AUTOMATIC GENERATION OF RASTER-BASED HEIGHT DATA FOR THE NETHERLANDS BASED ON THE AHN2 DATA SET

Graduation presentation MSc Geomatics Kees Jonker 27-01-2015

Outline

- Introduction
- State of the art
- Research question
- Methodology
- Implementation
- Conclusion
- Future work

Introduction Digital terrain modeling

Digital terrain modeling

- Digital surface model
- Digital elevation model
- Normalized digital surface model
 - Digital building model
 - Canopy height model

- Lidar
 - Active remote sensing technology
 - Precise 3-dimensional point-based information
 - Topographic/bathymetric LiDAR
 - One or more returns

The AHN2 data set

- Actueel hoogtebestand Nederland 2
- Topographic LiDAR
- ~640 billion points
 - 6-10 points/m²
- Collection of ground information

The AHN2 data set

- Available as open data
- LAZ-file
- Meta data
 - XYZ coordinates for each point
- Downloadable in tiles
 - 1372 tiles
 - 5 x 6.25 km

State of the art Existing raster-based height maps

- PDOK Inverse distance weighting
- OHN Filling 'holes' within the PDOK height maps

State of the art PDOK

- DEM
- DSM
- Spatial resolution = 0.5 meter

	14											1			12	1		\mathbb{R}^{n}_{P}			1	
													1									26
											1						1.1	2				
			1 - 1 - 1			1																
									•													
			2123 1						• •			1.										
			et in							<u>.</u>												
			. X											10								
					14				<i>9</i> .										15			
1								62														
							2				2.5											
19	1		1	$(1)_{ij}$		2.5													1.1		1	
				1					14										1			1.1.1
1.12 1.11	1997) 1997)		2	e sere Set se																		
															· · ·		:				1. 11 11 - 11	
		1			5 - 1 19 14	1997 1997										<u></u>				er er Forsk		
			1. 1												1.	1. 						
		14	1.1			11 - 14 19																
	12	- 12																		1.1°		
						120												44				
10	2							1.1										14. 14.				
1.1	1975				1.1	1.1		1.	12.	1.00		199	19	2.44	1.5	199	11.1	1.0	1.12	1.5	1.1	

2.4			83						199				1	1.17	123		144	2.5	$\mathcal{M}_{\mathcal{A}}$			24	
613 (A) 1920 -		125	1.1		80 a. 4 1925 - 19		125-5	12.12		11.11	1997 - 1997 1997 - 1997 - 1997			11.1		1.1	1.11				10.00	1111	1.1
			11			+1					(2)		1.1	1944		100	С. ÷.,	$d^{(i)}$	往往	92			1.8%
1.1		197	1.00	1.1	12.0		1.1	1.1	14			100	1.00	ND -	1.1	1.1	1.1	1.13	22.1			1.1	1111
	14.1		$r = r_1^{-1}$	646		1.1	125		64 A.	- 14				di e	19	1,45		$\mathcal{A}^{(1)}$	201	11.1		2.8	1.1
(1, 2)		11	18		22		111		H_{1}^{*}		1.11		1.	(2, 3)			367	14	$\mathcal{A}_{i,j}^{(n)}$	$M_{\rm e}$	24		
6 () () 1		-4	1 - 1 - 1 - 1	1.14	1990 - 1997 1997 - 1997					1.0	10.00	ta per se Cara de la	10.00			100		1.00		14 M 14 14 J 14 M			1.1
			$\left\{ i \right\}$	82										64	1.1		12						
		1.1								n tari A	18							26					
			t yr i	a an Alar	1.15		100		1.1		dir.	2.1		1.11						1			1.15
1.15	e setta	1.1			111			1.11	e., .		125					2010		<u>1997</u>					
14					26		27		2.											đ			
					÷.,					1.1		27											
121		2010) 1993 - 1993 1993 - 1993		e te State	lan a		11.1		11		1.1	1.1	1.1.1	111	e e Status	1.21.5				1000	1000	1.1	1.1
$M_{\rm e}$				111				$d^{2}d^{2}$		345	817		1.1			14 J.			$\mathcal{F}_{\mathcal{F}}$		4994) Ali	19	
1.1		1.1	140			-18		1.11	28				100								1.5		14111
	1.00	1996			1.1		1211		1.4.1		1.1	1.10					<u>.</u>		100 A.	12.1	1.44		1.1.1
(\cdot)										141	de la			19		125				2.1			
		20									1							1					
										100	11						1						1.11
- 1	1.1	tin da series Series da series da s	100	1997) 1997)	100 A.C.	1.11	1.1		1.11	11.1			1.1	1.	1.1.1		1.1	1.11	1.1	1111	10.0	-	1.1.1
S(x)		1.1		$[2, 1]_{\mathcal{H}}$		1.1									S. 3	111							
11				1.17	98. 1		14.55		10	1111	$\mathcal{F}_{\mathcal{F}}$		1414	100			182		$S \geq 1$	11.2			-
1.1	1.1	22	444	1.14	1.1		19.1	1.11	1.1	11.1				1.1	1.1.1	11.1	110					1.	-
															10				1.1				
11	14				11			14			1		12.5	80					1		$[g_{ij}]$	100	1
1997) 1997 - 1997	1.00	1.1	1.1	1911	1.1	1.1.1.1	11.11			1.1	1.1		11.1		1.1	1.1.1	1000	1.0	1997 - 1997 1997 - 1997	1.1	1.44	с. 1. 1. 1. 1. 1.	
			1.0		91.5	14.			140		199								1.1		$\frac{1}{2}$ $\frac{1}{2}$		
	1.1				1.11	1.1		180	12.	111	1.00		12.1	1814	1.14			1.1	1.1	1.12	1.5	1.1	1.1

• Inverse distance weighting

• Inverse distance weighting

Not-filled DSM Aerial photograph

State of the art OHN (Kramer et al., 2014)

- Object Hoogte Nederland
- Filling holes within raster-based height maps of PDOK
- External 2D geodata sets
 - TOP10NL water bodies
 - BAG buildings
 - Aerial photography vegetation
- Filling of remaining holes using inverse distance weighting

State of the art OHN (Kramer et al., 2014)

State of the art Evaluation

PDOK

- 'Holes' within height data (no-data values)
- Height is often wrongly determined
- Presence of dynamic objects

OHN (Kramer et al., 2014)

- Filling of incomplete height data ('holes')
 - Modification of 'correct' height data

Research question

What quantitative degree of quality can be achieved for raster-based height maps generated from AHN2 point cloud data by the application of an automated process?

Methodology Proposed workflow

- Pipelining
- Filtering
- Spatial interpolation
- Post processing
- Visualization

Methodology Pipelining

Methodology Pipelining

Divide-and-conquer strategy

- Tile size
 - Controls granularity of pipeline

Methodology Pipelining

Divide-and-conquer strategy

- Tile size
 - Controls granularity of pipeline
- Buffer size
 - Results of decomposition similar to non-tiled data

- Filtering ground points from non-ground points
- Filtering of features from non ground points
 - Buildings
 - Vegetation

No filtering procedure exists that can guarantee a 100% correct classification of LiDAR points

- Filtering ground points from non-ground points
 - Insignificant number of points are filtered as being non-ground
 - Above-ground points are classified as ground

Additional filtering of ground points does not provide a better classification

- Filtering of features from non ground points
 - Contour/segmentation based object-oriented classification algorithm [Hug et al. ,2004]
 - Standard deviation points can have for the planar region they share

- DEM
 - Interpolation based on a TIN
 - Sink filling
 - Filling of remaining holes
- DBM
 - Edge-constrain interpolation
- CHM
 - Partial canopy height model generation

Raster resolution = 0.25 meter

- Cutoff threshold
 - Longest edge of a triangle

- Remaining holes
 - Water bodies
 - Building footprints
 - Local deviations

- Remaining holes
 - Water bodies
 - Building footprints
 - Local deviations

- Remaining holes
 - Water bodies
 - Slope
 - B-REP
 - Breadth-first search

- Remaining holes
 - Water bodies
 - Slope
 - B-REP
 - Breadth-first search

- Remaining holes
 - Water bodies
 - Building footprints
 - Local deviations

Remaining holes

- Water bodies
- Building footprints
- Local deviations

- Edge-constrained interpolation
- Extracting building boundaries
 - From classified LiDAR data
 - Concavity

- Edge-constrained interpolation
- Extracting building boundaries
 - From classified LiDAR data
 - Concavity
 - Holes

- Edge-constrained interpolation
- Extracting building boundaries
 - From classified LiDAR data
 - Concavity
 - Holes
 - From the BAG data set

- Edge-constrained interpolation
- Extracting building boundaries
 - From classified LiDAR data
 - Concavity
 - Holes
 - From the BAG data set

- Edge-constrained interpolation
- Extracting building boundaries
 - From classified LiDAR data
 - Concavity
 - Holes
 - From the BAG data set

- Edge-constrained interpolation
- Extracting building boundaries
 - From classified LiDAR data
 - Concavity
 - Holes
 - From the BAG data set
 - Temporal accuracy: 1 year

- Edge-constrained interpolation
- Extracting building boundaries
 - From classified LiDAR data
 - Concavity
 - Holes
 - From the BAG data set
 - Temporal accuracy: 1 year

- Edge-constrained interpolation
- Extracting building boundaries
- Point cloud manipulation
 - Thickening
 - Thinning

- Edge-constrained interpolation
 - Based on a TIN
- Extracting building boundaries
- Point cloud manipulation

- Vegetation
- Interpolation based on a TIN

- Raster resampling
 - Direct interpolation
 - Indirect interpolation

- Raster resampling
 - Direct interpolation
 - Indirect interpolation
- Raster smoothing

- Raster resampling
 - Direct interpolation
 - Indirect interpolation
- Raster smoothing

- Raster resampling
- Virtual raster generation
 - Composition of tiled data
 - Removal of buffers
 - Georeferencing

Methodology Raster visualization
Methodology Raster visualization

- Hypsometric tinting
- Hill shading
- Image overview generation
 - Multi-scale visualization

Methodology Implementation

Methodology Implementation – test data sets

Methodology Implementation – DEM

Methodology Implementation – DSM

Methodology Implementation – DSM

What quantitative degree of quality can be achieved for raster-based height maps generated from AHN2 point cloud data by the application of an automated process?

Quality

- No ground truth height data available
- With respect to raster-based height maps
 - Not-filled DEM and DSM (PDOK)
 - Filled DEM (PDOK)
 - DEM and DSM (OHN)

Quality

- ISO19157: Geographic Information Quality principles
 - Completeness
 - Logical consistency
 - Positional accuracy
 - Temporal accuracy
 - Thematic accuracy

Quality

- ISO19157: Geographic Information Quality principles
 - Completeness
 - Logical consistency
 - Positional accuracy
 - Temporal accuracy
 - Thematic accuracy

Quality – completeness

DEM

	Dronten		Kerk	trade	Leide	rdorp	's-Gravenhage	
	C (%)	O (%)	C (%)	O (%)	C (%)	O (%)	C (%)	O (%)
Not-filled DEM	81.00	19.00	79.00	21.00	63.05	36.94	88.24	11.76
Filled DEM	82.87	17.13	80.32	19.62	64.64	35-35	88.63	11.37
OHN DEM	100.00	0.00	100.00	0.00	100.00	0.00	100.00	0.00
My DEM	100.00	0.00	100.00	0.00	100.00	0.00	100.00	0.00

DSM

	Dronten		Kerk	rade	Leide	rdorp	's-Gravenhage	
	C (%)	O (%)	C (%)	O (%)	C (%)	O (%)	C (%)	O (%)
Not-filled DSM	98.31	1.69	94.49	5.51	96.81	3.19	92.72	7.28
OHN DSM	100.00	0.00	100.00	0.00	100.00	0.00	100.00	0.00
My DSM	100.00	0.00	100.00	0.00	100.00	0.00	100.00	0.00

Quality – positional accuracy

DEM

	Dronten			Kerkrade			Leiderdorp			's-Gravenhage		
	ΔH_{max}	RMSE	SD	ΔH_{max}	RMSE	SD	ΔH_{max}	RM SE	SD	ΔH_{max}	RMSE	SD
Not-filled DEM	0.00	0.0000	0.0000	0.00	0.0000	0.0000	0.00	0.0000	0.0000	0.00	0.0000	0.0000
OHN DEM	2.36	0.0568	0.3121	5.59	0.0859	0.4812	2.25	0.0330	0.1981	5.63	0.0509	0.4543
My DEM	1.08	0.0054	0.0229	5.71	0.0185	0.1186	1.04	0.0154	0.0445	6.68	0.0301	0.2292
My DEM	2.87	0.0666	0.3139	5.72	0.2188	0.8078	2.48	0.1126	0.3098	10.19	0.4951	1.8893
(w.r.t. OHN DEM)												

DSM

	Dronten			Kerkrade			Leiderdorp			's-Gravenhage		
	ΔH_{max}	RMSE	SD	ΔH_{max}	RMSE	SD	ΔH_{max}	RMSE	SD	ΔH_{max}	RMSE	SD
OHN DSM	40.05	3.5546	7.5510	21.22	0.1469	1.1118	76.25	0.3935	47111	36.58	0.1622	1.6135
My DSM	39.81	3.9822	8.1147	40.246	47380	7.9163	81.88	1.3701	6.33422	133.40	4 4689	13.5727
My DSM	39.81	3.9853	8.1164	40.246	47520	7.9275	81.88	1.3367	58172	13271	46733	13.9945
(w.r.t. OHN DSM)												

Quality – thematic accuracy

DEM

	Dronten	Kerkrade	Leiderdorp	's-Gravenhage
Ground	97.67%	99.33%	99.69%	99.48%
Water	85.71%	83.72%	56.00%	76.92%

DSM

	Dronten	Kerkrade	Leiderdorp	's-Gravenhage
Ground	97.67%	99.33%	99.69%	99.48%
Water	85.71%	83.72%	56.00%	76.92%
Buildings	100.00%	100.00%	94.74%	91.09%
Vegetation	98.00%	100.00%	100.00%	100.00%

What quantitative degree of quality can be achieved for raster-based height maps generated from AHN2 point cloud data by the application of an automated process?

What quantitative degree of quality can be achieved for raster-based height maps generated from AHN2 point cloud data by the application of an automated process?

The presented methodology can generate raster-based height maps having a high completeness, positional accuracy and a high thematic accuracy*, detecting more object classes with respect to currently existing raster-based height maps.

*Except water

- Improve Sink filling
 - Adjacent tiles
 - Combine slope-based data with external geodata sets

- Optimize building footprints (Alharthy, et al., 2002)

- Improve point classification
- Statistical filtering of raster-based data

Thank you for your attention!

