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Summary

A geotechnical centrifuge is used to conduct tests on small-scale models to obtain data on the response
of real-life structures. In the field of earthquake engineering, centrifuges can be used to model soil-
structure interaction and to analyse structural response to earthquakes through scaled models. By
rotating the centrifuge at high angular velocities, the model inside the centrifuge can experience the
stresses corresponding to a full-scale prototype. Through simplified scaling laws, the dimensions of
the small-scale model are estimated, and the results from these tests can be extrapolated to study the
behaviour of the prototype.

When the small-scale model of a dynamically sensitive structure, such as an offshore wind turbine, is
subjected to high angular velocities inside a centrifuge, it is essential that the model remains stable
to obtain meaningful results from the test. Instabilities, such as divergence or flutter, may arise in
the small-scale model depending on the system’s parameters due to the action of pseudo-forces and
coupling between the displacement fields, which may lead to the failure of the model. Moreover, it is
unclear whether the simplified scaling laws can still be applied for such slender small-scale models due
to the action of these pseudo-forces and the coupling terms. Therefore, understanding the behaviour
of these dynamically sensitive small-scale models under centrifuge conditions is important to ensure
their stability and to obtain conclusive results about the prototype.

This research represents the small-scale model of a monopile-founded offshore wind turbine inside a
centrifuge as a homogeneous Rayleigh cantilever beam rotating about a vertical axis, with each point
along the beam consisting of three translational displacements. A mathematical model is formulated
using Lagrangian formalism that incorporates all relevant pseudo-forces and coupling of displacement
fields that may affect the stability of the small-scale model. Euler-Lagrange equations are then applied
to formulate the governing equations of motion, and a dimensionless form of the equations is presented
to draw general conclusions. Moreover, the effect of soil-structure interaction is considered using a
lumped spring model.

Subsequently, an eigenvalue analysis is performed using analytical and numerical approaches. The
numerical approach is more robust and is applied to calculate the eigenproperties of the system, al-
though it requires a good initial guess. The technique of representing the response as a summation of
assumed modes is explored in the analytical approach, and a convergence study is conducted. After-
wards, a parametric study is performed to identify the factors influencing stability. The angular velocity
at which the onset of instability happens is also determined. Finally, the findings are applied to a case
study of a small-scale model of an offshore wind turbine tested inside the centrifuge facility at ETH
Zürich as part of the research project, DONISIS, led by TU Delft.

The results of this study demonstrate that, for the small-scale beam model of a monopile-founded
offshore wind turbine tested inside a centrifuge, the dominant instability mode is the divergence of
chordwise lateral bending. This instability arises from the axial compression induced by the centrifugal
forces acting along the beam. The coupling of displacement fields through Coriolis forces does not
affect the onset of instability, although its influence on the eigenproperties becomes apparent only
at angular velocities far exceeding the practical operating range of a centrifuge. Since the Coriolis
terms have no significant impact on system behaviour, their effect on scaling laws can be regarded as
negligible. Consequently, the existing scaling laws remain applicable to small-scale models of rotating
beams within the practically operating range of angular velocities of the centrifuge.
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1
Introduction

1.1. Background and Motivation
When a rigid body of massM moves in a circular path of radius r with a uniform speed, it experiences an
acceleration of Ω2r towards the center of rotation, where Ω is the angular velocity. The corresponding
force required to maintain this uniform circular motion is given by F = MrΩ2. As the angular velocity
increases, the force experienced by the body increases. This is the working principle of a geotechnical
centrifuge, widely used in soil mechanics to simulate stresses at great depths. For instance, stress
experienced by soil due to its self-weight at a depth of 100m below the ground level can be replicated
in a centrifuge of radius 4m by rotating the corresponding small-scale model of depth 1m at an angular
velocity of 16 rad s−1, which produces an enhanced acceleration field of Ω2r = 162 × 4 = 1000m s−2 ≈
100 g [15].

In earthquake engineering, centrifugemodelling is widely used to investigate the effects of soil-structure
interaction (SSI), where increased gravity is applied to small-scale models to simulate the stresses
experienced by full-scale prototypes. Consider an offshore wind turbine (OWT) whose performance
when subjected to an earthquake is to be investigated. Simulating a seismic event on a real-life model
is prohibitively expensive. However, earthquake motion can be replicated within the centrifuge on a
small-scale model, allowing us to study the structural performance of the full-scale prototype during
a seismic event. In this way, centrifuge modelling provides a practical approach to investigate the
behaviour of OWTs by conducting tests on their scaled models.

To calculate the dimensions of a small-scale model, established scaling laws [10] are used, which
primarily consider an inertial frame of reference for the rotating model under centrifugal force, disre-
garding Coriolis and Euler fictitious forces. This assumption is generally accurate for quasi-static SSI
applications when the small-scale model is not moving within the centrifuge but may be questioned
in systems experiencing significant dynamic effects, such as those with slender superstructures. A
notable example is an OWT supported by a monopile.

Consider the small-scale model of an OWT, which is a slender structure and hence dynamically sensi-
tive. Since the model is flexible and can move within the centrifuge, it not only experiences centrifugal
acceleration but also other pseudo-accelerations (Coriolis & Euler accelerations). Simplified scaling
laws only consider centrifugal force and may not be applicable to calculate the dimensions of the small-
scale model of such dynamically sensitive structures and to extrapolate the results [7]. Hence, a math-
ematically rigorous approach needs to be adopted to derive the mathematical model of a dynamically
sensitive structure, which is then used to verify if the simplified scaling laws are also applicable and to
study the performance of the full-scale prototype.

An interesting phenomenon to study is the instability that may arise in the small-scalemodel that is being
tested inside the centrifuge. The small-scale model of a monopile-founded OWT can be imagined as
a rotating cantilever beam, which is a slender structure, with part of it embedded in the soil and the

1



1.2. Aim and Scope 2

rest extending outside. The external forces acting on the beam are the gravitational force due to the
self-weight of the beam and pseudo-forces such as centrifugal, Coriolis, and Euler forces due to the
angular rotation of the centrifuge. Assuming that the centrifuge operates at a constant angular velocity,
the Euler force is considered absent.

Typical instability may arise when there is an external source supplying energy to the system (here,
due to the angular velocity of the centrifuge) and the forces acting on the structure depend on any of
the displacement fields of the structure. When the system is perturbed from its equilibrium position,
different types of instability may emerge. Classical Euler Buckling is a well-known instability where the
effective stiffness of the system turns negative and the system can no longer hold the load. Galloping
form of instability occurs when the energy source can induce negative effective damping in the system,
leading to energy accumulation. (Physical) Flutter type of instability can happen due to the coupling
of displacement fields in their governing equations, even when the effective damping of the system is
positive. Gyroscopic instability can emerge due to translating mass, even though there is no damping
in the system, which results in odd time derivatives in the equations of motion (EOMs). It is essential
for the small-scale model to remain stable during the centrifuge operation to obtain meaningful results
and to understand the behaviour of the prototype.

Previous studies ([4], [8], [9], [13], [16], [17]) have focused on deriving the EOMs for a cantilever beam,
fixed on one end and free on the other, rotating about a vertical axis about its fixed end. Such models
typically represent wind turbine blades, where the angular velocity induces centrifugal forces that cause
tension in the beam. A new dynamic modelling method was also proposed in these studies to derive
the non-linear coupled EOMs, which are then linearized. These studies have examined free vibration
characteristics, the onset of instability, and the effects of coupling terms, centrifugal stiffening, and
centrifugal inertia forces.

1.2. Aim and Scope
The main objective of this research is to investigate the stability of a dynamically sensitive small-scale
model, such as a monopile-founded OWT, when tested inside a geotechnical centrifuge and to identify
the conditions under which the current approach of using simplified scaling laws is valid for such slen-
der structures. This involves deriving the governing EOMs of the small-scale model and incorporating
relevant pseudo forces, coupling terms, and boundary and interface conditions such that the mathemat-
ical model represents the small-scale model of an OWT within the centrifuge. This research focuses
on identifying the angular velocity of the centrifuge at which the small-scale beam model may become
unstable, examining potential instability phenomena such as divergence and flutter, and analysing the
factors influencing such instabilities. Ultimately, these findings are applied to analyse the instability
criteria for the small-scale model of real-life wind turbines using a case study.

This research analyses the small-scale model of a monopile-founded OWT, which is a dynamically sen-
sitive structure, as a linear-elastic, homogeneous Rayleigh beam with a uniform and doubly symmetric
cross-section along the length. The effect of rotational inertia of the cross-section is also considered.
First, the beam is modeled as a cantilever beam with a fixed end and carrying a tip mass on the other
end. Next, the interaction with soil is considered through a lumped spring model instead of a fixed end.
The angular velocity of rotation is considered around only the vertical axis. Since the linear regime of
the structure is considered, only the onset of instability can be analysed. To examine the amplitude
of vibration post-instability, a non-linear analysis needs to be performed, which is beyond the scope of
this research. Note that the damping in the structure is neglected.

1.3. Research Methodology
The primary aim of this research is to derive the mathematical model of a small-scale beam tested
inside a centrifuge using a mathematically rigorous approach and to investigate the potential instability
mechanisms that may arise when the relevant pseudo-forces and coupling terms are considered. The
results can then be used to determine the conditions under which current simplified scaling laws are
applicable. To systematically explore the problem, the following sub-questions are formulated:
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1) Derive the governing EOMs for the axial and bending vibrations of the small-scale model, consid-
ering relevant pseudo forces and coupling of DOFs, for the following cases:

a) Cantilever beam with a tip mass at the free end and clamped at the base, as shown in
Fig.1.1a.

b) Cantilever beam with a tip mass at the free end with SSI modeled via lumped springs at the
base, as shown in Fig.1.1b.

2) Perform an eigenvalue analysis using the derived EOMs to calculate eigenfrequencies and mode
shapes via:

a) Analytical approach - using Assumed Modes Method(AMM), including convergence study
b) Numerical approach

3) Identify possible instability mechanisms, such as divergence and flutter, by analysing the eigen-
properties of the system:

a) Determine how parameters (such as angular velocity and slenderness ratio) influence the
onset of instability.

b) Analyse the contribution of each term in the equations of motion to overall stability.
4) Apply the mathematical model to perform stability analysis of a small-scale model of an OWT

tested inside the centrifuge facility at ETH Zürich, as a part of the research project, DONISIS
project [3], led by TU Delft.

(a) With clamped end

(b) With lumped springs

Figure 1.1: Rotating cantilever beam models.
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1.4. Literature Review
Kane, Ryan & Banerjee [1987] [8] studied the dynamics of a cantilever beam attached to a rigid base
that is undergoing a prescribed translational and rotational motion as shown in Fig. 1.2 and presented
an algorithm to predict the response of the beam. Each point in the beam can undergo three translations
and three rotations, resulting in a total of six DOFs, which include extension, bending in two planes,
torsion, shear, and warping. In addition, the hub to which the beam is attached can undergo three
translational and three rotational motions. Using the separation of variables technique, the DOFs are
expressed as a summation of the product of modal functions and modal coordinates, with the mode
shapes derived from the corresponding non-rotating cantilever beam with its base fixed. Linearization
is performed on the kinematic terms (modal coordinates) to consider small vibrations of all the DOFs.

Figure 1.2: Beam attached to a moving rigid base [8]

The linear dynamical EOMs are generated from the strain energy function and generalized inertia force,
considering the total velocity vector, including the effects of rotation. The modal representations of
DOFs are substituted into the EOMs, and a matrix equation is generated after which the modal coordi-
nates are solved numerically. The gyroscopic effect, centrifugal stiffening, and various other coupling
effects are inherently considered while formulating the kinematic relations for deriving the EOMs. The
authors provide an example of demonstrating how their approach to deriving the EOMs can show a
system to be stable, while the conventional method would predict it as unstable.

H.H.Yoo & S.H.Shin [1998] [17] studied a specific case of Kane, Ryan & Banerjee [1987] [8] and for-
mulated the equations of motion for the in-plane rotation of a straight cantilever beam (fixed on one
end and free on the other end) as illustrated in Fig. 1.3 using a dynamic modelling method (DMM). The
beam undergoes large overall motions due to the rotation as well as small strain elastic deformations.
Three independent DOFs are considered, namely, stretch, flapwise, and chordwise deformations. The
beam is modeled as a homogeneous, isotropic, and uniform Euler-Bernoulli beam. Linear equations
of motion are derived, which suggest that the stretch and chordwise of the EOMs are coupled via a
gyroscopic coupling term, while the flapwise EOM is independent.

Rayleigh-Ritz assumed mode method is used, wherein the DOFs are expressed as a summation of
‘N’ number of mode shapes that satisfy the boundary conditions multiplied by time-dependent modal
coordinates. The EOMs are rewritten in the form of dimensionless parameters. The natural frequen-
cies of the coupled EOMs are calculated by setting the determinant of the coefficient matrix of modal
coordinates after writing the EOMs in state-space form, and the mode shapes are then determined.
Convergence of natural frequencies is verified by increasing the number of considered modes to ten.
The effects of centrifugal inertial force, the stiffening effect, and modal characteristics variation due to
rotation are investigated. The effect of the gyroscopic term was studied as a function of angular velocity,
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and phenomena such as veering, resonance, and divergence instability were also investigated.

Figure 1.3: Configuration of rotating cantilever beam [16]

J.Chung & H.H.Yoo [2001] followed the same procedure as mentioned in the previous paragraph to
derive the EOMs considering the same beam model. From the linearized EOMs, reduced forms are
derived, and FEM is used instead of the Rayleigh-Ritz assumed mode method to calculate the natu-
ral frequencies by setting the external forces to zero. By setting the determinant to zero, the natural
frequencies are calculated. Convergence of natural frequencies is verified by changing the number of
elements. In addition, the natural frequencies are plotted against varying angular velocities to under-
stand the divergence instability criteria and veering phenomenon. The stress distributions are drawn,
and comparisons are made to a simple cantilever beam.

Existing studies mainly focus on deriving the EOMs of a cantilever beam fixed at one end and rotating
about a vertical axis about its fixed end. These studies provide guidance on when to linearize the
EOMs and how to calculate free vibration characteristics using various methods. Phenomena such
as centrifugal stiffening, gyroscopic coupling, and motion-induced stiffness terms that may lead to the
destabilisation of a rotating beam are explored. Furthermore, the predominant effect of angular velocity
on the stability of the beam is well documented.

Although the literature provides insights into analysing stability and the parameters influencing it, the
specific context of a rotating cantilever beam subjected to the conditions of a geotechnical centrifuge
remains underexplored. For this case, a rigorous mathematical approach shall be adopted to consider
all the relevant pseudo forces and coupling terms and then apply a proper method of linearization
such that the stability of the beam can be analysed. Further, while centrifugal force induces tension
when the beam rotates about its fixed end, the conditions within a centrifuge shift the rotation center,
causing compression instead. This shift necessitates adjustments to the EOMs to accurately account
for compression-induced effects.

1.5. Thesis Outline
This report begins in Chapter 1 with an introduction to centrifuge testing and its relevance for slender
structures such as monopile-founded OWTs. The importance of stability of small-scale models inside
the centrifuge and limitations of current experimental techniques and scaling laws for dynamically sen-
sitive structures such as OWTs are highlighted, and a research gap is identified. The objectives, scope,
and research methodology of this thesis are also presented. The chapter also reviews the existing lit-
erature on beams rotating about an axis at their fixed end, highlighting the methods used to derive and
solve the governing equations of motion. Moreover, the types of structural instability and the influence
of gyroscopic and centrifugal stiffening effects on instability are studied.
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Chapter 2 develops the mathematical model of the rotating beam inside a centrifuge using Rayleigh
beam theory and Lagrangian formalism. The kinematics of a rotating beam is introduced first, and the
potential and kinetic energies are then formulated. The governing equations of motion are then derived
using the Euler-Lagrange equations. The effect of SSI is included through a lumped spring model, and
the EOMs are reformulated in dimensionless form.

The stability analysis is presented in Chapter 3, where both flapwise and chordwise motions are inves-
tigated. The concepts of divergence and flutter are explained, and the scope of instability is identified
through a dispersion analysis. A parametric stability analysis is conducted using numerical techniques,
and the influence of various parameters on the onset of instability is examined. Note that the effect of
SSI is not considered in this chapter.

A practical application is given in Chapter 4, which presents a case study of a small-scale offshore wind
turbine tested at the centrifuge facility of ETH Zürich. Analytical and numerical results for flapwise and
chordwise stability are compared, and the influence of SSI is examined.

Finally, Chapter 5 concludes the thesis by summarizing the main findings. Divergence is identified as
the dominant instability, while SSI has only a small effect compared to geometry and tipmass. Moreover,
it is found that the Coriolis terms can be safely ignored for the range of parameters considered within this
research. Recommendations for future research include extending the study to nonlinear behaviour,
improving the small-scale model, and experimental validation.



2
Equations of Motion

Three basic theories are commonly used to describe the transverse vibrations of beams: Euler-Bernoulli,
Rayleigh, and Timoshenko. A detailed review of the existing beam theories is presented in [6]. Among
these, the Euler-Bernoulli beam theory is the most widely adopted due to its mathematical simplicity
and its ability to provide acceptable results for many engineering problems. Nevertheless, it usually
overestimates natural frequencies, especially for higher modes. The Rayleigh beam theory improves
on this by including the effect of rotational inertia, which partially reduces this overestimation. Among
the three, the Timoshenko beam theory is the most accurate, as it also accounts for shear deformation,
making it suitable for non-slender beams.

Since the small-scale model of a monopile-founded OWT considered in this study can be treated as a
slender beam, the Rayleigh beam theory is adopted to derive the EOMs that govern the small vibrations
of the beam. The motivation for this choice is to adopt the simplest beam model that can still capture
the essential physics of stability. The Rayleigh beam model provides sufficient accuracy in predicting
the lower natural frequencies while remaining less complex than the Timoshenko model, making it an
appropriate and efficient choice for the present study.

This chapter presents the derivation of the governing EOMs using Rayleigh beam theory following
Lagrangian formalism. First, the kinematics of a rotating beam are described in Section 2.1 using a
non-inertial frame of reference, which introduces the relevant pseudo forces and coupling of displace-
ment fields. Next, the potential and kinetic energies of the system are derived in sections 2.2 and 2.3,
respectively, which together define the Lagrange function as shown in 2.4. Using this, the governing
EOMs are then obtained by applying the Euler-Lagrange equations in Section 2.5, after which their
dimensionless forms are formulated. Finally, the effect of SSI is included by means of a lumped spring
model, and the corresponding modified boundary conditions are presented.

2.1. Kinematics
The configuration of the rotating beam is illustrated in Fig. 2.1. It is fixed at the base and carries a
tip mass at the other end. The tip mass is idealized as a rigid point mass with mass M and mass
moment of inertia J . The beam is assumed to be homogeneous and linear-elastic with a uniform and
doubly symmetric cross-section along its length. The length of the beam is denoted by L, and its
cross-sectional area by A. The distance from the center of the centrifuge to the tip mass is r, and the
centrifuge rotates with a constant angular velocity Ω about the Z axis as shown in the Figure 2.1.

To describe the motion of any point in the beam, two frames of reference can be used. The first is
an inertial frame of reference, RF (X,Y, Z), fixed in space with its origin O′ located at the center of
the centrifuge. The second is a rotating local frame of reference, RL(x, y, z), which rotates along with
the beam and has its origin O at the fixed end. In the Fig. 2.1, plan views of the RF & RL frames of
reference are shown. According to the right-hand thumb rule, the Z-axis of the RF is directed out of
the page, and the same rule also applies to RL.

7
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Figure 2.1: Schematic of a rotating cantilever beam tested inside a centrifuge

(a) Elevation view

(b) Plan view

Figure 2.2: Rotating cantilever beam models showing rotation of cross-section.

The governing equations are derived in the rotating local frame of reference, RL. Any arbitrary point P
within the beam consists of three translational displacements, ux, uy, and uz, which along the local x,
y, and z axes, respectively. These are expressed as

ux(x, y, z, t) = u(x, t) + z θ(x, t)− y ψ(x, t)

= u(x, t)− z
∂w(x, t)

∂x
− y

∂v(x, t)

∂x
uy(x, y, z, t) = v(x, t)

uz(x, y, z, t) = w(x, t)

Here, u(x, t), v(x, t), and w(x, t) represent the displacements of a point on the centroidal axis of the
undeformed beam, located at a distance x from the fixed end. These displacements are along the local
x, y, and z axes, respectively. The terms θ(x, t) and ψ(x, t) denote the slope of the centroidal axis of
the beam in yz and xy planes, respectively, as shown in Fig. 2.2. According to the Rayleigh beam
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theory, the slopes are related to the corresponding transverse displacements as

ψ(x, t) =
∂v(x, t)

∂x
and θ(x, t) = −∂w(x, t)

∂x

2.2. Potential Energy
For small strains, the general nonlinear expression of the axial strain is given by the Green–Lagrange
formulation as

εxx = ux,x +
1

2
(u2x,x + u2y,x + u2z,x)

where the subscript notation denotes partial differentiation. For example,

uy,x =
∂uy
∂x

Hence, the total strain energy is given by

1

2
E

∫
V

ε2xxdV

where E is the Young’s modulus of the material of the beam and V is the volume of the beam. This
expression accounts for both axial and bending deformations of the beam. By substituting the Green-
Lagrange formulation into the above equation and integrating over the cross-sectional area, the total
strain energy due to axial and bending deformations is obtained. The following standard integral rela-
tions for the cross-sectional area are utilized,∫

dA = A,

∫
y dA = 0,

∫
z dA = 0,

∫
y2 dA = Iz,

∫
z2 dA = Iy,

∫
y z dA = Iyz = 0

Here, Iy and Iz represent the second moments of inertia of the section about the local y and z axes,
respectively. Since the cross-section of the beam is assumed to be symmetric, Iyz is zero.

The resulting strain energy is∫ L

0

(
1

2
EA(u,x)

2 +
1

2
EIz(v,xx)

2 +
1

2
EIy(w,xx)

2

)
dx (2.1)

Note that the higher-order terms are neglected in the strain energy formulation. It is essential that
linearization is applied at a stage where the resulting governing equations still retain the terms respon-
sible for instability. Performing the linearization at this stage yields the same governing equations as
when it is carried out at the final stage after deriving full nonlinear set of EOMs. The complete nonlin-
ear potential energy expression and the corresponding nonlinear equations of motion are provided in
Appendix D.

The first term in Eq. (2.1) corresponds to the strain energy due to axial deformation, while the second
and third terms represent the strain energy associated with bending deformations along lateral and
vertical directions.

Let T (x) be the axial compression force in the beam acting along the centroid of the cross section. T (x)
is assumed to be positive and needs to be solved from the static equilibrium of the axial motion. The
potential energy due to T (x) is given by:∫ L

0

(
−1

2
T (x)(v,x)

2 − 1

2
T (x)(w,x)

2

)
dx

Combining the strain energy and the contribution from axial forces, the total potential energy of the
system can be expressed as

P =

∫ L

0

(
1

2
EA(u,x)

2 +
1

2
EIz(v,xx)

2dx+
1

2
EIy(w,xx)

2 − 1

2
T (x)(v,x)

2 − 1

2
T (x)(w,x)

2

)
dx (2.2)



2.3. Kinetic Energy 10

2.3. Kinetic Energy
Consider an arbitrary point, P , inside the beam as shown in Fig. 2.1. Before deformation, the position
vector of P within the frame of reference, RL, is given by

−−→
OP 0 = {x, y, z}T . After deformation, the

position vector within RL becomes
−−→
OP = {x+ ux, y + uy, z + uz}T . So, the displacement vector of P

may be expressed as

u =
−−→
OP −

−−→
OP 0 =

uxuy
uz


where, ux, uy, and uz are the displacements of point P along the local x, y, and z axes, respectively.
Differentiating this displacement vector with respect to time gives the local velocity of P in RL,

u̇ =

u̇xu̇y
u̇z

 =

u̇+ zθ̇ − yψ̇
v̇
ẇ


where an overdot denotes differentiation with respect to time, i.e.,

u̇x =
∂ux
∂t

Since the beam rotates with angular velocity Ω about the Z axis of the inertial frame of reference, RF ,
the position of P after deformation in RF can be written as

−−→
O′P =

(r + L− x− ux) cos(Ωt) + (y + uy) sin(Ωt)
(r + L− x− ux) cos(Ωt)− (y + uy) sin(Ωt)

z + uz


where Ωt is the angle made by the undeformed beam with respect to the X axis of RF .

The linear velocity of point P within the RF due to the angular velocity is obtained by the cross product
of the angular velocity vector and the position vector of P ,v

Ω
X

vΩY
vΩZ

 =

0
0
Ω

×

(r + L− x− ux) cosΩt+ (y + uy) sinΩt
(r + L− x− ux) sinΩt− (y + uy) cosΩt

z + uz


=

−Ω [(r + L− x− ux) sinΩt− (y + uy) cosΩt]
Ω [(r + L− x− ux) cosΩt+ (y + uy) sinΩt]

0


This velocity vector is along theX,Y , and Z axes of RF . Therefore, the linear velocities along the local
x, y, z axes within the RL are obtained by resolving this velocity vector

vΩ =


vΩx
vΩy
vΩz

 =

−
[
vΩX cosΩt+ vΩY sinΩt

][
vΩX sinΩt− vΩY cosΩt

]
vΩZ

 =

 −Ω(y + uy)
−Ω(r + L− x− ux)

0


The total velocity vector, vP , of point P in the rotating frame of reference, RL, is therefore the sum of
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the local velocity, u̇, and the contribution due to angular velocity, vΩ,

vP =

u̇+ zθ̇ − yψ̇
v̇
ẇ

+

 −Ω(y + uy)
−Ω(r + L− x− ux)

0


=

 u̇+ zθ̇ − yψ̇ − Ω(y + v)
v̇ − Ω(r + L− x− u− zθ + yψ)

ẇ



=



∂u(x, t)

∂t
− z

∂2w(x, t)

∂x∂t
− y

∂2v(x, t)

∂x∂t
− Ω(y + v(x, t))

∂v(x, t)

∂t
− Ω

[
r + L− x− u(x, t) + z

∂w(x, t)

∂x
+ y ∂v(x,t)

∂x

]
∂w(x, t)

∂t


=

 u,t − zw,xt − yv,xt − Ω(y + v)
v,t − Ω [r + L− x− u+ zw,x + yv,x]

w,t


Therefore, Kinetic energy of the system is given by

K =
1

2
ρ

∫
V

vP · vP dV

=
1

2

∫
V

ρ (u,t − zw,xt − yv,xt − Ω(y + v))
2
dV+

1

2

∫
V

ρ (v,t − Ω(r + L− x− u+ zw,x + yv,x))
2
dV +

1

2

∫
V

ρ (w,t)
2
dV

where ρ is the mass density of the material.

Expanding the kinetic energy and utilizing the following standard integral relations for the cross-sectional
area presented before, the expression for the total kinetic energy is obtained.

K =

∫ L

0

[
1

2
ρA(u,t)

2 +
1

2
ρIy(w,xt)

2 +
1

2
ρIz(v,xt)

2 + ρIyzw,xtv,xt

+
1

2
ρAΩ2v2 − ρAΩvu,t + ρIyzΩw,xt + ρIzΩv,xt

+
1

2
ρA(v,t)

2 +
1

2
ρAΩ2u2 +

1

2
ρIyΩ

2(w,x)
2 +

1

2
ρIzΩ

2(v,x)
2 + ρIyzΩ

2(w,x)(v,x)

−ρAΩ(r + L− x)v,t + ρAΩuv,t − ρAΩ2(r + L− x)u+
1

2
ρA(w,t)

2

]
dx

(2.3)

2.4. Lagrange Function
The Lagrange function, L, of a system is defined as the difference between the kinetic energy, K, and
potential energy, P , of the system, at any given instant of time. For a continuous system such as a
beam, it is convenient to work with the linear density of the Lagrange function, denoted by λ, which
represents the Lagrangian per unit length of the beam. Mathematically, this is expressed as

L = K − P =

∫ L

0

λ dx
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By substituting the expressions for kinetic energy and potential energy derived in Sections 2.2 and 2.3,
the linear density of the Lagrange function of the beam is obtained as

λ =
1

2
ρA(u,t)

2 +
1

2
ρIy(w,xt)

2 +
1

2
ρIz(v,xt)

2 + ρIyzw,xtv,xt

+
1

2
ρAΩ2v2 − ρAΩvu,t + ρIyzΩw,xt + ρIzΩv,xt

+
1

2
ρA(v,t)

2 +
1

2
ρAΩ2u2 +

1

2
ρIyΩ

2(w,x)
2 +

1

2
ρIzΩ

2(v,x)
2 + ρIyzΩ

2(w,x)(v,x)

− ρAΩ(r + L− x)v,t + ρAΩuv,t − ρAΩ2(r + L− x)u+
1

2
ρA(w,t)

2

− 1

2
EA(u,x)

2 − 1

2
EIz(v,xx)

2 − 1

2
EIy(w,xx)

2 +
1

2
T (x)(v,x)

2 +
1

2
T (x)(w,x)

2

(2.4)

Here, the subscript notation denotes partial derivatives. For example,

u,x =
∂u

∂x
, v,t =

∂v

∂t
, w,xt =

∂2w

∂x∂t

In addition to the beam, the system includes an end attachment in the form of a concentrated tip massM
with mass moment of inertia J . This tip mass influences the dynamics of the beam and must therefore
be included in the Lagrangian formulation. The tip mass is located at the free end of the beam, whose
position vector in the local rotating frame RL is given by {L, 0, 0}T . After deformation, its velocity vector
in RL, including the effect of angular velocity, is expressed as u,t − Ωv

v,t − Ω(r − u)
w,t


Accordingly, the Lagrangian contribution of the end attachment, denoted by Lb, can be written as

Lb =
1

2
M [u,t − Ωv]

2
+

1

2
M [v,t − Ω(r − u)]

2
+

1

2
M(w,t)

2 +
1

2
J(v,xt)

2 +
1

2
J(w,xt)

2 (2.5)

The first three terms in the above expression represent the translational kinetic energy of the tip mass
along the x, y, and z directions, respectively, while the last two terms account for the rotational kinetic
energy of the attachment about the transverse axes, y, and z, respectively.

2.5. Euler-Lagrange Equations
The governing equations of motion and associated boundary conditions are obtained by applying the
Euler–Lagrange equations to the Lagrangian density λ derived in Section 2.4. The general form of
the Euler–Lagrange equations for a field variable w(x, t), as derived in appendix A, is recalled here for
completeness:

Equation of Motion:

∂λ

∂w
− ∂

∂t

(
∂λ

∂w,t

)
− ∂

∂x

(
∂λ

∂w,x

)
+

∂2

∂x2

(
∂λ

∂w,xx

)
+

∂2

∂x∂t

(
∂λ

∂w,xt

)
= 0

Natural Boundary Conditions (NBCs):
At x = 0 (left end):

− ∂λ

∂w,x
+

∂

∂x

(
∂λ

∂w,xx

)
+
∂

∂t

(
∂λ

∂w,xt

)
+

∂Law

∂w(a, t)
− ∂

∂t

(
∂Law

∂w,t(a, t)

)
= 0

− ∂λ

∂w,xx
+

∂Laφ

∂w,x(a, t)
− ∂

∂t

(
∂Laφ

∂w,xt(a, t)

)
= 0
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At x = L (right end):

∂λ

∂w,x
− ∂

∂x

(
∂λ

∂w,xx

)
− ∂

∂t

(
∂λ

∂w,xt

)
+

∂Lbw

∂w(b, t)
− ∂

∂t

(
∂Lbw

∂w,t(b, t)

)
= 0

∂λ

∂w,xx
+

∂Lbφ

∂w,x(b, t)
− ∂

∂t

(
∂Lbφ

∂w,xt(b, t)

)
= 0

Since each point in the beam can undergo three displacements, u, v, and w, the Euler–Lagrange
equations must be applied once for each displacement field. By doing so, the following governing
EOMs are obtained for the configuration shown in Fig. 2.1:

ρA
∂2u

∂t2
− 2ρAΩ

∂v

∂t
− EA

∂2u

∂x2
− ρAΩ2u = −ρAΩ2(r + L− x) (2.6a)

ρA
∂2v

∂t2
+ 2ρAΩ

∂u

∂t
+ EIz

∂4v

∂x4
+ ρIzΩ

2 ∂
2v

∂x2
+

∂

∂x

[
T (x)

∂v

∂x

]
− ρIz

∂4v

∂x2∂t2
− ρAΩ2v = 0 (2.6b)

ρA
∂2w

∂t2
+ EIy

∂4w

∂x4
+ ρIyΩ

2 ∂
2w

∂x2
+

∂

∂x

[
T (x)

∂w

∂x

]
− ρIy

∂4w

∂x2∂t2
= 0 (2.6c)

where T (x) denotes the axial compression force in the beam, which needs to be solved from the static
equilibrium of axial motion.

The above equations represent the balance of forces acting on any differential element along the beam
along x, y, z directions. Note that Eq. (2.6a) and Eq. (2.6b) represent axial and lateral bending motions
respectively and are coupled through the velocity-dependent Coriolis terms, (−2ρAΩ∂v

∂t and 2ρAΩ∂u
∂t ).

Together, these two equations describe the chordwise motion of the beam. Eq. (2.6c), on the other
hand, is decoupled and describes the vertical bending motion of the beam, and is termed as flapwise
motion. The EOM along the axial direction, Eq. (2.6a), includes both static and dynamic components
of the axial displacement, whereas the EOMs along the transverse directions include only the dynamic
part.

The corresponding boundary conditions can be classified into those at the fixed end (x = 0) and those
at the free end with the tip mass (x = L). At the fixed end (x = 0), the displacements and the slopes
are set to zero:

u(x, t)
∣∣
x=0

= 0, v(x, t)
∣∣
x=0

= 0,
∂v(x, t)

∂x

∣∣∣∣∣
x=0

= 0, w(x, t)
∣∣
x=0

= 0,
∂w(x, t)

∂x

∣∣∣∣∣
x=0

= 0 (2.7)

At the free end with tip mass (x = L), the boundary conditions should account for the inertia of the tip
mass M and its rotational inertia J . These conditions are obtained by applying the natural boundary
conditions of Euler-Lagrange equations:

M
∂2u

∂t2
− 2MΩ

∂v

∂t
+ EA

∂u

∂x
−MΩ2u = −MΩ2r (2.8a)

M
∂2v

∂t2
+ 2MΩ

∂u

∂t
− EIz

∂3v

∂x3
−MΩ2v − T (L)

∂v

∂x
− ρIzΩ

2 ∂v

∂x
+ ρIz

∂3v

∂x∂t2
= 0 (2.8b)

− EIz
∂2v

∂x2
− J

∂3v

∂x∂t2
= 0 (2.8c)

M
∂2w

∂t2
− EIy

∂3w

∂x3
− T (L)

∂w

∂x
− ρIyΩ

2 ∂w

∂x
+ ρIy

∂3w

∂x∂t2
= 0 (2.8d)

− EIy
∂2w

∂x2
− J

∂3w

∂x∂t2
= 0 (2.8e)
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Note that, similar to the governing equations (2.6a) and (2.6b), the axial boundary condition, (2.8a)
and the lateral shear boundary condition, (2.8b) are coupled through the Coriolis terms, (−2MΩ∂v

∂t and
2MΩ∂u

∂t ), which represent the Coriolis forces acting on the tip mass.

The next step is to derive an expression for the axial compression force, T (x), along the beam by solving
the static equilibrium of the axial EOM. For this, the total axial displacement is decomposed into two
parts, a static component, u0(x), and a dynamic component, ud(x, t). The static part accounts for the
mean displacement caused by centrifugal forces acting along the axial direction, while the dynamic part
accounts for the time-dependent displacements due to vibration. This decomposition can be written as

u(x, t) = u0(x) + ud(x, t), (2.9)

By substituting u(x, t) = u0(x) into Eq. (2.6a), the time-dependent terms drop out, and the equations
describing the static equilibrium of the axial forces are obtained. Note that the partial derivative is now
replaced by an ordinary derivative as the equations depend only on the spatial variable x.

−EAd
2u0
dx2

= −ρAΩ2(r + L− x− u0)

By substituting u(x, t) = u0(x) into Eq. 2.7 and Eq. 2.8a, the associated boundary conditions for the
static equilibrium for the axial direction are obtained.

u0(0) = 0 and EA
du0
dx

∣∣∣∣∣
x=L

= −MΩ2
(
r − u0(L)

)
.

At the free end, the displacement u0(L) is typically much smaller than the centrifuge radius r. By
neglecting u0 in comparison to r, the governing equation simplifies to

−EAd
2u0
dx2

= −ρAΩ2(r + L− x) (2.10)

with boundary conditions,

u0(0) = 0 and EA
du0
dx

∣∣∣∣∣
x=L

= −MΩ2r. (2.11)

Solving the above system of equations, (2.10) and (2.11), gives the following expression for axial com-
pression force:

T (x) =MrΩ2 + ρAΩ2

[
(r + L)(L− x)−

(
L2 − x2

2

)]
(2.12)

This expression shows that the axial compression has two main contributions: a constant term,MrΩ2,
due to the centrifugal force acting on the tip mass, and a quadratic term, due to the centrifugal force
acting on the distributed mass of the beam. Note that T (x) is assumed to be constant over time,
neglecting any fluctuations due to dynamic oscillations of the beam along the axial direction.

Substituting (2.9) into Eq. (2.6a) and Eq. (2.8a) gives the governing equations for axial motion:

ρA
∂2ud
∂t2

− 2ρAΩ
∂v

∂t
− EA

∂2ud
∂x2

− ρAΩ2ud = 0 (2.13)

with the following boundary conditions

At x = 0: ud = 0 (2.14a)

At x = L: M
∂2ud
∂t2

− 2MΩ
∂v

∂t
+ EA

∂ud
∂x

−MΩ2ud = 0 (2.14b)

Note that the subscript d will be omitted for brevity for future representations. Eq. (2.13) describes the
small vibrations of any differential element within the beam along the axial direction about its static
equilibrium.
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2.6. Soil-Structure Interaction
The properties of the soil supporting an OWT play a key role in its performance. Over their lifetime,
OWTs are exposed to repeated cyclic and dynamic loads, such as wind and wave actions. These loads
are transferred to the soil and can gradually change the soil properties around the OWT. As a result,
the stiffness of the foundation may vary, which directly influences the natural frequencies of the OWT.
The current design process normally ensures that the natural frequencies of the OWT lie outside the
excitation frequency range of external loads.

To understand the influence of SSI, the OWT and its supporting soil are represented by a small-scale
model tested in a centrifuge. It is therefore important to investigate how variations in soil stiffness
affect the stability of the small-scale model and to determine whether these changes in stiffness have
a significant impact on the model’s stability.

Several models exist in the literature to mathematically account for the effect of SSI. In this study, the
so-called lumped spring model [14] is adopted, which is based on the monopile head stiffness at the
mudline level where the foundation is modeled using four point springs as shown in Fig. 1.1b. For
simplicity, the stiffness of the soil is assumed to be axisymmetric. This assumption implies that the
two cross-coupling springs are assigned the same stiffness, and the two lateral springs in orthogonal
directions also have the same value. Similarly, the rotational springs are considered identical in both
planes. This simplification reduces the number of independent soil parameters. The expressions used
for calculating the spring stiffness values are provided in Appendix B.

The boundary conditions at the base are modified from the fixed-end conditions discussed in the previ-
ous section, following the analytical framework of [2]. They are expressed as:

EA
∂u

∂x
−Kvu = 0 (2.15a)

− EIz
∂3v

∂x3
− T (0)

∂v

∂x
− ρIzΩ

2 ∂v

∂x
+ ρIz

∂3v

∂x∂t2
−KLv −KLR

∂v

∂x
= 0 (2.15b)

− EIz
∂2v

∂x2
+KR

∂v

∂x
+KLRv = 0 (2.15c)

− EIy
∂3w

∂x3
− T (0)

∂w

∂x
− ρIyΩ

2 ∂w

∂x
+ ρIy

∂3w

∂x∂t2
−KLw −KLR

∂w

∂x
= 0 (2.15d)

− EIy
∂2w

∂x2
+KR

∂w

∂x
+KLRw = 0 (2.15e)

Here,Kv denotes the axial spring stiffness,KL the transverse spring stiffness,KR the rotational spring
stiffness, and KLR the coupling stiffness between lateral displacement and rotation.

2.7. Dimensionless Equations of Motion
In order to simplify the governing equations and reduce the number of independent parameters, the
system of equations derived earlier is reformulated in a dimensionless form. This reformulation not
only makes the equations more compact but also allows general conclusions to be drawn from the
numerical results, independent of the specific geometry or material properties of a particular system.

To achieve this, the following dimensionless spatial coordinate, time, and displacement variables are
introduced:

ζ =
x

h
, τ = tω0, ũ =

u

h
, ṽ =

v

h
, w̃ =

w

h
, r̃ =

r

h
, L̃ =

L

h
(2.16)

In addition, the following parameters are introduced to represent dimensionless angular velocity, slen-
derness ratio, dimensionless tip mass, and dimensionless mass moment of inertia of the tip mass

γ =
Ω

ω0
, λ2 =

Ah2

I
, M̃ =

M

ρAh
, J̃ =

J

ρAh3
(2.17)
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Note that for doubly symmetric cross-sections, Iy = Iz = I is used. Finally, the stiffnesses of the soil
springs are expressed in a dimensionless form, which enables direct comparison across different soil
conditions:

ηL =
KLh

3

EI
, ηR =

KRh

EI
, ηLR =

KLRh
2

EI
, ηV =

KV h

EA
(2.18)

where EI is the flexural rigidity of the beam.

The values of h and ω0 appearing in the above equations can be chosen arbitrarily, and the following
definitions are adopted to obtain simplified dimensionless EOMs:

h = L and ω2
0 =

E

ρh2

Substituting the above relations into the governing equations and performing basic rearrangements,
the governing EOMs in their dimensionless form are obtained:

∂2ũ

∂τ2
− 2γ

∂ṽ

∂τ
− ∂2ũ

∂ζ2
− γ2ũ = 0 (2.19a)

∂2ṽ

∂τ2
+ 2γ

∂ũ

∂τ
+

1

λ2
∂4ṽ

∂ζ4
+
γ2

λ2
∂2ṽ

∂ζ2
+

∂

∂ζ

[
T (ζ)

∂ṽ

∂ζ

]
− 1

λ2
∂4ṽ

∂ζ2∂τ2
− γ2ṽ = 0 (2.19b)

∂2w̃

∂τ2
+

1

λ2
∂4w̃

∂ζ4
+
γ2

λ2
∂2w̃

∂ζ2
+

∂

∂ζ

[
T (ζ)

∂w̃

∂ζ

]
− 1

λ2
∂4w̃

∂ζ2∂τ2
= 0 (2.19c)

where the dimensionless axial compression force expressed as

T (ζ) = M̃ r̃γ2 + γ2

[
(r̃ + L̃)(L̃− ζ̃)−

(
L̃2 − ζ̃2

2

)]
(2.20)

The boundary conditions at the fixed end (ζ = 0) in their dimensionless form are:

ũ(ζ, τ)
∣∣
ζ=0

= 0, ṽ(ζ, τ)
∣∣
ζ=0

= 0,
∂ṽ(ζ, τ)

∂ζ

∣∣∣∣∣
ζ=0

= 0, w̃(ζ, τ)
∣∣
ζ=0

= 0,
∂w̃(ζ, τ)

∂ζ

∣∣∣∣∣
ζ=0

= 0 (2.21)

At the other end with the tip mass (ζ = L̃), the boundary conditions become

M̃
∂2ũ

∂τ2
− 2M̃γ

∂ṽ

∂τ
+
∂ũ

∂ζ
− M̃γ2ũ = 0 (2.22a)

M̃
∂2ṽ

∂τ2
+ 2M̃γ

∂ũ

∂τ
− 1

λ2
∂3ṽ

∂ζ3
− T (L̃)

∂ṽ

∂ζ
− γ2

λ2
∂ṽ

∂ζ
+

1

λ2
∂3ṽ

∂ζ∂τ2
− M̃γ2ṽ = 0 (2.22b)

− ∂2ṽ

∂ζ2
+ J̃λ2

∂3ṽ

∂ζ∂τ2
= 0 (2.22c)

M̃
∂2w̃

∂τ2
− 1

λ2
∂3w̃

∂ζ3
− T (L̃)

∂w̃

∂ζ
− γ2

λ2
∂w̃

∂ζ
+

1

λ2
∂3w̃

∂ζ∂τ2
= 0 (2.22d)

∂2w̃

∂ζ2
+ J̃λ2

∂3w̃

∂ζ∂τ2
= 0 (2.22e)

Finally, when soil–structure interaction (SSI) is included, the fixed-end boundary conditions at ζ = 0 are
modified to incorporate the effect of discrete soil springs and their dimensionless forms are presented
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below:

∂ũ

∂ζ
− K̃V ũ = 0 (2.23a)

− 1

λ2
∂3ṽ

∂ζ3
− T (0)

∂ṽ

∂ζ
− γ2

λ2
∂ṽ

∂ζ
+

1

λ2
∂3ṽ

∂ζ∂τ2
− K̃Lṽ − K̃LR

∂ṽ

∂ζ
= 0 (2.23b)

− ∂2ṽ

∂ζ2
+ K̃R

∂ṽ

∂ζ
+ K̃LRṽ = 0 (2.23c)

− 1

λ2
∂3w̃

∂ζ3
− T (0)

∂w̃

∂ζ
− γ2

λ2
∂w̃

∂ζ
+

1

λ2
∂3w̃

∂ζ∂τ2
− K̃Lw̃ − K̃LR

∂w̃

∂ζ
= 0 (2.23d)

− ∂2w̃

∂ζ2
+ K̃R

∂w̃

∂ζ
+ K̃LRw̃ = 0 (2.23e)



3
Stability Analysis

The stability of structures is of significant importance, especially in civil and offshore engineering. In-
stability can develop suddenly and grow rapidly, often leading to failure of the structure. Classical
examples of instability include the buckling of building columns and railway track lines, galloping and
flutter of power lines and bridges, and the instability of conveyor belts and pipes conveying fluid.

In the previous chapter, a mathematical model of a rotating cantilever beam inside a geotechnical
centrifuge was developed using a non-inertial frame of reference, which introduced pseudo-forces, such
as centrifugal and Coriolis forces in the system. The centrifugal forces introduced axial compression in
the beam. Moreover, the EOMs of axial and lateral bending motions were coupled through the Coriolis
force terms. These two forces might trigger instability, which needs to be determined through a stability
analysis. Note that Euler forces were not considered following the assumption that the angular velocity
of the centrifuge was assumed to be constant.

Using the mathematical model developed in the previous chapter, the stability of the small-scale model
is analysed in this chapter, providing insights into the applicability and limitations of the current cen-
trifuge experimental techniques on slender small-scale models. Both flapwise and chordwise motions
are studied using the dimensionless EOMs. A dispersion analysis is first performed to understand the
possibility of instability mechanisms, after which the role of boundary conditions is incorporated. Finally,
a parametric study is conducted to assess the sensitivity of instability to key system parameters. Note
that the effect of SSI is not considered in this chapter and is examined in Chapter 4 using a case study.

3.1. Concept of Stability
A characteristic feature of instability is that the deformation occurs in a direction different from that of
the applied load. Consider a structure subjected to external forces that is in equilibrium. For whatever
reason, if the structure is perturbed from this equilibrium position, these forces begin to act and either
restore the system back to its original equilibrium or drive it further away. The equilibrium is said to be
stable if, after this perturbation, the structure returns to its original equilibrium. But if the system moves
away from equilibrium, the system is said to be unstable.

For instability to develop, the system must have an external source supplying energy into the system.
In the case of galloping of power lines, the wind force acts as the source of energy, whereas in the case
of classical buckling of building columns, the weight of the floor does the work needed to destabilise
the column.

3.2. Types of Instabilities
Instability in structures can broadly be classified into two categories: static and dynamic. Static insta-
bility, also referred to as divergence, occurs at zero frequency and can therefore be examined using

18
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static considerations. In such cases, upon perturbation, the structure suddenly shifts to a new equilib-
rium configuration once the critical load is exceeded without oscillating. Euler buckling of columns is a
classical example of static instability.

Dynamic instability, also referred to as flutter, on the other hand, occurs at non-zero frequencies. In
this case, the response amplitude grows gradually over successive oscillation cycles, thereby requiring
a dynamic analysis. The term flutter is often used to describe this phenomenon in a mathematical
sense, where the system oscillates while simultaneously becoming unstable. A well-known example
is the galloping of iced power lines under wind. Another form of dynamic instability is physical flutter,
which arises from the coupling of different displacement fields. Here, instability originates from the
phase relationship between the coupled motions, where one displacement field feeds energy into and
amplifies the response of the other. The failure of the Tacoma Narrows Bridge is a classical example
of physical flutter-type instability

3.3. Mathematics of Stability Analysis
The governing EOMs of the three displacement fields, u, v, and w, derived in the Chapter 2 form a
linear, homogeneous system of equations, mathematically describing a free vibration problem. There-
fore, the stability of such a linear dynamical system can be fully determined by analysing its eigen-
values. Using the governing EOMs, an eigenvalue problem is generated by substituting a harmonic
time-dependent function, eiωt, into the governing equations, where ω represents the eigenvalues of the
system and i =

√
−1 is the imaginary unit. For a conservative system, the eigenvalues are real. For

non-conservative systems, for example, in systems with damping, the eigenvalues are complex, which
can be represented as

ω = ℜ{ω}+ iℑ{ω}

where ℜ{ω} is the real part and ℑ{ω} is the imaginary part of ω.

The time-dependent function can then be expressed as

ei.ℜ{ω}.t.e−ℑ{ω}.t

The first part, ei.ℜ{ω}.t, represents stable harmonic oscillations with time, whereas the second part,
e−ℑ{ω}.t, represents either exponential growth or decay depending on the sign of ℑ{ω}.

If the eigenvalues have a negative imaginary part, the amplitude of the corresponding mode grows with
time, and the system becomes unstable, which can happen when there is an energy source pumping
energy into the system. Two primary cases can be distinguished when the imaginary part of the eigen-
value is negative: divergence, which occurs when the real part of the eigenvalue is zero, and flutter,
which occurs when the real part is non-zero.

Divergence : ℜ{ω} = 0 and ℑ{ω} < 0

Flutter : ℜ{ω} ̸= 0 and ℑ{ω} < 0

With this framework in place, the concept of stability is now applied to the case of a rotating cantilever
beam inside a geotechnical centrifuge.

3.4. Stability Analysis of Flapwise Motion
The governing EOMs that describe the flapwise motion of a rotating cantilever beam inside a centrifuge
are derived in the previous chapter. The flapwise motion describes the vertical bending vibrations of
the beam and is decoupled from the other displacement fields (u and v). Therefore, its dynamics can
be studied independently. The dimensionless form of the governing equations is repeated below for
the reader’s convenience.
Governing differential equation:

∂2w̃

∂τ2
+

1

λ2
∂4w̃

∂ζ4
+
γ2

λ2
∂2w̃

∂ζ2
+

∂

∂ζ

[
T (ζ)

∂w̃

∂ζ

]
− 1

λ2
∂4w̃

∂ζ2∂τ2
= 0 (3.1)



3.4. Stability Analysis of Flapwise Motion 20

Boundary conditions, at ζ = 0

w̃(ζ, τ)
∣∣
ζ=0

= 0 and ∂w̃(ζ, τ)

∂ζ

∣∣∣∣∣
ζ=0

= 0

Boundary conditions, at ζ = L̃

M̃
∂2w̃

∂τ2
− 1

λ2
∂3w̃

∂ζ3
− T (L̃)

∂w̃

∂ζ
− γ2

λ2
∂w̃

∂ζ
+

1

λ2
∂3w̃

∂ζ∂τ2
= 0

∂2w̃

∂ζ2
+ J̃λ2

∂3w̃

∂ζ∂τ2
= 0

where

T (ζ) = M̃ r̃γ2 + γ2

[
(r̃ + L̃)(L̃− ζ̃)−

(
L̃2 − ζ̃2

2

)]
The governing differential equation is a balance of forces acting on a differential element of the beam
along the z direction. The first term corresponds to the product of mass and acceleration of the element.
The second term represents the restoring force due to the flexural rigidity of the beam and therefore
contributes a stabilising effect. The third term introduces a destabilising effect resulting from axial
compression induced by centrifugal forces, while the fourth term accounts for an additional destabilising
contribution arising from the spatial variation of the centrifugal force within the cross-section of the beam.
Together, the third and fourth terms have softening effects on the system. The fifth term accounts for
the rotational inertia of the element. It should be noted that structural damping is not included in this
formulation.

The above EOMs constitute a linear system of equations, and as discussed earlier, for linear systems,
stability is fully determined by analysing the eigenvalues.

3.4.1. Scope of Instability
From the governing EOM, Eq. (3.1), it is evident that no damping term is present, which rules out
the possibility of galloping-type instability, which happens when the effective damping of the system
turns negative. Physical flutter type of instability happens when the displacement fields are coupled.
However, since flapwise motion is decoupled from other displacement fields, physical flutter cannot
occur. Instability in this case arises from the reduction of effective stiffness due to the axial compression
force, which may reduce the stiffness to zero and lead to divergence instability. Consequently, the
stability of flapwise bending can be examined using static considerations, similar to classical Euler
buckling.

The stability of flapwise bending is investigated through a stepwise approach, beginning with the sim-
plest formulation. The analysis is then gradually extended by including complex terms, and finally, the
exact stability behaviour is obtained using numerical techniques.

3.4.2. Dispersion Analysis
Dispersion analysis is used as a first step to determine whether instability is possible in a system.
Physically, it represents the case of a very long beam, where boundary conditions can be neglected.
The dispersion equation is obtained by substituting a propagating wave w(x, t) = W0e

i(ωt−kx) into the
EOM, and it represents a relation between the wavenumbers and angular frequencies of the waves
that can exist as per the chosen model. Here, T (ζ) = M̃ r̃γ2 is considered to be constant to obtain
analytical solutions. This means the centrifugal force acting on the distributed mass of the beam is
neglected as compared to the tip mass. ω is the frequency, k is the wavenumber, and W0 represents
the maximum amplitude of the wave. Substituting the propagating waveform into the EOM gives the
dispersion equation.

k4 +
(
−M̃γ2λ2r̃ − γ2 − ω2

)
k2 − ω2λ2 = 0 (3.2)

Eq. (3.2) can be solved analytically for ω, giving the frequency as a function of the wavenumber. The
resulting relations are known as dispersion curves and are plotted in Fig. 3.1 for r̃ = 3.40625 and
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λ = 41.2 and for different values of M̃ and γ. Since the dispersion equation is quadratic in ω, two roots
are obtained, meaning that each wavenumber corresponds to two frequencies.

The dispersion curves show that, for certain ranges of wavenumbers, the frequencies become complex
when γ > 0. Physically, this can be interpreted by imagining an initial perturbation to the system, such as
a small deflection or an impact. This initial disturbance can be represented as a sum of harmonic space-
dependent functions using Fourier transform, and the system responds at the frequencies allowed by
the model. A complex-valued frequency with a negative imaginary part implies that the response grows
exponentially with time, meaning the system becomes unstable. As γ increases, the low-wavenumber
modes become unstable. Moreover, an increase in the dimensionless tip mass value enlarges the
instability region because the axial compression force becomes larger.

When γ = 0, the system reduces to an infinitely long, non-rotating Rayleigh beam. This is a conser-
vative system as there is no energy input, and hence all the frequencies are real, and no instability
occurs.

(a) M̃ = 2.1, γ = 0 (b) M̃ = 2.1, γ = 0.001

(c) M̃ = 2.1, γ = 0.01 (d) M̃ = 4.2, γ = 0.01

Figure 3.1: Dispersion analysis of flapwise motion for r̃ = 3.40625 and λ = 41.2.

3.4.3. Effect of Boundary Conditions
Dispersion analysis indicates that the system has the potential to become unstable. However, whether
instability actually occurs depends on the specific boundary conditions of the system.

To determine the critical angular velocity, γcr, corresponding to the onset of divergence instability of
flapwise motion for the actual boundary conditions, a static solution, w̃(x, t) = W̃ (x) is substituted into
the governing equations. This is because the divergence type of instability can be analysed using static
considerations, as it happens at zero frequency. This results in the following equations that describe
the dimensionless form of flapwise motion for the static case. Note that the partial derivative is replaced
by an ordinary derivative, as the system now depends on only the spatial variable, x.
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Governing differential equation (Statics):

1

λ2
d4W̃

dζ4
+
γ2

λ2
d2W̃

dζ2
+

d

dζ

[
T (ζ)

dW̃

dζ

]
= 0 (3.3)

Boundary conditions, at ζ = 0:

W̃ (ζ)
∣∣
ζ=0

= 0 and dW̃ (ζ)

dζ

∣∣∣∣∣
ζ=0

= 0

Boundary conditions, at ζ = L̃:

− 1

λ2
∂3w̃

∂ζ3
− T (L̃)

∂w̃

∂ζ
− γ2

λ2
∂w̃

∂ζ
= 0 and ∂2w̃

∂ζ2
= 0

where

T (ζ) = M̃ r̃γ2 + γ2

[
(r̃ + L̃)(L̃− ζ̃)−

(
L̃2 − ζ̃2

2

)]

Due to the spatial dependence of T (ζ), the EOM has non-constant coefficients, and therefore, a general
closed-form analytical solution is not available, which means that the system of equations needs to be
solved numerically.

Simplest case
A simplified form of flapwise motion is considered to estimate the γcr for the onset of divergence in-
stability analytically. In general, obtaining a closed-form solution depends strongly on the boundary
conditions, and in many cases, it is not possible. For the present case, with one end fixed (ignoring
SSI) and the other end free, an analytical expression for the stability limit can be derived if the cen-
trifugal force on the distributed mass of the beam is neglected. In this case, the axial compression
becomes constant along the length, given by T (ζ) = M̃ r̃γ2.

Under this assumption, the governing equations simplify to a system with constant coefficients. An
exponential form of general solution is assumed for the differential equation, which is substituted into
the boundary conditions to generate a coefficient matrix. By setting the determinant of the coefficient
matrix to zero, the first dimensionless buckling angular velocity is obtained as

γcr =
π

2
√
M̃ r̃λ2 + 1

(3.4)

This expression provides a preliminary but non-conservative estimate of the critical dimensionless angu-
lar velocity for divergence in flapwise bending. The actual γcr must be smaller than the value predicted
by this expression.

Numerical analysis is carried out to determine the critical angular velocity when T (ζ) varies along the
beam length.

3.4.4. Parametric Stability Analysis
A sensitivity analysis is performed to investigate the influence of different parameters on the stability
behaviour of flapwise motion.

Influence of M̃ and λ
The effect of dimensionless tip mass, M̃ , and slenderness ratio, λ, on the critical angular velocity, γcr,
is examined, neglecting SSI. As the centrifuge rotates, centrifugal forces act on both the concentrated
tip mass and the distributed mass of the beam. These forces generate an effective axial compression
along the beam length, which softens the system.

The relation between γcr and λ for different values of M̃ is presented in Fig. 3.2. The plots show that
the stability behaviour of the system follows the trends consistent with the behaviour of classical Euler



3.4. Stability Analysis of Flapwise Motion 23

buckling of a column. As the slenderness ratio increases, the beam becomes more prone to buckling.
Similarly, increasing the tip mass increases the axial compression force, causing the beam to buckle
at lower angular velocities.

(a) Normal scale (b) log-log scale

Figure 3.2: Flapwise motion - Influence of M̃ and λ on γcr for r̃ = 3.40625 (Without SSI).

This behaviour can be understood as a balance between bending stiffness, which stabilises the system,
and centrifugal axial compression, which softens, thereby causing divergence instability. Mathemati-
cally, when the effective stiffness of the system turns negative, the system loses its stability through
divergence. Short beams are governed by stiffness and require high angular velocities to lose stability,
while longer beams become more flexible and buckle at much lower velocities.

Sensitivity to spatial dependence of T (ζ)
The effect of the centrifugal force on the system is examined. As described earlier, the axial com-
pression force in the beam is induced due to the centrifugal force acting on the tip mass and on the
distributed mass of the beam. Substituting typical values shows that their magnitudes can be of similar
order. However, the tip mass produces a stronger destabilising effect because it acts at the free end
ζ = L̃, while the resultant of the distributed load acts closer to the root, ζ = 0, resulting in a smaller
effective length. As a result, the contribution of the tip mass is expected to dominate, which is confirmed
in the plot below.

Figure 3.3: Flapwise motion - Influence of spatial dependence of T (ζ) on γcr for r̃ = 3.40625 (Without SSI)

In Fig. 3.3, Case–i corresponds to assuming T (ζ) as constant, M̃ r̃γ2, while Case–ii considers T (ζ) as
varying along the beam length. The results show that the centrifugal force acting on the distributed
mass of the beam can be neglected in comparison to the tip mass when making a preliminary estimate
of the critical angular velocity for design purposes, especially when the tip mass is heavy. At small
values of M̃ , the distributed mass of the beam still has some influence, but as M̃ increases, the tip
mass effect becomes predominant.
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Influence of r̃
The centrifugal force is directly proportional to the radius of the centrifuge, r̃. Increasing the radius,
therefore, increases the axial compression along the beam, which reduces the critical angular velocity
by further softening the system. Fig. 3.4 shows the influence of r̃ on the onset of divergence instability
of flapwise motion.

(a) M̃ = 0.0 (b) M̃ = 2.1

(c) M̃ = 5.0 (d) M̃ = 10.0

Figure 3.4: Flapwise motion - Influence of r̃ on γcr for various M̃ values (Without SSI).

3.5. Stability Analysis of Chordwise Motion
Chordwise motion of the rotating beam is characterized by the interaction of lateral bending motion
along y direction and axial displacement along the x direction, coupled through the velocity-dependent
Coriolis terms. The governing EOMs that describe the chordwise motion as derived in the previous
chapter are presented again in their dimensionless forms for the reader’s convenience.
Governing differential equations:

∂2ũ

∂τ2
− 2γ

∂ṽ

∂τ
− ∂2ũ

∂ζ2
− γ2ũ = 0 (3.5a)

∂2ṽ

∂τ2
+ 2γ

∂ũ

∂τ
+

1

λ2
∂4ṽ

∂ζ4
+
γ2

λ2
∂2ṽ

∂ζ2
+

∂

∂ζ

[
T (ζ)

∂ṽ

∂ζ

]
− 1

λ2
∂4ṽ

∂ζ2∂τ2
− γ2ṽ = 0 (3.5b)

Boundary conditions, at ζ = 0

ũ(ζ, τ)
∣∣
ζ=0

= 0, ṽ(ζ, τ)
∣∣
ζ=0

= 0, and ∂ṽ(ζ, τ)

∂ζ

∣∣∣∣∣
ζ=0

= 0
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Boundary conditions, at ζ = L̃

M̃
∂2ũ

∂τ2
− 2M̃γ

∂ṽ

∂τ
+
∂ũ

∂ζ
− M̃γ2ũ = 0

M̃
∂2ṽ

∂τ2
+ 2M̃γ

∂ũ

∂τ
− 1

λ2
∂3ṽ

∂ζ3
− T (L̃)

∂ṽ

∂ζ
− γ2

λ2
∂ṽ

∂ζ
+

1

λ2
∂3ṽ

∂ζ∂τ2
− M̃γ2ṽ = 0

− ∂2ṽ

∂ζ2
+ J̃λ2

∂3ṽ

∂ζ∂τ2
= 0

where

T (ζ) = M̃ r̃γ2 + γ̃

[
(r̃ + L̃)(L̃− ζ̃)−

(
L̃2 − ζ̃2

2

)]
Compared to the EOM of flapwise motion, (3.3), two additional terms appear in the governing differ-
ential equation of lateral bending of the chordwise motion, (3.5b). The first is the velocity-dependent
Coriolis term (2γ ∂ṽ

∂t ), which couples the axial and lateral bending motions. The second is −γ2ṽ, which
represents the component of the centrifugal force perpendicular to the deformed beam. This term is
mathematically a negative stiffness term, and hence has a destabilising effect on the system.

Eq. (3.5a) describes the balance of forces acting on a differential element of the beam along the x
direction. The first term represents the product of mass and acceleration of the element along the x
direction. The second is the Coriolis term (−2γ ∂ũ

∂t ), which couples u and v, and the third is the restoring
force from axial stiffness of the beam. The fourth term, −γ2ũ, is the centrifugal force in addition to the
static component along the x direction due to axial oscillations, and it has a destabilising effect.

Because of the Coriolis coupling, the two fields, u and v, are linked and must be solved together along
with their boundary conditions. In total, the chordwise motion consists of two coupled equations of
motion and six boundary conditions. Unlike flapwise motion, a preliminary analytical estimate of the
critical velocity is not possible here due to the coupling. Therefore, the stability of chordwise motion
must be assessed through a dynamic analysis of the coupled system using numerical techniques.

3.5.1. Scope of Instability
In chordwise motion, the displacement fields, u and v, are coupled by the velocity-dependent Coriolis
terms. This coupling may cause flutter-type instability, which requires a dynamic analysis. In addition,
similar to flapwisemotion, the axial compression forcemay reduce the effective stiffness to zero, leading
to divergence instability. Furthermore, a combined interaction between flutter and divergence can also
occur.

3.5.2. Dispersion Analysis
As described earlier, dispersion analysis can reveal the possibility of instability in a system. The prop-
agating wave forms are assumed for both the coupled displacement fields, expressed as u(x, t) =
U0e

i(ωt−kx) and v(x, t) = V0e
i(ωt−kx), and substituted into the governing EOMs. The axial compression

force in the beam is considered to be constant, T (ζ) = M̃ r̃γ2, to obtain analytical results. The disper-
sion equation is obtained by setting the determinant of the coefficient matrix to zero. Figs. 3.5 and 3.6
show the dispersion curves obtained by solving the dispersion equation, plotted for r̃ = 3.40625 and
λ = 41.2 and for different values of M̃ and γ

det


k2 − ω2 − γ2 − 2i ωγ

2i ωγ

[(
− M̃k2r̃ − 1

)
γ2 − ω2

]
λ2 + k2

(
k2 − ω2 − γ2

)
λ2

 = 0
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(a) First and second roots of the dispersion equation (b) Third and fourth roots of the dispersion equation

Figure 3.5: Dispersion analysis of chordwise motion for r̃ = 3.40625, λ = 41.2, M̃ = 2.1, and γ = 0.

(a) First and second roots of the dispersion equation (b) Third and fourth roots of the dispersion equation

Figure 3.6: Dispersion analysis of chordwise motion for r̃ = 3.40625, λ = 41.2, M̃ = 2.1 and γ = 0.001.

The dispersion relation for chordwise motion yields four roots, giving two pairs of frequencies for each
wavenumber. When γ = 0, the system is conservative and hence all the frequencies remain real,
consistent with a stable, non-rotating system. For non-zero γ, however, some branches acquire a
negative imaginary part, which signals the possibility of instability. It is interesting to notice that the
real part of ω is zero when the imaginary part turns non-zero, indicating a divergence type of instability.
However, whether instability actually occurs and the possibility of flutter-type instability depend on the
specific boundary conditions of the system.

3.5.3. Eigenfrequencies of Chordwise Motion
The effect of boundary conditions is considered in this subsection, and a numerical analysis is per-
formed to evaluate the eigenfrequencies of the system. Fig. 3.7 shows the evolution of the first four
eigenfrequencies as a function of dimensionless angular velocity, γ. Note that coupling of the DOFs is
considered in the numerical analysis, including the spatial variation of axial compression force, while
SSI is neglected.

The eigenfrequency curves in Fig. 3.7 are plotted for M̃ = 2.1, λ = 41.225, and r̃ = 3.40625. They
show a progressive decrease of the real part of each eigenfrequency with increasing γ. At critical
angular velocities, the real part becomes zero and the corresponding imaginary part becomes non-
zero, marking the onset of divergence-type instability. The first bending mode is the first to destabilise.
Interestingly, the third bending mode becomes unstable earlier than the first axial mode, even though
the axial motion has a lower eigenfrequency compared to the third bending mode. This indicates that
the onset of instability in chordwise motion is governed primarily by bending behaviour, while the axial
mode contributes only at much higher angular velocities. Therefore, it can be concluded that flutter-
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type instability does not occur for the parameters chosen in this subsection within the considered range
of γ.

(a) First eigenfrequency (Lateral bending) (b) Second eigenfrequency (Lateral bending)

(c) Third eigenfrequency (Axial motion) (d) Fourth eigenfrequency (Lateral bending)

Figure 3.7: Chordwise motion - eigenfrequencies for M̃ = 2.1, λ = 41.225, r̃ = 3.40625.

3.5.4. Effect of Coriolis Terms
Instability in chordwise motion can originate from two main factors: the coupling of displacement fields
through the Coriolis terms, and the reduction in stiffness caused by axial compression induced by the
centrifugal force. In the previous subsection, it was revealed that the chordwise motion experiences a
divergence-type of instability for the chosen set of parameters. In this subsection, the Coriolis terms
are neglected from both the governing differential equations and the boundary conditions, and the
eigenfrequencies are plotted in Fig. 3.8 to understand the influence of the Coriolis term.

The resulting frequency curves closely resemble those obtained with the Coriolis term included. A
noticeable difference is observed in the eigenvalues of the axial mode, which occurs at very high angular
velocities of the centrifuge, beyond the practical range of operation. This shows that the dominant factor
driving instability is the softening effect produced by axial compression, while the Coriolis coupling plays
only a secondary role. In other words, the presence or absence of the Coriolis term has little impact on
the onset of instability, confirming that axial compression governs the primary mechanism of divergence
in chordwise motion for the set of parameters considered (M̃ = 2.1, λ = 41.225, and r̃ = 3.40625). The
evolution of eigenshapes with and without the effect of the Coriolis term is shown in Appendix F.
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(a) First eigenfrequency (Lateral bending) (b) Second eigenfrequency (Lateral bending)

(c) Third eigenfrequency (Axial motion) (d) Fourth eigenfrequency (Lateral bending)

Figure 3.8: Chordwise motion - eigenfrequencies (Without Coriolis term) M̃ = 2.1, λ = 41.225, r̃ = 3.40625.

3.5.5. Parametric Stability Analysis
Using numerical techniques, a sensitivity study is performed in this subsection to investigate the influ-
ence of different parameters on the onset of divergence instability of chordwise motion.

Influence of M̃ and λ

(a) Flexible case - M̃ = 10 and λ = 400 (b) Stiff case - M̃ = 0 and λ = 10

Figure 3.9: Chordwise motion - First eigenfrequency for extreme case of M̃ and λ for r̃ = 3.40625 (Without SSI).

In the previous subsection, a dynamic analysis was performed for a specific set of parameters (M̃ = 2.1,
λ = 41.225, and r̃ = 3.40625), and it was determined that the divergence-type of instability governs.
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To generalize this statement, two more extreme cases are considered, and the evolution of the first
eigenfrequency as a function of dimensionless angular velocity is plotted for both cases to verify if
divergence remains the governing form of instability. The results are shown in Fig. 3.9, and divergence
is again found to be the governing instability.

The effect of dimensionless tip mass, M̃ , and slenderness ratio, λ ,on the divergence instability of
chordwise motion is plotted in Fig. 3.10, neglecting SSI. The softening effect of the centrifugal forces is
similar to flapwise motion. The γcr values of chordwise motion are slightly lower as compared to that of
flapwise motion. This is because the EOM governing the lateral bending of chordwise motion, given by
(3.5b), contains an additional negative stiffness term, −γ2v, which further reduces the effective bending
stiffness. As a result, the system becomes softer and the critical angular velocity is reached at lower
values compared to the flapwise motion. Hence, the system is expected to destabilise in chordwise
motion before the flapwise motion begins to buckle.

(a) Normal scale (b) Log-log scale

(c) Comparison between flapwise and chordwise bending (Log–log
scale)

Figure 3.10: Chordwise motion - Influence of M̃ and λ on γcr for r̃ = 3.40625 (Without SSI).

Influence of r̃
In this subsection, two extreme values of the dimensionless radius, r̃ and dimensionless tip mass, M̃ ,
are used to determine whether divergence instability governs and to check for the possibility of flutter.
The first eigenfrequency is plotted as a function of γ in the Fig. 3.11. The plot shows that the real part
of the frequency keeps decreasing and becomes zero at a certain angular velocity. After this point,
the frequency turns purely imaginary, which means the system no longer vibrates but instead grows
without bound, similar to divergence instability.

Fig. 3.12 shows the influence of radius of centrifuge, r̃, on the onset of divergence instability of chord-
wise motion. As expected, a higher radius of the centrifuge can decrease the critical angular velocity
significantly.
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(a) M̃ = 0, r̃ = 0.5, λ = 10 (b) M̃ = 10, r̃ = 10, λ = 400

Figure 3.11: Chordwise motion - First eigenfrequency for extreme case of r̃

(a) M̃ = 0.0 (b) M̃ = 2.1

(c) M̃ = 5.0 (d) M̃ = 10.0

Figure 3.12: Chordwise motion - Influence of r̃ on γcr for different M̃ (Without SSI).

3.6. Conclusions
In this chapter, the stability of both flapwise and chordwise motions of a rotating cantilever beam inside
a geotechnical centrifuge is studied using the dimensionless form of governing equations derived in
Chapter 2. In addition, a parametric stability analysis is conducted to understand the influence of
various parameters on the onset of instability. The analysis showed that:

• Flapwise motion is governed by divergence instability, since it is decoupled from other displace-
ment fields (u and v) and has no damping terms. As a result, static analysis is sufficient to predict
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the critical dimensionless angular velocity. The main softening effect comes from the axial com-
pression produced by centrifugal forces acting on the tip mass.

• Chordwise motion is more complex because the axial and lateral displacements are coupled
through the Coriolis term. Although this coupling suggests the possibility of flutter, the results
indicate that divergence remains the dominant form of first critical instability within the range of
parameters considered. The Coriolis effect plays only a minor role compared to the softening
caused by axial compression within the range of angular velocities considered. As a result, the
instability of chordwise motion can be reliably estimated using static considerations.

• In both directions, the critical angular velocity decreases with larger tip mass, higher slenderness
ratio, and greater centrifuge radius. These parameters increase the effective axial compression
and make the system more prone to instability.

• Chordwise bending is more critical than flapwise bending because its governing equations include
an additional negative stiffness term due to the centrifugal force. This extra softening means
chordwise instability occurs at lower angular velocities compared to flapwise instability.



4
Case study

In this chapter, the mathematical model developed earlier is applied to analyze the stability of the small-
scale model of a monopile-founded OWT tested in the geotechnical centrifuge at ETH Zürich, as a
part of the research project, DONISIS [3]. The objective is to examine whether the small-scale model
experiences instabilities, such as divergence or flutter, within the operating angular velocity range of
the centrifuge. The small-scale model, as shown in Fig. 1.1a, is considered first, and the effect of
soil-structure interaction (SSI) is included through a lumped spring model as shown in Fig. 1.1b. The
stability of flapwise motion is considered using static considerations, whereas dynamic stability analysis
is performed for the chordwise motion. In addition, the present chapter aims to evaluate the influence
of key parameters such as the length of the beam, the tip mass, the moment of inertia of the cross-
section, and the effect of SSI on the onset of instability of the ETH Zürich case, henceforth referred to
as ”ETHZ”.

4.1. Model Description
The small-scale model is designed to represent the behaviour of a full-scale prototype of a monopile-
founded OWT. Its dimensions and proportions are derived using established simplified scaling laws. A
detailed discussion of these scaling procedures is outside the scope of this thesis. Table 4.1 summa-
rizes the geometric and material properties of the adopted small-scale model. These properties serve
as the input for the stability analysis presented in the following sections.

Table 4.1: Geometric and material parameters of the small-scale OWT model and the centrifuge at ETHZ.

Symbol Description Value Unit
ρ Density of model material 2 700 kg/m3

E Young’s modulus 6.89× 1010 N/m2

A Cross-sectional area 3.704× 10−4 m2

Iy Second moment of area (about z-axis) 2.17926× 10−7 m4

Iz Second moment of area (about y-axis) 2.17926× 10−7 m4

L Beam length 1.0 m
r Centrifuge arm radius 3.40625 m
M Tip mass 2.1 kg

J Rotational inertia of tip mass 1.453119× 10−3 kgm2

ΩETHZ Operating angular velocity of centrifuge 16.74 rad s−1

The density ρ and Young’s modulus E correspond to the aluminium alloy used for the small-scale beam
model. To account for non-uniformities in the geometry of the beam, weighted average values of A, Iy,
and Iz are adopted. The parameter r corresponds to the radius of the centrifuge at ETH Zürich.

32
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4.2. Stability Analysis of Flapwise Motion - ETHZ
As discussed in section 3.4.1, flapwise motion can experience divergence type of instability, and the
critical angular velocity, Ωcrit, corresponding to the onset of instability can be estimated using static
considerations.

4.2.1. Analytical and Numerical Estimates
A preliminary estimate of the critical angular velocity can be obtained using Eq. (3.4). By substituting the
values of the ETHZ case and converting the result using the relation shown in Eq. (2.17), the critical
angular velocity is calculated as Ωcrit = 71.95 rad s−1. Note that while deriving this expression, the
centrifugal force acting on the distributed mass of the beam and the influence of SSI are neglected,
which have a softening effect. Consequently, the actual onset of instability is expected to happen at a
lower angular velocity of the centrifuge.

A numerical static buckling analysis is performed considering the distribution of the axial compression
force, and the critical angular velocity is computed as Ωcrit = 67.05 rad s−1 (without SSI), which is close
to the preliminary estimate. As soon as the angular velocity of the centrifuge reaches Ωcrit, the flapwise
motion of the small-scale model experiences a divergence type of instability, similar to classical Euler
buckling. The effect of SSI on the Ωcrit is addressed in the next subsection.

Figure 4.1: Eigenshape of first buckling mode of flapwise motion.

4.2.2. Parametric Stability Analysis of ETHZ case
To further investigate the sensitivity of the stability of the flapwise motion of the ETHZ case, a parametric
stability analysis is performed. This analysis explores how variations in the key parameters affect the
onset of instability. Note that the material properties of the beam, such as density and Young’s modulus,
and the radius of the centrifuge are considered to be constant.

Influence of M and L
In this subsection, the effect of tip mass, M , and beam length, L, on the divergence instability of
flapwisemotion is examined, neglecting SSI. As the centrifuge rotates, centrifugal forces act on both the
concentrated tip mass and the distributed self-weight of the beam. These forces generate an effective
axial compression along the beam length, which has a softening effect and therefore destabilises the
system.

A numerical analysis is performed and the results are presented in the Fig. 4.2, which shows the vari-
ation of Ωcrit as a function of beam length and tip mass.
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(a) Linear scale (b) Log–log scale

Figure 4.2: Flapwise motion – Effect of M and L on Ωcrit.

From the Fig. 4.2, it is observed that increasing the beam length, L, consistently lowers theΩcrit, making
the system more prone to instability. The influence of tip mass,M , is strongest at shorter beam lengths,
where even small increases significantly reduce stability (e.g., at L = 0.5m, a 10 kg tip mass decreases
Ωcrit by more than 400 rad s−1 compared to the massless case).

Comparison with the centrifuge operating velocity (ΩETHZ = 16.74 rad/s) shows that the ETHZ case
(M = 2.1 kg, L = 1.0 m, Ωcr = 67.05 rad/s) remains stable in flapwise motion, when SSI is neglected.

Influence of Moment of Inertia of the cross-section

(a) EI/15 (Linear scale) (b) EI/15 (Log–log scale)

(c) Comparison between EI and EI/15 (Log–log scale)

Figure 4.3: Flapwise motion – Effect of moment of inertia of the cross-section on Ωcrit.
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The bending stiffness of the beam, represented by the flexural rigidity EI, resists the divergence insta-
bility. It is interesting to determine the moment of inertia of the cross-section that leads to the instability
of the ETHZ case. By trial and error, it is found that when the moment of inertia was reduced by a factor
of 15, while keeping all other parameters constant, the ETHZ case (L = 1.0 m, M = 2.1 kg) buckles
at a critical angular velocity of approximately 17 rad s−1, which is very close to the operating velocity
of the centrifuge. Fig. 4.3 shows the plots generated for the reduced stiffness case. Note that SSI is
neglected.

Fig. 4.3 clearly shows the stabilising role of EI. While the destabilising axial force from centrifugal
loading remains unchanged, the reduced stiffness lowers the beam’s restoring capacity, making it more
flexible and prone to buckling.

Influence of SSI
In this subsection, the influence of SSI on the stability of the flapwise motion is examined. As described
in section 2.6, SSI is incorporated through a lumped spring model at the mudline level. For this anal-
ysis, the Young’s modulus of the soil is taken as 28MPa at a depth of 0.09m below the ground level.
Table 4.2 summarizes the spring stiffness values corresponding to three representative soil profiles,
namely, constant, linear, and parabolic distributions calculated as per the formulae shown in Appendix
B.

Table 4.2: Spring stiffness values for different soil profiles (E = 28MPa at 0.09m below the ground level).

Constant Linear Parabolic

KL (Nm−1) 1.299× 107 2.325× 107 1.795× 107

KR (Nm rad−1) 1.070× 106 1.581× 106 1.251× 106

KLR (Nmm−1) −2.475× 106 −4.176× 106 −3.413× 106

KV (Nm−1) 1.034× 107 8.545× 106 9.563× 106

The inclusion of SSI modifies the boundary conditions at the fixed end (x = 0), reducing the effective
restraint provided by the soil as compared to the fixed base case. Note that the fixed base case is an
extreme and a special case of SSI when the soil is assumed to be rigid. To quantify the effect of SSI, a
numerical analysis is performed to determine the Ωcrit value for the ETHZ case (L = 1.0m,M = 2.1 kg)
and the results are summarized in Table 4.3.

Table 4.3: Flapwise motion - Ωcrit for ETHZ case for different soil profiles (E = 28MPa at 0.09m below the ground level).

Constant Linear Parabolic Without SSI

Ωcrit rad s
−1 65.293 65.776 65.303 67.050

As per Table 4.3, the inclusion of SSI slightly reduces the Ωcrit compared to the fixed-end case. Among
the three soil profiles, the values remain close, with the linear distribution giving the largest Ωcrit and
the constant profile the lowest. Overall, the reduction is modest (about 2− 3%), indicating that for the
given soil stiffness, the effect of SSI on flapwise divergence instability is present but not dominant.

To further investigate the combined effect of SSI, beam length, L, and tip mass,M , numerical analyses
were carried out for several extreme cases of M and L. The corresponding critical angular velocities
are presented in Table 4.4. The variations lie in the range of 1.25 to 7%.
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Table 4.4: Ωcrit (Rad/sec) for different soil profiles, tip masses and beam lengths (E = 28MPa at 0.09m below the ground
level).

M kg Lm Constant Linear Parabolic Without SSI

0.0 0.5 479.76 489.54 479.96 516.55
0.0 1.0 172.98 174.81 173.02 179.67
0.0 2.0 60.37 60.69 60.37 61.55

2.1 0.5 132.06 133.91 132.10 138.92
2.1 1.0 65.29 65.78 65.30 67.05
2.1 2.0 30.82 30.94 30.82 31.26

10.0 0.5 62.31 63.16 62.33 65.46
10.0 1.0 31.66 31.88 31.67 32.47
10.0 2.0 15.76 15.81 15.76 15.96

The influence of SSI on the flapwise stability is illustrated in Fig. 4.4 for the parabolic soil profile, which
is the representative of the soil conditions encountered at the prototype. The plots present the variation
of the Ωcrit with respect to beam length, L, and tip mass,M . Fig. 4.4 and Table 4.4 show that tip mass
and beam length have a strong effect on stability. Larger tip masses and longer beams greatly reduce
the Ωcrit, making the system more prone to instability. In comparison, the influence of SSI is small,
causing only a few percent reduction in Ωcrit relative to the fixed-base case.

The trends remain the same as in the fixed-end condition: increasing tip mass and beam length lower
Ωcrit, while SSI only shifts the curves slightly downward due to reduced foundation stiffness. For typical
soil stiffness, SSI does not change the overall instability behaviour, and it is reasonable to ignore SSI.

(a) Linear scale (b) Log–log scale

Figure 4.4: Flapwise motion – Effect of SSI on Ωcrit.

In summary, tip mass and beam length are the main factors controlling divergence instability, while SSI
plays only a minor role. However, in very soft soils, SSI can reduce the critical velocity enough to fall
within the centrifuge’s operating range, which may trigger instability during testing.

In the Fig. 4.5, a parametric analysis is conducted by varying the stiffness of the soil, and the results
are plotted. From the figure, it can be observed that a soil with a Young’s modulus of 50MPa exhibits
behaviour very close to that of a rigid foundation, which indicates that further increases in stiffness
would not significantly affect the critical angular velocity.
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(a) Linear scale (b) Log–log scale

Figure 4.5: Flapwise motion – Parametric analysis on the effect of various soil stiffness values (at a depth of 1m below the
ground level) on Ωcrit for ETHZ case.

It is interesting to determine the soil stiffness that can lead to divergence instability in the ETHZ case
during the operating angular velocity of the centrifuge, which is 16.74 rad s−1. By trial and error, it is
determined that the critical angular velocity is approximately 17 rad s−1 for a value of E = 0.1MPa with
a diameter of the small-scale model of 22.5 mm. The corresponding spring stiffness values are listed
in Table 4.5. A stiffness of 0.1MPa is very low for soils and may occur during extreme cases, which is
when the entire soil layer is liquified, which may happen during earthquakes.

Table 4.5: Spring stiffness values for the extreme soil case E = 0.1MPa and d = 25mm.

Constant Linear Parabolic

KL (Nm−1) 3.786× 104 1.492× 105 7.762× 104

KR (Nm rad−1) 4.086× 103 8.002× 103 5.346× 103

KLR (Nmm−1) −9.245× 103 −2.740× 104 −1.509× 104

KV (Nm−1) 2.349× 104 1.652× 104 1.981× 104

4.3. Stability Analysis of Chordwise Motion
As described in Section 3.5.1, stability of chordwise motion requires a dynamic analysis due to velocity-
dependent Coriolis coupling between u and v DOFs. In contrast to flapwise bending, where a simplified
analytical expression allows for a preliminary estimate of theΩcrit, such an approximation is not possible
here due to the coupling term. Consequently, the stability of chordwise motion must be assessed
directly through numerical analysis of the coupled system.

4.3.1. Eigenfrequencies of ETHZ Case
A numerical analysis is performed to evaluate the first four eigenfrequencies of the chordwise motion for
the ETHZ case. The results, shown in Figs. 4.6, illustrate the development of both real and imaginary
parts of the first four eigenfrequencies of the chordwise motion as the angular velocity of the centrifuge
increases. Note that when the eigenfrequency turns complex, with a negative imaginary part, the
system becomes unstable. When the eigenfrequency slowly approaches zero as the angular velocity
increases, the system experiences a divergence type of instability. The first three bending frequencies,
as well as the first axial frequency of the coupled chordwise motion, are presented. Soil–structure
interaction is not considered in this analysis in order to isolate the structural behaviour.
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(a) 1st eigenfrequency (Lateral bending) (b) 2nd eigenfrequency (Lateral bending)

(c) 3rd eigenfrequency (Axial motion) (d) 4th eigenfrequency (Lateral bending)

Figure 4.6: Chordwise motion - Influence of Ω on the eigenfrequencies.

In all cases, the real part of the frequency decreases steadily as the angular velocity increases, reflect-
ing the progressive softening of the system due to axial compression. At the critical angular velocity,
the real part becomes zero, marking the onset of instability. Beyond this point, the imaginary part
becomes non-zero, which indicates that the mode transitions into an unstable state with exponential
growth. These results confirm that divergence-type instability governs the chordwise motion, with each
mode exhibiting the same characteristic behaviour at its respective critical velocity.

For the ETHZ case, the first bending mode becomes unstable at around Ω ≈ 60 rad s−1, the second
bending mode at about Ω ≈ 190 rad s−1, and the first axial mode at approximately Ω ≈ 3232 rad s−1.
The fourth mode also follows the same trend, with instability occurring near Ω ≈ 320 rad s−1.

The dominant mechanism driving the reduction in natural frequencies is the axial compression induced
by centrifugal forces, which leads to a softening effect and ultimately governs the onset of instability.
This behaviour is consistent with the flapwise case, though chordwise modes become critical at lower
velocities due to the additional softening term. Fig. ?? shows the evolution of eigenshapes with angular
velocity

4.3.2. Parametric Stability Analysis of ETHZ case
In this section, a parametric stability analysis is conducted to investigate the influence of various param-
eters on the divergence instability of chordwise motion. The parameters are varied within a reasonable
range, and the corresponding critical angular velocities are evaluated through numerical analysis. The
results are presented in the following plots, which illustrate how each parameter affects the onset of
divergence instability. Note that the material properties are not changed.

Influence of M and L
The following plots show the variation of the critical angular velocity of divergence instability for chord-
wise motion, Ωcrit, as the tip mass and length of the beam are varied.
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(a) Linear scale (b) Log–log scale

(c) Comparison between chordwise and flapwise bending (Log–log
scale)

Figure 4.7: Chordwise motion – Influence of M and L on Ωcrit.

Similar to the flapwise motion, the axial compression induced by the tip mass has a significant influence
on the onset of instability. Increasing the tip mass consistently lowersΩcrit, particularly for shorter beams
where the effect is most pronounced. At larger beam lengths, however, the influence of mass becomes
less significant, and the curves converge, showing that slenderness dominates the instability behaviour.

For the ETHZ case (M = 2.1 kg, L = 1.0m m), the critical angular velocity is estimated to be around
60.4 rad/s using a static buckling analysis, which is well above the centrifuge operating speed of 16.74 rad/s
indicating that the chordwise motion of the ETHZ configuration remains stable within the centrifuge’s
operational range.

The critical angular velocities of chordwise bending are consistently lower than those of flapwise bend-
ing. This makes chordwise bending the more critical direction for stability, as it governs the earliest
onset of divergence instability. The reason for this behaviour lies in the governing equations of motion.
Although the Coriolis coupling term contributes very little, the chordwise direction includes an additional
softening term of the form −ρAΩ2w. This extra destabilising contribution shifts the onset of instability
to lower angular velocities compared to the flapwise case.

From a design perspective, this suggests that chordwise stability must be carefully considered in cen-
trifuge modelling. Even if flapwise bending appears sufficiently stable, the chordwise direction may
control the actual limit state and therefore cannot be neglected.

Influence of Moment of Inertia of the cross-section
The influence of bending stiffness was examined by reducing the moment of inertia of the beam by a
factor of 15. As shown in Fig. 4.8 this reduction lowers the critical angular velocity of the ETHZ reference
case (M = 2.1 kg, L = 1.0m) to approximately 17 rad s−1, which is very close to the centrifuge’s
maximum operating speed.
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(a) Linear scale (b) Log–log scale

(c) Comparison between EI and EI/15 (Log–log scale)

Figure 4.8: Chordwise motion – Influence of Moment of Inertia of the cross-section on Ωcrit.

The behaviour is consistent with the flapwise case: a lower stiffness reduces the beam’s ability to resist
axial compression, thereby shifting the onset of divergence instability to much lower angular velocities.
This highlights the critical role of structural stiffness in maintaining stability, as evenmoderate reductions
in I can significantly narrow the safety margin during centrifuge operation.

Influence of SSI
To determine whether flutter-type instability is possible due to the inclusion of SSI, three cases of spring
stiffnesses are considered for the soil, one corresponding to the ETHZ case (E = 28MPa at d =
0.09m), and the other corresponding to an extremely soft soil (E = 0.1MPa at d = 0.025m) and
a dynamic stability analysis is performed using numerical techniques. Fig. 4.9 shows the evolution
of the first eigenfrequency for both cases as a function of angular velocity. It can be noticed that
divergence stability is still dominant, and coupling of displacement fields can be neglected. A static
buckling analysis of chordwise bending motion estimates the critical angular velocity for divergence
instability as 13.536 rad s−1, which is the same as the plot.
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(a) ETHZ Case, E = 28MPa at d = 0.09m below GL (b) ETHZ Case, E = 0.1MPa at d = 0.025m below GL

Figure 4.9: Chordwise motion – Influence of SSI on Ωcrit.

The effect of various soil profiles, as shown in Table 4.2, on the instability of chordwise motion is shown
in the Table 4.6

Table 4.6: Chordwise motion - Ωcrit for ETHZ case for different soil profiles (E = 28MPa at 0.09m below the ground level).

Constant Linear Parabolic Without SSI

Ωcrit (Rad/sec) 58.570 59.085 58.582 60.428

The effect of SSI on the onset of divergence instability of chordwise motion is examined in Fig. 4.10,
where the critical angular velocity is plotted as a function of the beam length, L, and the tip mass, M ,
for the parabolic soil profile with E = 28MPa at a depth of 0.09m below the ground level.

(a) Linear scale (b) Log–log scale

Figure 4.10: Chordwise motion – Effect of SSI on Ωcrit for E = 28MPa at a depth of 0.09m below the GL.

The overall behaviour is very similar to the flapwise case. SSI slightly reduces the critical angular
velocity compared to the fixed-base condition, but the dominant influence remains the combined effect
of tip mass and beam length. The reduction due to SSI is relatively small, indicating that foundation
flexibility has only a secondary role in chordwise stability for the soil stiffnesses considered here.

4.4. Conclusions
In this chapter, the mathematical model developed before is applied to the small-scale model of an
OWT tested at the centrifuge facility of ETH Zürich. Stability of both flapwise and chordwise motions is
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studied under different parameter variations. The main findings are as follows:

• The maximum allowed centrifuge operating speed at ETH Zürich (ΩETHZ = 16.74 rad s−1) is well
below the critical velocities for both flapwise and chordwise motions, meaning the model is stable
under normal testing conditions.

• Flapwise motion experiences divergence type of instability at about Ω ≈ 67 rad s−1 without SSI,
and at slightly lower values when SSI is included. Tip mass and beam length are the dominant
factors, while SSI only causes a small reduction in critical velocity (about 2−7%). In very soft soil,
however, SSI can lower the stability limit enough to fall within the centrifuge’s operating range.

• Chordwise motion is more critical, with the first bending mode becoming experiencing divergence
instability at about Ω ≈ 60 rad s−1. Similar to the flapwise motion, tip mass and beam length have
strong effects, while SSI has only a minor influence. The additional negative stiffness term in the
chordwise equations makes this direction less stable than flapwise bending.

• The Coriolis effect does not play a role, even in extreme cases of tip mass and soil stiffness.
Instead, divergence remains the dominant form of instability across all examined conditions.

• Reducing the bending stiffness of the beam significantly lowers the critical velocity, showing that
cross-sectional properties strongly control stability.



5
Conclusions and Recommendations

In this chapter, the main conclusions of this thesis are summarised, and recommendations for future
work are provided.

5.1. Conclusions
In this thesis, the stability of a rotating cantilever beam inside a geotechnical centrifuge is studied, with
the aim of understanding the onset of instability for dynamically sensitive small-scale models such as
monopile-founded OWTs. The main conclusions are:

• A mathematical model was developed in a non-inertial frame of reference using rigorous math-
ematical derivation. The use of Lagrangian formalism was particularly beneficial, as it directly
incorporates the Coriolis effect without approximation. This approach produced a linear set of gov-
erning equations that capture centrifugal and Coriolis forces, tip mass effects, and soil–structure
interaction (SSI), and can be used to predict the onset of instability. Expressing the equations in
a dimensionless form reduced the number of parameters and made the results general.

• The stability analysis showed that:

– Flapwise motion is governed by divergence instability, and can be assessed using static
considerations.

– In chordwise motion, the axial and lateral degrees of freedom are coupled through the Cori-
olis term. This coupling requires a dynamic stability analysis, since flutter is theoretically
possible. However, the results show that divergence dominates and flutter does not occur
under the studied conditions.

– Because of the coupling terms and the quadratic nature of the axial compression force T (x),
numerical techniques are needed to obtain reliable stability limits.

– Increasing tip mass, beam length, and centrifuge radius consistently reduces the critical
angular velocity, while higher bending stiffness increases stability.

• The Coriolis effect was found to play only a minor role, even in extreme cases of tip mass and
soil stiffness. This means that established scaling laws can still be used for dynamically sensitive
structures, provided that the small-scale model remains stable. If, however, the centrifuge oper-
ates beyond a certain angular velocity, the eigenproperties of the small-scale model may start to
deviate from those of the prototype due to softening effects from centrifugal forces.

• The case study of the ETH Zürich centrifuge confirmed that the operating speed (ΩETHZ =
16.74 rad/s) is well below the critical angular velocities for both flapwise and chordwise motions.
Thus, the small-scale model remains stable under normal testing conditions. However, in ex-
treme cases with very soft soils or reduced stiffness, the critical velocity may drop close to the
centrifuge’s operating range.
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Overall, this work demonstrates that divergence governs the onset of instability for rotating cantilever
beams inside a centrifuge. Chordwise bending is the most critical mode, while SSI and Coriolis effects
only play secondary roles under typical conditions.

5.2. Recommendations for Future Studies
While this study provides new insights into the stability of rotating beams in centrifuge testing, further
work is needed to improve physical realism and strengthen practical application. The following recom-
mendations are made:

1. Nonlinear analysis: This thesis focused on the linear regime and only identified the onset of in-
stability. Future research should explore nonlinear behaviour to capture post-buckling responses
and vibration amplitudes after instability occurs.

2. Experimental validation: The results should be compared with actual centrifuge tests on small-
scale OWT models. This would confirm the theoretical predictions and improve confidence in
applying the model to real structures.

3. Improved SSI modelling: The lumped spring model used here simplifies the soil response. Future
work should:

• Use a distributed spring model (beam on elastic foundation) to capture continuous soil–
structure interaction, which would introduce additional interface conditions.

• Consider dynamic spring stiffnesses, which may become important when axial and lateral
degrees of freedom are coupled.

4. Refined small-scale turbine modelling: The current approach idealized the nacelle assembly as
a single concentrated tip mass. A more detailed model could represent the nacelle and rotor as
multiple discrete point masses, which would better capture the true dynamics and preserve the
eigenproperties of the full-scale prototype. While this adds more interface conditions and coupled
equations, it provides a more accurate representation of the physical system.
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A
Euler-Lagrange Equations

This appendix presents the derivation of the Euler-Lagrange equations and the natural boundary con-
ditions for 1D elements based on Hamilton’s principle. The resulting equations are subsequently ap-
plied to derive the governing equations that describe the motion of a rotating cantilever beam inside a
geotechnical centrifuge, as presented in Chapter 2.

A.1. Hamilton's Principle and the Action Functional
Hamilton’s principle [1] asserts that the dynamics of a mechanical system are governed by a variational
problem for a functional based on a single function, the Lagrangian, which contains all physical infor-
mation about the system and the forces acting upon it. This variational problem is equivalent to and
allows for the derivation of the differential equations that describe the motion of the mechanical system.

The Lagrange function, L, is defined as the difference between the kinetic energy, K, and the potential
energy, P , of the system, at any particular instant of time. The action functional, S, which considers the
entire motion of the system between two time instants t1 and t2 is obtained by integrating the Lagrange
function.

S
(
q(t)

)
=

∫ t2

t1

L
(
q(t), q̇(t), t

)
dt

where q(t) denotes the vector of degrees of freedom describing the motion of the system and q̇(t) is
its time derivative.

Figure A.1: Illustration of the principle of stationary (least) action: the true path (in red) produces δS = 0.
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The action functional, S, depends on the Lagrange function, L, which in turn depends on the path taken
by the system, q(t). Therefore, S, can be theoretically evaluated for any choice of path. Hamilton’s
principle states that, as the system evolves, q follows a path through the configurational space and the
path taken by the system (red) as shown in Fig. A.1 has a stationary action, meaning, δS = 0, for small
changes in the configuration of the system, δq. This path is defined as the ’true path’ or the ’stationary
path’. Physically, this means the system chooses to move from one equilibrium state to another in a
specific path such that it spends the least amount of energy. The mathematical statement of Hamilton’s
principle is as follows:

δS

δq(t)
= 0

A.2. Action Functional for 1D System with Discrete End Attachments
Consider a 1D system occupying the domain, x ∈ [a, b], with discrete end attachments at the bound-
aries x = a, b. Here, x denotes the spatial variable along the undeformed length of the system, and t
represents time. Let w(x, t) denote the unknown path of the system. The action functional is given by

S =

∫ t2

t1

∫ b

a

(λ (t, x, w(x, t), w,x(x, t), w,t(x, t), w,xx(x, t), w,xt(x, t))) dx dt

+

∫ t2

t1

(Law(t, w(a, t), w,t(a, t)) + Lbw(t, w(b, t), w,t(b, t))) dt

+

∫ t2

t1

(Laφ(t, w,x(a, t), w,xt(a, t)) + Lbφ(t, w,x(b, t), w,xt(b, t))) dt

Here, λ is the linear density of the Lagrange function, i.e., Lagrange function per unit length. The
terms Law, Law,x

, Lbw, Lbw,x
are the Lagrange functions of the discrete end attachments at x = a and

x = b, and w(x, t) represents the stationary path, which is unknown and needs to be determined. The
following notations are used in the above expression.

w,t =
∂w

∂t
, w,x =

∂w

∂x
, w,xx =

∂2w

∂x2
, w,xt =

∂2w

∂x∂t
,

A.3. Derivation of the Euler-Lagrange Equations
Let w̃(x, t) represent a varied path allowing for a small deviation, ε, from the stationary path, w̃(x, t).
The action functional, S̃, for the varied path, w̃(x, t), is given by

S̃ =

∫ t2

t1

∫ b

a

(λ (t, x, w̃(x, t), w̃,x(x, t), w̃,t(x, t), w̃,xx(x, t), w̃,xt(x, t))) dx dt

+

∫ t2

t1

(Law(t, w̃(a, t), w̃,t(a, t)) + Lbw(t, w̃(b, t), w̃,t(b, t))) dt

+

∫ t2

t1

(Laφ(t, w̃,x(a, t), w̃,xt(a, t)) + Lbφ(t, w̃,x(b, t), w̃,xt(b, t))) dt

(A.1)

As per Hamilton’s principle, for small variations, ε, around the stationary path, the change in the action
functional shall be zero. Mathematically, it can be written as

dS̃

dε

∣∣∣∣∣
ε=0

= 0 (A.2)
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Substituting the action functional as shown in Eq. (A.1) into the Eq. (A.2) and applying the chain rule
of differentiation leads to∫ t2

t1

∫ b

a

[
∂λ

∂w̃

∂w̃

∂ε
+

∂λ

∂w̃,x

∂w̃,x

∂ε
+

∂λ

∂w̃,t

∂w̃,t

∂ε
+

∂λ

∂w̃,xx

∂w̃,xx

∂ε
+

∂λ

∂w̃,xt

∂w̃,xt

∂ε

]
dx dt

+

∫ t2

t1

[
∂Law

∂w̃(a, t)

∂w̃(a, t)

∂ε
+

∂Law

∂w̃,t(a, t)

∂w̃,t(a, t)

∂ε
+

∂Lbw

∂w̃(b, t)

∂w̃(b, t)

∂ε
+

∂Lbw

∂w̃,t(b, t)

∂w̃,t(b, t)

∂ε

]
dt

+

∫ t2

t1

[
∂Laφ

∂w̃,x(a, t)

∂w̃,x(a, t)

∂ε
+

∂Laφ

∂w̃,xt(a, t)

∂w̃,xt(a, t)

∂ε

]
dt

+

∫ t2

t1

[
∂Lbφ

∂w̃,x(b, t)

∂w̃,x(b, t)

∂ε
+

∂Lbφ

∂w̃,xt(b, t)

∂w̃,xt(b, t)

∂ε

]
dt = 0

(A.3)

The varied path is defined as w̃(x, t) = w(x, t) + ε ξ(x, t), where ξ(x, t) is an arbitrary variation and
ε ∈ R is a small scalar parameter, representing the deviation from the stationary path. For ε = 0, the
varied path coincides with the stationary one, i.e.,

w̃(x, t) = w(x, t), w̃,x(x, t) = w,x(x, t), w̃,t(x, t) = w,t(x, t), etc. for ε = 0

and the derivative terms of the varied path simplify as:

∂w̃

∂ε
= ξ(x, t),

∂w̃,x

∂ε
= ξ,x(x, t),

∂w̃,t

∂ε
= ξ,t(x, t), etc. for ε = 0

Introducing above relations into Eq. (A.3), one obtains∫ t2

t1

∫ b

a

[
∂λ

∂w
ξ +

∂λ

∂w,x
ξ,x +

∂λ

∂w,t
ξ,t +

∂λ

∂w,xx
ξ,xx +

∂λ

∂w,xt
ξ,xt

]
dx dt

+

∫ t2

t1

[
∂Law

∂w(a, t)
ξ(a, t) +

∂Law

∂w,t(a, t)
ξ,t(a, t) +

∂Lbw

∂w(b, t)
ξ(b, t) +

∂Lbw

∂w,t(b, t)
ξ,t(b, t)

]
dt

+

∫ t2

t1

[
∂Laφ

∂w,x(a, t)
ξ,x(a, t) +

∂Laφ

∂w,xt(a, t)
ξ,xt(a, t) +

∂Lbφ

∂w,x(b, t)
ξ,x(b, t) +

∂Lbφ

∂w,xt(b, t)
ξ,xt(b, t)

]
dt = 0

(A.4)

Using the chain rule of differentiation to each term to isolate ξ, ξ,x, ξ,t:

∂

∂x

(
∂λ

∂w,x
ξ

)
=

∂

∂x

(
∂λ

∂w,x

)
ξ +

∂λ

∂w,x
ξ,x

⇒ ∂λ

∂w,x
ξ,x =

∂

∂x

(
∂λ

∂w,x
ξ

)
− ∂

∂x

(
∂λ

∂w,x

)
ξ

Similarly,
∂λ

∂w,t
ξ,t =

∂

∂t

(
∂λ

∂w,t
ξ

)
− ∂

∂t

(
∂λ

∂w,t

)
ξ

The chain rule needs to be applied twice on the double derivative term.

∂

∂x

(
∂λ

∂w,xx
ξ,x

)
=

∂λ

∂w,xx
ξ,xx +

∂

∂x

(
∂λ

∂w,xx

)
ξ,x

⇒ ∂λ

∂w,xx
ξ,xx =

∂

∂x

(
∂λ

∂w,xx
ξ,x

)
− ∂

∂x

(
∂λ

∂w,xx

)
ξ,x

(A.5)

But,

∂

∂x

(
∂

∂x

∂λ

∂w,xx
ξ

)
=

∂

∂x

(
∂λ

∂w,xx

)
ξ,x +

∂2

∂x2

(
∂λ

∂w,xx

)
ξ

⇒ ∂

∂x

(
∂λ

∂w,xx

)
ξ,x =

∂

∂x

(
∂

∂x

∂λ

∂w,xx
ξ

)
− ∂2

∂x2

(
∂λ

∂w,xx

)
ξ

(A.6)
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Substituting Eq. (A.6) into Eq. (A.5) yields

∂λ

∂w,xx
ξ,xx =

∂

∂x

(
∂λ

∂w,xx
ξ,x

)
− ∂

∂x

(
∂

∂x

∂λ

∂w,xx
ξ

)
+

∂2

∂x2

(
∂λ

∂w,xx

)
ξ

Similarly,
∂λ

∂w,xt
ξ,xt =

∂

∂t

(
∂λ

∂w,xt
ξ,x

)
− ∂

∂x

(
∂

∂t

∂λ

∂w,xt
ξ

)
+

∂2

∂x∂t

(
∂λ

∂w,xt

)
ξ

The Lagrange functions of the end attachments are treated in a similar way:

∂

∂t

(
∂Law

∂w,t(a, t)
ξ(a, t)

)
=

∂

∂t

(
∂Law

∂w,t(a, t)

)
ξ(a, t) +

∂Law

∂w,t(a, t)
ξ,t(a, t)

⇒ ∂Law

∂w,t(a, t)
ξ,t(a, t) =

∂

∂t

(
∂Law

∂w,t(a, t)
ξ(a, t)

)
− ∂

∂t

(
∂Law

∂w,t(a, t)

)
ξ(a, t)

Similarly,
∂Lbw

∂w,t(b, t)
ξ,t(b, t) =

∂

∂t

(
∂Lbw

∂w,t(b, t)
ξ(b, t)

)
− ∂

∂t

(
∂Lbw

∂w,t(b, t)

)
ξ(b, t)

∂Laφ

∂w,xt(a, t)
ξ,xt(a, t) =

∂

∂t

(
∂Laφ

∂w,xt(a, t)
ξ,x(a, t)

)
− ∂

∂t

(
∂Laφ

∂w,xt(a, t)

)
ξ,x(a, t)

∂Lbφ

∂w,xt(b, t)
ξ,xt(b, t) =

∂

∂t

(
∂Lbφ

∂w,xt(b, t)
ξ,x(b, t)

)
− ∂

∂t

(
∂Lbφ

∂w,xt(b, t)

)
ξ,x(b, t)

Substituting all the above expressions into Eq. (A.4) produces∫ t2

t1

∫ b

a

[
∂λ

∂w
ξ +

∂

∂x

(
∂λ

∂w,x
ξ

)
− ∂

∂x

(
∂λ

∂w,x

)
ξ +

∂

∂t

(
∂λ

∂w,t
ξ

)
− ∂

∂t

(
∂λ

∂w,t

)
ξ

+
∂

∂x

(
∂λ

∂w,xx
ξ,x

)
− ∂

∂x

(
∂

∂x

∂λ

∂w,xx
ξ

)
+

∂2

∂x2

(
∂λ

∂w,xx

)
ξ

+
∂

∂t

(
∂λ

∂w,xt
ξ,x

)
− ∂

∂x

(
∂

∂t

∂λ

∂w,xt
ξ

)
+

∂2

∂x∂t

(
∂λ

∂w,xt

)
ξ

]
dx dt

+

∫ t2

t1

[
∂Law

∂w(a, t)
ξ(a, t) +

∂

∂t

(
∂Law

∂w,t(a, t)
ξ(a, t)

)
− ∂

∂t

(
∂Law

∂w,t(a, t)

)
ξ(a, t)

+
∂Lbw

∂w(b, t)
ξ(b, t) +

∂

∂t

(
∂Lbw

∂w,t(b, t)
ξ(b, t)

)
− ∂

∂t

(
∂Lbw

∂w,t(b, t)

)
ξ(b, t)

]
dt

+

∫ t2

t1

[
∂Laφ

∂w,x(a, t)
ξ,x(a, t) +

∂

∂t

(
∂Laφ

∂w,xt(a, t)
ξ,x(a, t)

)
− ∂

∂t

(
∂Laφ

∂w,xt(a, t)

)
ξ,x(a, t)

+
∂Lbφ

∂w,x(b, t)
ξ,x(b, t) +

∂

∂t

(
∂Lbφ

∂w,xt(b, t)
ξ,x(b, t)

)
− ∂

∂t

(
∂Lbφ

∂w,xt(b, t)

)
ξ,x(b, t)

]
dt = 0

(A.7)

Expanding the terms with time derivatives in the Eq. (A.7) gives,∫ t2

t1

∫ b

a

∂

∂t

(
∂λ

∂w,t
ξ

)
dx dt =

∫ b

a

[∫ t2

t1

∂

∂t

(
∂λ

∂w,t
ξ

)
dt

]
dx

=

∫ b

a

[
∂λ

∂w,t
ξ

∣∣∣∣
t=t2

− ∂λ

∂w,t
ξ

∣∣∣∣
t=t1

]
dx

=

∫ b

a

[
∂λ

∂w,t

∣∣∣∣
t=t2

ξ(x, t2)−
∂λ

∂w,t

∣∣∣∣
t=t1

ξ(x, t1)

]
dx



A.3. Derivation of the Euler-Lagrange Equations 50

But the variation of the varied path, w̃(x, t), at the time instants t = t1 and at t = t2 from the stationary
path is zero because the initial and final configurations of the system are known. This means,

ξ(x, t)
∣∣
t=t1

= 0 and ξ(x, t)
∣∣
t=t2

= 0

⇒
∫ t2

t1

∫ b

a

∂

∂t

(
∂λ

∂w,t
ξ

)
dx dt = 0

Similarly, the following integrals with time derivatives also disappear:∫ t2

t1

∫ b

a

∂

∂t

(
∂λ

∂w,t
ξ

)
dx dt = 0;

∫ t2

t1

∫ b

a

∂

∂t

(
∂λ

∂w,xt
ξ,x

)
dx dt = 0

∫ t2

t1

∂

∂t

(
∂Law

∂w,t(a, t)
ξ(a, t)

)
dt = 0;

∫ t2

t1

∂

∂t

(
∂Lbw

∂w,t(b, t)
ξ(b, t)

)
dt = 0

∫ t2

t1

∂

∂t

(
∂Laφ

∂w,xt(a, t)
ξ,x(a, t)

)
dt = 0;

∫ t2

t1

∂

∂t

(
∂Lbφ

∂w,xt(b, t)
ξ,x(b, t)

)
dt = 0

Expanding the terms with space derivatives in the Eq. (A.7) gives∫ t2

t1

∫ b

a

∂

∂x

(
∂λ

∂w,x
ξ

)
dx dt =

∫ t2

t1

[∫ b

a

∂

∂x

[
∂λ

∂w,x
ξ

]
dx

]
dt

=

∫ t2

t1

[
∂λ

∂w,x
ξ

∣∣∣∣
x=b

− ∂λ

∂w,x
ξ

∣∣∣∣
x=a

]
dt

=

∫ t2

t1

[
∂λ

∂w,x

∣∣∣∣
x=b

ξ(b, t)− ∂λ

∂w,x

∣∣∣∣
x=a

ξ(a, t)

]
dt

Similarly, ∫ t2

t1

∫ b

a

∂

∂x

[
∂λ

∂w,xx
ξ,x

]
dx dt =

∫ t2

t1

[
∂λ

∂w,xx

∣∣∣∣
x=b

ξ,x(b, t)−
∂λ

∂w,xx

∣∣∣∣
x=a

ξ,x(a, t)

]
dt

∫ t2

t1

∫ b

a

∂

∂x

[
∂

∂x

(
∂λ

∂w,xx

)
ξ

]
dx dt =

∫ t2

t1

[
∂

∂x

(
∂λ

∂w,xx

)∣∣∣∣
x=b

ξ(b, t)− ∂

∂x

(
∂λ

∂w,xx

)∣∣∣∣
x=a

ξ(a, t)

]
dt

∫ t2

t1

∫ b

a

∂

∂x

[
∂

∂t

(
∂λ

∂w,xt

)
ξ

]
dx dt =

∫ t2

t1

[
∂

∂t

(
∂λ

∂w,xt

)∣∣∣∣
x=b

ξ(b, t)− ∂

∂t

(
∂λ

∂w,xt

)∣∣∣∣
x=a

ξ(a, t)

]
dt

Substituting the above relations into Eq. (A.7), the final variational form of Hamilton’s principle is ob-
tained:∫ t2

t1

∫ b

a

[
∂λ

∂w
− ∂

∂t

(
∂λ

∂w,t

)
− ∂

∂x

(
∂λ

∂w,x

)
+

∂2

∂x2

(
∂λ

∂w,xx

)
+

∂2

∂x∂t

(
∂λ

∂w,xt

)]
ξ dx dt

+

∫ t2

t1

[(
− ∂λ

∂w,x

∣∣∣∣
x=a

+
∂

∂x

(
∂λ

∂w,xx

) ∣∣∣∣
x=a

+
∂

∂t

(
∂λ

∂w,xt

) ∣∣∣∣
x=a

+
∂Law

∂w(a, t)
− ∂

∂t

(
∂Law

∂w,t(a, t)

))
ξ(a, t)

+

(
∂λ

∂w,x

∣∣∣∣
x=b

− ∂

∂x

(
∂λ

∂w,xx

) ∣∣∣∣
x=b

− ∂

∂t

(
∂λ

∂w,xt

) ∣∣∣∣
x=b

+
∂Lbw

∂w(b, t)
− ∂

∂t

(
∂Lbw

∂w,t(b, t)

))
ξ(b, t)

+

(
− ∂λ

∂w,xx

∣∣∣∣
x=a

+
∂Laφ

∂w,x(a, t)
− ∂

∂t

(
∂Laφ

∂w,xt(a, t)

))
ξ,x(a, t)

+

(
∂λ

∂w,xx

∣∣∣∣
x=b

+
∂Lbφ

∂w,x(b, t)
− ∂

∂t

(
∂Lbφ

∂w,xt(b, t)

))
ξ,x(b, t)

]
dt = 0
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The above equation shall be valid for any arbitrary ξ(x, t). Hence, it results in the Euler-Lagrange
equations as presented below:

A.4. Euler-Lagrange Equations
Equation of Motion: a < x < b

∂λ

∂w
− ∂

∂t

(
∂λ

∂w,t

)
− ∂

∂x

(
∂λ

∂w,x

)
+

∂2

∂x2

(
∂λ

∂w,xx

)
+

∂2

∂x∂t

(
∂λ

∂w,xt

)
= 0 (A.8)

Natural Boundary Conditions (NBCs):

At x = a (left end):

− ∂λ

∂w,x
+

∂

∂x

(
∂λ

∂w,xx

)
+
∂

∂t

(
∂λ

∂w,xt

)
+

∂Law

∂w(a, t)
− ∂

∂t

(
∂Law

∂w,t(a, t)

)
= 0 (A.9)

− ∂λ

∂w,xx
+

∂Laφ

∂w,x(a, t)
− ∂

∂t

(
∂Laφ

∂w,xt(a, t)

)
= 0 (A.10)

At x = b (right end):

∂λ

∂w,x
− ∂

∂x

(
∂λ

∂w,xx

)
− ∂

∂t

(
∂λ

∂w,xt

)
+

∂Lbw

∂w(b, t)
− ∂

∂t

(
∂Lbw

∂w,t(b, t)

)
= 0 (A.11)

∂λ

∂w,xx
+

∂Lbφ

∂w,x(b, t)
− ∂

∂t

(
∂Lbφ

∂w,xt(b, t)

)
= 0 (A.12)



B
Lump Spring Model

The monopile is the most commonly used type of foundation in offshore wind turbines (OWTs). These
structures are continuously subjected to dynamic loads from wind and waves, which can modify the
properties of supporting soil, leading to changes in the stiffness of the foundation. This can shift the nat-
ural frequency of the OWT closer to the excitation frequencies, which may potentially lead to resonance.
For this reason, soil–structure interaction (SSI) must be taken into account.

To capture a range of offshore site conditions, three typical soil profiles are considered. They differ
in the variation of Young’s modulus and soil strength with depth. A uniform profile represents over-
consolidated clay with nearly constant undrained shear strength and stiffness. A linear profile corre-
sponds to normally consolidated clay, where both parameters increase linearly with depth. A parabolic
profile represents sandy soils, where Young’s modulus increases parabolically at moderate strain levels.
Together, these three cases cover the main soil types typically encountered offshore. For the ETHZ
site conditions, the parabolic profile is considered.

Several approaches exist in the literature to model SSI. In this work, a lump springmodel [14] is adopted,
which is based on the monopile head stiffness at the mudline level. The foundation is modeled using
discrete springs that represent different stiffness components. These include a lateral spring (KL), a
rotational spring (KR), a cross-coupling spring (KLR), and a vertical spring (KV ). The stiffness values
for KL, KR, KLR, and KV are calculated using the method proposed by Gazetas [5] for slender piles.
However, this method has not been validated for very large-diameter monopiles, so its application
in such cases should be treated with caution. In this study, static stiffnesses of the foundation are
considered, which are typically valid for low-frequency loadings.

The following table, which is reproduced from [14], provides the expressions that are used to calculate
the monopile head stiffnesses at the mudline level.

Table B.1: Formulation of monopile head stiffness for lump spring model.

Pile head
stiffness Constant Linear Parabolic

KL Ed
sd
(

Ep

Ed
s

)0.21
0.6Ed

sd
(

Ep

Ed
s

)0.35
0.8Ed

sd
(

Ep

Ed
s

)0.28
KR 0.15Ed

sd
3
(

Ep

Ed
s

)0.75
0.15Ed

sd
3
(

Ep

Ed
s

)0.80
0.15Ed

sd
3
(

Ep

Ed
s

)0.77
KLR −0.22Ed

sd
2
(

Ep

Ed
s

)0.50
−0.17Ed

sd
2
(

Ep

Ed
s

)0.60
−0.24Ed

sd
2
(

Ep

Ed
s

)0.53

KV 1.9Ed
sd
(
L
d

) 2
3
(

Ep

Ed
s

)−(L
d )(

Ep

Ed
s

)
1.8Ed

sd
(
L
d

)0.55 (Ep

Ed
s

)−(L
d )(

Ep

Ed
s

)
1.9Ed

sd
(
L
d

)0.60 (Ep

Ed
s

)−(L
d )(

Ep

Ed
s

)
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where Ed
s is the soil Young’s modulus at a depth equal to the pile diameter Dp. L = Le and d = Dp are

the monopile embedded length and outer diameter, respectively. Ep is the monopile Young’s modulus.



C
Assumed Modes Method

C.1. Approximate Methods
In Chapter 2, the mathematical model of a rotating cantilever beam inside a geotechnical centrifuge is
derived, which is described by a linear, homogeneous system of equations. The equations mathemat-
ically describe a free vibration problem, and hence, the stability of the system can be fully determined
by its eigenvalues. The governing equations (Eq. (2.6)) contain non-constant coefficients and coupled
degrees of freedom (DOFs), and as a result, closed-form solutions are not available. In such cases,
approximate methods provide eigenvalues and eigenvectors required for a stability analysis.

A standard approach is to assume the solution in the form of a finite series of known (assumed) functions
with unknown coefficients. This replaces the continuous beam model with an n-DOF discrete system.
Solving the resulting eigenvalue problem yields n approximate eigenfrequencies and eigenvectors. The
assumed functions are generally chosen to satisfy the essential (geometric) boundary conditions, and
when possible, the natural boundary conditions as well. Accuracy improves as n increases. A detailed
description of approximate methods can be found in [11].

C.2. Assumed-Modes Method (AMM)
One possibility is to represent the solution of the free vibration problem as a linear combination of
modes, which are functions of spatial coordinates, multiplied by time-dependent functions. These as-
sumed modes may satisfy both the geometric and natural boundary conditions at both ends, but not
necessarily the governing differential equation. The assumed solution is then substituted into the differ-
ential equation, and an eigenvalue problem can be formulated. In the subsequent sections, the AMM
is used to perform stability analysis of chordwise motion of the rotating cantilever beam.

C.3. Chordwise Motion
The governing equations of chordwise motion, which describe the axial and lateral bending motions,
are presented again for the reader’s convenience. In this representation, the problematic Coriolis terms
from the boundary conditions are brought into the governing differential equations using the Dirac delta
formulation. This formulation results in decoupled boundary conditions which can be satisfied by the
assumed modes. Note that soil-structure interaction is ignored.
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Governing Differential Equations:

ρA
∂2u

∂t2
−2ρAΩ

∂v

∂t
− EA

∂2u

∂x2
− ρAΩ2u− δ(x− L)

(
2MΩ

∂v

∂t

)
= 0

ρA
∂2v

∂t2
+2ρAΩ

∂u

∂t
+ EIz

∂4v

∂x4
+ ρIzΩ

2 ∂
2v

∂x2
+

∂

∂x

[
T (x)

∂v

∂x

]
− ρIz

∂4v

∂x2∂t2
− ρAΩ2v + δ(x− L)

(
2MΩ

∂u

∂t

)
= 0

(C.1)

The boundary conditions at x = 0 are

u(x, t)
∣∣
x=0

= 0, v(x, t)
∣∣
x=0

= 0, and ∂v(x, t)

∂x

∣∣∣∣∣
x=0

= 0 (C.2)

The boundary conditions at x = L are

M
∂2u

∂t2
+ EA

∂u

∂x
−MΩ2u = 0

M
∂2v

∂t2
− EIz

∂3v

∂x3
−MΩ2v − T (L)

∂v

∂x
− ρIzΩ

2 ∂v

∂x
+ ρIz

∂3v

∂x∂t2
= 0

− EIz
∂2v

∂x2
− J

∂3v

∂x∂t2
= 0

(C.3)

where
T (x) =MrΩ2 + ρAΩ2

[
(r + L)(L− x)−

(
L2 − x2

2

)]
The following form of solution is assumed for the axial and lateral bending displacements

u(x, t) =

N∑
j=1

Uj(x) q
U
j (t) and v(x, t) =

N∑
j=1

Vj(x) q
V
j (t), (C.4)

where qUj (t) and qVj (t) are the time-dependent generalized coordinates, Uj(x) and Vj(x) are the as-
sumed modes that satisfy the boundary conditions listed in Eq. (C.2) and (C.3), and N is the number
of assumed modes. For simplicity, the same N number of modes is assumed for both axial and lateral
displacements. Note that these assumed modes do not satisfy the governing differential equations.

Substituting the above solution forms into the governing differential equation of axial motion as shown
in Eq. (C.1) gives

N∑
j=1

[
ρAUj(x) q̈

U
j (t)− 2 ρAΩVj(x) q̇

V
j (t)− EAU ′′

j (x) q
U
j (t)

− ρAΩ2 Uj(x) q
U
j (t)− δ(x− L)

(
2MΩVj(x) q̇

V
j (t)

)]
= 0

It can be proved that the assumedmodes are orthogonal to each other. Using the orthogonality property
to eliminate space dependence and utilizing the sifting property of the Dirac function, one obtains

N∑
j=1

∫ L

0

[
ρAUj(x)Ui(x) q̈

U
j (t)− 2 ρAΩVj(x)Ui(x) q̇

V
j (t)− EAU ′′

j (x)Ui(x) q
U
j (t)

−ρAΩ2 Uj(x)Ui(x) q
U
j (t)

]
dx−

N∑
j=1

(
2MΩVj(L)Ui(L)q̇

V
j (t)

)
= 0

(C.5)
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Applying integration by parts generates the following boundary terms,

EA

∫ L

0

U ′′
j (x)Ui(x) dx = EA

[
U ′
j(x)Ui(x)

]L
0
− EA

∫ L

0

U ′
j(x)U

′
i(x) dx.

But the assumed modes satisfy the boundary conditions. Substituting the assumed solution forms as
given in Eq. (C.4) into the boundary conditions of the axial direction (Eq. (C.3) and rearranging gives

−EAU ′
j(L) q

U
j =M Uj(L) q̈

U
j −MΩ2 Uj(L) q

U
j

Substituting the above expression in place of the boundary term at x = L in the Eq. (C.5) and noting
that Ui(0) = 0 gives the final weak form of axial motion.

N∑
j=1

∫ L

0

(
ρAUjUi q̈j(t)− 2ρAΩVjUi q̇j(t) + EAU ′

jU
′
i qj(t)− ρAΩ2 UjUi qj(t)

)
dx

+

N∑
j=1

[
M Uj(L)Ui(L) q̈j(t)− 2MΩVj(L)Ui(L) q̇j(t)−MΩ2 Uj(L)Ui(L) qj(t)

]
= 0.

(C.6)

A similar procedure is used to derive the weak form of the governing differential equation of the lateral
bending displacement

N∑
j=1

∫ L

0

(
ρAVjVi q̈j + 2ρAΩUjVi q̇j − ρAΩ2 VjVi qj + EI V ′′

j V
′′
i qj − ρI Ω2 V ′

jV
′
i qj + ρI V ′

jV
′
i q̈j

)
dx

+

N∑
j=1

[
J V ′

j (L)V
′
i (L) q̈j + M Vj(L)Vi(L) q̈j + 2MΩUj(L)Vi(L) q̇j − MΩ2 Vj(L)Vi(L) qj

]
= 0.

(C.7)

The two Eqs. (C.6) and (C.7) can be represented in matrix form as

MQ̈(t) +CQ̇(t) +KQ(t) = 0

where the generalized time-coordinates are expressed as

qU (t) =
[
qU1 (t), . . . , q

U
N (t)

]⊤
, qV (t) =

[
qV1 (t), . . . , qVN (t)

]⊤
, and Q(t) =

[
qU (t)

qV (t)

]
and the mass, gyroscopic, and stiffness matrices are respectively,

M =

[
MUU 0

0 MV V

]
, C =

[
0 − 2ΩGUV

2ΩGV U 0

]
, and K =

[
KUU 0

0 KV V

]
.

Note that the matrices, M, C, and K are of size 2N × 2N .

The elements of the mass matrices are given by,(
MUU

)
ij
=

∫ L

0

ρAUiUj dx + M Ui(L)Uj(L),

(
KUU

)
ij
=

∫ L

0

EAU ′
iU

′
j dx − Ω2

(∫ L

0

ρAUiUj dx + M Ui(L)Uj(L)

)
.

The elements of the stiffness matrices are given by,(
MV V

)
ij
=

∫ L

0

(
ρAViVj + ρIz V

′
i V

′
j

)
dx + M Vi(L)Vj(L) + J V ′

i (L)V
′
j (L),

(
KV V

)
ij
=

∫ L

0

(
EIz V

′′
i V

′′
j − T (x)V ′

i V
′
j

)
dx

− Ω2

(∫ L

0

(
ρAViVj + ρIz V

′
i V

′
j

)
dx + M Vi(L)Vj(L)

)
.
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The elements of the gyroscopic matrices are given by,

(
GUV

)
ij
=

∫ L

0

ρAUiVj dx + M Ui(L)Vj(L),

(
GV U

)
ij
=

∫ L

0

ρAUjVi dx + M Uj(L)Vi(L).

The next step is to perform an eigenvalue analysis of the matrix equation. However, since C is an
unsymmetric matrix, the matrix equation needs to be cast into a first-order state-space form. More
details of eigenvalue analysis can be found in [12].

Let X = Q(t) and Y = Q̇(t) be the state variables. The 2N dimensional state vector, z(t), is then
defined as,

z(t) =

[
Y

X

]
The state equations can then be written as

Ẋ = Y and MẎ = −CY −KX (C.8)

which can be converted into the following compact form

Aż(t) + Bz(t) = 0

with
A =

[
M 0

0 I

]
, and B =

[
C K

−I 0

]
,

The above matrix equation can be rearranged as

ż =

[
−M−1C −M−1K

I 0

]
︸ ︷︷ ︸

F

z. (C.9)

where F is the 2N×2N coefficient matrix. The solution of the above equation has the exponential form

z(t) = Z0 e
st (C.10)

where s is a constant scalar quantity and Z0 is a constant vector. Introducing the above equation into
Eq. (C.9) and dividing by est, the eigenvalue problem is obtained

FZ0 = sZ0 (C.11)

The solution of the above equation, in general, can be complex. Therefore, s can be represented as
σ+ iω, where σ and ω denote the real and imaginary parts of the eigenvalue, s, respectively. i =

√
−1

denotes the imaginary unit. The stability of the system is then determined by the real part, σ. The
system exhibits a divergence type of instability if σ > 0 and ω = 0, and a flutter type of instability when
σ > 0 and ω ̸= 0.

C.4. Eigenvalue Analysis and Convergence Study
Ten assumed modes are considered for both axial and lateral bending motions to derive the numerical
results of the first three eigenvalues of the system. Note that the assumed modes ideally have to satisfy
the following equations. Since the boundary conditions depend on Ω, the assumed modes need to be
updated as Ω keeps changing. However, for simplicity, the assumed modes are chosen for Ω = 0.
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Governing differential equations of the assumed modes:

ρA
∂2u

∂t2
− EA

∂2u

∂x2
− ρAΩ2u = 0

ρA
∂2v

∂t2
+ EIz

∂4v

∂x4
+ ρIzΩ

2 ∂
2v

∂x2
+MrΩ2 ∂

2v

∂x2
− ρIz

∂4v

∂x2∂t2
− ρAΩ2v = 0

The boundary conditions satisfied by the assumed modes at x = 0 are

u(x, t)
∣∣
x=0

= 0, v(x, t)
∣∣
x=0

= 0, and ∂v(x, t)

∂x

∣∣∣∣∣
x=0

= 0

The boundary conditions satisfied by the assumed modes at x = L are

M
∂2u

∂t2
+ EA

∂u

∂x
−MΩ2u = 0

M
∂2v

∂t2
− EIz

∂3v

∂x3
−MΩ2v −MrΩ2 ∂v

∂x
− ρIzΩ

2 ∂v

∂x
+ ρIz

∂3v

∂x∂t2
= 0

− EIz
∂2v

∂x2
− J

∂3v

∂x∂t2
= 0

Ideally, the assumed modes depend on the Ω value because the boundary conditions depend on the
Ω. However, for simplicity, the assumed modes are chosen based on Ω = 0. Tables C.1, C.2, and C.3
present the value of the imaginary part of the eigenvalue, ω, including the effect of the Coriolis terms.
Note that the value of the real part, σ is zero. The following conclusions can be drawn

1. As the number of assumed modes increases, the eigenfrequencies converge. Convergence is
faster at smaller Ω values and at near critical Ω, more modes are required for better accuracy.

2. The first three eigenvalues show divergence-type instability, tending to zero at approximately
Ω ≈ 60.43 rad s−1, Ω ≈ 191.36 rad s−1, and Ω ≈ 3232.08 rad s−1.

3. For the first two (lateral bending) modes, the AMM with N = 10 agrees closely with the numerical
results across Ω, with noticeable deviations close to the critical velocities.

4. For the third (axial) mode, AMM and numerical trends differ: AMM shows an initial increase and
then a decrease to zero at Ω ≈ 3232.08 rad s−1, while the numerical result decreases monotoni-
cally.

Table C.1: First eigenfrequency (rad s−1) for different values of Ω for ETHZ case (With the Coriolis terms).

No. of modes Angular velocity, Ω (rad s−1)
0 10 30 50 60 60.428

1 138.735 136.832 120.534 78.401 19.752 10.979
2 138.735 136.832 120.508 78.083 16.848 3.317
3 138.735 136.832 120.506 78.055 16.577 1.299
4 138.735 136.832 120.505 78.053 16.551 0.886
5 138.735 136.832 120.505 78.051 16.538 0.595
6 138.735 136.832 120.505 78.051 16.535 0.506
7 138.735 136.832 120.505 78.051 16.534 0.458
8 138.735 136.832 120.505 78.051 16.533 0.441
9 138.735 136.832 120.505 78.051 16.533 0.432
10 138.735 136.832 120.505 78.051 16.533 0.428

Numerical 138.735 136.837 120.546 78.125 16.555 0.421
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Table C.2: Second eigenfrequency (rad s−1) for different values of Ω for ETHZ case (With the Coriolis terms).

No. of Angular velocity, Ω (rad s−1)
modes 0 10 60 120 180 191.25 191.358

1 – – – – – – –
2 1882.86 1880.18 1783.97 1448.10 581.21 179.86 173.83
3 1882.86 1880.18 1783.95 1447.71 574.70 153.48 146.41
4 1882.86 1880.18 1783.88 1446.24 554.87 71.69 56.05
5 1882.86 1880.18 1783.88 1446.15 553.56 62.84 44.26
6 1882.86 1880.18 1783.87 1445.99 551.80 50.05 22.96
7 1882.86 1880.18 1783.87 1445.97 551.53 47.78 17.52
8 1882.86 1880.18 1783.87 1445.95 551.30 45.84 11.27
9 1882.86 1880.18 1783.87 1445.94 551.24 45.33 8.98
10 1882.86 1880.18 1783.87 1445.94 551.19 44.89 6.46

Numerical 1882.86 1880.19 1783.99 1446.37 552.58 44.78 1.65

Table C.3: Third eigenfrequency (rad s−1) for different values of Ω for ETHZ case (With the Coriolis terms).

No. of modes Angular velocity, Ω (rad s−1)
0 10 60 600 1200 2400 3000 3200 3232 3232.08

1 3232 3232 3234 3363 3545 3259 2152 898 47 12
2 3232 3232 3234 3366 3561 3335 2273 987 53 13
3 3232 3232 3234 3367 3566 3359 2315 1023 55 14
4 3232 3232 3234 3368 3569 3371 2336 1041 56 14
5 3232 3232 3234 3368 3570 3378 2350 1053 57 14
6 3232 3232 3234 3370 3572 3384 2360 1062 58 14
7 3232 3232 3234 3369 3573 3388 2367 1070 58 15
8 3232 3232 3234 3368 3573 3392 2373 1075 59 15
9 3232 3232 3234 3368 3575 3395 2378 1080 59 15
10 3232 3232 3234 3368 3578 3397 2382 1083 59 15

Numerical 3232 3232 3229 2978 2511 1619 891 334 17 4

C.5. Effect of the Coriolis Terms
To understand the effect of the Coriolis terms, the stability analysis of chordwise motion is conducted
by ignoring the Coriolis terms from all the governing equations. Tables C.4, C.5, and C.6 present the
value of the imaginary part of the eigenvalue, ω without the Coriolis terms. Note that the value of the
real part, σ is zero. The following conclusions can be drawn:

1. The critical angular velocities of the first three modes are essentially unchanged relative to the
case with the Coriolis terms.

2. Without Coriolis coupling, axial and lateral motions decouple. The axial equation has constant
coefficients and hence, using the axial eigenfunctions as assumed modes that already satisfy the
boundary conditions yields immediate convergence.
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Table C.4: First eigenfrequency (rad s−1) for different values of Ω for ETHZ case (Without the Coriolis terms).

No. of modes Angular velocity, Ω (rad s−1)
0 10 30 50 60 60.428

1 138.74 136.83 120.55 78.44 19.77 10.99
2 138.74 136.83 120.53 78.12 16.86 3.32
3 138.74 136.83 120.53 78.09 16.59 1.30
4 138.74 136.83 120.53 78.09 16.56 0.89
5 138.74 136.83 120.53 78.09 16.55 0.60
6 138.74 136.83 120.53 78.09 16.55 0.51
7 138.74 136.83 120.53 78.09 16.54 0.46
8 138.74 136.83 120.53 78.09 16.54 0.44
9 138.74 136.83 120.53 78.09 16.54 0.43
10 138.74 136.83 120.53 78.09 16.54 0.43

Numerical 138.74 136.83 120.53 78.09 16.54 0.42

Table C.5: Second eigenfrequency (rad s−1) for different values of Ω for ETHZ case (Without the Coriolis terms).

No. of Angular velocity, Ω (rad s−1)
modes 0 10 60 120 180 191.25 191.358

1 – – – – – – –
2 1882.86 1880.19 1784.03 1448.32 581.94 180.58 174.53
3 1882.86 1880.19 1784.01 1447.93 575.42 154.10 147.01
4 1882.86 1880.19 1783.94 1446.46 555.59 72.00 56.30
5 1882.86 1880.19 1783.94 1446.37 554.28 63.11 44.45
6 1882.86 1880.19 1783.93 1446.21 552.52 50.26 23.06
7 1882.86 1880.19 1783.93 1446.19 552.25 47.99 17.60
8 1882.86 1880.19 1783.93 1446.17 552.02 46.04 11.31
9 1882.86 1880.19 1783.93 1446.16 551.96 45.52 9.02
10 1882.86 1880.19 1783.93 1446.16 551.91 45.09 6.49

Numerical 1882.86 1880.19 1783.93 1446.15 551.85 44.58 0.00

Table C.6: Third eigenfrequency (rad s−1) for different values of Ω for ETHZ case (Without the Coriolis terms).

No. of Angular velocity, Ω (rad s−1)
modes 0 600 1200 2400 3000 3200 3232 3232.08

1 3232.09 3175.91 3001.06 2164.80 1202.65 454.29 23.48 5.85
5 3232.09 3175.91 3001.06 2164.80 1202.65 454.29 23.48 5.85
10 3232.09 3175.91 3001.06 2164.80 1202.65 454.29 23.48 5.85

Numerical 3232.09 3175.91 3001.06 2164.80 1202.65 454.29 23.48 5.85

Effect of angular velocity on modeshapes

Figure C.1 shows how the first eigenshape changes as the angular velocity increases. Ten assumed
modes are used for both axial and lateral motion. The shapes vary with increasing Ω, due to the effect
of axial compression induced by the centrifugal force. Moreover, the effect of the Coriolis terms on the
modeshapes is negligible since the modeshapes remain essentially unchanged up to the critical speed,
even when the Coriolis terms are neglected.



C.5. Effect of the Coriolis Terms 61

(a) First modeshape (Lateral bending), With Coriolis (b) First modeshape (Lateral bending), Without Coriolis

Figure C.1: Variation of the first eigenshape with angular velocity (with and without the Coriolis terms).



D
Nonlinear EOMs

D.1. Nonlinear Potential Energy
In Section 2.2, a linearized version of total potential energy is presented, which resulted in a linear set
of EOMs. To obtain these, the nonlinear terms that result after substituting the expression of Green-
Lagrange strain are neglected. In this appendix, a full set of non-linear EOMs is derived.

For small strains, the general nonlinear expression of the axial strain is given by the Green–Lagrange
formulation as

εxx = ux,x +
1

2
(u2x,x + u2y,x + u2z,x)

The total strain energy is given by

1

2
E

∫
V

ε2xxdV

Let T (x) be the axial compression force in the beam acting along the centroid of the cross section. T (x)
is assumed to be positive and needs to be solved from the static equilibrium of the axial motion. The
potential energy due to T (x) is given by:∫ L

0

(
−1

2
T (x)(v,x)

2 − 1

2
T (x)(w,x)

2

)
dx

The following relations are used,

Iy =

∫
A

z2 dA, Iz =

∫
A

y2 dA, Jy =

∫
A

z4 dA, Jz =

∫
A

y4 dA, Jyz =

∫
A

y2z2 dA (D.1)

62
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D.2. Lagrange Function
Substituting the Green-Lagrange strain formulation into the total strain energy and including the poten-
tial energy due to axial compression results in the following Lagrange function is obtained

λ =

[
1

2
ρA

(
∂u

∂t

)2

+
1

2
ρIy

(
∂2w

∂x∂t

)2

+
1

2
ρIz

(
∂2v

∂x ∂t

)2

+
1

2
ρAΩ2v2 − ρAΩ v

(
∂u

∂t

)
+ ρIzΩ

(
∂2v

∂x ∂t

)
+

1

2
ρA

(
∂v

∂t

)2

+
1

2
ρAΩ2u2 +

1

2
ρIyΩ

2

(
∂w

∂x

)2

+
1

2
ρIzΩ

2

(
∂v

∂x

)2

− ρAΩ(r + L− x)

(
∂v

∂t

)
+ ρAΩu

(
∂v

∂t

)
− ρAΩ2(r + L− x)u+

1

2
ρA

(
∂w

∂t

)2
]

−

[
1

2
EA

(
∂u

∂x

)2

+
1

2
EIy

(
∂2w

∂x2

)2

+
1

2
EIz

(
∂2v

∂x2

)2

+
1

2
EA

(
∂u

∂x

)3

+
3

2
EIy

(
∂u

∂x

)(
∂2w

∂x2

)2

+
3

2
EIz

(
∂u

∂x

)(
∂2v

∂x2

)2

+
1

2
EA

(
∂u

∂x

)(
∂v

∂x

)2

+
1

2
EA

(
∂u

∂x

)(
∂w

∂x

)2

+
1

8
EA

(
∂u

∂x

)4

+
3

4
EIy

(
∂u

∂x

)2(
∂2w

∂x2

)2

+
3

4
EIz

(
∂u

∂x

)2(
∂2v

∂x2

)2

+
1

8
EJy

(
∂2w

∂x2

)4

+
1

8
EJz

(
∂2v

∂x2

)4

+
3

4
EJyz

(
∂2w

∂x2

)2(
∂2v

∂x2

)2

+
1

8
EA

(
∂v

∂x

)4

+
1

8
EA

(
∂w

∂x

)4

+
1

4
EA

(
∂u

∂x

)2(
∂v

∂x

)2

+
1

4
EIy

(
∂2w

∂x2

)2(
∂v

∂x

)2

+
1

4
EIz

(
∂2v

∂x2

)2(
∂v

∂x

)2

+
1

4
EA

(
∂u

∂x

)2(
∂w

∂x

)2

+
1

4
EIy

(
∂2w

∂x2

)2(
∂w

∂x

)2

+
1

4
EIz

(
∂2v

∂x2

)2(
∂w

∂x

)2

+
1

4
EA

(
∂v

∂x

)2(
∂w

∂x

)2

− 1

2
T (x)

(
∂v

∂x

)2

− 1

2
T (x)

(
∂w

∂x

)2
]

(D.2)

D.3. Nonlinear EOMs
Applying the Euler-Lagrange equations produces the following set of nonlinear EOMs:
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Nonlinear EOM for axial displacement:

ρA
∂2u

∂t2
− 2ρAΩ

∂v

∂t
− EA

∂2u

∂x2
− ρAΩ2u

− ∂

∂x

[
3

2
EA

(
∂u

∂x

)2

+
3

2
EIy

(
∂2w

∂x2

)2

+
3

2
EIz

(
∂2v

∂x2

)2

+
1

2
EA

(
∂v

∂x

)2

+
1

2
EA

(
∂w

∂x

)2

+
1

2
EA

(
∂u

∂x

)3

+
3

2
EIy

∂u

∂x

(
∂2w

∂x2

)2

+
3

2
EIz

∂u

∂x

(
∂2v

∂x2

)2

+
1

2
EA

∂u

∂x

(
∂v

∂x

)2

+
1

2
EA

∂u

∂x

(
∂w

∂x

)2
]
= −ρAΩ2(r + L− x).

(D.3)

Nonlinear EOM for lateral displacement:
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Nonlinear EOM for vertical displacement:
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The natural boundary conditions at x = L are given by:
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Axial force equilibrium at x = L
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Shear force equilibrium along lateral direction at x = L
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Moment equilibrium along lateral direction at x = L
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Shear force equilibrium along vertical direction at x = L
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Moment equilibrium along vertical direction at x = L

− EIy
∂2w

∂x2
− J

∂3w

∂x∂t2
− 3EIy

∂u

∂x

∂2w

∂x2
− 3

2
EIy

(
∂u

∂x

)2
∂2w

∂x2

− 1

2
EJy

(
∂2w

∂x2

)3

− 3

2
EJyz

(
∂2v

∂x2

)2
∂2w

∂x2

− 1

2
EIy

(
∂v

∂x

)2
∂2w

∂x2
− 1

2
EIy

(
∂w

∂x

)2
∂2w

∂x2
= 0.

(D.10)

Note that ignoring the nonlinear terms from the above equations generates the linearized EOMs as
presented in Chapter 2.



E
Rigid Point Mass Approximation

In this study, the small-scale model of a monopile-founded OWT tested inside a geotechnical centrifuge
is represented as a cantilever beam based on Rayleigh beam theory, with the soil stiffness idealized
through a lumped spring model. An alternative representation, henceforth called as ”rigid point mass
approximation”, is to model the system as a rigid point mass connected to the soil by a massless rigid
beam, where the soil stiffness is again described using translational and rotational springs, analogous
to the lumped spring approach. This formulation results in three translational and two rotational degrees
of freedom (torsion neglected). The eigenfrequencies obtained from this simplified model are expected
to coincide with those from the beam model when the beam density, ρ, is assumed to be very small
and the Young’s modulus, E, is taken to be very large. The results of this comparison are summarized
in the following table.

Table E.1: Input parameters for the beam model to simulate rigid point mass approximation.

Parameter Symbol Value Unit
Beam length L 1.0 m
Young’s modulus E 6.89× 1015 Pa
Second moment of area I 2.179× 10−7 m4

Density ρ 2.7 kg/m3

Cross–sectional area A 3.70× 10−4 m2

Centrifuge radius r 3.40625 m
Tip mass Mtip 2.1 kg

Tip mass inertia Jtip 1.45× 10−7 kgm2

Soil spring stiffness values (E = 28MPa at 0.09m depth)
Lateral stiffness KL 1.299× 107 Nm−1

Rotational stiffness KR 1.070× 106 Nmrad−1

Cross–coupling stiffness KLR −2.475× 106 N
Vertical stiffness KV 1.034× 107 Nm−1

The following table shows the results by using the above set of parameter values.
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Table E.2: Buckling results for the rigid material case.

Mode of motion Instability type Ωcr (rad s−1)

Flapwise bending Divergence 289.2
Chordwise bending (decoupled) Divergence 242.6
Axial motion (decoupled) Divergence 2219
Coupled chordwise motion Divergence (lateral bending) 242.6

The following figure presents the eigenshapes for the rigid point mass approximation.



F
Eigenshapes of Chordwise Motion

In this appendix, the evolution of eigenshapes of chordwise motion is plotted as a function of angular
velocity for the ETHZ case, without SSI, using numerical analysis. No noticeable difference is visible
due to the exclusion of the Coriolis terms.

(a) With Coriolis term (b) Without Coriolis term

Figure F.1: First eigenshape of chordwise motion with and without the Coriolis terms for various angular velocities

(a) With Coriolis term (b) Without Coriolis term

Figure F.2: Second eigenshape of chordwise motion with and without the Coriolis terms for various angular velocities
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(a) With Coriolis term (b) Without Coriolis term

Figure F.3: Third eigenshape of chordwise motion with and without the Coriolis terms for various angular velocities

(a) With Coriolis term (b) Without Coriolis term

Figure F.4: Fourth eigenshape of chordwise motion with and without the Coriolis terms for various angular velocities
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