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A B S T R A C T

On-board crowding in public transportation has a significant impact on passengers’ travel experience. However, 
there is little knowledge of how different passenger groups contribute to on-board crowding. Empirical knowl-
edge of specific passenger groups’ impact on the system facilitates more effective tuning of policy instruments 
such as new fare structures, dedicated public transportation services, infrastructure investments, and capacity 
provision. We propose a method to capture the crowding contributions from selected passenger groups by means 
of smart card data analytics. Two crowding contribution metrics at the passenger journey level are proposed: (1) 
time-weighted contribution to load factor and (2) maximum contribution to load factor. We apply the proposed 
method to the multimodal public transportation system of Region Stockholm, Sweden. We demonstrate the 
method for two groups: school students, and passengers traversing Stockholm’s inner city. Our findings indicate 
that school students and passengers traversing the inner city have similar crowding contributions, utilizing 15 % 
and 11 % of the seating capacity across all modes during the AM and the PM peak, respectively. The commuter 
rail network, as well as some of the areas neighboring it, experience on average more than 70 % and 90 % 
utilization of their seating capacity during the AM peak, by school students and passengers traversing the inner 
city, respectively.

1. Introduction

On-board crowding is a key problem in large cities since it can 
negatively affect passengers’ travel experience (Kim et al., 2015) as well 
as increase travel time variability and waiting times (Tirachini et al., 
2013). This can impose additional pressure on the public transportation 
system, resulting in higher operational costs, especially during peak 
hours. In common practice, the demand component of crowding is 
investigated as a single quantity, thereby missing the perspective on how 
different groups contribute to crowding. Such information can facilitate 
the design of targeted policy measures towards crowding reduction and 
thereby reduce the pressure on the public transportation system.

The impacts of crowding on the demand side of the public trans-
portation system have been subject to extensive research. Crowding is 
associated with passenger anxiety (Y.-H. Cheng, 2010), stress (Kim et al., 
2015), and exhaustion (Mohd Mahudin et al., 2012), negative safety and 
security perceptions (Katz and Rahman, 2010), as well as feelings 
related to privacy invasion (Wardman and Whelan, 2011). For 

passengers working while commuting, crowding is related to produc-
tivity loss (Gripsrud and Hjorthol, 2012). The well-being effect of 
crowding can lead passengers to adjust their behavior in terms of mode, 
route choice, and departure time (Cheng et al., 2020). Several studies 
highlight the importance of crowding valuation since it can reveal how 
crowding affects passengers’ choices (e.g. Hörcher et al., 2017; Yap 
et al., 2020; Yap et al., 2023).

From the standpoint of public transportation demand-supply in-
teractions, crowding can affect dwell times and the total in-vehicle time 
due to difficult in-vehicle passenger movement (Tirachini, 2011). Spe-
cifically, for buses, increased dwell times can trigger bus bunching if no 
control measures (e.g., bus holding) are applied (Sáez et al., 2012). 
Passengers’ waiting times are also related to crowding, given that pas-
sengers can be left behind due to capacity limitations (Sipetas et al., 
2020). Furthermore, crowding externalities can be translated as an in-
crease in the in-vehicle passenger cost, frequency, and fare optimization 
problems (Tirachini et al., 2010). Last, crowding can also be considered 
in public transportation line design, as it can further facilitate better 
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service frequency and capacity provision (Jara-Diaz and Gschwender, 
2003).

Given the importance of crowding for public transportation planning 
and management, an array of crowding measures has been proposed to 
quantify its extent. On-board crowding in public transportation is 
defined as "having a significant number of people sharing a limited space 
while using a public transportation service" (Tirachini et al., 2013). It 
can be evaluated from two different perspectives; objective measures 
such as passenger density or capacity utilization, and subjective mea-
sures of passengers’ experienced or perceived crowding (Evans and 
Wener, 2007).

An objective measure of on-board crowding is the number of standing 
passengers per square meter, for which the benchmarks defining unac-
ceptable crowding levels vary across the world. For example, four 
standing passengers per square meter is the benchmark in Europe (The 
International Association of Public Transport (UITP), 2009) and in 
Australia (Diec et al., 2010). For the United States of America (USA), this 
number increases to five standees per square meter (National Academies 
of Sciences Engineering and Medicine, 2006) whereas in China, this 
threshold increases up to eight standees per square meter in buses 
(General Administration of Quality Supervision Inspection and Quar-
antine (AQSIQ), 2004) and up to six passengers per square meter in 
urban rail transit modes (Ministry of Housing and Urban-Rural Devel-
opment of the People’s Republic of China, 2013). Another objective 
measure is the load factor which is computed by dividing the passenger 
load by the vehicle’s seating capacity. Based on this metric, Level of 
Service (LOS) standards can be defined. LOS between A and C refers to 
load factors of less than one, while LOS F indicates a ‘crush load’ with 
load factors greater than 1.5 (Transit Cooperative Research Program, 
2003). Different crowding levels (1− 7) are defined based on the load 
factor percentage. Crowding levels 1, and 2 correspond to load factors 
less than 1, while crowding level 7 corresponds to load factor values 
greater than 2 (Wardman and Whelan, 2011).

The increasing availability of automated and passively collected data 
sources in the public transportation industry, such as smart card data, 
enables the understanding of the daily face-to-face encounters (Sun 
et al., 2013) and the network-wide estimation of on-board crowding. 
Automated data sources can facilitate route choice generation (e.g., in 
Skoufas et al., 2024), enabling the valuation of on-board crowding. 
Hörcher et al. (2017) propose the metrics of density of crowding 
(standing passengers/m2) and standing probability for calculating 
crowding costs. In a similar way, Yap et al. (2020) introduce the metric 

of the time-weighted load factor and the standing density in order to 
quantify the valuation of public transportation crowding. Jenelius 
(2020) highlights the need to introduce predictive, personalized 
crowding measures incorporating the changing seat availability along a 
passenger journey. He proposes using the metrics of the probability of 
getting a seat upon boarding, emphasizing the necessity of having a seat 
for some passengers, and the expected travel time standing, incorpo-
rating the cumulative probability that a passenger will not secure a seat 
at each segment of the journey.

The recent COVID-19 pandemic brought the on-board crowding in 
public transportation into the spotlight, due to the social distancing 
recommendations and obligations being imposed worldwide. In this 
context, Basso et al. (2023) propose three novel objective crowding 
metrics to capture virus exposure in public transportation. Specifically, 
the average time that each bus service line has more than one passenger 
per square meter, the average number of passengers per square meter for 
all buses passing at each bus stop, and the total number of other people 
that each passenger meets during his/her trip are proposed. Lin et al. 
(2023) investigate the distribution and crowding exposure across 
different socioeconomic groups, introducing an equity perspective in the 
field of public transportation crowding.

In the literature, existing crowding metrics mainly refer to the total 
passenger load, and do not consider the heterogeneous mix of travelers 
that contribute to the on-board crowding. Different traveler groups are 
sensitive to different service attributes and contextual factors (e.g., fares, 
private car accessibility, work hours). In order to design effective policy 
measures, incentives, or supply adjustments to reduce crowding, it is 
therefore important to understand the composition of travelers on each 
line segment across the public transportation system and target the 
relevant groups.

In this study, we propose a methodology and a set of novel metrics to 
assess and understand the on-board crowding contributions that 
selected passenger groups inflict on the rest of the passenger journeys. 
We select the specific passenger groups to demonstrate the proposed 
method which is also applicable for other groups. For the selection, we 
considered groups for which tailored policy implications, such as new 
fare structures or dedicated public transportation services, could be 
potentially relevant. The method facilitates the interpretation of the 
results in space, further utilizing the capabilities of smart card data to 
provide a better understanding of on-board crowding. Importantly, the 
method is tailored for mobility traces such as smart card data, and is 
reproducible subject to data availability, thereby enhancing its added 

Fig. 1. Methodological framework (elliptic tubes: datasets, rectangles: modules, parallelogram: intermediate databases).
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value. This study contributes to identifying and quantifying how, when, 
and where specific passenger groups contribute to on-board crowding. 
The results obtained can shed light on the demand component of 
crowding (e.g., who is contributing, and when?), the supply component 
(e.g., is the capacity provided adequate?) as well as the social dimension 
thereof (e.g., equity aspects related to crowding contributions).

We demonstrate our method by investigating the crowding contri-
butions of two distinctive passenger groups, namely school students, and 
passengers traversing the inner city, given their distinct spatio-temporal 
travel patterns. Our application to the Region Stockholm, Sweden uti-
lizes large-scale panel data in the form of smart card transactions. Po-
tential applications of our approach include assessing the impact of new 
development areas on network congestion, analyzing secondary impacts 
of service changes due to the re-distribution of passenger flows, and the 
design of demand management and pricing instruments aimed at tar-
geting specific user groups.

The remainder of this paper is organized as follows. Sections 2 and 3
present the proposed method and the case study area, respectively. In 
Section 4, the key findings of the study and their implications are pre-
sented. Section 5 discusses the implications of the results, reflects on 
future research directions and relevant research limitations, and pre-
sents the conclusions of the study.

2. Methodology

In this section, we present the methodology for assessing the 
crowding contributions of passenger groups. The most crucial part of the 
developed method is the proposed novel metrics capturing the crowding 
contributions induced by selected passenger groups (subsection 2.1). 
Existing crowding measures capture the total crowding in the system, 
while our proposed ones capture the crowding induced by a selected 
passenger group, therefore revealing a different perspective of crowding 
both in space and in time. The methodology is framed with the data 
description subsection, describing how the necessary attributes are ob-
tained (subsection 2.2).

Fig. 1 presents the methodological framework for estimating the 
contribution to the on-board crowding from a selected passenger group. 
The notation used in the paper is summarized in Table 1.

2.1. On-board crowding contribution

The proposed metrics quantify the crowding contribution of a 
selected traveler group based on the load factor of the traveler group at 

the line segment (stop-to-stop link) level. The load factor of traveler 
group g on segment a is the ratio between the load of group g, lag, and the 
seating capacity of the vehicle, κa. The metrics are computed at the 
passenger journey level, and they capture i) the time-weighted average 
crowding contribution from the selected passenger group throughout 
the rest of the passenger journeys, and ii) the maximum segment 
crowding contribution in the rest of the passenger journeys. In calcu-
lating the proposed metrics, it is assumed that passengers prefer sitting 
over standing.

2.1.1. Time-weighted contribution to load factor
The time-weighted contribution to load factor (qtig) of passenger 

group g to passenger journey i not belonging to group g uses the travel 
time tivt

a for each segment traversed by journey i as a weight, thus 
highlighting the effect of travel time on the experienced on-board 
crowding. The components (lag, κa, tivt

a ) of the time-weighted contri-
bution to load factor (qtig) are known for all network segments traversed 
by passenger journey i (Ai). We calculate the metric qtig for each pas-
senger journey i not belonging to the group g using formula (1): 

qtig =

∑
a∈Ai

lag
κa
∗ tivt

a
∑

a∈Ai
tivt
a

, ∀i ∕∈ g (1) 

Given that qtig is calculated for all passenger journeys i (i ∕∈ g) the 
mean value for any given time of day t (qtg,d,t) is calculated using formula 
(2): 

qtg,d,t =
1

⃒
⃒ng,d,t

⃒
⃒

∑

i∈ng,d,t

qtig (2) 

where ng,d,t is the set of passenger journeys not in g on day d during time 
period t.

The proposed method also facilitates spatially aggregating the results 
(e.g., to statistical census zones). For every passenger journey i (i ∕∈ g), 
the origin and destination at the stop level are known. We can aggregate 
the crowding contributions across all days, into geographical units ac-
cording to formula (3): 

qtg,z,t =
1

∑

d

⃒
⃒ng,d,t,z

⃒
⃒

∑

d

∑

i∈ng,d,t,z

qtig (3) 

where ng,d,z,t is the set of passenger journeys i (i ∕∈ g) on day d during time 
period t starting (or ending) in zone z.

2.1.2. Maximum contribution to load factor
The second proposed measure is the maximum contribution to the 

load factor across traversed network segments fmax
ig . The motivation for 

this metric lies in the fact that passengers tend to disproportionally recall 
negative travel experiences (Abenoza et al., 2017). Special emphasis is 
given when the travel conditions exceed a certain discomfort threshold 
(Börjesson and Rubensson, 2019). We are therefore interested in 
capturing: 1) the highest level of discomfort in a passenger journey i 
(i ∕∈ g) due to the presence of the passenger group g and 2) network 
segment a (and transport mode m) where it was experienced throughout 
the journey. We calculate the fmax

ig for each passenger journey i using 
formula (4). 

fmax
ig = maxAi

(
lag

κa

)

, a ∈ Ai, ∀i ∕∈ g (4) 

We can compute the mean value of fmax
ig across time of day and 

different transport modes m according to formula (5): 

fmax
g,d,t,m =

1
⃒
⃒ng,d,t,m

⃒
⃒

∑

i∈ng,d,t,m

fmax
ig (5) 

Table 1 
Notation.

Notation Definition

g Set of journeys made by passenger group
i Passenger journey
d Day of the week
t Time of the day
z Spatial unit (zone)
m Mode of transport
a Network segment (stop-to-stop link)
Ai Set of network segments traversed by passenger i
κa Vehicle seating capacity on segment a
lag Passenger group load on segment a
tivt
a Travel time on network segment a

qtig Time-weighted contribution to load factor of group g to passenger 
journey i

qtg,d,t Mean value of the time-weighted crowding contribution qtig on day 
d during time t

qtg,z,t Mean value of the time-weighted crowding contribution qtig during time t 
for zone z

fmax
ig Maximum contribution to load factor of group g to passenger journey i

fmax
g,d,t,m Mean value of the maximum contribution of group g to load factor on day 

d during time t in transport mode m
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where ng,d,t,m is the set of passenger journeys i (i ∕∈ g) on day d during 
time period t experiencing their maximum contribution to load factor 
from passenger group g on transport mode m.

This metric may not reflect the overall crowding condition in the 
mode. However, it can guide targeted policy-making (e.g., demand 
management strategies) to alleviate high-crowding contributions from a 
selected passenger group. Last, the metric’s high level of detail, 
including the network segment a (and transport mode m) where the 
maximum crowding contribution was experienced, can guide decision- 
making at a macroscopic level (e.g., (re-)design of a new line). The 
abovementioned enhances the added value of the fmax

ig metric, especially 
since cost-efficient public transportation supply provision is a challenge 
in many cities worldwide.

2.2. Data description

In the proposed method, we utilize the full travel diaries of passen-
gers. In the case of tap-in only public transportation systems, this implies 
that the tap-out locations (transfer stations and final destinations) need 
to be inferred. There are well-established techniques in the literature for 
inferring the tap-out locations of passenger trips (Kholodov et al., 2021; 
Munizaga and Palma, 2012; Trépanier et al., 2007).

2.2.1. Passenger flows projection to public transportation network supply
When tap-in and tap-out locations are known, the mode, line num-

ber, vehicle, departure and arrival times, and travel time for each pas-
senger journey i can be inferred by fusing Automated Vehicle Location 
(AVL) and Automated Face Collection (AFC) data. When tap-in and tap- 

out on certain vehicle trip/departure are known, the travel time can be 
inferred by considering observed AVL departure and arrival times. For 
modes where passengers tap in at the gate or the platform, each trip is 
assigned to the first departure found in AVL data after the tap-in. Even if 
walking times from the gate to the platform may be neglected, this 
assumption is in line with the principle that passengers aim at mini-
mizing their waiting times and, therefore, their total travel time. In the 
case of an urban rail network with a limited route choice set, this 
assumption does not critically affect passenger flow projection to the 
public transportation supply. GTFS data can replace missing or incom-
plete vehicle departures since they contain complete sets of scheduled 
departures for all lines across the network. In addition, each passenger 
journey i is connected to a unique smart card identifier, which enables 
the identification of the journeys belonging to the passenger group g, 
and the remaining ones, for which we estimate the proposed metrics.

2.2.2. Estimation of passenger loads
By projecting all passenger trips inferred in the public transportation 

system, we are able to estimate passenger loads for each network 
segment a traversed by each vehicle departure (run) in the system, 
including the passenger loads from the selected passenger group g (lag). 
In addition, travel times for each segment a (tivt

a ) are known. Regarding 
the estimation of the seating capacity κa, each vehicle departure is 
connected with the vehicle’s characteristics. Therefore, the seating ca-
pacity κa is known across the network segments traversed by each 
vehicle departure, and it can be used for estimating the proposed metrics 
for each passenger journey i which is associated with riding this 
particular vehicle (i ∕∈ g).

Fig. 2. The public transportation network of Region Stockholm (a) and the defined North, Inner city and South zones (b).
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2.2.3. Definition of passenger group g
After assigning each passenger to a specific vehicle departure, the 

passenger loads across all the public transportation network can be 
computed. Smart card data contains information on all the transactions 
made with their respective time and location stamps as well as the 
associated subscription type. This enables the segmentation of smart 
card records based on subscription type, spatial or temporal criteria, or a 
combination thereof (Cats, 2023). For example, one can define the group 
of passengers of interest g as all those who depart within a certain time 
window, all those with a monthly pass, or all those who have been 
identified as members of a certain cluster based on long-term travel 
patterns such as ‘early birds’ (Cats and Ferranti, 2022a), or ‘local’ 
travelers (Cats and Ferranti, 2022b), or travelers associated with a 
certain home zone and certain associated socio-economic characteristics 
(Kolkowski et al., 2023).

3. Case study application – Region Stockholm

Region Stockholm has the most extensive multimodal public trans-
portation network in Sweden, covering ca. 2.3 million residents. Two 
million public transportation journeys occur daily in the Region. The 
network consists of 5549 stations and 700 lines of metro, bus, commuter 

rail, light rail transit/tram, and ferries. Fig. 2a presents the public 
transportation network of the Region and Fig. 2b shows the North, Inner 
city, and South zones as defined in this study.

Stockholm is located on an archipelago (lakes and waterways make 
up for 30 % of the total area) between Lake Mälaren and the Baltic Sea. 
Stockholm is well known for its monocentric planning, and is a great 
example of a radial public transportation system, given the geographical 
water barriers that split the built-up area (Cats et al., 2015). Conse-
quently, there are few north-south connections due to the limitations of 
the local topology. The existing connections create a few well-defined 
bottlenecks.

Region Stockholm has an open tap-in-only public transportation 
ticket system, meaning that passengers’ tap-out locations need to be 
inferred. The tap-in location of a trip j is recorded in the AFC data, and 
the inference is implemented by searching for a stop within a search 
radius of the tap-in location of the next trip j +1, given that this is made 
within a specific time window (excluding intermediate activities be-
tween trips) and it can be facilitated by matching public transportation 
lines (Cats et al., 2019). Furthermore, demographic data is available by 
coupling census data from the Swedish counterparts of census tracts in 
the United States (Basområden or DeSo zones).

We analyze travel demand data from passenger journeys made in 
autumn (September-November) 2022. In total, 60 working days are 
selected. The time period of several weeks covered by smart card data is 
deemed sufficient to capture the behavioral patterns of the passenger 
groups (Goulet-Langlois et al., 2016).

Regarding the selection of the passenger groups, we define two 
different passenger groups based on (i) the fare product type, and (ii) 
travel spatial patterns. We choose the following passenger groups based 
on the aforementioned criteria:

3.1. School students’ journeys

There is free school choice in Stockholm, meaning that students can 
be enrolled in a school outside of their district. School-related journeys 
represent ca. 25 % of the total demand during the morning and after-
noon peak periods, making school students a non-negligible passenger 
group. We identify school students in the smart card data using the fare 
product type (school youth ticket). Eligible users are students under 

Fig. 3. Average hourly demand of students and non-students during workdays (highlighted hours on x-axis highlight the validity of the student ticket).

Fig. 4. Student flows among North, Inner city, and South of Stockholm.
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twenty (20) years old. School tickets are valid for journeys conducted 
during workdays (Monday to Friday) between 04:30–19:00, facilitating 
school-related trips in Region Stockholm (Stockholms Lokaltrafik (SL), 
2022). Our analysis period (60 working days) contains 11,262,038 
student journeys and 44,524,054 non-student journeys.

Fig. 3 presents the temporal variation of student and non-student 
demand across the day.

Students have slightly different AM and PM peaks compared to the 
rest of the passengers, given the difference between school hours and 
business hours. During both the students’ AM peak (07:00–09:00) and 
PM peak (14:00–16:00) periods, they make up on average 24 % of the 
total demand in the network.

Given the free school choice in Region Stockholm, it is relevant to 
investigate where students travel for school purposes. Fig. 4 presents the 
student passenger flows within and between the north, inner city, and 
south zones. The results reveal that the majority of the flows are intra-
zonal (64 %), and 36 % are interzonal flows, reflecting relatively long 
travel distances for educational (school) purposes. Last, a significant 
proportion of these students commute to the city center (Statistiska 
Centralbyrån (SCB), 2017), making this group particularly interesting as 
a subject for analysis of crowding contributions.

3.2. Passenger journeys traversing the inner city

The local topology (see Section 3, paragraph 2) and the planning of 
public transportation services in Stockholm imply that most passengers 
traveling from the south to the north (and vice versa) must travel 
through the inner city, using either the metro or the commuter rail (see 
Fig. 2b), and thereby add to the passenger volumes in this most con-
gested part of the network. In recent years, the establishment of many 
companies in the central and northern parts of Stockholm (e.g., Solna, 
Kista, Sundbyberg) and many new residencies built in the southern part 
have changed the travel patterns between the south and the north 
(Trafikanalys, 2011). Commuting times using public transportation in 
Stockholm have increased by 5.4 % (44 minutes per commuting journey 
in 2015) (Bastian and Börjesson, 2017). In addition, even though pas-
senger journeys traversing the inner city constitute about 9 % of all 
passenger journeys in our dataset, they affect the vast majority of the 

rest of the passenger journeys (85 %). A passenger journey is concerned 
as affected only if the qtig has a non-zero value. Many journeys are 
affected since the traversing journeys are relatively long (19.5 kilome-
ters on average, compared to 8.5 kilometers for all journeys), over-
lapping in time and space with many journeys. For these reasons, this 
passenger group is of special interest with regard to their potential 
contribution to crowding.

Journeys traversing the inner city can be identified based on their 
tap-in and their inferred tap-out location. We identify 5,574,332 such 
journeys and 55,161,008 other journeys, with roughly equal shares of 
journeys from the south to the north and those from the north to the 
south. The share of passenger journeys traversing the inner city is stable 
at about 11 % on average throughout the day (05:00–22:00).

4. Results

In this section we present the crowding contribution results for the 
two selected passenger groups. We calculate the crowding contribution 
metrics for each passenger i not belonging to the selected passenger 
group g. We use the mean across all such passengers to visualize the 
results in time and space. Emphasis is put on the AM peak period since it 
is the time period during which crowding is most prevalent and thus 
most relevant for policy making.

4.1. School students

The student group contributes to the crowding, in the sense that the 
time-weighted contribution to load factor is higher than zero, for the 
overwhelming majority of non-student journeys (94 %). Fig. 5 shows the 
mean time-weighted contribution to the load factor across time of day 
qtg,d,t (see Eq. 2). Across all non-student journeys, school students utilize, 
on average, 15 % and 11 % of the seating capacity during the AM peak 
(07:00–09:00) and PM peak (14:00–16:00) periods, respectively.

To understand how crowding contributions are distributed in space, 
we aggregate the results in the DeSo zoning system. Specifically, the first 
aggregation concerns the zones as origins, and the second concerns 
zones as destinations, both for non-student journeys i. Figs. 6 and 7
present the mean of the time-weighted crowding contribution metric for 

Fig. 5. Time-weighted contribution to load factor metric across time of day for all non-student journeys.
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the AM peak qtg,z,t (see Eq. 3, zones as origins and destinations, 
respectively).

It can be observed that when results are aggregated based on the 
origin of the journeys, crowding contributions are, as expected, higher in 
Stockholm’s suburbs than in the city center. Specifically, passengers 
originating from zones such as Barkarby in the north and Huddinge in 
the south experience more than 40 % seating capacity utilization by 
school students throughout their journey. It is also worth mentioning 
that the origin zones experiencing significant contributions are located 
in proximity to the commuter rail network. The opposite pattern can be 
observed when results are aggregated based on the destination of the 
journeys, i.e. crowding contributions are higher in Stockholm inner city 

zones (e.g., Stockholm Odenplan, Stockholm City, Stockholms södra) 
compared to the suburban zones.

It is also relevant to capture the highest contribution to the load 
factor (see Eq. 4), since passengers can disproportionally recall negative 
experiences in terms of discomfort. Fig. 8 presents the mean across time 
of day per transport mode fmax

g,d,t,m (see Eq. 5). Results indicate that 
there are no significant differences across the days. Specifically, non- 
students experience the highest contribution to the load factor when 
traveling with the commuter rail during both AM (0.72) and PM (0.39) 
peaks, i.e. indicating that students occupy 72 % and 39 % of the seating 
capacity in the network segments with the highest student load. Last, the 
fmax

g,d,t,m is significantly lower (<20 %) for all other modes across all 

Fig. 6. Spatiotemporal aggregation of the time-weighted contribution to load factor (mean) during AM peak (07:00–09:00) – zones as origins.
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times of the day and days of the week.

4.2. Passengers traversing the inner city

Similar to the school students group, we aggregate the results of the 
time-weighted contribution to load factor metric qtg,z,t per DeSo zone 
(see Eq. 3). Fig. 9 presents the mean of the time-weighted contribution to 
load factor metric, aggregated based on the origin and the destination of 
the non-inner city traversing journeys, for the AM peak. The results show 
that when the calculations of the metric are aggregated based on the 
origin of the journeys, significant crowding contributions (more than 
40 % seating capacity utilization on average) are spotted both in 

Stockholm’s suburbs (e.g., Huddinge in the south, Barkarby in the north) 
as well as zones located downstream, in the inner city (e.g., Stockholm 
södra). When results are aggregated based on the destinations, signifi-
cant crowding contributions are observed in zones with a high concen-
tration of businesses (e.g., Solna in the north), revealing the commuting 
pattern during the AM peak. Notably, in both aggregation types (origin 
and destination of passenger journeys), the zones that experience sig-
nificant crowding contributions by passengers traversing the inner city 
(more than 40 % seating capacity utilization on average) are adjunct to 
the commuter rail network, thereby highlighting the significance of this 
mode for south-north connectivity.

Fig. 10 presents the mean of the maximum contribution to load 

Fig. 7. Spatiotemporal aggregation of the time-weighted contribution to load factor (mean) during AM peak (07:00–09:00) – zones as destinations.
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factor metric (fmax
g,d,t,m) for different time of the day and each day of the 

week for the rest of the passenger journeys per travel mode (see Eq. 5). 
Passenger journeys that do not traverse the inner city experience the 
highest load factor contribution when traveling by commuter rail. 
Specifically, passengers traversing the inner city utilize, on the most 
affected network segment, 90 % and 80 % of the commuter rail seating 
capacity during the AM and the PM peak, respectively across all days. 
The fmax

g,d,t,m is significantly lower, with less than 20 % seating capacity 
utilization, for the rest of the modes across all times and days of the 
week.

4.3. Comparison among the passenger groups

We synthesize our results for the different passenger groups in 
4.1–4.2 by comparing the distribution of the crowding contribution 
inflicted by each of these groups on the remaining passengers. Fig. 11
presents the cumulative distribution function (CDF) of the proposed 
time-weighted contribution to load factor metric for the selected pas-
senger groups during the AM and the PM peaks.

It is evident that the group of inner city traversing passengers has the 
highest maximum time-weighted contributions to load factor compared 
to the rest of the groups during AM and PM peaks. Overall, the groups of 
school students and inner-city traversing passengers have low crowding 
contributions for a significant portion of passengers not belonging to 
these groups for both peaks. There is a sharp increase in the number of 
passengers experiencing moderate crowding contributions (less than 
40 % of the seating capacity utilized by the groups). Last, the number of 
passengers experiencing high crowding contributions (more than 100 % 

of the seating capacity utilized by the passenger groups) is lower.

5. Discussion and conclusion

Understanding the spatiotemporal dimension of crowding induced 
by passenger groups is crucial in the era of the ongoing urban agglom-
erations (The World Bank, 2023). To this end, the proposed method can 
assist public transportation authorities and operators in tailoring solu-
tions towards on-board crowding reduction. In particular, it can serve as 
an auxiliary tool providing insight into the groups contributing most to 
on-board crowding and implications for relevant policymaking as 
described in the subsequent paragraphs. Smart card data facilitate 
investigating the travel patterns of individual passengers as well as a 
group of passengers. We propose a method and a set of metrics for 
capturing the crowding contributions of passengers. One of the merits of 
the proposed metrics is that they allow for a comparative assessment 
across time, space, groups, and networks. We apply the method and 
metrics for understanding and assessing the on-board crowding contri-
butions of two passenger groups in the Stockholm Region, namely school 
students, and passengers traversing the inner city.

Our findings show that different groups can have different crowding 
contributions, given their differences in terms of size and spatiotemporal 
travel patterns. School students and passengers traversing the inner city 
have comparable contributions, 15 % during the AM peak and 11 % 
during the PM peak, despite the two groups constituting of very different 
shares of the passenger journeys in the respective time periods, 24 % and 
9 %, respectively. In particular, the commuter rail network is heavily 
affected, with the maximum contribution to the load factor metric 

Fig. 8. Maximum contribution to load factor by students across time of day (mean).
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amounting, on average, to 72 % and 90 % of the commuter rail seating 
capacity for the school students and passengers traversing the inner-city 
groups, respectively.

The insights gained from this analysis can facilitate land use policy- 
making and demand management strategies, thus providing more effi-
cient public transportation services. In the context of students, several 
initiatives can be undertaken towards better spread of the peak demand. 
Educational institutions can implement staggered starting times for their 
classes as a policy for reducing public transportation crowding induced 
by students (The University of British Columbia (UBC), 2002). Other 
interventions can target mode choice decisions by establishing school 
travel plans integrating more alternatives (e.g., active transport modes) 
and incentives (e.g., different pricing schemes, end-of-trip facilities such 
as lockers, showers, and safe bicycle parking). Provision of student 
housing on campus (in the context of university students) or considering 
proximity in the admission of students to schools (e.g., based on their 
home postal code) can further reduce the crowding contribution asso-
ciated with students. Last, results can guide regional authorities in the 
placement of new schools and business developments so that over-
crowding of already crowded network segments can be minimized.

The share of travelers that need to traverse the inner city in order to 
reach their destination depends on the underlying land-use configura-
tions (Hu et al., 2016). The group of commuters is one of the groups 
mainly contributing to the on-board crowding. Promoting mixed 
land-use configurations (e.g., residential, business) can significantly 
decrease commuting distances (de Abreu e Silva et al., 2012) and, 
therefore, the public transportation crowding induced by commuters. In 
Stockholm, between 2004 and 2015 the average distance traveled by 
public transportation has remained stable at around 15 kilometers, and 
the travel time has increased by 5.4 % (44 minutes per commuting 
journey in 2015) (Bastian and Börjesson, 2017), reflecting the ongoing 
urban sprawl. Alternatively, new public transportation connections, 
which offer alternatives to the most heavily saturated corridors, are 
needed in order to relieve the congestion from those corridors, and 

improve network robustness (Jenelius and Cats, 2015).
The method and metrics proposed in this study can assist in assessing 

crowding contributions from a variety of passenger groups and compare 
them across periods and places. For example, the crowding contribu-
tions of different user profiles (e.g., tourists, regular commuters, at-
tendees of special events), groups defined by different spatial criteria (e. 
g., passengers traveling within the inner city), or groups defined by a 
combination of criteria (e.g., airport travelers by combining ticket fare 
type and spatial criteria) can be compared across cities as well as the 
evolution thereof (e.g., during and after the pandemic crisis). For tour-
ists, investigating their crowding contributions can be of added value, 
given their seasonal and uncertain travel patterns (Domènech and 
Gutiérrez, 2017). Supply provision can be challenging, especially in 
touristic cities and regions with a quite constant local passenger flow 
combined with tourist passenger flows, which tend to be irregular 
(Gutiérrez et al., 2020). Therefore, understanding their spatiotemporal 
crowding contributions can result in tailored policy-making to reduce 
tourist overcrowding (e.g., new fare structure, targeted public trans-
portation investments, etc.). Furthermore, passengers with occasional 
patterns, such as the attendees of special events (e.g., concerts, festivals, 
etc.), are good examples of public transportation latent demand that can 
contribute to overcrowding (Papacharalampous et al., 2016). Special 
events can attract a significant number of attendees in very short time 
intervals. Despite their significance, the travel patterns and, therefore, 
the crowding contributions of special events’ attendees have not yet 
been explored substantially. Applying the proposed method in this 
context can assist in relevant policy-making to alleviate overcrowding 
induced by special event attendees. Specifically, measures may include 
from frequency adjustments of specific public transportation lines and 
launching shuttle services to synergies between public and active 
transportation modes (e.g., walking, cycling), and alternate fare prod-
ucts for special events attendees.

In the context of urban planning, planners may apply the metrics to 
assess the crowding impact of additional travelers associated with urban 

Fig. 9. Spatiotemporal aggregation of the time-weighted contribution to load factor (mean) during AM peak (06:00–08:00).
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developments, as demonstrated by Skoufas et al. (2024), who investi-
gated the crowding contributions of one of Northern Europe’s biggest 
ongoing urban developments, revealing critical network links experi-
encing high crowding contributions. Such results could be of value for 
designing attractive and efficient public transportation networks 

connecting to new development areas and assisting in strategic 
decision-making by integrating crowding contributions as an additional 
criterion. At the tactical level, measures such as introducing 
stop-skipping and short-turning service patterns and pricing incentives 
may be introduced, with the aim of alleviating crowding while catering 

Fig. 10. Maximum contribution to load factor by inner city traversing journeys across time of day (mean).

Fig. 11. CDF of the time-weighted contribution to load factor (x-axis on a logarithmic scale, data point: passenger journey).
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to the needs of different passenger groups.
In future work, the proposed method can be generalized to quantify 

the crowding contributions by one group of travelers for any other 
specific group. For example, one could evaluate the crowding contri-
bution of one group of school students to another group of school stu-
dents, thereby enhancing its added value and potential useful insight for 
the competent authorities. Last, regarding the metrics as such, it would 
be interesting to explore the definition of a subjective crowding 
contribution metric so passengers’ perceptions can be investigated. Such 
a metric would capture the varying effect of the non-focused passenger 
loads on the passenger journeys of the selected passenger group, 
therefore complementing the proposed objective crowding contribution 
metrics.
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