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Het beeldidentificatie en -restauratie probleem kan het best worden aange-
pakt door een gezonde balans tussen wiskundige hulpmiddelen aan de ene
kant, en heuristiek aan de andere kant.

De noodzaak tot regularizatie van het beeldrestauratieprobleem komt veel
eerder voort uit het slechte conditiegetal dan uit de singulariteit van de ver-
vormingsoperator.

“Regularization” en “Ringing Reduction” zijn doelstellingen die elkaar slecht
verdragen.

Het neurale netwerk ten behoeve van beeldrestauratie voorgesteld door Zhou
is niets anders dan een vereenvoudigde versie van het iteratieve “steepest de-
scent” restauratiealgoritme beschreven in dit proefschrift.

Y.T. Zhou, R. Chellapa, A. Vaid, and B.K. Jenkins, “Digital image restoration using a neu-
ral net”, IEEE Trans. Acoustics, Speech and Stgnal Processing, vol. 36, no. 7, pp. 1141-1151,
1088.

Bij algoritmen gebaseerd op projecties op convexe sets kunnen soms ook
tegenstrijdige voorwaarden tot bruikbare oplossingen leiden. Zowel het Ger-
chberg algoritme voor superresolutie als het Papoulis algoritme voor band-
begrensde extrapolatie zijn voorbeelden hiervan.

R.W. Gerchberg, “Superresolution through error energy reduction”, Optica Acta, vol. 21,
pp. 709-720, 1974.

A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation”, IEEE
Trans. Circuit and Systems, vol. 22, pp. 735-742, 1975.

Alhoewel de maximum likelihood methode voor de identificatie van puntsprei-
dingsfuncties geen unieke fase oplevert, is er normaliter voldoende voorkennis
beschikbaar om deze fase-ambiguiteit op te lossen.




De parallelle identificatiemethode voor vervormde en verruiste beelden zoals
beschreven door Blanc-Féraud levert geen maximum likelihood schatter op.

L. Blanc-Féraud, M. Barlaud, and P. Mathieu, “Image restoration and blur estimation us-
ing a constrainkd maximum likelihood method”, Proc. 8-rd Int. Workshop on Time- Varying
Image Processing and Moving Object Recognition, Florence, 1989.

Met name op het gebied van de beeldcodering worden aan het menselijk
visueel systeem vaak vergezochte eigenschappen toegeschreven ter rechtvaar-
diging van de eigen onderzoeksmethoden.

Het schrijven van een proefschrift kan vooral dan efficient en zelfverzekerd
gebeuren indien het te gebruiken materiaal reeds in een eerder stadium
gepubliceerd is en dus de toets der wetenschappelijke kritiek doorstaan heeft.

“Beter onderwijs” impliceert niet noodzakelijkerwijs “meer schoolsheid”.

Maar al te vaak dient men telefonisch de aankomst van een per elektro-
nische post verstuurd bericht te verifiéren.

Juist in recreatieve competities is het de arbiter niet toegestaan te recreéren.
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Summary

Images are produced in order to record or display useful information. Due
to imperfections in the image formation process (camera, photographic
film), however, the recorded image often represents a degraded version of
the original scene. Although the degradations may have many causes, two
types of degradations are usually dominant: blurring and noise. The field
of image identification and restoration is concerned with the problem of
undoing the effects of imperfections in the image formation process in order
to facilitate the (human) interpretation or further processing (e.g. analysis)
of the recorded image. More specifically the goal of image identification is
to estimate the properties of the imperfect imaging system (blur) from the
observed degraded image, together with some (statistical) characteristics
of the noise and the original (uncorrupted) image. On the basis of these
properties the image restoration process computes an estimate of the orig-
inal image. Applications of image identification and restoration are found
for instance in astronomy, medical imaging, and forensic science, and for
analyzing images of unique events.

In this thesis we are concerned with iterative procedures for identifying
and restoring images which have been degraded by a linear spatially invari-
ant blur and additive white observation noise. As opposed to non-iterative
methods, iterative schemes are able to solve the image restoration problem
when formulated as a constrained and spatially variant optimization prob-
lem. It will be shown that in this way restoration results can be obtained
which outperform the results of conventional restoration filters. In image
identification we will introduce an efficient iterative procedure, known as
the expectation-maximization (EM) algorithm, in order to optimize a com-
plicated and nonlinear likelihood function. Most of the work reported in
this thesis has been published in scientific journals [14,55,57,59).

In Chapter 2 we will discuss various aspects of modeling the image for-
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mation process. These models form the groundwork for the mathematical
treatment of the image identification and restoration problem as discussed
in the remainder of the thesis.

Chapters 3 through 5 address many aspects of the use of iterative
methods in image restoration. In Chapter 3 we will first discuss the ill-
conditionedness of the restoration problem, which means that the observa-
tion noise that is inevitably mixed with the data is amplified enormously if
an inverse filter is employed in the restoration process. Next a concise intro-
duction is given to some well-known restoration filters, such as the Wiener
and Kalman filter, constrained least-squares filter, and the method of pro-
Jections onto convex sets. These methods are collectively called regularized
restoration filters. They all make use of either a stochastic, algebraic, or
deterministic formulation of a priori knowledge about the image to be es-
timated in order to find a compromise between the amplification of the
observation noise and the accuracy of the solution.

Chapter 4 discusses another method to incorporate the fact that the
observed blurred image is always contaminated by noise, namely by ter-
minating the iterative implementation of the inverse filter prior to conver-
gence. As a result a partially restored image is obtained which usually
does not show any serious noise amplification. Additional advantages are
that no matrix inverses need to be implemented, and that the method can
be extended to more complex schemes. Several variations on the stan-
dard iterative restoration filters are derived. Although initially a basic
steepest descent iterative scheme is employed, a number of more efficient
implementations are considered as well.

In Chapter 5 we show that as a result of regularizing the restoration
process, ringing artifacts are introduced in restored images. The iterative
restoration algorithm introduced in this chapter incorporates two methods
to suppress these ringing artifacts, namely (i) the use of deterministic a
priori knowledge, and (ii) the local regulation of the magnification of the
observation noise. Experimental results demonstrate that the proposed
iterative scheme leads to results which are to be preferred to conventional
restoration results in both numerical and visual respects.

Chapters 6 through 8 are concerned with recent methods to solve the im-
age identification problem via a maximum likelihood approach. First, in
Chapter 6 several conventional identification methods are discussed which
are applicable to a rather restricted class of problems. Next the image
identification problem is formulated as a maximum likelihood (ML) prob-
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lem. Unfortunately, the computation of the ML estimator turns out to be
a highly complicated and nonlinear optimization task. We show that all
identification algorithms known sofar in the literature are merely different
implementations of this estimator, resulting from different modeling as-
sumptions (such as noisy or noiseless data), and/or considerations about
the computational complexity or computer resources available (such as a
preference for a recursive or a matrix-vector problem formulation).

In Chapter 7 the iterative expectatation-maximization (EM) algorithm
is applied to the ML image identification problem. This leads to a partic-
ularly elegant algorithm which simultaneously identifies and restores the
noisy blurred image. Whereas the original ML image identification method
requires the solving of a nonlinear optimization problem, the proposed iter-
ative identification procedure requires the solving of linear equations only.
The derivation and performance of this method is discussed in detail.

Although the algorithms presented in Chapters 6 and 7 are mathemat-
ically well defined, they are subject to a number of restrictions in practical
applications such as numerical inaccuracies and the sensitivity of the solu-
tion with respect to the initial estimate. Therefore in Chapter 8 two more
practically oriented image identification techniques are proposed, both of
which are based on the identification method developed in Chapter 7. In
the first method structural knowledge about the blur and image model is
incorporated into the identification process. The second method employs
resolution pyramids in order to estimate the blur in a hierarchical man-
ner. Experimental results on both synthetic and photographic motion and
defocusing blurs are given. The chapter is concluded with an evaluation
of the status quo in image identification and a look into possible future
developments.












Chapter 1

The Image Identification and
Restoration Problem

1.1 Introduction

Images are produced in order to record or display useful information. Due
to imperfections in the electronic or photographic medium, however, the
recorded image often represents a degraded version of the original scene
(Figure 1.1). The degradations may have many causes, but two types of
degradations are often dominant: blurring and noise. Blurring is a form
of bandwidth reduction of the image due to the imperfect image formation
process. It can be caused by relative motion between the camera and
the original scene, or by an optical system which is out of focus. When
aerial photographs are produced for remote sensing purposes, blurs are
introduced by atmospheric turbulence, aberrations in the optical system,
and relative motion between the camera and the ground. Such blurring
is not confined to optical images, for example electron micrographs are
corrupted by spherical aberrations of the electron lenses and CT scans
suffer from X-ray scatter.

In addition to these blurring effects, the recorded image is also cor-
rupted by noises. These may be introduced by the transmission medium
(e.g. a noisy channel), the recording medium (e.g. film grain noise), mea-
surement errors due to the limited accuracy of the recording system, and
quantization of the data for digital storage.

The field of tmage restoration (sometimes referred to as image deblur-
ring) is concerned with the reconstruction or estimation of the uncorrupted
image from a distorted and noisy one. Essentially, it tries to perform an op-



Image Formation

Original Scene Observed Image

Figure 1.1: Image formation systerm.

eration on the image which is the inverse of the imperfections in the image
formation system. It is important in fields such as astronomy, where the
resolution limitations are severe, in medical imaging, where the physical
requirements for high-quality imaging are unacceptable from a biological
viewpoint, for analyzing images of unique events, and in forensic science,
where potentially useful photographic evidence is sometimes of extremely
bad quality.

In the use of image restoration methods, the characteristics of the de-
grading system and the noises are assumed to be known a priori. In practi-
cal situations, however, one usually has hardly enough knowledge to obtain
this information directly from the image formation process. The goal of
tmage identification is to estimate the properties of the imperfect imaging
system from the observed degraded image itself prior to the restoration
process.

In this thesis we will assume that the image formation can be adequately
described by a linear spatially invariant relation and that the noises are
additive. The observed or recorded image ¢(?,7) is then given as

9(2,7) = d(i,5) * f(2,7) + w(1, 5), (1.1)




where d(7,7) denotes the point-spread function (PSF) of the image forma-
tion system, where f(¢,7) is the ideal or original image that would have
resulted from a perfect recording of the original scene, and where w(z, 7)
models the noise in the recorded image. A more detailed discussion about
the development of this model will be given in Chapter 2. In terms of
the mathematical model (1.1) the purpose of image restoration can now
be specified as the computation of an estimate f (7,7) of the original im-
age f(¢,7) when g(z, ) is observed, d(,7) is known and some (statistical)
knowledge of both f(z,7) and w(z,7) is available. The complementary im-
age identification problem on the other hand focusses on estimating d(7, 5)
and the parameters of the statistical models for f(7,7) and w(z,5), from
the observed image ¢(z,7).

Noise constitutes an important limitation in the identification and restora-
tion of images. The amount of noise present in an observed image is given
by the (blurred-) signal-to-noise ratio (SNR):

variance of the blurred image

SNR = 10log,, ( ) (dB). (1.2)

variance of the noise

Because images are nearly always digitally stored, the signal-to-noise ratio
encountered in practical restoration applications is at most 40 to 50 dB.
In this case the noise is not visible. On the other hand, for very low SNRs
the degrading effect of the noise is more prominent than the blurring. For
images that have an SNR less than 10 to 20 dB, the regular image identi-
fication and restoration algorithms are no longer useful, because at these
SNR levels their effect is mainly to smooth out the noise and not perform
any restoration at all. More feasible approaches to restoring such noisy
images are provided by image enhancement techniques.

This thesis will deal exclusively with the digital identification and restora-
tion of monochromatic (black-and-white or gray valued) images. Extension
of the presented methods to color images is straightforward if the color im-
age is described by a vector with three components corresponding to the
tri-stimulus values red, green and blue. Considering each of these as a
monochromatic image in itself, and neglecting mutual relations between
the color components, the processing of a color image becomes equivalent
to processing three independent monochromatic images.
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Figure 1.2: A priori restoration scheme.

1.2 Restoration Methods

Since the introduction of restoration in digital image processing in the six-
ties, a variety of image restoration methods have been developed. Nearly
all these methods assume that the point-spread function d(m,n) of the im-
age formation process is known, and are therefore called a priori restora-
tion. They concentrate on inverting Eq. (1.1) in order to get an estimate
f (2,5) which is “as close as possible” to the original image f (7,7) (Figure
1.2). One of the first methods used in image restoration was to simply
neglect the presence of noise in (1.1) and to invert this equation through
a frequency domain approach (inverse filtering) [3]. Since the amount
of noise is usually not negligible, it will be amplified enormously by the
restoration filter. Therefore this method does not lead to useful results.
Later on less noise-sensitive filters were developed which explicitly in-
corporate the fact that noise is always mixed with the data. These methods
can collectively be called regularized restoration filters [99] and make use
of either a stochastic or algebraic formulation of a priori knowledge about
the image to be estimated. An aspect common to all regularized filters is
that they trade off the amplification of the noise w(z, 5) to the resolution of
the restored image. The class of regularized restoration methods includes
the classical Wiener filter [3], and the constrained least-squares filter of
Hunt [36] — which are usually implemented in the frequency domain —,
and the recursive or Kalman filters in two dimensions of Woods et al. {112],




Biemond et al. [10,11], and Angwin et al. [5], which are implemented in
the spatial domain.

Another method to explicitly incorporate the presence of noise consists
of terminating an iterative restoration scheme prior to convergence. The
limiting solution of such an iterative scheme is usually an inverse or regu-
larized filter. The advantages of the iterative approach is that no matrix
inverses need to be implemented, that the methods can be extended to
more complex iteration schemes, and that the restoration results can be
visually inspected as the iterations progress. The use of iterative schemes
for image restoration has been proposed by many researchers, among which
Kawata et al. [49], Katsaggelos et al. [45,46] and Maeda et al. [64].

More recent developments in recursive and iterative image restoration
concentrate on implementing filters which are spatially adaptive in order to
restore an image dependent on the local image content [4,41,46,47,55,89,98].
In this way restoration artifacts such as “ringing” [55] can be suppressed
significantly and the results are typically superior to nonadaptive restora-
tion results in both visual and numerical respect.

Other directions in image restoration, initiated by Youla et al. {115] and
Sezan et al. [87], have involved the use of deterministic a priori knowledge
about the original image and the noise. Since this knowledge is usually
formulated as (nonlinear) constraints on the restored image, an iterative
technique, known as the method of convex projections [17], is used to find
the image satisfying all the a prior: constraints.

Restoration methods which combine the use of deterministic knowledge
with spatial adaptivity have recently been proposed as well. This combined
approach requires the use of a constrained iterative optimization stategy
[46,51,55], or the use of the method of convex projections [89]. Although
the success of these methods may vary with the image content, they tend
to outperform conventional restoration algorithms which are non-adaptive
and do not make use of a priort constraints.

In most applications we assume that either a human interpreter or another
image processing algorithm, such as a segmentation or analysis procedure,
will be using the image restoration result. It would be ideal if we had
available an evaluation criterion or performance measure that corresponds
to either the human visual system or the requirements of the subsequent
processing steps. Unfortunately, such criteria are hardly available, and the
ones that are known are virtually impossible to use within the context of
image restoration. Therefore restored images are usually objectively eval-
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Figure 1.3: Signal-to-noise improvement as a function of the signal-to-noise
ratio of the blurred image (a) using the exact image formation model pa-
rameters, and (b) using estimated parameters.

uated by using the following quadratic signal-to-noise ratio improvement

measure: o g
nenn = 10logy = W0I) Z SIS gy (g 5
i (f(e,9) = f(i,9))?
where f (7,7) is the restored image. This performance measure can only be
evaluated for controlled experiments in which the blur and noise have been
synthetically introduced, since the undistorted image f(z,7) is required as
well. The maximally achievable signal-to-noise ratio improvement depends
strongly on the content of the image, the type of blur considered and the
signal-to-noise ratio of the blurred image. As an example Figure 1.3 shows
Nsnr as a function of the amount of noise in the blurred image for a typical
image which has been degraded by motion blur of moderate severity.

1.3 Identification Methods

Over the last decade the emphasis in image restoration research has been
on the development and refinement of filtering algorithms. As has been ob-
served by various researchers in this area, all methods utilized in the image




f(4,5) B g(2,7) £,9)
Image Model————» Degradation —#» Restoration ——9»
I
5 A : A
! | 1 {
| [ ]
L= = — Identification -

]

Model Structure

Figure 1.4: A posteriort identification and restoration scheme.

restoration literature have a comparable performance. This may indicate
that image restoration has received maturity, or that the performance lim-
itations of the current generation restoration methods have been reached
and that entirely new directions are required to enforce a breakthrough.
On the other hand the related image identification problem has received
relatively little attention, but is becoming a research topic of increasing
interest.

The general scheme for the combined identification and restoration of
images, sometimes referred to as a posteriort restoration, is given in Figure
1.4. In this figure it is shown that prior to the restoration filtering, the
characteristics of the blur (i.e. the point-spread function d(m,n)) must be
estimated, as well as some (statistical) properties of the noise and the orig-
inal image. Since the estimated parameters will always deviate somewhat
from their true values, the resulting restored image is usually of poorer
quality than the one restored with the exact parameter values (Figure
1.3). In evaluating the quality of the estimated image model, blur and
noise characteristics, it is not sufficient to perform a numerical comparison
between the estimated and the true parameter values. The reason for this
is that the quality of the restoration result varies in a different way for
estimation errors in each of the parameters. Only after restoring an image
using the estimated parameters, can the performance of the identification



algorithms be evaluated. Therefore image identification cannot be consid-
ered as an isolated problem, but must be dealt with in conjunction with
the restoration problem.

The earliest work in identifying the characteristics of the image formation
system concentrated on PSFs which can be modeled parametrically and
of which the spectra show a regular pattern of zero crossings. Since these
zeros can also be located in the spectrum of the blurred image, spectral
or cepstral techniques can be used to identify the PSF from the distance
between spectral zeros of the blurred image [18,93]. The complementary
phase estimation problem was addressed for example in [70]. Shortcom-
ings of this method are that PSFs not satisfying these conditions cannot
be identified and that the presence of noise in the observed data is not
taken into account.

In [96], Tekalp et al. introduced a class of image identification methods
that can handle a wide range of PSFs. In their work, the undistorted
image is first modeled as a 2-D stochastic process and the presence of
noise is neglected. Next, the identification problem is formulated as a
maximum likelihood problem, which turns out to be equivalent to a 2-
D autoregressive moving-average (ARMA) model identification problem.
Several solution strategies were proposed to identify the coefficients of this
ARMA process, such as the 2-D recursive methods of Tekalp et al. [96,97]
and Wagner [107], the parallel banks of conventional 1-D ARMA process
identification methods used by Biemond et al. [13], Katayama et al. [44],
and Blanc-Féraud et al. [15], and gradient-based optimization algorithms
proposed by Lagendijk et al. [52]. Because the noise is initially neglected,
these methods are, however, restricted to blurred images with a relatively
high signal-to-noise ratio.

Of recent date are the image identification methods introduced by La-
gendijk et al. (53,57 and Angwin et al. [4] which are based on a maximum
likelihood approach as well, but which explicitly take into account the pres-
ence of noise in the observed image. Computationally efficient algorithms
based on the reduced order model Kalman filter [5] and the expectation-
maximization algorithm [22] were proposed to optimize the resulting non-
linear likelihood function. As a result of including the observation noise
model, these algorithms outperform the earlier ones in identifying blurred
images with a moderate to low signal-to-noise ratio.




1.4 Scope of the Thesis

This thesis addresses the use of iterative methods in modern image iden-
tification and restoration. The advantages of using iterative optimization
algorithms are that they allow for a more flexible, possibly more complex
but certainly improved formulation of the solution to the identification
and restoration problem. As opposed to non-iterative methods, such as
the recursive or frequency domain filters, iterative schemes can also handle
problems which do not have an explicit analytical solution, but have been
formulated as the optimization of a nonlinear and/or spatially variant ob-
jective function [14]. A disadvantage of iterative solution strategies is that
the computational load is increased significantly compared to non-iterative
methods. However, through the use of suitable parallel or array processing
facilities, even complex iterative methods can be run within an acceptable
amount of time.

This thesis is divided into three parts. In the first part (Chapter 2) various
aspects of modeling the image formation process and of modeling images
are considered. This chapter is important because it forms the groundwork
for the mathematical treatment of the image identification and restoration
problem as discussed in the remainder of the thesis. The image formation
model (1.1) will be discussed in detail. Since this model has some problems
near the boundaries of an image, remedies to this boundary value problem
will be presented as well. Several relevant point-spread functions will be
addressed in this chapter. In image restoration, it is common to model an
image as a 2-D autoregressive process. A brief review of this type of image
model will be given.

The second part of the thesis (Chapters 3 through 5) is concerned with
many aspects of the use of iterative methods in image restoration, and
the relation of iterative methods to other restoration methods. In Chap-
ter 3 we will show that it is required to regularize the image restoration
problem because of its ill-conditionedness. Next, several conventional reg-
ularized image restoration algorithms will be presented. The stochastic
Wiener and Kalman restoration filter will be briefly reviewed. Next, the
class of algebraic restoration methods will be discussed. It will be shown
that stochastic and algebraic regularization methods are based on essen-
tially the same concept. The chapter is concluded with the description of
the method of convex projections. This class of image restoration methods



can utilize a variety of (possibly nonlinear) knowledge about the original
image in order to regularize the restoration process.

In Chapter 4 the application of iterative methods in image restoration
will be discussed from an historical point of view. We will show that
iterative methods have certain advantages over the conventional restoration
methods. More specifically, it will be shown that truncating an iterative
scheme to compute the inverse filter is in fact a regularization method in
itself. This idea is next extended to the regularized filters of Chapter 3, in
this way introducing an additional degree of freedom in some well-known
restoration methods. Various more efficient implementations of the basic
iterative scheme will be considered.

In Chapter 5 we will work towards solving one of the most common
problems in image restoration, namely the introduction of “ringing” arti-
facts as a result of regularizing the restoration filters. To this end, first the
origin of ringing in linear spatially invariant image restoration algorithms
is analyzed. Next, two possible methods to reduce these artifacts are dis-
cussed. A constrained adaptive iterative restoration algorithm is proposed
which includes both ringing reduction methods. As opposed to Chapter 4,
where iterative methods were used to regularize the restoration problem,
iterative methods are used to optimize a spatially variant objective func-
tion subject to a nonlinear constraint in this chapter.

The third and last part of the thesis (Chapters 6 through 8) addresses
recent methods to solve the image identification problem via a maximum
likelihood (ML) approach. First, in Chapter 6 several conventional meth-
ods will be reviewed to estimate the PSF of an image formation system.
Next, we will formulate the image identification problem as an ML prob-
lem, and consider its properties. From this formulation it follows that ML
image identification requires the optimization of a complicated nonlinear
function. It will be shown that all identification methods known sofar in
the literature are merely different implementations of this estimator, re-
sulting from different modeling assumptions and/or considerations about
the computational complexity or computer resources available.

In Chapter 7 the iterative expectation-maximization algorithm that was
developed for optimizing likelihood functions in general, will be applied to
the image identification problem. It will be shown that this iterative ap-
proach yields a particularly elegant algorithm which simultaneously iden-
tifies and restores noisy blurred images. The derivation and performance
of this method will be discussed in detail in this chapter.
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The algorithms presented in Chapters 6 and 7 are mathematically well
defined. However, in applying them to practical situations of interest some-
times an “engineer’s approach” is required, which means that some heuris-
tics need to be incorporated into the solution method. Two more practi-
cally oriented image identification algorithms will be considered in Chapter
8, both of which are based on the iterative identification scheme developed
in Chapter 7. In the first method structural knowledge about the PSF and
image model is incorporated into the identification process. In the second
approach resolution pyramids are employed to estimate the PSF in a hi-
erarchical manner. The performance of the presented image identification
and restoration methods will be illustrated by numerous examples.
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Chapter 2

Image Formation Models

In order to solve the image identification and restoration problem, mathe-
matical models are required for the real-world processes involved in image
generation, formation and recording. It may even be argued that the ulti-
mate goal of image restoration, that is the recovery of the original undis-
torted image, can only be understood and formulated through the use of
mathematical models which reflect in one way or another the a prior: infor-
mation one has regarding the observed image, the image formation process
and the original image. Without such knowledge, the identification and
restoration of a degraded image could probably not be accomplished.

The determination of suitable analytical models is not a trivial problem
in general and requires careful considerations with respect to the level of
abstraction that is acceptable for the application considered. A model that
is too simple probably leads to computationally elegant algorithms which
have, however, no practical relevance. On the other hand, models which do
describe real-world processes in detail are often too complex to be feasible
from an algorithmic viewpoint.

This chapter describes several aspects of modeling noisy blurred images
for the purpose of contemporary image identification and restoration. In
view of the results obtained by many researchers in this area, including
the work described in this thesis, it is arguable that the presented models
achieve an acceptable level of abstraction for a wide class of (but certainly
not all) image identification and restoration problems.

In Section 2.1 the image formation and recording process will be mod-
eled as a linear process. After discussing the fundamental limitations in
establishing the relations between the blurring process in a 3-D continu-
ous world and a 2-D discrete image formation model, we describe both
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a discrete input-output relation and a state-space representation for the
image formation process. In Section 2.2 an input-output relation and a
state-space representation for modeling discrete images will be discussed.
Finally, in Section 2.3 several of the most common 1-D and 2-D point-
spread functions encountered in practice will be discussed.

2.1 Blur Models

2.1.1 Linear Image Formation

It is appropriate to begin by assuming that a three-dimensional (3-D)
object or scene has been imaged onto a 2-D imaging plane by means of
a recording system such as a camera (Figure 1.1). Since image recording
systems are never perfect, both deterministic and statistical distortions
may be introduced in general.

The deterministic degradations introduced by the imaging process may
be very complex [34] for several reasons. In the first place the 2-D imag-
ing system may not be able to capture all 3-D phenomena, such as a
3-D rotation of an object, parallax and 3-D geometry effects. Secondly the
transfer function of the imaging system itself may be very complex because
of diffraction effects in optical systems, system aberrations, atmospheric
turbulence, motion blurs and defocused systems, although the effect of
these imperfections can usually be considered to be a bandwidth reduction
(or blurring) of the recorded scene. Furthermore the severity of the band-
width reduction may vary as a function of the image coordinates (spatially
varying blur). Finally, all kind of nonlinearities due to the response of the
sensor may further degrade the recorded image.

Since modeling and restoring 3-D degradations is virtually impossible
in an image restoration context, we will restrict ourselves to 2-D degra-
dations in this thesis. The nonlinear response of the sensor on the other
hand cannot be discarded without any further discussion. Sometimes it
may be approximated by a linear response, for example the logarithmic
behavior of a photographic medium becomes linear when the image is of
low contrast [3]. If such a linearization is not possible, however, there are
two ways to handle the nonlinearity. The mathematically most elegant
way is to incorporate the nonlinear response into the image formation
model. Unfortunately, such a model yields complex restoration algorithms
[12,37,101], and might even be impossible to use within image identifi-
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cation algorithms. A second more practical approach assumes that it is
allowed to first apply the inverse sensor response to the observed image
before any further processing is done. Although this way of dealing with
nonlinearities has several faults, it has been shown to be unexpectedly suc-
cesful in the practice of image restoration. Throughout this thesis we will
assume that nonlinearities introduced by the sensor can be removed either
by a linearization approach or by applying the inverse sensor response in
advance.

From the above discussion we learn that in many cases of practical interest
it is justifiable to restrict the modeling of the image formation system to the
usually dominant effect of blurring. The entire process then becomes a lin-
ear system characterized by a 2-D point-spread function (PSF) d(z,y; s, ).
For both incoherent optical systems [31] and penetrating radiation systems
the observed image is given by the following 2-D superposition integral [3]:

g(z,y) = /_o; /_o:o d(z,y;s,t)f(s,t)dsdt. (2.1)

Both the original image f(z,y) and the observed image g(z,y) represent
real-valued intensity distributions and take nonnegative values only. As a
result d(z,y; s,t) is real-valued and nonnegative as well.

Unfortunately, the model (2.1) is not very useful for image identification
and restoration purposes, because the complexity implied by the possibility
of having a different PSF d(z,y; s,t) at each coordinate (s,t) of the image
is unacceptable from a computational viewpoint. Furthermore, it is rather
unrealistic to assume that one might be able to estimate a different PSF
for each location in the image simply because of the lack of sufficient infor-
mation for the estimation procedures. We therefore have to assume that
the PSF of the image formation process is stationary or spatially invariant
over (at least a significant portion of) the image, yielding

g(z,y) = /li/.o:od(z—s,y—t)f(s,t)dsdt

= /:Z/:Zd(s,t)f(x—s,y—t)dsdt

= d(:z:, y) * f(z’ y)’ (2'2)

where * is used to denote 2-D convolution.
In order to perform image identification and restoration by using a
digital computer, the discrete equivalent of (2.2) is required. To this end

15



f(z,
—(_-—g)—’ d(:B,y) ™ l(x’y) "}:

Figure 2.1: Image formation and sampling.

the blurred image g(z,y) is sampled on a 2-D regularly spaced lattice with
dimensions M X N after appropriately restricting its bandwidth (see Figure
2.1). Practical values of M and N are 128, 256, 512 or even larger. The
discrete observed image ¢(7, j) is then given by [25]:

9(i,7) = {l{z,y) * g(z, y)}(z,y)=(ix0,jxo)
= {l(I, y) * d(z’ y) * f(za y)}(z,y}z(ixo,jxo)’
t€[0,M~-1],j€[0,N-1], (2.3)

indicating that the samples of ¢(i,75) are taken from I(z,y) * g(z,y) at
the (vertical and horizontal) coordinates (z,y) = (¢ X5, 7X,), where X is
the sample distance and I(z,y) is the spatial response of the bandwidth
restricting filter.

In order to arrive at an expression that is equivalent to (2.3), but is
based on a discrete convolution between the sampled original image f(7, )
and the sampled PSF d(z, 7), (2.3) is rewritten as follows (Figure 2.2):

9(t,7) = {l(z,y) *d(z,9) * f(2, 1)} cy)=(x05x0)
= {Uz,9) * 2, 9)} 2 p)=(ixoixa) * {1(20) * F(2, 9} (2y=(ix0rix0)
= d(i,7) * f(3,7)
= 53 dmn) i - m,j— ). (2.4

Mm=—00 N=—00

The above reformulation of (2.3) is only correct if one of the following two
(mutually exclusive) sets of conditions holds:

(1) - f(z,y) and d(z,y) are bandlimited with maximum spatial fre-
quencies {1; and {1, respectively,
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Figure 2.2: Equivalent discrete image formation system.

— the sample distance satisfies Xo < 1/{2max({s, )}, and

— I(z,y) has a 2-D all-pass character for spatial frequencies less
than max(Qy, ),

(2) - f(z,y) and d(z,y) are not bandlimited,

— Il(z,y) is an ideal 2-D low-pass filter with cut-off frequency {1,
and

— the sample distance satisfies Xo < 1/211..

Under the first set of conditions listed f(z,y) and d(z,y) can be recon-
structed perfectly from their samples f(z,) and d(7, ), respectively, while
under the second set of conditions this is no longer possible because a
part of the information of f(z,y) and/or d{z,y) is lost due to the required
low-pass filtering. In both cases f(1,7), g(¢,7) and d(7,7) can be sampled
without introducing aliasing.

Unfortunately, neither of the two sets of conditions can be satisfied in
practice, because (i) continuous images and PSFs in particular are hardly
ever bandlimited, and (ii) the ideal low-pass filter /(z,y) cannot be realized.
For instance, consider the use of a (CCD) sensor array camera to record an
image. In this case the low-pass filter /(z,y) is implicitly incorporated into
the system by the integrating operation of each array element. Since this
integration does not approximate the required ideal low-pass filtering very
well, the sampled blurred image g(¢, 5) is aliased. As a general conclusion
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we see that (2.4) never describes the actual continuous image formation
(2.3) entirely correct.

Hence, if the discrete model (2.4) is used for the purpose of image iden-
tification and restoration using real-world data, the parameters and res-
tored images obtained may deviate from their actual values not only due
to possible estimation inaccuracies, but also due to the fundamental re-
strictions in sampling and reconstructing images. Nevertheless, we restrict
the discussion in this thesis to the image formation model (2.4), keeping
in mind that if we use relatively high sampling rates, the aliasing effects
in g(7,7) play a negligible role. In that case the discrete model (2.4) is an
acceptable approximation to the continuous image formation process (2.2).

Equation (2.4) is the general expression for a 2-D discrete convolution in
which the imaging system has a point-spread function of infinite support.
In real life, however, the observed intensity at the position (z, ) is only af-
fected by intensity values in a small neighborhood of (¢, 7). In other words,
we may very well replace (2.4) by a system with a finite 2-D point-spread
function (i.e. a 2-D FIR filter):

mo

g9(t,7) = Z i dim,n)f(i —m,7 — n)

m=-—mjn=-n;

= > d(m,n)f(i-m,j-n). (2.5)

m,n€Sy

Here we use $; to denote the support of the PSF, i.e. the finite extent region
where d(m,n) # 0, which may have any shape but is typically noncausal
[3] in the sense that g(z, j) is a function of both past and future pixels with
respect to most definitions of causality in two dimensions [112]. For the
purpose of simplicity we have replaced the double summation symbol by
a single summation symbol in (2.5).

A convenient shorthand notation of (2.5) can be arrived at by row-wise
scanning the image and stacking the data into a vector (called lexicographic
ordering, see Appendix A) [78], yielding

g=Df, (2.6)

where f and g are the lexicographically ordered vectors of size MN x 1. If
a circular convolution is assumed in (2.5), the blurring matrix D (of size
MN x MN) has a block-circulant structure. We will return to the validity
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of this assumption in Section 2.1.3. Because of the properties of d(z,y),
g(z,y) and f(z,y) the entries of the matrix D, and the vectors f and g
are real-valued and always positive.

The advantage of having a circular convolution in (2.5) is that the
eigenvalues and -vectors of D can be computed easily, and are in fact
given by the coefficients of the discrete Fourier transform of d(m,n) and
the discrete Fourier basis functions, respectively (Appendix A). Therefore
an alternative formulation of (2.5) and (2.6) is the frequency domain model

G(u,v) = D(u,v)F(u,v). (2.7)

Here capitals denote the Fourier domain samples and u,v the discrete ver-
tical and horizontal frequency variables.

Besides the deterministic distortions described to this point, recorded im-
ages are invariably degraded by stochastic degradations, usually referred
to as observation noise. It may originate from the image formation pro-
cess, the transmission medium, the recording process, quantization of the
data or any combination of these [3]. In this thesis we will model the
noise contributions as an additive zero-mean white Gaussian noise process
with variance o2, which is statistically uncorrelated with the images. This
is a simplification since noises such as film grain noise and noise due to
photon statistics are not uncorrelated with the input and may even be
non-additive. This simplification nonetheless leads to identification and
restoration methods which can be applied to a wide class of problems.

Denoting the noise contribution by w(t,5), w or W(u, v), the complete
image formation model becomes (Figure 2.3):

9(:,7) = Z d(m,n)f(i —m,j —n) +w(t,7), (2.8)

mneS,

which is alternatively written as the following matrix-vector or frequency
domain relation:

g = Df+w, (2.9)
G(u,v) = D(u,v)F(u,v) + W(u,v). (2.10)
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Figure 2.3: Discrete image formation model.

2.1.2 State-Space Representation

The models presented in the previous section describe the image formation
system through an input-output relation of a linear system. Another way
to describe such a system is through the use of a state-space representation,
as is common in for example recursive filtering. Once an ordering of the
image data has been chosen (causality condition), the 2-D image formation
model can be converted into an equivalent 1-D model by the use of a state.
The state at the image coordinates (m,n), denoted by s(™") has to be
chosen in such a way that it includes all past and present information
(pixel values) to determine future responses uniquely. We note here that
converting the 2-D FIR model (2.8) into a state-space representation is
not very useful by itself. However, in combination with the state-space
representation for the image model, which will be introduced in Section
2.2.2, these equations form the basis for Kalman restoration filtering in
two dimensions [112].

There are many ways to define the concept “state” in multiple dimen-
sions. Here we follow the approach of Woods et al. [111,112] in ordering
the image data, which consists of scanning the image row-wise. For a given
support S; of the PSF, the state now includes all image rows over which
the PSF extends. In order to obtain a causal support for the state from the
usually noncausal PSF the observations are delayed over a suitable vertical
and horizontal distance (or in other words, a fixed delay model is used).
If the PSF has a support of size (m; + my + 1) x (n; + ny + 1), a suitable
definition of the state is:
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Figure 2.4: Example of a state definition for a 3 x 3 point-spread function.

3("].) = {f(h])vf(%] - 1)" . -,f(i,O),
fG—-1,N-1),f(:—1,N=2),---, f(: — 1,0),
...... (6 —my —mag, 5 —ny —na)]t. (2.11)

As an example Figure 2.4 shows the state of a system related to a noncausal
PSF having a 3 x 3 support Sj.

Based on the definition of the state, the observation model (2.8) can
be cast in the following form:

g4(1,7) = d's%) + w(i, 7). (2.12)

Here g4(7,7) denotes the observations g(7,7) which are delayed over a fixed
vertical and horizontal distance m; and n,, respectively. Further, the blur
vector d is of the same dimension as the state 8("/), and contains'the
appropriately arranged PSF coefficients d(m, n).

2.1.3 Boundary Value Problem

In nearly any practical situation an image is recorded by a device of finite
spatial extent. As a result not all the data f(¢, ) that is required to model
(i, ) through (2.8) is available, since the convolution extends beyond the
boundaries of the image. This problem is known as the boundary value
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problem in image processing, and requires special attention in image iden-
tification and restoration when real-life data is used. Although at a first
glance the boundary value problem appears to have a (negligible) effect be-
cause only the boundaries are incorrectly modeled, a more detailed analysis
reveals that it has a global effect on the identification and restoration task
[113], and deteriorates the performance of these significantly.

In order to avoid the modeling errors near the boundaries from affect-
ing the interior of the (restored) image, the blurred image needs to be
preprocessed prior to the identification and restoration process. The miss-
ing data just outside the boundaries of ¢(1,7), called boundary values, are
substituted by values which are a close approximation of the true values at
these locations. Several methods have been proposed to assign boundary
values [4,15,112,113]:

¢ the boundary values may be fixed at the (local) image mean,

e the boundary values can be given as random values with a mean and
variance the same as those measured from the image, or they can be
obtained by a model based extrapolation,

e repeat or mirror the P first and last rows and columns to obtain the
boundary values,

o the effective size of the image to be restored can be reduced so that
the data which is no longer a part of this reduced image can be used
as boundary values,

e a circulant approximation of the image can be made where the left
and right, and the upper and lower boundaries are thought to be
connected.

The last two methods have shown to be most useful in an image restoration
environment [4,113]. Reducing the effective image size seems to be tailored
best to recursive methods, especially with regard to the implementation
aspects of linear convolutions in (2.8) [4]. In restoration methods that em-
ploy discrete Fourier transforms, the circulant approximation of an image
is most popular, because the evaluation of (circular) convolutions using
DFTs relies on the same assumption [30].

If, however, the blurred image is assumed to be circulant, intensity
jumps may occur at the boundaries due to possible intensity differences
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between the left and right and the upper and lower boundaries of the im-
age. These intensity jumps introduce leakage frequencies into the blurred
image which are not present in the actual data. During the deconvolution
action of the restoration filter certain leakage frequencies may be amplified
enormously, which will give rise to spurious oscillations dominating the en-
tire restored image. Therefore, if an image is either implicitly or explicitly
regarded as being circulant, the leakage frequencies must be suppressed.
In practice this can be done to a sufficient degree by a linear or third or-
der interpolation of the intensity difference between the facing boundaries
[113].

Summarizing, in those regions of the image where the observation
model does not fit the actual data very well due to boundary effects, we do
not adapt the model, but preprocess the data such that (2.8) is consistent
with either a linear or circular convolution. In this thesis we will assume
that (2.8) indicates a circular convolution when we consider DFT imple-
mentations of image identification and restoration algorithms, so that D
can be assumed to be block-circulant. In the recursive implementations
(2.8) represents a linear convolution, so that D has a block-Toeplitz struc-
ture. In both cases, it will be assumed that the image data has been
preprocessed appropriately.

2.2 Image Models

Many image identification and restoration methods make use of a priori
knowledge about the structure of the original image. In this section we will
restrict the discussion to modeling statistical characteristics of discrete im-
ages through the use of 2-D autoregressive models. A comprehensive sur-
vey of these images models can be found in [9,40,43], including extensive
discussions about fitting image models, the model quality and model sta-
bility. In Chapter 3 other ways of formulating a priori knowledge about
images will be addressed.

2.2.1 2-D AR Modeling

The development of a suitable model for discrete images requires a tradeoff
between the accuracy of representation and its utility in image identifica-
tion and restoration. In view of the experimental results obtained by many
researchers in the area of image restoration, we use a 2-D autoregressive
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(AR) model driven by an independent zero-mean! white noise process with

variance oZ:

f&9) = 3 alk,)f(i—k,j—1) + (s, 1)

klES,
a(i,5) * f(,7) + (3, 7). (2.13)
Here a(k,) denote the minimum mean squared error (MMSE) image model
coeﬁicients which are computed by minimizing the variance of the noise
process 02 = E[v(¢,7)?]. In this respect v(i,7) may also be regarded as
the modeling error between a complex real-world image and the relatively
simple autoregressive process fitted onto this data.

Different models result from different choices of the image model sup-
port S,. Some common choices for the model support are:

{(k,0): (k>0,l>0)n(k+1>0)} , quarter plane
s = {(k,1) : (k>0,l <0)uU(k>0,l>0)} ,nonsymmetric halfplane
) (kD) : (k> 0,¥1) U (k =0,V # 0} , semi-causal
{(k,1) : V(k,1) # (0,0)} , noncausal.
(2.14)

Experimental evidence shows that the order of the image model, that is
the size of the support S, is not very critical in an image restoration set-
ting. For this reason we restrict ourselves to first order models (see Figure
2.5). A remark about the statistical properties of v(7,7) is required here.
Assume that we have available a real-life image, and we fit an image model
onto this image by minimizing o? (see Section 2.2.3). Then the assumption
of v(7,7) being a white noise process holds only if the support of the image
model used is causal and has an infinite order [110]. However, if we use a
finite model order, the causal image model will not lead to a white noise
process driving the autoregressive model, unless the image to be modeled
is a realization of a 2-D homogeneous discrete Markovian field {110]. Since
this requirement is rarely met, (2.13) is a suboptimal model with respect
to the statistical properties of the driving noise v(s, ).

Y

The image model (2.13) can only be of use in image identification and
restoration if it is BIBO (bounded-input, bounded-output) stable. A gen-
eral criterion for the image model stability is given by the following z-
transform of the image model [9,40]:

! This assumption is conflicting with the fact that image intensities are nonnegative.
Therefore, the observed noisy blurred image is usually corrected for its mean value in
order to satisfy the zero-mean assumption.
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Figure 2.5: Model support for various first order image models (a) quarter
plane model, (b) nonsymmetric halfplane model, (c) semi-causal model,
and (d) noncausal model.

B(z1,2z;) = 1— Z a(k,l)z;kz;' £ 0,
k€S,

for |z;] > 1 and |z3| > 1, causal models,
for |z;] > 1 and |z;| = 1, semi-causal models,

for |z;] = 1 and |2,;| = 1, noncausal models. (2.15)

When a set of image model coefficients is computed by fitting a causal
image model onto a given image, the stability of the resulting image model
is assured [40].

An alternative more compact notation of (2.13) is given by
f=Af+v, (2.16)

where f and v are the lexicographically ordered images f(7,7) and v(¢,7),
respectively, and where A is the image model matrix of size MN x MN. If
the boundary value problem is solved by assuming that f(¢,7) is circulant,
the convolution in (2.13) is circular and A has a block-circulant structure.
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In this situation DFTs can be used to yield the frequency domain relation

1

Flu,v) = 1— A(u,v)

V (u,v). (2.17)

Observe that because we have assumed that the image model (2.13) is
stable, B(21,22) in (2.15) does not have zeros on the unit bi-circle and
hence the reciprocal of (1 — A(u,v)) exists for all (u,v). Because of the
same reason the matrix (I — A) is always nonsingular.

2.2.2 State-Space Representation

If 2-D recursive procedures are used to identify and restore a noisy blurred
image, the stochastic image model (2.13) needs to be converted into a
state-space model through a procedure similar to the one described for
converting the observation model (2.5) into a state-space representation.
Although the choice between the various image model supports typically
depends on the model quality, algorithmic complexity and a preference
for causal, semi-causal or noncausal supports, the nonsymmetric halfplane
(NSHP) support has various advantages over the others, as becomes ap-
parent in for instance Kalman filtering in two dimensions [111,112] and
the factorization of 2-D spectra [24,111]. Further, the NSHP image model
immediately allows for a 2-D recursion without the necessity to delay the
observations. Eq. (2.13) is written in a state-space form as:

8(09) = pglia-1) 4 1,0,0,---,0]*v(3, 7), (2.18)

where T is the state transition matrix containing the corresponding NSHP
image model coefficients a(k,!). If we restrict ourselves to first order NSHP
image models, the following pixels from f are included in the state 8(4) at
the coordinates (7, ) [111] (Figure 2.6):

) = [1(4,5), f (65 = 1)+, £(5,0),
fl-1,N-1),f(i —1,N=2),---, f(s — 1,5 — 1)]*.(2.19)

The dimension of the state vector equals the number of columns in the

image plus 2. For higher order NSHP models the state will extend over
multiple image rows.

26




LLtlagddd i _cueL
Ll ddddadaalmb b

J.J-l-l—l—l

b i B B et Al el o
T T C

-4

Figure 2.6: State definition for a 1-st order NSHP image model.

2.2.3 Model Fitting Problem

In this section we will briefly review the computation of the MMSE image
model coefficients a(k,!) based on the autocorrelation function of a given
(original) image. The MMSE image model coefficients are obtained by
minimizing the variance of the driving noise, given by

=E[{f(6,7) — > alk,D)f(i -k, 5 -1}, (2.20)

k€S

with respect to a(p,q) for (p,q) € S,. Straightforward evaluation of this
minimization problem yields:

El{f(5,5) ~ Y a(k,)f(s—k,j—)}f(i—p,j—q))=0.  (2.21)

k€S,

Rewriting these equations leads to the Yule-Walker equations:

rff(paq) = Z a(k’l)rff(p —k,q— l)’ V(p, Q) € Sas (2'22)
k,l€8a
03 = r,-f(0,0)— Z a(k,l)rf/(k,l), (2.23)
k,lES,

where the autocorrelation coefficients of the original image are defined by
rss(p,q) = E[f(¢,5)f(i — p,7 — g)]. From the above set of linear equations
the image model coefficients can be determined immediately.
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2.3 Common Point-spread Functions

In this section several of the most common point-spread functions encoun-
tered in practice are discussed. The point-spread functions will be specified
as parametric functions d(s,t;%), where the parameter (-vector) ¢ deter-
mines the severity of the blur.

Since the blurring of images is basxcal]y a continuous process, we will
present the PSFs in their continuous formulation. In digital image identi-
fication and restoration, however, we make use of the discrete model (2.8).
As was discussed in Section 2.1.1, an exact relation between the discrete
PSF d(m,n) and the continuous PSF d(s,t;%) cannot be established due
to aliasing problems. As an approximating approach we assume that the
sample rate is chosen sufficiently high in order to minimize the modeling
errors, and that a simple square sensor array is used to sample the PSF.
In mathematical form the discretized PSF d(m,n) can then be given as:

d(m,n) = / oy dlsstiw) dsat, (2.24)
N(m,n
Q(m,n) = {st’m—l<s<m+ln—l<t<n+—1-} (2.25)
SR 2= "= 2’ A

A point-spread function cannot take arbitrary values. In the observation
mode] (2.1) it was observed that the original and recorded image are non-
negative real-valued quantities because of the physics of the underlying im-
age formation process. As a consequence, the PSFs d(s,t;v) and d(m,n)
need to be nonnegative and real-valued as well.

In addition to this, the imperfections in an image formation system
normally act as passive operations on the data, i.e. they do not absorb or
generate energy. Consequently, all energy arising from a specific point in
the original image should be preserved, yielding

/ / (s,2;¢) dsdt = 1.0. (2.26)
A discrete PSF is constrained to satisfy

> d(m,n) = 1.0. (2.27)

m,n€ESy

In the following we will present four common point-spread functions, which
are encountered regularly in practical situations of interest.
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2.3.1 Linear Motion Blur

Many types of motion blur can be distinguished [34], all of which are due
to relative motion between the recording device and the object. This can
be in the form of a translation, a rotation, a sudden change of scale, or
some combinations of these. Here only the important case of a translation
will be considered.

When the object translates at a constant velocity V under an angle of
¢ radians with the horizontal axis during the exposure interval [0, 7], the
distortion is one dimensional. Defining the “length of motion” by L = VT,
the PSF is given by:

,if Vet +t2 < % and s/t = —tan @,

, elsewhere. (2.28)

d(s,t;L,¢) = { §

The PSF in this case is space-invariant (stationary), but if only a part
of the image is subject to translational motion, the overall distortion is
obviously spatially variant.

2.3.2 Uniform Out-of-Focus Blur

When a 3-D scene is imaged by a camera onto a 2-D imaging plane, some
parts of the scene are in focus while other parts are not. If the aperture
of the camera is circular, the image of any point source is a small disk,
known as the circle of confusion (COC). The degree of defocus (diameter
of the COC) depends on the focal length 7 and the aperture number n
of the lens, and the distance P between camera and object. If the camera
is focused sharply at an object at distance S, the diameter of the COC,
denoted by C(P), is given by [77] ‘

7$ 728 _ 7
cor={ TgoEEE EIT em
—me=n TeEen T for F<P<S.

To obtain a complete model for defocusing we need to know the intensity
distribution within the COC caused by a point object. An accurate model
includes the effect of diffraction [31]. If, however, the degree of defocusing
is large relative to the wavelengths considered, a geometrical approach can
be followed [94], resulting in a uniform intensity distribution within the
COC. The PSF of this uniform out-of-focus blur with a radius of R = Q_(zﬂ
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is given by:

0 , elsewhere. (2.30)

1 H 2 2
d(s,t;R)z{ o Vet + 2 <R,

2.3.3 Atmospheric Turbulence Blur

Atmospheric turbulence is a severe limitation in remote sensing and aerial
imaging as used in for example weather predictions. Though the blur in-
troduced by atmospheric turbulence depends on a variety of factors (such
as temperature, windspeed, exposure time), for long-term exposures the
point-spread function can reasonably well be described by a Gaussian func-
tion [66]:

2 42

S t

d(s,t;o05) = Cexp {— +2 } . (2.31)
204

Here o; determines the severity of the blur. The constant C is chosen

in such a way that (2.26) is satisfied. Observe that since the above blur

model does not have a finite support, it has to be truncated properly.

2.3.4 Scatter Blur

X-ray images show detail by the varying amount of radiation that was
absorbed by the object being radiated. Unfortunately, the X-ray quanta
are also scattered from their incident paths, resulting in a distribution of
radiation about a point [3]. Again, there are many factors which influence
the PSF resulting from this scatter, but within diagnostic energy ranges
the PSF may be described sufficiently accurately by the following radially
symmetric PSF [108]:

C
(82 + (s? +12))

d(s,t; B.) = (2.32)

Here 3, determines the severity of the blur, and is a function of the distance
between the radiated object and the detector. The above PSF needs to be
truncated properly to obtain a support $; of finite extent.
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Chapter 3

Regularized Image Restoration

In the previous chapter we have established the mathematical framework
for image restoration by developing relevant models for both real-world
images and the image formation process. The purpose of image restoration
can now be formulated as the estimation of an improved image 3‘ of the
original image f when a noisy blurred version g, given by

g=Df +w, (3.1)

is observed. In Chapters 3 through 5 we assume that the blurring matrix
D is known. Further, some statistical knowledge about w and f is assumed
to be available. Specifically, we will assume that the image model

f=Af+0v (3.2)

is feasible. Methods to obtain the parameters of these models will be
addressed in Chapters 6 through 8.

The direct inversion of the matrix D does not lead to useful restoration
results, because of the ill-conditionedness of D, as will be discussed in the
first section of this chapter. Procedures to stabilize the inversion of an
ill-conditioned matrix are called regularization methods, and make nearly
always use of a priort knowledge about the original image and the noise.
In Section 3.2 through 3.4 we will examine some particular approaches to
regularize the ill-conditioned image restoration problem. In Section 3.2
linear methods will be discussed which make use of stochastic models to
formulate a priort knowledge. An alternative, though related approach is
the algebraic regularization approach which will be presented in Section
3.3. This chapter is concluded with the review of a nonlinear method that
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is probably most intimately related to “the use of a priori knowledge”,
namely to explicitly enforce the solution of the restoration problem to
satisfy multiple a prior: constraints. In the next chapter we will investigate
the use of iterative methods to achieve regularization.

3.1 Ill-Conditionedness of the Image
Restoration Problem

The simplest approach to the inverse problem of restoring images is to
use a filter whose response, formulated as the matrix operator D71, is the
inverse of D [3] in the sense that

DD =1, (3.3)

where I is the identity matrix. If such an inverse filter exists, its output
will be equal to

f=D'g=f+D'w. (3.4)
The restored image is thus equal to the desired image plus inverse filtered
noise. Unfortunately, there are several problems with the above approach,
which we can analyze best through the use of an eigenvalue expansion of
the above linear equations.

Let {2u;u € [0,M —1],v € [0, N — 1]} denote the eigenvectors of unit
length associated with the blurring matrix D and let A,, denote the corre-
sponding (complex-valued) eigenvalues (see Appendix A). For the purpose
of simplicity, we assume that D and D' have the same set of eigenvectors.
As a result the eigenvectors z,, are mutually orthogonal, and f can be
expanded in terms of these eigenvectors as follows:

f = Z(}:zuv)zuv = Z(D_lgazuv)zuu

u,v u,v

= Z—i.(ga Zuu)zuv (3.5)

u,v ’\uu

= Z ! (Df+wszuv)zuv

u,u }‘uv

= Z(f’zuv)zw +Z )‘tu (wa zuu)zuu- (3.6)

u,v u,v

The first term on the right hand side in (3.6) represents the original image
f expanded in terms of the eigenvectors of D, and the second term is
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an observation noise related term. Based on the above expansion the
restoration error f — f can be bounded by

17 =111 < 5 gyl ) (3.7

where || - || denotes the regular Euclidean norm, i.e.:

PRSPk 1/Zlf 1,5) % (3.8)

In practice the above eigenvalue expansion may be hard to realize when
dealing with images, primarily because computing the eigenvectors of a
huge matrix of size MN x MN is virtually impossible. However, recalling
that D has a block-circulant structure when it is related to a spatially-
invariant circular convolution, the eigenvalues \,, are given by the 2-D
discrete Fourier transform coefficients D(u,v) of d(m,n}, and the eigen-
vectors are given by the basis functions of the 2-D DFT. Relations such
as (3.6) may therefore immediately be interpreted as a frequency domain
relation, e.g.

F(u,v) = F(u,v) + W (u,v). (3.9)

1
D(u,v)
Based on (3.6) or (3.9) we see that if the blurring matrix D has eigenvalues
which are equal to zero, the inverse filter may not exist.

Even if D has non-zero eigenvalues only, there are usually problems
due to excessive noise amplification at higher frequencies as represented
by the second term on the right hand size of (3.6) or (3.9). This is because
the transfer function of the blur (defined as |D(u, v)|) is typically highest
at low frequencies (or eigenvectors number) and rolls off significantly for
higher ones (the blur acts like a low-pass filter). The spectrum of the ob-
servation noise, on the other hand, typically contains relatively much high
frequency components. Thus at high frequencies, W (u,v)/D(u,v) may
take very large values so that 7 is dominated by the inverse filtered noise,
yielding useless solutions. The restoration error || -7 || will practically be
unbounded in this case.

The dilemmas involved in solving inverse problems of the form (3.1) were

first studied by Hadamard [33]. He observed that the solution f could
differ by an arbitrary large amount from the true solution due to small
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errors (noise) in measuring the observed signal. Based on his investi-
gations and that of later mathematicians, the term “ill-posed” or “ill-
conditioned”! problem was introduced to denote the class of problems
which behaved in a similar manner. It has widely been recognized that
the (image) restoration problem as addressed in this thesis is always an
ill-posed problem, though its severity may vary from moderate (Gaussian
PSFs) to very severe (strongly bandlimiting PSFs such as motion blur)
[1,3,7,42,46,61,73,76,81,91].

The main objective in solving ill-posed problems is [74,99] “the con-
struction of a physically acceptable and meaningful approximation of the
true solution that is sufficiently stable from a computational point of view”.
If we are to obtain a useful approximate solution to (3.1), we must modify
the problem in such a way that the solution becomes less sensitive to noise
in the observed image (well-posed problem). At the same time the solu-
tion of the modified problem must be close to the solution of the original
problem. The process of achieving a compromise between these conflict-
ing goals is referred to as “regularization”, and is typically controlled by
one or more regularization parameters. Nearly all concepts used in reg-
ularization are based on incorporating a priori knowledge about either
the true solution or the noise into the algorithm which solves the image
restoration problem. In the next sections we will address the stochastic
and algebraic approaches to regularization, which yield essentially linear
restoration methods, and a nonlinear regularization approach based on the
use of deterministic constraints.

3.2 Stochastic Restoration

3.2.1 Bayesian Methods

Bayesian estimation methods are used when the a posterior: probability
density function (PDF) of the original image, given the observed image, can
be established. To this end the PDFs of f and w are required. Although
these PDF's are hardly ever known exactly and might take any shape, it is
often justified in practice to assume that both the noise process w and the

1The term ill-conditionedness is reserved for ill-posed problems in finite dimensional
spaces (matrix operators). In general, ill-posedness in an infinite dimensional space is
harder to tackle than ill-posedness in a finite dimensional setting. Similar solution tech-
niques are however being used for ill-posed and ill-conditioned problems.
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original image f are multivariate Gaussian with zero-mean and correlation
matrices Ry, = 021 and Ryy, respectively. These assumptions essentially
form the a priori knowledge used to regularize the restoration problem in
a Bayesian approach.

The Bayesian estimator of f maximizes the a posteriori PDF p(f/g) with
respect to f. Using Bayes’ law and some basic mathematics we get 3]

p(f/g) = MI%Q

= Cexp{(g - Df)'RZL(g - Df) + F'R7}f}.  (3.10)

Optimization of (3.10) with respect to f yields the MAP (maximum a
posteriori) estimator:

} = [p'D+ R..R;}] T D'y (3.11)
This restoration filter can easily be implemented using DFTs because all
matrices involved are block-circulant. With hindsight we note that (3.11)
has a form similar to the Wiener filter and the Tikhonov-Miller regularized
filter. The analysis of the properties of (3.11) will therefore be deferred to
Section 3.3.

Associated with the MAP estimator is the ML (maximum likelihood)
estimator which considers f as a nonrandom vector, and maximizes the
likelihood function p(g/f) with respect to f. This yields the following
solution:

a

-1

7 =[p'D]" DY, (3.12)
which reduces to the inverse filter in this case [3]. Thus, if f is regarded
as being nonrandom, no model is assumed for the original image, which
yields a nonregularized (and therefore useless) solution when the observed
image is noisy.

3.2.2 Wiener Filtering

The Wiener filter or linear minimum variance estimator is designed to min-
imize the mean-squared error between the original image and the restora-
tion result. Denoting the Wiener filter by a matrix H,, we get:

H, r;}ifE[(f - NI -0l (3.13)

where 7 = H,g. (3.14)
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Here the ill-conditionedness of the restoration problem is handled by the
use of the mean-squared restoration error criterion. The solution to this
rather classical problem is given by

N -1
J=H.g=[D'D+Ru.R;}|” D'y, (3.15)
which is identical to the MAP estimator under the multivariate Gaussian
assumptions. If we do not incorporate the fact that the blurred image is
noisy, i.e. 02 = 0 and hence R,, = O, the Wiener filter reduces to the
inverse filter.

3.2.3 Kalman Filtering

Another solution to linear mean-squared error image restoration uses a
Kalman filter. To this end we replace the image model (3.2) and the
observation equation (3.1) by their state-space counterparts (2.12) and
(2.18):

8@ = 146371 4 11,0,0,--,0) (s, ), (3.16)
9(i,7) = d's®) + w(i, ). (3.17)

The state at the coordinates (¢,7), denoted by s*), contains all the pix-
els that are required to determine future responses of the above dynamic
system uniquely. It can be formed by considering the union of the states
described in the Sections 2.1.2 and 2.2.2. Figure 3.1 shows the state defi-
nition for the above system when the image model has a 1-st order NSHP
support S, and the blur has a 3 x 3 support ;.

Since the above model equations are essentially one dimensional, a stan-
dard 1-D Kalman filter, such as [50|, can be applied to restore the image
[111,112]. Tt conmsists of two stages: a prediction step (denoted by the
subscript “b”) and an update step (denoted by the subscript “a”):

3 = palia-n), (3.18)
300 = 38 4 k6D [g,(4, 5) — dtal). (3.19)
Here k"7 denotes the Kalman gain, computed via
k6D = piNd|d P + 62)1, (3.20)
P = TPYIIT 4 62)1,0,---0f[1,0, - 0], (3.21)
PG = (I~ ktgt)pi), (3.22)

36




(e.g. 256 pixels)
-

past

(5.9)
( S

t (extends over
2 rows)

iG55

(@, 7) future

Figure 3.1: Example of a state definition for Kalman filtering in two di-
mensions.

Here P,(,i’j ) and P((f’j ) denote the predicted and updated covariance matrices
of the state:

PP = E[(a6) - 37 (o6 — 3y, (3.23)
PN = B{(s6) = 300) (869 - 50, (5.29)

The combination of (3.20) - (3.22) is usually referred to as the Ricatti
equation for the computation of the Kalman gain.

Unfortunately, the dimension of the state may be very large for 2-D
blurs. For example, in Figure 3.1 the state contains more than 500 ele-
ments for an image with 256 columns. Therefore, the use of the optimal
Kalman filter implies extensive computation, which hampers its practi-
cal applicability. A suboptimal but efficient alternative to the above 1-D
Kalman filter in two dimensions was presented by Woods et al. [111,112]
who essentially reduced the update of the state in (3.19) to those ele-
ments of the state which are within a certain distance of the current pixel
(¢,7) (reduced update Kalman filter: RUKF). More recently Angwin et al.
[5] proposed to replace the exact state-space representation of the NSHP
image model by an approximate one which uses a state of much lower di-
mension. As a result they are able to employ the optimal 1-D Kalman
for their approximate image model (reduced order model Kalman filter:
ROMKEF). ’
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In contrast to these scalar Kalman filters Biemond et al. developed a
Kalman filter for vector observations in which the image is restored line-by-
line [10,11]. By using a decorrelating row transform, such as a DFT [10] or
DCT [15], this filter for vector observations reduces to a set of parallel 1-D
scalar filters. Comparable restoration results were reported for the various
(approximating) implementations of the Kalman filter in two dimensions.

3.3 Algebraic Restoration

3.3.1 Tikhonov-Miller Regularization

Tikhonov and Arsenin [99] were the first to study the concepts of regular-
ization in a general setting, though some important prior work had been
performed by Phillips [75] and Twomey [105] and a number of Russian
mathematicians. Their work was applied later on in image restoration by
Hunt [36] and Katsaggelos [46]. The idea is to define a criterion to select an
approximate solution from a set of feasible solutions. On the basis of the
observation model (3.1) it is plausible that the class of feasible solutions is
described by R A

o(f) = llg = Df|| < |lwl = (3.25)

The bound ¢ is related to the uncertainty or noise in the observed image
g, and can usually be estimated from a smooth image region. The set
of feasible solutions is primarily populated with unacceptable solutions
because of the ill-conditioned nature of the restoration problem. Tikhonov
defined the regularized solution as the one which minimizes a stabilizing
functional Q2(f) on the set of feasible solutions.

Although a wide class of different stabilizing functionals is available,
including for example the maximum power [102] and maximum entropy [32]
measures, usually a stabilizing functional of the following form is chosen

to facilitate the mathematical analysis of the problem [7,74,99]:
n(F) = |c7|. (3.26)

Here C is a real-valued matrix of size MN x M N, known as the regular-
izing operator. In order to be able to evaluate (3.26), C is restricted to
have a block-circulant structure. The required properties of this operator
will be discussed in Section 3.3.2.
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The computation of the regularized solution now reduces to the minimiza-
tion of (3.26) subject to (3.25). Using the method of undetermined La-
grange multipliers we need to minimize the objective function

&(7) = llg - DF|I* + el|CTI? (3.27)

with respect to ? . The regularization parameter a is chosen so that (3.25)
is satisfied with equality.

Another related approach was suggested by Miller in [67], who sug-
gested to replace the minimization of {3 f) by the following bound:

0(f) = |cF| < E. (3.28)

Egs. (3.25) and (3.28) can be combined into a single quadrature formula,
yielding X R X
8(f) = llg— DIII* + (¢/E)’||ICSI® < 2¢. (3.29)

The result is identical to the Tikhonov result with a = (¢/E)2. If a solution
7 satisfies the bounds in (3.25) and (3.28), then it will also satisfy (3.29).
Conversely, if a solution f satisfies (3.29), then (3.25) and (3.28) are also
satisfied except for a factor of at most V2 [67], which is insignificant for
practical cases. Other ways to select feasible values for « are reported in
for example [29,92,109)].

Among the solutions satisfying (3.29) a reasonable choice is the one
which minimizes ®(f), called the Tikhonov-Miller regularized solution.
This minimization is straightforward and leads to the following solution:

(D'D + oC*C)f = D'y, (3.30)
which is equivalent to
7 = (D'D + oC'C)™' D'y, (3.31)

provided that (D'D + aC*C) is invertible. An alternative to the direct
computation of f in (3.31) is the iterative implementation that will be
discussed in Chapter 4. .

The Tikhonov-Miller regularized solution is a linear filter that has the
same form as both the MAP estimator and the Wiener filter. We will
elaborate on the formal relation between these methods in Section 3.3.2.
The restoration filter (3.31) formulated in the discrete frequency domain
was first introduced by Hunt in [36] as the constrained least-squares filter.
For C = I and o — O the constrained least-squares filter becomes the
pseudo-inverse filter (3], which minimizes the norm of the restored image
subject to the condition (3.25).
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3.3.2 Choice of the Regularizing Operator

In order to be effective the Tikhonov-Miller regularization has to reduce the
noise sensitivity of the restoration process. In this section we will analyze
the effect of regularization through an eigenvector expansion of (3.30), and
give a qualitative description of the intended effects of the regularizing
operator. '

Let {z,,;u € [0,M —1],v € [0, N — 1]} denote the eigenvectors asso-
ciated with the blurring matrix D, the regularizing operator C, and their
transposed version D' and C*, and let )., and u,, denote the eigenvalues of
D and C, respectively. In this thesis we restrict the discussion to matrices
D, D', C and C that have the same eigenvectors. This is a valid assump-
tion, for example, for the important case when the associated convolutions
are circulant and spatially invariant. Similar expressions as the ones that
will be given in the following can be derived for the more general case when
D, D', C and C* have different eigenvectors. Such a more complex analysis
does, however, not provide more insight in the effects of regularization.

The Tikhonov-Miller solution in (3.31) can now be given by [46,72,73,74]

I=r

Clearly the effect of regularization is to modify the denominator of the
inverse filter in (3.5). To decide in which way the denominator should be
modified, i.e. how the regularization parameter o and the eigenvalues p,,
of C should be chosen, it is appropriate to consider the difference between
the true and regularized solution. This error can be bounded by:

lz " a'ﬂ N (95 2u0) Zuo- (3.32)

; 0t buo |* | Auol
”f_f“ S uZ,v p\uulz""a“‘ I fazu.v i +Z |Am)'2 alutw|2|(w!zuv)|
= E.(a) + E,(a). (3.33)

The first term on the right hand side of (3.33) denotes the error due
to regularization. For a fixed D and C it can be minimized by setting
a = 0. The second term, which measures the noise magnification error,
however, becomes extremely large as o — 0 if any of the |Ay,| are close
to zero. For @ — oo the noise magnification error approaches zero, but
now the regularization error becomes large. In the limiting situation, the
noise magnification error equals zero, and the regularization error equals
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E,(00) = Ty |(f,2u)|. Obviously the choice of a requires the trade-off
between these two errors.

Another way to trade off the regularization and noise magnification
error is through the selection of the (eigenvalues of the) regularizing op-
erator C. Since the original signal should not be overly corrupted by
the process of regularization, it is reasonable to choose |tyy| < [Aus
when [(f,2u)| > |(w,24)|. This means that the regularization process
has hardly any effect on those (spectral) components where there is rel-
atively little noise. On the other hand components dominated by noise
should strongly-be subjected to regularization, i.e. |ty > |A4| When
I(f2uw)] < |(w,2y,)|. The interpretation of this choice in terms of fre-
quency domain arguments is that since (i) the signal energy is concentrated
in the low-frequency range, (ii) the noise is broad-banded, and (iii) the blur
acts like a form of low-pass filter, the regularizing operator C should act
like a high-pass filter.

A popular choice for the regularizing operator is the second-derivative
operator. In a discrete implementation this high-pass filter is known as the
2-D Laplacian filter [36], and is given in the spatial domain as:

0.00 —0.25 0.00
c¢(i,7) = | —0.25 1.00 —0.25 |. (3.34)
0.00 —0.25  0.00

Although other choices may be more feasible in a particular situation, the
above general discussion for choosing C will remain valid.

By choosing the properties of the regularizing operator appropriately, the
Tikhonov-Miller regularization approach can be related to a restoration
method known as the truncated singular value decomposition (SVD) (35].
In this method only those eigenvalues \,, are inverted which do not lead
to any serious noise magnification. In terms of Eq. (3.32) we set pyy = 0
for eigenvalues M| > T , and we entirely reject using the eigenvalueé for
which |Ay| < T by letting afpu,| — 0o. Equation (3.32) then becomes:

= X

{uw] [duo|>T} 78

1

(9, 2u0) Zuo- (3.35)

Clearly the value of the threshold T determines how many eigenvalues of
D are used to compute the restoration result. If T is too large, not enough
spectral components of g will be used to compute the restoration result
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and the regularization error in (3.35) will be dominating. On the other
hand, if T is taken too small the noise magnification will be dominant. In
fact, in the limit for T approaches zero, (3.35) equals the (pseudo-)inverse
filter. Since the threshold T controls the trade-off between the two types
of errors, it can be considered a regularization parameter. The optimal
value of T is usually selected by visual inspection of the restoration result.

Example of Regularized Restoration

In this example we illustrate the effects of tuning the regularization param-
eter a on the regularization and noise magnification error. We consider
the original “Cameraman” image in Figure 3.3a (256 x 256 pixels, each
pixel uniformly quantized in 8 bits), which was synthetically blurred by
defocusing blur (R=3) and white Gaussian noise was added to the result
at an SNR of 40 dB (Figure 3.3b). This image was restored using the
Tikhonov-Miller regularized restoration filter. The discrete Laplacian op-
erator was used as the regularizing operator, and a was varied between
107¢ and 10'. Figure 3.2 shows how the two components of the restora-
tion error change as the value of & varies. The optimal result is obtained
for & = 0.01 and has a SNR improvement of ngyg = 6.1 dB. Observe that
these curves and the improvement in signal-to-noise ratio can be computed
only in a controlled experiment, because they are functions of the original
(undistorted) image. In Figure 3.4 an arrangement is shown of the restored
image and the regularization error for various values of a. It is noted that
the regularization error mainly effects the regions near edges, while the
noise magnification affects the entire image. We will study this behavior
in more detail in Chapter 5.

3.3.3 Formal Relation with Stochastic Restoration

In the previous section we have noted that several restoration filters (MAP,
Wiener, Tikhonov-Miller) have the same mathematical form although they
were motivated by entirely different arguments. The generic form of these
filters is

7 = (D'D + M)"'D'g, (3.36)
where M is chosen as follows:

¢ M =al (a— 0),for the (pseudo-)inverse filter,

* M= waR;fl for the MAP and Wiener filter (stochastic regulariza-
tion),
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Figure 3.2: The noise magnification, regularization, and total restoration
error as a function of the regularization parameter o.

(b)

Figure 3.3: (a) Original Cameraman image; (b) Noisy defocused image.
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Figure 3.4: (a) Restoration result and (b) Regularization error (stretched
for visibility) as a function of a.
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Figure 3.5: Relation between the various regularized filters

e M = aC'C, for the Tikhonov-Miller regularized filter (algebraic reg-
ularization).

We can formally relate the stochastic and algebraic restoration methods
by relating the expressions for M through the use of the image model (3.2)
(see Figure 3.5).

Since the image model (3.2) is assumed to be stable, the matrix (I — 4)
is assured to be invertible. Therefore (3.2) can be rewritten as follows:

(I-A)f =w, (3.37)
or
f=(I-A4)"v. (3.38)
From (3.38) the correlation matrix Ry can be obtained:
Ry = E[ffY)=ol(I - 4)H(I - 4)7, (3.39)

where we have assumed that v is white noise with variance 0. With the
assumption of white observation noise w, the correlation matrix product
as appearing in the Wiener filter is given by

2
_ o,
M =R,,R}} = ?(I—A)'(I—A). (3.40)
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Alternatively we can take the norm of both sides of (3.37), yielding
(I = 4)f]l = |iv]| = o.. (3.41)

Comparing (3.41) with (3.26) shows that (I — A) can very well serve as a
regularizing operator C. Substitution of the particular choice C = (I — A)
into M leads to

M = aC'C = oI — A)'(I - A). (3.42)

Clearly Eqgs. (3.40) and (3.42) are identical if we set @ = €2/ E? = (0,/0,)?,
i.e. we use the regularization parameter according to Miller’s method. This
demonstrates that stochastic and algebraic restoration methods are in fact
related concepts, merely differing by their choice of the regularizing oper-
ator.

It should be noted, however, that although any image model will lead
to a valid regularizing operator via the relation C = (I — A), not every
regularizing operator will lead to a valid image model. This is due to
the fact that image models need to be stable, while no such restriction
was imposed on the regularizing operator. For example, the image model
derived from the 2-D Laplacian operator in (3.34) is given by:

0.25
a(k,l) = | 0.25 0.00 0.25 |. (3.43)
0.25

By substitution of (3.43) into (2.15) it is straightforward to see that this is
an unstable image model, because B(z,, z;) has a zero at (2, z3) = (1,1).

3.4 Multiple Constraints Restoration

3.4.1 Deterministic A Prior: Constraints

In many image restoration problems there is a priori knowledge available
about the original image that cannot be expressed in the form of a sta-
bilizing functional such as (3.26). This deterministic knowledge, however,
is often very useful to reduce the set of feasible solutions, in this way
achieving an alternative form of regularization. We will shortly describe
an iterative algorithm that is able to use such knowledge, provided that
it can be expressed in the form of a closed convex set C; [115], called a
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constraint. A nonexpansive projection P; can be associated with each con-
straint (see Appendix B). It maps all images which violate the constraint

onto (;, i.e.
' ) 1, i fed
PJ = { h if ¢ Ce (3.44)
where
lh—fll<llz—fll, Vzel,. (3.45)

Some examples of deterministic constraints falling in this class are the
following;:

e The image has a bounded (e.g. nonnegative) intensity range,

The object in the image has a finite support,

There is a maximum value for the image energy,

The structure of an entity in the image may be known a priort,

The norm of the residual ¢ — Df is bounded,

e An image model is known: the norm of the modeling error v =
(I — A)f can be bounded.

Note that the Equations (3.25) and (3.28), on which the Tikhonov-Mil-
ler regularization (and therefore the entire class of linear regularized fil-
ters) is based, actually form two closed convex sets by themselves [88].
The proof of convexity and the derivation of the related projections of
the above constraints can be found in several references, for example
[87,88,91,100,103,104,115]. The power of the constraints is also discussed
in these references.

3.4.2 Projections onto Convex Sets

In the multiple constraints restoration approach the inverse restoration
problem (3.1) is regularized by enforcing the restoration result to satisfy
as many constraints as possible, where each of the constraints has been
defined as tightly as possible. The regularized restoration results can then
be selected from the intersection Cq of all constraint sets C;. Clearly any
image in that intersection will exhibit all of the features associated with
all of the sets. If those convex sets all reflect desirable properties for the
restored image, then any image in the intersection should be reasonable.
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It is generally not possible to find an analytical expression for an image
which satisfies a number of possibly nonlinear constraints. The theory of
the projections onto convex sets [17,115] was developed to find an image
in the intersection Co of m closed convex sets C;, yielding the following
iterative scheme:

Fo= (BP-- Pa) s (3.46)

The iterations (3.46) converge to a solution in C, for any initial estimate
7 0> unless the intersection Cy is empty. In that case conflicting constraints
are being enforced onto the restoration results, resulting in iterations that
will not stabilize. The exact properties of the limiting solution }oo depend
on the initial estimate, unless the intersection C, contains only a single
element (which is extremely rare). Besides its use in image restoration,
the iterations (3.46) have found wide applications in various other signal
processing problems such as band-limited and space-limited extrapolation,
phase and magnitude retrieval, and reconstruction from incomplete data
[o1].

Recent research has led to the extension of the method of projections
onto convex sets to projections onto fuzzy sets [19]. In this method the
“hard” boundaries of the deterministic constraint sets are replaced by fuzzy
boundaries. As a consequence the sets to be used in the restoration pro-
cedure are easier to define and less sensitive to erroneous assumptions.
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Chapter 4

Iterative Image Restoration

In the previous chapter we have described the problems invoived in solv-
ing the ill-conditioned image restoration problem, and we have shown that
several classical restoration filters can be classified as Tikhonov-Miller reg-
ularized methods. In this chapter we will consider the use of iterative meth-
ods in image restoration. Iterative procedures offer the advantage that no
matrix inverses need to be implemented, and that additional deterministic
constraints can be incorporated into the solution algorithms. Section 4.1
introduces the basic iterative restoration algorithm that forms the basis for
most of the algorithms discussed in Chapters 4 and 5. It will be shown in
Section 4.2 that terminating the iterations prior to convergence is a means
for regularizing the restoration process. Section 4.3 presents a variation
on the basic scheme which asymptotically produces the Tikhonov-Miller
regularized solution. Finally, Section 4.4 is concerned with procedures for
increasing the convergence speed of the iterative algorithms,

4.1 VanCittert’s Iteration

4.1.1 Formulation of the Algorithm

The simplest of the iterative restoration methods has a long history. It
goes back at least to the work of VanCittert [106] in the 1930’s, and may
in fact have even older antecedents. Iterative solution techniques have
been applied to the (image) restoration problem by many researchers in re-
cent years [38,39,45,46,47,49,51,55,64,65,68,69,79,81,83,84,90,103,104]. Al-
though originally formulated for spatially invariant restoration, it can be
applied to solve spatially variant problems as well (see Chapter 5). If we
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neglect for a moment the noise contribution in (3.1), the following identity
can be introduced which must hold for any real value of the parameter 3:

f=171+8(g—Df). (4.1)

Applying the method of successive approximations to this equality yields
the following iteration to compute a solution to (3.1):

Jo=0 .
frer = fo+B(@—Df,)
= pBg+ (I —BD)f,. (4.2)

Different researchers refer to this iteration as the VanCittert {106], Bially
[8], or Landweber {60,95] iteration, presumably because it has been inde-
pendently discovered many times.

With an iterative method there are two important concerns — does it
converge, and if so, to what limiting solution? By direct enumeration it is
seen that!

k
Jenn =B (I-BD)g, (4.3)
r=0
which can also be written as

Jim = BUI—(I-BD)™MI—(I-pBD)*)g
DI - (I - D) )g, (4.4)

provided that D is invertible. If we now assume that
lim (I — AD)¥! = 0, (4.5)
k— 00

which is a sufficient condition for convergence, the limiting solution is seen
to be equal to

fo=Dg. (4.6)
This is the inverse filter of which we have said earlier that it yields useless
solutions in the presence of noise. The iterative implementation of the in-
verse filter has, however, two advantages over the direct implementation.

!The analytical expressions given here and in the remainder of this chapter for } &
assume that the initial estimate of the iterative process is equal to f, = 0. For nonsingular
matrices, this assumption can be made without loss of generality.
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First, it can be terminated prior to convergence, resulting in a restored
image that will often not exhibit too much noise magnification. This as-
pect of iterative restoration will be analysed more thoroughly in the next
section. The second advantage is that the inverse operator does not need
to be implemented. Each iteration requires only that the blurring matrix
itself be implemented.

4.1.2 Convergence Analysis

As with the Tikhonov-Miller regularization, we can gain greater under-
standing of the iteration (4.2) through an eigenvalue analysis. This will not
only lead to a better understanding of the convergence condition (4.5), but
will also explain why more satisfactory restoration results can be achieved
by truncating the iterations prior to convergence.

As in Chapter 3, let {zy;u € [0,M — 1],v € [0, N — 1]} denote the
eigenvectors with unit length associated with D, and let )., denote the
corresponding eigenvalues. By expanding i g+1 I terms of these eigenvec-
tors, and by substitution of the iteration (4.2) we get

}k+1 = Z(}k+1azuv)zuv

u,v

= Zﬁ(g’ Zuv)Zuy + (I - 8D) Z(}ka Zuy) Zuv

u,v

= Z {ﬂ(g’ qu) + (1 - ﬂAuu)(}k’zuv)} Zyy- (47)

u,v

The restoration result after k£ +1 VanCittert iterations can now be written
in terms of these eigenvectors and eigenvalues as

Fin = B [i(l —ﬂm)’} (9, Zuv) Zuo

u,v Lr=0

= > ,\iu (1= (1= BAu)** ) (8, 2uo) Zus- (4.8)

u,v

Here we have assumed that D is invertible so that none of its eigenvalues
equals zero. As k — oo, the iterations converge to

}oo :Z_l__(g’ zuv)zuu, (49)

u,v A1\.")

provided that
11— BAu| < 1, Yu,v. (4.10)
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Figure 4.1: Region of the complex plane where the eigenvalues of the
blurring matrix must lie for the VanCittert iteration to converge.

The result in (4.9) is the inverse filter (c.f. Eq. (3.5)). The convergence
condition in (4.10) is equivalent to that given in (4.5). The interpretation
of (4.10) is that all the eigenvalues of D must lie within the shaded area
of the complex plane shown in Figure 4.1. It is recalled here that since
we have assumed that D represents a circular convolution of the original
image with the PSF of the image formation system, the eigenvalues \,, are
equal to the coefficients of the DFT of d(m,n). Therefore the condition
(4.10) is very easy to check in practical situations.
From condition (4.10), it follows that a nécessary convergence condition
is:
R(BAuy) > 0, Yu, v, (4.11)

where R(-) denotes the real part operator. Since  is assumed to take real
values only, this condition cannot be satisfied by blurs which have both
positive and negative eigenvalues. Therefore the two important cases of
motion and defocusing blur are excluded from the iterative process (4.2).

4.1.3 Reblurring Procedure

To overcome the convergence problem observed in the previous section,
several authors have proposed to use a process called “reblurring” in the
iterations (4.2) [49,84]. This is equivalent to applying the VanCittert pro-
cedure to the identity

f = [+ BD'(g — Df), (4.12)
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yielding the iteration
fo = 0,
Tev1 = f.+BD'g—Df,). (4.13)
An alternative way to derive the iteration (:1.13) is from the viewpoint of
minimizing the norm of the residual g — Df, because for a good restora-

tion result the blurred estimate Df should be approximately equal to the
observed image g. Iterative minimization of the objective function

&) =llg—- DI’ (4.14)
by the method of steepest descent [28] yields
N o - 1
Foer = JutBri=fi—3h8 Vf‘I’(f)l]*e
k
= 1.+ BD'(g— Dfy), (4.15)
which is identical to (4.13). In (4.15) r, = —1V,0(f)| 7 is called the
steepest descent direction which points in the direction of the negative
gradient of the objective function at f,. The parameter § controls the
convergence of the iterations.
If we now apply a similar convergence analysis to the iteration (4.15),

we get

fon = o= 0= ARul))@ m)w  (416)

u,v

For this iteration scheme convergence is seen to require
1=l <1, Vu,v, (4.17)

which is equivalent to the requirement that A, # 0, or in other words,
D must be invertible. Since we have already restricted the discussion to
invertible matrices because hardly any blurring matrix has exact spectral
zeros, we may conclude that the iteration (4.15) can be used for practically
any restoration problem, including motion and defocusing blurs. .
From (4.17) we can also determine for which values of 3 the iterations

(4.15) are convergent:
2

i)\maz 12 ’
where A,q; is the eigenvalue )y, of maximal norm. From (4.16) it is seen
immediately that if the iterations (4.15) converge, the limiting solution is
again the inverse filter. Therefore algorithms of the type (4.15) are called
iterative inverse restoration filters. '

0<B< (4.18)
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4.2 Regularization via Truncated Iterations

In order to gain insight in the behavior of the iterations (4.15) with regard
to the ill-posedness of the restoration problem, we consider the properties
of the regularization and noise magnification error for a finite number of
iterations, i.e. when the iterative process is truncated prior to convergence.

On the basis of the expansion (4.16), we can determine an upperbound
for the difference between the restoration result after k iterations and the
original image. To this end we substitute the image formation model (3.1)
into (4.16), yielding

Ten = T30 - (= BAul)*) (DS +w, 20) 20

u,v

= 0 (= B [(F20) + 5 (03 20)] 2une(4.29)

u,v Auu

From this expression we obtain the following error bound:

1Fisr = 71l <
Z ll - ﬂlAuv’ |k+1|(f’zuv I + Z lAuvI ll - (]- - ﬂ|’\uu,2)k+ll '(w zuu)l
=aw+mu. (4.20)

This error bound has two terms, of which the first term on the right hand
side is related only to the original image f, and the second term is related
only to the observation noise w. Both terms are a function of the itera-
tion index k. The first term in (4.20) can be made arbitrarily small by
letting k — oo. This term represents the degree of restoring the image, or
in other words the regularization error. The second term in (4.20) is the
noise magnification error, which grows to infinity if ¥ — oo because of the
small eigenvalues of D. On the other hand, if k is set to zero (no iterations
performed), the noise magnification error is minimized, but the regulariza-
tion error will take a large value. Since E,(k) decreases as a function of &
and E,(k) increases, their sum attains a minimum after a certain number
of iterations. Unfortunately, this number is usually not known in advance
and needs to be determined by visual inspection of the restored images as
the iterations progress. From the above discussion it can also be seen that
the reciprocal value of the iteration index k has the same function as the
regularization parameter a in the Tikhonov-Miller regularization approach.
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Figure 4.2: The restoration, regularization and noise magnification error
as a function of the number of iterations.

Example of Truncated Iterations

To illustrate the effect of truncating the iterations prior to convergence
and to show the effect of the “regularization parameter” 1/k, we consider
the restoration of the noisy defocused image in Figure 3.3b using the it-
erations (4.15) with 8 = 1. The two components E,(k) and E,(k) of the
error bound in (4.20) are plotted in Figure 4.2 as a function of the iteration
index k. The total restoration error is also shown in this figure. For this
example the optimum restoration result occurs after approximately 250
iterations, and has an improvement in SNR of ngnr = 5.7 dB. .
The restoration results and the regularization errors are also shown in
Figure 4.3 as a set of images. The images on the left show the restoration
results after 15, 250 and 4000 iterations, while the corresponding regular-
ization errors are shown in the right column. It is interesting to note that
the better visual result seems to appear after 4000 iterations, indicating
that the improvement in SNR does not correlate well with the subjective
judgement of the image quality. Another observation to make is that the
regularization errors seem to occur mainly in the regions near edges in

55




the image. The noise magnification error on the other hand degrades the
whole image but is not related to the structures in the original image. We
will come back to these effects in Chapter 5.

4.3 Iterative Tikhonov-Miller Solution

So far we have encountered two means for regularizing the image restora-
tion problem, namely by Tikhonov-Miller’s method and by truncating the
iterative computation of the inverse filter. Several authors have proposed
to combine these regularization methods for three purposes [1,46,47,55]:
(i) the iterative computation of the Tikhonov-Miller regularized solution
might be easier than the direct evaluation of (3.31), (ii) the use of an
iterative scheme allows for additional constraints to be imposed on the so-
lution (see Chapter 5), (iii) the combination of two different regularization
techniques provides an additional degree of freedom.

To derive the iterative Tikhonov-Miller regularized restoration algo-
rithm, we use the method of steepest descent to minimize the objective
function ®(f) in (3.27). This gives the following iterations:

?k+1 = }k+ﬁrk=}k—%ﬁvf¢()’)lj¢k
= 1, - B((D'D + aC'C)}, — D'g)
= (I- aﬂCtC)fk + AD'(g — D}k)' (4.21)

This iteration reduces to the (reblurred) VanCittert iteration if « = 0 (no
Tikhonov-Miller regularization).

The regularized solution after k + 1 iterations is given in terms of the
eigenvalues \,, and u,, of D and C, respectively, as

?k+l = ,HZ ZA lAuvl", al/“‘uvlz))r (gszuv)zuv

UUfO

_ Z;;\

(1= (1= B(P ol + alsuwl®) ) (8, 2us) Zuw-

wl? + alu of?
(4.22)
From this the convergence conditions for (4.21) follow immediately:
1= B(Awl* + el <1,  Vu,v. (4.23)
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Figure 4.3: Example showing the effect of truncating the iterations prior
to convergence: (a) Restoration result and (b) the regularization error as
a function of the number of iterations.
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In order to ensure convergence, # must satisfy

0<pB< (4.24)

I maz|
where p,,,; is the largest eigenvalue of the matrix DD + aC*C, i.e. ppqr =
MaXyo{ | Auw[® + altuw[*}.

If the iterations converge, the hmltmg solution is given by (3.32).
Again, if the iterations are terminated prior to convergence, there will
be two sources of error: one due to the fact that convergence has not been
achieved and that the solution is Tikhonov-Miller regularized, and one due
to the amplified observation noise:

e gl < 3 @l sl = B + a2

- u,v I)‘uvlz + a|,uu,,|2 l('f’z“")l

|AuvH1 — (1 — ﬁ(IAuvl2 + alﬂuvlz))k+1|
R Rl + el (.20
= E,(o,k) + E,(a, k). (4.25)

This expression reduces to several of the ones already derived if the number
of iterations is increased to oo, or if the regularization parameter a is set
to zero. The behavior of the error terms will be illustrated by an example
later on.

In (45,46] Katsaggelos et al. observe that the term (I — o8C'C) in (4.21)
behaves like a low-pass filter, suppressing the noise in the iterates. The
characteristics of this term are obviously related to the properties of the
original image because the regularizing operator C is closely related to the
image model A. It was proposed to compress this term into a single low-
pass filter C,, which would reflect spectral a prior: knowledge or knowledge
about the image model of the orlgmal image. The iterations (4.21) then
become:

fk+1 = Cafk + AD'(g — ka)- (4.26)

If we let v, denote the eigenvalues of C,, and assume that C, has the same

set of eigenvectors as D, then the convergence conditions for the iterations
(4.26) are given by

\Vuv - ﬁlAuvlzl < 1. (427)

Two particular choices for C, were also suggested. In the first place it was

proposed to use the image model coefficients a(k,!) to define C, = A. A

58




second possibility that was given, is to use a noise smoothing Wiener filter,
which assumes the form

C, =Rff(Rff+wa)—1, (4.28)

where R;; and R, are the autocorrelation matrices of the original image
and the noise, respectively. In this case the limiting solution of (4.26) is
quite similar to the parametric Wiener restoration filter [3]. In practice,
the construction of the Wiener smoothing filter or the choice of the image
model coefficients may sometimes be easier than the selection of a regular-
izing operator and the related bound E.

Example of Tikhonov-Miller Regularized Iterations

This example shows the effect of the Tikhonov-Miller regularization when
implemented via an iterative scheme, and the behavior of the regular-
ization and noise magnification error. Consider again the restoration of
the defocused cameraman image in Figure 3.3b. A number of regularized
restoration results were formed iteratively. The 2-D Laplacian regulariz-
ing operator was used, and § = 1.0. The total restoration error, and the
regularization and noise magnification errors are plotted as a function of
both the regularization parameter o and the iteration index k in Figure
4.4, The restoration results associated with these plots are given in Figure
4.5 as a function of & and k. The two columns in this figure correspond to
k = 15 and 4000, while the three rows correspond to a = 107¢,10"3 and
1071, Observe that the top-most row corresponds closely to the results
of the (reblurred) VanCittert iterative algorithm, while the right column
corresponds to the results of the Tikhonov-Miller regularized restoration
filter.

4.4 Implementations with Faster ‘
Convergence

The iterative restoration procedures that we have discussed so far are based
on the minimization of an objective function ®(f) using the method of
steepest descent. It is well known, however, that this method may con-
verge very slowly. There has been a lot of work in optimization theory
to develop iterative algorithms which converge in less iterations than re-
quired for the method of steepest descent [28,63]. In this section we will
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Figure 4.4: (a) Total restoration error, (b) Regularization error, (c) Noise
magnification error as a function of « and k.

first analyze the behavior of the steepest descent iteration (4.21), and next
describe several more efficient implementations of this iterative restoration
algorithm [23,51,65,68,69,79,83,90].

4.4.1 Analysis of Convergence Speed

The convergence speed of an iterative algorithm towards its limiting solu-
tion can be quantified by its convergence order and its convergence rate. An
iterative scheme converges geometrically with order R if the error || 7 k—f ool
for k sufficiently large can be given as [63]:

17 ke1 = Fooll = KlIF i = F ool for R > 1. (4.29)

Here k > 0 is the convergence rate. A large value of k corresponds to a
slow convergence, while a small value indicates fast convergence. Further,
the larger the convergence order is, the faster the algorithm converges.
For R = 1 the process is said to converge linearly, in which case (4.29) is
conveniently written as:

172 = Tooll < &*1F0 = Foolls (4-30)
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Figure 4.4: Continued.
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Figure 4.5: Restoration

k = 4000
results as a function of a and k.
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and 0 < k < 1. For k = 0 the convergence is said to be superlinear (or
in other words the iterative process terminates within a finite number of
iterations), while for kK = 1 the convergence is sublinear.

Iterative schemes of the type (4.2), (4.15) and (4.21) can all be regarded
as members of the following generic iteration, which minimizes a quadratic
objective function ®(f) by the method of steepest descent:

fk+1=}k+/8(h_3}k)- (4.31)

For a nonsingular matrix B we have foo = B7'h. The following relation
can then be established:

Fesi—Tw = I=BB)f,+Bh—1],
= (I-BB)f,+BBfo — Ton
= (I-B8B)(},- 1 ) (4.32)
= e = Foll < 1T =BB)I(Fx = Fo)ll- (4.33)

Here || I —3B)|| denotes the norm of the matrix, which is given by its largest
eigenvalue. Thus if we let p,,,;,, be the eigenvalue of B with smallest norm,
(4.33) becomes

1761 = Fooll < 11— Bominl|F i = Fool- (4.34)

Hence, iterative schemes of the type (4.31) converge linearly with a con-
vergence rate of K = |1 — Bppinl.

For the iteration (4.21) we have (I — 8B) = (I — B(D'D + aC'C)),
and pPmin is the smallest eigenvalue of (D'D + aC*!C). Since the smallest
eigenvalue is nearly always close to zero in an image restoration applica-
tion, the iterations (4.21) converge slowly. For instance, in the example
in Section 4.3 the optimal value of o = 0.01 yields a minimal eigenvalue
of |pmin| = 3.2107%; the iterative scheme associated with this value of the
regularization parameter has a convergence rate of £ = 0.9997 (8 = 1.0).
Observe that in general the convergence rate depends on the regulariza-
tion parameter «, because pnin is a function of a. If « is increased, i.e. if
the restoration problem is regularized more strongly, p,.:, attains a larger
value, by which the speed of convergence increases as well.

In the iterations (4.21) § was assumed to have a fixed value satisfying the
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condition in (4.24). But since 8 controls the convergence rate, as follows
from (4.34), it is desirable to optimize its value at each iteration step.

The optimal value of 5 at the iteration k, denoted by S, can be derived
by minimizing <I>(f,, + Biri), i.e. choose that f; along the path fkﬂ =
7%+ Birx which minimizes &(f x+1)- Here ®(f) is the objective function in
(3.27), and r;, the steepest descent direction associated with this objective
function. The solution to this minimization problem is given by

H"k”2

P = TDrilP + allCrilE:

(4.35)

For the optimized method of steepest descent the convergence is still linear,
but its convergence rate is now given by [82]

|Pmas] ~ lpmf,,;)k

f — f < constant (
” k 00“ Ipmazl + ]pminl

(4.36)

where pmo; and ppi, are the largest and smallest eigenvalues of (D'D +
aC'C), respectively. By using the relation (4.24), and by the fact that
‘pmt'n[ < 'pmazlo we find

|pmaz| |pm:n| — p’"%z ~1—-2 Pmin < |1 - /BpminI' (437)
’pmam| + lpmin’ 1+ ’f:::‘;" maz

Hence, the above inequality shows that the optimized method of steepest
descent will converge faster than the method of steepest descent with a
fixed value for A. Although the optimization procedure for 8 increases the
convergence speed of the algorithm, the improvements are usually moder-
ate and may not justify the efforts involved. An experimental comparison
between the two methods will be given later in this section.

4.4.2 Method of Conjugate Gradients

Motivated by the desire to achieve more rapid convergence, the method of
conjugate gradients has been successfully used in optimization theory [63].
Conjugate direction methods, which were originally introduced for purely
quadratic problems, can be viewed as a special orthogonal expansion of the
solution of the minimization problem. This expansion is generated by mak-
ing use of information from previous iteration steps. This section focuses
on the use of the conjugate gradients method to minimize the objective
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function (3.27). One of the advantages of this method is its convergence
in a finite number of iteration steps when exact arithmetic (no rounding
errors) is used, i.e. the convergence is superlinear [63]. When non-exact
arithmetic is used or the problem is non-quadratic, the method will no
longer converge in a finite number of iterations because the conjugacy con-
dition will no longer hold. It has been experimentally shown, however, that
the conjugate gradients method converges always faster than the method
of steepest descent, while the computational complexity is not significantly
increased.

The basic form of the conjugate gradients algorithm, which thus rep-
resents an alternative to the iteration (4.21), is given by

1 "
re = —2V@(N; = ~(D'D+aC'O)], + D'y,
k
P, = T+ YkPi_1»
Ter1 = Ti+ Bepy- (4.38)

In this scheme f , is modified in the direction of the vector p, instead of
the steepest descent direction r;. The parameter v, controls the conjugacy
of the subsequent directions p,. For 4 — 0 the iterations (4.38) reduce to
(4.21). It can be shown that the optimal value for 4, and B, are given by
[63]:

y = Anl (4.39)

lre-alf?’

ﬂk — ri:pk (4 40)
1Dpi[|* + af|Cpy||?

The conjugate gradients method converges linearly, with a convergence
rate given by [82]

V Ipma:tl -V |pminl) * . (441)
\/lpmazl + \/lpmin

Although (4.41) is a rather loose upper bound to the convergence rate
of the conjugate gradients iteration (for example, it does not show that
the method of conjugate gradients converges (theoretically) within a finite
number of iterations), it is still useful for a comparison with the optimized

H}k - }OOH < constant (
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method of steepest descent. Since |ppmsz| > |Pminl, it is straightforward to
prove that

\/lpmaz‘ - \/lpfm'n| < |pma.::| - |pm£n|
\/Tpmaz! + \/lpm.',.l |Pmaz| + |Pminl ’

which shows that the conjugate gradients method has a higher convergence
speed than the method of steepest descent. In addition to this, experimen-
tal results exhibit a convergence speed much larger than indicated by the
bound in (4.41), as we will see in the next section. Observe that the differ-
ence in computational complexity between the method of steepest descent
and the conjugate gradients algorithm merely consists of the computation
of p, and -y, which is insignificant compared with the other computations
required within a single iteration step.

(4.42)

4.4.3 Iteration Method with Higher Convergence
Order

Although the method of the conjugate gradients has a considerably higher
convergence speed than the method of steepest descent, both techniques
essentially converge linearly. Recently a number of papers have described
the use of an iterative restoration method, which has a convergence order
larger than one [23,51,68,69,90]. As is shown in [51,69], these algorithms
are based on a Taylor expansion of the matrix to be inverted. The basic
form of the iterations, which require a “double iteration”, is given by

fo = ﬂDtga
By, = I-B(D'D+ aC'C),
Ri—-1

}k+1 = Z Bi}k (Rx > 2),
=0

Bk+1 = BkBk . 'Bk = Bfk (4.43)

Here R, determines the convergence order in each iteration step. Sufficient
convergence conditions are again given by (4.24).

The convergence behavior of the above iterations can be analyzed by
comparing the explicit expressions for the (k+1)5t iterate of (4.43) with the
one obtained from the standard steepest descent iteration (4.21) with fixed
B. If we use a constant value of R throughout the iterations (R; = R),
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we can write for the (k + 1) iterate of (4.43):

REFI_1

Fisi= Y. (I-B(D'D+ aC'C))BD'g. (4.44)

r=0
For the iterations (4.21) we get after k + 1 iterations:

k
Fre1 = D_(I — B(D'D + oC'C))"BD'g. (4.45)

r=0

By comparing (4.44) and (4.45) it can be seen that the two procedures
compute exactly the same solutions. However, the steepest descent algo-
rithm requires R**! — 1 iterations to obtain the same solution that the
iterations (4.43) reach after only k + 1 iterations. The convergence order
for (4.43) is therefore equal to R [69,90]. The extra expense for the in-
creased convergence order is more computations in a single iteration step,
and extra storage capacity for the (block-circulant) matrix By. The opti-
mal value for R depends therefore strongly on the actual implementation
of the iterations. However, if a very large convergence order is used, only
a few iterations are required to achieve convergence, but the evaluation of
the matrix B, may become extremely computationally involving. Practi-
cal implementations typically use a value of R = 2 or R = 3.

Convergence Comparison between the Algorithms

In this example we consider the convergence behavior of the steepest de-
scent algorithm with fixed and optimized value of 8, the conjugate gradi-
ents algorithm, and the iterative algorithm with R —th order convergence.
The noisy defocused image in Figure 3.3b was restored using the iterative
Tikhonov-Miller restoration algorithm with a 2-D Laplacian regularizing
operator, and o = 0.01. The smallest and largest eigenvalue have a value
of 3.2107* and 1.00, respectively. In Figure 4.6 the convergence behavior
is shown by plotting ||, — f..|| as a function of the iteration index k. In
Table 4.1 the theoretical convergence rates are listed for the method of
steepest descent and conjugate gradients, which are computed from the
bounds given in this section. Also listed in this table are the experimental
convergence rates, computed from the first 200 iterations. It is observed
that the practical convergence rates are smaller than the theoretical upper
bounds, i.e. the algorithms converge faster than theoretically predicted.
For an increasing number of iterations, however, the practically computed
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Figure 4.6: Convergence behavior of the method of steepest descent, con-
jugate gradients method, and higher order method.

convergence rates approach the theoretical bounds more closely. The mea-
sured convergence rate for the higher order methods are averaged values
over the first 8 iterations.

Another way to evaluate the convergence performance of an iterative
scheme is shown in Table 4.2. This table lists the theoretical and practical
number of iterations that are required to reduce ||, — f..|| by a factor
of 10. Clearly the Tables 4.1 and 4.2 and Figure 4.6 illustrate that the
higher order methods are most efficient, followed by the conjugate gradi-
ents method, and the steepest descent methods. It is also observed that
optimizing B in the method of steepest descent does not significantly im-
prove the convergence rate when compared with using a fixed value of 3.
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Table 4.1: Experimental and theoretical convergence rate.

Method Ji} R Experimental | Theoretical
Rate Rate

Steepest descent 1.0 1 0.99658 0.99967
Steepest descent 1.9 1 0.99602 0.99938
Steepest descent optimized | 1 0.99590 0.99934
Conjugate gradient | optimized | 1 0.94631 0.96453
2-nd order 1.0 2 =~ 50 -

3-rd order 1.0 3 ~ 1000 -

Table 4.2: Number of iterations required to reduce the error by a factor of

Method o} R Experimental | Theoretical
Steepest descent 1.0 1 670 6970
Steepest descent 1.9 1 570 3710
Steepest descent optimized | 1 560 3490
Conjugate gradient | optimized | 1 41 64
2-nd order 1.0 2 10 13
3-rd order 1.0 3 6 8
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Chapter 5

Image Restoration with
Ringing Reduction

In the preceding chapters we have seen that the Tikhonov-Miller regular-
ization, the method of truncated iterations, or the combination of these
two, could be used to stabilize the inversion of the ill-conditioned blurring
matrix D and to suppress the noise magnification in this way. As a result
another type of error occurred in the restored images, namely the regular-
ization error. Restoration algorithms are often criticized because of these
artifacts (called “ringing”, superwhites and superblacks, or overshoots and
undershoots). The reason for this is twofold: in the first place most original
scenes are known to be without ringing effects, i.e. the restoration result is
not consistent with our a priort knowledge, and in the second place ring-
ing artifacts reduce both the visual and measurable quality of the restored
images. In Section 5.1 we will first have a closer look at the origin of these
artifacts in linear spatially invariant (LSI) restoration schemes [55]. Sec-
tion 5.2 continues with the description of an adaptive iterative restoration
algorithm which incorporates two methods to reduce the ringing artifacts
[65], namely (i) the use of a priori constraints, and (ii) the local regulation
of the balance between the noise magnification and regularization error.

The basic form of the algorithm presented in Section 5.2 originates
from a nonlinear optimization based on the method of steepest descent.
The use of the more rapidly converging method of conjugate gradients
will be discussed in Section 5.3. This chapter is concluded with various
experiments which demonstrate the significance of ringing reduction in
image restoration.
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5.1 Analysis of Ringing Artifacts

5.1.1 The Error Spectrum

Let us consider a general linear spatially invariant (LSI) regularized restora-
tion filter H(a) that is characterized by its discrete Fourier coefficients
H(u,v;) ', and is indexed by a regularization parameter a. Algorithms
falling in this category are for instance the Tikhonov-Miller regularized
filters and the truncated iterative process. Because of the regularization
H(u,v; ) deviates from the inverse filter D~!(u,v). This deviation can be
measured by the error spectrum E(u,v; ), defined as

E(u,v;0) = 1 — H(u,v; a)D{u,v). (5.1)

Through some straightforward manipulations we arrive at the following
expression for the restored image:

F(u,v) = H(u,v;0)G(u,v) = H(u,v; o) [D(u,v) F(u,v) + W(u,v)]

1- E(u,v; )

= Flu,v) = B(w,vi0) Flu,v) + —5r=s

W(u,v). (5.2)

In agreement with the error analyses in Chapters 3 and 4 we find that the
restoration error consists of two terms:

1- E(u,v;a)

© F(u,v) — Flu,v) = —E(u,v;a)F(u,v) + W(u,v), (5.3)

D(u,v)
or
|F(u,v) — Flu,v)] < |E(u,u;a)F(u,v)1+'5—“§%‘,’$ﬂ W (u, )|
= E,(a) + E,.(a). (5.4)

In the spatial domain these relations correspond to
f5,5) = £6,5) = —eli,j;@) * f(5,5)
+ (1 —e(?,5;0)) *d7(i,7) *w(,7), (5.5)

'In this section we will conveniently make use of discrete Fourier transforms when
dealing with spatially invariant restoration procedures.
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and

1£(5,5) = F@,5)] < |e(i,550) * £(4,4)]
+ (1 —e(s,5; @) xd7'(3,5) *w(,5)|, (5.6)

where the error sequence e(z,7; @) has been defined as the inverse DFT of
E(u,v;a). As in the previous chapters E,(a) is called the regularization
error, and E,(a) is the noise magnification error. In this section we will
study the relations (5.3)-(5.6) and the qualitative properties of the two
error terms.

General properties of E,(a) and E,(«) that follow from the concept of
regularization, are [73,99]:

lim E.(a) = 0, (5.7)
cltir% En(a) — oo, (5.8)
lirn0 Ep.(e) = 0, for any a. (5.9)

The relations (5.7) and (5.8) have been illustrated by the examples in Sec-
tion 3.3, 4.2 and 4.3. For a given amount of noise in the observed blurred
image, quantified by the variance o2, the optimal solution f (7,7) is theoret-
ically determined by the value of @ which minimizes the total restoration
error E,(a) + E,(a). For many linear spatially invariant restoration filters
there exists at least one optimal value of «, since E,(e) is a monoton-
ically increasing function of @ and E,(¢) is a monotonically decreasing
function. The optimal value of the regularization parameter is SNR de-
pendent, because the noise magnification error E,, () is proportional to o2.
Unfortunately, the optimal value of « is never known in practice, because
E,(c) in (5.4) cannot be evaluated without the availability of the original
image.

The noise magnification error has a global degrading effect because it re-
sults from a globally random phenomenon — the observation noise. On
the other hand, the regularization error is a function of f(7,s), and its ef-
fects will therefore be related strongly to the local structures encountered
within the image. Ringing artifacts, a structure dependent phenomenon,
are therefore attributable to the regularization error.

73



5.1.2 Relation between the Error Spectrum and
Ringing Artifacts

The relationship between the regularization error and ringing can be made
more clear by studying the properties of the error spectrum and the error
sequence. Unfortunately, general expressions that define these properties
can hardly be found because they depend on the specific restoration filter
considered, the type of blur and the severity of this blur. However, for a
wide range of blurs and restoration filters of interest, at least one and often
two of the following general characteristics will hold:

(i) since D(u,v) is generally some type of low-pass filter, E(u, v; @) has
the shape of a high-pass filter, and

(ii) E(u,v;a) has the shape of a band-pass filter near zero crossings of
D(u,v), with E(u,v; ) = 1 for true spectral zeros. Since practical
blurs of interest have multiple zero crossings, which are often ap-
proximately equally spaced (such as motion and defocusing blurs),
E(u,v; &) takes the form of a multiple band-pass filter.

Both properties follow from the fact that balancing the regularization and
noise magnification error requires (1 — E(u,v;a)) to cut out the inverse
filtered noise D~*(u,v)W (u,v) particularly in those spectral regions where
|D(u,v)| — 0. It is well known, that filtering an image with a high-pass
filter with characteristic frequency w,, will give rise to ringing artifacts
with a period of 27 /w, samples (or Gibb’s oscillations as they are usually
called in this context). These artifacts, however, become far more pro-
nounced when E(u,v;e) contains band-pass sections which are approx-
imately equally spaced with distance w. (such as happens with motion
blur). In conclusion, the combination of the above mentioned characteris-
tics of E(u,v; ) in particular will give rise to severe and widely distributed
ringing artifacts in restored images.

In the sequel we study the error spectra and error sequences of the
two types of LSI restoration filters described in the previous chapters. We
select linear motion blur over L pixels along the horizontal axis as the
image blur, because this type of blur is known to represent a worst-case
situation with respect to the severity and distribution of the ringing effects.
In Figure 5.1a the cameraman image is shown, which has been degraded by
linear motion blur with L = 8 and by additive white Gaussian noise with
SNR=30 dB. The restoration result using the Tikhonov-Miller regularized
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(a) (b)

Figure 5.1: (&) Cameraman image degraded by horizontal linear motion
blur (L = 8) and noise (SNR=30 dB); (b) Tikhonov-Miller restoration
result with severe ringing artifacts.

filter (with C(u,v) = 2-D Laplacian filter, and « = 5.1072) is given in
Figure 5.1b, in which the ringing is clearly present. In Figure 5.2a the
modulus of the sinc-shaped transfer function of the blur has been plotted.
From Eq. (3.31) the error spectrum of the Tikhonov-Miller regularized
filter can be obtained straightforwardly:

e D

E(u,v;0) = [1 T aCw )]

The error spectrum for various values of the regularization parameter a has
been plotted in Figure 5.2b, while the corresponding error sequences are
shown in Figure 5.2¢c. Observe that particularly when the error spectrum
tends to have peaks, the error sequence is dominated by positive impulses
at j = +kL (k = 0,1,2,---) (Figure 5.2d). From (5.5) we see that in
the spatial domain the regularization error is a convolution of —e(z, J; &)
with f(7,7). In flat regions of the image this convolutional action has
hardly any effect, but in the vicinity of steep intensity transitions it will
cause negative versions of the intensity transitions to appear at distances
J = £kL (k = 1,2,---). This explains why spurious oscillations were
observed at regular distances from the edges in the regularization error
and associated restored images in the experiments in Chapters 3 and 4.
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Figure 5.2: Properties of the regularization error of the Tikhonov-Miller
regularized filter for linear motion blur over 8 pixels: (a) Modulus of the
transfer function; (b) Modulus of the error spectra; (c) Error sequences;
(d) Typical behavior of dominant impulses in an error sequence.
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The severity of the ringing artifacts (determined by the distribution
and the size of the positive spikes in e(7,J;)) depends on the value of
a. Since the optimal value of « is SNR-dependent, the severity of ringing
artifacts is a function of the SNR as well. An interesting detail of this
relation is that the ringing is negligible for both very small values of «
(high SNR) as well as for large values of a (low SNR), although E,(a)
itself is a monotonically increasing function of «. Clearly for low SNRs the
restoration filter has degenerated to a low-pass noise smoothing filter, in
which the regularization error manifests itself no longer as ringing, but as
severe blurring of edges.

The error spectrum for the iterative inverse restoration filter as formu-
lated in (4.15) and (4.16) is given by:
1
E(u,v; E) = (1 — B|D(u,v)*)*. (5.11)
The error spectrum and the error sequence for different values of the it-
eration index k are shown in Figure 5.3. Observe that particularly for a
small number of iterations (corresponding to a large value of the associated

regularization parameter) the ringing effects will be relatively severe.

In conclusion, the above analysis shows that ringing effects near sharp
intensity transitions in the restored images are attributable to the regular-
ization. Since in LSI restoration filters the behavior of the regularization
and noise magnification errors is globally controlled by (5.3) or (5.5), the
appearance of excessively amplified noise, ringing effects or a combina-
tion of these two is inevitable. We therefore have to consider restoration
methods which are not based on LSI filters.

5.1.3 Ringing Reduction Methods

In image restoration it is usually known that most original scenes are with-
out ringing. One way to reduce ringing artifacts is, therefore, through the
use of a priori knowledge of the original image. This can be done by enforc-
ing the restored image to satisfy certain (possibly nonlinear) constraints.
If the image data, for example, consists of blurred bright point sources
against a black background (such as occurs in astronomical imaging), then
the ringing manifests itself as negative values. A positivity constraint on
the restoration can then be used to replace all negative values by zero, thus
preventing the ringing from happening.
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Figure 5.3: Properties of the regularization error of the iterative scheme
(4.15) for linear motion over 8 pixels: (a) Modulus of the error spectra;
(b) Error sequences.
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The method of projections onto convex sets, described in Section 3.4,
is particularly suitable for ringing reduction when the constraints can be
made tight, i.e. when there is a lot of @ priori knowledge describing the
original image very accurately. Unfortunately, such powerful constraints
can often not be assumed when dealing with the restoration of more compli-
cated signals, such as images of natural scenes. Then the use of constraints
alone is usually insufficient to significantly reduce ringing.

Another technique for reducing ringing locally regulates the balance
between the regularization and noise magnification error. This adaptation
depends on the local image properties, such as its edge content. In this
way the restoration filter becomes spatially variant, and may be specified
as

h(i,5i k1) = (1 — e(t, 7 k, 1 @) + d72 (4, 5). (5.12)

Adaptive restoration focuses on designing h(t,J; k,l; @) in such a way that
the total restoration error resulting from (5.12) is smaller than the one
resulting from the nonadaptive restoration filter. As a result the regu-
larization error is reduced as well. In designing the adaptive restoration
filter, it should be kept in mind that the complexity of h(%,7;k,1; o) must
be acceptable from a computational point of view. It is, for example, not
feasible to explicitly define a different restoration filter for every position
in the image because of the computation and storage capacity such an ap-
proach would require. In the next section an adaptive iterative method
will be described that defines spatially variant restoration through the use
of weighting matrices.

We next consider the required behavior of e(z,J; k,/; @) in edgy regions
and in relatively smooth areas. Near sharp intensity transitions the regu-
larization error dominates the noise magnification error, while in the more
gradual areas the convolution of f(s,7) with —e(s, 5; k,I; &) has hardly any
effect, so that E,(a) dominates E,(a). Consequently, by regularizing the
edgy regions less strongly, the local regularization error, and hence the
severity of the ringing, is reduced. At the same time resolution enhance-
ment is achieved. When the regularization is reduced, the noise magnifi-
cation is increased because these two errors are counterproductive. For-
tunately, however, it is known from psychophysical experiments that the
visibility of noise is greatly masked by sharp intensity transitions, whereas
blurring generally appears to be unacceptable in this context [2]. This noise
masking effect validates decreasing the regularization error and increasing
the noise magnification error near edges. On the other hand blurring is

80




acceptable in nearly constant regions of the image, but noise magnification
is not. Hence, in these regions of the image the restoration process has to
concentrate on noise smoothing instead of removing the blur.

5.2 Constrained Adaptive Iterative
Restoration

5.2.1 Introducfion

Restoration filters which are implemented in the Fourier domain, such as
the Tikhonov-Miller regularized filter, are unsuitable for incorporating a
priori constraints and adaptive restoration. Therefore much research has
recently been focused towards the modification of existing recursive and
iterative restoration procedures.

In (98] Tekalp et al. describe a multiple model edge-adaptive Kalman
filter in two dimensions, in which a number of image models is used to
filter the image in agreement with the local edge orientation. Maximum
a posteriort decision logic was used to choose between various models at
each position in the image. In [4] Angwin follows a related approach,
but this method is based on assigning an image model to an entire image
region. In this way different local image properties lead to different local
image models. In [41] Jeng et al. proposed to remove the local mean
from the image and to normalize the residual. In this way the image
is homogenized (i.e. the sharp intensity transitions are taken out of the
image). A Kalman filter was again used to restore the resulting normalized
residual image. Any of these implementations outperform the non-adaptive
Kalman restoration filters, but none of them can incorporate additional a
priort constraints.

Adaptive iterative restoration was first suggested by Ichioka et al. in
[38]. In their approach the convergence speed of the iterative approxima-
tion of the inverse filter in (4.13) was locally regulated on the basis of
the image content. In smooth regions the convergence speed was made
low, while in edgy regions the restoration process converged fast. This ap-
proach can be interpreted as running more iterations in edgy regions than
in smooth regions. As a result the associated regularization parameter,
which is proportional to 1/k, takes large values in smooth regions (strong
regularization) and small values near edges (hardly any regularization).

In [46,47] Katsaggelos et al. considered the spatially variant implemen-
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tation of the iterative Tikhonov-Miller regularized filter in (4.21). They re-
placed the term (I — aBC*C) in (4.21) by a spatially varying noise smooth-
ing filter. The tuning of this filter was based on the noise masking principle.
This adaptive restoration procedure is closely related to the one that will
be described in this section.

In [89] Sezan et al. proposed an adaptive restoration algorithm that
uses the projection onto convex sets (POCS) algorithm. In their approach
the restoration result is constrained to be “close” to the blurred image in
smooth image regions, in this way preventing ringing artifacts. They also
considered using the adaptive approach to be presented in this section, in
the setting of POCS. It was concluded that, although it is conceptually
possible to achieve adaptive restoration in this way, the practical imple-
mentation is extremely computationally demanding.

In the following we will describe an iterative image restoration algo-
rithm, in which both adaptivity and a prior: constraints are used to sup-
press ringing artifacts [55]. It can be considered an extension of the iter-
ative restoration algorithms that were described in the previous chapters.
In the remainder of this chapter we will make again use of the compact
matrix-vector notations for the purpose of notational convenience.

5.2.2 A Priori Knowledge

In image restoration we usually have the disposal of an estimate of the
norm of the noise present in the blurred image. A set of feasible solutions
can then be defined by restricting the norm of the residual g — Df to
this noise norm, which we denote by ¢. To define the adaptive restoration
algorithm the norm of the residual is taken in a weighted space:

R N . qd
lg - DFllz = [(¢ - DI)'R(g - D])]* <. (5.13)
Here R is a M N x MN diagonal matrix containing weight coeflicients
rij € [0,1], where r;; is associated with the pixel at the position (z,7). The
computation of the values for r;; will be discussed later in this section.
The Tikhonov-Miller regularization, as described in Chapter 3, provides
the second kind of a priori knowledge. To regulate locally the trade-
off between the noise magnification error and the regularization error, we
propose imposing an upper bound onto the norm of the filtered image C'f
in a weighted space:

W=

Ictls = [(chrs(ch) < E. (5.14)
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Here S is again a M N x M N diagonal weighting matrix containing positive
coefficients s;; € [0,1]. The bound E is assumed to be known a priori.

Finally, the third kind of a priori knowledge is a (combination of ) deter-
ministic constraint(s). The set of solutions C described by this constraint
has to be convex and closed. Associated with this set is the nonexpansive
projection P. The solution to the restoration problem is required to be an
element of this set C, hence it has to be a fixed point of the projection P
(Appendix B).

The weight coefficients ry; and s;; in (5.13) and (5.14), respectively, have to
be chosen on the basis of prior knowledge about the original image in or-
der to minimize the restoration error. Such information is, however, hardly
ever available, which makes the computation of the optimal weight coef-
ficients impossible for practical situations of interest. For this reason we
have to adopt a more practical point of view. For example, we can base the
coefficients on a local variance measure computed from the blurred image
itself [46,47,55], or compute them from a preliminary non-adaptive restora-
tion result [55]. Qualitatively, we observe that in order to reduce ringing
artifacts by decreasing the regularization near sharp intensity transitions
we have s;; < 1, and r;; ~ 1 (enforcing inverse filtering). On the other
hand, to smooth the noise in the more gradual regions we have s;; ~ 1 and
Tij < 1.

It is worthwhile noticing that the weighting matrix R may also account
for the nonstationarity of the noise. If the noise has a local variance 62 (1, )
at the position (7,7), the weight coefficients r;; are assigned the reciprocal
value of 02 (1, j), i.e. R = R, where Ry, is the (diagonal) autocorrelation
matrix of the noise. In a worst-case situation some image elements may
have been corrupted in such a serious way (for example due to shot noise or
recording errors) that these outliers must be excluded from the restoration
process. This is achieved by assigning the value zero to the corresponding
weight coefficients r;;.

5.2.3 Formulation of the Algorithm

Following the same line of reasoning as in Section 3.3, we can compute a
solution which satisfies (5.13) and (5.14) by Miller’s approach. The two
inequalities are combined into a single quadrature formula:

8(f) = g — DFlfx + llCTII% < 26, (5.15)
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where the regularization parameter has the ﬁxed value a = (¢/E)?. The
adaptive Tikhonov-Miller regularized solution minimizes d( 7 ), and is given
by the normal equations:

(D'RD + oC'SC)f = D'Ry. (5.16)

We require (D'RD + aC*SC ) to be a nonsingular matrix yielding a unique
solution to (5.16). This is not a severe restriction since exact spectral zeros
occur rarely in practical situations of interest. Further, the extension to
singular matrices is straightforward by considering pseudo-inverses [72]
instead of true inverse matrices.

It is now observed that the computation of f requires the matrix
(D'RD + aC*SC) of size MN x MN to be inverted. Because this matrix
represents a space-variant operator, we cannot reduce the computational
complexity by applying the standard diagonalization procedure for block-
circulant matrices, i.e. F ourler domain filtering. Furthermore, we cannot
guarantee that the solution f will satisfy the deterministic constraint C,
nor can (5.16) be modified so that the constraint will always be met. For
these reasons the solution f is computed using an iterative method, which
simultaneously offers the possibility of imposing the constraint ¢ onto the
solution.

Following VanCittert’s procedure, we rewrite (5.16) as
7 = }+B{D'Rg- (D'RD + oC'SC)})
(7). (5.17)

A solution to (5.16) can be computed by applying the method of successive
approximations to (5.17):

?k+1 = .9(}1:)
(I - afC'SC)f, + BD'R(g — D},). (5.18)

This iteration is the adaptive counterpart of the iteration (4.21). Note that
(5.18) is in fact an iterative optimization algorithm based on the method
of steepest descent for minimizing (5.15). In order to ensure convergence
of the iterations (5.18), # must satisfy:

2

2
lpmazl

0<f< —— (5.19)
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where p,,, is the largest eigenvalue of the matrix (D'RD + aC*SC). The
above result was obtained by a trivial extension of the procedure which led
to the convergence requirements for the iteration (4.21).

The constraint C is introduced in the algorithm by applying the projection
operator P in every iteration step:

fk+1 =P 9(}1;) (5-20)

As a result each iterate f w+1 Will satisfy the a priort constraint C. The
convergence of (5.20) cannot be shown by using an eigenvalue analysis ap-
proach, because the projection P is a possibly nonlinear operation. The
more general contraction mapping theorem [100], however, provides a
means to establish the convergence of nonlinear algorithms such as (5.20).
It states that any iterative scheme z;,, = J(z;) converges to the unique
fixed point z* of the operator I, provided that I is a contraction mapping.
Since the projection operator P is nonexpansive by definition, the con-
catenated mapping PG will be contractive if § is a contraction mapping.
In Appendix B it is shown that § is contractive when 3 satisfies (5.19).
Hence, the iteration (5.20) converges if (5.18) converges.

Substituting the definition of the mapping § into (5.20) yields the con-
strained adaptive iterative image restoration algorithm:

fo = 0
Jeer = P[(I—aBC'SC)}, +BD'R(g - DF,)]. (5.21)

It is pointed out that these iterations can partially be implemented in the
discrete Fourier domain, for example to evaluate the (circular) convolutions
associated with D and C.

In Appendix B it is shown that the limiting solution foo of the iterations
(5.21) minimizes the functional ®(f) in (5.15) subject to the constraint
C. Hence, if there exists a solution which satisfies both (5.15) and the
constraint C, it will be obtained by the above iterative algorithm. Further,
within the set of solutions satisfying both (5.15) and the constraint C, the
iterations in (5.21) converge to the solution f,, which minimizes ®(f). It is
therefore guaranteed that the Tikhonov-Miller solution, obtained from the
unconstrained minimization of (5.15), is optimally approximated within
the set C. Clearly, }'oo will coincide with the Tikhonov-Miller solution if
the latter is an element of the set C (consistency of the iterative scheme).
The substitution of the limiting solution f_, in (5.15) gives an a posteriori
check on the claimed noise norm and the bound E.
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5.3 Conjugate Gradients-based
Implementation

The iterative restoration algorithm proposed in the previous section is
essentially a constrained optimization algorithm based on the method of
steepest descent, and can alternatively be written as:

Ty = ~% vV, o(f )l = —(D'RD + oC'SC)f, + D'Ryg,
Forr = PG(J) =7 [fk‘i'ﬁfk]' (5.22)

It minimizes the objective function (5.15) on the convex set C. In Chapter
4 it was already shown that the method of steepest descent may converge
slowly. Therefore, this section will consider more efficient ways to minimize
(5.15) subject to the constraint C.

A first improvement on the convergence speed can be achieved by opti-
mizing the value of the convergence parameter 8 at each iteration. This
optimal value, denoted by B;, minimizes @(P[}k + Byre]). If P is not
present in the iterations, the following analytic result can be derived:

rel?

By = :
* Dl + aliCril}

(5.23)

In the more general case, which includes the (possibly nonlinear) projec-
tion P, we cannot obtain an explicit expression for the optimal value of ;.
Therefore, line search methods need to be employed such as the repeated
quadratic interpolation or the golden section rule [63]. These methods es-
sentially evaluate the objective function ®(P[f, + Bxrs]) for a number of
suitably chosen values of §;, and select the one which yields the minimal
value for the objective function. Although optimizing 8, at each iteration
slightly increases the convergence speed, as will be illustrated by an exam-
ple later on, the additional computation required to repeatedly evaluate
the objective function in (5.15) makes this approach rather unattractive.

In Section 4.4 it was shown that employing a conjugate gradients based op-
timization or a higher order convergence method can lead to very efficient
iterative restoration algorithms. Unfortunately, the methods that have
a converge order larger than one cannot be applied in conjunction with
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the nonlinear projection operator, nor can they handle spatially variant
restoration because of memory requirements [23,51,68,69]. We will there-
fore consider the application of the conjugate gradients algorithm (4.38)
in adaptive and nonlinear restoration.

Although the use of a nonlinear projection P is not consistent with
conjugate direction methods, they have nonetheless been used in conjunc-
tion with them. The most simple and computationally efficient approach
is to project the iterates themselves after each iteration step [51,65]. More
complicated methods to incorporate (nonlinear) constraints, such as the
gradient projection method [63], will not be considered here.

The conjugate gradients method for constrained adaptive restoration
can thus be formulated as:

re = _% V;8(f)l; = ~(D'ED +oC'SC)}, + D'Ry,
k
Py, = Tkt VkPr_1>
}k+1 = P {}k + ﬂkpk] . (5.24)

Eq. (5.24) represents a true conjugate gradients algorithm, only if the
projection P is omitted. In that case the iterations (5.24) minimize the
objective function @(5’ ) in (5.15), and the optimal values for ~; and B are
given by [28]:

7 |l?

[re-all?’

ﬂ — r?cpk (5 26)
* 1Dpell% + allCpllE '
The above expressions and the iterations (5.24) can again be implemented
partially in the discrete Fourier domain.

Clearly, by incorporating the projection P into the algorithm, the con-
cept of an orthogonal solution decomposition, on which the conjugate gra-
dients method is based, can no longer hold. However, for many restoration
problems of interest the vector p;_, is still useful in determining the cur-
rent direction of modifications (i.e. p;). This is particularly true when
the effect of the projection operator is relatively small at each iteration,
though its effect on the entire optimization can be very significant [51].
The choice for the values of 8 and =y, becomes more difficult as well if a
projection operator is used. Although analytical expressions can no longer
be obtained, usually a suitable choice for v, is still given by (5.25). In

Nk (5.25)
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order to ensure convergence the optimal value for 8, must be found by a
line search procedure, i.e. an algorithm that minimizes the objective func-
tion ®(P(f, + Bips)) as a function of B;. Since the method of conjugate
gradients has a considerably higher convergence speed than the method of
steepest descent, evaluating the objective function ®( 7 ) a number of times
for each iteration step is now worth the additional effort.

Since B, is optimized at each iteration step, Q(} x+1) decreases monoto-
nically, i.e. the iterations are ensured to converge. As the iterations (5.24)
progress, they usually behave-more and more like the steepest descent
iterations of (5.21). An explanation for this effect is that as k — oo, the
iterates f r and }k+1 lie very close to each other within the convex set
C. Hence, the gradients r, and r,,; are approximately the same vectors.
As a result p, — ry, i.e. (5.24) becomes a steepest descent iteration as
k — oco. An immediate consequence of this is that the limiting solution of
the iterations (5.24) is identical to the one obtained by the steepest descent
based iteration (5.21).

5.4 Experimental Restoration Results

The performance of the constrained iterative image restoration method in
(5.21) is illustrated by three examples on artificially blurred images in this
section. The results will be compared with an important representative
of the nonadaptive restoration methods, namely the Tikhonov-Miller reg-
ularized restoration filter of (3.31). The 2-D Laplacian filter was used as
the regularizing operator C.

In the first experiment the effects of the weighting matrices B and
§ in combination with an intensity constraint will be studied. Further,
the converge behavior of the iterations (5.21), (5.22) and (5.24) will be
compared. Where the first experiment deals with the restoration of a nat-
ural and therefore “complex” scene, the second experiment addresses the
restoration of a simple text image, in which the application of an intensity
constraint is very effective. Again, the difference in convergence behavior
between the various algorithms will be illustrated. The last experiment
deals with the worst-case situation with respect to ringing, namely the
restoration of a motion blurred image. In this case in particular the use of
the weighting matrix § will be shown to be very effective. It will also be
illustrated that the matrix R can be used to handle the presence of outliers
in the blurred image data.
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In the experiments the weight coefficients r;; and s;; were tuned as
follows. A local variance measure 02(¢,5) was first computed from the
blurred image g [46]:

”r. 1 i+P  J1+Q g
Ug(za]) = (2P T 1)(2Q T 1) k:{?Pt:;Q[g(k’l) - mg('ﬂj)] > (5-27)

where (2P + 1) x (2Q + 1) is the size of the analysis window in which the
local variance is computed, and where m,(¢, ) is the local mean, given by

1 I+ZP ]i?
my(i,7) = g(k,1). (5.28
5(4:9) (2P +1)(2Q +1) 575, 570 )

In regions with slow intensity transitions the local variance takes approx-
imately the value of the noise variance, whereas the larger local variances
correspond to “edgy” image regions. Using this local variance measure,
the coefficients in the weighting matrix § were computed as

1
1 + pmax|0,02(s,7) — 03]’

S5 = (5.29)

where the noise variance o was estimated from a smooth image region,
and where u is a tuning parameter. In a similar way the coefficients r;;

were tuned according to

1
1 + (vmax|0,0%(1,7) — 03])~1’

iy =

(5.30)

Experiment 1

The first example considers the constrained adaptive restoration of the
defocused cameraman image in Figure 5.4a (R=3, SNR=40 dB). To control
the regularization locally, the use of the weighting matrix R was considered
first (P=Q = 2,0 =10"%a = 1073, and § = I). In addition to the
adaptive approach the intensities in the restored image were constrained
to the intensity interval [240, 10]. Associated with this convex set is the
following projection operator:

P1£(3,5)] = min{240, max[f (4, 7), 10]}. (5.31)

The restoration result obtained by (5.24) is shown in Figure 5.4c, and has
an SNR improvement of nsygr = 6.9 dB. This result is to be compared with
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(d)

Figure 5.4: Constrained adaptive restoration: (a) Defocused camera-
man image (R = 3) with noise added (SNR=40 dB); (b) Nonadaptive
Tikhonov-Miller restoration result; (c,d) Constrained adaptive iterative
restoration result.
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Figure 5.5: Convergence behavior for three different implementations in
restoring the defocused cameraman image.

the nonadaptive Tikhonov-Miller regularized restoration result in Figure
5.4b, which has an SNR improvement of 6.1 dB.

Next, the effect of the weighting matrix § was considered (P = Q =
2,4 = 0.5,a = 0.3, and R = I). Again the projection operator in (5.31)
was used. The resulting restoration is shown in Figure 5.4d, and has an
SNR improvement of 8.2 dB. Obviously the adaptivity introduced through
the weighting matrix § works best in this case. Further, the combination
of § and R in the restoration process does not lead to significant addi-
tional improvements compared with using S alone. Since similar effects
are observed in other restoration experiments, we conclude that it is often
sufficient to use only the weighting matrix § in adaptively controlling the
local regularization and noise magnification error. The experiment 3 will,
however, show a restoration example in which both the weighting matrices
R and S can advantageously be used.

In Figure 5.5 the convergence behavior of the steepest descent algo-
rithm with fixed £, the steepest descent algorithm with optimized 8, and
the conjugate gradients based implementation is shown. It is observed
that, even though a nonlinear projection operator is used within the con-
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Table 5.1: SNR improvement (dB) for the restoration of the defocused text
image.

SNR (dB) | Unconstrained | Constrained
restoration restoration
20 2.7 4.8
30 5.5 ' 10.8
40 . 9.8 21.8
50 14.5 35.2
60 19.5 : 44.2

jugate gradients algorithm, its convergence speed outperforms the steepest
descent algorithms significantly.

Experiment 2

The next experiment considers the restoration of a “text image” (size
is 256 x 256 pixels), that was defocused with R = 7. White Gaussian
noise was added at 20,30,40,50 and 60 dB, respectively. In Figure 5.6a
the blurred image with SNR=30 dB is shown. The restoration obtained
by Tikhonov-Miller’s method of regularization is given in Figure 5.6b
(a = 3.107%). Although the numerical improvement of 5.5 dB is accept-
able and the text becomes readible, the restored image shows annoying
ringing effects. To prevent ringing from happening, the intensities were
constrained to the interval [210,25]. Since this constraint represents very
accurate knowledge about the original image intensities, the restoration re-
sult obtained by the constrained iterative algorithm is very good. It has an
SNR improvement of 10.8 dB, and is shown in Figure 5.6¢c. In Table 5.1 the
SNR improvements for various SNRs are listed for the Tikhonov-Miller reg-
ularized filter and the constrained iterative restoration algorithm. Figure
5.7 gives a comparison between the convergence behavior of the steepest
descent implementation with fixed # and with optimized 8, and the conju-
gate gradients implementation. Even though the deterministic constraint
plays an important role in the restoration process, and hence the concept of
an orthogonal solution decomposition breaks down theoretically, the con-
Jjugate gradients implementation (5.24) turns out to be still very useful.
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Figure 5.6: Restoration of a text image: (a) Defocused image; (b) Uncon-
strained restoration result; (¢) Constrained restoration result.
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Figure 5.7: Convergence behavior for three different implementations in
restoring the defocused text image.

Experiment 3

The last experiment deals with the worst-case situation (with respect to
ringing effects) of linear motion blur. The cameraman image was blurred
by horizontal motion over 9 pixels and noise was added with SNR = 30
dB (Figure 5.8a). The unconstrained nonadaptive restoration result is
shown in Figure 5.8b (o = 0.05), and has an SNR improvement of 5.5
dB. The restoration result obtained by the constrained adaptive algo-
rithm using the weighting matrix § and by using a projection operator
to constrain the intensities to the range {240, 10], is shown in Figure 5.8c
(¢ =3.0,u =0.5,P =Q = 2). The SNR improvement is 7.4 dB. Particu-
larly in this situation the restoration result has considerably fewer ringing
artifacts. As was discussed in this chapter, this can only be achieved by
reducing the regularization near edges in the image, yielding more noise
magnification. This effect is illustrated in Figure 5.8d, which shows a mag-
nified portion of the restoration result in Figure 5.8c. Table 5.2 lists the
performance of the restoration algorithm for various SNRs.
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(4)

Figure 5.8: Restoration of the cameraman image: (a) Motion blurred im-
age; (b) Unconstrained nonadaptive restoration result; (¢) Constrained
adaptive restoration result; (d) Enlargement of (c).
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Table 5.2: SNR improvement (dB) for the restoration of the motion blurred

cameraman image.

SNR (dB) | Unconstrained | Unconstrained | Constrained
nonadaptive adaptive adaptive
restoration restoration restoration

20 2.8 3.9 4.3

30 5.5 7.1 7.4

40 9.7 11.6 11.8
50 14.6 16.8 16.9
60 19.8 21.3 21.3

In experiment 1 it was concluded that the regularization error can suf-
ficiently be controlled by the matrix S§. If, however, the observed image
is corrupted severely due to for instance shot noise, the matrix R can be
used to exclude the outliers from the restoration process. In order to illus-
trate the effects of such an algorithm 50 percent of the pixels in the noisy
blurred image in Figure 5.8b were randomly discarded. The resulting im-
age is shown in Figure 5.9a, where all the discarded pixels are given an
intensity of O (black). In the restoration process the corresponding coeffi-
cients r;; were set to zero to exclude the erroneous data. The restoration
result from this noisy blurred image with incomplete data is presented in
Figure 5.9b, showing the robustness of the iterations (5.24).
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(2) (b)

Figure 5.9: (a) 50 percent of the data in Figure 5.8a discarded; (b) Restora-
tion result.
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Chapter 6

Maximum Likelihood Image
Identification

Sofar we have assumed that the PSF of the image formation system, the
variance of the observation noise, and a model for the original image were
known prior to the restoration process. In many practical situations of
interest these parameters are, however, not available. Image identification
(sometimes referred to as blur identification, image-blur identification, or a
posteriori restoration) focuses on developing estimation procedures, which
identify all the information that is required to restore an image from the
noisy blurred image itself.

Again we will assume that the structure of the models (2.8) and (2.13)
is an appropriate abstraction of reality, but now the coefficients d(m,n)
and a(k,l), and the variances of the noise processes v(, ) and w(1,7) are
unknown. Then the image identification problem can be specified as the
estimation of the parameter vector 4, defined as

0 = (64,0, ,0r)" = (d(m,n),a(k,l),02,02), (6.1)

from the observed noisy blurred image g(i,7). The major focus will be
on developing procedures which provide the maximum likelihood (ML)
estimator of the unknown parameters.

In Section 6.1 we will start with a brief overview of conventional image
identification methods, including spectral and cepstral techniques for es-
timating the PSF. In Section 6.2 the image identification problem will be
formulated as a maximum likelihood problem. The likelihood function will
be established, and some of its properties will be investigated. From this
formulation it follows that ML image estimation requires the optimization
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of a complicated nonlinear function. Since analytic solutions cannot in
general be obtained, the remainder of this chapter (as well as Chapters 7
and 8) will be concerned with recently proposed procedures for efficient
optimization of the likelihood function.

This chapter aims at reviewing existing methods, which seem to be
unrelated, under a unifying ML framework [59]. In this way it is shown that
all identification methods known sofar in the literature are merely different
implementations of the same estimator, resulting from different modeling
assumptions and/or considerations about the computational complexity or
computer resources available.

In Section 6.3 we will first consider the class of image identification
methods which is based on the assumption of noiseless observed data.
It will be shown that in this case the ML image identification problem
can be reformulated as a least-squares problem. Next, in Section 6.4 two
identification methods will be discussed which do not assume noisefree
image data.

A common feature of the ML methods discussed in this chapter is that
they nearly all employ gradient-based optimization procedures, either in an
implicit or explicit manner. In Chapter 7 a more elegant iterative algorithm
will be introduced which does not make use of gradients to optimize the
likelihood function.

6.1 Conventional Identification Methods

Probably the most straightforward way to obtain the point-spread function
of an image formation system is to make use of an analytic description of
the system and to substitute all the parameters required, such as camera
misadjustment, object distances, object motion, and camera motion. If
such an analytic model is not available, or if its parameters are not exactly
known, one could analyze the image formation process by recording an
original image with known pattern k(i,7) (e.g. an impulse or an edge)
a number of times. If we denote the recorded images by g,(z,7), with
r=1,2,---, R, and we take R large enough, and if we assume that each
image ¢,(z,5) has been blurred by the same PSF, then the PSF can be
solved from the following relation:

12}2:("—1}2«1"1:" 7
R od) = 72 1d00) « k(i) + w, (i)

r=]




= d(:,7) * k(s,5) + ZR: w, (1, 7)

~ d(i,7) * k(7,7). - (6.2)

In fact this method can be regarded as solving the classical system identi-
fication problem, where the response of a (linear) system is identified given
its input and output. Unfortunately, such an approach is rarely applicable
in image identification.

A related but more practically oriented approach assumes that certain
patterns in the observed blurred image are a priort known. For example, if
a blurred edge is observed, an idealized (sharp) edge in the original image
could be assumed to be associated with this edge. Again, in practice this
approach does not work very well, because small deviations between the
assumed idealized pattern and the actual (unknown) pattern in the orig-
inal image give rise to large deviations in the PSF identified in this way.
Furthermore, this method does not account for the noise in the observed
image.

A more successful approach towards image identification is due to Stock-
ham et al. [93] and Cannon [18]. Their spectral and cepstral methods
concentrate on PSFs whose Fourier transform has a regular pattern of
zero-crossings (such as uniform linear motion blur). Since these zeros can
usually also be located in the Fourier transform of the blurred image, they
can be used to identify this class of PSFs.

If we neglect the noise contribution in the observed blurred image, then
the power density spectra of the original and blurred image are related by

G(u,v)[* = |D(u,v)|* |F(x,v) . (6.3)

If the images ¢ and f are divided in non-overlapping subimages, denoted
by g.(¢,7) and f.(7,7), the power density spectra of these subimages will
approximately satisfy a relation similar to (6.3) (neglecting boundary ef-
fects):

1Ga(u,0)* & |D(u,v)|* |Fs(u,v)[%. (6.4)
If the subimages are large compared to the extent of the PSF, then this
is a good approximation. Taking the logarithm of (6.4), and adding the
results for each of the S subimages gives:

1

s
5 Y log |Fy(u,v)[* + log | D(u,v)|%. (6.5)

=1

1 S
EZlog!G‘g(u,vH2 ~

s=1
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The first sum on the right can be approximated by an average power
spectrum over an ensemble of images, and next be subtracted from the
expression on the left hand side. Resulting from this will be an approxi-
mation to the magnitude of the response of the blurring function. However,
this procedure is very sensitive to deviations in the average power spec-
trum, it does not account for noise, and the PSF obtained is only a rough
approximation of the true PSF.

If D(u,v) has zero-crossings, then (6.5) will show large negative peaks
at these locations. In this way, a zero-crossing pattern can easily be ex-
tracted from |G(u,v)|, from which it is usually possible to obtain a fair
indication of the type, extent, and orientation of the blur (for example,
the length and angle of linear motion blur, or the radius of defocusing
blur).

An alternative to the above for linear motion blur involves the compu-
tation of the cepstrum. The (power) cepstrum, denoted by §(i, j), is the
inverse discrete Fourier transform of (6.5), and has the important property
that if two signals are convolved, their cepstra add. Thus, if the noise is
again neglected, we have

5

S
46, 7) = 7-1% > log |G (u, )]} = %z_jl AGd) +dG,5).  (6.6)

For horizontal motion blur over L pixels, |D(u,v)| has zeros in horizontal
direction at multiples of % As a result J(z’, 7) has a large negative spike
at the horizontal axis at a distance L. As an example consider the photo-
graphically blurred train image in Figure 6.1a, showing horizontal motion
blur. The row-wise summed log-spectrum, formed of 32 rows in the cen-
ter of the image, is shown in Figure 6.1b, and the associated cepstrum in
Figure 6.1c. The cepstrum displays prominent spikes at ¢ = 8 and ¢ = 9,
indicating that the length of motion is in the range of 8 to 9 pixels.

Shortcomings of the above approaches are that PSFs which do not have
spectral zeros (such as Gaussian blurs), cannot be identified in this way,
and that the presence of noise in the observed image is not taken into
account. For this reason the methods described in this section should be
considered as a means for obtaining a first impression of the type and sever-
ity of the blur present in the image. After such an initial investigation of
the blurred image more accurate methods need to be employed, such as
the maximum likelihood approach described next.
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Figure 6.1: Identification of motion blur: (a) Blurred image; (b) 1-D
log-spectrum; (c) Cepstrum from (b).
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6.2 Maximum Likelihood Estimator

6.2.1 Introduction

If we assume that the original image can be modeled by the 2-D AR model
in (2.8), and that the image formation system can be modeled by (2.13),
the image identification problem can be considered a parameter estimation
problem, where the unknown parameters are given by 6 defined in (6.1). In
this thesis we will focus on computing maximum likelihood (ML) estimates
of 8, because ML procedures have shown to be very powerful in many
applications [6,22,26,62,85.

Maximum likelihood estimation procedures are based on optimizing the
probability density function (PDF) of the observed image g with respect to
the unknown parameters. In this way the ML estimator finds the various
values in § which most likely resulted in the blurred image observed. Since
the PDF of g is required in the ML estimation of 8, we need to assign PDFs
to the stochastic processes involved in the image and observation model.
In the light of the practical experience of researchers in image identification
and restoration we assume that the driving process (or modeling error) v
in the image model

f=Af+v (6.7)

is a homogeneous Gaussian distributed white noise process with zero mean
and covariance matrix @, = ¢2I (o2 > 0), and is uncorrelated with f. The
PDF of f, given the PDF of v and the model (6.7), is then given by:

det [T — A[* , toy-
P4, Q.) = | sormgmg o {31~ 4707 (- w)1}. (o)

It is recalled that (I — A) is nonsingular, because the image model a(k,l)
is assumed to be stable.

The observation noise w in the image formation model
g=Df+w (6.9)
is also assumed to be a homogeneous Gaussian distributed white noise

process with zero mean and covariance matrix Q,, = o2I (02 > 0), and
is uncorrelated with v. The PDF of g, given the PDF of the observation
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noise, the model (6.9), and the original image f, can be expressed as:

i 1
:D,Q,) = ——(g—DN)'Q;' (g - Df);.
p(g/f;D,Q,) szMNdethwJeXp{ 2(y Qg f)}

(6.10)
Here the PDF of the blurred image data is conditioned on both the original
image (denoted by g/f) and on the deterministic parameters D and Q,,

(denoted by g; D, Q).

6.2.2 Definition of the Likelihood Function
The maximum likelihood estimator of the parameter vector 6 is defined by
[62,85]

0, = arg {r&agc L (0)} = arg {I&aéx log p(g; 0)} . (6.11)
Here £*(0) denotes the (log-)likelihood function of 8, p(g;#) denotes the
a priori probability density function of the observed image given ¢, and

© specifies the range of the parameters §. In order to compute p(g;6) we
combine (6.7) and (6.9) as follows:

g=Df +w=D(I - A) v+ w. (6.12)

Since v and w are uncorrelated Gaussian processes, p(g; ) is Gaussian as
well, with zero mean and covariance matrix P given by

P=Cov(g;6) = E{(D(I—4) v+ w)(D(I - 4) v+ w)'}
= o:D(I - A)™Y(I-A)'D'+ 1. (6.13)
By substituting this result for p(g;6) into (6.11), dropping all terms which

are independent of 6, and premultiplying the result by -2, the ML image
identification problem can be expressed as follows:

~

— . _ . tp—1 .
0] = arg {Igélél £(0)} = argmin {log(det |P|) + ¢g'P g} . (6.14)

If the convolutions appearing in the image model and observation equation
are interpreted as circular convolutions, the matrices D and 4 have a
block-circulant structure, and P has a block-circulant structure as well.
Associated with P is the following 2-D convolution kernel p(, j):

p(ig) = o2d(i) * (1 - a(i,5)) 7 * (1= a(—i, )~ # (i, —3) + 0.
(6.15)
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We observe that all matrices in (6.13) commute because they are related to
convolutions. Further, the covariance matrix P is positive definite provided
that 03, > 0. Since there is always noise present in a blurred image, this
condition is satisfied. As a consequence the inverse of P and the logarithm
of det |P| always exist.

We should note that the dimension of P is MN x M N, where typical
values of M, N are 128, 256 or even larger. Hence, the direct evaluation of
(6.13) and (6.14) is hardly ever feasible in practice. If, however, we assume
that the matrices 4 and D are block-circulant, the likelihood function £(8)
can be evaluated very efficiently in the frequency domain:

L(#) = log(det|P]) +g'P g
log{HP(u,v)}+§2’_qp%)l)l_

= 3 {log P(u,v) + %} , (6.16)

Il

where \
|D(u, v)| 2

- Afw,oF * 7
and D(u,v), A(u,v), P(u,v), G(u,v) are the DFT of d(m, n), a(k,), p(s, )
and g¢(z, 7), respectively. Alternatively, the likelihood function may be eval-
uated recursively in the spatial domain by using the concept of prediction
error. This approach will be discussed in Section 6.4.2.

P(u,v) = o? (6.17)

6.2.3 Properties of the Estimator

By making use of a maximum likelihood estimation procedure, the es-
timated value 6 of 8 is guaranteed to be consistent and asymptotically
efficient [85]. This means that in the limit for an infinite number of data
points, @ is unbiased and the variance of the estimation error is equal to
the Cramer-Rao lower bound. However, since images consist only of a fi-
nite number of pixels, the maximum likelihood estimator for § may not be
unbiased or efficient.

It might therefore be interesting to evaluate the theoretical and practi-
cal (i.e. measured) bias and estimation error for the identification problem
under consideration. Unfortunately, analytic expressions for the bias of
this estimator cannot be obtained. As a consequence the Cramer-Rao lower
bound (which can be analytically obtained) cannot be checked against the
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measured variances of the estimation error, because the (unknown) bias is
always included in such a measurement. In other words, it is not possible
to discrininate between the bias and the variance of the estimation error.
In addition to this, computed results may also be subject to numerical
inaccuracies, which may prevent finding the exact optimum of the likeli-
hood function. In the next chapter we will illustrate the various types of
errors by a numerical example. With hindsight we remark that for low
signal-to-noise ratios, the variations in the estimated parameters cause the
largest difference between the actual and estimated parameters, while for
moderate to high SNRs biases tend to dominate the estimated parameters,
though these effects depend on the type and severity of the blur considered.

If we have a closer look at (6.16) and (6.17), we observe that L(6) is
independent of the phase information of 1 — A(u,v) and D(u,v). This fact
does not constitute a problem for the uniqueness of the estimates of a(k,l),
since we have assumed that the image model is stable and its support is
causal. Then the zeros of the image model always lie inside the unit bi-
circle. As a result 1 — A(u,v) always has minimum phase. This eliminates
the phase ambiguity for 1 — A(u,v) and results in unique estimates for
a(k,l).

On the other hand, the estimates of d(m,n) are not unique in the ab-
sence of any additional constraints, mainly because blurs may have any
kind of phase. Hence, the ML procedure can only correctly identify the
magnitude-squared of D(u,v), i.e. |D(u,v)|?. Non-uniqueness of the esti-
mates of d(m,n) can in general be avoided by enforcing the solution to
satisfy certain constraints. In image identification it is common to assume
that the PSF is symmetric, i.e. d(m,n) = d(—m,—n). In this way the
phase of the PSF is enforced to be either zero or 7. Unfortunately, even
when we exploit the symmetry of the PSF, the phase of the solution is not
defined uniquely because of the presence of £7, which translates into an
ambiguity of the sign of D(u,v). In practice, however, the sign-ambigtity
is not a serious problem, because two additional constraints can be im-
posed on the solution to alleviate this problem. These are: (i) the PSF
coefficients are nonnegative, and (ii) the support of the PSF, S, is finite.

The above constraints on the PSFs are nearly always restrictive enough
to obtain a unique estimate for the PSF. In developing the algorithms for
the optimization of £(8) we will assume that the actual PSF is symmetric,
positive, and has finite support, thereby restricting the class of PSFs that
can be correctly identified. It should be noted that other forms of sym-
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metries, such as d(m,n) = d(—m,n) or d(m,n) = d(m, —n) could also be
used as constraints.

6.2.4 Analytic Solutions

In a first attempt to optimize £(#) we may consider an explicit analytic
solution. Although the partial derivates of the likelihood function with
respect to the elements of § can be computed (see Section 6.4.1), equating
these to zero does not lead to any useful analytic expression for the pa-
rameters to be estimated, mainly because of the non-quadratic behavior
of log(det |P|).

There is, however, one exception: let us introduce the regularization
parameter a according to Miller:

(6.18)

Qe

Substituting « into the likelihood function (6.14) results in the following
(equivalent) ML problem:

~

0" = arg min {MNlog(of,’-) + log(det |P|) + aizgtﬁ"g}, (6.19)

where B ‘
P=D(I—-A)YI-A)""'D +al, (6.20)

and ¢' = (d(m,n),a(k,l), a,02)t. This formulation allows us to derive an
analytic expression for either 62 or 6. Confining ourselves to the analytic
expression for o2 (the other case is similar), we find:

6l=——¢'P g. (6.21)

The interpretation of (6.19) and (6.20) is that for given D, 4 and o, the
optimal value of 07 can be determined analytically via (6.20) and (6.21).
Contrary to this, the minimization in (6.19) requires the optimal value of
o2. Therefore, the above procedure does not make the actual optimization
of the likelihood function much easier. More importantly, however, (6.18)
reflects the well-known fact that in image restoration only the ratio of ol
to o2 is relevant, such as can be seen from the class of Tikhonov-Miller
regularized restoration filters. In this sense the elimination of the actual
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noise variances from the identification procedure is very natural.

In Section 6.3.1 it will be shown that for the hypothetical case @ = 0
(i.e. the observed blurred image is noiseless) the likelihood function can
be optimized independently of o2. Image identification algorithms based
on this assumption will be discussed in Section 6.3. For values of a which
are much smaller than the diagonal elements of D(I — 4)~}(I — A)~*D",
we may very well assume that the effect of @ in (6.20) is negligible. This
means that we are allowed to apply identification methods which are based
on noiseless data to noisy data [13,52,96,97], and account for the presence
of noise later on. On the other hand, for very noisy data, al dominates
D(I — A)"Y(I — A)~'D". In this case P becomes independent of D and 4,
the entries of which can therefore no longer be identified correctly. The
solution to (6.19) is then given by

1
52 = ——g'g, 6.22
v =N (6.22)

i.e. the observed image is considered to be composed of observation noise
only.

Since an analytic solution for 6 cannot be found in general, numerical
solution strategies have to be considered in order to optimize £(6). An ex-
haustive search method or any other more intelligent search method could
theoretically be employed to find a solution to (6.19). The dimension of the
solution space is, however, very large due to the total number of unknowns.
For example, a moderate blur with an extent of 5 x 5 pixels and a first-
order NSHP image model support would already lead to a 17-dimensional
solution space. Unless extremely tight constraints can be enforced onto
the PSF and image model, global search strategies are not feasible for op-
timizing the likelihood function. In the following sections we will consider
recursive and non-recursive algorithms, in which gradient-based optimiza-
tion procedures play a prominent role.

6.3 Implementations for Noiseless Data

In this section we will discuss two different implementations of the likeli-
hood estimator which are based on the assumption of noiseless observed
image data, i.e. 02 = 0. It will be shown that under this assumption the
ML problem can be reformulated as a least-squares problem.
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6.3.1 Least-Squares Solution

In the pioneering work of Tekalp et al. [96] the identification of the image
model and PSF coefficients was considered for the case of noiseless data.
They showed that by combining the image model (2.13) and the obser-
vation equation (2.8), the image identification problem can be considered
equivalent to the identification of a 2-D autoregressive moving-average pro-
cess of the following form:

9(¢,7) = > alk,l)g(i —k,j — 1)+ Z d(m,n)v(: —m,5 —n). (6.23)

k,JES, m,neES,

The AR-coefficients are determined by the image model coefficients, while
the MA-coefficients are determined by the (normalized) PSF coefficients.
In [96,97], Tekalp et al. propose recursive methods to estimate d(m,n)
and a(k,!) from g(7,5). We will show here that these estimation proce-
dures implement the optimization of the likelihood function (6.14) under
the assumption of noiseless data.

In the case 02 = 0 the covariance matrix P in (6.13) becomes:
P=0D(I - A"} (I - A)"'D". (6.24)

If we now assume, without loss of generality, that the PSF of the degrading
system is first-quadrant causal (this can be achieved by introducing a fixed
delay), that we have a causal image model, and that D and A are associated
with linear convolutions, then the determinant of the covariance matrix P
becomes equal to [02d(0,0)}|M"N. (Observe that the difference between
a linear and circular convolution is apparent only at the boundaries of
the image; hence if we neglect boundary effects, the two approaches are
identical.) The likelihood function £(8) in (6.14) can now be rewritten as
follows:

L(6') = M N log(d(0,0)*02)+ g'D'"(I—A)(I-4)D'g. (6.25)

d(0,0)202
where D' = D/d(0,0), or d'(m,n) = d(m,n)/d(0,0), indicating a normal-
ization of the PSF in both matrix and scalar notation. The parameter
vector §' is composed of the image model parameters a(k,!), the normal-
ized PSF coefficients d'(m, n), and the normalized variance x = d(0,0)%c2.
Equation (6.25) shows that for a given D' and A, £(6') can be optimized
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analytically with respect to y, yielding

2 2 L it ¢ -1
u = d(0,0)%0, = i D' (I-A)I-AD" g (6.26)
Taking into account that the sum of the PSF coefficients equals 1, and that
d(0,0) > 0, both d(0,0) and o2 can be obtained from (6.26). Hence, under
the assumption of noiseless data, analytic expressions for the estimates of
d(0,0) and o2 can be found. Further it is observed from (6.25) that £(6")
can be optimized independently of o2, as was already mentioned before.
The optimization of the likelihood function £(#') is equivalent to solving
a least-squares problem. This can be shown by introducing a new variable
¢, called the (prediction) error signal:

€= (I - A)D''g. (6.27)

An alternative formulation of € shows that ¢(¢,7) can be computed recur-
sively as:

€(i,7) = g9(6,5) — > alk,Dg(i —k,5—1)
kJ€Sa
— Z d'(m,n)e(i — m,j —n). (6.28)
m.ne 5;\{(0,0)}

Minimizing the likelihood function L£(#') in (6.25) then reduces to mini-
mizing the variance of €(z, j):

1 - _
A — 1 d 0’0 2.2 tyt—t _ t _ Dr 1
= ¢+ —l—ete =¢; + 1 > (i, ) (6.29)
€2 €2 i

Here ¢, and c; are constants which are independent of a(k,!) and d'(m,n).
We conclude that for noiseless blurred images the original ML identifi-
cation problem can be regarded as a 2-D least-squares problem. Further,
(6.28) is identical to the 2-D ARMA model in (6.23) (with (7, 7) = v(,7)).
Therefore, optimizing the likelihood function by minimizing the variance
of €(i,5) can be interpreted as the problem of identifying the coefficients
of a 2-D ARMA process, as was proposed by Tekalp et al. [96].
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Standard iterative gradient-based techniques can be employed for mini-
mizing (6.29). The gradients of £(#') can be computed analytically with
respect to each of the unknowns 6}, and can be expressed as follows:

aL(6") ,7)
a0, _2; ae' , (6.30)

where the partial derivatives of €(7, ) are recursively given by

de(,7) . : , Oe(t —p,j — q)
— = —g(t—k,j-1) - Yo d(pg)——2
da(k,!) PaESNL(0,0)} da(k,!)
3e(1,5) . . , O¢(i —p,j — q)
— —e(i—=m,j—n)— > d(p,g——~2—"L
dd'(m,n) P.a€5.\{(0,0)} dd(m, n)

(6.31)

In order to guarantee the stability of these recursive equations the nor-
malized PSF d’'(m,n) must be a minimum phase sequence, i.e. the zeros of
d'(m,n) must lie within the unit bi-circle. This assumption is, however, in
general not satisfied, because many PSFs (such as symmetric ones) corre-
spond to non-minimum phase systems. Therefore Tekalp et al. proposed
the following two computational methods: (i) decompose the unknown
PSF into 4 quarter-plane convolutional factors, each of which is stable in
its direction of recursion, and next identify one of these factors (using the
symmetry of the factors) by the above identification method. The final
PSF is formed by cascading the individual convolutional factors [96], or
(ii) decompose the magnitude squared of the PSF into 2 nonsymmetric
half-plane (NSHP) factors in order to identify the magnitude response of
the PSF [97].

6.3.2 Parallel 1-D Least-Squares Solution

In the previous section it was shown that under the assumption of noise-
less data, the ML image identication problem becomes a 2-D least-squares
problem, which could also be interpreted as the identification of a 2-D
ARMA model. Biemond et al. [13] showed that under certain conditions
it is possible to decompose the 2-D ARMA model identification problem
into a set of parallel 1-D (complex) ARMA model identification problems.
Well-known 1-D identification methods were subsequently applied to each
of the parallel channels independently to obtain the least-squares estimates
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of the parameters [13,16,44]. In this section we will show that identifying
these parallel 1-D ARMA models is another way to implement the opti-
mization of the likelihood function.

We first rewrite £(f) in (6.16) as the sum of N partial likelihood func-
tions each of which is based on a column of the image. This is done by
simply splitting the summation over both the columns and rows in (6.16)
into a separate summation over the rows (denoted by the summation index
u), followed by a separate summation over the columns (denoted by v):

(M-1)(N-1) w.v)|?
Lo = x {‘°gP(“’”)+%}
B N-1[M-1 . . |G (u)|2
- v=0 |:uz=:0 {l g Plu) + ,,(u) }]
N—1 M 1 u
= > [log 1:[ P,( >~ li;:)((u ]
- N_l[logdethul-f-g.,P 'g,]
_ N‘lﬁv(e)‘ (6.32)

Here G,(u) denotes the v-th column of G(u,v), and the mixed spatial-
frequency domain vector g, = (9,(0),9,(1),...,9,(M — 1)}* denotes the
inverse 1-D DFT of G,(u). Similarly, P,(u) denotes the v-th column of
P(u,v), and P, is the circulant matrix associated with the convolution
kernel p,(¢), which is the inverse 1-D DFT of P,(u). Referring to (6.13)
and (6.17) we can write

P, =02D,(I — A)"(I — A,)"'D} + 021, (6.33)

or

P,(u) = 03% + 02, vE|O,N —1]. (6.34)

Associated with these relations is the following convolution kernel for each
of the columns:

po(1) = 02dy (1) * (1 — ay(4)) 7 % (1 — ay(—1)) P * dy(—1) + 02.  (6.35)
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L(9) via Eq. (6.14) L£(8) via Eq. (6.16)

.. 2-D DFT
g(za J) E— G(u7 U)
1-D DFT (m‘ A DFT-inverse (columns)
gv (%)

sseee £u(90) via Eq (636)

L(9) via Eq. (6.32)

Figure 6.2: Relations between the various {equivalent) definitions of the
likelihood function.

Here D,(u) and A,(u) are the v-th column of D(u,v) and A(u,v), re-
spectively, and d,(¢) and a,(¢) are their 1-D column-wise inverse DFT.
Alternatively, we may also regard d,(7) as the v-th DFT coefficient result-
ing from a 1-D forward DFT of the i-th row of d(¢,7). Similar results
hold for a,(),p,(7) and g¢,(¢). Figure 6.2 shows the relations between the
various definitions of the likelihood function and the use of the 1-D and
2-D DFTs.

The interpretation of (6.32) is that if we apply a 1-D DFT to each of the
rows of ¢(7,7), we can compute the value of the likelihood function £(6) as
the sum of the individual likelihood functions £,(f), each of which is re-
lated to a column (or “channel”) of g(¢,7). We would now like to optimize
L£(8) by optimizing each of the individual likelihood functions £,(#) inde-
pendently (possibly in parallel). This decoupled optimization cannot be
performed directly by equating the gradients of £,(#) with respect to 8 to
zero, because the channels are not decoupled with respect to the elements
of 8. (In other words, the optimal PSF computed for instance from the
data in the channel v; may not be optimal for the channel v;.) However, it
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can be observed from (6.35) that the channels are decoupled with regard
to the coefficients a,(z) and d,(z). Therefore each L,(f) can be optimized
independently with respect to these transformed coefficients.
Unfortunately, such an independent optimization is not possible for ol
and o? because they appear in the expressions for each L,(8). However, if
we (initially) assume that the observation noise is negligible (o2, =~ 0), it is
sufficient to optimize £(#) only with respect to the image model and PSF
coefficients, as was shown in Section 6.3.1. The remainder of this section
therefore applies to blurred images in which the amount of noise is small.

We define 0, = (dy(7),a,(:))* (Yv), and write £,(0) = L,(0,) to stress
that the likelihood function of channel v needs to be optimized only with
respect to the parameter vector 8,. If we assume, without loss of general-
ity, that the image model and PSF have a (semi-) causal support, the 1-D
convolution kernels d,(¢) and a,(:) have a causal support as well. If we
also assume that d,(7) and a,(7) denote linear convolutions, we can rewrite
L,(6,) in (6.32) as follows:

1 - _
— 2.2 t oy —t . t _ -1
L,(6,) = Mlog(d,(0)*c?) + NOEE g: DI — A,) (I — A,)D', g,
1 ; 1 M-1 N2
= a+—de=ca+— ) ali) (6.36)
Co Ca i=0

Here D! = D,/d,(0) indicates a normalization of the PSF, and ¢, =
(I — A,)D. 'g, is the error signal in the v-th channel. Observe the corre-
spondence between the above 1-D case and the 2-D case in (6.29).

Finally, the optimization of £(8) with respect to 8 can be computed as
follows: o0

Vel(0) =YD Lo(6,) =D 24 Vo, Lo(8,) =0, (6.37)

where 80/06, denotes the Jacobian matrix of the transform from & to &,
(i.e. the 1-D row-wise DFT). Since the parameter vectors 6, are mutually
uncoupled, an immediate solution to (6.37) is given by

Ve, Lo(6,) =0, Vo, (6.38)
or
0 0 = =2 Seir=0, W (6.39)
8av(k) vy aau(k) i=0 ’ ’ ’ ‘




9 9
aa,m) =) = S

M-1
> e()?=0, W (6.40)
=0

Hence, for noiseless data we find that the 2-D ML image identification
problem can be reformulated as a set of independent parallel 1-D least-
squares identification problems. After identifying the parameters d,(m)
and a,(k) in each of the channels, the original parameters d(m,n) and
a(k,l) can be found by a 1-D row-wise inverse DFT. Again additional
procedures are required in order to assign a unique phase to the PSF (13].
Finally o2 can be obtained by using (6.21).

Using a discussion similar to the one in Section 6.3.1, it is straightfor-
ward to show that solving (6.39) and (6.40) is equivalent to the identifi-
cation of a 1-D (complex) ARMA model using a least-squares method. In
this respect the algorithm resulting from the above reformulation of the
ML problem is identical to the approach originally proposed by Biemond
et al. [13]. A variety of “standard” 1-D identification procedures can now
be employed to solve a, (k) and d,(m) from (6.39) and (6.40), respectively,
for each of the parallel channels. One dimensional recursive identification
methods, such as the RML or RELS methods [62], have been used by
Katayama et al. [44]; the nonrecursive Graupe, Moore and Krause tech-
nique was used by Biemond et al. [13], while Blanc-Féraud et al. [16]
considered the use of gradient-based optimization procedures.

6.4 Implementations for Noisy Data

The image identification methods for noiseless blurred images as described
in the previous section, lead to acceptable results when the signal-to-noise
ratio of the blurred image is relatively high. As can be expected, for lower
SNRs these methods do not perform very well. Therefore, more recent
reseach in image identification has been focused towards identifying noisy
images. In this section we will describe two methods to optimize L£(0)
for noisy data. In the first method (Section 6.4.1) the gradients can be
formulated analytically in the spatial domain, but need to be evaluated in
the frequency domain in order to avoid operations on large matrices. In
the second approach (Section 6.4.2) the likelihood function is formulated in
the spatial domain through the use of the Kalman filter in two dimensions.
In this case, however, analytic expressions for the gradients cannot be
obtained.
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6.4.1 Gradient-based Iterative Optimization

In this section we consider the use of the following standard gradient-based
iterative optimization algorithm to maximize L£(f) [52]:

§lk+D) — D) _ gy, £(6W), (6.41)

where the gradient of £(f) is defined by

aL(8) BL(6) ar(e))
36, > 06, ' 90y

[az:(a) aL(8) BL(6) a./:(o)]‘
dd(m,n)’ da(k,l)’ 8o, > 8o, |’

VeL(6) = [

(6.42)

and B controls the convergence of the iterations. For the image identifi-
cation problem the partial derivative of L£(#) with respect to one of the
elements of 8 (say 6;) is given by:

aL(e) @ o
— 2 -1 ‘—lap -1_t
= tr {60,~P } tr {gP 60¢P g7, (6.43)

where tr { X} denotes the trace of the matrix X. Thus, the iterative op-
timization algorithm (6.41) can be realized, if we can evaluate the partial
derivatives of P with respect to 8;.

Since P itself is quadratic in d(m,n), a(k,!), o, and oy, the evaluation
of P /84; is relatively simple, yielding:

L — 2 _ -1 _ —t i
dm) = oI — AT - A Y{SpD'+S_,,_.D}, (6.44)
oF - - olD(I — A)"YI — A)7'DH{S, (I — A)™?
da(k,l) v ,
+S_p(I — A)7'}, (6.45)
o = 20,D(I - A)HI - 4)D, (6.46)
do,
)
B0, . A7
Aoy 20u1 . (6.47)
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Here §,,, is a “shift operator”, which is a block-circulant matrix defined
through the convolution kernel 6(i — m, 5 — n), i.e.

1, t=mand j =n,

0, elsewhere. (6.48)

Sm,n~6(i—m,j—n)={

The evaluation of the above equations is very impractical, because they
require operations on large matrices. As an alternative (6.43) can be eval-
uated in the DFT domain as:

Lo =Z{[ 1 |G(u,v)}2] BP(u,v)}’ (6.49)

a9; P(u,v)  P(u,v)? 04,

u,v

provided that we assume that the matrices A and D have a block-circulant
structure. The counterparts of (6.44)—(6.47) in the Fourier domain become:

OP(u,v) 1 L,um  vn
ad(m,n)  “*TLI— A(u,v)P {D(‘“’ —v)exp{=2mi(3F + )}

+ D(u,v) exp{27rj(% + 1;—:;)}} , (6.50)
8P(u,v)  , |D(u,v)? 1 Luk vl
da(k,l) K 11— A(u,v)[? { 1— A(u,v) eXp{_ZM(ﬁ * N)}

1 uk vl

gy Er— exp{2m (7 + N)}}" (6.51)
OP(u,v) |D(u,v)|?
Toe T Ao o5
OP(u,v)
—a—o':,— = 2010- (6.53)

In [52] Lagendijk et al. showed that it is possible to explicitly incorporate
linear relations among the PSF and image model coefficients (such as sym-
metry properties of the PSF) into the computation of dP/86;. In this way
the uniqueness of the solution obtained by the above iterations could be
guaranteed.

It is also observed that in deriving the above iterative scheme, no re-
strictions were imposed on the causality of the PSF or image model. There-
fore these iterations can also be used to identify, for example, non-causal
image models and non-causal symmetric (i.e. non-minimum phase) PSFs.
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Unfortunately, a serious drawback of this method is that (6.41) represents
a basic steepest descent iteration, the convergence of which is known to
be slow in general. In addition to this the evaluation of the various com-
ponents of the gradient of £(6) is computationally involving. In Chapter
7 we will describe another iterative optimization algorithm which is com-
putationally more attractive than the standard iteration presented in this
section.

6.4.2 Prediction Error Based Solution

The gradient-based solution of the preceding section has been implemented
in the DFT domain in order to avoid huge matrix operations in the spatial
domain. Alternatively it is possible to compute the likelihood function
in the spatial domain by expressing the likelihood function in a recursive
form.

Following Angwin [4,53], we first assume that the image is raster scan-
ned, and that the elements of the observed noisy blurred image g become
available one by one. (Note that in the derivation of the gradient-based
implementations we used the matrix-vector notation, which assumes that
all data g is available at once.) We can then represent the data at pixel
position (z,7) in a recursive prediction error equation form 6]:

g(¢,7) = 4(1,5;0) + €(3,5;6), (6.54)

where §(¢, j; 8) is the predicted value of ¢(7, 5) using all observed image data
up to the pixel (z,7) given the parameter vector 8, and €(7,7;0) denotes
the resulting error, called the prediction error.

A suitable prediction §(¢,j;0) is obtained by minimizing the variance
of the prediction error 0% ;. = E[(§(1,5;6) — ¢(i,5;68))*]. The solution
to this linear minimum variance prediction problem can be computed by
employing the Kalman filter in two dimensions [112]. To this end, we
first represent the image model and observation equation by the following
state-space equations (c.f. Chapter 3):

st = 180971 4 (1,0,0,---,0]'v(7,5), (6.55)
9(i,5) = d's%) +w(i,7), (6.56)

where the state at the coordinates (z,7) is denoted by 847, For noncausal
PSFs the observed image data g(z,7) needs to be delayed over a suitable
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fixed distance. The estimated state 37) is then given by

8 = rala-n) (6.57)
300 = 3 4 kG5, 5) — e ). (6.58)

On the basis of the above Kalman filter, we can write an expression for
both the recursive prediction §(7,7;0) and the variance of the prediction
error €(z,7;0) as:

a(i,5;0) = d'al™), (6.59)
03(,.,]-;9) = Ele(7,7;0)e(s,7;0)] = dtPt(,i’j)d-l- al. (6.60)

Here P = E[(s{") — 3{9)(s{") — 3%)t] denotes the error covariance
matrix of the state at the pixel (7,7) after the prediction step, and can be
obtained immediately from the Kalman filter.

Given that §(z, 5; ) is the linear minimum variance prediction of g(z, 5),
and the fact that g(7, j) has a Gaussian distribution, we can conclude that
€(1,7;0) is a white process uncorrelated with §(7,s;8), and that its PDF

p(e(7,7);0) is Gaussian with zero mean and variance a2 0 [112]:
. -1 1€(z,7;8)?
p(e(3,5);0) = [2m0%; ;0] 7 exp {—5(2—)} : (6.61)
Te(iii6) '

Using the above recursive formulation of g(1,7), we can express the like-
lihood function in a recursive form as well. To this end we let g{m™n) =
[9(0,0),9(0,1),...,9(m,n)J*, i.e. the image vector containing all the ob-
served data up to and including g(m,n), and L™ (8) = log{p(g™™); )}
denotes the log-likelihood function of the observed data up to and includ-

ing g(m, n). By using the following general relation for evaluating a joint
PDF:

plg™";0) = p(g(m,n)/g™"V;6) p(g™"1;0), (6.62)

we can rewrite £{™"™(8) as the product of the log-likelihood functions of
e(i,7;0) [6]:

Le(6) = log{p(g™™;6)}
log{p(g(m,n)/g™"~1; 6) p(g(™"~V; )}

log{p(g(m,n) — §(m,n);0) p(g™"V;0)} = ... =

1
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(mn)
= log JI »(e(i,0) —(.5):6)

(5.4)=(0.0)

(m.n)

> log{p(g(i,5) — 9(4,5);6)}
(4.4)=(00)

(mon)

> log{p(e(i,); 0)}- (6.63)

(1.4)=(0,0)

il

Substituting the PDF p(e(7,7);8) into (6.63), dropping all constant terms,
and premultiplying the result by -2 leads to [4,6,53]:

(9ir7) ~ (1, 56))? } |

2
ae(i,j;e)

(m1n)

L OEEDY {bg"?(e,f;oﬁ
)

(1.4)=(0,0

(6.64)

Equation (6.64) shows that the likelihood function can be evaluated as
a sum of scalar functions, which is considerably simpler than the direct
evaluation of (6.13) and (6.14). Substituting (6.59) and (6.60) into (6.64)
yields a computable recursive expression for the likelihood function, in
which the Kalman filter in two dimensions is utilized to recursively compute
the prediction errors and the prediction error variances. Optimizing £(6) in
(6.14), which uses all the available data g(7,7), ¢ € [0, M —1],5 € [0, N —1],
is now equivalent to optimizing LM~1LN-1)(9) given by (6.64).

It should be noted, however, that the recursive computation of the
likelihood function does not lead to an identification procedure which is
recursive in the parameters to be estimated. For example, suppose that
the likelihood function L£(™"(#) has been optimized with respect to .
Then the addition of a single new observed data point g(m,n+1) to (6.64)
requires a new likelihood function £™"*1)(8) to be optimized, the result of
which cannot be expressed analytically in terms of the parameter estimates
at (m,n). Thus, although a finite memory (Kalman) filter is employed to
compute the likelihood function, this solution strategy does not (easily)
lead to a finite memory parameter identification scheme.

In [4] (6.64) is optimized by an iterative gradient-based procedure.
This, however, shows another problem with the above formulation, namely
the partial derivatives of the likelihood function (6.64) cannot be obtained
analytically because of the nonlinearities introduced by the Ricatti equa-
tion. Therefore, numerical procedures have to be utilized in order to com-
pute the partial derivatives of the likelihood function with respect to each

121



of the unknown parameters. This, however, involves filtering the blurred
image a number of times. Therefore even if efficient implementations are
employed [4,112], the use of the Kalman filter usually requires more com-
putation than the frequency domain approach, especially for large PSFs.
Note that the technique described in this section is essentially a mixed
iterative-recursive identification method, where numerical gradients are
used to iteratively optimize the likelihood function which is computed re-
cursively.
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Chapter 7

Image Identification Using the
EM-Algorithm

In the preceding chapter we have seen that the image identification problem
can be formulated as a maximum likelihood parameter estimation prob-
lem. The optimization of the associated likelihood function turned out to
be not a trivial problem, because of its highly nonlinear character, in a
relatively large number of unknowns. For noiseless blurred images the ML
estimation problem was shown to be identical to a least-squares estimation
problem, for which elegant optimization algorithms were proposed in the
literature. If, however, the likelihood function for noisy data is considered,
these algorithms are no longer applicable, and gradient-based optimization
strategies need to be employed, using either a frequency domain expression
or a recursive spatial domain relation for the likelihood function. Disad-
vantages of these methods are that they are computationally involving,
and that convergence of the gradient-based optimization is often difficult
to control due to the nonlinear properties of the likelihood function.

In this chapter we present an image identification algorithm that is
based on the expectation-maximization (EM) algorithm to compute ML
parameter estimates [22]. The presence of noise in the observed data is
directly taken into account. The advantage of this iterative algorithm is
that it avoids operating directly on the nonlinear likelihood function in
(6.14). Essentially, it alternates between the solving of a relatively sim-
ple identification problem (vielding a new set of parameters 6), and the
restoration of the blurred image (yielding new input for the identification
stage). Each of the two stages involved requires the solving of linear equa-
tions only [53,54,56,57]. In addition the identification algorithm is very
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flexible in incorporating a number of modifications, as will be discussed in
the next chapter.

In Section 7.1 we will start with a brief review of the EM-algorithm.
Next, this algorithm will be applied to the ML image identification problem
in Section 7.2. The two stages involved in the EM-algorithm, the E-step
and the M-step, will be discussed in detail in Sections 7.3 and 7.4, respec-
tively. Finally, this chapter is concluded with an experimental evaluation
of the proposed identification algorithm. The EM-algorithm will also be
compared experimentally with the least-squares implementation of the ML
estimator for noiseless data described in Section 6.3.1.

7.1 Review of the EM-Algorithm

It has long since been recognized that computing maximum likelihood
(ML) parameter estimates can be a highly complicated task in many rel-
evant estimation problems. The EM-algorithm, presented by Dempster
et al. in [22], is a general iterative method to compute ML estimates if
the observed data can be regarded “incomplete”. Ever since similar or
related algorithms have appeared in the literature, such as in [26,71,86].
It has been shown in various signal processing applications that the use of
the EM-like algorithms leads to computationally efficient estimation algo-
rithms, such as in 1-D ARMA process identification [20,21,71], parameter
estimation of superimposed signals [27], maximum likelihood noise cancel-
lation [26], and tomographic image reconstruction [80].

Let Y denote the observed “incomplete” data which possesses the PDF
p(Y;0), where 0 again is the vector of parameters to be estimated. The
ML estimator of 4, based on the available incomplete data, is given by

éml,y = arg {Iggag( Ey(ﬁ)} = arg {rgleagc log p(y;ﬂ)} , (7.1)

which is a complicated problem in general. The incomplete data is related
to some complete data, denoted by X, through a non-invertible many-to-
one transformation T :

Yy=17(X). (7.2)

It is noted that the choice of the complete data is not unique, though some
choices may be more succesful than others. We restrict ourselves here to
cases where T represents a linear projection; for each given Y there exists
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a hyperplane X (Y) whose elements satisfy (7.2). The PDF of X, which is
also indexed by 8, is related to Y as follows:

p(Y;0) = /r(y)p(l’;ﬂ)df- (7.3)

At this point it is assumed that the complete data has been chosen in such
a way that computing the ML estimator of # from the complete data, i.e.
solving

P

Bl x = 2T {Igleaé}( .CI(H)} = arg {r?eaé}( logp().’;0)} , (7.4)
is significantly simpler than solving (7.1). However, the complete data
is not available, but only observed via the non-invertible relation (7.2).
Starting out with an estimate of the parameter vector, called 5(”, the
EM-algorithm finds the conditional expectation of the log-likelihood of
comp}(e‘;e data, denoted by E(O;é(")), given the observed incomplete data
and 4'%);

L£(6;6®) = E {logp(X;6)/y;0®}
[,y o8 (L0} p(X /Y589y ax,  (75)

where p(X /Y; é(k)) is the conditional PDF of the complete data, given the
incomplete data and the estimate 6(¥). Equation (7 .5) is called the E-step
of the EM-algorithm. In the M-step ﬁ(ﬂ;é(k)) is maximized with respect
to 6. This leads to a new parameter estimate §(x*1);

gU+1) — arg {rgleaéx L{6; é("))} . (7.6)

By alternating (7.5) and (7.6) the iterative EM-algorithm is obtained,
which converges to a stationary point of Ly (6) [22]. Sufficient convergence
conditions are that £(#; é(")), which forms the basis of the EM-algorithm,
is continuous in both 8 and §(¥) [22,26,114]. At each iteration cycle the
maximization in (7.6) ensures that Ly (6) increases. This maximization re-
quirement can be relaxed somewhat. Namely, the EM-algorithm converges
as long as §**1) is chosen in such a way that Ly(6) is increased [22]. This
variant is called a Generalized EM (GEM) algorithm. It is noted here that
like many other hill-climbing optimization techniques, the EM-algorithm
does not necessarily converge to the global optimum of Ly (6), but instead
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it may stabilize at a local optimum. In such situations various starting
points §©) may be needed. Since the EM-based iterative scheme is not
controlled by a convergence parameter £, such as in the gradient-based
optimization of (6.41), its convergence is very robust.

It is observed that £(6;6¥)) and Ly (6) have the same dependence on
6 [22,26], and that where Ly(#) is defined on the true complete data,
L(6;8®) uses the conditional expectation of the complete data. The max-
imization of £(8;8(*¥)) with respect to 6 is therefore of the same complexity
as the maximization of Ly (#). Because of this, the EM-algorithm is an
attractive alternative to the direct evaluation of (7.1) only if the solution
to (7.4) can be computed relatively easily. Since the complexity of (7.4)
depends immediately on the choice of X, it now becomes apparent that
the choice of the complete data is of crucial importance in the use of the
EM-algorithm.

7.2 EM-Algorithm Applied to Image
Identification

In image restoration and identification problems the noisy blurred image
is the only data available, which therefore establishes the incomplete data.
In [53,57] Lagendijk et al. specify the complete data as the stacked lexico-
graphically ordered images f and g:

x=[£]. (7.7)

The complete and incomplete data are now related via

Yy

g=[o0 I][”:Tx, (7.8)

where O and I are an M N x M N identity and zero matrix, respectively.
The particular choice of this complete data satisfies the requirement that
the solving of the ML problem (7.4) should be easy, namely:

¢ The image model coefficients and the related modeling error variance
02 can be obtained immediately from the (linear) 2-D Yule-Walker
equations, because the autocorrelation coefficients can be computed
directly from the original image f.
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e The point-spread function and the related observation noise vari-
ance o2 follow directly from a classical system identification prob-
lem, namely determining the impulse response of a linear system with
known input (the original image) and noisy output (the observed im-

age).

It is pointed out that it is not necessary to inciude the noise processes v
and w into the definition of the complete data, because these do not pro-
vide any additional useful information for the ML identification. Therefore
the use of other choices for X and Y, such as considered in [48], turns out
to be less successful.

Substituting the above choices for X and Y into (7.5) yields the following
E-step:

L(6:6%) = E {logp(f.0:0)/9:6¥}
= [T [ romn(f.9:0) p(7/9:0¥) df (1) - df (MN).

We now need to evaluate £(8;6(*)) for the case at hand. The joint proba-
bility density function p(f,g;0) is readily found from (6.8) and (6.10):

det |I — Al
p(f,9:0) = p(g/f;0)p(f;6) = J 27r2;1tv|det lQlQ |

exp {~ (g ~ D1)'Q5} g - DI) - 21T - A1QT I - A |
(7.10)

By combining p(f,g;0) and p(g;0), which is Gaussian with covariance P
given by (6.13), we get the following expression for the conditional PDF

p(f/g;0%):

p(f,g;6®)
p(g; 6¥)

= L e {5 -1 -1}

\/ MN get |77

p(f/g;6®) =

(7.11)
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Ak ~ (k
Here f (*) and V( ) denote the conditional mean and covariance matrix of
f, respectively, at the k-th iteration (that is, they are based on §(*)):

5 (k) A A (k _
1 = E(r/e:6%) =v¥ Dy, (7.12)

v = Cov(f/g; M) = [(1 - 4)'Q; (1 - 4) + D'@;'D] " (1.13)
(We have dropped the index (k) of D, 4, Q, and @, in order to keep these

equations readable.) Finally, substitution of p(f, g;0) and p(f/ g;é(k)) into
(7.9) yields (see Appendix C):

L(6;6W) =
2_2 21 4 2 5 (k)
¢1 — MN log(o;o,) + log det |I — A|* — 99+ —tr {DR;;} +

w

1 A (k) 1 ~ (k)
— 4 {DR;; D'} - Ztr {(I - )Ry (1 - 4)'), (7.14)

where ¢; is an additive constant term, and where the conditional autocor-

. . oplk . . plk
relation matrix R(f f) and crosscorrelation matrix Rg.g) are defined by

~ (k) ~

A ~ ~ t

B =E(11/g:6%) =9 4 jOFW (7.15)
- (k) R A (k)

R, = E(fgt/g;0®) = f g (7.16)

Under the conditions that o2 > 0, ¢Z > 0, and that (I — A) is nonsin-
gular, £(8;6™) is continuous in 8 and §¥), and the EM-algorithm (7.9),
(7.6) will converge. Note that these conditions were already assumed in
the development of (6.8) and (6.10), and thus do not impose additional
constraints.

7.3 The E-step of the Algorithm

Equation (7.14) depends on gte) only through the conditional autocorre-

lation matrix ilf,e’cf) and crosscorrelation matrix IAZ;';). For this reason the
E-step of the algorithm consists of the mere evaluation of (7.12) and (7.13),
and the computation of the conditional correlation matrices. Observe that
this requires the solving of linear equations only.

If we assume that A and D have block-circulant structures, (7.12) and
(7.13) can be implemented efficiently by using 2-D DFTs. As a consequence
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A (k - (k ) ) . . .
R‘(’r f) and R;g) represent correlation matrices of weakly jointly stationary

processes, and have block-circulant structures as well. We may therefore
replace (7.15) and (7.16) by

(k . (M-~1,N-1) R .
e = VO +—= S W65 Pl -pj-q),
MN . &
('17)—(070)
(7.17)
) 1 (M-1,N-1) A
F1¢ (P 9) f®(,5) a(i - p,5 — q), (7.18)

MN (=0

where 1*'5-]}) (p,q) and fy;) (p, q) are the defining sequences of R(ff and Rgfl;),

respectively, and where V ( )( p,q) is the defining sequence of V( ).

Observe that (7.12) is essentially an image restoration filter belonging
to the Tikhonov-Miller class, where the image model is used as a regu-
larizing operator (c.f. Section 3.3). Hence, in the process of identifying
the image and blur parameters 8, a restoration result of the blurred im-
age 1s obtained simultaneously in each E-step of the iterations. This can
be considered one of the advantages of the EM-algorithm based approach
towards image identification, since the quality of a restoration result using
the current parameter estimates can be evaluated at each iteration step,
and the iterative process can be truncated when a (visually) stationary or
acceptable solution has been reached.

The equations (7.12), (7.13), (7.15) and (7.16) which form the E-step
of the algorithm, have been efficiently implemented in the DFT domain by
making use of the assumed block-circulant structure of the matrices that
are involved in these equations. Alternatively the recursive counterpart
of the Tikhonov-Miller restoration filters, i.e. the Kalman filter in two
dimensions, may be employed to implement (7.12) and (7.13) in the spatial
domain, depending on the available computational resources.

7.4 The M-step of the Algorithm

In the M-step L(#; 5(k)) is maximized with respect to the parameters 6,
vielding a new estimate §**1), As can be seen directly from (7.14), the
optimizations with respect to the image model coefficients and PSF coef-
ficients are independent problems, and can be considered separately.
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7.4.1 Image Model Identification

By substituting (7.14) into (7.6), and by dropping all constant terms that
are image model independent, we arrive at the following optimization prob-
lem:

{a(k,1),6%} — max_J(4,0?) = max {logdet]I—A[2+

a(k,l),02 a(k,l),02

— MNlogo? — 01—2tr{(I—A)IAfo(I—A)t}}. (7.19)

If we now restrict ourselves to causal image model supports §,, and neglect
the image model boundary effects, the matrix (I — 4) is a lower triangular
matrix and det|I — A| = 1. Then (7.19) becomes quadratic in the image
model coefficients a(k,!), and its solution is given by the 2-D Yule- Walker
equations:

#p,q) = 3 alkl) #p—ka—1), V(pg) € Ss (7.20)
klE€ES,
82 = #0,0)— 3 a(k,1) 7 (k,0). (7.21)
kJl€S,

Observe that (7.20) and (7.21) solve essentially the same model fitting
problem as described in Section 2.2.3. In this case, however, the image
model coefficients are fitted onto the second-order statistics of a restored
image instead of the original image.

7.4.2 Blur Model Identification

The PSF coefficients and the observation noise variance are computed by
maximizing (7.14) with respect to d(m,n) and 0. Substituting (7.14) into
(7.6), and dropping all blur model independent terms, yields

{d(m,n),52} «— max J(D,0l)= max {—MNlogafv+

d(m n) a2 d(m n),o2

w

- ;1—9 g+ 2w {DRY) - tr {DR| D’}} (7.22)

In order to obtain a unique solution to (7 .22) the PSF is enforced to be
symmetric (c.f. Section 6.2.3):

- ~

d(m,n) = d(-m,—-n), V(m,n)€ $3. (7.23)
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Figure 7.1: NSHP subset S5 of $; containing the unique PSF coefficients.

Further, to satisfy the condition that the sum of the PSF coefficients equals
1.0, we choose d(0,0) as follows:

d(0,0)=1.0-2 > d(m,n). (7.24)
mnEsSy

Here S5 is that subset of S; which contains the unique PSF-defining coeffi-
cients d(m,n) (e.g. S3is a non-symmetric half plane, see Figure 7.1). All
other PSF coefficients can be derived from these defining coefficients via
(7.23) and (7.24). Even after substituting the above (linear) constraints
into (7.22), J(D,02) is quadratic in d(m,n). Solving (7.22) is tedious but
straightforward, and leads to the following set of linear equations:

5 (.0) + 7 (=p, —a) — 273)(0,0) — 277 (. ) + 2777 (0,0) =

2 Y dimn) {(#2(p~mq—n)+ 7 (p+mg+n)+
m,nESy

— 2#¥(m,n) — 2¢%(p,q) + 280 (0,0)},  V(p,q) € S5, (7.25)

1 (M-1,N-1)

2=—— 3 g6 - % dm,n)#(-m,—n).  (7.26)
MN ; /i=(00) e Sy

We note here that other relevant linear constraints, such as additional
symmetry properties of the PSF, can be incorporated into (7.22) as well
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Figure 7.2: Structure of the entirely linear expectation-maximization image
identification algorithm.

without significantly increasing the computational complexity of the PSF
identification. It is also straightforward to incorporate the decomposition
of PSFs into 4 quarter-plane or 2 NSHP convolutional factors as proposed
in [96,97], or the dyadic factoring of PSFs as in [107].

In the preceding sections we have established an expectation-maximization
image identification algorithm. Whereas the original ML image identifi-
cation formulation required the solving of a highly complex nonlinear op-
timization problem, the proposed iterative procedure involves the solving
of linear equations only (see Figure 7.2). In addition a restoration result
of the noisy blurred image is obtained simultaneously in each cycle of the
algorithm.

7.5 Experimental Results

In this section we will evaluate the performance of ML image identifica-
tion using the EM-algorithm. Three aspects which are encountered in the
practical use of the EM-algorithm and ML image identification in general,
are (i) the initialization of the PSF coefficients, (ii) the existence of local
optima in the likelihood function, and (iii) the estimation of the size of the
PSF support (i.e. the number of unknown PSF coefficients). These items
will be addressed experimentally in this section, and it will be shown that
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heuristic arguments may provide answers to these questions. In the next
chapter, however, two strategies will be presented which are superior to
the heuristics employed here. Therefore, the main purpose of this exper-
imental section is to emphasize the importance of the practical aspects
mentioned above, and to evaluate the behavior of the EM-algorithm close
to the global optimum of the likelihood function.

In all the experiments the artificially blurred cameraman image will be
used in order to be able to check the identified parameter values against
their true values, and to compute the improvement in SNR using the ideal
and estimated parameters. The NSHP image model coefficients computed
from the original image are given by:

| af3,
k) =1 401) 0.578 ’
and the variance of the modeling error v(¢,J) is equal to oZ = 185.3.
It is pointed out, however, that image restoration results are not very
sensitive to the actual image model (or regularization operator) used, as
was discussed in Chapter 3. Hence, deviations between the actual and
identified image model coefficients are of minor importance, at least when
compared to the effects of deviations between the actual and estimated
PSF coefficients.

In the experiments the noisy blurred image was preprocessed at its
boundaries in order to (approximately) satisfy the circulant assumption.
More specifically, at the borders of the blurred image a strip of 10 pixels
was first discarded, and next replaced by values resulting from a linear
interpolation of the intensity difference between facing borders. Although
such a procedure replaces approximately 15 percent of the blurred data by
artificial data, this does not significantly degrade the identification results.

1) a(1,0) a(1,-1) J B [ —0.372 0.644 0.143
! =

7.5.1 Linear Motion Blur :

The cameraman image was artificially blurred by horizontal linear motion
blur over 8 pixels. The discrete PSF associated with this blur is computed
via (2.24), and has a support of size 1 x 9. The PSF coefficients are given
by:

d(m,n) = [---,d(0,0),d(0,1),d(0,2),d(0,3),d(0,4)]
[--,0.1250,0.1250,0.1250,0.1250, 0.0625).

i
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(a) (b)

Figure 7.3: (a) Motion blurred image with an SNR of 40 dB; (b) Restora-
tion using the ideal parameters.

(Since the PSF is symmetric, we listed only d(0,0) to d(0,4).) Noise was
added with SNRs of 60 dB (¢? = 0.004), 40 dB (0% = 0.35), and 20 dB
(¢ = 35.0). Figure 7.3a shows the noisy blurred image with an SNR of 40
dB. For the purpose of comparison, the Tikhonov-Miller restoration result
using the ideal parameters is shown in Figure 7.3b. The SNR improvement
of this restored image is 7.7 dB, which constitutes an upper bound to the
improvements in SNR when using estimated parameters.

In identifying the image and blur model we assume that a(k,!) has a
first order NSHP support, and that d(m,n) is symmetric. Further, the
correct size of the PSF support, S;, is used (i.e. 1 X 9). For this reason the
number of PSF coefficients to be estimated is known a priori. In general,
however, this size must be determined prior to or simultaneously with
estimating the PSF coefficients.

Selection of Initial Parameters

In order to identify the noisy blurred image using the EM-algorithm, we
need to initialize the various parameters in §(° (see Figure 7.2). Since
the EM-algorithm is guaranteed to converge only to a stationary point of
the likelihood function, which may not be the global optimum that we are
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actually looking for, the identification process is generally sensitive to the
choice for 6(©. Furthermore, a bad set of initial parameters may needlessly
increase the number of iterations required to achieve convergence.

If we consider the parameters to be initialized, we observe that:

(i) an initial estimate for the noise variance can be obtained from a
smooth portion of the image (e.g. from the background),

(ii) an initial image model can be derived from the concept of regulariza-
tion, as described in Chapter 3, or can be obtained from a prototype
image. Throughout this section, we use the following (robust) ini-
tialization for the image model coefficients:

. —0.300 0.500 0.100
alk,l) = | 4700 '

and o2 = 200.0,

(iii) for some types of blur the initial PSF coefficients can be obtained by
using the spectral or cepstral methods of Section 6.1, but in general
this is not possible. In other words, the initialization of the PSF is
most difficult, and requires special attention.

Motivated by the above observations, we select an initial guess for the
PSF coefficients by evaluating the likelihood function L£(8) for a number
of relevant PSFs, using the above fixed image model coefficients and a
fixed noise variance. Table 7.1 lists the value of the normalized likelihood
function (i.e. £(f) divided by MN) for the blurred image with an SNR
of 40 dB, for a number of relevant PSFs. The estimated noise variance is
&2 =1.0. Since the PSF is assumed to be symmetric, only the unique PSF
coefficients plus d(0,0) are listed. From this table we can select the initial
PSF as the one with the minimal value of the likelihood function.

For the purpose of comparison, we consider three different initializations
of the PSF. The identified parameters which are obtained by initializing
the EM-algorithm in this way are listed in the Tables 7.2 and 7.3:

(i) If the initial PSF is set to “no blur” (i.e. d(m,n) = 6(m,n)), the
algorithm converges to a local optimum. The restoration result as-
sociated with these parameters is shown in Figure 7.4a.
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Table 7.1: Likelihood function as a function of the initial PSF coefficients
(fixed image model and noise variance).

x

d(0,0) d(0,1) d(0,2) d(0,3) d(0,4) | L(§)
1.000 0.000 0.000 0.000 0.000 | 3.62
0.750 0.125 0.000 0.000 0.000 | 3.30
0.500 0.250 0.000 0.000 0.000 | 2.85
0.334 0.333 0.000 0.000 0.000 | 2.81
0.400 0.200 0.100 0.000 0.000 | 2.63
0.200 0.200 0.200 0.000 0.000 | 2.74
0.150 0.150 0.150 0.125 0.000 | 2.58
0.112 0.111 0.111 0.111 0.111 | 2.61

(ii) From Table 7.1, we select the PSF which vields the minimal value
of the likelihood function. The identification results based on this
initialization are very good. The restoration using the identified pa-
rameters is shown in Figure 7.4b. The SNR improvement of this
image is 7.4 dB, compared with 7.7 dB for the image restored using
the ideal parameters (shown in Figure 7.3b).

(ili) Finally, we initialized all PSF coefficients as 3, Le. the initial PSF
assumes linear motion blur over 9 pixels. Although the identified
parameters are again close to the optimum values, the quality of
the associated restored image is less than obtained in case (ii). This

restored image is shown in Figure 7.4c, and has an SNR improvement
of 3.9 dB.

From the above experiment it is seen that the PSF needs to be initialized
relatively close to the global optimum of the likelihood function in order
to prevent convergence to an erroneous stationary point. The solutions
obtained in the cases (ii) and (iii) must be considered to be both at the
global optimum of the likelihood function, because the computed value of
the likelihood function (using DFTs) is accurate only up to +0.01. Ap-
parently, even if the initial parameters are close to the global optimum the
identified solution is not unique, because the solutions in the cases (ii) and
(iii) differ slightly. The reason for this is that near the global optimum,
the likelihood function is relatively insensitive to variations in the various
parameters. Therefore small numerical inaccuracies, which are unavoid-
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Figure 7.4: Restoration results from Figure 7.3a: (a)-(c) Parameters esti-
mated by the EM-algorithm; (d) Parameters estimated by a least-squares
method. '
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Table 7.2: Identified PSF and o2 for 3 different initializations of the PSF.

| d(0,0) d(0,1) d(0,2) d(0,3) d(0,4)| &2 ] L(f)

Case (i)

initial | 1.000 0.000 0.000 0.000 0.000| 1.0 | 3.62
final | 0.308 0.196 0.042 0.054 0.053 | 0.34 | 2.11
Case (ii)
initial | 0.150 0.150 0.150 0.125 0.000| 1.0 2.58
final | 0.128 0.126 0.125 0.125 0.060 | 0.32 | 2.00
Case (iii)
initial | ©0.112 0.111 ©0.111 0.111 0.111| 1.0| 2.61
final | 0.116 0.118 0.125 0.134 0.066 | 0.34 | 2.01

Table 7.3: Identified image model coefficients and o2 for 3 different initial-

izations of the PSF.
ta(1,1) a(1,0) a(1,-1) a(0,1) o2

Case (i)

initial | -0.300  0.500 0.100 0.700 | 200.0
final { -0.653  0.647 0.133 0.871| 36.1
Case (ii)
initial | -0.300  0.500 0.100  0.700 | 200.0
final | -0.369 0.633 0.156 0.573 | 188.6
Case (iii)
initial | -0.300  0.500 0.100 0.700 | 200.0
final | 0.456 0.642 0.155 0.655 | 149.8
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able, prohibit convergence to the exact global optimum. The errors due to
the interaction between the numerical inaccuracies and the insensitivity of
the likelihood function depend on the direction in which the optimum is
approached. As a consequence the initialization of the EM-algorithm will
be of influence on the identified parameter values and hence the quality of
the restored image. In general the numerical inaccuracies become of more
importance when the number of unknown parameters increases. For this
reason we will study methods to identify PSFs with many coefficients (i.e.
with large support sizes) in more detail in Chapter 8.

Bias and Estimation Variance

In the preceding experiment we have shown that it is possible to select 6@
by a (heuristic) search mechanism for the PSF. The results may, however,
be biased due to numerical inaccuracies, where the bias depends on g

Besides these numerical biases, however, the ML solution may also be b1—
ased as a result of using a finite number of data points, and the solutions
obtained may vary depending on the actual noise realization. Therefore,
in this section we consider the effects of noise on the identified parameters.
Since such an evaluation depends strongly on the image and PSF under
consideration, the results presented here do not provide absolute answers
but are only indicative, and must therefore be interpreted with caution.

The noisy motion blurred cameraman image was identified for 10 different
noise realizations at the SNRs of 20, 40 and 60 dB. The image model was
initialized as before, and the initial noise variance was set to 100.0 in all
cases. The initial PSF coefficients were chosen as follows:

d(0,n) = |- --,0.150, 0.150, 0.150, 0.125, 0.000].

For each parameter we computed (i) the averaged identified value, (ii) the
standard deviation (in percent) of the 10 different identification results,
and (iii) the (absolute value of the) bias (in percent) relative to the actual
parameter value. The results are listed in the Tables 7.4 and 7.5. Figure
7.5 shows the transfer function of the ideal PSF and the identified PSFs
at the SNRs of 20, 40 and 60 dB.

From the results obtained by the above simulations we derive three con-
clusions:
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Table 7.4: Averaged value, standard deviation and bias of the identified
PSF and o2 for 3 different SNRs.

| d(0,0) d(0,1) d(0,2) d(0,3) d(0,4) 52
SNR=20 dB .
averaged | 0.131 0.119 0.116 0.170 0.029 | 30.1
stan.dev. 8%  11% 19%  22%  23% 1%
bias 5% 5% % 36%  53% | 14%
SNR=40 dB
averaged | 0.126 0.125 0.124 0.128 0.060 | 0.31
stan.dev. 1% <1% < 1% 1% < 1% 2%
bias 1% < 1% 1% 2% 4% | 10%
SNR=60 dB
averaged | 0.134 0.131 0.126 0.118 0.058 | 0.006
standev. | <1% <1% <1% <1% <1% | 45%
bias 7% 5% 1% 6% 7% | 54%

Table 7.5: Averaged value, standard deviation and bias of thg identified
image model for 3 different SNRs.

[a(1,1) a(1,0) a(1,-1) a(0,1) o2
SNR=20 dB
averaged | -0.570 0.688 0.122 0.755 | 95.4
stan.dev. 2% 2% 5% 1% 2%
bias 50% 7% 15% 30% | 48%
SNR=40 4B
averaged | -0.400 0.643 0.151 0.650 | 171.7
stan.dev. 1% < 1% 1% <1% 1%
bias 8% < 1% 6% 1% 8%
SNR=60 dB
averaged | -0.302 0.669 0.142 0.482 | 268.5
stan.dev. 6% 1% 1% 3% | 10%
bias | 18% 3% 1% 16% | 45%
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Figure 7.5: Transfer function of (a) Motion blur over 8 pixels, (b) Identified
motion blur at 20 dB, (c) 40 dB, and (d) 60 dB.

(1)

(i)

(iii)

The presence of observation noise mainly affects the high frequency
components of the identified PSF (see Figure 7.5),

Most of the estimated parameters do not change very much if differ-
ent noise realizations are used, as can be seen from the small values of
the standard deviation. For decreasing SNRs, however, the variation
in the identified values of the PSF coefficients becomes significant.

If the SNR is increased from 20 to 40 dB, the bias of most identified
parameters decreases significantly. The remaining bias at an SNR
of 40 dB is negligible for practical purposes, hence we can conclude
that at this SNR there are data points enough to correctly identify
the parameters. However, if the SNR increases to 60 dB, the bi-
ases start to increase again. The reason for this is that as 2 — 0,
the conditional likelihood function L(#8; 9(k)) becomes discontinuous
in the parameters to be identified. In fact, the PDF of g given f
and o2 (Eq. (6.10)) degenerates in this case. This will prevent the
convergence of the EM-algorithm to the global optimum.

In conclusion, the above experiment shows that the EM-algorithm is par-
ticularly suitable for identifying noisy blurred images at medium to low
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Table 7.6: Identified PSF using least-squares.

SNR | d(0,0) d(0,1) d(0,2) d(0,3) d(0,4)
20| 0.081 0.150 0.072 0.189 0.048
40 | 0.124 0.132 0.119 0.129 0.058
60 | 0.128 0.126 0.124 0.123 0.061

Table 7.7: Identified image model coefficients using least-squares.
SNR | a(1,1) a(1,0) a(1,-1) a(o,1) o2

20 | -0.115 0.430 0.269  0.395 | 311.1
40 | -0.246  0.553 0.325 0.363 | 238.5

60 | -0.317  0.552 0.194 0.570 | 225.2

SNRs. For low SNRs, however, the ML estimates of the PSF coeflicients
might be biased significantly. In general it is observed that the biases
become larger as the number of unknown coefficients increases. Hence,
in order to identify a large PSF at a low SNR, alternative identification
procedures are required, which will be discussed in Chapter 8.

Comparison with the Least-Squares Method

In Section 6.3 two identification algorithms were described which are de-
rived under the assumption that the observed image is noiseless. For the
purpose of comparison, the Tables 7.6 and 7.7 list the identified parameters
using the least-squares method of Tekalp et al. (see Section 6.3.1). The
results are taken from reference [59]. Note that the least-squares method
does not compute an estimate of the noise variance, because it assumes
that the blurred image is noise free. As expected, for high SNRs the least-
squares method performs well and the results are in fact better than the
ones obtained by the EM-algorithm. For low SNRs the least-squares iden-
tification method does not provide satisfactory results. This shows that
the least-squares method and EM-algorithm are essentially complementary
methods for image identification. For high SNRs the least-squares method
is most attractive, while for medium to low SNRs preference is given to
the EM-algorithm. The restoration result using the parameters identified
at 40 dB is shown in Figure 7.4d.
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7.5.2 Defbcusing Blur

The second experiment deals with a defocusing blur. The scope of this
experiment is somewhat more restricted, since many of the conclusions de-
rived from the identification of 1-D PSFs in the previous experiment carry
over to 2-D PSFs. In the previous experiment we assumed that the ex-
tent of the PSF, i.e. $; was known prior to identifying the PSF coefficients
d(m,n). In that case the number of coefficients to be estimated is exactly
known. In general, however, the size of the PSF must be determined simul-
taneously with the estimation of the PSF coefficients. In this section we
show that it is possible to determine the correct PSF support size by first
identifying the PSF coefficients for a number of support sizes, and next
selecting the best one on the basis of the value of the likelihood function.

The cameraman image was artificially blurred by defocusing blur using
the following 2-D PSF:

0.018 0.031 0.031 0.031 0.018
0.031 0.062 0.062 0.062 0.031
d(m,n) = | 0.031 0.062 0.062 0.062 0.031
0.031 0.062 0.062 0.062 0.031
0.018 0.031 0.031 0.031 0.018

The blurred image with an SNR of 40 dB is shown in Figure 7.6a. This
image was identified by running the EM-algorithm 3 times using three
different PSF support sizes, namely 3 x 3, 5 x5, and 7x 7. In this controlled
experiment the initial conditions were chosen in such a way that the EM-
algorithm converged to the global optimum of the likelihood function. The
results obtained in each of these cases are given next.

e Identification results when S; is assumed to have the size 3 x 3:

—0.682 0.680 0.142

alk,l) = 0.861 ’
0.056 0.159 0.042
d(m,n) = | 0.136 0.214 0.136 |,
0.042 0.159 0.056
62 22.2,
&2 0.30,
L(6) 1.78.
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(c) (d)

Figure 7.6: (a) Defocused image; (b)-(d) Restoration using identified pa-
rameters: (b) 3 x 3 PSF support, (c) 5 x 5 PSF support, (d) 7 x 7 PSF
support.
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o Identification results when S; is assumed to have the size 5 x 5:

[ —0.406 0.594 0.170

a(k,1) = 0.633 ’
[ 0.019 0.031 0.032 0.029 0.018
) 0.033 0.060 0.060 0.061 0.030
d(m,n) = | 0.030 0.065 0.064 0.065 0.030 |,
0.030 0.061 0.060 0.060 0.033
| 0.018 0.029 0.032 0.031 0.019
62 = 2034,
62 = 0.32,
L(6) = 1.67.

¢ Identification results when S, is assumed to have the size 7 x 7:

X ~0.450 0.574 0.141

alk,l) = | o125 ’

0.002 0.000 0.004 0.006 0.002 0.007 0.001 ]
~0.003 0.018 0.030 0.031 0.032 0.017  0.001
~0.002 0.029 0.058 0.059 0.059 0.030  0.000
(m,n) = | —0.003 0.030 0.062 0.063 0.062 0.030 —0.003
0.000 0.030 0.059 0.059 0.058 0.020 —0.002
0.001 0.017 0.032 0.031 0.030 0.018 —0.003
0.001 0.007 0.002 0.006 0.004 0.000  0.002 |

= 226.2,

[

~2
52 = 0.32,
L(6) 1.66.

The restoration results associated with the above identification results are
shown in Figure 7.6b through d. As we change the size of the PSF support
from 3 x 3 to 5 x 5, the value of the likelihood function decreases signif-
icantly. Howexier, making the size even larger does not yield a significant
decrease of £(f). Adding to this that the coefficients at the borders of the
7 x 7 PSF are relatively small, we conclude that the optimal PSF support
size is 5 X 5.

The visual quality of the restoration results using the identified param-
eters can also be used to determine the correct PSF support size. From
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Figure 7.6b it is seen that the PSF of size 3 x 3 does not restore the image
enough, while the restoration results using the 5 x 5 and 7 x 7 PSF are
visually identical. In conclusion, we have illustrated that both the numer-
ical value of the likelihood function, as well as heuristic arguments can be
employed to determine the correct size of the PSF support. In the next
chapter more elegant ways of estimating this size will be discussed.
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Chapter 8

Methods for Improved Image
Identification

In the previous chapter an efficient iterative image identification algorithm
has been introduced which is based on the EM-algorithm. In the practical
use of this identification method a number of restrictions were encountered.

In the first place, the likelihood function £(6) becomes insensitive to
variations in @ if the PSF contains more than just a few free coefficients,
or — in other words — the extremum in L(#) becomes less pronounced.
Since the EM-algorithm is basically a hill-climbing algorithm, inaccuracies
in solving the E-step and M-step will prohibit convergence to the exact
ML estimator. It is worthwhile noticing that similar problems will occur
in any maximum likelihood based image identification algorithm.

Secondly, in the development of the EM-algorithm, the extent of the
supports S, and S; have been assumed to be known a priori. This is, how-
ever, hardly ever true for the support of the PSF. As was experimentally
shown, it is possible to use a number of differently sized supports in the
identification process, and decide upon the one which leads to the optimal
likelihood value. On the other hand, it is also suggested to overestimate Sy
initially, and to remove small coefficients from the PSF after a preliminary
identification, thus reducing S;. In both strategies, however, the number
of parameters can grow very large, which leads to the accuracy problems
mentioned previously.

In the third place, the EM-algorithm may converge only to a local
optimum of L£(#). Therefore, the identification algorithm needs to be ini-
tialized with reasonable initial parameters 6, For the image model and
noise variance this can be done quite reliably. However, choosing an ini-

147




tial PSF is very critical and therefore not a trivial problem. A heuristic
search, which evaluates the likelihood function for a number of different
PSFs, may be employed. However, for an increasing number of PSF co-
efficients, the number of suboptimal solutions, and hence the number of
initial guesses 8 that need to be evaluated, may grow unacceptably large.

In order to circumvent the above restrictions improved strategies are re-
quired which are specifically designed to allow for an easy initialization of
the PSF, and which avoid local optima as much as possible. In this chapter
we will describe two such methods. In the first method (Sections 8.1 and
8.2) the number of parameters to be estimated is reduced significantly by
assuming a priori that the PSF and image model can be described by a
parametric model indexed by a restricted number of parameters. In the
second approach (Sections 8.3 and 8.4) resolution pyramids are employed
to estimate the coefficients and support size of the PSF in a hierarchical
manner.

The use of parametric models and/or hierarchical identification pro-
cedures are essentially independent of the way the optimization of the
likelihood function has been implemented. Here we will focus in particular
on the EM-algorithm based image identification method.

This chapter is concluded with an evaluation of the status quo in image
identification, and a look into possible future developments.

8.1 Parametric Image Identification

8.1.1 Parametric Modeling

In many practical situations of interest, there is more information avail-
able about the image model and PSF than has been used in the ML image
identification methods described so far. More specifically, a certain image
model and PSF structure can often be assumed, simply because this in-
formation in particular is the key to concluding that an image is blurred
indeed.

One way to capture structural knowledge is by the use of parametric
models, which describe the image model and PSF coefficients as a function
of one or two parameters. Instead of estimating the values of the indi-
vidual coefficients, the parameters of the selected parametric models are
estimated. If appropriate models are used of low order, the dimension of
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the solution space (i.e. the number of unknowns) is reduced significantly,
and is independent of the support size S; as well.

In the following we describe how parametric image and blur models
can be incorporated directly into the EM-algorithm [57]. The E-step of the
algorithm is not influenced by using these parametric models; the modified
M-step will be discussed for the parametric models suggested.

8.1.2 Image Model

The structure of an original image is often such that its autocorrelation
function resembles a 2-D separable exponentially decaying function [40]:

rir(pq) = o2pllpfl. (8.1)

Here p, and p;, denote the vertical and horizontal correlation coefficients,
respectively. Since in image restoration image models are merely used to
regularize the inversion of an ill-conditioned PSF, it is not necessary to
have the exact MMSE coefficients a(k,!) as obtained by (7.20). In order
to reduce the number of unknown parameters and to enforce an image
model] structure prior to the identification process, we assume that the
image model coefficients fit the autocorrelation function (8.1) exactly. For
an image model with quarter plane support, this requirement leads to the
following parametric description [40]:

a(1,0) = p,, a(0,1) =p,, and a(1,1) = —pyps,
ol = o1 —03)(1-p}). (8.2)

In the identification process the image model coefficients are forced to sat-
isfy the above relations. Therefore, instead of identifying the coefficients
a(k,l), the horizontal and vertical correlation coefficients, p, and p,, are
identified. Substitution of (8.2) into (7.19) yields after some straightfor-
ward manipulations:

J(pys pr) = —777(0,0) + 2p,75£(1,0) + 2pu777(0,1) ~ 2p,pn{fss(1,1)
+ f54(1, —1)} — p2#7£(0,0) — P;777(0,0) + 202 paf;r(0,1) +
+ 2p,piF51(1,0) — plpi#;(0,0). (8.3)

1t is not possible to obtain explicit expressions for p, and p, which minimize
(8.3). But because J(p,, ps) is a quadratic expression in p, for a fixed value
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of pr, and vice versa, the following partial gradients based iteration is an
efficient way to optimize (8.3):

s = P10 = AR (1, 1) 4 #4,(1 —DY + AV 4 (1,0)
Tff(O 0) — 25 V#;4(0,1) + - v? 711(0,0)

() Frr(0,1) = pRI{F, (1, 1) + Fp(=1,1)} + pB*F,,(0,1)

P = - (84)

’ff(o 0) — 25M7:4(1,0) + p¥)*#,(0,0)

Here p(") and p ) denote the optimized parameters after k iteration cycles.
The iterations (8.4) must be run in each M-step, and converge usually
within a few cycles. Observe that if J(p,,ps) is optimized only approxi-
mately, the EM-algorithm turns into a Generalized EM-algorithm.

The number of image model parameters can be reduced even more by
considering the case where p = p, = p,. After substituting this condition
into (8.3), optimizing J(p,,ps) becomes identical to solving a third order
polynomial equation, which can be done analytically.

8.1.3 Blur Model

It can be argued that it is not very realistic to model a PSF as a set of
independent coefficients d(m, n), because only a restricted subset of all pos-
sible d(m, n) combinations will be accepted as representing realistic PSFs.
For instance, d(m,n) should represent a low-pass filtering action, should
be “smooth”, and d(m,n) > 0.0. For these reasons it is appropriate to
consider a class of continuous parametric functions d(s, ;%) which model
realistic point-spread functions, and are indexed by 1. Here v denotes the
vector consisting of only a few parameters characterizing the PSF.

Relevant PSFs which can be modeled by such low-order parametric
functions, are, for example, linear motion and out-of-focus blur. A num-
ber of common parametric PSFs have been described in more detail in
Section 2.3. The discrete PSF coefficients d(m,n) are computed from the
continuous PSF d(s,t; ) through Eq. (2.24). It is pointed out that since
L(8; 5(k)) has to be continuous in # in order to guarantee convergence of
the EM-algorithm, each d(m, n) needs to depend continuously on . This
condition restricts the possible set of parametric functions d(s, t;v), and
asks for an accurate (numerical) evaluation of (2.24).

Once a parametric blur model has been selected, the PSF coefficients and
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the size of the support S; are immediately determined by the value of 9.
Therefore, in the M-step we now need to optimize (7.14) with respect to .
By first substituting the selected parametric blur model into (2.24), and
next substituting (2.24) into J(D,o?2) in (7.22), we arrive at a nonlinear
optimization problem in %, to which explicit solutions can rarely be found.

In general, (7.22) must be solved by numerical methods, which can
be done efficiently since % is of low dimensionality. We have employed a
straightforward steepest descent iteration to minimize J(v,02), where the
gradients were computed numerically. Convergence of these iterations is
normally achieved within 5-10 iteration steps. Again, as in the case with
the image model coefficients, exact minimization of J(¢,02) is not required
as long as v is chosen in such a way that the likelihood function L(6) is
increased in each M-step (Generalized EM-algorithm).

It goes without saying that for practical images more than one parametric
PSF can be used. On the basis of the value of the likelihood function the
PSF model which fits the image data best can be selected. It is also pos-
sible to consider the above parametric identification procedure as a means
of finding a reasonable initial PSF. After ¢ has been estimated, the non-
parametric EM-algorithm described in Chapter 7 can be initialized using
the PSF coefficients determined by .

8.2 Experimental Results Using Parametric
Models

8.2.1 Linear Motion Blur

As in Section 7.5.1 we consider the identification of the motion blurred
cameraman image. The length of motion is 8 pixels, and noise was added
with the SNRs of 60, 50, 40, 30, 20, 10, 3 dB. Instead of identifying all PSF
coefficients independently, the parametric model (2.28) is used (with ¢ =
0). As a result only the parameter L, which defines the length of motion,
needs to be estimated. In order to illustrate the behavior of the likelihood
function, we evaluated £(f) for a large number of L values using a fixed
image model (p = 0.85, 62 = 200.0) and several fixed noise variances. The
resulting likelihood functions are shown in Figure 8.1. Since in this case §
is of low dimensionality such a search strategy is computationally feasible
and can be used to find a reasonable initial guess for .
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Figure 8.1: Likelihood function for linear motion blur over 8 pixels and

SNR=40 dB.

Table 8.1: Identified parameters for motion blur with L = 8.00 at various

SNRs.

SNR| L 65 | A hn 8! |nsnm  fisnk.
3110.41 1571.5]|0.95 0.70 232.9 6.3 4.1

10 8.65 309.9 | 0.95 0.77 115.8 3.2 2.3

20 7.93 31.5 |1 0.94 0.79 82.9 2.8 2.4

30 7.99 3.27 1092 0.70 130.4 4.8 4.3

40 8.03 0321090 061 172.8 7.5 7.1

50 8.05 0.034 | 0.80 0.60 202.9( 10.6 9.9

60 8.06 0.009 | 0.89 0.60 207.0] 12.8 10.5

Table 8.1 lists the identification results for various SNRs using an initial
guess of L(®) = 6.0. From the original cameraman we identified the optimal
values for p, and p;, as p, = 0.88, p, = 0.60, and 0} = 201.2. Table 8.1 also
lists the signal-to-noise ratio improvement using the estimated parameters,
denoted by #jsngr, and using the ideal parameters (nsnr). From this table
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() (b)

Figure 8.2: Restoration of the motion blurred cameraman image (L=8)
using identified parameters: (a) SNR=40 dB; (b) SNR=20 dB.

it becomes apparent that the parametric identification method is capable
of obtaining good identification results up to an SNR of 20 dB. Figure 8.2a
and 8.2b show the restored image using the identified parameters at an
SNR of 40 dB and 20 dB, respectively.

8.2.2 Atmospheric Turbulence Blur

The cameraman image was blurred by turbulence blurs (Gaussian PSFs)
with various standard deviations 5. The experiment included PSFs with
support sizes ranging from 5 X 5 pixels to 13 x 13 pixels. This support
size was determined by truncation of the PSF at coefficients smaller than
approximately 0.1 percent of d(0,0). Noise was added up to the SNR level
of 30 dB (o =~ 3.5).

The parametric EM-identification algorithm was run on each of the
cases tested with the following initial conditions: 65 = 0.0 (i.e. no blur),
&2 =10.0, p, = pr = 0.8, and 62 = 200.0. Table 8.2 lists the identification
results. It is again observed that the SNR improvement of the restoration
results using the identified parameters is in the same range as the SNR
improvement of the restoration results using the true parameters. Figure
8.3 shows the blurred image with o¢ = 1.00, and the restored image with
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Table 8.2: Identified parameters

for turbulence blurs at SNR=30 dB.

~2

og Sa e o, | Po A 6z | nsnr  fsnr
0.500 5x5 (0530 4.45{0.86 0.61 257.0 5.9 5.6
0.750 7xT10.774 3.47 | 0.85 0.68 249.1 4.1 3.9
1.000 O9x910978 3.24|0.87 0.71 203.0 2.8 2.6
1.500 11 x11(1.475 3.15|0.89 0.75 185.7 2.1 2.0
2.000 13 x13|1.988 3.02(092 0.74 181.9 2.0 1.9

(a)

(b)

Figure 8.3: (a) Cameraman image blurred by atmospheric turbulence
(0 = 1.0, SNR=30 dB); (b) Restoration using the identified parameters.

0¢g = 0.978, respectively.

8.2.3  Photographic Motion Blur

The last experiment deals with the blurred train image in Figure 8.4a.
The blur in this image is not artificial, but is due to a real photographic
process!. Obviously the exposure time used to record the moving train is
too large, which has led to a locally blurred image. Since the models used
in this thesis assume that the entire image has been blurred in a similar

1Courtesy of Eastman Kodak Co., Rochester NY.
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(a)

Figure 8.4: (a) Blur introduced by real motion (b) Blurred section and
restoration result using the identified parameters.

manner, we cannot immediately handle the situation at hand. Therefore
we first cut out the blurred section of the image, and use only this part of
the image in the identification and restoration process.

Since the blur in the image is obviously due to relative motion between
the camera and the object of interest, a parametric model for horizontal
linear motion blur was used in the EM algorithm. The estimated length
of motion is L = 8.31 pixels, and &% = 0.40, p, = 0.78, pp = 0.77, and
&2 = 59.2. This result for L confirms the result of I, = 8 or L = 9 pixels
reported in Section 6.1. The restoration result of the blurred section of the
train image using the identified parameters is shown in Figure 8. 4b.

8.3 Hierarchical Image Identification

8.3.1 Use of Resolution Pyramids

Blur is a resolution dependent phenomenon, because the severity of the blur
present in a discrete image depends on how the continuous (blurred) image
was sampled. Images sampled at a very high resolution are more likely to
be “blurred” than less densely sampled images. We can illustrate this by
considering the discretization of the continuous PSF associated with linear
motion blur over an absolute distance L, (e.g. millimeters). If we assume
that the sample distance is X, (millimeters), and that a suitable low-pass
filter is used to prevent aliasing effects (see Section 8.3.2), an approximate

155



expression for the relative length of motion L, is given by:

L, (pixels). (8.5)

- -8
=X
For a decreasing sample distance X; the relative length of motion grows
larger and larger. On the other hand, if Xy > L,, the relative length of
motion is less than one, which means that there is no blur present in the
image because the PSF falls within one pixel.

Reducing the resolution of a blurred image also affects the image iden-
tification problem. This can be illustrated by considering the likelihood
functions of the cameraman image blurred by linear motion over 8 pixels
(SNR=40 dB), which has been (sub-)sampled by different sample distances,
namely X, = 1,2,4 and 8 pixels. For the purpose of simplicity we assume
a fixed image model, a fixed value for crfv, and use a parametric description
of the (subsampled) PSFs. The resulting likelihood functions are shown
in Figure 8.5. It is clear that for decreasing resolutions the optimum of
E(@) shifts to smaller lengths of motion, and that at the resolution level
3 (X, = 8 pixels) the optimum appears for L < 1 (no blur). It is also
observed that for decreasing resolutions the likelihood function becomes

L(6)

Sr | [ Ll
Xo:S/‘ /X0:4 ,,“_,I Xo:2
4.40 | / / A

3.80}
3.20

2.60

2

0 1 2 3 4 5 6 7 8 9 10
Figure 8.5: Likelihood functions for motion blur over & pixels at 4 different
resolution levels (using a parametric PSF description).
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“smoother”, and contains fewer local optima.

The fact that for larger sample distances X, the severity of the blur de-
creases, implies that the support size Sy of the discrete PSF decreases as
well. Hence, if we need to identify a discrete image blurred by a PSF with
a large support size, the dimensionality of the problem can (initially) be
reduced by considering the identification of a subsampled version of this
image. In this way the effective PSF support size is reduced, and fewer
PSF coefficients have to be identified. In addition to this, the likelihood
function contains fewer local optima, and the identification process is com-
putationally less expensive because it operates on less data.

Once the PSF and the image model of the subsampled image have
been identified, these parameters and/or the restoration result using these
parameters can be used to initialize the identification or restoration algo-
rithm operating on the (full resolution) blurred image originally considered.
Extending this procedure to multiple subsampled versions of the blurred
image available (using a subsample factor of 27 for the p-th subsampled
image), we obtain a hierarchical identification method that “builds up” a
possibly very large PSF by gradually increasing its resolution [58]. The
identification results at the resolution level p in the resolution pyramid de-
pend on the results at level p+ 1 via the initialization of the identification
procedure.

In Figure 8.6 the principle of a hierarchical identification scheme is
outlined in which the EM-algorithm is used. At first, the available blurred
image is filtered and downsampled a number of times in order to generate
the “blurred image resolution pyramid”, denoted by {g,9, 94, "+, gp}. At
a certain level P, the image gp, which is a downsampled version of g by
a factor of 2F, is identified using the EM-algorithm. The level P should
be chosen in such a way that the global optimization of the likelihood
function at that resolution level, denoted by Lp(fp), can be done easily.
Therefore the resolution of g needs to be reduced far enough to warrant
that d(m,n) ~ 6§(m,n), i.e. the PSF falls almost within a single pixel (no
blur). .

Associated with the identified parameters ép at level P is the restora-
tion result f p of gp. Either the identified parameters or the restored image
can be used to initialize the EM-algorithm at the resolution level P — 1,
which operates on the downsampled version gp_, of g. By repeating the
above procedure, we finally obtain the required parameters at the resolu-
tion level 0, i.e. for the blurred image originally considered.
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Figure 8.6: Identification of blurred images using a hierarchical structure.

Before applying the hierarchical identification method outlined above, we
first have to pay more attention to the following three aspects:

e In order to prevent aliasing effects the blurred image available needs
to be bandlimited prior to subsampling. However, the low-pass filter
to be used must be chosen in such a way that the support size of
the PSF after subsampling is guaranteed to be smaller than the one
before subsampling,

¢ To initialize the identification process at level p using the results
achieved at level p + 1, either the identified PSF or the restored
image needs to be interpolated. Which of the two options works
best, and how should the interpolation be done?

e The most important effect of downsampling the blurred image is
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that the PSF support size is reduced proportionally to the subsample
factor. As a result we need to increase the support of the PSF as we
go from level p+1 to level p in the hierarchical identification method.
Hence, how can the size of the PSF support be established at each
of the resolution levels?

The above non-trivial questions will be addressed in the next sections.

8.3.2 Downsampling of Blurred Images

The filtered and downsampled blurred images g, are related to the full
resolution image g as follows (c.f. Eq. (2.3)):

gp(k,1) = {Ip(1,7) * g(i’j)}(i,j)z(zpk,i‘l’l)’ (8.6)

where I,(7, ) is the low-pass filter which restricts the bandwidth of g(3, 7)
before downsampling it in order to prevent aliasing effects. If we neglect
the noise contribution w(¢,7), we can write

gP(k?l) = {lP(zs j) * d(zv .7') * f(i$j)}(i,j)=(21’k,2pl)' (87)

Associated with {g,g,,---,gp} are the downsampled original images {f,
fy» -+, fp} and the downsampled PSFs {d(m,n),d;(m,n),---, dp(m,n)}.
We would like to model the blurred image at each resolution level as the
convolution of a downsampled PSF with a downsampled original image
(see Figure 8.7):

gp(k,l) = dp(ksl)*fp(kal)

= {lp(i’ j) * d(ia j)h,‘,j):(zpk,zm) * {lp(i’j) * f(i’j)}(i,j)z(zf'k,zpl)'
(8.8)

With the exception of the case where I,(z, 7) * d(z,7) = d(¢,7) and Ip(7,) *
f(i,7) = f(i,7), we can conclude that (8.7) and (8.8) are equivalent only
if 1,(¢,7) is an ideal low-pass filter. In this case the PSF d,(m,n), which
is identified at resolution level p, is an exact downsampled version of the
PSF d(m,n) at level 0. The use of such an ideal filter /,(¢,5) has two
serious drawbacks. In the first place, the PSF coefficients may take nega-
tive values, which is in contradiction with the PSF modeling assumptions
employed throughout this thesis. Secondly, the size of the support of the
downsampled PSF d,(m,n) is not necessarily smaller than the support
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Figure 8.7: Theoretical model for downsampled blurred images.

size of the original PSF d(m,n). Even more, d,(m,n) may have an infinite
support. This leads to the conclusion that an ideal low-pass filter should
not be used to bandlimit the blurred image.

To design a more suitable low-pass filter, we require that three condi-
tions must be satisfied, namely

(i) If the image g is downsampled by a factor 2° to get the reduced
resolution image g,, the size of the PSF support §; needs to be
reduced by a factor 2° as well. (The minimum support size, however,
is 3, because it cannot be expected that a downsampled PSF will
exactly fall within one pixel.) In general, the extent of the low-pass
filter 1,(¢,7) must therefore be less than 27! x 2P+1,

(ii) In order for d,(m,n) > 0, we need to have g,(z,5) > 0. Hence, the
filter coefficients [,(7,7) must be positive,

(iii) The low-pass filter must have a cut-off frequency of approximately
we = T27F,

A reasonable low-pass filter that satisfies the above constraints, is a sepa-
rable truncated sinc-function, windowed by a Hamming function. In a 1-D
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notation, the filter coefficients are given by:

sin(7k277)
mk2-?P

L(k) = {0.54+0.46 cos(mk277)}, —(2°P-1) <k <2P—1. (8.9)
Table 8.3 lists the filter coefficients for p = 1,2,3. The coeficients given
in this table are assumed throughout this chapter.

As a consequence from using a suboptimal low-pass filter, the PSF
identified from g,(7,5) cannot be related to the PSF at higher resolution
levels. The discrepancy between the optimally and suboptimally filtered
PSF is mainly due to aliasing effects, and depends in general on the power
spectral density of the image g in the “stopband” of the filter [,(z,7). Since
for low resolution images the power in this stopband is relatively larger
than for higher resolution images, the difference between the optimally
and suboptimally filtered images increases as the resolution is decreased.

8.3.3 Image and Parameter Interpolation

The parameters identified at the resolution level p+ 1 are used to initialize

the EM-algorithm at the resolution level p. Since the EM-algorithm can

start with either an E-step or an M-step, we have the following two options:

e Initialize 5,(,0) at level p using the image model, PSF and o2 identified

at level p + 1. To this end the identified PSF has to be represented

at a higher resolution, i.e. it needs to be interpolated. The identified

image model does not need to be interpolated because we assume

a first order (NSHP) image model at all resolution levels. As in
Chapter 7 the EM-algorithm is started with an E-step,

e Use the identified parameters at level p + 1 to compute a restoration
result f,,, from g, ;. Next, this result is interpolated in order to

~ (0 .
initialize f," at level p, from which the auto- and crosscorrelation

Table 8.3: Coefficients of the low-pass filter [ (k) = I,(—k).

0 ) @) 3 1@ 1) e i0)
1.0000 0.3438

1.0000 0.7790 0.3438 0.0644

1.0000 0.9404 0.7790 0.5615 0.3438 0.1713 0.0644 0.0160

[JCR ORI
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coefficients Fl(,of) (p,q) and 1"'5,3) (p, ), respectively, can be computed. In

this case the EM-algorithm starts essentially with an M-step.

In interpolating the PSF we can take advantage of the a priori knowledge
that dp(m,n) > 0, and that d,(m,n) has a finite support. This implies that
the PSF cannot be interpolated using sinc functions. A similar reasoning
holds for the interpolation of the restored image. However, the amount
of data in an image is much larger than the number of PSF coefficients.
Therefore the interpolation of the restored image is less critical and less
sensitive to errors than the interpolation of the PSF. In fact, experimental
evidence shows that a simple 0-th order interpolation of the restored image
(i.e. interpolating the image by repeating pixels) leads to results which are
superior to the results achieved by far more complex methods to interpo-
late the PSF, such as iterative interpolation procedures which enforce the
PSF to be positive and of finite extent. For this reason, in our hierarchical
identification approach the EM-algorithm is initialized at a certain resolu-
tion level by the interpolated restoration result obtained at the previous
level using a simple pixel repeating method.

8.3.4 Decision Tree for PSF Support Size

Nearly all identification methods known in the literature require explicit
knowledge about the size of the PSF support S;. This size is, however,
hardly ever known a priors, and needs to be estimated simultaneously with
0. One way of doing this has been addressed experimentally in Section
7.5.2, namely to identify the PSF for a number of different support sizes.
The value of the likelihood function was used to discriminate between the
various possibilities. Alternatively we can include a strategy for estimat-
ing the size of S; into the hierarchical identification method described here.

Consider the identification of the class of 1-D horizontal PSFs which have
a maximal support size of 1 x 17 (this is a reasonable value for images of
size 256 X 256). If we use the low-pass filter described by (8.9), then the
resulting support sizes of the downsampled PSFs d,(m, n) at the resolution
level p are given by Table 8.4. Since we assume that the PSF is symmetric,
only odd values for S; appear in this table. Further, the minimal support
size is 1 X 3, because a downsampled PSF will never fall entirely within
one pixel. From this table it can be seen that at the resolution levels 3
and 4 we can always use a PSF of size 1 x 3. Further, a 1 x 3 PSF is
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Table 8.4: Resulting PSF support size (S;) after downsampling.

Resolution level

Sa 1 2 3 4
I1x3|1x3 1x3 1x3 1x3
1x5]1x3 1x3 1x3 1x3
1x7(1x5 1x3 1x3 1x3
1x9]1x5 1x3 1x3 1x3
1x11|1x7 1x5 1x3 1x3
1x13|1x7 1x5 1x3 1x3
1x15|1x9 1x5 1x3 1x3
1x17|1x9 1x5 1x3 1x3

always associated with another 1 x 3 PSF or with a 1 x 5 PSF at the next
resolution level. In general, a PSF of size 1 x (2v +1) (v = 2,3,---) at
the resolution level p + 1 leads to a support size of either 1 x (4v — 1) or
1 X (4v + 1) at the resolution level p.

By “inverting” Table 8.4 the decision tree in Figure 8.8 is obtained,
which shows how the PSF support size can propagate as we perform the
hierarchical identification. In this tree a solid line between two support
sizes at subsequent resolution levels indicates that these supports are asso-
ciated with each other according to Table 8.4. A dashed line, on the other
hand, implies a (heuristic) correction possibility of the support size by leav-
ing out the outermost PSF coefficients if they have a relatively small value
(PSF truncation). Further, a solid line implies running the EM-algorithm,
while for a dashed line we only need to evaluate the likelihood function for
the truncated PSF.

Starting at level 4 we always identify a 1 x 3 PSF. At the resolution level
3 again a PSF with support 1 x 3 is identified. Next, at level 2 we have to
choose between either a 1 x 3 or a 1 x 5 PSF. Therefore the EM-algorithm
needs to be run for both these cases. We can decide upon the best support
size by considering (i) the value of the likelihood function, (ii) the value of
the outermost PSF coefficients, or any combination of these two measures.
Here we base our decision on the value of the likelihood function. Observe
that if the PSF support size has been chosen too large at a certain resolu-
tion level, there is always a correction possibility on the next level (dashed
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p=3
p=2
r=1
p=0

Figure 8.8: Decision tree for 1-D horizontal PSFs.

lines).

The above way of simultaneously identifying the PSF support and its
coefficients requires running the EM-algorithm 8 times in total, with image
sizes varying from 16 x 16 to 256 x 256. On the whole this takes signifi-
cantly less time than running the EM-algorithm 8 times (1 x 3 to 1 x 17
PSFs) on the full resolution image of size 256 x 256.

The decision tree in Figure 8.8 can immediately be extended to 2-D PSFs,
but then we need to consider 4 different PSF sizes at each resolution level.
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p=3
p=2
p=1
[3xa|[sx51 CIExY Bk
p=0

|5x3|[3x5] |9x3||7x5| [5x7”3x9| |9x7||7x9|

Figure 8.9: Decision tree for 2-D PSFs. (The branch leaving the 5 X 5
support size at level 2 is not shown in order to keep the figure readible.)

For instance, starting with a 5 x 5 PSF, we may get a PSF of size 7% 7,
9x7,7x9o0r9x9. In order to reduce the computational complexity, we
only allow the increase of the vertical and horizontal extent by the same
factor; hence we initially disregard the 7 x 9 and 9 X 7 PSFs. These sup-
port sizes can be obtained later on by truncating the 9 x 9 support if the
outermost coefficients are relatively small. Figure 8.9 shows the resulting
decision tree for 2-D blurs. Again, the solid lines imply running the EM-
algorithm, while the dashed lines imply leaving out the outermost rows or
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columns of the PSF when they contain small entries. Such a decision can
again be based on the value of the likelihood function computed from the
truncated PSF.

8.4 Experimental Results Using the
Hierarchical Method

8.4.1 Linear Motion Blur

We consider the identification of the motion blurred image in Figure 7.3a
using the hierarchical method described in the preceding section. The res-
olution pyramid generated from this image is shown in Figure 8.10a. Table
8.5 shows the identified PSF and observation noise variance at each level.
Also shown in this table are the (initial) PSF and noise variance, computed
by the M-step in the first iteration from the interpolated restoration result.
In Table 8.6 the initial and identified image model coefficients are listed.
Observe that for the levels 2, 1, and 0 we computed the PSF for 2 different
PSF support sizes, which is in conformity with the decision tree in Figure
8.8. At the resolution level 2 the value of the likelihood function (see Table
8.5?) indicates that the 1 x 3 PSF is to be preferred to the 1 x 5 PSF. This
conclusion can also be reached by considering the value of the coefficient
é(O, 2) at this level. At the resolution level 1 the likelihood function for the
1 x 5 PSF support is significantly smaller than for the 1 x 3 PSF. Hence,
at the next level we need to consider a 1 x 7 and a 1 x 9 PSF support
size. Finally, for the full resolution image, preference has to be given to
the support of size 1 x 9.

Another way to illustrate the hierarchical identification method is to con-
sider the transfer function |D,(u,v)| of the identified PSFs at the various
resolution levels. In a combined plot Figure 8.11 shows the transfer func-
tion of the ideal PSF and the transfer function of the PSFs identified at
the levels 3 through 0. It is observed that at low resolution levels the low
frequency components of d(m,n) are estimated, while the identification of
higher resolution blurred images adds high frequency components to the
PSF. The images obtained by restoring the downsampled blurred images
using the identified parameters, are shown in Figure 8.10b. Table 8.7 gives

2Tt is recalled that the accuracy of the computed value of the likelihood function is
approximately +0.01.
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Table 8.5: Initial and identified PSF and observation noise variance at 5

resolution levels for horizontal motion blur at SNR=40 dB.

Point-spread function

S, |d(0,0) d(0,1) d(0,2) d(0,3) d(0,4) | &% | L,(4,)
Resolution level 4
initial |1 x 3 1.000 0.000 10.0
final 0.575 0.213 1.10 3.56
Resolution level 3
initial | 1 x 3 | 0.456 0.272 282.6
final 0.581 0.210 1.53 3.69
Resolution level 2
initial [ 1 x 3| 0.397 0.301 189.2
final 0.506 0.247 0.10 3.13
initial [ 1 x 5| 0.400 0.288 0.012 189.2
final 0.483 0.247 0.011 1.10 3.14
Resolution level 1
initial |1 x 3| 0.282 0.359 108.3
final 0.554 0.223 0.36 2.73
initial [ 1 x 5 0.302 0.232 0.117 96.7
final 0.242 0.257 0.122 0.11 2.53
Resolution level 0
initial [1 x 7 { 0.098 0.143 0.129 0.179 62.6
final 0.140 0.101 0.141 0.188 0.37 2.09
initial | 1 x9 | 0.120 0.124 0.138 0.108 0.069 | 59.2
final 0.123 0.124 0.124 0.129 0.061 0.29 1.97

an impression of the computation time required for each of the stages in
the hierarchical identification procedure.
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Table 8.6: Initial and identified image model at 5 resolution levels for
horizontal motion blur at SNR=40 dB.

Image model
S« |a(1,1) a(1,0) a(1,-1) a(0,1)| &
Resolution level 4
initial |1 x 3 | -0.100  0.600 0.100 0.400 | 200.0

final -0.486 0.678 0.159 0.608 | 296.5
Resolution level 3
initial [ 1 x 3 | -0.751 0.902 0.010 0.819 | 83.59

final -0.328 0.710 0.140 0.449 | 369.9
Resolution level 2
initial | 1 x 3 | -0.650 0.881 0.017 0.739 | 101.5

e 8o

final -0.341 0.731 0.103 0.490 | 291.2
initial | 1 x 5 | -0.650 0.881 0.017 0.739 | 101.5
final -0.283  0.737 0.104 0.422 | 345.2

Resolution level 1
initial [ 1 x 3 | -0.673  0.886 0.013 0.767 | 80.5

final -0.647 0.690 0.114 0.840 | 56.2
initial | 1 x5 | -0.673  0.886 0.013 0.767 | 80.5
final -0.305 0.696 0.133 0.464 | 269.0

Resolution level 0
initial |1 x 7 | -0.654 0.878 0.016 0.755 | 72.7

final -0.623 0.617 0.158 0.847 | 50.0
initial [ 1 x 9 | -0.654 0.878 0.016 0.755 | 72.7
final -0.423 0.656 0.145 0.616 | 162.3
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(a) (b)

Figure 8.10: Resolution pyramid of (a) Motion blurred images (L=8,
SNR=40 dB), (b) Restored images.
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Figure 8.11: 1-D Transfer function of the exact and identified PSF at the

resolution levels 3, 2, 1, and 0.

Table 8.7: Computation time for the hierarchical identification method.

“CPU” (sec) “CPU” (sec)

level M =N | E | M | total | iter. | runs | total [ relative
4 16 {0.6 0.3 0.9 | 100 1| 90.0 13%
3 32107 04 11| 50 1| 55.0 8%
2 6407 04 11| 50 2 |110.0 16%

1 128110 04 14| 50 2 | 140.0 20%
0 256 12.6 04 3.0 50 2 | 300.0 43%

300 8 | 695.0

8.4.2 Defocusing Blur

The hierarchical identification procedure was applied to the out-of-focus
cameraman image in Figure 7.6a (SNR=40 dB). The blurred image reso-
lution pyramid and the associated restoration results are shown in Figure
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8.12. We restrict ourselves here to listing the identified PSFs at the 5 dif-
ferent resolution levels. Starting out with the assumption of no blur at the
resolution level 4, the PSFs identified at the levels 4 and 3 (both of which
must have a 3 x 3 support) are given by:

0.036 0.137 0.039 0.040 0.135 0.035
de(m,n) =| 0.114 0.349 0.114 |, dg(m,n)=| 0.114 0.355 0.114
0.039 0.137 0.036 0.035 0.135 0.040

At resolution level 2 we must decide between a 3 X 3 or 5 x 5 PSF support.
The identified PSFs are

[ 0.038 0.133 0.039
d2(m,n) = 0.114 0.351 0.114 |,
| 0.039 0.133 0.038

0.007 0.017 0.002 —0.003 0.010
0.011 0.048 0.130 0.024  0.005
dy(m,n) = | —0.013 0.0890 0.346 0.089 —0.013
0.005 0.024 0.130 0.048 0.011
0.010 —0.003 0.002 0.017 0.007

Since the likelihood value for both the 3 x 3 and 5 x 5 PSF support are
equal to 3.48, preference is given to the smallest support size. On the next
resolution level the identification results are given by:

[ 0.061 0.125 0.060
dy(m,n) = | 0.123 0.265 0.123 |,
| 0.060 0.125 0.061

[ 0.012 0.017 0.010 0.014 0.009
0.009 0.060 0.107 0.057 0.007
di(m,n) = | 0.000 0.095 0.205 0.095 0.000
0.007 0.057 0.107 0.060 0.009
| 0.009 0.014 0.010 0.017 0.012 ‘

Since the value of the likelihood function for the two cases are very close to
each other, namely 2.43 (3 x 3 PSF support) and 2.46 (5 x5 PSF support),
preference is given to the 3 x 3 PSF. Therefore, at the final resolution level
0 we consider again a 3 x 3 and 5 x 5 PSF support size:

0.064 0.149 0.053
do(m,n) = 0.130 0.208 0.130 },
0.053 0.149 0.064
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(a) (b)

Figure 8.12: Resolution pyramid; (a) Defocused images, (b) Restored im-
ages.
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(a) (b)

Figure 8.13: (a) Photographic out-of-focus blur; (b) Identified and restored
image.

0.018 0.033 0.032 0.030 0.016
0.032 0.060 0.059 0.061 0.030
do(m,n) = | 0.029 0.067 0.065 0.067 0.029
0.030 0.061 0.059 0.060 0.032
0.016 0.030 0.032 0.033 0.018

In this case the likelihood value associated with the 5 x 5 PSF support is
considerably smaller than the one computed from the 3 x 3 PSF, namely
1.64 compared to 1.81. Therefore, the PSF with support size 5 x 5 is
considered to fit the blurred image best.

8.4.3 Photographic Out-of-Focus Blur

Figure 8.13a shows a portrait in which the out-of-focus blur is not syn-
thetically introduced, but is due to a deliberately defocused camera lens®.
Application of the hierarchical identification method to this image yields
the following identified PSF:

3Courtesy of Eastman Kodak Co., Rochester NY.
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[ 0.003 0.008 0.012 0.017 0.015 0.007 0.001
0.008 0.017 0.022 0.016 0.019 0.017 0.010
0.014 0.021 0.036 0.053 0.045 0.022 0.011

(m,n) = | 0.013 0.018 0.053 0.087 0.053 0.018 0.013

0.011 0.022 0.045 0.053 0.036 0.021 0.014

0.010 0.017 0.019 0.016 0.022 0.017 0.008

| 0.001 0.007 0.015 0.017 0.012 0.008 0.003 ]

[S 9

This PSF was used in the constrained adaptive iterative restoration method
described in Chapter 5. The restored image is shown in Figure 8.13b. Since
the original image associated with the blurred image is not available, it is
not possible to numerically evaluate the quality of the identified PSF and
the restored image.

8.5 Status Quo and Prospective Develop-
ments

This thesis has discussed several modern approaches towards the image
identification and restoration problem. A number of novel algorithms were
introduced which outperform more conventional identification and restora-
tion methods. More specifically, the methods that were developed are
especially suited for blurred images with a medium to low SNR. Though
numerically acceptable results are obtained which improve upon the results
achieved by more conventional methods, this does, however, not mean that
the visual quality is yet acceptable for all situations. Particularly at very
low SNRs the quality improvements which can be achieved are limited be-
cause of the inherent (local) noise magnification of the restoration process.
The image formation model used in this thesis assumes that the non-
linear response of the sensor can either be neglected or can be inverted
in a straightforward manner. Thes assumptions, however, do not hold at
low SNRs. Furthermore, in order to invert the nonlinear response of the
sensor, it needs to be known a prior: which is not always the case. In
some situations the sensor response can be modeled parametrically. For
instance, if photographic film is used, a reasonable description between
the intensity I; of the incident light and the density D, of the film grains

deposited is given by:
D, = ¢;log(I}) + ¢z, (8.10)

where ¢, and ¢, are parameters which define the behavior of the film. If
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this relation is incorporated into the image formation model, the image
identification problem now also encompasses the identification of the pa-
rameters ¢; and ¢;. The complexity of this identification problem is much
larger than the complexity of the ML image identification problem de-
scribed in this thesis, because it is no longer possible to give an analytic
expression for the probability density of the observed data. Approxima-
tions to the nonlinear model need to be made in order to be able to use
an ML approach.

The PSF of the blur has been assumed stationary throughout this the-
sis. Non-stationary PSFs can be handled by restricting the identification
and restoration process to a local region of the image. This can be done,
for instance, by applying the EM-algorithm in a sliding block mode. It
should be noted, however, that if the PSF changes too rapidly, the above
approach will lead to very small blocks in which the PSF cannot be esti-
mated due to the lack of data. In such a situation parametric PSFs which
model the local variations of the PSF may be helpful, although this kind
of modeling requires a lot of a priori knowledge.

An open problem in image identification is the identification of PSFs with
arbitrary phases. The PSFs identified by the ML approach studied in
this thesis do not have a unique phase in general. We circumvented this
problem by assuming that the PSF is symmetric or has minimum phase.
Obviously, practical blurs of interest may have any kind of phase. In order
to be able to identify the phase of a PSF, we need to assume that the orig-
inal image has a non-Gaussian character (i.e. the higher order moments of
the modeling error v(i,) must be assumed to be non-zero). Again, this
assumption will make the identification problem significantly more difficult
due to the lack of criteria and the increased computational complexity.

The work in this thesis considered the identification and restoration of
grey-valued images. These methods can also be applied to color images
and image sequences by considering each color component or frame of the
image sequence, respectively, as an individual grey-valued image. Such an
approach does, however, not take into account the cross-color correlation
between the components of the color image, or the interframe correlation
between the frames of the image sequence. An improved approach should
take into account these correlation properties by extending the 2-D image
models currently employed to 3-D models. Since such an approach does not
change the structure of the identification and restoration problem, iterative
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identification and restoration methods can again be used succesfully.
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Appendix A

Eigenvalue Analysis for 2-D
Systems

In this appendix we will briefly review several mathematical tools used in
linear image processing, such as lexicographic ordering of image data, con-
volutions, block-circulant matrices, eigenvalues of 2-D matrix operations,
and the 2-D discrete Fourier transform (DFT). More on these topics can
be found in the paper by Pratt [78], and the textbooks by Andrews and
Hunt [3], and Gonzalez and Wintz [30].

Lexicographic Ordering
Let the 2-D array ¥ represent a discrete image with M rows and N
columns:

F={f(4,7)}, 0<i<M-1,0<j<N-1L (A.1)

This data can be written in a vector form through a 1-D mapping that
is known as lexicographic ordering. In essence the M x N 2-D array is
converted to a M N x 1 vector f by concatenating its rows. Thus

I = [f(0,0),f(O,1),f(0,2),~-,f(O,N—-1),
f(l,O),f(l,l),"',f(M—1,N—1)]t- (A2)

Block-Toeplitz and Block-Circulant Matrices
Neglecting the noise contribution w(¢,7) the image formation model is
given by:

9(3,7) = D d(m,n)f(i—m,j~n)

mnESy
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Figure A.1: Block-Toeplitz structure of the matrix D. The vectors g; and
b ; refer to the 7% row of g and f, respectively.

= d(i,5) * £(5,5). (A.3)
By lexicographically ordering both f(7,5) and g(7,7) we have
g=Df, (A.4)

where D is the blurring matrix which is of size MN x M N. (Observe that
D will always be square if f and g are of the same size.) If the convolu-
tion in (A.3) is interpreted as a linear convolution (with zero boundaries),
the matrix D has a block-Toeplitz structure. If it is partitioned into M?
submatrices of size N x N, each of these submatrices will be a Toeplitz
matrix. Further the submatrices are arranged in a Toeplitz pattern. This
is illustrated in Figure A.1.

A (block-)Toeplitz matrix is often approximated by a (block-)circulant
one because these two matrix types are structurally closely related, and
operations involving block-circulant matrices can be efficiently evaluated
using 2-D discrete Fourier transforms. The errors introduced by the ap-
proximations are usually small, and mainly effect the boundaries of the
image. With a block-circulant matrix D; = D;_js and the elements d(j, k)
of D; are replaced by d(j, k — N). Figure A.2 illustrates this conversion on

192




[ D, D_, D_, D, ]
D, D, D_, :
p_| D2 Di Do
D_, D,
d(ja 0) d(]’ _1) d(]:a _2) d(ja 1)
d(j,1)  d(5,0) d(s,-1)
D;=| 4.2 d(,1) d4(s,0)
d(j,—1) -+ d(4,0)

Figure A.2: Block-circulant approximation of the matrix D.

the matrices shown in Figure A.1. In signal processing terms the approxi-
mation of a block-Toeplitz matrix by a block-circulant one is equivalent to
replacing the linear convolution in (A.3) by a circulant one.

Eigensystem of a Matrix

A powerful tool in both the analysis and implementation of linear equa-
tions such as (A.3) is the set of eigenvalues and eigenvectors (eigensystem)
of the matrix D involved. Let {z,,} denote the normalized (complex-
valued) eigenvectors associated with the blurring matrix D, and let the
(complex-valued) scalars A,, represent the corresponding eigenvalues, i.e.

Dzyy = AuZu, 0Su<M-1,0<v<N-1 (A.5)

The double subscript notation is used since the eigenvectors when un-
stacked are, in fact, images. They are actually the set of images {zy,(z,7)}
which are unaffected by the blurring operator except for a change of scale.
Writing out the eigenvector equations we get

> dlmyn)zw(i —m,J —n) = Awzw(i,9), V6,4, Yu,v. (A.6)
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have the same set of eigenvectors!. As a result the eigenvectors z,, are
mutually orthogonal and the matrix D can then be expressed in terms of
its eigenvectors as

D= Z Auv Zup Ziyy - (A.7)

u,v
The advantage of using the eigensystem of a matrix is that linear relations
such as (A.3), can be evaluated as a set of independent ~calns eqguatinre,
To this end we first decompose f in terms :f the “igeiveciors :

f= Z(f, zuu)zuw {A.O)

where (f, z,,) denotes the inner product between f and the uv'" eigenvec-
tor. Substituting (A.8) into (A.4) yields

g = Df:’D Z(fazuu)zuu

u,v

= Z(f, zuv)Dzuv

u,v

= Z(f,zuu)kugzuy- (A.g)

u,v

By also expanding ¢ in terms of the eigenvectors of D we get

Z(ga Zuv zuv z)‘uv f’ zuu)zuu’ (AIO)
or
(g, zuv) = )‘uu(fazuv)a Vua v. (All)

Thus by virtue of using the eigensystem of D, we have replaced the con-
volution (A.3) by a far simpler set of scalar equations (A.11).

2-D Discrete Fourier Transform

In general it is hardly ever possible to find the eigenvectors {z,,} of an
arbitrary matrix D of size MN x MN because of its size. This becomes
possible only when D is highly structured. In the particular case where D
is block-circulant, the eigenvectors are the following complex exponentials:

2w (5,5) = exp { —2m) (M 1’:) } (A.12)

1Similar expressions can be derived if this assumption does not hold by making use
of the singular value analysis of the matrix D. Essentially, this involves an eigenvalue
analysis of the matrix D*D instead of the matrix D [3,72].

194




and the eigenvalues are equal to the discrete Fourier transform (DFT)
samples, which are computed as

)\uv = Zd(za j)zuv(i,j)a (A'13)

)

which can be evaluated efficiently using an FFT algorithm. Further the
inner products (f, z4,) and (g, z,,) are the 2-D DFTs of f(7,7) and ¢(7,7),
respectively. In this case (A.11) is usually written as:

(gazuv) = ’\uv(f,zuv)a Vu,v,
= G(u,v) = D(u,v)F(u,v) Vu,v. (A.14)

As a result (A.14) is called the discrete Fourier transform of the discrete
convolution (A.3) or the matrix-vector equation (A.4).
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Appendix B

Properties of the Iteration
(5.21)

In this appendix we will prove that the iterations (5.21) minimize the ob-
jective function ®(f) in (5.15) on a closed convex set. To this end we
will first give the definitions of a nonexpansive mapping and a contraction
mapping, and we will state the contraction mapping theorem. Next it will
be shown that G(f) in (5.17) is a contraction mapping under certain con-
ditions. Finally the mentioned proof will be given.

Contraction Mapping
Consider the properties of a general mapping I (z). Suppose that

17 (z:) = ()|l < rllzi = 2], (B.1)

for z; and z; in the considered solution space. If 0 < r < 1, the map-
ping I(z) is said to be a contraction mapping, or simply a contraction. If
r = 1, the mapping is nonexpansive [100]. Contraction mappings essen-
tially reduce the distance between two mapped elements z; and z;, while
nonexpansive mappings do at least not increase this distance. Concatening
nonexpansive mappings yields a nonexpansive mapping, while concatenat-
ing nonexpansive and contraction mappings yields a contraction mapping.

The fixed points of a mapping are defined as those points which are
not affected by the mapping. If a mapping is a contraction, then is has a
unique fixed point z*, such that z* = I(z"). Further, every sequence of
successive approximations, defined as

Tr+1 — I(Ik), (BZ)
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converges to the unique fixed point z* for any initial starting point z, if
I is a contraction mapping: this sentence states the contraction mapping
theorem. Hence, for contraction mappings the limiting solution of (B.2)
exists and is unique.

Unfortunately, many mappings are only nonexpansive, in which case
any number of fixed points may exist and the method of successive ap-
proximations may not converge.

Mappings which are associated with a projection onto a closed convex
set are always nonexpansive [115]. The elements of the convex set are the
fixed points of such a mapping.

Contractiveness of §

We next show that the mapping §(f) in Eq. (5.17) is a contraction map-
ping [55]. This mapping has been defined as

9(f) = (I-aBC'SC)f + BD'R(g — DY)
I- B(D'RD + aC'SC)f + BD'Ry. (B.3)
Substitution of §(f) into (B.1) yields:

16(F1) = G(£ )l
= |{I - B(D'RD + aC*'SC}f, — {I — B(D'RD + aC'SC}/,||
< I - B(D'RD + oC*'SC||||f, = fol < #llfy = foll. (B.4)

If we now require that 0 < r < 1, then §(f) is contractive. This leads to
the following inequalities:

0< ||I-B(D'RD+ aC'SC)| < 1, (B.5)

where || - || denotes the norm of the matrix. Since (D'RD + aC'SC) is
a symmetric matrix, the eigenvalues of this matrix, denoted by p,,, are
real valued, as well as the eigenvalues of I — §(D'RD + oC*SC). We can
therefore replace (B.5) by

0< II‘I‘%X{II — Bpusl} < 1. (B.6)

The above inequalities are always satisfied if 8 satisfies

0<p< —2-, (B.7)

lpmaz |
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wilCi€ Pmag IS the largest eigenvalue of the matrix (D*RD+aC*SC). Hence,
G is a contraction if (B.7) is satisfied. It is observed that (B.7) is identical
to the condition (5.19), which ensured the convergence of the unconstrained
iterations (5.18).

Properties of the Iteration (5.21)

We now consider the propertles of the limiting solution of the constrained

Leralive procoss 1820, e will st o (5. ‘ZE“ minhimires the objactive
.*:':m.i':cfa‘. S sl s dha Chnes avex set L.
gt we et w the graalent of S} wii respect to f as:
1 nto t i
r(f) = —--2-Vf<I)(f) = >~ - (D'RD + oC*'SC)f. (B.8)

According to (5.17) or (3.22), the mappmg y(f) is created as follows:

6(f) = £ +Br(f). (B.9)

The iterative algorithm (5.21) is then given by:

}H—l = Pg(}k) =P [}k +ﬂf(}.;)] : (B.10)

Since the mapping § is assumed to be a contraction (provided that (B.7) is
satisfied), and the mapping P is nonexpansive, the concatenated mapping
PG is a contraction mapping. By the contraction mappmg theorem, the
iterations in (B.10) converge to the unique fixed point i ¢ of the mapping
PG. As a consequence, the following relation has to hold for I = e 5

~

Fo=PF.+6r(7)] (B.11)
This relation is satisfied in three possible situations, namely:

1) The parameter § = 0. This, however, contradicts the bounds on B,
as given in (B.7).

2) The gradient r( 7. = 0. This solution corresponds to the uncon-
strained minimization of ®(f). Obviously, the limiting solution of
(B.10) coincides with the Tikhonov-Miller solution obtained from
(5.16). Therefore, in this case the Tikhonov-Miller solution satisfies
the constraint C.
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3) The gradient is not equal to zero for 3’ i ¢~ To satisfy the relation
(B.11), the prOJectlon operator P must exactly compensate the mod-
ifications in f, in the direction #(f o). Consequently, r(},) has to be
orthogonal to the surface of the convex set C at the solution f ¢ BY
definition, r(f,) is orthogonal to the surface of the set K, defined by

K = {hi@(h) < ®(f,)}. (B.12)

Since (B.12) defines a closed strictly convex set [115] and the con-
straint C a closed convex set, and the surfaces of these two sets are
both orthogonal to T(}e) at _;' = }e, we conclude that their inter-
section consists of exactly one element (namely, }z)- Therefore, the
objective function ®(f) attains its smallest value on the set C at the
solution f P

Hence, we have shown that the iteration (5.21) minimizes the objective
function ®(f) on the closed convex set C.
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Appendix C

Derivation of Equation (7.14)

In this appendix the derivation of (7.14) is given. To this end we first
substitute (7.10) into (7.9), yielding

£(8;6®) = E {logp(f,9:6) /96" }
1 amny _ 1 1 2
= -3 log(27**Y) — —2—log det |Q,Q,| + -2—log det |I — A|* +

- 2E{(0 - D1)'Q3} g - DI) + /(I - AYQ3 I - 4)f/950%}

€ — —;—MN log(oZa?) + %log det [T — A|® +
- 2B{(s - D1)'Q:'(0 - D1)/4:0¥)
- SE{I - 4)QN I - A1 /g:8®)}. (c.1)

If we have a closer look at the 4-th term of (C.1), we find
E{(g - D1)'Q; (s — Df)/g;6®)}
= E{¢'Q.'0/9:0W} — 2E{1'D'Q; g/g; 6V} + E{f'D'Q ' Df /g: 0}

1 2 . 1 .
= a—a'a -t {D E(fa_‘/a; 69)} + <t {D E(ff'/g;6¥) D'}, (C.2)

w w
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where tr (4) denotes the trace of the matrix 4. A similar derivation holds
for the last term of (C.1):

N 1 A
E{f'(I - 4)'Q; (I - A)f/g;6W} = St {I-A) E(f1/g;6%) (I- 4)"}.
) (C.3)
Now we define the MN x M N conditional correlation matrices Rﬁcf) and

R;g) as follows:

By} = BUL G0 = [T [T 1 pl1/0369) (1) (M)
= COV(f/a, ("))+E(f/g,ok)) E(f/g;6®)
= VO pWp (C.1)

Ry = EUe/e:0%) = [* o [ 14 01 /0:0%) ap (1) ar ()

= E(f/g;6W) gt = }¥gt. (C.5)

~(k ~
Here f (*) and V(k) are, respectively, the conditional mean and covariance
of f, given the observed image g and the estimate of 8 at the k-th iteration.
By first substituting Rf;? and IAZ‘(,I;) into (C.2) and (C.3), next substituting
(C.2) and (C.3) into (C.1), and finally multiplying the result by a factor 2
for notational simplicity we arrive at (7.14).
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Samenvatting

Beelden worden gebruikt om belangrijke informatie vast te leggen of om
deze zichtbaar te maken. Ten gevolge van onvolkomenheden in het beeld-
vormend proces (bijvoorbeeld camera, fotografische film) zijn de afbeeldin-
gen die verkregen worden regelmatig een vervormde versie van de gewenste
ideale afbeelding. In het algemeen kan er een groot aantal vervormin-
gen zijn opgetreden in het beeldvormend proces, maar het blijkt dat de
vervormingen die geintroduceerd worden door onscherpte en ruis meestal
overheersend zijn. De beeldidentificatie en -restauratie richt zich dan ook
op het verminderen of zo mogelijk verwijderen van deze vervormingen. Dit
heeft tot doel de (menselijke) interpretatie of de eventuele verdere verwer-
king (zoals beeldanalyse) van het beschikbare beeld te vergemakkelijken.
In de beeldidentificatie wordt een schatting gemaakt van de eigenschappen
van het niet-perfecte beeldvormende systeem (d.w.z. de onscherpte) van-
uit het beschikbare onscherpe beeld. Verder worden enkele (statistische)
eigenschappen bepaald van de in het beeld aanwezige ruis en van het ori-
ginele (d.w.z. het scherpe) beeld. Op basis van deze gegevens wordt in de
beeldrestauratie een schatting berekend van het originele beeld. Toepassin-
gen van beeldidentificatie en -restauratie zijn bijvoorbeeld te vinden in de
astronomie, medische beeldbewerking, en gerechtelijke onderzoek, en bij
het analyseren van foto’s van eenmalige gebeurtenissen,

Dit proefschrift concentreert zich op het gebruik van iteratieve metho-
den in de beeldidentificatie en -restauratie. Hierbij wordt verondersteld dat
het onscherpe beeld vervormd is door lineaire plaats-invariante onscherpte
en additieve witte ruis. In tegenstelling tot niet-iteratieve methoden kun-
nen iteratieve technieken het beeldrestauratieprobleem ook oplossen als
dit geformuleerd is als een plaats-variante optimalisatie met randvoor-
waarden. Er zal worden aangetoond dat de restauratieresultaten die op
deze wijze verkregen worden, aanmerkelijk beter zijn dan die verkregen
worden met meer conventionele technieken. Voor de beeldidentificatie zal
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een iteratief algoritme geintroduceerd worden dat bekend staat als het
“expectation-maximization” (EM) algoritme, om een gecompliceerde niet-
lineaire waarschijnlijkheids- (“likelihood”) functie te optimaliseren. Vrijwel
al het onderzoek waarover dit proefschrift rapporteert, is in de vorm van
wetenschappelijke publicaties verschenen [14,55,57,59)].

In Hoofdstuk 2 zal allereerst de modelvorming van het beeldvormend sys-
teem worden besproken. Deze modellen vormen een essentiéel onderdeel
van het proefschrift, aangezien vrijwel alle besproken beeldidentificatie en
-restauratie methoden hier op gebaseerd zijn.

In Hoofdstuk 3 tot en met 5 komt een aantal aspecten van het gebruik
van iteratieve methoden in de beeldrestauratie aan de orde. In Hoofdstuk
3 zal allereerst worden ingegaan op het slecht-geconditioneerd zijn van
het beeldrestauratieprobleem. Dit betekent dat wanneer een inverse filter
wordt gebruikt om een onscherp beeld te restaureren, dit altijd aanleiding
zal geven tot een zeer sterke opslingering van de in het beeld aanwezige
ruis. Vervolgens wordt een beknopte inleiding gegeven tot enkele welbeken-
de restauratiemethoden, zoals de Wiener en Kalman filters, het kleinste-
kwadraten filter met randvoorwaarde, en de methode van alternerende pro-
jecties op convexe deelruimten. Deze methoden hebben als gemeenschap-
pelijke eigenschap dat ze vrijwel altijd gebruik maken van stochastische,
algebraische of deterministische voorkennis over het te restaureren beeld
om op deze wijze een middenweg te vinden tussen het opslingeren van de
ruis en de betrouwbaarheid van de oplossing.

In Hoofdstuk 4 wordt een andere methode geintroduceerd om rekening
te houden met het feit dat het onscherpe beeld tevens ruis bevat. Hierbij
wordt een iteratief schema dat in de limiet convergeert naar het inverse fil-
ter, voortijdig afgebroken. Het gevolg van dit afbreken is dat de onscherpte
in het beeld slechts ten dele teniet wordt gedaan. Daar staat echter tegen-
over dat de ruis slechts weinig wordt opgeslingerd. Bijkomende voordelen
van deze methode zijn dat er geen matrixinversies hoeven plaats te vin-
den, en dat het iteratieve algoritme redelijk eenvoudig is uit te breiden
naar meer complexe schema’s. Een aantal variaties op het voorgaande
standaard iteratieve restauratiefilter wordt besproken. In eerste instantie
zal een eenvoudig “steepest descent”-algoritme gebruikt worden om de i-
teraties te implementeren. Als alternatief hiervoor wordt ook een aantal
efficiéntere implementaties besproken.

In Hoofdstuk 5 zal worden aangetoond dat als gevolg van het ruis-
onderdrukkend karakter van geregulariseerde restauratiemethoden er een
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storend artefact verschijnt in het opgescherpte beeld, namelijk ringvormige
patronen. Het iteratieve schema dat wordt voorgesteld in dit hoofdstuk
probeert deze “ringing” zo goed mogelijk te voorkomen door gebruik te
maken van z.g. deterministische voorkennis, en door lokaal te bepalen of
ruisopslingering wel of niet toegestaan is. In een aantal experimenten wordt
geillustreerd dat de restauratieresultaten van het voorgestelde iteratieve
schema de voorkeur verdienen boven de meer conventionele restauratie-
filters, zowel in numeriek als visueel opzicht.

Hoofdstuk 6, 7 en 8 gaan in op het beeldidentificatieprobleem zoals dat
tegenwoordig geformuleerd wordt, waarbij specifiek gebruik wordt gemaakt
van een “maximum likelihood” (ML) parameterschattingsmethode. In
Hoofdstuk 6 wordt eerst een aantal reeds langer bekendstaande identifi-
catie methoden besproken, dat echter maar in een klein aantal gevallen
ook daadwerkelijk tot goede resultaten leidt. Vervolgens wordt het beeld-
identificatieprobleem in de vorm van een ML-schattingsprobleem gegoten.
Helaas blijkt dat het oplossen hiervan de optimalisatie vergt van een vrij
complexe en niet-lineaire waarschijnlijkheidsfunctie. De methoden die tot
dusver bekend zijn in de literatuur worden onder een gemeenschappelijk
noemer geplaatst. Deze aanpak toont aan dat de verschillende algorit-
men (en dus ook de resultaten hiervan) niet essentiéel verschillen, maar
voortkomen uit een verschil in modelvorming (bijvoorbeeld: bevat het
beeld wel of geen ruis), en/of overwegingen met betrekking tot algoritmi-
sche complexiteit of computerfaciliteiten (dit kan bijvoorbeeld leiden tot
een voorkeur voor een recursieve, dan wel een matrix-vector formulering
van het schattingsprobleem).

In Hoofdstuk 7 passen we het iteratieve EM-algoritme toe op het ML~
beeldidentificatieprobleem. Deze aanpak leidt tot een zeer elegant algo-
ritme dat tegelijkertijd het onscherpe beeld identificeert en restaureert.
Vereist het oorspronkelijke ML-identificatieprobleem de optimalisatie van
een niet-lineaire functie, bij het voorgestelde iteratieve identificatiealgo-
ritme blijken slechts lineaire vergelijkingen opgelost te hoeven worden. De
afleiding en de prestaties van bovengenoemde methode worden uitgebreid
besproken.

Alhoewel de in Hoofdstuk 6 en 7 besproken algoritmen mathematisch
adequaat geformuleerd zijn, blijkt er in praktische situaties een aantal
problemen te onstaan door numerieke onnauwkeurigheden en door de af-
hankelijkheid tussen de verkregen oplossing en de initiéle parameterschat-
ting. Daarom wordt in Hoofdstuk 8 een tweetal praktisch georienteerde
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identificatiestrategieén voorgesteld, die echter wel geént zijn op het in
Hoofdstuk 7 besproken identificatiealgoritme. De eerste methode maakt
gebruik van voorkennis over de structuur van de onscherpte en het beeld-
model. De tweede methode maakt gebruik van resolutiepiramides om tot
een hiérarchische schattingsprocedure te komen voor de onscherpte in het
beeld. Er worden experimentele resultaten op zowel synthetische als fo-
tografische bewegings- en defocusseringsonscherpte gegeven. Het hoofd-
stuk eindigt met een korte bespreking van de huidige stand van zaken
rond de beeldidentificatie en schetst een perspectief voor de toekomst.
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