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Abstract

In anti-cancer therapy, antiangiogenic treatments are applied and take effect on the vas-
cularization of tissue. To evaluate the efficacy of treatments, we adopt two methods to solve
the physiological pharmacokinetic model’s parameter estimation problem, providing dis-
crete, partial, and noisy observations of stochastic differential equations. One is to compute
the exact likelihood using the Kalman filter recursion and implement numerical maximiza-
tion [1]. The other is a novel Markov Chain Monte Carlo algorithm to estimate parameters
using guided proposals [2] in a Bayesian setup, namely Backward Filtering with Forward
Guiding algorithm [3]. The identifiability of the model and parameters [4] are established
before parametric inference. We extend the BFFG algorithm to include an automatic optimal
kernel finding scheme [5] for the Metropolis-Hastings-within-Gibbs sampler. In compari-
son, a Conjugate Gradient algorithm is applied when employing the maximum likelihood
method. Besides performing parameter estimation via different methods separately, joint es-
timation is performed using the Bayesian approach. After that, time delay and Arterial Input
Function in the statistical model are estimated via change point detection [6] and piece-wise
inference. We illustrate the goodness-of-fit of estimates and advantages of the bayesian ap-
proach towards the method using the maximum likelihood.
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1 Introduction

1.1 Background Information

Stochastic mathematical models are becoming an essential tool for interpreting biological and
physiological problems [7]. As these models are parametric, with improving techniques for in-
ferring the stochastic models, it becomes a significant issue to calibrate model parameters relying
on experimental data. From a biological perspective, this dissertation aims to build a model for
tissue microvascularization in anti-cancer therapy [1] such that it can explain the available data.
We consider a bidimensional Ornstein-Uhlenbeck process to describe the microcirculation. Us-
ing a stochastic system avoids the limitations of a deterministic differential system to capture
random fluctuations. So we can establish the physiologically based pharmacokinetic model we
study in this thesis. This pharmacokinetic model can be defined using a bi-dimensional stochastic
differential equation (SDE) by adding a Brownian motion to the deterministic model.

As a prelude to the parameter estimation experiment, we establish an identifiability test in
advance since parameter estimates from a non-identifiable model may be unreliable [7]. Identifi-
ability analysis for stochastic models is a newly-developed technique in [4], and it is well adapted
to the pharmacokinetic model in this thesis. With identifiability established, we get down to
parameter inference. There is abundant literature about the statistical theory of estimating pa-
rameters of ODEs and SDEs. Some methods have been proposed for estimating parameters of
discretely observed SDEs, including the Maximum Likelihood Estimator and Expectation Maxi-
mization algorithm [1]. However, parametric inference based on discrete-time observations poses
difficulties in the case of partially observed discrete noisy data. One problem is that actual data
observed can only be obtained in discrete forms, as partial and noisy observations, whilst the
targeted stochastic model is continuous. And the lack of an explicit likelihood makes these meth-
ods time-consuming and challenging to operate in high-dimensional cases. Therefore, a new
approach to dealing with a delicate stochastic system with discrete, partial, and noisy data based
on a low computational cost is necessitated. Another difficulty is estimating the volatility terms.
Previous research succeeded in estimating the drift parameters of the pharmacokinetic model only
by employing methods including the Maximum Likelihood Estimation with Kalman-filtering or
Expectation Maximization schemes [1]. Therefore, estimating the diffusive parameters and the
Arterial Input Function (AIF), as well as a joint estimation of all the parameters, attracts our
attention.

To deal with the parameter estimation problems given discrete-time missing data without re-
lying on discretization, we introduce a newly-proposed method called guided proposals [2] for
simulating a multi-dimensional diffusion bridge. Then Bayesian estimation can be conducted on
auxiliary processes [8] that are discretely observed multi-dimensional diffusion processes. An
efficient algorithm to recover the paths of the diffusion process and estimate parameters is de-
rived in [3], which is a guided proposal-dependent Backward Filtering Forward Guiding (BFFG)
algorithm to sample from the exact smoothing distributions. In this manuscript, the Bayesian
method using the BFFG algorithm is adapted to estimate the parameters in the pharmacokinetic
model. To reduce the computational complexity, we improve the BFFG algorithm to automat-
ically find the optimal proposal kernel in the MCMC step by including a scaled algorithm for
Metropolis-Hastings-within-Gibbs sampler [5]. Furthermore, considering estimating the initial
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time delay and AIF, we need to detect change points to isolate experimental data. The subject
of Change Point Detection has been investigated for many years. Implemented algorithms for
detecting multiple change points of a given time series [9] and the segmentation method [6] is
adopted for estimating the AIF in this thesis. While the Least Squares method [10] is used for
detecting the time delay. We illustrate the usage and benefit of the Bayesian approach by cal-
ibrating these methods to experimental data and comparing the result obtained using the MLE
method given the same setting.

1.2 Thesis Framework

The organization of this manuscript is given as follows. In Chapter 2, we describe the physi-
ological pharmacokinetic model we study throughout the thesis and introduce all the notations
used in this thesis. After that, some mathematical knowledge is recapped for easy comprehen-
sion. Then we present all the applied methodologies in chapter 3, including the identifiability
analysis, parameter estimation method using Maximum Likelihood with Kalman filtering, pa-
rameter estimation method using the Bayesian approach, the scaled method for finding the opti-
mal tuning proposals in Adaptive Markov Chains, and the Change-point Estimation Schemes for
estimating Arterial Input Functions. After explaining the theories, the implementations of the
above methodologies are elaborated in Chapter 4, with detailed input parameters and initial set-
tings stated. Finally, Chapter 5 discusses the results obtained from implementing the parameter
inference schemes on the model and summarizes all achieved results to make conclusions and
suggestions for further research.
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2 Preliminaries.

2.1 Model Description

This manuscript targets a physiological pharmacokinetic model, which was used to estimate tu-
mor micro-circulation [11]. A bi-dimensional deterministic differential system usually models
this micro-circulation. Just like the injection of a contrast agent, Vistarem is investigated by
recording the evolution of the concentration of the contrast agent over time. This physiological
pharmacokinetic model is applied, which describes the distribution of the contrast agent. The
system includes four compartments in total, two of which in the middle can be split into two
subcompartments. Firstly, the plasma compartments include arterial and venous plasma. Then
comes the tumor, which can be divided into two parts, capillaries, and interstitium. And finally,
we split the rest of the body into subcompartments, capillaries, and interstitium. The contrast
agent pulsates in the plasma and interstitium cells, and the schematic of the model is shown in
Fig.1.

Figure 1: Description of the model
The contrast agent was introduced into the caudal vein by injection, physiologically equiv-

alent to an injection shortly before the left ventricle with a time delay. We use an infusion in
arterial blood to approximate the injection flow, with the in-and-out flows represented by arrows
in Fig.1. The general framework of the contrast agent flow process is shown clearly in the above
figure. It demonstrates that the contrast agent is firstly injected into the vein and then transits
into the artery. Next, the contrast agent arrives in arterial plasma, with a tissue perfusion flow
(denoted as 𝐹𝑡𝑝). Eventually, the contrast agent is eliminated from venous plasma proportionally
to the contrast agent in plasma with the perfusion flow 𝐹𝑡𝑝. In the intermediate step, the exchange
of flows happens. The contrast agent flows into and out of two compartments: the rest of the body
and the tumor. The quantity of the contrast agent exchanged from plasma through interstitium
equals the product of the contrast agent concentration in plasma and the volume transfer constant.
Furthermore, the amount of contrast agent exchanged from interstitium through plasma equals
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the product of the contrast agent concentration and the volume transfer constant.
More precisely, we use this pharmacokinetic model to describe the kinetics of the contrast

agent in the voxel with two compartments (plasma and interstitial water). The deterministic
version of the pharmacokinetic model can be illustrated in the form of an ODE system defined
as:

⎧

⎪

⎨

⎪

⎩

d𝑃 (𝑡) = (
𝐹𝑡𝑝

1 − ℎ
𝛿(𝑡) − (

𝐹𝑡𝑝 +𝐾𝑡𝑟𝑎𝑛𝑠

𝑉𝑃
)𝑃 (𝑡) +

𝐾𝑡𝑟𝑎𝑛𝑠

𝑉𝐼
𝐼(𝑡))𝑑𝑡,

d𝐼(𝑡) = (
𝐾𝑡𝑟𝑎𝑛𝑠

𝑉𝑃
𝑃 (𝑡) − (

𝐾𝑡𝑟𝑎𝑛𝑠

𝑉𝐼
)𝐼(𝑡))𝑑𝑡.

(1)

Here 𝛿(𝑡), 𝑃 (𝑡), 𝐼(𝑡) all denote the quantity of contrast agent at time 𝑡, but in the artery (namely
the "Arterial Input Function"), the plasma and the interstitium respectively. ℎ is the hematocrit
rate set to ℎ = 0.4, and 1 − ℎ is the volume of the artery. 𝑉𝑃 and 𝑉𝐼 denote the volume of
plasma and interstitium, respectively. According to the biological constraints, we request 0 ≤
𝑉𝑃 (1 − ℎ), 𝑉𝐼 ≤ 100 and 𝑉𝑃 (1 − ℎ) + 𝑉𝐼 ≤ 100. 𝐹𝑡𝑝 is the perfusion flow, and 𝐾𝑡𝑟𝑎𝑛𝑠 is the
volume transfer constant. The contrast agent is supposed to be injected in vein at time 𝑡0, and the
initial condition at time 𝑡0 = 0 is set as 𝑃 (0) = 0, 𝐼(0) = 0.

It is transformed into a stochastic differential equation, which is our targeted model, by adding
a Brownian motion to the differential equation on each compartment. To get a concise form, we
use reparametrization by assuming:

𝛼 =
𝐹𝑡𝑝

1 − ℎ
, 𝛽 =

𝐹𝑡𝑝

𝑉𝑃
, 𝜆 =

𝐾𝑡𝑟𝑎𝑛𝑠

𝑉𝑃
, 𝑘 =

𝐾𝑡𝑟𝑎𝑛𝑠

𝑉𝑃
+

𝐾𝑡𝑟𝑎𝑛𝑠

𝑉𝐼
. (2)

This contributes to the following system of differential equations [1], which is the stochastic
version of the targeted pharmacokinetic model:

{

d𝑃 (𝑡) = (𝛼𝛿(𝑡) − (𝜆 + 𝛽)𝑃 (𝑡) + (𝑘 − 𝜆)𝐼(𝑡)) d𝑡 + 𝜎1 d𝑊1(𝑡),
d𝐼(𝑡) = (𝜆𝑃 (𝑡) − (𝑘 − 𝜆)𝐼(𝑡)) d𝑡 + 𝜎2 d𝑊2(𝑡),

(3)

where 𝑃 (𝑡), 𝐼(𝑡) represent contrast agent concentrations in compartment plasma and interstitium
respectively. Considering the newly introduced parameters, 𝛿(𝑡) is a known input function related
to the contrast agent quantity in the arterial, and 𝛼, 𝛽, 𝑘, 𝜆 are positive unknowns whose values
are aimed to infer, with 𝑘 > 𝜆. 𝑊1, 𝑊2 are two independent Brownian Motions added, with
diffusion terms 𝜎1, 𝜎2 respectively.

Let 𝑆(𝑡) denote the total quantity of contrast agent in the compartments at time 𝑡, i.e. 𝑆(𝑡) =
𝑃 (𝑡) + 𝐼(𝑡). For simplicity of studying the general properties of the model later, we transform
the system above to a matrix form by introducing a new matrix 𝑋(𝑡) = [𝑃 (𝑡), 𝐼(𝑡)]′ so that the
system is transformed to

d𝑋(𝑡) =
([

𝛼 𝛿(𝑡)
0

]

+
[

−(𝜆 + 𝛽) 𝛽
𝜆 −𝑘

]

𝑋(𝑡)
)

d𝑡 +
[

𝜎1 0
0 𝜎2

] [

𝑑𝑊1(𝑡)
𝑑𝑊2(𝑡)

]

= 𝒃(𝑋(𝑡), 𝑡, 𝛿(𝑡)) d𝑡 + 𝝈 d𝑊 (𝑡)
(4)

where 𝒃,𝝈 are the matrices of drift and diffusion respectively.
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We choose measure the sum of the coordinates of 𝑋(𝑡), which can also be seen as 𝑆(𝑡) using
the observation model

𝑦𝑖 = 𝑆(𝑡𝑖) + 𝜎𝜖𝑖
= 𝐻𝑋(𝑡𝑖) + 𝜎𝜖𝑖,

(5)

where 𝐽 = [1, 1], 𝜀𝑖 ∼  (0, 1) represent the mutually independent Gaussian noises, and 𝜎
denotes the constant standard deviation of noise. Thus noisy and discrete observations can be
obtained at times 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑇 . The measurement noise differs from the added
random variations in the model due to the precision of the recording experiments and is thus an
uncorrelated noise [12].

The statistical problem is to give a precise form of the bi-dimensional stochastic differential
system of the pharmacokinetic model. We expect to calibrate all model parameters, defined
using the set parameter 𝜃 simultaneously, given discrete, partial, and noisy observations. We
will first implement parametric inference on a single parameter with other parameters fixed given
experimental data, including the drift, the dispersion, and the Arterial Input Function, to achieve
this goal. Then we attempt to conduct a joint estimation of all drift terms, all drift and diffusive
terms, and all parameters, including AIF, one by one. Estimators differ from each other when
different estimation methods are applied.
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2.2 Notations Used

In this section, we summarize all the notations and abbreviations of terms used in the thesis.
Notation Description
model the target model throughout the thesis is the "physiological pharmacoki-

netic" model or pharmacokinetic model in short
SDE the abbreviation for statistical differential equation
ODE the abbreviation for ordinary differential equation
𝛿(𝑡) the Arterial Input Function in the SDE, abbreviated to "AIF"
OU-process the abbreviation for the bidimensional Ornstein-Uhlenbeck process is

studied in this thesis
𝜃 the collection of all parameters to estimate, excluding the AIF. It has dif-

ferent forms in MLE and Bayesian setup due to reparametrization.
𝛼, 𝛽, 𝜆, 𝑘 drfit terms among the target parameters
𝒃 drfit in matrix form
𝜎1, 𝜎2 diffusive terms among the target parameters
𝝈 dispersion in matrix form
MLE the abbreviation for "Maximum Likelihood Estimator"
BFFG the abbreviation for the "Backward Filtering with Forward Guiding" al-

gorithm used in the Bayesian setup
𝑋 the original, unconditioned diffusion process
𝑋𝑜 the proposal process
�̃� the auxiliary process with transition densities �̃�
𝐺𝑃 the abbreviation for "guided proposals", which is obtained by performing

random-walk Metropolis algorithm on the original 𝐗𝐭
pCN the abbreviation for the "preconditioned Crank-Nicolson" scheme
MCMC the abbreviation for "Markov Chains Monte Carlo" process
MH the abbreviation for the "Metropolis-Hastings" algorithm
LS the abbreviation for the "least squares" method
BS the abbreviation for the "Binary Segmentation" method
Acceptance (rate) the proportion of the number of iterations when parameters get updated

over all iteration
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2.3 Recaps of Mathematical Statistics

This section outlines the essential statistical notions and theories needed to understand the meth-
ods introduced and applied throughout the thesis fully. We will present the definitions without
interpretation and the detail-omitted algorithms.

2.3.1 Prerequisite Statistics

Since this thesis aims to build a stochastic model using differential equations and estimate its pa-
rameters, we need to provide some basic knowledge relevant to statistical inference and stochastic
processes. We first introduce the Wiener process as follows.
Theorem 2.1. A Wiener process 𝑊𝑡 [13] is an almost surely continuous process in 𝑡 satisfying
the following properties:

1. 𝑊0 = 0

2. ∀𝑡 > 0, 𝑢 ≥ 0, 𝑊𝑡+𝑢 −𝑊𝑡 are independent of 𝑊𝑠, 𝑠 ≤ 𝑡

3. 𝑊𝑡+𝑢 −𝑊𝑡 ∼  (0, 𝑢)

Then we can define a stochastic differential equation (SDE) [14] of the form used in this thesis
and furthermore explain each element.
Definition 2.2. Suppose 𝑋𝑡 is a continuous time stochastic process and 𝑊𝑡 is a Wiener process.
Then a SDE is given by

d𝑋𝑡 = 𝑏(𝑋𝑡, 𝑡) d𝑡 + 𝜎(𝑋𝑡, 𝑡) d𝑊𝑡.

The function 𝑏, and 𝜎 are referred to as drift and diffusion coefficient respectively. 𝑋𝑡 is a diffusion
process which satisfies the Markov property.

When generating a Markov kernel in parameter estimation step of Bayesian method, we sim-
ply apply a Gaussian random walk.
Definition 2.3. Suppose 𝑋𝑡 is a discrete Markov process, it is said to be a Gaussian Random
Walk if it satisfies

𝑋0 = 0, 𝑋𝑡 = 𝑋𝑡−1 + 𝜖𝑡.

Before arriving at the definition of identifiabilities, confidence intervals [15] need to be formally
introduced.
Definition 2.4. Let 𝜃 be a random sample from a probability distribution with statistical param-
eter �̂�, which needs to be estimated. A confidence interval for the parameter �̂� with confidence
level 𝛾 is an interval (𝑢(𝜃), 𝑣(𝜃)) determined by random variables 𝑢(𝜃), 𝑣(𝜃) with the property

P
(

𝑢(𝜃) < �̂� < 𝑣(𝜃)
)

= 𝛾.

In this thesis, we use a maximum likelihood estimator to estimate parameters. We compute
the exact likelihood based on Kalman filtering, which is introduced as follows in a simplified
definition [1].
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Definition 2.5. Suppose (𝑋𝑖) is a hidden Markov chain on ℝ2, and the observations (𝑦𝑖) are
independent conditionally on (𝑋𝑖). Let 𝑦0∶𝑖 = (𝑦0,… , 𝑦𝑖) be the vector of observations until
time 𝑡𝑖. Given the Gaussian conditional law of 𝑋𝑖|𝑦0∶𝑖−1, the Kalman filter is a procedure to give
formulas for the following distributions recursively via iterations:

• (prediction step) 𝑋𝑖|𝑦0∶𝑖−1 ∼  (�̂�−
𝑖 , 𝑃

−
𝑖 )

• (update step) 𝑋𝑖|𝑦0∶𝑖 ∼  (�̂�𝑖, 𝑃𝑖)

where
�̂�−

𝑖 = E
[

𝑋𝑖|𝑦0∶𝑖−1
]

, 𝑃−
𝑖 = E

[

(𝑋𝑖 − �̂�−
𝑖 )(𝑋𝑖 − �̂�−

𝑖 )′
]

�̂�𝑖 = E
[

𝑋𝑖|𝑦0∶𝑖
]

, 𝑃𝑖 = E
[

(𝑋𝑖 − �̂�𝑖)(𝑋𝑖 − �̂�𝑖)′
]

.

To get a system of differential equations (ODEs) from a stochastic process 𝑋𝑡 and derive
the moment equations of identifiability analysis, we need to find the differential of any time-
dependent function of 𝑋𝑡 using It�̂�’s lemma [16].
Theorem 2.6. For an It�̂� diffusion process

d𝑋𝑡 = 𝑏(𝑋𝑡, 𝑡) d𝑡 + 𝜎(𝑋𝑡, 𝑡) d𝑊𝑡,

Let 𝑔(𝑋𝑡, 𝑡) be a function of 𝑋𝑡 and time 𝑡, with continuous partial derivatives,
𝜕𝑔
𝜕𝑋𝑡

,
𝜕𝑔2

𝜕𝑋2
𝑡
,
𝜕𝑔
𝜕𝑡

.

The differential of time-dependent function 𝑔(𝑋𝑡, 𝑡) also follows an It�̂� process governed by the
same Wiener process 𝑊𝑡,

d𝑔(𝑋𝑡, 𝑡) =

(

𝜕𝑔
𝜕𝑡

+ 𝑏(𝑋𝑡, 𝑡)
𝜕𝑔
𝜕𝑋𝑡

+ 1
2
𝜕𝑔2

𝜕𝑋2
𝑡
𝜎2(𝑋𝑡, 𝑡)

)

d𝑡 +
𝜕𝑔
𝜕𝑋𝑡

𝜎(𝑋𝑡, 𝑡) d𝑊𝑡.

2.3.2 Prerequisites for Bayesian method

We then introduce preliminary knowledge of the Bayesian method’s likelihood computation and
parameter updates. Because the Bayesian inference algorithm needs iteratively updating the
path, initial state, and parameters, the Metropolis-Hastings-within-Gibbs sampler is used. This
approach samples the path 𝑋 = (𝑋𝑡) and parameters 𝜃 via joint posterior distribution. The
Metropolis-Hastings (MH) algorithm for a Markov chain (𝑋𝑡) is employed for the frame of an
iteration scheme. Hence we first briefly present this MH algorithm (Algorithm.1).

The Metropolis–Hastings (MH) algorithm [17] is a popular technique to build Markov chains
with a given invariant distribution. Suppose we aim to sample from the distribution with den-
sity function 𝑝(𝑥). Then we generate the Markov chains using proposal distribution obtained as
follows.
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Algorithm 1: Metropolis-Hastings Algorithm
1. Initialize:

Choose an initial state 𝑋0 = 𝑥0 and set 𝑡 = 0.
2. Iterate from 𝑡 = 0:

(a) Suppose the state at time 𝑡 is 𝑋𝑡 = 𝑥𝑡.
Generate a candidate state for 𝑋𝑡+1 randomly from 𝑥′ ∼ 𝑄(𝑥′|𝑥𝑡).

(b) Calculate the acceptance probability using the conditional probabilities
𝐴(𝑥′|𝑥) = min(1,

ℙ(𝑥′|𝑥)
ℙ(𝑥|𝑥′)

𝑔(𝑥|𝑥′)
𝑔(𝑥′|𝑥)

).
(c) Generate a uniform random number 𝑢 ∈ [0, 1],

• if 𝑢 ≤ 𝐴(𝑥′, 𝑥𝑡), accept 𝑋𝑡+1 = 𝑥′

• if 𝑢 > 𝐴(𝑥′, 𝑥𝑡), keep 𝑋𝑡+1 = 𝑥𝑡

The algorithm using the Gibbs sampling resembles a single component Metropolis-Hastings
algorithm because it can convert a 𝑑-dimensional problem to 𝑑 1-dimensional problems sepa-
rately. A Gibbs sampler [18] is used to used to sample from conditional distribution instead of
a joint distribution given a multivariate distribution. Suppose we aim to obtain 𝑘 samples of
𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑑) ∈ ℝ𝑑 from a joint distribution 𝜋(𝑥1, 𝑥2,… , 𝑥𝑑). Denote the 𝑠-th sample by
𝑋𝑖 = (𝑥𝑠1, 𝑥

𝑠
2,… , 𝑥𝑠𝑑). We implement the Gibbs sampling by Algorithm.2.

Algorithm 2: Gibbs sampler
1. Initialize:

suppose the initial state 𝑋0 = (𝑥01, 𝑥
0
2,… , 𝑥0𝑑) is known.

2. Iterate from 𝑠 = 0 to 𝑠 = 𝑘 by sampling for each dimension 𝑖 = 1,… , 𝑑.
• draw 𝑋(𝑠+1)

1 ∼ 𝜋(𝑥1|𝑥
(𝑠)
2 ,… , 𝑥(𝑠)𝑑 )

• draw 𝑋(𝑠+1)
2 ∼ 𝜋(𝑥2|𝑥

(𝑠+1)
1 ,… , 𝑥(𝑠)𝑑 )

⋮

• draw 𝑋(𝑠+1)
𝑖 ∼ 𝜋(𝑥𝑖|𝑥

(𝑠+1)
1 ,… , 𝑥(𝑠+1)𝑖−1 , 𝑥(𝑠)𝑖+1,… , 𝑥(𝑠)𝑑 )

• draw 𝑋(𝑠+1)
𝑖+1 ∼ 𝜋(𝑥𝑖+1|𝑥

(𝑠+1)
1 ,… , 𝑥(𝑠+1)𝑖 , 𝑥(𝑠)𝑖+2,… , 𝑥(𝑠)𝑑 )

⋮

• draw 𝑋(𝑠+1)
𝑑 ∼ 𝜋(𝑥𝑑|𝑥

(𝑠+1)
1 ,… , 𝑥(𝑠+1)𝑑−1 )
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3 Methodology

This section overviews the mathematical and statistical techniques used to perform parametric
inference and expatiates the critical methodologies. This chapter is split into several parts corre-
sponding to the organization of the experiment process. By the order in which the experiment is
conducted, this research can be divided into four stages.

Firstly, the method to establish identifiability analysis is explained, with two types of identifi-
ability introduced. Then the previously studied estimation method via maximizing the likelihood
is presented. After that, the novel Bayesian inference algorithm is elaborated with the scaled
kernel optimization schemes. Finally, we provide approaches to detect the change points.

3.1 Identifiability

3.1.1 Overview and Setup

Identifiability analysis is established to explore model parameters that are meaningful to estimate.
It should be performed in advance of the parameter estimation implementation. As the Bayesian
approach using guided proposals deals with estimation for multiple parameters, including the
diffusive terms simultaneously, joint estimation should be done based on the premise that all pa-
rameters are identifiable. A functional time-saving approach is introduced to detect which target
parameters can be estimated successfully before the estimation experiment. We study both the
pharmacokinetic model’s identifiability and each model parameter’s identifiability without eval-
uating its value, which saves computational costs during the time-consuming estimation process.

Assume 𝑛 data points are given at time points 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 as 𝑦𝑑1 , 𝑦
2
2,… , 𝑦𝑑𝑛 .

We focus on the matrix form of the stochastic pharmacokinetic model (Eqn.4) and observations
(Eqn.5). We use 𝜃 to represent the vector containing all model parameters. A stochastic differ-
ential equation and observation give the model a linear model with Gaussian noise.

d𝑋(𝑡) = 𝒃(𝑋(𝑡), 𝑡) d𝑡 + 𝝈 d𝑊 (𝑡) (6)
𝑦(𝑡) = 𝐿𝑋(𝑡) + 𝜖(𝑡) = 𝑔(𝑡) + 𝜖(𝑡) (7)

Then a model describing 𝑛 species concentrations 𝑥𝑖 using a system of ODEs can be derived by
integration. Allowing for a possible time delay 𝜀 before the injection, the observation model is
rewritten as follows,

𝑋(𝑡) = 𝑓 (𝑋(𝑡), 𝜃, 𝛿(𝑡))

𝑦(𝑡) = 𝐿𝑋(𝑡 − 𝜀) + 𝜖(𝑡) (8)
with an externally stimulus 𝛿(𝑡), a set of dynamic parameters 𝜃, an offset parameter 𝜀, and a
normally distributed noise measurement 𝜖(𝑡) ∼  (0, 𝜎2).

3.1.2 Identifiability Definition

Proposition 3.1. The parameters can be estimated numerically [7] by minimizing a weighted
sum of squared residuals which is used for measuring the agreement of experimental data and
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predicted observables. For normally distributed 𝜖(𝑡) ∼  (0, 𝜎2), this corresponds to the maxi-
mum likelihood estimate (MLE) of 𝜃

�̂� = argmin𝜒2(𝜃) = argmin
(

𝐶 − 2𝑙(𝜃)
)

(9)

where C is a constant and 𝑙(𝜃) is the log-likelihood, and𝜒2 is a placeholder for the likelihood such
that

𝜒2(𝜃) =
𝑛
∑

𝑖=1

(

𝑦𝑑𝑖 − 𝑦(𝜃, 𝑡𝑖)
𝜎

)2

(10)

Here 𝑦𝑑𝑖 denotes the data measured at time point 𝑡𝑖, and 𝑦(𝜃, 𝑡𝑖) denotes the observable given
parameters 𝜃 at time point 𝑡𝑖.
Proof. The log-likelihood can be computed as

𝑙(𝜃) = − 𝑛
2 log(2𝜋)𝜎

+
𝑛
∑

𝑖=1
−1
2

(

𝑦𝑑𝑖 − 𝑦(𝜃, 𝑡𝑖)
𝜎

)2

, (11)

⇐⇒ 𝜒2(𝜃) = 𝑛
log(2𝜋)𝜎

− 2𝑙(𝜃)

Before defining the practical identifiability, we need to introduce one term with respect to
confidence intervals.
Definition 3.2. Likelihood-based confidence intervals of parameters 𝜃 are defined by a confi-
dence interval with a threshold Δ𝛼

{𝜃|𝜒2(𝜃) − 𝜒2(�̂�) < Δ𝛼}, Δ𝛼 = 𝜒2(𝛼, 𝑑𝑓 ) (12)
where �̂� is defined in Eqn.9, Δ𝛼 is the 𝛼 quantile of 𝜒2-distribution and 𝑑𝑓 is degrees of freedom.

We have two choices of 𝑑𝑓 : if 𝑑𝑓 = 1, it yields a pointwise confidence interval for each
parameter individually; if 𝑑𝑓 = number of parameters in 𝜃, it gives joint confidence intervals for
all parameters. Then we can define two types of identifiabilities [7] as follows.
Definition 3.3. If 𝜃 denotes the set of all parameters in the model, then the model and 𝜃 are said
to be structurally identifiable if there exists a unique minimum of 𝜒2(𝜃) with respect to 𝜃𝑖 for
each 𝑖 = 1, .., 𝑛

Definition 3.4. Suppose �̂�𝑖 is the estimate of the 𝑖-th parameter 𝜃𝑖. Parameter 𝜃𝑖 is practically
identifiable if its likelihood-based confidence region (Eqn.12) is finite.

A structurally identifiable parameter is not necessary to be practically identifiable, which
manifests when the confidence interval of experimental data is infinite, and the data amount and
quality are insufficient.
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3.1.3 Identifiability Analysis

We first analyze the structural identifiability of the model. Establishing the structural identifia-
bility test requires formulating equations which describes the statistical moments of the random
variable 𝑋𝑡. To derive the system of moment equations of our model, we need to introduce the
moment.
Definition 3.5. For a random variable 𝑋𝑡, the 𝑘-th moment is given by

𝑚(𝑘)(𝑡) = E
[

𝑋𝑘
𝑡
]

.

Specifically for high-dimensional random variable𝑋𝑡 ∈ ℝ𝑁 , we denote the moment as𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡)such that
𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡) = E

[ 𝑁
∏

𝑗=1
𝑋𝑖𝑗

𝑗,𝑡

]

, (13)

where 𝐽 =
∑𝑁

𝑗=1 𝑖𝑗 indicates the order of the moment, 𝑋𝑗,𝑡 denotes the 𝑗-th element of 𝑋𝑡, and
𝑖𝑗 denotes the corresponding degree of component 𝑋𝑗,𝑡.

In the pharmacokinetic model, 𝑋(𝑡) = [𝑃 (𝑡), 𝐼(𝑡)]′ ∈ ℝ2, so 𝑁 = 2, 𝑋1,𝑡 = 𝑃 (𝑡), 𝑋2,𝑡 = 𝐼(𝑡).
Hence we only have first moments and second moments. All possible first moments are given by

𝑚10(𝑡) = E
[

𝑋1,𝑡
]

= E[𝑃 (𝑡)] ,
𝑚01(𝑡) = E

[

𝑋2,𝑡
]

= E[𝐼(𝑡)] . (14)

And all possible second moments are
𝑚20 = E

[

𝑋2
1,𝑡

]

= E
[

𝑃 (𝑡)2
]

,

𝑚02 = E
[

𝑋2
2,𝑡

]

= E
[

𝐼(𝑡)2
]

,
𝑚11 = E

[

𝑋1,𝑡𝑋2,𝑡
]

= E[𝑃 (𝑡)𝐼(𝑡)] .

(15)

We consider moment dynamics to determine the structural identifiability of the SDE models with
polynomials. Moment dynamics [19] are partial differential equations of the moments derived
from a master equation that describes the time evolution of distribution.
Definition 3.6. Suppose 𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡) is a vector containing all moments for all states, then the
general moment dynamics can be defined in matrix form as

𝜕𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡)
𝜕𝑡

= 𝑨𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡) + 𝒗,

where 𝑨 is the matrix containing all numeric coefficients related to each moment, and 𝒗 is a
vector of constant terms.

Based on previous computations, only the first and second moments exist for this model.
Hence, moment dynamics are derived as equations of the time derivatives of the first and second
moments, respectively. To be more practical, the first-order moments correspond to the mean of
each 𝑋𝑗,𝑡, and the second-order moments related to the variance and covariance of each 𝑋𝑖,𝑡, 𝑋𝑗,𝑡,
𝑖, 𝑗 = 1, 2. To get the explicit form of moment dynamics, we also need to compute time deriva-
tives. We introduce a form for general time derivatives [4] as follows.
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Proposition 3.7. For analytical 𝝈 and 𝐗𝐭 ∈ ℝ𝑁 , an expression for the time derivative of each
moment is given by:

d𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡)
d𝑡

= E

[

𝒃(𝐗𝐭 ,𝜽) ⋅ ∇(
𝑁
∏

𝑗=1
𝑋𝑖𝑗

𝑗,𝑡)

]

+ 1
2
tr(𝝈𝑇 (𝐗𝐭 ,𝜽)𝐇(

𝑁
∏

𝑗=1
𝑋𝑖𝑗

𝑗,𝑡)𝝈(𝐗𝐭 ,𝜽))] (16)

where 𝐇(⋅) denotes the 𝑁 ×𝑁 Hessian matrix of its argument and ∇ = ( 𝜕
𝜕𝑋1

, 𝜕
𝜕𝑋2

,… , 𝜕
𝜕𝑋𝑁

)

denotes the gradient vector, 𝒃(⋅) and 𝝈(⋅) represent the drift and diffusion term respectively.
Proof. Apply multivariate It�̂�’s Lemma in differential form

d𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡) =
𝜕𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡)

𝜕𝐗𝐭
d𝐗𝐭 +

𝜕𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡)
𝜕𝑡

d𝑡 + 1
2
𝜕2𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡)

𝜕𝐗𝐭
2

d𝐗𝐭
2

Then we plug in the definition of moment

𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡) = E

[ 𝑁
∏

𝑗=1
𝑋𝑖𝑗

𝑗,𝑡

]

,

and the SDE expressing 𝐗𝐭

d𝐗𝐭 = 𝒃(𝐗𝐭 ,𝜽) d𝑡 + 𝝈(𝐗𝐭 ,𝜽) d𝑊𝑡

d𝑚𝑖1,𝑖2,...,𝑖𝑁 (𝑡)
d𝑡

= 1
d𝑡

(

E

[

𝐛(𝐗𝐭 ,𝜽) d𝑡 ⋅ ∇

( 𝑁
∏

𝑗=1
𝑋𝑖𝑗

𝑗,𝑡

)]

+ 0 + E

[

1
2
tr

(

𝐇(
𝑁
∏

𝑗=1
𝑋𝑖𝑗

𝑗,𝑡)

)

𝝈𝑇 (𝐗𝐭 ,𝜽)𝝈(𝐗𝐭 ,𝜽) d𝑡

])

= 1
d𝑡

(

E

[

𝐛(𝐗𝐭 ,𝜽) d𝑡 ⋅ ∇

( 𝑁
∏

𝑗=1
𝑋𝑖𝑗

𝑗,𝑡

)]

+ 0 + E

[

1
2
tr

(

𝝈𝑇 (𝐗𝐭 ,𝜽)𝐇(
𝑁
∏

𝑗=1
𝑋𝑖𝑗

𝑗,𝑡)𝝈(𝐗𝐭 ,𝜽)

)

d𝑡

])

= E

[

𝒃(𝐗𝐭 ,𝜽) ⋅ ∇

( 𝑁
∏

𝑗=1
𝑋𝑖𝑗

𝑗,𝑡

)

+ 1
2
tr

(

𝝈𝑇 (𝐗𝐭 , 𝜃)𝐇(
𝑁
∏

𝑗=1
𝑋𝑖𝑗

𝑗,𝑡)𝝈(𝐗𝐭 ,𝜽)

)]

Based on the above proposition, we derive the moment dynamics for the pharmacokinetic
model as:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

d𝑚10
d𝑡

= −(𝜆 + 𝛽) 𝑚10 + 𝑘 𝑚10,
d𝑚01
d𝑡

= 𝜆 𝑚10 − 𝑘 𝑚01,
d𝑚20
d𝑡

= −2(𝜆 + 𝛽)𝑚20 + 2𝑘𝑚11 + 𝜎2
1 ,

d𝑚02
d𝑡

= 2𝜆𝑚11 − 2𝑘𝑚02 + 𝜎2
2 ,

d𝑚11
d𝑡

= −𝛽 𝑚11 + (𝜆 + 𝛽) (𝑚20 + 𝑚11) − 𝑘 (𝑚11 − 𝑚02),

(17)
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𝑚10 and 𝑚01 denote the first moments with respect to 𝑃𝑡 and 𝐼𝑡, i.e. the mean of 𝑃𝑡 and 𝐼𝑡 respec-
tively. 𝑚20, 𝑚02, and 𝑚11 represent the second moments of 𝑃𝑡 and 𝐼𝑡, which are variances of 𝑃𝑡
and 𝐼𝑡, and their covariance respectively.
Proof. Given the moments obtained before

{

𝑚10 = E[𝑃 (𝑡)] , 𝑚01 = E[𝐼(𝑡)]
𝑚20 = E

[

𝑃 (𝑡)2
]

, 𝑚02 = E
[

𝐼(𝑡)2
]

, 𝑚11 = E[𝑃 (𝑡)𝐼(𝑡)]

Then we apply the equation of time derivatives in Eqn.16 to the obtained moments
d𝑚10
d𝑡

= E
[

−(𝜆 + 𝛽) ×
d𝑃 (𝑡)
d𝑡

+ 𝑘 ×
d𝐼(𝑡)
d𝑡

+ 𝜎2
1 × 0

]

= −(𝜆 + 𝛽)𝑚10 + 𝑘𝑚01

d𝑚01
d𝑡

= E
[

𝜆 ×
d𝑃 (𝑡)
d𝑡

− 𝑘 ×
d𝐼(𝑡)
d𝑡

+ 𝜎2
2 × 0

]

= 𝜆𝑚10 − 𝑘𝑚01

d𝑚20
d𝑡

=
[

−(𝜆 + 𝛽) 𝑘
]

E

⎡

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

𝜕𝑃 (𝑡)2

𝜕𝑃 (𝑡)
𝜕2𝑃 (𝑡)𝐼(𝑡)

𝜕𝑃 (𝑡)

⎤

⎥

⎥

⎥

⎦

d𝑃 (𝑡)
d𝑡

⎤

⎥

⎥

⎥

⎦

+ 𝜎2
1 = −2(𝜆 + 𝛽)𝑚20 + 2𝑘𝑚11 + 𝜎2

1

d𝑚02
d𝑡

=
[

𝜆 −𝑘
]

E

⎡

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

𝜕2𝑃 (𝑡)𝐼(𝑡)
𝜕𝐼(𝑡)
𝜕𝐼(𝑡)2

𝜕𝐼(𝑡)

⎤

⎥

⎥

⎥

⎦

d𝐼(𝑡)
d𝑡

⎤

⎥

⎥

⎥

⎦

+ 𝜎2
2 = −2𝑘𝑚02 + 2𝜆𝑚11 + 𝜎2

2

d𝑚11
d𝑡

=
[

−(𝜆 + 𝛽) 𝑘
]

E

⎡

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

𝜕 − 𝑃 (𝑡)2 + 𝑃 (𝑡)𝐼(𝑡)
𝜕𝑃 (𝑡)

𝜕𝑃 (𝑡)𝐼(𝑡)
𝜕𝑃 (𝑡)

⎤

⎥

⎥

⎥

⎦

d𝑃 (𝑡)
d𝑡

⎤

⎥

⎥

⎥

⎦

+
[

𝜆 −𝑘
]

E

⎡

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

𝜕𝑃 (𝑡)𝐼(𝑡)
𝜕𝐼(𝑡)

𝜕 − 𝐼(𝑡)2

𝜕𝐼(𝑡)

⎤

⎥

⎥

⎥

⎦

d𝐼(𝑡)
d𝑡

⎤

⎥

⎥

⎥

⎦

+ 𝜎1𝜎2

= [−(𝜆 + 𝛽) + 𝑘 + 𝜆 − 𝑘]𝑚11 + (𝜆 + 𝛽)𝑚20 + 𝑘𝑚02 + 𝜎1𝜎2

Then we introduce two characteristics used to describe the moment dynamics [4].
Definition 3.8. The system of the time derivatives of moment equations is said to exactly describe
the time evolution of moments when each component of 𝒃 and 𝝈𝝈𝑇 are polynomials in 𝐗𝐭 .
Definition 3.9. The system is said to be closed at order 𝐽 if the expression of each moment
depends only on the moments up to order 𝐽 . We can truncate the system at order 𝐽 and solve the
exact moments directly.
Proposition 3.10. If the system of moment equations is both closed and exact, then parameters
in this system are structurally identifiable.

For both continuous-time observations and discrete-time observations, identifiability anal-
ysis applies according to [4]. Because of the obtained moment dynamics (Eqn.17), the phar-
macokinetic model is considered closed and exact. Hence, we can conclude that the model is
structurally identifiable. Therefore, the parameter estimation of each parameter is reasonable.
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We later combine maximum likelihood estimators (MLEs) and compute the likelihood-based
confidence intervals corresponding to each parameter to analyze the practical identifiability.

If we find some parameters are practically unidentifiable, we can still estimate their values
under specific conditions.
Definition 3.11. If the parameter has a detectable lower bound and is distinguished from zero, it
is said to be one-sided identifiable.

Assume there exist some practically non-identifiable parameters. These parameters present
some distinguishable trends when observed, for example, a monotonic increase. Then they are
one-sided identifiable, and we can still estimate their lower bounds in this case.

3.2 Parameter estimation by maximum likelihood

Previous research has been done to estimate parameters for this partially observed Ornstein-
Uhlenbeck process using maximization of the likelihood based on Kalman filtering.

3.2.1 Model transformation

We transform the model and derive a discrete-time system of ordinary differential equations via
reparametrization to study the stochastic differential equations and compute the likelihood. A
new matrix 𝑈 (𝑡) = [𝑆(𝑡), 𝐼(𝑡)]′ is introduced to obtain a transformed model in matrix form:

⎧

⎪

⎨

⎪

⎩

d𝑈 (𝑡) =
([

𝛼 𝛿(𝑡)
0

]

+
[

−𝛽 𝛽
𝜆 −𝑘

]

𝑈 (𝑡)
)

d𝑡 +
[

𝜎1 𝜎2
0 𝜎2

] [

𝑑𝑊1(𝑡)
𝑑𝑊2(𝑡)

]

,

𝑦𝑖 = 𝐽𝑈 (𝑡𝑖) + 𝜎𝜖𝑖, 𝜖𝑖
iid∼  (0, 1)

(18)

where 𝐽 = [1, 0], and 𝜎 is the standard deviation of the Gaussian noise. The process (𝑈 (𝑡)) is a
bidimensional Ornstein-Uhlenbeck diffusion, which can be explicitly solved. Let𝐺 =

[

−𝛽 𝛽
𝜆 −𝑘

]

and Γ =
[

𝜎1 𝜎2
0 𝜎2

]

. Since all parameters are positive, the following claim holds.

Proposition 3.12. The matrix 𝐺 is diagonalisable with two distinct negative eigenvalues 𝜇1, 𝜇2,
with

𝑑 = (𝛽 − 𝑘)2 + 4𝛽𝜆 (19)

𝜇1 =
−(𝛽 + 𝑘) −

√

𝑑
2

(20)

𝜇2 =
−(𝛽 + 𝑘) +

√

𝑑
2

. (21)

Proof. Consider the characteristic function𝑓 (𝑥) of 𝐺,
𝑓 (𝑥) = (𝑥 + 𝛽)(𝑥 + 𝑘) − 𝛽𝜆

= 𝑥2 + (𝛽 + 𝑘)𝑥 + 𝛽(𝑘 − 𝜆)
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As Δ = (𝛽 +𝑘)2−4𝛽(𝑘−𝜆) = (𝛽 −𝑘)2+4𝛽𝜆 > 0, we can conclude that there exists two distinct
eigenvalues of 𝐺, which can be computed as

𝜇1,2 =
−(𝛽 + 𝑘) ±

√

Δ
2

=
−(𝛽 + 𝑘) ±

√

(𝛽 − 𝑘)2 + 4𝛽𝜆
2

0 < (𝛽 − 𝑘)2 + 4𝛽𝜆 < (𝛽 − 𝑘)2 + 4𝛽𝑘 = (𝛽 + 𝑘)2 ⇐⇒ 𝜇1,2 < 0

Assumption 3.13. Assume we have observations 𝑦0, 𝑦1,… , 𝑦𝑛 at time points 0 = 𝑡0 < 𝑡1 < ⋯ <
𝑡𝑛 = 𝑇 . Let 𝑦0∶𝑛 = (𝑦0, 𝑦1,… , 𝑦𝑛). Define a diagonal matrix of eigenvalues and eigenvectors
using Eqn.19-21 as 𝐷, 𝑃 :

𝐷 =
[

𝜇1 0
0 𝜇2

]

, 𝑃 =
⎡

⎢

⎢

⎣

1 1
𝛽 − 𝑘 −

√

𝑑
2𝛽

𝛽 − 𝑘 +
√

𝑑
2𝛽

⎤

⎥

⎥

⎦

.

Suppose 𝑋(𝑡) = 𝑃−1𝑈 (𝑡) and define the following:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋(𝑡 + ℎ) = 𝑒𝐷ℎ𝑋(𝑡) + 𝐵(𝑡, 𝑡 + ℎ) +𝑍(𝑡, 𝑡 + ℎ),

𝐵(𝑡, 𝑡 + ℎ) = 𝑒𝐷(𝑡+ℎ)
∫

𝑡+ℎ

𝑡
𝑒−𝐷𝑠𝑃−1𝐹 (𝑠) 𝑑𝑠

𝑍(𝑡, 𝑡 + ℎ) = 𝑒𝐷(𝑡+ℎ)
∫

𝑡+ℎ

𝑡
𝑒−𝐷𝑠𝑃−1Γ 𝑑𝑊𝑠

(22)

Proposition 3.14. For 𝑡, ℎ ≥ 0, we can derive a discrete difference equation:
𝑋(𝑡 + ℎ) = 𝑒𝐷ℎ𝑋(𝑡) + 𝐵(𝑡, 𝑡 + ℎ) +𝑍(𝑡, 𝑡 + ℎ).

Then, for 𝑠 ≤ 𝑡, we have
𝑋(𝑡 + ℎ)|𝑋(𝑠) ∼  (𝑒𝐷ℎ𝑋(𝑡) + 𝐵(𝑡, 𝑡 + ℎ), 𝑅(𝑡, 𝑡 + ℎ)),

where
𝑅(𝑡, 𝑡 + ℎ) =

(

𝑒(𝜇𝑘+𝜇𝑙)ℎ − 1
𝜇𝑘 + 𝜇𝑙

(𝑃−1ΓΓ′𝑃−𝑇 )𝑘𝑙
)

1≤ 𝑘,𝑙 ≤2

If 𝛿(𝑡) is a constant, (𝑋(𝑡)) has a stationary Gaussian distribution.
Combining the above, we replace (𝑈 (𝑡)) in the matrix form by 𝑋(𝑡) and deduce the discrete

differential equations. Then the model can be transformed to the following:
{

𝑋𝑖 = 𝐴𝑖𝑋𝑖−1 + 𝐵𝑖 + 𝜂𝑖, 𝜂𝑖 ∼  (0, 𝑅𝑖),
𝑦𝑖 = 𝐻𝑋𝑖 + 𝜎𝑖

(23)

where 𝐻 = [1, 1]. 𝑋𝑖 = 𝑋(𝑡𝑖), 𝐴𝑖 = 𝑒𝐷(𝑡𝑖−𝑡𝑖−1), 𝐵𝑖 = 𝐵(𝑡𝑖−1, 𝑡𝑖), 𝑅𝑖 = 𝑅(𝑡𝑖−1, 𝑡𝑖).
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3.2.2 Likelihood Maximization

Because of the Gaussian law of (𝑋(𝑡), 𝜖𝑖), maximizing the exact likelihood directly is feasible. But
it requires the inversion of the covariance matrix of (𝑋(𝑡𝑖))𝑛𝑖=0 of dimension 2(𝑛 + 1) × 2(𝑛 + 1),
and the inversion can be numerically unstable, which leads to the difficulty and high-cost of
computation. Therefore, we first compute the exact likelihood based on Kalman filtering. Then
an alternative method to calculate the Maximum Likelihood Estimator (MLE) using the conjugate
gradient is proposed.

We can compute the exact likelihood based on the Kalman filter as the data is one-dimensional.
Assuming the initial value are 𝑋0 = [0, 0]′, we have the following recursive formulae applying
the Kalman filter to the above discrete-time equations:

�̂�−
𝑖 = 𝐴𝑖�̂�

−
𝑖−1 + 𝐵𝑖, 𝑃−

𝑖 = 𝐴𝑖𝑃𝑖−1𝐴
′
𝑖 + 𝑅𝑖, 𝑖 ≥ 1,

�̂�𝑖 = �̂�−
𝑖 +𝐾𝑖(𝑦𝑖 −𝐻�̂�−

𝑖 ), 𝑃𝑖 = (𝐼 −𝐾𝑖𝐻)𝑃−
𝑖 , 𝑖 ≥ 0,

where 𝐾𝑖 = 𝑃−
𝑖 𝐻

′(𝐻𝑃−
𝑖 𝐻

′ + 𝜎2)−1. Let 𝜑 = (𝜃, 𝜎2), and denote the mean and variance of
the conditional distribution 𝑦𝑖|𝑦0∶𝑖−1 as 𝑚𝑖(𝜑), and 𝑉𝑖(𝜑), which are computed using the above
recursive formulae by:

𝑚𝑖(𝜑) = 𝐻�̂�−
𝑖 , 𝑉𝑖(𝜑) = 𝐻𝑃−

𝑖 𝐻
′ + 𝜎2.

Then the exact likelihood of 𝑦0∶𝑛 is given by:

𝐿(𝜑, 𝑦0∶𝑛) =
𝑛
∏

𝑖=0

1
√

2𝜋𝑉𝑖(𝜑)
𝑒𝑥𝑝(−

(𝑦𝑖 − 𝑚−
𝑖 (𝜑))

2

2𝑉𝑖(𝜑)
). (24)

The MLE is computed using a conjugate gradient method by computing the exact gradient and
Hessian matrix of the log-likelihood. We use a new parametrization to simplify the computation.
Assumption 3.15. Assume 𝛿(𝑡) = 𝑐 ≥ 0 is a known constant. Let the observation times are
equally spaced with the time step Δ = 𝑡𝑖 − 𝑡𝑖−1, for 𝑖 = 1,… , 𝑛. Set 𝑍𝑖 = 𝑋𝑖 −𝑀, 𝑚 = 𝐻𝑀 ,
then we have

𝐴 = 𝐴𝑖, 𝑅𝑖 = 𝑅,𝐵𝑖 = 𝐵 = (𝐼 − 𝐴)𝐷−1𝑃−1𝐹 = (𝐼 − 𝐴)𝑀.

Then we have the following simplified discrete-time system:
{

𝑍𝑖 = 𝐴𝑖𝑍𝑖−1 + 𝜂𝑖, 𝜂𝑖 ∼  (0, 𝑅𝑖),
𝑦𝑖 = 𝐻𝑍𝑖 + 𝑚 + 𝜎𝜖𝑖

(25)

and the exact likelihood of 𝑦0∶𝑛:

𝐿(𝜑, 𝑦0∶𝑛) =
𝑛
∏

𝑖=0

1
√

2𝜋𝑉𝑖(𝜑)
𝑒𝑥𝑝(−

(𝑦𝑖 − 𝑚 −𝐻�̂�−
𝑖 (𝜑))

2

2𝑉𝑖(𝜑)
).

So, instead of estimating 𝜃 = (𝛼, 𝛽, 𝜆, 𝑘, 𝜎1, 𝜎2) directly, we propose a new parametrization such
that

𝜃 = (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6)
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𝐴 =
(

𝜃1 0
0 𝜃2

)

, 𝑅 =
(

𝜃3 𝜃5
𝜃5 𝜃4

)

The transformation between new parametrization and original parameters is given as follows.
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜃1 = 𝑒𝜇1Δ, 𝜃2 = 𝑒𝜇2Δ,

𝜃3 =
(𝜇2 + 𝛽)2𝜎2

1 + 𝜇2
2𝜎

2
2

2𝜇1𝑑
𝜃21 − 1

,

𝜃4 =
(𝜇1 + 𝛽)2𝜎2

1 + 𝜇2
1𝜎

2
2

2𝜇2𝑑
𝜃22 − 1

,

𝜃5 =
𝜎1𝛽𝑘 − 𝜇1𝜇2(𝜎2

1 + 𝜎2
2)

(𝜇1 + 𝜇2)(𝜇2 − 𝜇1)2

𝑒Δ(𝜇1+𝜇2) − 1

,

𝜃6 = 𝑚

(26)

To maximize the likelihood 𝐿(𝜑, 𝑦0∶𝑛) with respect to 𝜑, we need to derive the gradient and
Hessian matrix with respect to 𝜑. The log-likelihood is given by

𝑙0∶𝑖(𝜑) = 𝑙0∶𝑖−1(𝜑) −
1
2
log(2𝑖(𝜑)) −

1
2
𝑊𝑖(𝜑)2

𝑉𝑖(𝜑)

and the gradient is
𝜕𝑙0∶𝑖
𝜕𝜑𝑞

(𝜑) =
𝜕𝑙0∶𝑖−1
𝜕𝜑𝑞

(𝜑) − 1
2

1
𝑉𝑖(𝜑)

𝜕𝑉𝑖
𝜕𝜑𝑞

(𝜑) −
𝑊𝑖(𝜑)
𝑉𝑖(𝜑)

𝜕𝑊𝑖(𝜑)
𝜕𝜑𝑞

+ 1
2
𝑊𝑖(𝜑)2

𝑉𝑖(𝜑)2
𝜕𝑉𝑖(𝜑)
𝜕𝜑𝑞

The computation of Hessian matrix is rather complicated, which is shown as
𝜕2𝑙0∶𝑖
𝜕𝜑𝑟𝜕𝜑𝑞

(𝜑) =
𝜕2𝑙0∶𝑖−1
𝜕𝜑𝑟𝜕𝜑𝑞

(𝜑) − 1
2

1
𝑉𝑖(𝜑)

𝜕2𝑉𝑖
𝜕𝜑𝑟𝜕𝜑𝑞

(𝜑) + 1
2

1
𝑉 2
𝑖 (𝜑)

𝜕𝑉𝑖
𝜕𝜑𝑟

(𝜑)
𝜕𝑉𝑖
𝜕𝜑𝑞

(𝜑)

− 1
2

(

2
𝑊𝑖(𝜑)
𝑉𝑖(𝜑)

𝜕2𝑊𝑖(𝜑)
𝜕𝜑𝑟𝜕𝜑𝑞

−
𝑊𝑖(𝜑)2

𝑉𝑖(𝜑)2
𝜕2𝑉𝑖(𝜑)
𝜕𝜑𝑟𝜕𝜑𝑞

)

−
(

𝜕𝑊𝑖(𝜑)
𝜕𝜑𝑟

𝜕𝑊𝑗(𝜑)
𝜕𝜑𝑞

1
𝑉𝑖(𝜑)

−
𝑊𝑖(𝜑)
𝑉𝑖(𝜑)2

𝜕𝑊𝑖(𝜑)
𝜕𝜑𝑟

𝜕𝑉𝑖(𝜑)
𝜕𝜑𝑞

)

+
(

𝜕𝑊𝑖(𝜑)
𝜕𝜑𝑞

𝜕𝑉𝑖(𝜑)
𝜕𝜑𝑟

𝑊𝑖(𝜑)
𝑉𝑖(𝜑)2

−
𝑊𝑖(𝜑)2

𝑉𝑖(𝜑)4
𝜕𝑉𝑖(𝜑)
𝜕𝜑𝑟

𝑉𝑖(𝜑)
𝜕𝑉𝑖(𝜑)
𝜕𝜑𝑞

)

(27)

After obtaining the exact form of likelihood and Hessian matrix, a numerical algorithm (Al-
gorithm.3) is applied to achieve the maximum likelihood. The conjugate gradient method is
chosen for this study to update the parameters and descent directions.
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Algorithm 3: Maximizing the Likelihood using Conjugate Gradient
1. Initialize:

Let 𝜑0 denote the initial value and set the descent direction as 𝑢0 = 𝜑0.
2. Iterate (for 𝑘-th iteration):

given 𝜑𝑘 and 𝑢𝑘, update the parameter by

𝜑𝑘+1 = 𝜑𝑘 −
⟨𝑢𝑘, ∇𝑙−(𝜑𝑘)⟩

⟨𝑢𝑘, 𝐻𝑒𝑠𝑠−𝑙 (𝜑𝑘)𝑢𝑘⟩
𝑢𝑘,

update the descent direction by

𝑢𝑘+1 = −∇𝑙−(𝜑𝑘+1) +
‖∇𝑙−(𝜑𝑘+1)‖
‖∇𝑙−(𝜑𝑘)‖

𝑢𝑘,

if ‖∇𝑙−(𝜑𝑘)‖ ≥ 0.01, and ‖𝜑𝑘+1 − 𝜑𝑘‖ ≥ 0.01, iteration terminates.

3.3 Bayesian Method For Parameter Estimation.

The maximum likelihood method has a limitation that it cannot estimate all the parameters si-
multaneously. Another drawback is that due to the need of computation of the maximum like-
lihood, the time consumption is high for high-dimensional models [1]. Therefore, we introduce
an alternative Bayesian estimation method for joint estimation. This Bayesian method involves a
novel Backward Filtering with Forward Guiding (BFFG) algorithm, a likelihood-based estima-
tion scheme proposed in [3].

3.3.1 Overview and Preliminaries

The whole parameter estimation process can be split into two parts, the backward filtering and
the iterative part [3]. We define the diffusion process for backward filtering, and the guided
proposal [2]. Then we discuss the choice of the auxiliary process and a corresponding auxiliary
observation scheme [8].

Assume the stochastic process is partially observed on discrete time points 0 = 𝑡0 < 𝑡1 < ... <
𝑡𝑛 = 𝑇 . In this thesis, we consider the simplest case that the observations satisfy the following
conditional distribution:

𝑉𝑖|𝑋𝑡𝑖 ∼ 𝑘𝑖(𝑋𝑡𝑖) =  (𝐿𝑋𝑡𝑖 ,Σ), (28)
where 𝑘𝑖 denotes the conditional density and𝑋𝑡𝑖 ∈ ℝ2. 𝑘𝑖(𝑋𝑡𝑖) represent the density of (𝐿𝑋𝑡𝑖 ,Σ)-distribution, with 𝐿 = [1, 1],Σ = 0.1. For 𝑡 ≥ 0, denote the set of non-past observations by 𝑡,
given by

𝑡 = {𝑉𝑖 ∶ 𝑡𝑖 ≥ 𝑡}, 𝑖 = 𝑡𝑖 .

Definition 3.16. Suppose at the end time 𝑇 , the conditioned diffusion 𝑉𝑖|𝑋𝑡𝑖 is fixed at an end-
point 𝑣 ∈ ℝ2. Define 𝑝 as the transition densities of the original diffusion process 𝑋. Further
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assume that for 𝑠 < 𝜏,
𝑃 (𝑠,𝜏)(𝑋𝜏 ∈ d𝑦) = 𝑝(𝑠, 𝑥; 𝜏, 𝑦).

Definition 3.17. For 𝑖 ∈ {1,… , 𝑛}, 𝑡 ∈ (𝑡𝑖−1, 𝑡𝑖], let 𝑋𝑡𝑖−1 = 𝑥𝑡𝑖−1 , and 𝑉𝑖,… , 𝑉𝑛 are given. Let
𝜌(𝑡𝑖, 𝑥𝑖) denote the likelihood of 𝑥𝑖 given the present and future observation 𝑖, i.e.

𝜌(𝑡𝑖, 𝑥𝑖) = 𝜋(𝑖|𝑥𝑖).

Then we can give a formula of 𝜌 by integrating out the latent future states

𝜌(𝑡, 𝑥) = ∫ 𝑝(𝑡, 𝑥; 𝑡𝑖, 𝜀𝑖)𝑘𝑛(𝜀𝑛)
𝑛−1
∏

𝑗=𝑖
𝑝(𝑡𝑗 , 𝜀𝑗 ; 𝑡𝑗+1, 𝜀𝑗+1)𝑘𝑗(𝜀𝑗) d𝜀𝑖… d𝜀𝑛

𝜌(0, 𝑥) = 𝑘0(𝑥)𝜌(0+, 𝑥)
(29)

This reveals that 𝜌 is related to a backward filtered marginal density of 𝑋.
We employ the matrix form of the model to describe the diffusion dynamics:

d𝑋𝑡 = 𝒃(𝑋𝑡, 𝑡) d𝑡 + 𝝈 d𝑊𝑡 (30)
𝑋𝑡 =

[

𝑃 (𝑡)
𝐼(𝑡)

]

, 𝒃(𝑋𝑡, 𝑡) =
[

𝛼𝛿(𝑡)
0

]

+
[

−(𝛽 + 𝜆) 𝑘
𝜆 −𝑘

]

𝑋𝑡, 𝝈 =
[

𝜎1 0
0 𝜎2

]

, 𝑊𝑡 =
[

𝑊1(𝑡)
𝑊2(𝑡)

]

,

𝒃 and 𝝈 represent the drift and diffusion respectively.
Proposition 3.18. Let the ratio of likelihoods be a weight 𝑤𝑖,

𝑤𝑖 =
𝜋(𝑖|𝑥𝑖)
𝜋(𝑖|𝑥𝑖−1)

= exp log𝜋(𝑖|𝑥𝑖) − log𝜋(𝑖|𝑥𝑖−1),

then the weight equals an exponential process [3]:

𝑤𝑖 = exp∫

𝑡𝑖

𝑡𝑖−1
𝝈(𝑠,𝑋𝑠)′∇ log 𝜌(𝑠,𝑋𝑠) d𝑊𝑠 −

1
2 ∫

𝑡𝑖

𝑡𝑖−1
‖𝝈(𝑠,𝑋𝑠)′∇ log 𝜌(𝑠,𝑋𝑠)‖2 d𝑠

Therefore, we can sample from the smoothing distribution of 𝑋𝑖 by simulating the process 𝑋
with drift 𝒃 + 𝝈𝝈′∇𝜌 via

d𝑋𝑡 = (𝒃 + 𝝈𝝈′∇𝜌) d𝑡 + 𝝈 d𝑊𝑡

instead of sampling 𝑋𝑖|𝑋𝑖−1,𝑖 directly [3].

3.3.2 Linear Guided Proposals and Backward Filtering

From the above, the likelihood 𝜌 is required to sample from the smoothing distribution. Since
computing the function 𝜌 is inefficient, we define a proxy �̃� to 𝜌 and introduce guided proposals.
Definition 3.19. Let �̃�𝑛+(𝑥) be the density of distribution (0, 𝑃𝑛+), where𝑃𝑛+ is a given (strictly
positive definite) covariance matrix. Similar to 𝜌 (defined in Eqn.29), we define �̃� by

�̃�(𝑡, 𝑥) = ∫ �̃�𝑛+(𝜀𝑛)�̃�(𝑡, 𝑥; 𝑡𝑖, 𝜀𝑖)�̃�𝑛(𝜀𝑛, 𝑣𝑛)
𝑛−1
∏

𝑗=𝑖
𝑝𝑗(𝑡𝑗 , 𝜀𝑗 ; 𝑡𝑗+1, 𝜀𝑗+1)�̃�𝑗(𝜀𝑗 ; 𝑣𝑗) d𝜀𝑖... d𝜀𝑛

where �̃� is the transition density of a chosen auxiliary process �̃�, and �̃�𝑖 is the density of the
auxiliary observation scheme.
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Definition 3.20. A guided proposal process 𝑋𝑜 is the solution to the SDE
d𝑋𝑜

𝑡 = 𝒃(𝑡, 𝑋𝑜
𝑡 ) d𝑡 + 𝒂𝑟(𝑡, 𝑋𝑜

𝑡 ) d𝑡 + 𝝈 d𝑊𝑡, 𝑋𝑜
𝑡𝑖
= 𝑥𝑡𝑖 ,

where 𝒂 = 𝝈𝝈′, 𝑟(𝑡, 𝑥) = ∇𝑥 log �̃�(𝑡, 𝑥).
We aim to sample from the guided proposal 𝑋𝑜, so the explicit form of �̃� is required. There-

fore, we need to determine the auxiliary process and auxiliary observation scheme so that {�̃�𝑖}
and �̃� well approximates {𝑘𝑖} and 𝑋. We first give the choice of the auxiliary observation
scheme.
Definition 3.21. The auxiliary observation scheme �̃�𝑖 is the density of the diffusion with

�̃�𝑖(𝑋𝑡𝑖) =  (𝐿𝑖𝑋𝑡𝑖 ,Σ𝑖),

such that
𝑉𝑖|𝑋𝑡𝑖 ∼ 𝑘𝑖(𝑋𝑡𝑖) =  (𝐿𝑋𝑡𝑖 ,Σ) ≈  (𝐿𝑖𝑋𝑡𝑖 ,Σ𝑖),

where 𝐿𝑖 is a 1 × 2 matrix, 𝑋𝑡𝑖 ∈ ℝ2, Σ𝑖 a positive number.
Remark 3.22. Due to the specific density of 𝑘𝑖 in this thesis, we can choose 𝐿𝑖, Σ𝑖 such that

∀𝑖 = 0,… , 𝑛, 𝐿𝑖 = 𝐿, Σ𝑖 = Σ.

Thereafter, we decide the choice of the auxiliary process �̃�, which gives the values of �̃�.
Definition 3.23. An auxiliary process �̃� is defined by the following SDE which can well approx-
imate the law of the target process 𝑋

d�̃�𝑡 = (𝛽(𝑡) + 𝐵(𝑡)�̃�𝑡) d𝑡 + �̃�(𝑡) d𝑊𝑡.

Remark 3.24. As the drift is linear in 𝑋𝑡 and diffusion is independent of 𝑋𝑡, we can simply
choose a linear guided proposal for the auxiliary diffusion [8] �̃�𝑡:

𝛽(𝑡) =
[

−(𝜆 + 𝛽) 𝛽
𝜆 −𝑘

]

, 𝐵(𝑡) =
[

𝛼 𝛿(𝑡)
0

]

.

Proof. Apply the choice of the combine approach in [8] by approximating 𝒃(𝑡, 𝑋𝑡) with
𝒃(𝑡, 𝑥(𝑡)) + 𝑉 (𝑡, 𝑥(𝑡))(𝑋𝑡 − 𝑥(𝑡))

and �̃� = 𝜎. Assume 𝑉 (𝑡, 𝑦)𝑖,𝑗 =
𝜕𝑏𝑖(𝑡, 𝑦)
𝜕𝑦𝑗

for 𝑦 ∈ ℝ𝑛.

𝒃(𝑡, 𝑥(𝑡)) =
[

−(𝜆 + 𝛽) 𝛽
𝜆 −𝑘

]

𝑥(𝑡) +
[

𝛼 𝛿(𝑡)
0

]

,

𝑉 (𝑡, 𝑦) =
[

−(𝜆 + 𝛽)𝑦1 + 𝛽𝑦2 + 𝛼𝛿(𝑡)
𝜆𝑦1 − 𝑘𝑦2

]

.

Hence, we get
⎧

⎪

⎨

⎪

⎩

𝐵(𝑡) = 𝑉 (𝑡, 𝑥(𝑡)) =
[

−(𝜆 + 𝛽) 𝛽
𝜆 −𝑘

]

𝛽(𝑡) = 𝒃(𝑡, 𝑥(𝑡)) − 𝑉 (𝑡, 𝑥(𝑡))𝑥(𝑡) =
[

𝛼 𝛿(𝑡)
0

]
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An ODE-system for backward filtering (information filter) [3] is used for efficiently comput-
ing the terms 𝑟, 𝐻 and �̃�, which are in need of implementing the guided proposals. We solve the
factors for computing the likelihood from the following "HFC" recursions (Eqn.31).
Theorem 3.25. For (𝑡, 𝑥) ∈ [0, 𝑇 ] ×ℝ2, We solve �̃� by decomposing it into:

log �̃�(𝑡, 𝑥) = −𝑐(𝑡) − 1
2
𝑥′𝐻(𝑡)𝑥 + 𝐹 (𝑡)′𝑥,

where on each interval (𝑡𝑖−1, 𝑡𝑖], 𝐻, 𝐹 and 𝑐 are solutions of the backward ODEs
d𝐻(𝑡) = (−𝐵(𝑡)′𝐻(𝑡) −𝐻(𝑡)𝐵(𝑡) +𝐻(𝑡)𝝈𝝈′𝐻(𝑡)) d𝑡,
d𝐹 (𝑡) = (−𝐵(𝑡)′𝐹 (𝑡) −𝐻(𝑡)𝝈𝝈′𝐹 (𝑡) +𝐻(𝑡)𝛽(𝑡)) d𝑡,

d𝑐(𝑡) = (𝛽(𝑡)′𝐹 (𝑡) + 1
2
𝐹 (𝑡)′𝝈𝝈′𝐹 (𝑡) − 1

2
tr(𝐻(𝑡)𝝈𝝈′)) d𝑡

(31)

3.3.3 Backward Filtering Forward Guiding algorithm for Parameter Estimation

In this part, a Metropolis-Hastings-within-Gibbs sampler algorithm for parameter estimation is
introduced, namely the Backward Filtering Forward Guiding (BFFG) algorithm. Firstly, we give
the explicit joint posterior distribution to sample from in this algorithm.

Assume we can obtain guided proposals from above, then there exists a measurable map 𝐺𝑃𝜃
defining the guided proposal

𝑋 = 𝐺𝑃𝜃(𝑋0, 𝑍),

given initial state 𝑋0 and parameters 𝜃, where 𝑍 is a Wiener process in ℝ2. Assume
𝒃,𝝈, �̃�, {�̃�𝑖}, {𝑘𝑖}, 𝜋(𝑥0)

depend on parameters 𝜃 which admits a prior 𝜅(𝜃). Then we can sample the latent path from
samples (𝜃, 𝑥0, 𝑍) through 𝑋 = 𝐺𝑃𝜃(𝑋0, 𝑍) iteratively. The density of the joint posterior distri-
bution of (𝜃, 𝑥0, 𝑍) has the specific form

𝜅(𝜃)𝜋(𝑥0)�̃�(0, 𝑥0)

∫ 𝜅(𝜃)𝜋(𝑥0)𝜌(0, 𝑥0) d(𝑥0, 𝜃)
Ψ(𝐺𝑃𝜃(𝑥0, 𝑍))

𝑛
∏

𝑖=0
𝐶𝑖(𝐺𝑃𝜃(𝑥0, 𝑍)𝑡𝑖),

where
Ψ(𝑋𝑜) = exp∫

𝑡𝑛

0
𝐺(𝑠,𝑋𝑜

𝑠 ) d𝑠, (32)

𝐶𝑖(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑘𝑖(𝑥)
�̃�𝑖(𝑥)

1 ≤ 𝑖 ≤ 𝑛 − 1

𝑘𝑛(𝑥)
�̃�𝑛+(𝑥)

𝑖 = 𝑛
(33)

and
𝐺(𝑠, 𝑥) =

(

𝑏(𝑠, 𝑥) − �̃�(𝑠, 𝑥)
)′ 𝑟(𝑠, 𝑥) − 1

2
tr
(

[𝒂 − �̃�][𝐻(𝑠) − 𝑟(𝑠, 𝑥)𝑟(𝑠, 𝑥)′]
)

,

which are all proved in [3].
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Then we focus on the initialization of the BFFG algorithm (Algorithm.4). Assume the initial
parameter value 𝜃 and initial state 𝑋0 are known. Fix their values by 𝜃, and 𝑥0, respectively. Be-
fore conducting parameter inference, smoothing needs to be undertaken on the diffusion process
to obtain samples under the target law. Then we choose a tuning parameter 𝛾 and smooth the
distribution.

Algorithm 4: Smoothing step using Preconditioned Crank-Nicolson for fixed 𝜃 and 𝑥

1. Choose a tuning parameter 𝛾 ∈ [0, 1). Suppose the current state is (𝜃, 𝑥0, 𝑍) and
𝑋 = 𝐺𝑃𝜃(𝑥0, 𝑍).

2. Initialise 𝐻(𝑡𝑛+), 𝐹 (𝑡𝑛+), 𝑐(𝑡𝑛+).
3. Solve the backward ODEs and compute 𝐻(𝑡𝑖), 𝐹 (𝑡𝑖), 𝑐(𝑡𝑖).
4. Sample an independent Wiener process W ans set 𝑍𝑜 = 𝛾𝑍 +

√

1 − 𝛾2𝑊 . Compute
𝑋𝑜 = 𝐺𝑃𝜃(𝑥0, 𝑍𝑜)

5. Compute 𝐴 =
Ψ(𝑋𝑜)
Ψ(𝑋)

𝑛
∏

𝑖=1

𝐶𝑖(𝑋𝑜
𝑡𝑖
)

𝐶𝑖(𝑋𝑡𝑖)
.

6. Draw 𝑈 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0, 1). If 𝑈 < 𝐴, replace 𝑋 = 𝑋𝑜 and 𝑍 = 𝑍𝑜.

In the iterative step for updating the initial state, path, and parameters, we define a Markov
transition kernel and generate the candidate state 𝑋𝑜 and parameters 𝜃𝑜. Then the guiding terms
are recomputed, and the corresponding guided proposal is computed. Similarly, the following
Metropolis–Hastings-within-Gibbs algorithm (Algorithm.5) is used to determine whether to up-
date the path and parameters or to keep the terms unchanged in the next iteration.
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Algorithm 5: Updating the path, initial state and parameters in BFFG algorithm
1. Suppose the current iterate is (𝜃, 𝑥0, 𝑍), and 𝑋 = 𝐺𝑃𝜃(𝑥0, 𝑍).
2. Choose a Markov kernel 𝑞 and compute a new state 𝑥𝑜0 ∼ 𝑞𝜃(𝑥0)

3. Compute the corresponding guided proposal 𝑋𝑜 = 𝐺𝑃𝜃(𝑥𝑜0, 𝑍).
4. Apply MH-algorithm to decide whether or not to update the path and initial state by

computing
𝐴 =

𝑞𝜃(𝑥0|𝑥𝑜0)𝜋(𝑥
𝑜
0)�̃�(0, 𝑥

𝑜
0)Ψ(𝑋

𝑜)
𝑞𝜃(𝑥𝑜0|𝑥0)𝜋(𝑥0)�̃�(0, 𝑥0)Ψ(𝑋)

𝑛
∏

𝑖=1

𝐶𝑖(𝑋𝑜
𝑡𝑖
)

𝐶𝑖(𝑋𝑡𝑖)
,

5. Draw 𝑈 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0, 1). If 𝑈 < 𝐴, update 𝑋 = 𝑋𝑜 and 𝑥0 = 𝑥𝑜0. Otherwise, keep the
current iterate unchanged.

6. Choose a Markov kernel 𝑞 and propose a new parameter 𝜃𝑜 by 𝜃𝑜 ∼ 𝑞𝜃(𝜃).
7. Solve the backward ODEs and recompute 𝐻(𝑡𝑖), 𝐹 (𝑡𝑖), 𝑐(𝑡𝑖) with 𝜃𝑜.
8. Compute the corresponding guided proposal 𝑋𝑜 = 𝐺𝑃𝜃𝑜(𝑥0, 𝑍).
9. Apply MH-algorithm to decide whether or not to update the path and parameters by

computing
𝐴 =

𝑞(𝜃|𝜃𝑜)𝜅(𝜃𝑜)�̃�𝜃𝑜(0, 𝑥𝑜0)Ψ𝜃𝑜(𝑋𝑜)
𝑞(𝜃𝑜|𝜃)𝜅(𝜃)�̃�𝜃(0, 𝑥0)Ψ𝜃(𝑋)

𝑛
∏

𝑖=1

𝐶𝑖(𝑋𝑜
𝑡𝑖
)

𝐶𝑖(𝑋𝑡𝑖)
,

10. Draw 𝑉 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0, 1). If 𝑉 < 𝐴, update 𝑋 = 𝑋𝑜 and 𝜃 = 𝜃𝑜. Otherwise, keep the
current iterate unchanged.

3.3.4 Reparametrization for Joint Estimation

After explaining the parameter estimation scheme for a single parameter, we now attempt to
accomplish joint estimation for multiple parameters. We sparkle from the maximum likelihood
method and try reparametrization. Considering the biological background of the model, we call
back the real meaning of each parameter:

𝛼 =
𝐹𝑡𝑝

1 − ℎ
, 𝛽 =

𝐹𝑡𝑝

𝑉𝑃
, 𝜆 =

𝐾𝑡𝑟𝑎𝑛𝑠

𝑉𝑃
, 𝑘 =

𝐾𝑡𝑟𝑎𝑛𝑠

𝑉𝑃
+

𝐾𝑡𝑟𝑎𝑛𝑠

𝑉𝐼
.

ℎ is the hematocrit rate, and 1 − ℎ is the volume of the artery. 𝑉𝑃 and 𝑉𝐼 denote the volume of
plasma and interstitium, respectively. 𝐹𝑡𝑝 is the perfusion flow, and 𝐾𝑡𝑟𝑎𝑛𝑠 is the volume transfer
constant.

Firstly, considering estimating two parameters at a time, it is reasonable to estimate the ratios
of parameter pairs instead of estimating them separately. Since flows in compartments interact
with each other and the direction of flow exchanges in and out of compartments are fixed, the
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ratios of different parameters in drift terms make sense. So, we can choose to compute some
ratios, for instance,

𝛽
𝛼
=

𝑉𝑃
1 − ℎ

, 𝜆
𝑘 − 𝜆

=
𝑉𝐼
𝑉𝑃

𝛽
𝛼
+ 𝜆

𝑘 − 𝜆
=

𝑉𝐼 + 1 − ℎ
𝑉𝑃

, (34)

and each of them should be a constant equal to the ratio of volumes of different compartments.
Therefore, we use the above ratios for joint estimation and their sums. As the parameter 𝛼 is
the coefficient of the known function 𝛿(𝑡), it has no relation to the flows, and we can separate it
from other parameters by isolated estimation. So, estimating the sum of the ratio above is also a
good choice of reparametrization for three and four parameters. So, we attempt to perform joint
estimation of all parameters, and try to estimate the above ratios if the parameter itself cannot
have a good estimate.

3.4 Optimal Tuning Proposals

As explained in the last section, we employ the Metropolis-Hastings-within-Gibbs sampler in the
Bayesian inference algorithm. Indeed, the Metropolis-Hastings algorithm requires an appropri-
ate choice of proposal distributions [5]. When performing parameter inference using the BFFG
algorithm in a Bayesian setup, there is an essential step to determine whether or not to update
the path and parameters. Determining the choice of accepting the proposed moves or not re-
lates to the tuning parameter 𝛾 , which is the memory parameter appearing in the preconditioned
Crank–Nicolson step. The efficiency of the Bayesian estimation approach strongly depends on
the choice of 𝛾 as it strongly affects the acceptance rate. Therefore, we attempt to apply optimal
proposal scaling and adaptive algorithms to find good proposals automatically for the proposal
of the tuning parameter 𝛾 instead of choosing it as an arbitrary value.

We can assign the memory parameter and the proposal kernel random values and get their
appropriate ones by trial and error. However, it becomes particularly challenging when the data
set is large and the number of iterations grows (as we need a correct value at each iteration). When
we perform parameter inference on top of smoothing, different local values of parameters might
have drastically different optimal proposals. To alleviate these problems, we employ a scaling
method for adaptive MCMC algorithms and attempt to automatically find out the optimal values
of the proposal kernel in the updating scheme and the memory parameter of the pCN scheme to
ensure high efficiency and less computation.

3.4.1 Optimal Scaling of Random-Walk Metropolis

We first focus on the most common case, the symmetric random-walk Metropolis algorithm
(RMW) [5], where the proposal distribution is given by 𝑋𝑛+1 = 𝑋𝑛 + 𝑍𝑛+1, with the incre-
ments {𝑍𝑖} independently and identically distributed from a fixed symmetric distribution with
the scaling parameter 𝜎 > 0

𝑍𝑖 ∼  (0, 𝜎2𝐼𝑑),

where 𝑑 is the dimension of the random walker.
In this case, scaling the proposal, specifically the choice of 𝜎2 becomes a crucial issue in

optimizing the algorithm. The value of scales 𝜎 strongly affects the proposed moves. We use
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trace plot with small 𝜎, large
acceptance rate

trace plot with large 𝜎, small
acceptance rate

the acceptance rate to measure the proportion of accepted moves in all proposed moves. For 𝜎
extremely small (as in Fig.2(b)), the acceptance will be approximately 1. Hence, the algorithm
will accept almost all proposed moves, and the proposed jumps will be small. So it takes a long
time for the RMW algorithm to converge to a stationary distribution, and the algorithm will be
highly inefficient. For 𝜎 extremely large (as in Fig.2(a))., the acceptance rate will be close to 0,
and the algorithm will accept nearly no moves. So, the chain will stay fixed for large numbers of
iterations, leading to poor mixing. Therefore, we manage to avoid both extremes by monitoring
the acceptance rate and keeping it both far from 0 and far from 1.

Under the assumption that the proposal increments follow the distribution of the form𝑁(0, 𝜎2𝐼𝑑),
we aim to find an optimal proposal scaling for 𝜎. As we monitor the performance of 𝜎 by accep-
tance rate, we expect to find the optimal acceptance rate.
Proposition 3.26. For a RWM 𝑋𝑛+1 = 𝑋𝑛 + 𝑍𝑛+1 with 𝑍𝑖 ∼  (0, 𝜎2𝐼𝑑), as 𝑑 → ∞, the
precise optimal acceptance rate is 0.234. For finite dimensional situations where 𝑑 ≥ 5, the
optimal acceptance rate approximates the asymptotic acceptance rate 0.234. For 𝑑 = 1, the
optimal acceptance rate is approximately 0.44 [5].

3.4.2 Adaptive Metropolis-within-Gibbs

After obtaining the optimal acceptance rate, we aim to find the appropriate proposal scaling 𝜎
to achieve the optimum, which is our goal in this section as well. One commonly used method
is trial and error. That is, we reduce the proposal scaling when the acceptance rate is too high
and increase the scaling when the acceptance rate is too low. This method works but is time-
consuming because of its need for repeated manual intervention. Therefore, we consider alter-
native algorithms, called adaptive MCMC, which improve the Markov chains and convergence
in their processes. As to the algorithm used in the Bayesian parameter estimation method, we
apply the Metropolis-Hasting-within-Gibbs algorithm. Hence, we focus on the specific adaptive
Metropolis-within-Gibbs algorithm.

Sufficient conditions to guarantee convergence is essential before implementing the adaptive
algorithm to avoid the possibility of converging to wrong numbers.
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Let each𝑃𝛾 be a Metropolis algorithm, withΓ𝑛 = 𝛾 being the 𝑛-th proposal choice. Suppose𝜒
is the set of all candidate states of 𝑋𝑛. We can guarantee the convergence assuming the following
conditions [5].
Assumption 3.27. Diminishing (Vanishing) adaptation condition: Suppose the amount of adapt-
ing at the 𝑛-th iteration goes to 0 in probability as 𝑛 → ∞:

lim
𝑛→∞

sup
𝑥∈𝜒

‖𝑃Γ𝑛+1(𝑥, ⋅) − 𝑃Γ𝑛(𝑥, ⋅)‖.

If this condition is not satisfied, the algorithm can result in samples from a distribution different
from the target distribution.
Assumption 3.28. Containment (Bounded convergence) condition: For 𝜀 > 0, {𝑀𝜀(𝑋𝑛,Γ𝑛)}∞𝑛=0is bounded in probability, where 𝑀𝜀 is the convergence time of the kernel 𝑃𝛾 beginning in state
𝑥 ∈ 𝜒 ,

𝑀𝜀(𝑥, 𝑦) = inf{𝑛 ≥ 1 ∶ ‖𝑃 𝑛
𝛾 (𝑥, ⋅) − 𝜋(⋅)‖ ≤ 𝜀}.

This condition is intrinsically satisfied for the adaptive Metropolis-within-Gibbs. It has been
proved in [5] that when these two conditions are satisfied, Markov chains converge for the algo-
rithms.
Proposition 3.29. Assuming the diminishing adaptation condition and containment conditions,
the Markov chain (𝑋𝑡) has asymptotic convergence:

lim
𝑛→∞

sup
𝐴⊂𝜒

‖P
(

𝑋𝑁 ∈ 𝐴
)

− 𝜋(𝐴)‖ = 0.

And for all bounded 𝑔 ∶ 𝜒 → ℝ, we have

lim
𝑛→∞

1
𝑛

𝑛
∑

𝑖=1
𝑔(𝑋𝑖) = 𝜋(𝑔).

Ensuring the convergence, we explain the adaptive algorithm next. In the Metropolis-within-
Gibbs algorithm, each of the variables is updated at a time using a Metropolis algorithm with
a one-dimensional proposal. Furthermore, good values of 𝜎2 can differ from each other greatly
considering updating one variable to the other. Therefore, we conclude that the adaptive method
should be used to automatically compute good values of 𝜎2 instead of computing manually. More-
over, Metropolis-within-Gibbs algorithm essentially corresponds to 𝑑 = 1 case, and thus the
optimal acceptance rate is usually closer to 0.44 than 0.234.

For the 𝑖-th variable of the current sample iterate (𝜃, 𝑥0, 𝑍), let 𝑙𝑠𝑖 denote the logarithm of
the standard deviation of the increment proposed to 𝑖-th variable. Suppose the 𝑖-th variable is
updated using a proposal increment distribution  (0, 𝑒2𝑙𝑠𝑖). Then we aim to find optimal values
of 𝑙𝑠𝑖 such that the acceptance rate is approximately 0.44 [5].

Let 𝑝1, 𝑝2 denote the minimum and maximum allowable from which the random walker can
sampler from respectively, i.e. 𝑝1 ≤ 𝛾 ≤ 𝑝2. Suppose there exists a time delay 𝜀 in the start
of decelerating the adaptation extent, meaning that after which the shrinking of adaptive steps
is supposed to start. We first initialize 𝑙𝑠𝑖 = 0,∀𝑖 corresponding to the unit proposal variance.
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Then we set a batch equal to 100 iterations, which means that we determine every 100 iterations
whether to update the 𝑙𝑠𝑖, taking away the time delay 𝜀 at the beginning. At the 𝑛-th batch of 100
iterations, we need to calculate an acceptance rate (assumed to be 𝑎𝑟) and compare it with the
optimal acceptance rate 𝑜𝑟 = 0.44. Then, according to the given process of adaptive Metropolis-
within-Gibbs (as proposed in [5]), we update 𝑙𝑠𝑖 by adding or subtracting 𝛿(𝑛), which is defined
as the adaptation amount at 𝑛-th batch.

𝑙𝑠𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑙𝑠𝑖 + 𝜎(𝑛), 𝑎𝑟 > 𝑜𝑟
𝑙𝑠𝑖 − 𝜎(𝑛), 𝑎𝑟 < 𝑜𝑟
𝑙𝑠𝑖, 𝑎𝑟 = 𝑜𝑟

(35)

where 𝜎(𝑛) = min(0.01, 1
√

𝑛
) is the constraint satisfying the diminishing adaptation condition to

guarantee the convergence.
However, given the need to compute the logarithm of the standard deviation of the variable

and the log-likelihood we have calculated in the original Bayesian inference algorithm, we make
minor improvements on the update step above. We first keep the adaptation amount 𝜎(𝑛), and
introduce the following two reciprocal functions. The sigmoid function 𝑆(𝑥) given by

𝑆(𝑥) = 1
1 + 𝑒−𝑥

,

and the logit function 𝐿(𝑥) given by

𝐿(𝑥) = log
( 𝑥
1 − 𝑥

)

.

Then we modify the update step by:

𝛾 =
{

𝑆(𝐿(𝛾) − 2𝜎(𝑛)), 𝑎𝑟 < 𝑜𝑟
𝛾, 𝑎𝑟 ≥ 𝑜𝑟 (36)

To briefly summarize, the adaptive Metropolis-within-Gibbs solves the optimal proposal for
a tuning parameter to automatically achieve the optimal acceptance rate when updating the path
and states. And we can use this adaptive algorithm (Algorithm.6) to tune the memory parameter
𝛾 of the preconditioned Crank-Nicholson scheme.
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Algorithm 6: Adaptive algorithm for Tuning 𝛾

1. Suppose now it is the 𝑁-th iteration.
2. Compute the batch number: 𝑛 = 𝑁

100−𝜀

3. Denote the move of 𝛾 for each iteration as 𝜎(𝑛), which decreases proportional to 1
√

𝑁roughly. Compute 𝑚 using
𝜎(𝑛) = 1

√

max(1.0, 𝑛)
.

4. Compute the acceptance rate 𝑎𝑟 when the adaptation occurs by
𝑎𝑟 =

𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑠𝑡𝑒𝑝𝑠
𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑠𝑡𝑒𝑝𝑠

.

5. Compute 𝛾 by transforming using two reciprocal functions (chosen as the sigmoid and
logit functions) and the moving distance 𝜎(𝑛).

• if 𝑎𝑟 < 𝑜𝑟, 𝛾 = 𝑆(𝐿(𝛾) − 2𝜎(𝑛)) = 1
1 + 𝑒− log(𝛾)+log(1−𝛾)+2𝜎(𝑛)

;
• if 𝑎𝑟 ≥ 𝑜𝑟, 𝛾 keeps unchanged.

6. Trim excessive updates by 𝛾 = max
(

min(𝛾, 𝑝2), 𝑝1
).

3.5 Change-point Estimation

Finally, we attempt to estimate the Arterial Input Function 𝛿(𝑡) in the pharmacokinetic model
using a change point detection technique. Since the previous study mainly employs the Maximum
Likelihood method when the Arterial Input Function is a constant [1], we expect to extend the
Bayesian inference method to adaptive to models with general Arterial Input Functions. Once
we estimate the Arterial Input Function, we can realize the goal of evaluating the model even if
the AIF is unknown. Apart from estimating the AIF, there is still a problem with detecting the
time delay before the injection. Change point detection appears to estimate the time delay, and
the same approach is taken to estimate the AIF.

3.5.1 Overview and Setup

We first introduce the change point detection and address its typical applications. Change point
detection identifies times when the probability distribution of a stochastic process or time series
changes. Loosely speaking, analysis of change points can be equal to identifying the points within
a data set where the statistical properties change [9].
Definition 3.30. Recall the observation function of the model in this thesis,

𝑦(𝑡) = 𝐿𝑋(𝑡) + 𝜀(𝑡) = 𝑔(𝑡) + 𝜀(𝑡), 0 ≤ 𝑡 ≤ 𝑇
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where 𝑦(𝑡) is the observation taken from time 𝑡, 𝜀(𝑡) is the random error, with E[𝜀(𝑡)] = 0, and
𝑔(𝑡) is an unknown left-continuous and piecewise smooth function. Then a point 𝑡0 satisfying
𝑔(𝑡0) ≠ 𝑔(𝑡0+) is said to be a jump change point. Else, 𝑡0 is called a first order continuous change
point, usually abbreviated to continuous change point [9] if it satisfies

⎧

⎪

⎨

⎪

⎩

𝑔(𝑡0) = 𝑔(𝑡0+),

lim
𝑡→𝑡0−

d𝑔(𝑡)
d𝑡

≠ lim
𝑡→𝑡0+

d𝑔(𝑡)
d𝑡

Change point detection detects abrupt shifts in time series trends or shifts in the instantaneous
velocity of time series. These shifts are easy to identify using human eyes, and we will list some
statistical means to pinpoint them in this section.

Back to our model, we consider the existence of change points given the background. An
unknown time delay may exist between the period of the injection of the contrast agent and the
arrival of the contrast agent in the plasma. In addition, our model may reach some peaks at the
time points when the contrast agent admits a rapid jump. All these changes can yield change
points in the model. In this section, we will discuss measures to solve the estimation problem
for a general case where the time series change points may exist due to the non-constant Arterial
Input Function 𝛿(𝑡) and the time delay. Again we use the matrix form of the model in this part.

d𝑋(𝑡) =
([

𝛼 𝛿(𝑡)
0

]

+
[

−(𝜆 + 𝛽) 𝛽
𝜆 −𝑘

]

𝑋(𝑡)
)

d𝑡 +
[

𝜎1 0
0 𝜎2

] [

𝑑𝑊1(𝑡)
𝑑𝑊2(𝑡)

]

We focus on the AIF in this section, so we define an injection term as:
𝐹 (𝑡) =

[

𝛼𝛿(𝑡)
0

]

.

For all AIFs, we assume the initial condition satisfies
𝛿(𝑡0) = 0, 𝑡0 = 0.

A least square estimator inspired by [10] is used for change-point estimation separately. This
method illustrates the asymptotic property of change-point estimation by assuming that the AIF
is a piecewise constant function.
Assumption 3.31. The Arterial Input Functions can be split into piecewise constants in general:

𝛿(𝑡) =
𝑛
∑

𝑗=1
𝑎𝑗𝟙[(𝑗−1)Δ,𝑗Δ](𝑡),

with (𝑎𝑗)𝑗=1,...,𝑛 being unknown numbers whose values to be determined.
In addition, computation of the SDE likelihoods needs integration of the equations, which

means that integral of AIFs is required. Intuitively, this integral cannot be computed directly for
general AIFs, we use the following proposition with its piecewise constant characteristic.
Proposition 3.32. The integral of AIF can be computed using the trapezoidal method [12] by

∫

𝑡𝑖

𝑡0
𝛿(𝑥) d𝑥 ≈

𝑖
∑

𝑘=1

(𝑡𝑘 − 𝑡𝑘−1)(𝛿(𝑡𝑘) − 𝛿(𝑡𝑘−1))
2

.
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3.5.2 Estimate the Time Delay

Firstly, we deal with the time delay used in the adaptive Metropolis-within-Gibbs algorithm be-
fore. We solve the change point where the time delay occurs by redefining the injection term 𝐹 (𝑡)
with the delay parameter 𝜀

𝐹 (𝑡) =
[

𝛼𝛿(𝑡 − 𝜀)𝟙[𝜀,∞)(𝑡)
0

]

.

Given this injection term 𝐹 (𝑡) with time delay, we assume for simplicity that the AIF has a linear
growth [12]. We apply the transformed model with discrete-time differential equations derived in
the Maximum Likelihood method. Taking the time delay into account, we get a slightly different
system from Eqn.23 in MLE method:

{

𝑋𝑖 = 𝐴𝑖𝑋𝑖−1 + 𝐵𝑖 + 𝜂𝑖, 𝜂𝑖 ∼  (0, 𝑅𝑖),
𝑦𝑖 = 𝐻𝑋𝑖 + 𝜎𝜖𝑖

with 𝐻, 𝐴 unchanged. But 𝐵𝑖, 𝑅𝑖 adapt to satisfying:

𝑅𝑖+1 = ∫

𝑖Δ

(𝑖−1)Δ
𝑒𝐷(𝑡𝑖−𝑠)ΓΓ′𝑒𝐷

′(𝑡𝑖−𝑠) d𝑠,

𝐵𝑖 =

⎧

⎪

⎨

⎪

⎩

0 0 ≤ 𝑖Δ ≤ 𝜀,

∫

𝑖Δ

(𝑖−1)Δ
𝑒𝐷(𝑡𝑖−𝑠)𝑃−1𝐹 (𝑠) d𝑠 𝜀 < 𝑖Δ

Then we attempt to separate the system by the time delay and adapt the Maximum Likelihood
method. We isolate the change point by introducing the auto-regressive process 𝑍𝑖 = 𝐴𝑍𝑖−1+𝜂𝑖,
thus obtaining an equivalent system as:

⎧

⎪

⎨

⎪

⎩

𝑍𝑖 = 𝐴𝑖𝑍𝑖−1 + 𝜂𝑖, 𝜂𝑖 ∼  (0, 𝑅𝑖),
𝑦𝑖 = 𝐻𝑍𝑖 + 𝜎𝜖𝑖,
𝑦𝑖 = 𝑐𝑖 + 𝑦𝑖

(37)

with 𝑐𝑖 = 𝐻𝐶𝑖, and
𝐶𝑖 = 𝐴𝐶𝑖 + 𝐵𝑖 = 𝐴𝑖

∫

𝑖Δ

0
𝑒−𝐷𝑠𝑃−1𝐹 (𝑠) d𝑠.

The ODE system is thus split into two parts by the change point 𝜀. Before arriving at the change
point, 𝑐𝑖 = 0. Then we give the detailed assumption of the AIF with linear growth to get an
explicit system.
Assumption 3.33. (A1) Linear Assumption: Assume 𝛿(𝑡) has a linear growth (𝑎𝑗 = 𝑗Δ) so that
𝑐𝑖 can be approximated by 𝑐𝑖 = 𝜇0 + 𝜇1(𝑖 − 𝑗∗), where 𝜇0 and 𝜇1 are two unknown parameters
depending on 𝜃 and Δ.

Under 𝐴1, we can rewrite the system (Eqn.37) as:
⎧

⎪

⎨

⎪

⎩

𝑍𝑖 = 𝐴𝑖𝑍𝑖−1 + 𝜂𝑖, 𝜂𝑖 ∼  (0, 𝑅𝑖),
𝑦𝑖 = 𝐻𝑍𝑖 + 𝜎𝜖𝑖,
𝑦𝑖 = 𝜇0 + 𝜇1(𝑖 − 𝑗∗)𝟙𝑖>𝑗∗ + 𝑦𝑖

(38)
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It is proved in [12] that this system can reduce to
𝑣𝑖 = 𝜇1𝟙𝑖≥𝑗∗ + 𝑈𝑖, (39)

by introducing 𝑣𝑖 = 𝑦𝑖+1 − 𝑦𝑖 and 𝑈𝑖 = �̃�𝑖+1 − �̃�𝑖. So detecting the change-points of this model is
equivalent to a similar problem with the process (𝑦𝑖) with a constant change of drift 𝜇0+𝜇1𝟙𝑖>𝑗∗ .
To reduce the computational cost, we use the Least Square method to detect the change point,
where the underlying error distribution is not necessarily specified. The Least Square method for
change point detection applies to a simple binary case according to [10].
Proposition 3.34. Consider an observation model, 𝑦(𝑡) = 𝑔(𝑡) + 𝜀(𝑡), 0 ≤ 𝑡 ≤ 𝑇 . 𝑔(𝑡) can only
take two different values before and after time 𝜏0 so that 𝜏0 is the target change point,

𝑔(𝑡) =
{

𝑔1, 𝑡 ≤ 𝜏0
𝑔2, 𝑡 > 𝜏0

(40)

where 𝑔1, 𝑔2, and 𝜏0 are unknown. Then the least squares estimator of 𝜏0 can be defined as

𝜏 = argmin
𝜏

(

min
𝑔1,𝑔2

{
𝜏
∑

𝑡=1
(𝑦(𝑡) − 𝑔1)2 +

𝑇
∑

𝑡=𝜏+1
(𝑦(𝑡) − 𝑔2)2}

)

.

As the observation model does not fit the simple binary condition, we consider the newly-
developed process of increments (𝑣𝑖). According to Eqn.39, 𝑣(𝑡) = 𝑔(𝑡) + 𝜀(𝑡), with

𝑔(𝑡) =
{

𝜇0, 𝑡 ≤ 𝑡𝑗∗
𝜇0 + 𝜇1, 𝑡 > 𝑡𝑗∗

(41)

so the above least-squares change-point estimator can be applied to (𝑣𝑖). Let 𝑣𝑗 and 𝑣∗𝑗 denote the
mean of the first 𝑗 observations and the last 𝑛 − 𝑗 observations respectively.
Proposition 3.35. The least squares estimator for (𝑣𝑖) is given by

𝑗 = argmin
𝑗

𝑆2
𝑗 ,

where 𝑆2
𝑗 represents the sum of squares of residuals:

𝑆2
𝑗 =

𝑗
∑

𝑖=1
(𝑣𝑖 − 𝑣𝑗)2 +

𝑛
∑

𝑖=𝑗+1
(𝑣𝑖 − 𝑣∗𝑗 )

2.

Hence, the change point can be computed by
𝜏 = 𝑗 ∗ Δ,

where Δ = 𝑡𝑖 − 𝑡𝑖−1, and 𝜏 denotes the estimate of the change point, which is also the time delay.
Therefore, we can estimate the time delay by implementing Algorithm.7.
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Algorithm 7: Time delay estimation using the Least Squares method
• Initialize:

1. let the initial observation be 𝑦0 = 0 at time 𝑡0 = 0
2. suppose the time delay lie in the point of index 𝑗
3. generate 𝑛 observations 𝑦1, 𝑦2,… , 𝑦𝑛 according to the diffusion model at time

𝑡1, 𝑡2,… , 𝑡𝑛
4. compute data series (𝑣𝑖)𝑛𝑖=1 by 𝑣𝑖 = 𝑦𝑖 − 𝑦𝑖−1, 𝑖 = 1,… , 𝑛

• Iterate from 𝑗 = 1 to 𝑛:
1. compute the mean of the first 𝑗 observations 𝑣𝑗
2. compute the mean of the first 𝑗 observations 𝑣∗𝑗
3. compute the sum of squares of residuals when the change point lies in index 𝑗:

𝑆2
𝑗 =

𝑗
∑

𝑖=1
(𝑣𝑖 − 𝑣𝑗)2 +

𝑛
∑

𝑖=𝑗+1
(𝑣𝑖 − 𝑣∗𝑗 )

2.

4. find the minimal 𝑆𝑗∗ and output the index of the time delay 𝑗∗

We can improve the Maximum Likelihood method by adding a time delay detection, shown
as Algorithm.8.

Algorithm 8: MLE with change points
1. Compute the exact log-likelihood 𝐿(𝑗, 𝜃, 𝑦0∶𝑛) by

𝐿(𝑗, 𝜃, 𝑦0∶𝑛) =
𝑗
∑

𝑖=1

(𝑦𝑖 −𝐻�̂�−
𝑖 )

2

𝐻𝑃−
𝑖 𝐻 ′ + 𝜎2

+ log(𝐻𝑃−
𝑖 𝐻

′ + 𝜎2)

−
𝑛
∑

𝑖=𝑗+1

(𝑦𝑖 −𝐻�̂�−
𝑖 − 𝑐𝑗)2

𝐻𝑃−
𝑖 𝐻 ′ + 𝜎2

+ log(𝐻𝑃−
𝑖 𝐻

′ + 𝜎2),

�̂�−
𝑖 , 𝑃−

𝑖 are the mean and variance of the prediction distribution 𝑝(𝑍𝑖|𝑦0∶𝑖−1).
2. Maximize 𝐿(𝑗, 𝜃, 𝑦0∶𝑛) in 𝜃 for each 𝑗 to get �̂�(𝑗) = argmax𝜃 𝐿(𝑗, 𝜃, 𝑦0∶𝑛).
3. The MLE is obtained by inputting the change point 𝑗, i.e. �̂� = argmax𝜃 𝐿(𝑗, 𝜃, 𝑦0∶𝑛).
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3.5.3 Estimating the Arterial Input Function

In previous experiments, one assumption is that the AIF is known. In order to extend the Bayesian
parametric inference approach to a more generally applicable method, we also attempt to perform
an estimation with an unknown AIF. We take the injection term 𝛼𝛿(𝑡) as a whole and transform
the problem of parameter estimation as an estimation problem with a changing parameter 𝛼′. In
this part, we propose an approach to estimating the AIF based on the change point estimation.
The problem of estimating the AIF is equivalent to recovering the AIF using change points, so
the process of the experiment can be divided into two stages. The first stage is to detect the total
change points of the SDE system, with the number and positions of change points unknown. In
the second stage, estimation is done by separately measuring the part of AIF in a bin obtained by
setting the change points as two endpoints of a time interval. Then the inference problem of an
unknown function is split into pieces of estimation problems for parameter 𝛼′ where the AIF is a
constant 1.

As stated in [10], the Least Squares method only applies when there is only one change
point. However, there may be change points when estimating the AIF. So we need an approach
to detecting various change points instead. Several techniques are discovered to handle multiple
change points via minimizing a cost function over possible numbers and locations of change
points. Possible choice of cost functions includes penalized likelihood and minimum description
length. In this thesis, we adopt the Binary Segmentation method (described in Algorithm.9),
proposed to multiple change points.
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At first, we use  and  to denote the set of segments of the data which need change point
detection and the set of detected change points, respectively. Then we introduce a general test
statistic Λ(⋅), defined by the segmentation cost, and a penalty term log(𝑛). Similar to what is
used in the single change point detection with MLE before, we choose the sum of squares as the
segmentation cost here. Additionally let estimator of change point position be 𝜏(⋅), and rejection
threshold be 𝐶 . 𝐶 should be chosen to avoid an expensive computational cost. We first use all
data and compute the its of squares.If no change point is detected, then terminate. Otherwise,
the data is split into two segments before and after the change point. And we apply the detection
method to each segment. Then we repeat this procedure until the algorithm can detect no further
change points.

Algorithm 9: Generic binary segmentation algorithm
1. Input a set of data points 𝑦1, 𝑦2… , 𝑦𝑛.
2. Define the test statistic:

Λ(𝑦𝑠∶𝑡) =
𝑦2𝑡 − 𝑦2𝑠 − |𝑦𝑡 − 𝑦𝑠|2

𝑡 − 𝑠
.

3. Initialisation: let  = ∅ and  = {[1, 𝑛]}.
4. Iteration while  ≠ ∅:

• Arbitrarily choose an element of  and denote it as [𝑠, 𝑡].
• If Λ(𝑦𝑠∶𝑡) < 𝐶 , remove [𝑠, 𝑡] from  .
• If Λ(𝑦𝑠∶𝑡) ≥ 𝐶 , then:

(a) remove [𝑠, 𝑡] from ;
(b) add a new element 𝑟 = 𝜏(𝑦𝑠∶𝑡) + 𝑠 − 1 to ;
(c) if 𝑟 ≠ 𝑠, add a new element [𝑠, 𝑟] to ;
(d) if 𝑟 ≠ 𝑡 − 1, add a new element [𝑟 + 1, 𝑡] to  .

5. Output the recorded change points via set .

Assume we obtain 𝑚 change points with their positions after the above multiple change point
detection. Suppose the indices of all these 𝑚 change points are listed as 𝑐1, 𝑐2,… , 𝑐𝑚. As the
whole time period we study is [0, 𝑇 ], assuming 𝑛 observations are used totally for the change
point detection, we can thus split the time interval by several bins using the change points into

[0,
𝑐1
𝑛
⋅ 𝑇 ], [

𝑐1
𝑛
⋅ 𝑇 ,

𝑐2
𝑛
⋅ 𝑇 ],… , [

𝑐𝑚
𝑛

⋅ 𝑇 , 𝑇 ].

Furthermore, we assume 𝑐0 = 0, 𝑐𝑚+1 = 𝑛 for consistency. Then the problem of estimating the
AIF in each bin between the change points is equivalent to estimating a new drift parameter 𝛼′
when AIF is assigned a constant value 1.

When estimating the AIF, all the parameters are unknown. Therefore, we try joint estimation
using the Bayesian approach and record the estimates of 𝛼′ in each time bin with the AIF 𝛿′(𝑡) = 1.
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In the 𝑖-th bin [
𝑐𝑖
𝑛
⋅ 𝑇 ,

𝑐𝑖+1
𝑛

⋅ 𝑇 ], the model can be considered with parameters

𝛼′, 𝛽, 𝜆, 𝑘, 𝜎1, 𝜎2, 𝛿
′(𝑡) = 1.

Hence, we perform the full Bayesian method for joint estimation of these parameters on every
time interval [𝑐𝑖

𝑛
⋅𝑇 ,

𝑐𝑖+1
𝑛

⋅𝑇 ], 𝑖 = 0,… , 𝑚. Then the estimate of each 𝛼′ in the 𝑖-th time bin, de-
noted as �̂�𝑖 can serve as the value of 𝛿(𝑡) in this time interval. The procedure containing the com-
plete Bayesian parameter estimation method can then be briefly summarized in Algorithm.10.

Algorithm 10: Bayesian estimation with change points
1. Assume the true model is composed of parameters 𝛼, 𝛽, 𝜆, 𝑘, 𝜎1, 𝜎2 and the AIF 𝛿(𝑡).
2. For the model in each bin [

𝑐𝑖
𝑛
⋅ 𝑇 ,

𝑐𝑖+1
𝑛

⋅ 𝑇 ], 𝑖 = 0,… , 𝑚, we equivalently estimate a
system with the following unknown model parameters and a constant AIF

𝛼′𝑖 , 𝛽, 𝜆, 𝑘, 𝜎1, 𝜎2, 𝛿
′(𝑡) = 1, 𝑡 ∈ [

𝑐𝑖
𝑛
⋅ 𝑇 ,

𝑐𝑖+1
𝑛

⋅ 𝑇 ].

3. Estimate the parameter 𝛼′𝑖 using the Bayesian method for joint parameter estimation
(proposed in Algorithm.5). Denote the estimate as �̂�𝑖.

4. Let 𝛿(𝑡) be the estimate of 𝛿(𝑡). Compute 𝛿(𝑡) by

𝛿(𝑡) =
𝑚
∑

𝑖=0
�̂�𝑖𝟙[𝑐𝑖

𝑛
⋅ 𝑇 ,

𝑐𝑖+1
𝑛

⋅ 𝑇
].
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4 Experiments and Results

To illustrate the usage and benefits of the Bayesian inference method, we compare its performance
with that of the maximum likelihood method by conducting simulated experiments to calibrate
the pharmacokinetic model. The whole experiment procedure can be divided into two main
steps. Firstly, we established an identifiability analysis of the model to ensure the feasibility of
parameter estimation. Next, we use the maximum likelihood and Bayesian method separately to
estimate the identifiable parameters. During the experiment using MLE, we only deals with the
model parameters. While in the process of the Bayesian inference experiment, we also managed
to evaluate the time delay and the Arterial Input Function via change point estimation. The Julia
codes corresponding to the simulations can be found at BayesianInferenceOU, and the MATLAB
codes can be found at FVBiOU.

4.1 Identifiability Analysis.

We first ensure the identifiability of the model and parameters before estimating parameters.
Since the identifiability only applies to drift terms, we employ the analysis technique in [4] to the
drift parameters.

First, we establish the structural identifiability test of the model. We claim that the pharma-
cokinetic model is structurally identifiable because the moment dynamics up to the second order
(Eqn.14 15) are closed and exact. Therefore, all the drift terms are structurally identifiable, and
the MLE in Eqn.9 exists. However, there exists no algorithm that analyzes the identifiability of
diffusive parameters. So we will perform parameter inference on each diffusive parameter.

Then we analyze the practical identifiability of each model parameter. We compute the log-
likelihood using Eqn.11 and compute the corresponding individual likelihood-based confidence
intervals using Eqn.12. For simplicity, we use the credible intervals of the log-likelihood to
represent the likelihood-based confidence intervals. We get the left and right endpoints of the
credible intervals corresponding to each parameter, shown in the following table. We can observe

Parameter 𝛼 𝛽 𝜆 𝑘 𝜎1 𝜎2
left endpoint -4457.83 -4764.63 -4023.36 -3939.13 -1784.86 -1783.82

right endpoint -4040.65 -4738.65 -4020.33 -3936.16 -1781.97 -1780.73
Table 1: Credible interval for log-likelihood of each parameter

from Table.1 that all the credible intervals for likelihoods are finite. Hence, all model parameters
are regarded as practically identifiable.

Due to the above results from analyzing the two types of identifiability, we could estimate all
the parameters. It is reasonable for us to perform a multivariate estimation with all parameters
estimated simultaneously using the Bayesian approach with guided proposals.

4.2 Comparative Experiments

From the above identifiability analysis, the pharmacokinetic model and the drift terms are proved
identifiable. So, we could experiment to estimate all model parameters containing the diffusive
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terms but not the AIF. For the comparative experiment, we randomly generate two data sets
where the values are the true values of the model parameters. Then we successively apply the
Maximum Likelihood and Bayesian inference methods to these two data sets. We compare the
performances of these two methods using different estimators, chosen as the maximum likelihood
estimator (MLE) and the posterior mean, respectively.

4.2.1 General Setup

To compare and analyze the performances of the two methods for parameter estimation, we
should experiment using different methods under the same setup and control the variables.

• Δ: Time grid. Observation times are equally spaced. We try to simulate the observations
using a dense enough time grid Δ = 𝑡𝑖 − 𝑡𝑖−1 = 0.001𝑠.

• 𝜎: noise measurement. We set the Gaussian noise decorated to observations as 𝜎 = 1.
• 𝑇 : period. We set the time interval to observe the process [0, 𝑇 ] as [0, 10] seconds.
• 𝑋0: initial state. We set the initial state to be 𝑋0 = [0, 0]′ in every experiment.
• 𝑛: iteration. We experiment by 𝑛 = 10000 iterations to implement the updating algorithm.
• the first data set.

– True values of biological parameters (𝛼, 𝛽, 𝜆, 𝑘) and noises 𝜎1, 𝜎2 are given by
𝛼 = 1.0, 𝛽 = 6.0, 𝜆 = 1.0, 𝑘 = 1.5, 𝜎1 = 2.0, 𝜎2 = 0.5. (42)

– Initial values are assigned by
𝛼0 = 0.0, 𝛽0 = 0.0, 𝜆0 = 0.0, 𝑘0 = 0.0, 𝜎10 = 1.0, 𝜎20 = 0.1 (43)

• the second data set.
– Values of biological parameters (𝛼, 𝛽, 𝜆, 𝑘) and noises 𝜎1, 𝜎2 are given by

𝛼 = 10.0, 𝛽 = 30.0, 𝜆 = 15.0, 𝑘 = 20.0, 𝜎1 = 6.0, 𝜎2 = 2.0. (44)
– Initial values are assigned by

𝛼0 = 0.0, 𝛽0 = 0.0, 𝜆0 = 0.0, 𝑘0 = 0.0, 𝜎10 = 1.0, 𝜎20 = 0.1 (45)

4.2.2 Maximum Likelihood Method

Since the computation of maximum likelihood is time-consuming, the estimation method using
the MLE mainly deals with models when the Arterial Input Function is a known constant. So,
we do comparison experiments using the maximum likelihood and Bayesian method within the
same scenario such that 𝛿(𝑡) = 50 [1]. To verify the superiority of the Bayesian method, we
should keep the true models and the initial values consistent when implementing the maximum
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likelihood and Bayesian approach. However, the difficulty is that the parameters estimated are
in different forms in these two methods due to reparametrization. To be specific, we estimate
model parameters 𝛼, 𝛽, 𝜆, 𝑘, 𝜎1, 𝜎2 directly in the Bayesian setup, but the reparametrization
of 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6 (Eqn.26) when implementing the maximum likelihood method. There-
fore, we need to transform the model parameters and compute their corresponding initial values
according to Eqn.26 and Eqn.43-45. Due to the limitation of the maximum likelihood approach
found in [1], only five parameters among 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6 can be estimated simultaneously.
So, it is reasonable to fix 𝜃5 to its true value and perform joint estimation of all other parameters.
We assign initial values as for both the first and the second data set (Eqn.42-44)

𝜃1 = 0.5, 𝜃2 = 0.3, 𝜃3 = 0.2, 𝜃4 = 0.1, 𝜃6 = 0.0.

Then the results are illustrated in Table.2-3. True values of the reparametrized model are com-
puted by transformation. The estimates represent the values resulting from the Maximum Like-
lihood Estimators, and the standard errors are shown in the brackets.

parameter 𝜃1 𝜃2 𝜃3 𝜃4 𝜃6
true value 0.91 0.99 0.2 0.01 20
estimate 0.87(0.08) 0.94(0.12) 0.06(0.26) 0.03(0.13) 20.01(0.56)

Table 2: MLE for the first data set

parameter 𝜃1 𝜃2 𝜃3 𝜃4 𝜃6
true value 0.6 0.9 0.7 0.2 20
estimate 0.64 (0.17) 0.79 (0.15) 0.78 (0.26) 0.12 (0.16) 20.01(0.38)

Table 3: MLE for the second data set

4.2.3 Bayesian Inference Method

In this part, we conduct a comparative experiment on the two data sets in a Bayesian setup. We
first generate continuous data. Then we display the data using the second data set in Fig.2. Here,
the blue curve 𝑦1 denotes the value changes of a sum of coordinates of the continuous sampling,
while the orange curve 𝑦2 denotes the values of the second coordinate. And the green scatter
plots are the values of the sum of coordinates of the discrete sampling.
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Figure 2: Data for the second data set

Then we recover the paths, reconstruct the states, and generate discrete observations consis-
tent with the continuous observations. We decorate each observable with a Gaussian noise Σ = 1
and set 𝐿 = [1, 1] to observe the sum of coordinates. Next, we implement the adaptive BFFG
algorithm with a tuned memory parameter. We keep the initial value of memory parameter 𝛾 as
0.5 in all experiments because the algorithm will tune the proposal automatically when estimat-
ing different parameters. To demonstrate the validity of the Bayesian approach, we estimate each
parameter separately and measure its estimate, which is the posterior mean. For comparison with
the performances of MLEs, we compute and record the posterior means of the parameters with
their standard errors in Table.4-5 for the two data sets.

We observe that the drift terms can be well estimated. But the diffusive terms have relatively
large errors in general. In addition, the standard errors of the Bayesian method are mostly smaller
than those of the MLEs. Therefore, we can conclude that the Bayesian approach performs better
than the maximum likelihood method.

parameter 𝛼 𝛽 𝜆 𝑘 𝜎1 𝜎2
true value 1 6 1 1.5 2 0.5
estimate 1.001 6.083 0.991 1.481 2.232 0.479

error 0.001 0.09 0.010 0.020 0.244 0.022
Table 4: Bayesian estimates for the first data set

parameter 𝛼 𝛽 𝜆 𝑘 𝜎1 𝜎2
true value 10 30 15 20 6 2
estimate 10.054 29.897 15.059 20.092 6.141 2.091

error 0.092 0.045 0 0.096 0.252 0.095
Table 5: Bayesian estimates for the second data set

To see the convergence of estimates to their corresponding true values more clearly, we plot
the trajectories of the estimates. The trace plots of the first data set are given by Fig.3(a)-3(f),
and those of the second data set are given by Fig.4(a)-4(f). In each figure, the red line represents
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the true value of the parameter, the blue curve represents the trajectory of the estimate, and the
estimated parameter is written in the caption. The title of each subfigure illustrates the true values
of this model. We can see from the figures that all the parameters converge to their corresponding
true values stably.

𝛼 𝛽

𝜆 k

𝜎1 𝜎2

Figure 3: Individual parameter estimates for the first data set
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𝛼 𝛽

𝜆 k

𝜎1 𝜎2

Figure 4: Individual parameter estimates for the second data set

4.3 Tentative Experiments

In addition to comparative experiments, we carry out tentative experiments using the Bayesian
approach to solve the limitations of the maximum likelihood method and improve its drawbacks.
In tentative experiments, we attempt to estimate diffusive terms and multiple parameters simul-
taneously using the Bayesian inference method. Furthermore, we detect the time delay and esti-
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mate the AIF by employing change point estimation When implementing the Bayesian estimation
method.

4.3.1 Setup

To implement the Bayesian joint estimation scheme and change point estimation, we conduct the
experiments on a new data set (the third data set) under the following assumptions.

• Δ = 𝑡𝑖 − 𝑡𝑖−1 = 0.001𝑠

• 𝜎 = 1

• [0, 𝑇 ] = [0, 10]𝑠

• 𝑋0 = [0, 0]′

• 𝑛 = 10000

• the third data set:
– Values of biological parameters (𝛼, 𝛽, 𝜆, 𝑘) and noises 𝜎1, 𝜎2 are given by

𝛼 = 116.7, 𝛽 = 5.83, 𝜆 = 1.25, 𝑘 = 2.25, 𝜎1 = 2.0, 𝜎2 = 1.0. (46)
– Initial values are assigned by

𝛼0 = 100.0, 𝛽0 = 0.0, 𝜆0 = 0.0, 𝑘0 = 0.0, 𝜎10 = 1.0, 𝜎20 = 0.0 (47)

• AIF: The AIF is fixed to be 𝛿(𝑡) = 𝑡
1 + 𝑡2

for joint estimation. For change point estimation,
we try two cases

𝛿(𝑡) = 𝑡
1 + 𝑡2

, 𝛿(𝑡) = 1
1 + 𝑡2

4.3.2 Joint Estimation

We first implement the Bayesian joint estimation scheme for all parameters using the third data
set (Eqn.46). Similar as before, we can display the data in Fig.5 Differences can be observed
easily due to the non-constant AIF.
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Figure 5: Data for the third data set

We aim to estimate all model parameters simultaneously, both drift and dispersion. Assuming
all model parameters are unknown, we estimate each parameter one by one, in one trial, with a
non-constant AIF. We conduct the joint estimation experiment and record the estimate of each
parameter with the standard error. The results are given in Table.6, structured similarly as before.

parameter 𝛼 𝛽 𝜆 𝑘 𝜎1 𝜎2
true value 116.7 5.83 1.25 2.25 2.0 1.0
estimate 116.685 6.04 1.247 2.246 2.211 1.121

error 0.605 0.360 0.042 0.035 0.221 0.112
Table 6: Joint estimates for the third data set

Meanwhile, we plot the trajectories of all parameters in Fig.6. In practice, we also try to
estimate the ratios and sums using the example reparametrisation in Eqn.34. The trace plots of
the reparametrized model are given in Fig.7.

49



𝛼 𝛽

𝜆 𝑘

𝜎1 𝜎2

Figure 6: Joint estimates for the third data set

From Fig.6, we can see that the estimate of each parameter using joint estimation converges
to their true values within three or four orders of their magnitudes. Therefore, we can conclude
that joint estimation of the pharmacokinetic model can be solved using the Bayesian parametric
inference method.
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𝛼
𝛽

𝜆
𝑘−𝜆

𝛽 + 𝑘

Figure 7: Joint estimates using reparametrization for the third data set

4.3.3 Change Point Estimation

In this section, We simulate estimation scheme using change point detection. We conduct change
point estimation experiment twice with respect to two AIFs, 𝛿(𝑡) = 𝑡

1 + 𝑡2
, and 𝛿(𝑡) = 1

1 + 𝑡2
.

We sample the continuous data by generating observations every 0.0001𝑠 on the time interval
[0, 10]𝑠, the same as what we have done in joint estimation. Among all, we take one discrete
observation every 0.1 second, resulting in 100 observations. Let 𝑖 denote the index of the data
point at time 𝑡𝑖.

Firstly, we estimate the time delay by implementing Algorithm.7. We can obtain indices of
the time delay, 6 for 𝛿(𝑡) = 𝑡

1 + 𝑡2
and 3 for 𝛿(𝑡) = 1

1 + 𝑡2
. So we can conclude that there exists

a time delay at the beginning of injection. And the time delay lies at approximately 𝜀 = 0.6𝑠 or
𝜀 = 0.3𝑠, corresponding to the two choices of AIFs.

Next we turn to estimate the AIF by implementing Algorithm.9. In this case, the whole time
interval is split into 𝑛 = 100 small intervals, with a time increase Δ = 𝑡𝑖 − 𝑡𝑖−1 = 0.1𝑠. We
perform multiple change points detection on the third data set with two choices of non-constant
AIFs (Eqn.46), and then get a series of indices representing the positions of change points. For
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true AIF being 𝛿(𝑡) = 𝑡
1 + 𝑡2

, the indices of the change points are

𝑐𝑝𝑠 = [0, 2, 4, 5, 7, 10, 26, 33, 42, 48, 63, 83, 93, 100],

For true AIF 𝛿(𝑡) = 1
1 + 𝑡2

, the indices of the change points are

𝑐𝑝𝑠 = [0, 1, 4, 6, 9, 14, 18, 22, 26, 42, 48, 84, 94, 100],

Before estimating the AIF, we can first use the change points to recover the function to support
that we have the true change points in advance. The recovery of functions with their true functions
same as before is shown in Fig.8.

𝛿(𝑡) = 𝑡
1+𝑡2

𝛿(𝑡) = 1
1+𝑡2

Figure 8: recovery of AIFs using change points
Based on the correct change points detected, we implement the estimation scheme for the

two AIFs according to Algorithm.10. However, it failed to meet our expectations that we could
not estimate the AIF when all parameters are unknown.

To validate our estimation scheme, we try to recover the AIF when all other model parameters
are given. Then piecewise estimates of the AIFs are shown in Fig.9(a) and 9(b) respectively.
In each figure, the red curve represents the ideal structure of each AIF composed of piecewise
constants obtained using the posterior mean of every bin, and the green one represents the curve
of true AIF.

Therefore, we can claim that the Bayesian method for estimating the AIF works only for given
model parameters, but fails with all unknown parameters.
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𝛿(𝑡) = 𝑡
1+𝑡2 𝛿(𝑡) = 1

1+𝑡2

Figure 9: AIF Estimation

53



5 Conclusion and Discussion

As stated in [1], the popular maximum likelihood method to estimate model parameters of the
bi-dimensional Ornstein-Uhlenbeck process has limitations. It is not only time-consuming for a
high-dimensional data set but works only assuming one fixed parameter among all. Meanwhile,
a novel Bayesian method for parametric inference is available, proposed in [3]. Therefore, it is
vital to experiment the Bayesian approach on the pharmacokinetic model, thus validating its ap-
plicability. The overarching aim of this thesis is to calibrate the pharmacokinetic model relying
on experimental data using the maximum likelihood and Bayesian method and illustrate the su-
periority of the Bayesian approach. Specifically, the focus is on comparing these two methods
and a new trial for joint estimation with an unknown AIF.

We experiment the maximum likelihood and Bayesian method on two data sets and estimate
every model parameter, respectively. By the results of comparative experiments, we conclude
that the Bayesian approach generally presents better estimates because it provides fewer standard
errors than the maximum likelihood method. Moreover, we can perform joint estimation using
the Bayesian approach with all parameters unknown, which solves the limitation of the maximum
likelihood method. In addition, we can roughly estimate the time delay of injection using the
change point estimation combined with the Bayesian parameter estimation method. However,
the Arterial Input Function cannot be estimated when no parameter is fixed at first. Therefore,
we fall short of the expectation to solve a more general problem when an unknown injection
appears randomly.

To conclude, the Bayesian parameter estimation method applies to the bi-dimensional Ornstein-
Uhlenbeck process and provide little-biased estimates. This method not only deals with joint
parameter estimation, but also manages to estimate the time delay. Additionally, it can work with
the AIF even though we need to fix other model parameters at the beginning. Therefore, we
acknowledge the Bayesian method as a practical approach for estimating parameters of SDEs.

For further study, we should continue exploring how to estimate the AIF given no fixed pa-
rameter. We could also study the ways to extend the Bayesian method to more complicated
models or higher-dimensional cases.
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