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Success Likelihood Index Model (SLIM) is one of the widely-used methods in human reliability assessment 

especially when data is insufficient. However, this method suffers from uncertainty as it heavily relies on expert 

judgment for determining the model parameters such as the rates and weights of the performance shaping factors. 

 

The present study is aimed at using Bayesian Network (BN) for improving the performance of SLIM in handling 

the uncertainty arising from experts opinion and lack of data. To this end, SLIM is combined with BN to form the 

so-called BN-SLIM technique. We applied both SLIM and BN-SLIM models to a hypothetical example and 

compared the results. It is shown that BN-SLIM is able to provide a better estimation of human error probability 

by considering dependencies. The probability updating feature of BN-SLIM in particular makes it possible to use 

new information to update the prior beliefs about the rates of the performance shaping factors, thus updating the 

resultant human error probabilities. 

Keywords: Human error probability; Uncertainty; Bayesian network; Success likelihood index model 

 

1. Introduction 

Studies in different industries illustrate that 
human factor is the main cause of industrial 
accidents that leads to the damaging environment 
and costing billions of dollars. Human factor 
contributes to 60 to 90% of the disasters in 
different industries such as nuclear power plant, 
aerospace systems, marine industry, oil and gas 
facilities (Reason, 1990). Therefore, identifying 
potential human error and estimating their 
occurrence probability in the operation of 
complex systems and processes are crucial.  

Human Reliability Analysis (HRA) is a 
systematic approach to analyze and identify the 
causes and consequences of human errors in 
different human-machine systems (Mkrtchyan et 
al., 2015). An integral part of HRA is assessing 
the Performance Shaping Factors (PSFs), i.e., the 
factors influencing Human Error Probability 
(HEP). In other words, PSFs are environmental, 
personal or task-oriented factors having positive 
or negative effects on human performance in 
different contexts (Griffith and Mahadevan, 
2011). 

During the last decades, a lot of research has 
been conducted to improve HRA methods,  
resulting in two main generations of HRA. In the 

first generation methods, such as Technique for 
Human Error Rate Prediction (THERP) (Swain 
and Guttmann, 1983), Human Cognition 
Reliability (HRC) (Hannaman et al., 1985), and 
Human Error Assessment and Reduction 
Technique (HEART) (Williams, 1992), human is 
considered as a mechanical or electrical 
(depending on the context) component who 
inherently has deficiencies (Pasquale et al, 
2013).  

These methods focus on the characteristics of 
tasks much more than the effects of the context 
and the environment in estimating the HEP. The 
second generation methods were developed to 
improve the application of the first generation. 

Cognitive Reliability and Error analysis 
methods (CREAM) (Hollnagel, 1998), 
Standardized Plant Analysis Risk Human 
Reliability Analysis (SPAR-H) (Gertman et al., 
2005) and Information, Decision and Action in 
Crew context (IDAC) (Chang and Mosleh, 2007) 
are some famous methods in which  the operator 
cognition and context are considered as the 
major factors modifying the HEP.  

However, both generations have some 
limitations such as being highly subjective, 
lacking a causal mechanism to link PSFs to the 
operator performance (Ekanem et al, 2016), and 
not being easily compatible with other 
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probabilistic safety assessment models (Groth 
and Swiler, 2013). 

Among the HRA methods, Success 
Likelihood Index Model (SLIM), proposed by 
Embrey (1984), is one of the most flexible and 
commonly used techniques for estimating HEP. 
This method can estimate HEP under the 
combined effects of a small set of PSFs. 
DiMattia et al. (2005) used SLIM to calculate 
HEP during offshore platform muster; similarly, 
Musharraf et al. (2013) compared the results of 
BN and SLIM for the same case study. Noroozi 
et al. (2013) and Islam et al. (2017) employed 
SLIM to estimate HEP in maintenance 
procedures.  

SLIM suffers from the foregoing drawbacks 
of the 1st and 2nd generations of HRA techniques.  
More importantly, in case of  data scarcity, the 
parameters of SLIM such as the rates and 
weights of PSFs are determined by experts, 
exposing the assessment of HEP to degrees of 
epistemic uncertainty.  

To alleviate the limitations and to improve the 
performance of SLIM, we used Bayesian 
Network (BN) as a probabilistic graphical model 
to handle the uncertainty and consider causal 
probabilistic relationships (Pearl, 1986). BN can 
help decrease the uncertainties when the updated 
beliefs in each simulation are substituted for 
prior beliefs in the previous simulations, 
converging a priori subjective estimates to a 
posteriori objective results (Khakzad et al., 
2011).  

Although the performance of some HRA 
methods such as CREAM and SPAR-H have 
been improved using BN (Kim et al., 1986; 
Groth and Swiler, 2013), no attempts have been 
made with regard to SLIM. In this study, SLIM 
is mapped into BN to form a so-called BN-SLIM 
technique. we apply BN-SLIM to a hypothetical 
example to show how the proposed model 
outperforms SLIM by handling dependencies 
and performing belief updating. 

The outline of this paper is as follow. Section 
2 provides an overview of SLIM and BN 
techniques. The development steps of BN-SLIM 
are described in Section 3. In Section 4, the 
results of applying the developed model to a case 
study are presented and compared with SLIM. 
Conclusions are given in Section 5.  

2. Background 

2.1 Success Likelihood Index Model (SLIM) 

SLIM (Embrey, 1984) is one of the flexible 
methods in HRA. This method is based on 
calculating the likelihood of human error 
occurrence under the combined effects of PSFs. 
In this method, weights and rates of PSFs define 

how each PSF contribute to the success 
likelihood index of a task. A rate shows to what 
extent a corresponding PSF is desirable for a 
task. A weight shows the relative importance of 
the PSF to the task. Once the rates and weights 
are determined, Eq. (1) can be employed to 
calculate the Success Likelihood Index (SLI) 
(Kirwan, 1994):  

=         (1)  

where Ri and Wi are the rate and the normalized 
weight, respectively, of i-th PSF. Ri is an integer 
between 1 to 9 with 1 for the worst and 9 for the 
best conditions of PSFi. Considering that several 
PSFs contribute to the SLI in a certain task, the 
largest weight is assigned to the most important 
PSF, and so on. To estimate HEP, the 
logarithmic relationship in Eq. (2) can be used 
(Kirwan, 1994): 

( ) =  +      (2) 

where parameters a and b can be determined by 
two tasks for which the HEPs and the 
corresponding SLIs are known. 

2.2 Bayesian Network (BN) 

BN is a probabilistic graphical model for 
reasoning under uncertainty. The qualitative part 
of BN is a directed acyclic graph composed of 
nodes and arcs. The nodes display random 
variables with various states, and the arcs 
represent the causal relationships between the 
nodes (Pearl, 1986).  

Conditional Probability Tables (CPTs) are the 
quantitative part of BN which make it a powerful 
reasoning tool. CPTs quantify the conditional 
dependency of a child node given all possible 
combinations of the states of its parent nodes; 
instead of CPT, marginal probabilities are 
assigned to root nodes (i.e., nodes with no 
parent). Regarding the chain rule, the joint 
probability distribution of nodes P(U) is 
calculated as: 

( ) = ( | ( ))    (3)    

where Pa(Ai) is the parent set of Ai, and P(U) 
 

(Fenton and Neil, 2012). 
Using Bayes' theorem, it is possible to update 

the prior probability of events by observing new 
evidence E as an exclusive feature of BN 
(Kjaerulff and Madsen, 2008): 

( | ) =
( | ) ( )

( )
=

( , )

( , )
     (4) 
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3. BN-SLIM 

To estimate the HEP in SLIM, the rates and the 
weights of the PSFs must be determined. In the 
absence of relevant data, which is usually the 
case, subjective measuring of rates and weights 
by experts can increase the uncertainty of SLIM 
outcomes. To alleviate this drawback, we map 
SLIM into an equivalent BN to develop an 
innovative technique, BN-SLIM. The benefit of 
doing so, is twofold: 

(i) The developed technique enables experts 
to express their uncertainty in the form of 
probability distributions of rates instead of 
deterministic point estimates; given new 
evidence about HEP, the probability distribution 
of the rates can thus be updated, which in turn 
can help decrease the uncertainties.   

(ii) An operation may include a number of 
tasks to be fulfilled in parallel or series. Since 
tasks may share common PSFs, there would be 
dependencies among the SLIs of the tasks. Such 
dependencies, if not taken into account (as is the 
case in SLIM), can lead to an overestimation or 
underestimation of the total HEP. The developed 
technique, thanks to the capability of BN in 
considering dependencies, is expected to address 
this drawback of SLIM. 

Moreover, BN as an effective technique for 
data fusion and aggregation can be used to 
aggregate multiple experts opinions about the 
parameters of SLIM. 

3.1. Model development 

A simplified structure of BN-SLIM only for one 
task is depicted in Fig. 1 in three levels. The first 
level includes PSFs identified for a specific task. 
Each PSF is modelled as a node with several 
states indicating the rates. The number of the 
states can thus be equal to the number of rates 
(1 9). 

The probabilities assigned to states of PSF 
node can be elicited from the probability 
distribution of the rates identified, for instance, 
via sampling or by experts. The number of nodes 
in this level depends on the number of PSFs 
contributing to HEP.  

 

 

Fig. 1. The structure of BN-SLIM 

3.2. Model quantification 

After the structure of the BN-SLIM is 
completed, the conditional probabilities of 
variables should be identified. The CPT of a PSF 
node encodes the probability distribution of its 
rates. This probability distribution can be 
developed using empirical data or expert 
opinion. The CPT of the SLI node is an identity 
square matrix the number of cells of which equal 
to the multiplication of the number of states 
(rates) of its parent nodes, i.e., PSFs.  

Since the HEP node has just one parent (SLI), 
the size of its CPT is equal to the number of 
states of SLI nodes. The CPT can be populated 
according to the Eq. (2) for each value of the SLI 
node.  

4. An example 

 Assume a procedure consisting of two 
sequential tasks: Task 1 and Task 2. The task 
nodes have states 1 and 2 referring to error 
occurrence and no error occurrence, respectively. 
Experience (Exp) and Training (Tr) are 
considered as the main PSFs influencing the 
success likelihood in performing the tasks. 
According to the explanation in Section 3, the 
structure of corresponding BN-SLIM can be 
developed as in Fig.2(a) using GeNIe software. 

To determine the network parameters, three 
rates are considered for each PSF (Table 1). The 
rates can be equal to one (the worst condition) if 
the operator has no experience or has not 
attended any training course; equal to 5 if the 
operator has at least 5 years of experience or has 
attended half of the required training course, 
equal to 9 if the operator has more than ten years 
of experience or has attended all required 
training courses. The probability distributions of 
the rates have been presented in Table 2. The 
weights of the PSFs are defined in Table 3.  

 
 

Level 3: using Eq. (2) 

Level 2: using Eq. (1) 

Level 1: rates (R) 

 



312 Proceedings of the 29th European Safety and Reliability Conference

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Developed BN-SLIM. (a) The structure where dependencies between HEP1 and HEP2 are considered. (b) 

The structure where dependencies are ignored, equivalent to SLIM. States are defined in Table 1.

Taking into account the rates of the PSFs, 
nine SLI values for each task can be calculated 
using Eq. (1): 

1 =  0.7 × + {0.3 × } =

{0.7 × 1, 0.7 × 5, 0.7 × 9} + {0.3 × 1, 0.3 ×

5, 0.3 × 9} =

{1.0, 2.2, 3.4, 3.8, 5.0, 6.2, 6.6, 7.8, 9.0}  (5) 

2 =  0.4 × + {0.6 × } =

{0.4 × 1, 0.4 × 5, 0.4 × 9} + {0.6 × 1, 0.6 ×

5, 0.6 × 9} = {1.0, 3.4, 5.8, 2.6, 5.0, 7.4, 4.2,

6.6, 9.0}     (6) 

 

Table 1. State of the variable in the BN in Fig. 2(a) 

State Exp Tr SLI1 SLI2 Task1 Task2 

1 1 1 1.0 1.0 Error Error 

2 5 5 2.2 3.4 
No 

error 
No 

error 

3 9 9 3.4 5.8   

4   3.8 2.6   
5   5.0 5.0   

6   6.2 7.4   
7   6.6 4.3   

8   7.8 6.6   

9   9.0 9.0   

Table 2. Specified rates of PSFs and their probabilities 

PSF Exp  Tr 

Rate 1 5 9  1 5 9 

P(rate) 0.4 0.4 0.2  0.6 0.1 0.3 

Table 3. Weights of the PSFs for each task 

 Exp Tr 

Task1 0.7 0.3 

Task2 0.4 0.6 

 
The nine values of SLI1 and SLI2 are 

corresponding to States1 to 9 in Table 1. Table 4 
presents the CPT of nodes SLI1 and SLI2 which 
is an identity matrix with ones in the main 
diagonal making a relationship between a SLI 

(a) (b) 
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value and its corresponding rates combination. 
For example, the one in the second row of this 
matrix illustrates that the SLI1 value 2.2 (State2) 
was calculated using rate 1 (State1) of Exp node 
and rate 5 (State2) of Tr node.  

It is worth noting that the model can be 
refined so that the rates of PSF nodes could vary 
from 1 to 9 (i.e., 9 states for each PSF node). 
Such modification, however, may significantly 
increase the size of the CPTs of SLI nodes.   

Table 4. CPT of SLI1 and SLI2 nodes with two 

parents, Exp and Tr. 

Exp 1  2  3 

Tr 1 2 3  1 2 3  1 2 3 

1 1 0 0  0 0 0  0 0 0 

2 0 1 0  0 0 0  0 0 0 
3 0 0 1  0 0 0  0 0 0 

4 0 0 0  1 0 0  0 0 0 

5 0 0 0  0 1 0  0 0 0 
6 0 0 0  0 0 1  0 0 0 

7 0 0 0  0 0 0  1 0 0 

8 0 0 0  0 0 0  0 1 0 
9 0 0 0  0 0 0  0 0 1 

To compute the error probability of tasks in 
the third level of the network, the CPTs of Task1 
and Task2 were populated using HEPs calculated 
based on SLI values (Eq. (2)) where =

3.48 and = 0.128 were calculated with the 
lowest and highest HEPs of 10-3 and 0.6 and the 
corresponding SLIs of 9 and 1, respectively. The 
conditional probabilities of HEP nodes are 
presented in Tables 5 and 6.  

In Table 5, for instance, ( 1 =
1| 1 = 1) = 10 . × . =

0.6. Since the tasks should be performed 
sequentially (in series), OR gate can be used to 
calculate the total HEP of the tasks.  

As can be seen from Fig.2(a), the HEPs of 
Tasks 1 and 2 have been calculated as 0.18 and 
0.20, respectively, while the total HEP has been 
estimated as 0.29. 

Table 5. CPT of Task1 given SLI 1 

SLI1  1 2 3 4 5 6 7 8 9 

1 0.60 0.23 0.09 0.06 0.02 0.01 0.01 0.003 0.001 

2 0.40 0.77 0.91 0.94 0.98 0.99 0.99 0.997 0.999 

Table 6. CPT of Task2 given SLI2 

SLI2  1 2 3 4 5 6 7 8 9 

1 0.60 0.09 0.01 0.17 0.02 0.004 0.05 0.01 0.001 

2 0.40 0.91 0.99 0.83 0.98 0.996 0.95 0.99 0.999 

 

4.1. Belief updating  

One of the main abilities of BN-SLIM is 
probability updating given new information. In 
other words, if we know the procedure is failed 
because of human error, BN-SLIM can 
determine which PSF rate is likely to present, 
while the conventional SLIM is not able to do so. 
Figs. 3 and 4 depict the updated probability 
distributions of the rates of experience and 
training, respectively, given the evidence of the 
failed procedure.  

As shown in Fig.3, for node Exp, the updated 
probability of rate 1 (State1) is 0.78 and the 
updated probability of rate 5 (State2) is 0.2, 
implying a higher contribution of inexperienced 
operators to the error than moderately 
experienced operators.  

Fig.4 also illustrates that the updated 
probabilities of rate 9 (State3) and rate 5 (State2) 
of node Tr have the same contribution although 
rate 9 was deemed more likely according to its 
prior belief. This ability of BN-SLIM can help 
HRA analysts determine the most probable root 
causes of the error. 

 

Fig. 3. Prior and updating probability distribution of 

experience rates 

 

Fig. 4. Prior and updating probability distribution of 

training rates 
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4.2. Dependency analysis 

As previously mentioned, there could be possible 
dependencies among the SLIs of the tasks due to 
the common PSFs. Our proposed model can 
consider these dependencies thanks to BN.  

To make the discussion more concrete, the 
BN structure in Fig.2(b) is used to calculate the 
Total_HEP in which the dependencies between 
Task 1 and Task 2 due to common Exp and Tr 
nodes are not taken into account.  

Fig.2(b) is similar to a SLIM model where 
common PSFs and conditional dependencies 
between tasks cannot be considered, whereas 
Fig. 2(a) allows such dependencies to be taken 
into account.  

In the BN of Fig.2(b), the probability of 
Total_HEP is calculated as 0.34, whereas in the 
other case it is calculated as 0.29. These 
outcomes show that ignoring dependencies for 
this example results in an overestimation of total 
HEP in the procedure. 

4.3. Comparison with SLIM 

The BN-SLIM in Fig.2(a) can be applied to 
predict HEP even when the rates of the PSFs are 
given deterministically, as is the case in 
conventional SLIM. To compare the results of 
BN-SLIM and SLIM, we applied the evidence 
RExp = 1 to node Exp (State1) and RTr = 9 to node 
Tr (State3). Results in Table 7 illustrate that the 
models have the same outcomes in this case. So, 
in the absence of probability distributions of the 
rates, the BN-SLIM model can still provide a 
quick estimation of HEP if the all steps of 
conventional SLIM are considered in the model. 

Table 7. Comparison of the HEPs calculated by BN-

SLIM and SLIM. 

BN-SLIM  SLIM 

( 1|

= 1,

= 3) 

( 2|

= 1,

= 3) 

 

P(Task1) P(Task2) 

0.09 0.01  0.09 0.01 

5. Conclusions 

This paper has presented a new approach, BN-
SLIM, for improving the performance of SLIM 
methodology using Bayesian network. To show 
the outperformance of the BN-SLIM over 
conventional SLIM, we applied the model to a 
hypothetical example.  

The results showed that the developed model 
is able to provide a better estimation of HEPs by 
considering conditional dependencies. Moreover, 
BN-SLIM is better able to handle uncertainty by 

considering probabilistic rates rather than 
deterministic ones.  

Updating the prior information about PSFs is 
a particular feature of this method which could 
help HRA analysts reason about the rate of PSFs 
given new evidence about human performance, 
and specify these parameters more accurately. 

Updating the prior rates could also be an 
efficient way to reduce the uncertainty of expert 
judgment, especially when the experts with high 
knowledge are not available, or judgment 
elicitation is time-consuming due to a large 
number of tasks or relevant PSFs. 
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