponds;
nd the last term is the mean of the credits of all c-rules that contributed
i.e., with a non-zero firing strength) to the suggestion of activity 𝑎
t time 𝑡. Note that | ⋅ | is used for the cardinality of a set. In other
ords, the activity selector determines the optimal activity to execute
y considering the preferences and needs of the patients based on
he a-rules, the importance of different therapeutic categories, and
he experience (encoded in the credits of the rules) acquired during
revious interactions with the patient.

Once an activity is selected, the SAR suggests it to the patient,
nd gives assistance during the task. The process of suggesting and
erforming an activity with the patient is called a step of an interaction.
uring the course of an interaction, the SAR receives implicit or explicit

eedback (called realized feedback) from the patient about the proposed
ctivities. The realized feedback is used during the interaction to give
ew information to the c-rules and a-rules for the next steps of the
ame interaction, and to personalize the c-rules for future interactions

1 Technically, the crisp output of activity-related variables walk and play-
tic-tac-toe will have values 40 and 3, belonging to the respective universes of
iscourse of the variables. All other outputs of the c-FIS will have a default
alue outside their universe of discourse (e.g., a value -1, if the universe of
iscourse of the variable is [𝑥 > −1,…]), indicating that no suggestion is given
or a certain activity output of the c-FIS.
4

(i.e., long-term personalization). For this reason, an interactions memory
stores tuples ⟨𝐼𝑡, 𝑎∗𝑡 , 𝑒𝑎∗𝑡 , 𝑓𝑡,𝑎∗𝑡 ,𝐼𝑡 , {𝑠𝑟,𝑡 ∣ 𝑟 ∈ 𝑅𝑡}⟩, with 𝑎∗𝑡 the activity
erformed by the SAR when the input vector 𝐼𝑡 was given to the c-
IS and to the a-FIS at time 𝑡; 𝑒𝑎∗𝑡 the expected feedback for activity

𝑎∗𝑡 at time 𝑡; 𝑓𝑡,𝑎∗𝑡 ,𝐼𝑡 the realized feedback after executing activity 𝑎∗𝑡 ;
{𝑠𝑟,𝑡 ∣ 𝑟 ∈ 𝑅𝑡} the set of firing strengths of the rules in the c-FIS at time
𝑡.

2.3. Creative personalization phase

In the creative personalization phase, the SAR leverages the knowl-
edge stored in the interactions memory to evolve the c-rules. The evo-
lution of the c-rules is performed in between different interactions (or
sessions) by the EFS4SAR algorithm, which personalizes the activities
that will be proposed to the patients while maintaining an adequate
degree of variability, therefore making the suggestions of the SAR
‘‘creative’’. At the end of the personalization phase, the fittest c-rules
found with the evolutionary algorithm replace the current ones in the
c-FIS and are used to steer the behavior of the SAR during the next
interactions. In Section 3 we describe in detail EFS4SAR.

3. EFS4SAR: Evolving Fuzzy logic System for Socially Assistive
Robots

In this section we discuss EFS4SAR: the proposed method for evolv-
ing the fuzzy rules that determine the possible behaviors of the SAR
(i.e., the c-rules). EFS4SAR adopts a genetic algorithm (Mitchell, 1998)
that relies on the credits that are assigned to the rules and are updated
over time.

Next, we first provide details about the update procedure of the
credits of the rules, then after briefly illustrating how we encode a c-
rule with a binary chromosome, we discuss our definition of fitness of
a chromosome representing a c-rule, and finally the procedure for the
evolution of the c-rules via genetic algorithms.

3.1. Update of the credits of C-rules

The update rule (2) is applied, before evolving the c-rules, for all c-
rules that fired in the last interaction, as are encoded in the interactions
memory. Let 𝑅+

𝑡 be the subset of c-rules of the c-FIS with a non-zero
firing strength at time 𝑡, and 𝑞𝑡 the payoff (i.e., a negative value if the
activity proposed at time 𝑡 by the SAR led to poor realized feedback,
a positive value otherwise). The update of the credits of the rules is
inspired by the Holland Classifier Systems (Geyer-Schulz, 1995), and is
given by

𝑐𝑟,𝑡+1 ← 𝑐𝑟,𝑡 + 𝛽 ⋅ 𝑞𝑡 ⋅
𝑠𝑟,𝑡

∑

𝑟′∈𝑅𝑡
𝑠𝑟′ ,𝑡

(2)

In (2), 𝑠𝑟,𝑡 denotes the firing strength of rule 𝑟 at time 𝑡, and
𝛽 ∈ [0, 1] is a constant value representing the learning rate. The credit
of a rule, therefore, is updated to reflect the response of the patients to
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the proposed activity, and the update is proportional to the contribution
that the rule had (via its relative firing strength) to the decision taken
by the SAR at time 𝑡.

3.2. Fuzzy C-rules as binary chromosomes

We follow the Michigan approach (Valenzuela-Rendón, 1991) for the
fuzzy rules encoding: each individual in the population of the genetic
algorithm represents a c-rule and the population of one generation
represents a candidate rule base of the c-FIS. Instead of the alternative
Pittsburg approaches (Thrift, 1991), where one individual represents
the entire rule base, we choose this approach because (i) computation-
ally efficient (Koshiyama et al., 2019), and (ii) it allows to easily refine
over time the fitness of individual rules based on the feedback received
when applying those rules during the interactions with patients.

Specifically, chromosomes in our approach are binary strings that
represent c-rules with a variable number of inputs and one output.
We consider the case where the membership functions of the linguistic
variables used for the inputs and outputs of the fuzzy rules are time-
invariant. We follow a standard encoding: a chromosome 𝜒𝑟 encoding
c-rule 𝑟 is a binary string made of |𝜒𝑟| = (

∑

𝑖∈𝑉 ⌈𝑙𝑜𝑔2(𝑣𝑖 + 1)⌉) +
⌈𝑙𝑜𝑔2(

∑

𝑎∈𝐴 𝑣𝑎)⌉ bits (genes). The first ∑

𝑖∈𝑉 ⌈𝑙𝑜𝑔2(𝑣𝑖 + 1)⌉ genes char-
acterize the premise of the rule, which can be composed by at most
|𝑉 | terms (corresponding to the number of possible input variables),
and 𝑣𝑥 is the number of possible realizations (represented by fuzzy
membership functions) of a linguistic variable 𝑥. We add an additional
disabled value to be used when the input variable should not be part of
the premise of the rule encoded by the chromosome, thereby supporting
rules of different size. The remaining ⌈𝑙𝑜𝑔2(

∑

𝑎∈𝐴 𝑣𝑎)⌉ genes characterize
the consequent of the rule. Here, since we consider rules with only one
output (activity), we encode the index of a linguistic value from the
ordered list 𝐿 of all possible realizations of all output variables (activ-
ities) for the c-rules, so that, given the order of 𝐿, the encoded index
indicates both the linguistic variable and its membership function.

3.3. Fitness of a Fuzzy C-rule

Let 𝜒𝑟 be a chromosome encoding a fuzzy rule 𝑟 as per Section 3.2
and let 𝑉 be the set of all possible input variables for the c-FIS and
𝑎 ∈ 𝐴 the activity corresponding to the output of rule 𝑟. We compute
the fitness 𝐹𝑟,𝑡 of a rule 𝑟 at time 𝑡 by means of four different factors,
using:

𝐹𝑟,𝑡 = 𝑐𝑟,𝑡 ⋅𝑤𝐻𝑎
⋅ 𝜔𝑟 ⋅

1
𝜂𝑧𝑎,𝑛

(3)

In (3), 𝑐𝑟,𝑡 is the credit of c-rule 𝑟 at time 𝑡 (if the rule was never
considered before, by default 𝑐𝑟,𝑡 = 1), 𝑤𝐻𝑎

is the weight of the therapy
to which activity 𝑎 corresponds, 𝑧𝑎,𝑛 is the number of times the activity
𝑎 has been already suggested to the patients in the last 𝑛 suggestions,
≥ 1 is a parameter used to determine the cost to associate to multiple

epetitions of the same suggestion, and finally 𝜔𝑟 is an assessment of
ule 𝑟 obtained by means of the a-FIS, which will be described below.
he first three terms in (3) contribute to the definition of the rule’s
itness based on the criteria of satisfactory performance for creativity
i.e., the expected effectiveness of the activity proposed by the rule,
ased on the acquired experience with the patient and the therapeutic
ndications provided by the therapist), while the last term ensures that
ules that are repeated too many times in recent interactions get a lower
itness (to satisfy the criteria of originality for creativity).

Algorithm 1 details the complete procedure to compute the fitness
f a c-rule: First, the input chromosome 𝜒𝑟 is decoded (via decode)
nto a c-rule 𝑟. If, due to the encoding bit overhead (Mitchell, 1998;
umar, 2013), the rule encodes values out of the possible bounds
assessed via invalid), the algorithm returns a big negative value 𝑀 for
he fitness of the rule. Otherwise, it determines the output activity 𝑎 and
he values of 𝑧𝑎,𝑛, 𝑐𝑟,𝑡, 𝑤𝐻𝑎

(via getAct, getRep, getCred and getWeight,

espectively), and synthesizes a fuzzy inference system s-FIS with a rule i

5

ase populated only by 𝑟. The algorithm then assesses the rule by means
of the a-FIS. In doing so, it adopts a Monte Carlo strategy where it
repeats 𝑁 times the assessment. In particular, every time a set 𝑐 − 𝑖𝑛
of crisp inputs for all possible input variables 𝑉 is sampled (via sample)
from their universe of discourse. Values in 𝑐 − 𝑖𝑛 are given in input to
the synthesized s-FIS so that a value 𝑐 − 𝑜𝑢𝑡 is obtained for the activity
output of rule 𝑟 (via s-FIS(𝑐 − 𝑖𝑛)). Given 𝑐 − 𝑖𝑛 and 𝑐 − 𝑜𝑢𝑡, the a-FIS is
hen used to assess the new c-rule (via a-FIS(𝑐−𝑖𝑛∪{𝑐−𝑜𝑢𝑡})), obtaining

a set 𝐸 of crisp expected feedback values per output of the a-FIS. The
algorithm then computes a value 𝜔𝑟, representing the assessment of the
rule encoded by chromosome 𝜒𝑟 via the a-FIS for different inputs, as the
average of the crisp expected feedback values within the set 𝐸.

Applying a Monte Carlo approach permits to evaluate c-rules by
considering the entire universe of discourse of the input variables
(the larger the value of 𝑁 the better the evaluation of the rules in
general; this however increases the computational cost of computing
the fitness of the evolved c-rules). Since we synthesize the rules during
the personalization phase, and not online during the interaction phase,
we opt for a Monte Carlo approach and synthesize rules that are
expected to be effective considering different possible crisp values of
the input variables, so to cover different possible cases that can happen
during the next interactions.

Algorithm 1 Computing the Fitness Function
1: Input: chromosome 𝜒𝑟, assessor fuzzy inference system a-FIS, re-

quired number of samples 𝑁 , current time 𝑡, set 𝐶𝑡 of credits of all
rules at time 𝑡, set of weights 𝑊 of all therapies, repetition cost 𝜂,
interactions memory intmem, 𝑛 number of previous suggestions to
consider, a large number 𝑀

2: Output: fitness value for chromosome 𝜒𝑟 encoding a fuzzy rule 𝑟
3: 𝑟 ← decode(𝜒𝑟)
4: if invalid(r) then return -M
5: end if
6: 𝑧𝑎,𝑛 ← getRep(intmem, 𝑛); 𝑎 ← getAct(𝑟)
7: 𝑐𝑟,𝑡 ← getCred(𝑟, 𝐶𝑡); 𝑤𝐻𝑎

← getWeight(𝐻𝑎,𝑊 )
8: s-FIS ← Synthesize({𝑟})
9: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← []
0: repeat
1: 𝑐-𝑖𝑛 ← sample(𝑉 )
2: 𝑐-𝑜𝑢𝑡 ← s-FIS(𝑐-𝑖𝑛)
3: 𝐸 ← a-FIS(𝑐-𝑖𝑛 ∪ {𝑐-𝑜𝑢𝑡})
4: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑓𝑖𝑡𝑛𝑒𝑠𝑠.append(mean(E))
5: until 𝑁 samples are obtained
6: 𝜔𝑟 ← mean(sampled_fitness)
7: return 𝑐𝑟,𝑡 ⋅𝑤𝐻𝑎

⋅ 𝜔𝑟 ⋅
1

𝜂𝑧𝑎,𝑛

3.4. Evolving the C-rules

Given a chromosome 𝜒𝑟 encoding a c-rule and a fitness function that
provides an assessment of the encoded rule, we can straightforwardly
apply a genetic algorithm to evolve a population of c-rules. After exe-
cuting the genetic algorithm, we retrieve the best population according
to their fitness values, excluding duplicate and invalid rules. The best
population of c-rules is the population 𝑝∗ ∈ 𝑃 for which a weighted
sum of the fitness of the c-rules and the diversity of the entire c-rule
base is maximum, i.e.,

𝑝∗ = arg max
𝑝∈𝑃

(

𝐹 𝑝 ⋅ (1 − 𝛾) + 𝑑𝑝 ⋅ 𝛾
)

(4)

n (4), 𝐹 𝑝 is the average fitness of the rules in population 𝑝 normalized
to the range [0, 1] to be commensurable with 𝑑𝑝, 𝑑𝑝 is a diversity index
f the population 𝑝, and 𝛾 ∈ [0, 1] is the relative importance given to
he diversity index w.r.t. the fitness.

To compute the diversity index of a population, the Gini-Simpson
ndex (Jost, 2006) (a measure that reflects how many different types
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(or species) there are in a population) is used. In particular, the di-
versity index 𝑑𝑝 for population 𝑝 is defined as a weighted sum of
two Gini-Simpson indices 𝑔𝑝,𝐻 and 𝑔𝑝,𝐴 defined according to the ther-
apeutic categories (e.g., cognitive stimulation or CBT ) and the activities
(e.g., have a walk or play tic-tac-toe) that are covered by the population.
We have:

𝑑𝑝 = 𝑔𝑝,𝐻 ⋅ (1 − 𝜅) + 𝑔𝑝,𝐴 ⋅ 𝜅 (5)

In (5), 𝜅 ∈ [0, 1] determines the relative importance of the two Gini-
Simpson indices, 𝐻 is the set of therapeutic categories, and 𝐴 is the set
of possible activities corresponding to these therapeutic categories. In
general, the Gini-Simpson index 𝑔𝑝,𝑆 for population 𝑝 w.r.t. the set 𝑆
(where in (5) 𝑆 is either 𝐻 or 𝐴) is computed by:

𝑔𝑝,𝑆 = 1 −
∑

𝑠∈𝑆 𝑛𝑝,𝑠(𝑛𝑝,𝑠 − 1)
|𝑝|(|𝑝| − 1)

(6)

In (6), 𝑛𝑝,𝑠 is the number of c-rules in population 𝑝 that correspond
to element 𝑠 of set 𝑆. In particular, for the Gini-Simpson index 𝑔𝑝,𝐻 , a
-rule corresponds to an element 𝑠 in 𝐻 whenever the output activity 𝑎
f 𝑟 belongs to the type of therapeutic category 𝑠. For the Gini-Simpson
ndex 𝑔𝑝,𝐴, a c-rule corresponds to an element 𝑠 in 𝐴 whenever the
utput activity of the c-rule is the same as 𝑠.

With (5) and (6), therefore, we characterize two measures of di-
ersity of a rule base that describe how many different therapeutic
ategories and activities are considered in the rule base. Both aspects
re important for our purposes, because one rule base may have high
ariety in therapeutic categories but rules that always suggest the same
ctivity for a given category. Vice-versa, the rule base may include rules
hat are very variegate in terms of activities but they may all belong to
he same therapeutic category. Our aim is to avoid either of these two
ases.

. Case study

In this section we present our experiments based on computer
imulations on both synthetic and real-world data. In Section 4.1,
e assess the performance of the proposed approaches for creative
ecision-making and personalization of SARs by simulating interactions
etween a SAR and patients via a number of agent-based discrete-
vent simulations.2 In Section 4.2, we compare EFS4SAR, our proposed
volutionary approach, with state-of-the-art evolving fuzzy systems on
eal-world data obtained based on a survey with human participants.

.1. Synthetic simulated patients

We run simulations involving two agents: the SAR, which imple-
ents the decision-making and personalization approaches proposed

n this paper, and the Patient, which reacts to the activity suggested
y SAR according to its own preferences, which are initially unknown
o the SAR. Note that in the rest of this section, SAR and Patient are
sed interchangeably for SAR agent and Patient agent. A simulation step
efines one interaction step between SAR and Patient during which one
ctivity (we consider interactions composed by one step) is suggested
y SAR, and the corresponding feedback is received from Patient.

We give a weight of unity to all the therapeutic categories in
et 𝐻 (see Section 2), and leave the rule base of the a-FIS empty.
herefore, via our simulations we assess whether SAR can personalize

ts decisions to Patient in a finite number of interactions based on
atient’s immediate feedback only, and with no prior knowledge about
atient (i.e., an empty rule base for the a-FIS).

2 Our implementation (see the supplementary material for this paper
n Dell’Anna and Jamshidnejad, 2022) relies on the MESA framework (Kazil
t al., 2020) for the agent-based simulation, on the PyGAD library for the
enetic algorithm (Gad, 2021), and on the skfuzzy library (Warner et al., 2019)
or the fuzzy inference system.
 r

6

Fig. 3. Membership functions describing the linguistic values used in the experiments
for (a) the input of the c-FIS (a singleton variable), and for (b) the output activities of
the c-FIS, each of them with three possible realizations.

Figs. 3a and 3b illustrate the membership functions for, respectively,
the inputs and outputs of the c-FIS of SAR. As it is illustrated in
Fig. 3(a), we represent the input of the c-FIS with one crisp value3

within the range [0, 10]. The output variables of the c-FIS are considered
to describe the therapeutic activities suggested by SAR via three terms
(c.f. the three membership functions in Fig. 3(b)) within the range
[0, 10]. These terms for, e.g., activity ‘‘walk’’ may be ‘‘short’’, ‘‘regular’’,
and ‘‘long’’.

In our experiments, we use standard fuzzy operators for fuzzy
inference. In particular, we use the minimum operator to determine the
certainty of the premises and to compute the implied membership func-
tions of the consequent of the rules in the inference engine of the c-FIS,
and we use the center of gravity method for defuzzification. Our choice
is motivated by the fact that we consider a case where membership
functions are time-invariant, so that using different operators would
only minimally affect the results of our experiments, which focus on
evaluating the personalization and originality of the activities suggested
by SAR to Patients.

At the beginning of its simulation step, SAR receives randomly
sampled values for its input variables and suggests an activity to
Patient using the c-FIS. Every Patient returns a value 𝑓 ∈ [0, 10]
(where 0 indicates an extremely negative feedback, and 10 indicates an
extremely positive one) in response to the activity suggested by SAR.
Since we focus on the personalization of SAR’s decisions, we focus on
a single numerical feedback which provides information about both
the patient’s preferences and the effectiveness of a certain therapeutic
activity in an aggregate way. As explained in Section 2.1, however,
multiple feedback measures are supported.

Initially, 𝑓 is randomly assigned by Patient to the proposed activities
s.t. in 60% of cases 𝑓 < 5 and in the remaining 40% of cases 𝑓 ≥ 5.
In doing so, we model the fact that some therapeutic interventions
are more effective for a patient (either because of the preferences of
patients, or because of the therapeutic output), while others are less
effective. Whenever the same activity is suggested by SAR, Patient ad-
justs the previous feedback according to its type, a characteristic defined
per Patient that determines how it reacts to repeated suggestions of the
same activity over time. In particular, we consider Patients that have a
memory of size 𝑚 = 14 (i.e., they remember the previous 14 suggestions
made by SAR in the previous 14 simulation steps). Given an activity 𝑎,
every Patient returns a feedback 𝑓 determined by:

𝑓 ← 𝑓 + 𝛥𝑓 (𝑛𝑎,𝑚) (7)

3 In this case study, having more than one input for the c-FIS does not
ffect the internal states or preferences of Patient, but only results in an
ncrease in the number of preferences of Patient that SAR should learn. With a
ingle input, however, the number of samples required by the fitness function
emains 1 and the number of required rules and generations remains relatively
ow, which makes repeated simulations with a multitude of different types of
atients computationally affordable. In Section 4.2, which focuses on a more
ealistic case study, we consider multiple inputs with multiple values.
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Fig. 4. (a) Change 𝛥𝑓 (𝑛𝑎,𝑚) applied to the previous feedback 𝑓 given to an activity by
different types of Patients based on their memory of the last 𝑚 simulation steps, and
b) examples of four types of Patients resulting from using (8) with different parameters.

here

𝑓 (𝑛𝑎,𝑚) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆𝑛𝑎,𝑚, if 0 ≤ 𝑛𝑎,𝑚 ≤ 𝜏1.
𝜆𝜏1, if 𝜏1 < 𝑛𝑎,𝑚 ≤ 𝜏2.
𝜆𝜏1 −

𝜆𝜏1
𝜏3−𝜏2

(𝑛𝑎,𝑚 − 𝜏2), if 𝜏2 < 𝑛𝑎,𝑚 ≤ 𝜏3.

−𝜆(𝑛𝑎,𝑚 − 𝜏3), if 𝑛𝑎,𝑚 > 𝜏3.

(8)

In (8), 𝑛𝑎,𝑚 is the number of times that activity 𝑎 has been suggested
in the last 𝑚 simulation steps. Every Patient is characterized by four
parameters: 𝜏1, 𝜏2, 𝜏3 (with 𝜏1 ≤ 𝜏2 ≤ 𝜏3 ≤ 𝑚) and 𝜆. If an activity
was not suggested in the last 𝑚 simulation steps (i.e., 𝑛𝑎,𝑚 = 0), Patient
returns the same feedback returned the most recent time for the same
activity (or, the first time, a random feedback). If the activity was al-
ready suggested but for not more than 𝜏1 times, i.e., 0 < 𝑛𝑎,𝑚 ≤ 𝜏1, then
Patient increases the previously given feedback by 𝛥𝑓 (𝑛𝑎,𝑚) = 𝜆𝑛𝑎,𝑚,
with 𝜆 characterizing how quickly the feedback of Patient changes.
Whenever 𝜏1 < 𝑛𝑎,𝑚 ≤ 𝜏2, Patient keeps increasing steadily the
feedback, indicating that Patient continues enjoying more and more
the activity. When 𝜏2 < 𝑛𝑎,𝑚 ≤ 𝜏3, the increase of feedback is reduced.
Whenever 𝑛𝑎,𝑚 > 𝜏3, 𝛥𝑓 (𝑛𝑎,𝑚) changes its sign. Different combinations of
𝜏1, 𝜏2, 𝜏3, 𝜆 allow to characterize a variety of Patients with very different
behaviors and dynamics. Fig. 4(a) illustrates function 𝑓 given by (8)
for 𝜏1, 𝜏2, 𝜏3 being non-zero and non-equal. Fig. 4(b) provides examples
of four types of Patient obtained via different combinations of the four
parameters: the dashed red curve describes a patient that never changes
its feedback, the dash-dotted orange curve characterizes a patient that
enjoys repeating over and over the same activity, the solid black curve
characterizes a patient with an almost same behavioral trend but more
moderate, while the dotted blue curve characterizes a patient that
enjoys to repeat the same activity a few times, but is annoyed by too
many repetitions.

Metrics for creative personalization. We are interested in providing,
through a creative process, a balanced trade-off between the com-
fort/satisfaction of the patients and the therapeutic value (in terms of
cognitive stimulation) of proposing a variety of activities. We quantify
these aspects via two metrics, called feedback and repetitions.

Feedback is the feedback provided as per (7) by Patient for SAR.
We analyze both the average and the trend of the feedback throughout
the simulation. A SAR that can effectively learn the preferences of
Patient and the effectiveness of different therapeutic interventions, and
can personalize its decision-making accordingly, will result in feedback

values that tend to 10.

7

Repetitions measures the number of activities in the last 𝑚 simulation
steps that are identical to the activity suggested at the current simu-
lation step 𝑖. We analyze the average number 𝜌 of repetitions in the
simulation, i.e.,

𝜌 =
∑

𝑖∈[1,𝑠] 𝑛𝑎𝑖 ,𝑚
𝑠

(9)

In (9), 𝑠 is the number of simulation steps, and 𝑛𝑎𝑖 ,𝑚 is the number
of times that activity 𝑎 suggested at simulation step 𝑖 was suggested in
the previous 𝑚 simulation steps.

The two metrics feedback and repetitions are in line with the two
riteria (effectiveness, i.e., satisfactory performance, and originality,
espectively) that characterize creativity as per the standard definition
roposed by Runco and Jaeger (2012). Feedback is a measure of ef-
fectiveness of the personalization, for it determines the usefulness, fit
and appropriateness of the suggested activities. Repetitions is a measure
of originality of the personalization, for it quantifies the uniqueness
and diversity of the proposed activities over time. A creative SAR that
performs as intended will result in high feedback and low repetitions.

Experimental settings. We conduct the following experiments, whose
details are summarized in Table 2, and where we analyze the per-
formance of a system S that steers SAR according to the approaches
proposed in this paper for decision-making and personalization. In
particular,

• We study the importance of the repetition cost in the calcula-
tion of the fitness of a c-rule by comparing the decision-making
systems S and 𝑆𝑅 for which EFS4SAR is implemented with and
without a repetition cost, i.e., with respectively 𝜂 = 10 and 𝜂 =
1 (see (3)).

• We study the importance of the diversity index in the choice of
the best population by comparing the decision-making systems S
and 𝑆𝐷 for which EFS4SAR is implemented with and without a
diversity index, i.e., with respectively 𝛾 = 0.5 and 𝛾 = 0 (see (4)).

• We study the robustness of the decision-making system S when
the feedback received by Patient is affected by noise. This may
occur due to the errors of the sensors (Webb et al., 2020), im-
preciseness of the tests conducted with the patients, or due to
the inability of patients to clearly communicate their feedback
(e.g., as a result of severe cognitive impairments).

For the Noise experiments, we consider three types of noise that
we apply to the feedback of Patient: a gaussian noise (i.e., a noise that
applies a change to the feedback sampled from a normal distribution
with mean 𝜇 = 0 and standard deviation 𝜎 = 2, cropped to a minimum
𝑔min = −10 and a maximum 𝑔max = 10); a more disruptive noise,
which we call inverse gaussian, obtained by first generating a temporary
gaussian noise 𝑛𝑡 and then producing the final noise 𝑛 by applying the
rule: 𝑛 = 𝑔min − 𝑛𝑡 if 𝑛𝑡 < 0, 𝑛 = 𝑔max − 𝑛𝑡 if 𝑛𝑡 > 0, and, when 𝑛 = 0, in
0% of the cases 𝑛 = 𝑔max and in 50% 𝑛 = 𝑔min. Finally we consider a
reversed feedback noise, obtained as 10−𝑓 , with 𝑓 ∈ [0, 10] the feedback
of Patient. For each type of noise we test two scenarios: in scenario
Noise 0.2, the noise is generated with probability 0.2 (we chose this
value to reflect the accuracy reported in Webb et al., 2020), so that
it is applied on average on 20% of the received feedback; in scenario
Noise 1, the noise is applied to all received feedback.

Moreover, as a baseline, we consider a decision-making system 𝑆𝐵
that randomly shuffles its c-rules per simulation step. In line with the
definition of creativity, such merely original decision-making system 𝑆𝐵
is expected to lead to very few repetitions but also a low feedback.

We consider, therefore, 10 different decision-making systems, i.e.,
𝑆, 𝑆𝐵 , 𝑆𝑅, 𝑆𝐷, 𝑆𝑔0.2, 𝑆𝑔1, 𝑆𝑖𝑔0.2, 𝑆𝑔1, 𝑆𝑟0.2, and 𝑆𝑟1. We randomly
synthesize 200 Patients by uniformly sampling for each of them their
parameters 𝜏1, 𝜏2, 𝜏3 from [0, 14] (more specifically, we uniformly sam-
ple 𝜏3 from [0, 14], then we sample 𝜏2 from [0, 𝜏3], finally 𝜏1 from
[0, 𝜏2]) and 𝜆 from [0.01, 0.05]. For each decision-making system, we

run 200 different simulations, each of them simulating a sequence of
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Table 2
Details of the parameters of (a) the tested decision-making systems, i.e., our proposal 𝑆,
he baseline 𝑆𝐵 , a variation of 𝑆 (𝑆𝑅) that ignores the repetition cost, and a variation
f 𝑆 (𝑆𝐷) that ignores the diversity index, and (b) the algorithms, common for all
xperiments. Values g, ig and r stand for gaussian, inverse gaussian and reversed feedback
oise, respectively.
Decision-making system S 𝑆𝐵 𝑆𝑅 𝑆𝐷 Noise

𝛽 0.04 0 0.04 0.04 0.04
𝜂 10 1 1 10 10
𝑧𝑎,𝑛 7 – – 7 7
𝛾 0.5 0 0.5 0 0.5
Noise type – – – – {𝑔, 𝑖𝑔, 𝑟}
Noise prob. 0 0 0 0 {0.2, 1}

(a)

Parameter Val Parameter Val

Mating top % 80% Generations 50
Selection type sss Samples 𝑁 1
Crossover type uniform Inputs c-FIS 1
Crossover prob. 1 Outputs c-FIS 117
Mutation prob. 0.25 Possible activities 117
𝜅 0.75 Possible therapies 7
Rules 20 Memory size 𝑚 14
Default credit rule 1 Simulations 200 (5x each)
𝑤ℎ 1∀ℎ ∈ 𝐻 Interactions/Sim 4000
Big 𝑀 100 Steps/Interactions 1
Domain feedback 𝑓 [0, 10] Payoff 𝑞𝑡 for 𝑓 𝛼 ⋅ 𝑓 1.8, with

𝛼 = 1 if 𝑓 ≥ 5,
𝛼 = −1 else

(b)

4000 interaction steps between the SAR and one of the 200 randomly
synthesized Patients. Since in every simulation a different patient is
considered, every decision-making system is tested in 200 different con-
ditions (patients with different preferences and behaviors). In order to
account for the randomness of the evolutionary algorithm in interaction
of the SAR with every patient, we repeat every simulation 5 times to
obtain multiple data points for every simulation. In doing so, the results
(of the total 10 × 200 × 5 simulations) provide statistically relevant
information over a variety of conditions.

The number (4000) of steps performed in every simulation was
determined during a preliminary experimentation to guarantee the
SAR reaches a steady-state behavior. Similarly, the values of the other
parameters reported in Table 2 have been tuned through extensive
experimentation. The tuning was firstly driven by a time-resource
balancing need, so that an adequate number of experiments could be
performed with our available computation resources. More specifically,
first we determined the parameters that most heavily affected the
computation time (i.e., the number of inputs of the c-FIS, the number
of samples for the fitness function, and the number of c-rules). Once
fixed these values respectively to 1, 1, and 20, we followed a grid-
search method to explore possible combinations of values for the other
parameters,4 and identified values that led to the best results in terms
of feedback and repetitions. For example, in our experiments, running
the genetic algorithm for more than 50 generations led to an increase
in the number of repetitions in the resulting suggestions. With more
than 50 generations, rules with high credits (i.e., rule that were previ-
ously successfully employed by SAR) had more chances to be selected.
Conversely, less than 50 generations had the opposite effect, leading to
‘‘too original’’ rules that did not leverage the knowledge learned during
previous interactions.

4 Specifically, we considered the following values: {10, 20, 50, 70, 100}
for the number of generations, {20, 50, 80} for the % of mating parents,
{𝑠𝑠𝑠, 𝑟𝑎𝑛𝑑𝑜𝑚} for the selection type (with sss indicating steady-state selec-
tion), {0.05, 0.15, 0.25} for the mutation probability, and {0.25, 0.5, 0.75} for 𝜅.
Crossover type was set to uniform since we are interested in altering every
gene of the chromosomes, and memory size to 14 to indicate an hypothetical
period of 2 weeks (assuming one interaction per day).
 d
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Table 3
Average and standard deviation of feedback and repetitions for different systems. ‘‘Effect
on feedback 𝑆’’ and ‘‘Effect on repetitions 𝑆’’ report the interpretation of the effect size
(Cohen’s d) w.r.t. decision-making system 𝑆. The star symbol (*) shows that a Wilcoxon
Signed-Rank test indicates a significant difference from decision-making system 𝑆 with
𝑝-value 𝑝 < 0.05, The double star symbol (**) indicates a significant difference with
𝑝-value 𝑝 < 0.01. The absence of a star symbol indicates the lack of significant difference
from decision-making system 𝑆.

System Feedback Effect on
feedback 𝑆

Repetitions Effect on
repetitions 𝑆

𝑆 8.17 ± 1.00 1.32 ± 0.24

𝑆𝐵 4.50 ± 0.18 Large (5.103)** 0.13 ± 0.01 Large (7.103)**

𝑆𝑅 6.47 ± 1.53 Large (1.314)** 5.34 ± 2.28 Large (2.477)**

𝑆𝐷 8.17 ± 1.04 None (0.000) 1.38 ± 0.27 Small (0.216)**

𝑆𝑔0.2 8.12 ± 1.02 None (0.041)** 1.34 ± 0.26 None (0.057)
𝑆𝑔1 8.03 ± 1.03 None (0.131)** 1.28 ± 0.22 None (0.188)
𝑆𝑖𝑔0.2 7.99 ± 1.01 None (0.177)** 1.28 ± 0.25 None (0.179)*
𝑆𝑖𝑔1 5.83 ± 1.09 Large (2.234)** 1.03 ± 0.14 Large (1.496)**
𝑆𝑟0.2 7.95 ± 1.01 Small (0.219)** 1.26 ± 0.24 Small (0.287)**
𝑆𝑟1 2.88 ± 1.35 Large (4.451)** 1.22 ± 0.23 Small (0.440)**

Results. Table 3 reports the average and standard deviation of the
feedback and repetitions metrics obtained in the 200 simulations (each
repeated 5 times) with each of the 10 considered decision-making
systems described above, and the results of Wilcoxon Signed-Rank
tests5 (Rey and Neuhäuser, 2011) comparing the results with those
obtained with the decision-making system 𝑆, and the effect size. The
same results are also visualized via box plots in Figs. 5 and 6.

Proposed decision-making system S compared to the baseline
decision-making system 𝑆𝐵 . Based on Figs. 5(a) and 5(b), for the base-
line decision-making system 𝑆𝐵 , the average feedback is 4.5 and, on
average, an activity is repeatedly suggested 0.13 times every 14 simula-
tion steps. This is in line with the expectations: randomly re-combining
and mutating the c-rules per simulation step without following any
particular selection criteria can lead to low numbers of repetition, but
also to suggestions that are not personalized and are thus ineffective
for Patient. When we consider the proposed decision-making system S,
instead, from Figs. 5(a) and 5(b) we see a significant difference: the
average measured feedback is significantly higher (on average 8.17),
while, on average, an activity is repeatedly suggested only 1.32 times
every 14 simulation steps. These results confirm that the proposed
system behaves as intended with a variety of Patients, providing a
good balance between personalization and variety in the provided
suggestions.

Fig. 5(c) reports the average feedback per simulation step for the
200 × 5 simulations for the considered decision-making systems. While
we see that the feedback obtained with the baseline decision-making
system 𝑆𝐵 (in red) oscillates around 4.5, the decision-making system
S (in black) requires 532 simulation steps to reach for the first time
an average feedback of 8.17 over all simulations. Moreover, in about
1500 simulation steps the feedback converges to a steady range of
values. Note that the feedback stabilizes at around 8 for 𝑆 and does
not converge to its maximum, i.e., 10. This result, which is expected
and intended, illustrates that (i) the credit assignment mechanism
effectively encodes the acquired knowledge about Patient (i.e., it learns
personalized suggestions), (ii) despite the personalized suggestions, the
proposed decision-making system S also provides a variegate set of
suggestions (observe also the continuous oscillations of the feedback
in Fig. 5(c)), regularly incentivizing Patients to try also sub-optimal
(less preferred) activities with the intent of challenging their routine
and activating their creativity and divergent thinking.

5 Wilcoxon Signed-Rank (non-parametric) tests do not rely on assumptions
n distribution and variance of data for the analysis of matched-pair data.
he null hypothesis is that the differences between matched-pair data have a
istribution with center zero.
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Fig. 5. Box plots illustrating (a) the average feedback of Patients, (b) the average number of identical activities suggested per 14 simulation step, and (c) the trend of the average
feedback (cropped for readability at simulation step 1500, after which the trend only showed slight improvements not visible from the plot), obtained in 200 simulations (each
repeated 5 times) using the different decision-making systems.
Fig. 6. Box plots illustrating the (a) average feedback of Patient, and (b) average
number of identical activities suggested to Patient per 14 simulation step. These results
correspond to using the proposed decision-making system 𝑆 in 200 simulations each
time with different noise (gaussian noise for 𝑆𝑔𝑥, inverted gaussian for 𝑆𝑖𝑔𝑥, and reverse
feedback for 𝑆𝑟𝑥, with 𝑥 ∈ {0.2, 1} denoting the probability that the noise affects the
feedback per simulation step.

Importance of the repetition cost. Decision-making system 𝑆𝑅
leads to significantly higher numbers of repetitions according to Fig. 5(b)
(an activity is repeatedly suggested, on average, 5.34 times every 14
simulation steps), with a significant reduction of the feedback given
by Patient (see Fig. 5(b)). From Fig. 5(b) (blue box), we see that
ignoring the repetition cost can lead to edge cases where the same
activity is suggested by SAR in almost every single simulation step
(average repetition close to 14). The decision-making system 𝑆𝑅 tends
to prioritize exploitation (i.e., suggesting over and over the activities
that are known to be better than others according to Patient’s feedback)
and to almost ignore exploration (i.e., trying different activities). Note
that, as a consequence of the definition of Patient, repeating over and
over the same activities does not necessarily lead to the maximum
feedback, because when too many repetitions occur, Patient may start
decreasing the feedback. This is also illustrated by Fig. 5(c) where
the decision-making system 𝑆𝑅 quickly reaches a high feedback value
note the initial peak of the dark blue line), exploiting the acquired
9

knowledge about the preferred activities of Patient, but the received
feedback drops to values lower than those of the proposed decision-
making system S, stabilizing at an average feedback around 6.5. From
these results, we conclude that considering the repetition cost appears
to be fundamental not only to provide variegate suggestions (low
repetitions), but also effective ones (i.e., high feedback).

Importance of the diversity index. Compared to the proposed
decision-making system S, ignoring the diversity index via the decision-
making system 𝑆𝐷, leads to an increase in the number of repetitions,
and to an almost identical feedback. Considering the diversity index
via the proposed decision-making system S leads, on average, to a
significant improvement of the (already low number of) repetitions of
about 4.5% (small effect size), and to no decrease of the feedback.
These result from the fact that, in computing the fitness of the c-rules,
the evolutionary process already accounts for both their effectiveness
and their diversity (via considering the repetition cost). By tuning pa-
rameter 𝛾 in (4), which in our experiments was set to 0.5, it is possible
to adjust the required diversity of the c-rules, and thus the diversity
of the activities suggested by SAR to Patient, without significantly
affecting the effectiveness of the proposed therapies.

Robustness of decision-making system S to noise. Table 3 reports
the results for the noisy feedback cases, and Fig. 6 shows the corre-
sponding box plots. Note that the reported values concern the actual
feedback of Patient, and not the measured (noisy) one received by SAR.
Considering the gaussian noise, the measured effect size on both feed-
back and repetition is negligible both when applied in 20% of the cases
and when applied consistently at every simulation step. Similarly, in
scenario Noise 0.2, an inverted gaussian noise leads to a negligible effect
size, and a reversed feedback noise leads to a small effect size (reducing
the feedback but also the repetition). The only cases where the noise
shows a large effect size on the feedback and repetitions concerned
scenario Noise 1 with inverted gaussian and reversed feedback noises,
where the average feedback has dropped to 5.83 with inverse gaussian
noise, and to 2.88 with reversed feedback. This decrease in feedback
is accompanied by a corresponding decrease in repetitions, indicating
that the noise significantly affects the credits given to the c-rules, thus
the decisions of SAR. We note, however, that both the inverse gaussian
and the reversed feedback noises characterize very disruptive types of
noises that, if actually occurring in reality at every single interaction
step (like in scenario Noise 1), would indicate extremely poor sensors
or measurements of the feedback. Applying a reversed feedback noise
at every simulation step, for example, corresponds to always provid-
ing opposite information from the actual patient’s feedback for SAR
(e.g., whenever a patient is happy, SAR believes the patient is unhappy,
and vice-versa). We can see that this leads SAR to personalizing its
behaviors to the opposite behavior that is preferred by a particular
patient: observe that the feedback of decision-making system 𝑆𝑟1 (i.e., a
decision-making system that is exposed ot the reverse feedback noise
in 100% of the cases) has an average of about 2.9. From the results
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Table 4
Overview of the Evolving Fuzzy Systems (EFSs) used for comparison with EFS4SAR. Columns EA and MOEA indicate if the
EFS is based, respectively, on evolutionary algorithms and multi-objective evolutionary algorithms. Column # rules indicates
the approached used to determine the number of rules (one rule per identified cluster, one rule per class, one rule per layer
in the case of ensemble models like MEEFIS, or a fixed number).
EFS Year EA MOEA # rules

SAFLS (Gu and Shen, 2021) 2021 No No min. # clusters
FWAadaBoostSOFIES (Gu and Angelov, 2021) 2021 No No # classes
MEEFIS (Gu, 2021) 2020 Yes No avg nr. layers
PSO-ALMMo (Gu et al., 2021) 2020 Yes No # classes
SKMOEFS-MPAES_RCS (Gallo et al., 2020; Antonelli et al., 2014) 2020 Yes Yes minimized
ANFIS-GA (Moayedi et al., 2020) 2018 Yes No fixed
ANFIS-PSO (Moayedi et al., 2020) 2018 Yes No fixed
ALMMo-0 (Angelov et al., 2018) 2017 No No # classes
eTS-LS-SVM (Komijani et al., 2012) 2012 No No min. # clusters
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reported above, we conclude that the proposed decision-making system
𝑆 appears to be robust to the three types of noise that we tested, when
occurring with a realistic frequency.

4.2. Fuzzy patients based on human preferences

In this section, we compare EFS4SAR with state-of-the-art evolving
fuzzy systems (EFSs). Since most of state-of-the-art EFSs are intended
for data streams classification or regression, for comparison purposes
we reduce the task of the SAR (i.e., suggesting an activity to the patient)
to a data stream classification task. In other words, given a stream of
values for the input variables of the SAR, the task of the SAR is to
determine an activity (class) to suggest to the patient for each input.

We selected benchmark EFSs among the available implementations
of evolving fuzzy classifiers to cover a variety of approaches, including
EFSs based on traditional evolving strategies, EFSs based on evolu-
tionary algorithms, and EFSs based on MOEAs. Table 4 reports the
selected state-of-the-art EFSs and the corresponding references that
provide details on these approaches.

In order to evaluate the EFSs on data that is relevant and realistic for
SARs, we use 15 data sets characterizing real-world human preferences
about daily activities, which we elicited through a survey with human
participants.

Next, we first describe the survey that we conducted to elicit the
human preferences, then we illustrate how we used such preferences
to model the participants of the survey via fuzzy inference systems,
which we used as generators of streams of data to obtain the 15 data
sets used in our experiments. Finally, we discuss the results obtained
via EFS4SAR and the different EFSs on such data sets.

Human preferences elicitation. We conducted a survey with 15
articipants. The participants were asked to indicate which activities
hey like, do not like, love, or hate to do in different circumstances
namely in the morning, afternoon, and evening, during free, working,
r busy days, and when it’s sunny, cloudy, or rainy). Participants were
iven a list of 106 examples of activities for their inspiration (divided
n 9 categories: work-related, TV Music and Movies, Entertainment, At
ome, Outdoor, Sport, Going places, Friends and Family, Individual), and
hey were instructed to indicate new (more personal) ones, if they
anted. Additional activities were considered as part of a 10th category
ser defined. Participants belonged to 4 different nationalities, their age

anged from 20 to 40, and the level of education ranged from under-
raduate degree to doctorate. The collected data is also made available
n anonymous form in our online supplementary material (Dell’Anna
nd Jamshidnejad, 2022). Although participants did not suffer from
ementia, the corresponding data collected with the survey is relevant
nd realistic for our purposes, since the main goal of this paper is to
valuate the extent to which EFS4SAR can provide suggestions about
aily activities that are both personalized and original.
Data generation. We used the preferences of the participants to

onstruct a model of each participant in the form of a fuzzy inference
ystem whose rule base is constituted by rules encoding the preferences
f the participant. Two examples of possible preferences and their
 p
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Table 5
Translation of human preferences into fuzzy rules (note that the love,
like, do not like, and hate translate into, respectively, very high, high, low,
and very low feedback).
Preference Fuzzy Rule

when it’s sunny
and it’s a free day
I love
to exercise

IF weather is sunny AND
day-type is free AND
to-exercise is performed
THEN feedback is very high

when it’s a rainy morning
during a working day
I do not like
to work from the office

IF weather is rainy AND
day-type is working AND
day-time is morning AND
to-work-from-the-office is performed
THEN feedback is low

Table 6
Number of classes (preferred daily activities) in the 15 real-world data sets. Every
data set is composed by 5000 data points, each characterized by 3 dimensions (input
variables with numerical values in [0, 10] representing a normalized crisp value for
the 3 environmental factors time, weather, and type of the day) and labeled with the
activity (class) preferred in that circumstance.

Data set D0 D1 D2 D3 D4 D5 D6 D7
Classes 13 16 20 21 21 24 24 26

Data set D8 D9 D10 D11 D12 D13 D14
Classes 26 26 31 31 36 42 69

corresponding rules are reported in Table 5. Each resulting FIS is char-
acterized by three input ‘‘environmental’’ variables (weather, day-type,
and day-time), each with three possible linguistic realizations explained
before, and with a number of input variables based on the indicated
preferred daily activities. Each activity is treated as a singleton variable
with one possible default ‘‘performed’’ value. Each FIS has one output
ariable, called feedback, with 5 possible linguistic values: very low, low,
average, high, very high. The average value is used as a default neutral
feedback value for cases where no preference is specified. We model the
membership function of each value of the input and output variables
as triangular functions covering the domain of the variable, ranging
form 0 to 10. We use every FIS as a generator of streams of data.
Data is constituted of tuples ⟨𝑖1, 𝑖2, 𝑖3, 𝑎⟩, where 𝑖1, 𝑖2, 𝑖3 are crisp values
andomly sampled from the domain of the three input environmental
ariables of the FIS, and 𝑎 is one of the activities preferred by the
articipant according to the preferences expressed in the survey. More
pecifically, given inputs 𝑖1, 𝑖2, 𝑖3, the activity 𝑎 is obtained as follows:
or every possible activity, we compute the feedback by performing
uzzy inference. In 80% of cases, 𝑎 is randomly selected from those
esulting in the highest feedback. In the remaining 20% of cases, 𝑎 is
andomly selected from all activities with positive feedback (i.e., with
eedback greater than 5, the middle feedback value).

For every participant we obtain a data set made of 5000 data points,
or a total of 15 data sets (see Dell’Anna and Jamshidnejad, 2022 for
etails). Each data set provides a representation of the preferences
i.e., the preferred activities) of one of the participants given different
ossible crisp values of the environmental input variables. Table 6
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Table 7
The average accuracy, number of rules, feedback and repetitions obtained with the tested EFSs on the
15 data sets. FWAda and SKMOEFS are abbreviations of FWAadaBoostSOFIES and SKMOEFS-MPAES_RCS,
respectively.

accuracy # rules feedback𝑠 feedback𝑚 repetitions

random 0.04 ± 0.02 – 6.49 ± 0.16 7.24 ± 0.32 0.57 ± 0.20

EFS4SAR 0.14 ± 0.05 20.00 ± 0 7.32 ± 0.38 7.92 ± 0.35 1.49 ± 0.37

SAFLS 0.44 ± 0.16 20.53 ± 2.14 8.72 ± 0.43 6.43 ± 1.82 4.70 ± 1.62
FWAada 0.34 ± 0.16 28.40 ± 13.08 8.37 ± 0.39 7.84 ± 1.88 3.16 ± 1.72
MEEFIS 0.40 ± 0.14 27.57 ± 6.00 8.60 ± 0.43 6.23 ± 2.54 5.53 ± 2.99
PSO-ALMMo 0.08 ± 0.05 28.40 ± 13.08 6.93 ± 0.42 7.35 ± 1.26 3.10 ± 0.90
SKMOEFS 0.42 ± 0.15 11.49 ± 4.93 8.64 ± 0.42 6.85 ± 2.24 4.71 ± 1.82
ANFIS-GA 0.07 ± 0.05 28.40 ± 13.08 6.78 ± 0.52 6.51 ± 1.85 3.89 ± 1.35
ANFIS-PSO 0.07 ± 0.04 28.40 ± 13.08 6.82 ± 0.44 6.60 ± 1.78 3.74 ± 1.36
ALLMo-0 0.22 ± 0.10 28.40 ± 13.08 7.83 ± 0.31 8.05 ± 0.67 1.53 ± 0.80
eTS-LS-SVM 0.10 ± 0.12 1.00 ± 0 6.94 ± 1.63 2.36 ± 1.95 10.48 ± 3.19
reports a summary of the number of resulting activities (interpreted
as classes) per data set.

Experimental results. Table 7 reports the results in terms of the feed-
back and repetitions metrics described in Section 4.1 and in terms of
accuracy on the 15 test sets (obtained via standard 80/20 splitting of
the data sets) and number of rules identified by the EFSs. As per Section
Section 4.1, we repeat every simulation 5 times to obtain multiple
data points for every simulation. feedback𝑠 and feedback𝑚 are obtained
by means of the fuzzy patients according to the preferences of the
participants of the survey. In the case of feedback𝑠, the fuzzy patients
never change their original feedback about activities (analogously to
the dashed red curve in Fig. 4(b)). In the case of feedback𝑚, instead,
the patients also have a memory and each patient changes its feedback
about an activity over time according to its randomly sampled type as
described in Section 4.1. Row random in Table 7 reports, for compari-
son, the results obtained with a classifier that randomly assigns one of
the possible classes to each data point.

First, we note that the most recent benchmark EFSs (e.g., SAFLS (Gu
and Shen, 2021), SKMOEFS (Gallo et al., 2020), MEEFIS (Gu, 2021))
provide, in general, higher accuracy than older ones (e.g., ALMMo-
0 (Angelov et al., 2018), eTS-LS-SVM (Komijani et al., 2012)) and
of EFS4SAR. This indicates that the EFSs successfully identify rules
that classify data points in the same cluster with the same class.
In our experiments, this also implies, in the case of feedback𝑠, high
feedback received from the patients, since the EFSs effectively suggest
the activities preferred by the patients. These results, however, also
illustrate that for similar data points (i.e., in similar circumstances,
e.g., when it’s afternoon of a busy day), benchmark EFSs tend to
repeat the same suggestion, i.e., they tend to classify two similar data
points with the same class. This behavior, reasonable for EFSs that are
intended for accurate classification, motivates our work: existing EFSs
are effective but they lack originality, since they do not account for
repetitions and diversity of suggestions. However, in a real setting these
aspects are essential for creative and effective SARs, because continued
repetitions of similar activities is expected to lead to a decrease of
the effectiveness and feedback received from patients (e.g., as a result
of increased boredom due to the repetitions). This is evident when
looking at feedback𝑚, where patients take into account the previously
suggested activities in providing their feedback. Here, we note that the
feedback of the benchmark EFSs tends to drop due to the high number
of repetitions.

The results obtained with EFS4SAR, differently, are in line with
the results reported in Section 4.2. While EFS4SAR shows a lower
feedback compared to the benchmark EFSs in the case of feedback𝑠,
it also provides a lower number of repetitions, i.e., for similar data
points, EFS4SAR proposes a variety of (sometimes less preferred) activ-
ities. The proposed activities are personalized to patients (comparing
EFS4SAR against random, we see that the feedback with EFS4SAR is
consistently higher), while also accounting for the need of regular

stimulation of the cognition of the patients. Proposing sometimes less
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preferred activities is important because, for example, a patient may
hate a certain physical exercise, whereas her/his therapist recommends
it for improvement of the patient’s mental/physical health. Further-
more, when considering feedback𝑚, we see that except for ALMMo-0,
the feedback received by EFS4SAR is higher than the other EFSs.

ALMMo-0 (Angelov et al., 2018) had the most similar performance
to EFS4SAR, i.e., few repetitions, which led to lower feedback𝑠 and
higher feedback𝑚. ALMMo-0, however, does not explicitly account for
creativity in determining the most opportune class, and the results can-
not be attributed to an explicit intention to achieve high effectiveness
with low repetitions. Differently, the results of EFS4SAR can be clearly
explained by means of its parameters related to the importance of low
repetitions and high diversity of the suggestions. By modifying at run
time these parameters, furthermore, EFS4SAR permits to adjust the
degree of creativity based on the evolving needs of the patients.

In terms of interpretability, we note that EFSs that determine the
number of rules based on the number of classes (e.g., FWAda (Gu and
Angelov, 2021), PSO-ALMMo (Gu et al., 2021), ALMMo-0 (Angelov
et al., 2018)) have higher number of rules than other approaches.
If the number of possible activities to suggest to the patient grows,
the approach of these systems may lead to lower interpretability,
and to possibly lower performances if little training data is available.
SKMOEFS (Gallo et al., 2020), instead, confirms its effectiveness, as a
MOEFS, in optimizing the two conflicting goals of accuracy and number
of rules, providing in the case of feedback𝑠 one of the highest accuracy
and lowest number of rules. In the context of decision-making of SARs,
however, the number of rules should not only be minimized for the
sake of interpretability, but also related to the personality and needs of
a patient. For example, a SAR should have more rules when interacting
with a very stubborn patient who does not easily accept suggestions (so
that the robots can try more alternatives), while in other cases it may be
sufficient to have only few rules. For this reason, in EFS4SAR, similarly
to ANFIS-GA and ANFIS-PSO (Moayedi et al., 2020), the number of
c-rules is a parameter that can be fixed or varied over time. In our
experiments, EFS4SAR used 20 rules for all data sets, illustrating that
satisfactory results can be obtained with a low number of rules also
when the number of classes/activities is higher.

5. Conclusions and future work

Socially Assistive Robots (SARs) are increasingly used in dementia
care to help implementing nonpharmaceutic therapeutic interventions.
In this paper, we introduced EFS4SAR, an Evolving Fuzzy logic Sys-
tem for Socially Assistive Robots that combines fuzzy logic systems
with evolutionary algorithms to realize a rule-based decision-making
approach for SARs that autonomously evolves over time in a creative
and therapeutically effective way. EFS4SAR evolves the rules that steer
the decision-making of the SAR taking into account the indications
of the therapists and caregivers and the experience obtained while
interacting with the patients. This leads to a SAR that can provide
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long-term personalization and decision-making that accommodate the
evolving needs of the patients as unique individuals. Additionally, the
use of genetic algorithms and of a diversity factor in the evolution of
the rules allows the SAR to determine rules that are not only aligned
with the preferences of the patients but are also creative, thus suitable
for stimulating and challenging the divergent thinking and cognition of
the patients.

We evaluated our proposed approaches by simulating interactions
between the SAR and hundreds of artificial agents characterized by
different preferences and exhibiting different patterns of behaviors.
We quantified the results via two measures that reflect the standard
definition of creativity: the originality and therapeutic effectiveness
of the activities suggested by the SAR to the patients. Results show
that the proposed approaches can effectively learn the preferences of
the patients while guaranteeing high diversity in the suggestions, and
that the proposal is robust to noise in the feedback received from the
patients. Moreover, we compared EFS4SAR against 9 state-of-the-art
evolving fuzzy systems using 15 data sets based on real-world human
preferences about daily activities. The experiments illustrate that the
activities suggested by the SAR employing EFS4SAR result in similar
effectiveness as other systems, while possessing higher originality.

In the future, we intend to conduct a more exhaustive experimenta-
tion based on more refined and realistic models of patients. We plan to
study the scalability of the proposed solution, including a comparison
of our system with different encodings of the chromosomes, and with
different fuzzy operators for fuzzy inference. Additionally, future work
includes the extension of the evolutionary approach to accommodate
the evolution of the membership functions that characterize the vari-
ables of the fuzzy logic systems; the integration of our approach with
the extensive complementary state-of-the-art approaches for short-term
personalization and adaptation (e.g., adapting the level of difficulty
of a game while playing); and allowing for evolution of the a-rules,
in addition to the c-rules. Finally, a clearly important future direction
consists in the evaluation of the proposed approaches with human
subjects (including patients) interacting with a real robot which will
suggest and perform real therapeutic approaches. In this direction, the
hyper-parameters of the algorithms will need to be optimally tuned
(potentially iteratively after acquiring evidence from the experimental
settings) to provide optimal performance, and the robot will need to
identify and consider in its decision-making social cues and practices
to include personal and institutional norms for dementia patients,
and collect actual feedback measurements related to the therapeutic
outcome, e.g., in terms of decreased measured stress, or increased
cognitive capabilities over time.
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