
Implementing a cross-talk-less
novel wavefront reconstruction
algorithm to be used with a Shack-
Hartmann sensor

R.S. Biesheuvel

Te
ch
ni
sc
he
U
ni
ve
rs
ite
it
D
el
ft



Front cover :
Artist’s impression of the European Extremely Large Telescope

Credit: ESO/L. Calçada,
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Abstract

For wavefront reconstruction, often the combination of a Shack-
Hartmann sensor and a reconstruction method utilizing the Cartesian
derivatives of Zernike polynomials (the least-squares method) is used,
which is known to introduce cross-talk. In Janssen (2014) a new wave-
front reconstruction algorithm is introduced to be used with the Shack-
Hartmann sensor that does not present cross-talk. To our knowledge,
this method has never been demonstrated. In the current research,
Janssen’s method and the conventional least-squares method are com-
pared on a modified Michelson interferometer setup with a spatial light
modulator to first remove the aberrations of the complete system, and
subsequently introduce specific aberrations for which the Zernike coef-
ficients are reconstructed using both reconstruction methods.

It is found that both methods work equally well with optimal fitting
powers. When fitting fewer than the optimal amount of fitting powers,
it was found that Janssen’s method accurately recovered Zernike co-
efficient amn when n+ 1 powers are fit, while the conventional method
achieves the same accuracy only at n + 2 fitting powers, especially
when aberrations introducing cross-talk are present. When more than
the optimal amount Zernike powers are used, it is seen that Janssen’s
method presents aliasing at lower fitting powers. At the optimal fitting
power, the RMS landscape for both methods is shown to be similar, and
therefore they are equally susceptible to errors due to mis-estimation
of the center position and radius of the beam on the Shack-Hartmann
sensor. Lastly, it is shown that theoretically, Janssen’s method is at
least 3.5 times slower than the conventional least-squares method due
to the use of complex valued Zernike polynomials.
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1 Introduction

When looking at the stars with a telescope, Newton noted that the image of
the stars was quivering. These tremors made it very difficult to accurately
measure the position of the stars, and made it more difficult to look at them
in general. What he discovered was that the wavefront of the light of the
star traveling through the atmosphere gets aberrated, and the image that is
formed is degraded.

The biggest telescopes on earth around the world now contain active
elements to counteract these tremors caused by the atmosphere. These
active elements need an input on the conditions of air, not necessarily in
terms of weather, but in which way it distorts the wavefront. Once this
information is known, the tremors can be reduced using active elements.

To measure the distortion of the wavefront, often a Shack-Hartmann
sensor is used. This sensor is not only used in telescopes, but also in mi-
croscopes and in metrology instruments. Using the sensor, the wavefront
shape can be measured, and it is usually expressed using coefficients of a
polynomial basis.

In most practical applications, when a Shack-Hartmann sensor is used
to reconstruct the wavefront in coefficient of a polynomial basis, the least-
squares method is used. An often-used polynomial basis are the Zernike
polynomials. However, already since the 1980s it is known that there is
a fundamental flaw in the combination of the least-squares method and
Zernike polynomials. The fact is that the method presents cross-talk of
coefficients, meaning that different coefficients are measured than the ones
that are present.

To solve this, in 2014 Janssen introduced an algorithm that uses a dif-
ferent relation between the data of the Shack-Hartmann sensor and the final
measured coefficients(Janssen, 2014). This relation theoretically solves the
cross-coupling problem that is present in the least-squares method. Up to
now, only the mathematical framework for the reconstruction method has
been formulated, and there have been no reported implementations yet.

This research is aimed at implementing Janssens method and comparing
it experimentally to the commonly used least-squares method. The two
reconstruction methods are compared on five aspects.

First, the accuracy in optimal conditions are compared between the two
methods. Secondly, the accuracy under conditions where cross-talk could
occur is tested in order to verify that in Janssens method cross-talk is not
present. This occurs when too little information is extracted from the Shack-
Hartmann sensor. Afterwards, the effect on both algorithms is studied when
too much information is extracted from the sensor, and the aliasing effect
occurs. Furthermore, the effect of change of input parameters on the accu-
racy of reconstruction is researched. Lastly, the theoretical computational
cost of both algorithms is compared.
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In order to compare the two methods, the necessary theory is introduced
in Section 2. In Section 3, the experimental setup is explained. How the
experimental setup has been used is described in Section 4. The actual
measurements are presented and discussed in Section 5, and the conclusions
from these measurements are presented in Section 6. Lastly, Section 7 gives
an outlook on cases that can be considered further to go give a better view
on which wavefront reconstruction algorithm would be the most suitable one
in specific use-cases.
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2 Theory

The comparison between the different wavefront reconstruction techniques is
based upon the theory discussed in this Section. Firstly, Zernike polynomials
are discussed and used as a basis to describe the wavefronts. Afterwards,
the workings of the Shack-Hartmann sensor are discussed. After this, the
working principles of both the least-squares and Janssen’s algorithm are
discussed, as well as the differences between them. Last but not least, it is
presented where these differences can manifest themselves most prominently.

2.1 Zernike polynomials can be used to describe aberrations
in the wavefront

In systems where aberrations are desired to be known, such as microscopes
and telescopes, usually a circular aperture is present. In order to describe
these aberrations, circular polynomials are a powerful tool. Zernike poly-
nomials are such a set of circular polynomials. In the case of aberration
testing, Zernike polynomials are useful because the polynomials directly re-
late to aberrations that are often measured in these systems. This way, the
coefficients of these polynomials can directly say something about the size
and influence on the optical systems (Goodwin and Wyant, 2006). A table
with polynomials and their contributions to the classical Seidel aberrations
is shown in Table 2.1. The single number ordering presented in Table 2.1 is
explained in Section 2.1.2.

Table 2.1: The first three powers of Zernike polynomials Zmn , their cor-
responding single Zernike number (explained in Section 2.1.2) and their
relation to common Seidel aberrations

(n,m) j Contributions to the Seidel aberrations

Z0
0 Z1 piston

Z−1
1 Z2 y-tilt

Z1
1 Z3 x-tilt

Z−2
2 Z4 astigmatism 45°, defocus

Z0
2 Z5 defocus, piston

Z2
2 Z6 astigmatism 0°, defocus

Z−3
3 Z7 trefoil

Z−1
3 Z8 coma, y-tilt

Z1
3 Z9 coma, x-tilt

Z3
3 Z10 trefoil

This subsection will discuss what Zernike polynomials are, how they can
more easily be used in computations and how the presence of aberrations
will degrade the image quality.
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2.1.1 Zernike polynomials form an orthogonal set on the unit
disc

In this research, the American National Standards Institute (ANSI) defini-
tion for Zernike polynomials is used. As defined in Thibos et al. (2002), the
polynomial is defined in polar coordinates (ρ, θ) as

Zmn (ρ, θ) = Nm
n R

|m|
n (ρ)Θm(θ), (2.1)

where

Nm
n =

√
(2− δm0)(n+ 1) (2.2)

R|m|n (ρ) =

n−|m|
2∑

s=0

(−1)s(n− s)!

s!
(
n−|m|

2 − s
)

!
(
n+|m|

2 − s
)

!
ρn−2s (2.3)

Θm(θ) =

{
cos(mθ), if m ≥ 0

− sin(mθ), if m < 0,
(2.4)

such that Zmn (ρ, θ) is a real valued, orthonormal (on the unit disc) expression
for Zernike polynomials. In these expressions, n is the power of the Zernike
polynomial, and m the azimuthal order, which are subject to

n ≥ 0, (2.5)

n− |m| is even, (2.6)

|m| ≤ n, (2.7)

and ρ ≤ 1 the radius on the unit disc, and δnn′ the Krönecker delta function.
As mentioned above, these polynomials are orthonormal on the unit disc.

In formula, this implies

∫ 1

0

∫ 2π

0
Zmn (ρ, θ)Zm

′
n′ (ρ, θ)ρdθdρ = πδnn′δmm′ . (2.8)

With this definition, any real-valued wavefront function (defined on the
unit disc) can be described as a linear combination of the Zernike polyno-
mials given by

W (ρ, θ) =

∞∑
m=−∞

∑
n∈ηm

amn Z
m
n (ρ, θ), (2.9)

where ηm is the set of allowed n values dependent on m, namely ηm =
{|m|, |m|+ 2, |m|+ 4, . . . ,∞} when m 6= 0, and ηm = {2, 4, . . . ,∞} when
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m = 0. This set ensures that the constraints set in Equations 2.5, 2.6, 2.7
are all met. Here amn is the real-valued Zernike coefficient.

Although there is an international standard set by the American Na-
tional Standards Institute (ANSI) for the definition of Zernike polynomials,
many researchers use their own definition to fit the needs of their research.
For instance, Navarro et al. (2011) and Janssen (2014) use complex valued
Zernike polynomials, where Navarro et al. adds a normalization factor to
make the basis orthonormal. Stephenson (2014) and van Brug (1997) use
a definition of real-valued Zernike polynomials, where Stephenson uses the
ANSI standard, while van Brug uses a different definition for the azimuthal
order m.

Because Janssen’s algorithm is used in this research, this paragraph will
discuss the conversion between bases and their coefficients. The complex
valued Zernike polynomial is defined in polar coordinates (ρ, θ) on the unit
disc as

Cmn (ρ, θ) = R|m|n (ρ)eimθ, (2.10)

where Cmn is used to emphasize that the polynomial is complex. The radial

polynomial R
|m|
n is given as

R|m|n (ρ) = ρ|m|P
(0,|m|)
n−|m|

2

(2ρ2 − 1), (2.11)

with P
(α,β)
k (x) the Jacobi polynomial of degree k, which is orthogonal with

respect to the weight (1 − x)α(1 + x)β on the interval[−1, 1]. Note that
the factor ρ|m| is missing in Janssen (2014), but can be found in Janssen

(2010). This definition of the radial component R
|m|
n (ρ) and the definition

of Equation 2.3 are the same. The value of Cmn = 0 for all values of n and m
where n− |m| are odd or negative. This leads to a normalization condition
of ∫ 1

0

∫ 2π

0
Cmn (ρ, θ)

(
Cm

′
n′ (ρ, θ)

)∗
ρdθdρ =

π

n+ 1
δnn′δmm′ . (2.12)

This orthogonality means that, like the real valued Zernike polynomial, any
sufficiently smooth (complex) wavefront can be described by

W (ρ, θ) =

∞∑
m=−∞

∑
n∈ηm

αmn C
m
n (ρ, θ), (2.13)

where αmn are generally complex valued coefficients corresponding to the
complex Zernike polynomial. Expanding the complex exponential in Equa-
tion 2.10 leads to the following conversion between this definition of complex
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Zernike polynomials and the ANSI standard

Nm
n C

m
n (ρ, θ) =


Z |m|n (ρ, θ) + iZ−|m|n (ρ, θ), if m > 0

Z |m|n (ρ, θ)− iZ−|m|n (ρ, θ), if m < 0

Zmn , if m = 0,

(2.14)

where Nm
n is defined in Equation 2.2

From the definition of the complex Zernike polynomial in Equation 2.10

we can also see that the complex conjugate
(
C
|m|
n

)∗
must be equal to C

−|m|
n .

This observation, together with the relations between the real and complex
Zernike polynomials leads to the expression

Zmn =


Nm
n

2

(
C |m|n + C−|m|n

)
= Nm

n Re
(
C |m|n

)
, if m > 0

Nm
n

2i

(
C |m|n − C−|m|n

)
= Nm

n Im
(
C |m|n

)
, if m < 0

Nm
n C

|m|
n , if m = 0.

(2.15)

When using complex polynomials to describe a real wavefront, the coef-
ficients are usually complex valued. In order to transform them back to the
coefficients of the real-valued Zernike Zmn , the following relations (derived
in Appendix A) can be used

amn =



1

Nm
n

Re
(
α|m|n + α−|m|n

)
, if m > 0

−1

Nm
n

Im
(
α|m|n − α−|m|n

)
, if m < 0

1

Nm
n

Re (αmn ) , if m = 0.

(2.16)

2.1.2 Single numbering is introduced to help with computing

In this research, the Zernike polynomials are evaluated on the computer,
and data is saved in vectors and matrices. To make it easy to loop over all
polynomials, a single index is introduced. In the notation by Thibos et al.
(2002), this single index j starts at 1 and monotonically increases, and is
given by

j =
n(n+ 2) +m

2
, (2.17)

where n is the Zernike power and m the azimuthal order. The reverse can
also be done, that is finding n and m from j as follows

n =

⌈
−3 +

√
9 + 8j

2

⌉
, (2.18)

m = 2j − n(n+ 2), (2.19)
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where dxe denotes the “ceiling” function, that is the smallest integer greater
than x.

The first 3 powers of Zernike polynomials are written out in Table 2.1
to show that the azimuthal order m starts low and linearly increases per
power. Note that this is different from Noll’s ordering and Fringe ordering,
which are other frequently used ordering schemes.

2.1.3 Aberrations are spatial changes in phase over ideal wave-
front and cause deterioration in image quality

When looking at a perfect imaging system, one can say that the presence
of a point-source object yields a perfect spherical wave at the exit pupil,
converging to the ideal geometrical imaging point (Goodman, 2005). When
this is the case, the system is diffraction limited. An aberration is when
the wave at the exit pupil deviates from spherical. These aberrations can
be caused by many sources. Examples of the sources of aberrations include
turbulence in the air when looking at the stars and imperfections of the
lenses used in the system.

The effect of aberrations on the image quality can be conveyed with a
small example. If a plane wave Pin(x, y) hits a lens with focal length f , the
electric field Pout(x, y) behind the lens can be determined as

Pout(x, y) = Pin(x, y)e
−πi(x2+y2)

λf , (2.20)

where λ is the wavelength of the plane wave. If Pin is perfectly flat, the
outgoing wave will be a perfect spherical wave with the size of the aperture.
If the incoming wave has an aberration, or if the lens is not perfectly spherical
in shape, the general wavefront after the lens can be described as

P(x, y) = Pout(x, y)e
2πiW (x,y)

λ . (2.21)

Here, 2πW (x,y)
λ is the total added phase, where W (x, y) is the aberration.

From Fourier optics it is known that the electric field intensity in the
focal spot can be described as

|Ufocal(x, y, f)|2 =
1

λ2f2

∣∣∣∣F {Peπi(x2+y2)λf

}(
x

λf
,
y

λf

)∣∣∣∣2 , (2.22)

where F{y}(x) denotes the Fourier transform of y evaluated at x. If Pin is
a flat wavefront cut off by the aperture, P can be seen as the aperture with
within a phase plate. This added phase will always cause a deterioration
of the focal spot quality (Goodman, 2005). Because of this, minimizing
aberrations will improve image quality obtained by the system. An example
is shown in Figure 2.1.
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Figure 2.1: The effect of Z−1
3 coma on the created image. The top row

shows the wavefront before hitting the lens, and the bottom row shows the
image formed by this wavefront. Images are formed with the same amplitude
plane-wave, so the total power is constant. It can be seen that the shape
and the amplitude of the peak intensity are altered when the aberration is
present.
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2.2 Shack-Hartmann sensors are built such that the local
slope of the wavefront can be measured

From the previous section, it is apparent that aberrations in an optical
system degrade the quality of the image gathered. In the field of adaptive
optics, research is being done on how to cancel these aberrations. One way
of achieving this is by measuring the phase aberration ϕW , and by altering
an active optical component in such a way that this aberration is canceled
out. An example of this can be seen in the European Extremely Large
Telescope being built right now. In this telescope, there is an adaptive
mirror with a diameter of 2.4 meters consisting of over 8000 actuators which
can compensate real time for aberrations due to turbulence and shaking of
the optical components due to the wind (European Southern Observatory,
2011).

In order for this compensation to work well, the phase aberration ϕW has
to be measured accurately. A typical way of measuring this in an adaptive
optics set-up is by using a Shack-Hartmann sensor. A Shack-Hartmann
sensor consists of a camera chip and lenslet array. A typical setup and
working diagram can be seen in Figure 2.2. The lenslets are placed at the
focal distance from the camera chip such that an incoming plane wave will
be focussed as many spots on the camera. A plane wave is shown on the left
in red. If the incoming wave is aberrated, the spot position will be changed.
On the right, one can see the displacements of the spots due to a spherical
wave aberration.

In this section, first the amount of displacement due to the aberrations
will be derived, and afterwards two algorithms for retrieving the phase due
to these displacements will be introduced.

2.2.1 Spot displacement on the sensor is proportional to the av-
erage slope of the phase over the lenslet

It can be derived from the theory how much a spot is displaced due to an
aberration. Because this displacement is linear, the reverse problem can be
solved as well. In other words, one can retrieve the aberration given the
spot displacement.

In order to derive this displacement, one important assumption has to
be done, namely that the slope of the phase over the lenslet can be approxi-
mated with a first order approximation. That is, the slope of the phase does
not vary much over the area of the lenslet. This is an important assumption
that will come back when determining which aberrations can be resolved.

If the variation of the slope over the lenslet is small enough, we can
approximate the slope as

ϕW = x
∂ϕ

∂x

∣∣∣∣
x0

+ y
∂ϕ

∂y

∣∣∣∣
x0

, (2.23)
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Figure 2.2: Schematic working of a Shack-Hartmann sensor. Adapted from
Trioptics (2017).

where x0 is the center position of the lenslet. Substituting this phase ϕW
into 2.21, the wavefront just after one lenslet can be determined as

P(x, y) = Pin(x, y)e
−πi(x2+y2)

λf e
i

(
x ∂ϕ
∂x |x0+y ∂ϕ

∂y

∣∣∣
x0

)
. (2.24)

Using this phase in the expression for the intensity in focus of Equation 2.22,
the shape of the spot can be determined by evaluating the Fourier transform
of this wavefront. Again, Pin can be assumed to be a flat wavefront in the
shape of the aperture. Using a circular aperture of radius R, the Fourier
transform to be evaluated is

F {P} = F

{
circ

(√
x2 + y2

R

)
· e
i

(
x ∂ϕ
∂x |x0+y ∂ϕ

∂y

∣∣∣
x0

)}
, (2.25)

where circ is defined as

circ(r) =

{
1 r ≤ 1

0 otherwise
. (2.26)

Using the convolution theorem, one can see that that the spot becomes a
convolution of the Airy disc (from the circular aperture), and the two delta

peaks δ

(
x− 1

2π
∂ϕ
∂x

∣∣∣
x0

)
δ

(
y − 1

2π
∂ϕ
∂y

∣∣∣
x0

)
. This convolution is nothing more

than evaluating the original function at a different place. Substituting this
knowledge back in Equation 2.22, the final expression for the intensity in
the focal field becomes

|Ufocal(x, y, f)|2 =
1

λ2f2

∣∣∣∣∣F
{

circ

(√
x2 + y2

R

)}(
x

λf
− 1

2π

∂ϕ

∂x

∣∣∣∣
x0

,
y

λf
− 1

2π

∂ϕ

∂y

∣∣∣∣
x0

)∣∣∣∣∣
2

.

(2.27)
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This means that the shift in the peak intensity scales linearly with the
slope of the phase over the lenslet. The shift in x- and y-position of the
spots, denoted as ∆x and ∆y, on the camera chip can be expressed as

∆x =
λf

2π

∂ϕ

∂x

∣∣∣∣
x0

∆y =
λf

2π

∂ϕ

∂y

∣∣∣∣
x0

.

(2.28)

It is useful to define the aberration W on the unit disc, due to the fact
that the Zernike polynomials are orthogonal there. If r is the radius of the
beam incoming on the Shack-Hartmann sensor, the slopes of the aberration
can be expressed as 

∂W

∂x

∣∣∣∣
x0

= r
∆x

f

∂W

∂y

∣∣∣∣
x0

= r
∆y

f

(2.29)

for a wavefront with constant slope. Dai (2008) has proven that for a varying
wavefront over the subaperture, the slope needs to be averaged over that sub-
aperture. The expressions for the average slopes in terms of displacement
of the spot on the camera chip becomes

1

AΣ

∫
Σ

∂W

∂x
dxdy = r

∆x

f

1

AΣ

∫
Σ

∂W

∂y
dxdy = r

∆y

f

(2.30)

where Σ is the illuminated sub-aperture domain, with surface area AΣ. Here
Σ changes when the sub-aperture is only partially illuminated (i.e. at the
edge of the beam), and therefore AΣ does as well. This averaging of the
slope is important in recovering the wavefront, as explained in the following
sections. Figure 2.3 shows an example Shack-Hartmann spot pattern, with
two different illuminated areas AΣ. In the Figure, AΣ1 shows a spot fully
within the illuminated area, while AΣ2 shows a spot close to the edge of the
illuminated area.

2.2.2 A conventional least-squares method fits the local deriva-
tives of Zernike polynomials to gather the coefficients

The least-squares (LSQ) fit is based on the real Zernike polynomials, and
uses the fact that the coefficients are not dependent on x and y. The wave-
front in x, y coordinates (with

√
x2 + y2 ≤ 1) can be described as
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Figure 2.3: Sample Shack-Hartmann pattern with two different sub-aperture
sizes. Blue shows the surface area when the spot is not close to the bor-
der, while the red area is taken when the spot is close to the edge of the
illuminated area.

W (x, y) =

∞∑
m=−∞

∑
n∈ηm

amn Z
m
n (x, y). (2.31)

The measured quantity, however, is not W but ∂W
∂x and ∂W

∂y . Taking the
partial derivatives to x and y results in the over determined system of


∂W

∂x
=

∞∑
m=−∞

∑
n∈ηm

amn
∂Zmn
∂x

∂W

∂y
=

∞∑
m=−∞

∑
n∈ηm

amn
∂Zmn
∂y

.

(2.32)

This system can be solved for finite length amn . Using Equation 2.30,
given the displacements ∆x and ∆y, one can create a vector s containing
the slopes as such

s =

[
∂W

∂x

∣∣∣∣
1

∂W

∂x

∣∣∣∣
2

· · · ∂W

∂x

∣∣∣∣
nspots

∂W

∂y

∣∣∣∣
1

∂W

∂y

∣∣∣∣
2

· · · ∂W

∂y

∣∣∣∣
nspots

]T
.

(2.33)

The partial derivatives of the Zernikes in the x- and y-direction can also be
put in a matrix, called the geometry matrix. The geometry matrix G can
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be built up
∂Zj
∂x

∣∣∣∣
n

, the average gradient of Zernike mode j at the position

of spot n. This averaging is done due to the fact that the spot displacement
measured with the Shack-Hartmann sensor is proportional to the average
slope of the wavefront, as expressed in Equation 2.30. It should be noted
that the positions over which the averaging is done is normalized to the
unit disc. These windows are the same defined in 2.30 and 2.3. The matrix
will have a size of (2nspot × J), where J is the maximum index for the
Zernike modes used to have a good approximation of the true wavefront.
The expression for G becomes

G =



∂Z1

∂x

∣∣∣∣
1

∂Z1

∂x

∣∣∣∣
2

· · · ∂Z1

∂x

∣∣∣∣
nspot

∂Z1

∂y

∣∣∣∣
1

∂Z1

∂y

∣∣∣∣
2

· · · ∂Z1

∂y

∣∣∣∣
nspot

∂Z2

∂x

∣∣∣∣
1

∂Z2

∂x

∣∣∣∣
2

· · · ∂Z2

∂x

∣∣∣∣
nspot

∂Z2

∂y

∣∣∣∣
1

∂Z2

∂y

∣∣∣∣
2

· · · ∂Z2

∂y

∣∣∣∣
nspot

...
...

. . .
...

...
...

. . .
...

∂ZJ
∂x

∣∣∣∣
1

∂ZJ
∂x

∣∣∣∣
2

· · · ∂ZJ
∂x

∣∣∣∣
nspot

∂ZJ
∂y

∣∣∣∣
1

∂ZJ
∂y

∣∣∣∣
2

· · · ∂ZJ
∂y

∣∣∣∣
nspot



T

.

(2.34)

The system of Equation 2.32 can then be written as

s ≈ G · a, (2.35)

where a is the vector containing the Zernike coefficients. The least-squares
estimation of amn becomes

a ≈ G+ · s, (2.36)

where G+ the generalized inverse of the geometry matrix. This is an ap-
proximation as G only contains the information of a finite number of Zernike
modes, and their contribution is averaged over the lenslet array.

2.2.3 Janssen’s method uses an analytical relation between the
local derivatives of the wavefront and Zernike polynomials

Janssen’s method relies on an analytical relation found between the local
derivatives of the wavefront and Zernike polynomials. This is in contrast
with the least-squares fit as described in the previous subsection, where
there was a link between the local derivatives of the wavefront and the
derivatives of the Zernike polynomials.

The reconstruction is based on the identities

∂Cmn
∂x

=
∂Cmn−2

∂x
+ n

(
Cm−1
n−1 + Cm+1

n−1

)
∂Cmn
∂y

=
∂Cmn−2

∂y
+ in

(
Cm−1
n−1 + Cm+1

n−1

)
,

(2.37)
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where these identities allow the expression of any derivative Zernike polyno-
mial as a sum of Zernike polynomials. The conclusions of Janssen’s work are
described here in this section, and for the full derivation, one is encouraged
to read Janssen (2014).

The wavefront for Janssen’s method is described as

W (ρ, θ) =
∞∑

m=−∞

∑
n∈ηm

αmn C
m
n (ρ, θ), (2.38)

where Cmn (ρ, θ) the complex Zernike polynomials, and αmn the complex
Zernike coefficient. Janssen has found that the complex coefficients can
be estimated as

α̂mn = cmn ϕ
m
n − cmn+2ϕ

m
n+2, (2.39)

where

cmn =
1 + δn|m|

2n
(2.40)

ϕmn =
1

2
(β+)m+1

n−1 +
1

2
(β−)m−1

n−1 , (2.41)

and where δnn′ is the Kronecker delta equal to 1 if n = n′ and 0 otherwise.
Furthermore β+ and β− are the least-squares solution to the problems

∂W

∂x
± i∂W

∂y
=

∞∑
m=−∞

∑
n∈ηm

(β±)mn C
m
n . (2.42)

Note that the desired coefficients αmn are analytically related to four β coef-
ficients, namely (β+)m+1

n+1 , (β+)m+1
n−1 , (β−)m−1

n−1 , and (β−)m−1
n+1 . The fact that

αmn is analytically related to β coefficients is desirable, because β-coefficients
can directly be estimated (in a least-squares sense) from measurable quan-
tities. This fit is made in the same way as the least-squares method. This
means that also the complex Zernike polynomials need to be averaged over
the lenslets. The fit to get the β coefficients, however, is done with a dif-
ferent basis than in the least-squares method to find the a-coefficients. The
effects of this are discussed in the following section.

As a note for this method, when n = |m|, there will be non-existent
combinations of n and m in Equation 2.41. In that case the value of β will
be set to 0. For instance, α̂1

1 is among others dependent on (β+)2
0, which

goes against the constraint given in Equation 2.7.

To go from complex coefficient αmn to the real coefficent amn , the relations
in Equation 2.16 can be used. A good check to see if everything has gone
right with indexing would be to check if the imaginary part of amn is negligible
compared to the real part, as the measured wavefront is real-valued.
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2.2.4 The main difference between the methods is in the basis
for fitting

The main difference between the least-squares method and Janssen’s method
for finding the coefficients is in how the fitting is done. Both methods use
a least-squares fit using a geometry matrix, but the matrix elements are
constructed differently. In the least-squares method, the geometry matrix
elements are evaluations of the average gradient of the real valued Zernike
polynomials over certain windows, while for Janssen’s method it is the av-
erage of the complex valued Zernike polynomials over the same windows.

The gradients of the Zernike polynomials are known not to be orthogo-
nal. This can cause problems called cross-talk when fitting the coefficients,
especially when there are more aberrations present in the system than are
being fit.

If a is an M dimensional vector containing the coefficients of the aber-
rations present in the system, the slopes on the Shack-Hartmann sensor can
be determined as

s = Ga, (2.43)

where s is an 2nspot long vector containing the x- and y-displacement on the
Shack-Hartmann sensor and G an 2nspot×M geometry matrix as defined in
Equation 2.34. Note that the first column contains the x- and y-derivatives
of the first Zernike polynomial evaluated in all nspot points. When a least-
squares estimation of the coefficients â (where the hat denotes that it is the
estimated parameter) is made using less Zernike polynomials, up to Zernike
polynomial J < M , cross-talk will occur. The estimator â can be expressed
as

â ≈ G+
l s (2.44)

â ≈ G+
l Ga, (2.45)

whereGl is the geometry matrix containing the columns of the first J Zernike
polynomials. The estimator will estimate the lower order values of the co-
efficients with influence of the higher values, because the matrix G+

l G will
not be an identity matrix. A derivation of which Zernike modes influence
which lower order ones can be found in Appendix D.

When estimating the coefficient âmn , a higher order aberration am
′

n′ will
influence the estimation if it is not accounted for in Gl (i.e. the single index
of am

′
n′ j > J) and if

{(n,m, n′,m′) ∈ Z | n ∈ ηm, m = m′ or m = m′ ± 2,

n′ > n, n ≥ m′ + 2, n′ ∈ ηm′ , m′ 6= 0},

or if

{(n,m, n′,m′) ∈ Z | n ∈ ηm, m = m′ or m = m′ + 2,

n′ > n, n ≥ 2, n′ ∈ ηm′ , m′ = 0},
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where in both cases ηm and ηm′ are the sets of allowed values for n and n′

dependent on m and m′ such that Equations 2.5, 2.6 and 2.7 are all met.
Because of this, it is expected that the least-squares method will wrongly

estimate the coefficients if there are higher order aberrations present that
are not accounted for in the geometry matrix Gl. For Janssen’s method, the
geometry matrix contains the Zernike polynomials themselves, and therefore
it is not expected to present any cross-talk. This is experimentally verified
and shown in Section 5.2. Also the accuracy when enough fitting powers
are present, accuracy when fitting too many powers, the error landscape of
both reconstruction method and the algorithm complexity is shown in the
Results section. The experiments are described in the Experimental setup
and Experimental method section.
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3 Experimental setup

In order to compare Janssen’s method and the least-squares method, the
following experimental setup has been designed.

• A Michelson interferometer is used to gather the reference and the
aberrated beam.

• Controlled aberrations are added using a spatial light modulator.

• Artifacts of using a reflective spatial light modulator are then removed
using an iris.

• In order to visually inspect if aberrations are added correctly, a CCD
camera is added to view the interference pattern generated by the
interferometer.

This section discusses how the Michelson interferometer works, how it
can be used to gather the necessary data for both Shack-Hartmann recon-
struction methods and how it needs to be modified in order to remove the
artifacts introduced by the reflective spatial light modulator.

3.1 A Michelson interferometer is used to gather the neces-
sary information

The choice to build an interferometer was made due to the fact that the
Shack-Hartmann camera needs a flat wavefront reference as well as the aber-
rated wavefront. The choice for the Michelson interferometer was made due
to the availability of a reflective SLM, and the relatively simple nature of
the setup. The following sections introduce the Michelson interferometer
and how it can be used to make measurements using a Shack-Hartmann
sensor.

3.1.1 Traditional Michelson interferometer makes an interference
pattern between a reference arm and an aberrated arm

An interferogram is an image created by superimposing two wavefronts. This
interferogram therefore contains information about the two wavefronts. A
typical Michelson interferometer is shown in Figure 3.1. In this figure, the
lenses f1 and f2 are used to expand and collimate the beam. This collimated
beam is shone on an iris, which will block most of the light. If the iris is small
compared to the size of the collimated laser beam, the light after the pinhole
can be considered a as a plane wave with uniform intensity distribution. This
beam is then split by the 50-50 beamsplitter and sent to the reference mirror
and to the SLM. The SLM and the reference mirror are then imaged on an
interferogram camera using a 4f telescopic system. This is done with the
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lenses f3 and f4. If the system is aligned well, the only difference in optical
path comes from the phase modulation of the SLM.

At the interferometer camera, the electric field will be a superposition of
the two wavefronts; one coming from the reference mirror and one coming
from the SLM. Denoting the SLM phase aberration as W (x, y), the phase of
the reference mirror given as φ(x, y), the electric field at the interferometer
camera can be expressed as

E(x, y, t) = Ar(x, y) exp (i(kφ(x, y)− ωt)) +

ASLM (x, y) exp (i(k(φ(x, y) + kW (x, y))− ωt)) ,
(3.1)

where Ar and ASLM are the amplitudes of the reference beam and the

beam from the SLM respectively, k is the wavenumber equal to
2π

λ
, and ω

the angular frequency of the light used. However, it is not the electric field
which can be measured with the camera, only the irradiance. Hence, the
intensity measured at the camera can be expressed as

I(x, y) = Ar(x, y)2 +ASLM (x, y)2 + 2Ar(x, y)ASLM (x, y) cos (kW (x, y)) .
(3.2)

Note that the time dependence in the intensity disappears. The intensity
at point (x, y) is now only dependent on the phase difference kW , and
the intensity varies between a minimum intensity of Imin = (Ar −ASLM )2

and a maximum intensity of Imax = (Ar +ASLM )2. This intensity is also
cyclic, meaning that the intensity is the same value for kW = a as it is
if kW = a + 2π. Figure 3.2 shows a few interference patterns from low
order Zernike aberrations produced with this type of interferometery setup.
Interferometers are discussed in more detail in chapter 1 of Malacara (2007).

Using this information on how to obtain the interferogram patterns based
on the aberrations, one can check if the aberrations are added correctly by
comparing the measured interferogram with the expected one.
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Laser

f1 f2

iris RM

SLM

f3

f4

INT

Figure 3.1: Simplified version of the interferometer setup used in the current
research. Modeled after a Michelson interferometer.

Figure 3.2: Low order Zernike aberrations and their associated interfero-
grams. a) defocus, b) astigmatism and c) coma, d) to f) their respective
interferograms.
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3.1.2 Arms can be blocked to create the reference and aberration
spot pattern

If one replaces the interferogram camera with a Shack-Hartmann sensor,
one is almost able to use it directly for measurements. As explained in
Section 2.2, the wavefront can be recovered based on a displacement of
spots. To measure these reference spots, a uniform intensity plane wave
should be incident on the Shack-Hartmann sensor. An approximation of this
reference plane wave can be achieved if one blocks the beam path between
the beamsplitter and the SLM. That way, only the beam from the reference
mirror reaches the Shack-Hartmann sensor. If the mirror is flat enough, the
reference beam can be considered a plane wave.

After this reference has been established, one can block the beam be-
tween the beamsplitter and the reference mirror, to get a spot pattern cre-
ated by the phase pattern introduced by the SLM.

3.2 A spatial light modulator is used to add controlled aber-
rations

One way of altering the phase of a light beam is by using a spatial light
modulator (SLM). In the current research, a liquid crystal on silicon (LCOS)
SLM is used. A schematic cut-through of an LCOS SLM is shown in Fig-
ure 3.3. There it can be seen that the SLM consists of a silicon backplane
with electrodes. These electrodes are pixelated, meaning there are many of
them arranged in a matrix which can be addressed individually. Below the
glass substrate on the top is a transparent electrode, which is used together
with the pixelated electrodes to apply a voltage over the liquid crystal layer.

The liquid crystals can be seen as a uniaxial birefringent material. This
means that the refractive index of the material changes with the polariza-
tion and propagation direction of the light. In Figure 3.3 the crystals are
displayed as ellipsoids, and in Figure 3.4 it is shown that the lengths of the
axes of these ellipsoids indicate the refractive index direction. The alignment
layers make sure that the liquid crystals are aligned in a certain direction in
the “off”-state (i.e. when no voltage is applied). When a voltage is applied,
the alignment of the liquid crystals is changed and with that the refractive
index of the birefringent material.

The input light in the spatial light modulator therefore undergoes a
different optical path with different length dependent on the voltage applied
to each pixel. In this fashion, the phase retardation of the incoming light
can be modulated effectively on a pixel by pixel basis.

It is important to note that the SLM is calibrated with a certain polar-
ization direction of light, due to the alignment layers dictating the preferred
direction in the off-state. This polarization is important when designing the
final setup, and is discussed at the end of the next Section.
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Figure 3.3: A schematic cross-section of an LCOS SLM device. Adapted
from Matsumoto et al. (2008).

Figure 3.4: Schematic overview of the refractive indices of the liquid crystals,
whereby no the ordinary refractive index and ne the extraordinary index.
Adapted from Zhang et al. (2014).
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3.3 An iris and lens combination is used to block the zeroth
order reflected light

As shown in figure Figure 3.3, part of the silicon backplane is not covered by
the electrodes. This means that part of the the incoming beam is reflected
without any modulation, even if there is a voltage over the electrodes. This
is called the zeroth order reflected light. If this is left, the final wavefront
would consist of both unaberrated and aberrated phase.

In order to remove this zeroth order reflected light, the aberration ad-
dressed to the SLM is altered. On top of the original aberration, a phase
ramp is added. This phase ramp in terms of aberrations is a constant tip/tilt.
It is known from Section 2.2.1 that adding a constant tip/tilt to the phase of
the beam before a lens shifts the peak intensity in the focal plane. Using this
shift, the SLM can be tilted in exactly the opposite direction to counteract
this shift. The light hitting the space where no electrode is present would
not be aberrated, and this constant tip/tilt will not be present in the phase
of the unaberrated light. Due to the angle of the SLM, this unaberrated
light will reflect at a different angle. This difference in phase pattern of
the aberrated and unaberrated light make it so that when focused with a
lens, the spots of the aberrated and unaberrated will not coincide, but will
be spatially apart. This displacement enables the separation of aberrated
and unaberrated light using for instance a iris. This effect can be seen in
Figure 3.5. The zeroth order light is indicated with a more grayish beam,
and is seen hitting the iris. The aberrated light is the greenish one, and can
be seen to hit the iris exactly in the center.

The total amount of displacement of the zeroth order light is given by
the angle θ with which the SLM is slanted and the focal length of lens f3.
From Zhang et al. (2009), the displacement ∆l of the spot is determined as

∆l = f tan θ, (3.3)

The maximum angle used in this research is determined by the SLM pitch
(the physical distance between the centers of the SLM pixels). In order to
prevent aliasing in the added phase pattern, the maximum phase difference
over 4 pixels vertically or horizontally is 2π. Because the aberration under
inspection has to be added on top of the phase ramp on the SLM, it is
determined that the added phase ramp will be 2π over 8 pixels. An added
phase of 2π means that the wave has a full wavelength of retardation. Using
this, tan θ can be substituted in Equation 3.3. The displacement ∆l can then
be written in terms of the wavelength of used light and the pitch, namely

∆l =
λf

8p
, (3.4)

where p is the pitch of the SLM. The radius of the iris should be slightly
smaller than this displacement.
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Knowing this maximum iris size, one is able to calculate if the desired
added aberration “fits” within the pinhole by calculating the spot size using
Equation 2.22. However, in the setup used in the current research, the
limiting factor was not the pinhole size, but rather the aliasing constraint
on the SLM. The aberration was kept within the iris by keeping the tip/tilt
component of the added aberrations low.

What also can be seen from this setup (shown in Figure 3.5, with a parts
list in Table 3.1) are the added components of a Faraday rotator (FR), a
filter, a half-wave plate (λ/2), and the Shack-Hartmann sensor. The Faraday
rotator is placed to protect the laser from any reflected light, the filter is
used to regulate the intensity such that both cameras are not saturated, and
the half-wave plate can be rotated such that the polarization of the beam
coincides with the required polarization of the SLM.

The last section of the new setup contains a beamsplitter to split the
incoming beam to the Shack-Hartmann sensor and to a CCD camera. With
this camera one can take a look at the interferogram when both arms are not
blocked. This is in order to see if the SLM is adding the correct phase pat-
tern, to see if the initial aberrations of the system are adequately removed,
and to look at the alignment of the system. In this arrangement, the setup
can be used to do all the necessary steps for successful measurements with
the Shack-Hartmann wavefront sensor. These necessary steps are described
in more detail in Section 4.

Table 3.1: The components used in the current research. The setup is shown
in Figure 3.5.

Part Description

Laser Melles Griot frequency stabilized, linearly polarized He-Ne laser
FR Faraday Rotator to protect the laser from reflections
filter Grey glass uniform filter
λ/2 Half-wave plate
f1 focal length 25mm
f2 focal length 500mm
RM Edmund optics mirror, λ/20 flatness
SLM Holoeye PLUTO-2-VIS-056
f3 focal length 250mm
f4 focal length 250mm
SH Custom microlens array (pitch = 5 2µm, f =17 6mm) with UI-

3370CP CMOS camera
INT SVS-Vistek eco1050MTLGEC - GigE CMOS camera
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Laser

FR

filter

λ/2 f1

iris

f2
SLM

RM

f3

f4

iris

INT

SH

Figure 3.5: Altered interferometry setup to filter out the zeroth order reflec-
tion from the SLM. The zeroth order light is shown in gray. The components
used in the current research are noted in Table 3.1.
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4 Experimental method

Using the described experimental setup, all steps necessary to compare
Janssen’s method to the least-squares method can be performed. All nec-
essary steps are shown in Algorithm 1, and separately described in more
detail in their respective subsections.

Algorithm 1 Complete measurement and comparison of Shack-Hartmann
phase retrieval algorithms

1: Remove initial aberrations of the entire system (described in Section 4.1)
2: Add controlled aberration a to the SLM (described in Section 4.2)
3: Gather flat and aberrated wavefront Hartmannograms 1

4: Find the optimal center and radius position for both methods separately
such that the RMS value is minimized (described in Section 4.3)

5: Calculate Zernike coefficients for both methods using optimized center
and radius for all desired Zernike powers

6: Calculate error landscape by varying center position and radius

4.1 The initial aberrations are removed using the SLM

In order to be certain that only the aberration added on the SLM is mea-
sured, first all initial aberrations are minimized. These aberrations can
include alignment errors, but also aberrations stemming from the fact that
the SLM might not be completely flat (Matsumoto et al., 2008).

Removing the initial aberrations is done using the Shack-Hartmann sen-
sor and retrieving the wavefront using the least-squares method. The steps
necessary for this process are described in pseudocode in Algorithm 2.

Recalling from the theory described in Section 2.2, in order to recover
the coefficients describing the aberrated wavefront, s and G have to be
constructed. s relies on the two Hartmannograms, one of the flat wavefront
of the reference mirror and one of the aberrated wavefront from the SLM;
and the radius rSH of beam hitting the Shack-Hartmann sensor.

To construct G it is necessary to average the Zernike polynomials or
their gradients, dependent on the reconstruction method. The window over
which the polynomial has to be averaged can be seen as a scaled version of
the lenslet, scaled so that all illuminated lenslets fit the unit disc. In order
to compute the Zernike polynomials in these windows, the center position c
and the radius rSH of the beam on the Shack-Hartmann sensor have to be
known. The window size is estimated by the average distance between the
nearest neighbor spots on the Shack-Hartmann sensor. The side length of
the window is denoted with box_len. The center position c is estimated at

1Hartmannogram is the image of the spot pattern generated by the Shack-Hartmann
sensor
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first as the center of mass of all the spots on the Shack-Hartmann sensor.
The radius is estimated by calculating the length between the center and
the furthest spot from the center.

Algorithm 2 Removal of initial aberrations

Require: fSH

1: Apply phase ramp to SLM
2: Acquire Hartmannogram flat wavefront
3: From Hartmannogram, estimate center c, radius rSH, box_len
4: Given c, rSH and the Hartmannogram, generate geometry matrix G
5: for i ∈ {0, 1, 2, 3} do
6: Acquire Hartmannogram of SLM wavefront
7: Calculate s, given rSH, fSH and both Hartmannograms
8: Calculate â ≈ G+s
9: Add −γâ to the SLM pattern

10: end for

Here, γ ∈ [0, 1], and is chosen to be 0.5 in the current research. Also,
â denotes the vector of estimated coefficients. Using this parameter, it was
found that repeating the measurement and correction 4 times was enough
to have the wavefront flat enough for measurements.

The way a phase pattern is addressed to the SLM is as follows. First,
an aperture on the SLM is defined. In the current research this is a circular
aperture, but it can also be done using an annular one. All pixels i within
this aperture are noted. A “Zernike matrix” can be set up, such that for each
pixel i within the aperture the value of all necessary Zernike polynomials
can be computed. In matrix form this would be

Z =


Z1|1 Z2|1 · · · ZJ |1
Z1|2 Z2|2 · · · ZJ |2

...
...

. . .
...

Z1|I Z2|I · · · ZJ |I

 , (4.1)

where J is the total amount of Zernike polynomials evaluated, and I is the
total amount of pixels within the aperture. Due to the cyclic nature of the
phase pattern (as explained in Section 3.1) and the limits of the SLM, the
phase difference assigned to the SLM should be between 0 and 2π. This can
be done using the modulo (or mod) operation. a mod n gives remainder of
a divided by n.

If p is a vector containing the values of the individual pixels of the SLM,
it can be constructed from the vector a containing the coefficients for the
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to-be-added aberration by

p = (Za) mod 2π. (4.2)

Therefore, in the case of updating the SLM pattern in line 9 of Algorithm
2, one can use

pnew = (pold − γZâ) mod 2π. (4.3)

4.2 A controlled aberration is added and measured

After the correction is done and the wavefront from the SLM is flattened,
the phase pattern of the “flat” phase is saved. To this phase pattern the
aberration is added, in the same fashion as the correction is added.

After this is added and modulated, it is necessary to check if the the
maximum phase change over 4 pixels is not being exceeded. This is necessary
to check if aliasing of the SLM phase will not occur. In the current research
this aliasing constraint is simplified to the constraint that the difference
between two neighboring pixels should not exceed 0.5π. This is evaluated
in the following way:

Let pi,j be the value of the pixel located at position i, j on the SLM
electrode matrix. Then first two matrices are constructed

∆px = pi,j+1 − pi,j ,
∆py = pi+1,j − pi,j .

(4.4)

Afterwards, the element-wise minimum is taken between ∆p and 2π − |∆p|
for both x and y, in order to account for the modulated phase. If any of
the values of this piecewise minimum is above 0.5π, it is said to break the
aliasing constraint.

After the aliasing test has been passed, and the phase has been applied
to the SLM, the aberrated phase can be looked at using the interferometer
camera. If visually everything is correct as well, the Hartmannogram can
be taken.

4.3 The center position and radius are found optimizing the
error at 8 Zernike powers

In order to perform both reconstruction methods, the radius and center
should be known or estimated before reconstruction can be done. The
slopes vector s is dependent on the radius of the beam hitting the Shack-
Hartmann sensor (due to the scaling with r in Equation 2.29), while the
geometry matrix G is dependent on both the center-position of the beam on
the sensor and the radius. In order to fairly judge both methods, rather than
estimating the center and radius, these parameters are found by optimiza-
tion. The initial guess for these parameters are the same as the parameters
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used in the removing of initial aberrations. Using the methods described
in Section 2.2.2 and Section 2.2.3, the coefficients can be gathered from the
Hartmannograms.

Using the known added aberration and the measured aberration coeffi-
cients, an RMS error can be defined. For this, a new Zernike matrix similar
to Equation 4.1 is constructed, this time with N points on a grid within
the unit disc. The reference phase pref and the recovered phase prec can be
constructed as

p = Za, (4.5)

where for pref, the reference vector aref is used, while for prec the estimated
coefficient vector â is used. Using this definition for the reference and re-
covered phase, the RMS error is determined as

ε =

∥∥∥∥pref − prec

N

∥∥∥∥
2

, (4.6)

where ‖x‖2 is the Euclidean vector norm of vector x.
This RMS error is then minimized for center position and radius of the

beam on the Hartmannogram. A limited memory bound Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) minimization algorithm is done to find the
center position and radius separately for both the least-squares method and
Janssen’s method. The termination conditions for this optimization were

fk − fk+1

max{|fk|, |fk+1|, 1}
≤ 10−5, (4.7)

max{|proj(gi)| i = 1, ..., n} ≤ 10−5, (4.8)

k ≥ 103, (4.9)

where fk is the value of the RMS error of the kth iteration of the mini-
mization algorithm, and proj(gi) is ith component of the projected gradient
where n projections are made. If any of these statements were true, the opti-
mization was terminated. After looking at the RMS error landscapes, it was
found that not every minimum found was a global minimum. If this was
the case, the global minimum coordinates were estimated using the RMS
landscape graphs, and a brute force optimization was run around those co-
ordinates. This brute force optimization calculates the RMS error value in
a grid of points. From the coordinates with the lowest RMS error, a new
downhill simplex minimization algorithm is started. This way the global
minimum was attempted to be found, and the optimal center and radius
positions were determined.

In the current research, the necessary aberration coefficients are obtained
using 8 Zernike powers. From Soloviev and Vdovin (2006) it is concluded
that a good rule of thumb for the amount of Zernike polynomials that can
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be fit given k spots on the Shack-Hartmann sensor is k/3. In the current
research, there were about 144 spots on the Shack-Hartmann sensor, and
there are 45 polynomials in the first 8 Zernike powers.

For Janssen’s method, the amount of polynomials fit and the amount
of retrieved coefficients is different. If a fit is made with up to 8 powers of
Zernike polynomials, the first 7 powers of coefficients can be retrieved. For
the most fair comparison, it is chosen to keep the amount of Zernike powers
used for fitting the same for both experiments. This has as a consequence
that whenever the methods are compared, Janssen’s method’s coefficients
will contain one power less than the least-squares method. The effects of
this are discussed in the results.

It should be noted that this optimization can take long due to the fact
that the geometry matrix needs to be calculated in every iteration, as the
values in the matrix differ with center position and radius.

These optimized parameters can then be used to find the RMS value
fitting any amount of Zernike powers, and can also be used to determine
the error landscape by calculating the RMS values when the center and
radius differ slightly from the optimal value. This landscape is found using
8 Zernike powers in the current research.

The RMS error landscape is determined by displacing the center position
a certain amount (disp) and varying the radius of the beam on the Shack-
Hartmann sensor ∆r. The displacement is shown in Figure 4.1 where it can
be seen that there are 8 concentric circles (including a circle with radius
0), all containing 7 displacements. The concentric equally spaced between
0 and 3 pixels, and the angles between the measurement points are equally
spaced between 0 and 2π (not including 2π). At all of these data points, the
the RMS error is calculated for 7 different radii ∆r, equally spaced between
−3 pixels and +3 pixels with respect to the optimized radius. A surface
is plot as a function of displacement disp and radius difference ∆r. This
surface is plot through the median of the of 7 values on a concentric circle.
Error bars show the maximum and minimum value on the circle.

In order to compare the least-squares method to Janssen’s method, it is
not the RMS error ε that is shown, but rather a normalized version of this.
The normalized RMS error is defined as

εnorm(disp,∆r) = ε(disp,∆r)− ε(0, 0). (4.10)

This is done such that all errors are in the range [0,∞), and both errors
can be shown on the same scale. These error landscapes can be seen in
Section 5.4
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Figure 4.1: The measurement points in the xy-plane with which the RMS
error landscape is determined. The concentric circles are equally spaced
between 0 and 3 pixels, and the angle between the measurement points are
equally spaced between 0 and 2π (not including 2π).
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5 Results

In order to compare the least-squares method and Janssen’s method, three
different test cases have been measured and analyzed. First, specific Zernike
aberrations were added to see the effect of different combinations of Zernikes.
From Section 2.2.4 it is known that the least-squares method presents cross-
talk between estimated coefficients while Janssen’s method is hypothesized
not to show this. Therefore, in the first set of aberrations added, three cases
are defined. First only single aberrations are added as a zero-measurement
to see if with only one present aberration they perform equally. Afterwards,
a combination of three aberrations are added that are not supposed to show
cross-talk. Lastly, four cases of aberrations are added where cross-talk is
present. The aberrations are shown in Figure 5.1, and the table with exact
coefficients in Table E.1.

The second set of aberrations measured were taken from a Leica micro-
scope objective. These aberrations were measured by Leica at two different
wavelengths, 365 nm and 544 nm, and both aberrations were implemented
with different peak-to-valley values, but keeping the ratios the same. The
aberrations are shown in Figure 5.2, and the table with exact values for
the coefficients in Table E.2 and E.3. These coefficients present a set of
aberration coefficients which occur in a lens-measurement setting.

The third set of aberrations measured are created by a random phase
pattern. This random phase pattern was filtered using a two-dimensional
Butterworth filter with different cut-off frequencies to vary the magnitude
of high spatial frequency components. After the filtering, up to 10 Zernike
powers are fit to this surface and the coefficients are saved. After this, the
surface described by the Zernike coefficients is added, in order to have the
exact value of all coefficients to compare to the measurements taken. The
aberrations are shown in Figure 5.3, and the table with exact coefficients in
Table E.4 and E.5. These sets of coefficients represent a set of coefficients
which could occur when measuring the aberrations caused by turbulent air.

These experiments will first of all be used to show that the methods
are equally accurate when using enough fitting powers. Afterwards, it is
shown that Janssen’s method better estimates the Zernike coefficients when
using fewer fitting powers. Furthermore, it is shown that the RMS error
landscapes are similar in shape and therefore both equally susceptible to
errors in the center position or radius. Lastly, it is shown that due to using
complex numbers, Janssen’s method is at least 3.5 times slower than the
least-squares method.
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Figure 5.1: Visualization of the added phase patterns for the specific Zernike
aberration case. Above the subplots is the code given to the measurement.
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Figure 5.2: Visualization of the added phase patterns for lens aberrations
case. Above the subplots is the code given to the measurement.
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Figure 5.3: Visualization of the added phase patterns for the random phase
aberrations case. Above the subplots is the code given to the measurement.
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5.1 Least-squares method and Janssen’s method have com-
parable accuracies with optimal amount of fitting powers

In order to compare accuracies of both methods, the optimal amount of
Zernike powers are used when fitting. From Section 4.3 it is known that
for the current research, that amount is 8 Zernike powers. The RMS error
ε is determined using 600 points on an equally spaced grid. It has to be
noted that when fitting 8 powers of polynomials, Janssen’s method only can
gather Zernike coefficients up to and including the 7th power.

This subsection will show that throughout all experiments, Janssen’s
method and the least-squares method have comparable RMS error when
using this optimal amount of Zernike powers.

5.1.1 Accuracy is comparable when adding specific Zernike aber-
rations

When looking at the specific Zernike aberration experiment, one can see that
Janssen’s method and LSQ method perform very similarly when fitting the
optimal amount of Zernike powers, with an overview of the RMS errors in the
barchart in Figure 5.4. Most notable differences are at 5_5 and 6_6, where
the LSQ method performs better, and at 3_zerns_1, sub_zerns_1 and
sub_zerns_4, where Janssen’s method performs better. The reconstructions
using the recovered coefficients are shown in Figure 5.5, Figure 5.6 and
Figure 5.7. From these figures it can be seen that also visually the least-
squares method and Janssen’s method compare very well.

Figure 5.4: Barchart detailing the RMS values between the added specific
Zernike aberration and the reconstructions using the LSQ and Janssen’s
method.
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Figure 5.5: The first 4 added aberrations and their reconstructions of the
specific Zernike experiment. RMS errors are noted below the reconstruc-
tions.
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Figure 5.6: The second 4 added aberrations and their reconstructions of the
specific Zernike experiment. RMS errors are noted below the reconstruc-
tions.
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Figure 5.7: The last 4 added aberrations and their reconstructions of the
specific Zernike experiment. RMS errors are noted below the reconstruc-
tions.
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5.1.2 Accuracy is comparable when simulating lens aberrations

When looking at typical lens aberrations like the ones measured by LEICA,
one can see that also these can be reconstructed well by both the least-
squares method and Janssen’s method. Again a barchart is made summa-
rizing all the RMS values (shown in Figure 5.8). A trend that can be seen
from this barchart is that when the peak-to-valley value of the aberrations
go up, the error in Janssen’s method also goes up. This can be explained
by the fact that the influence of the higher order aberrations grows as the
coefficient grows. Janssen’s reconstruction is made with only 7 powers of
coefficients, while the least-squares method has 8 powers of coefficients, and
the lens aberrations are measured up to and including the tenth power.
The experiments with lower peak-to-valley measurements show that these
aberrations have less influence on the total RMS.

In Figure 5.9 this difference between the least-squares method and Janssen’s
method is visible in for instance the bottom right corner. The original aber-
ration there is at its lowest there. In all four cases, Janssen’s method over-
estimates the phase at the edge, while the least-squares method estimates
it closer to it’s original value. In Figure 5.10 this difference is seen in for
instance the height of the central peak. In all four cases, Janssen’s method
underestimates the height of this peak, while the least-squares method esti-
mates it closer to the reference height.

Figure 5.8: Barchart detailing the RMS values between the added lens aber-
ration and the reconstructions using the LSQ and Janssen’s method.
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Figure 5.9: The added and reconstructed phases of the lens aberrations of
the 544 series. The peak-to-valley ratio increases from top to bottom. RMS
errors are noted below the reconstructions.
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Figure 5.10: The added and reconstructed phases of the lens aberrations of
the 366 series. The peak-to-valley ratio increases from top to bottom. RMS
errors are noted below the reconstructions.
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5.1.3 Accuracy is comparable when simulating a random phase
pattern

From the barchart in Figure 5.11 it can be seen that for the random phase
aberrations, for the low low measurement Janssen’s method performs slightly
better. For the rest of the measurements the least-squares method performs
better. When the value of the RMS error is compared with the previous
measurements one can see that this value is significantly higher. This is due
to the fact that from medium onwards, the presence of higher order Zernikes
is significantly increased. The Zernike coefficients present are shown in Fig-
ure 5.13. The fact that for both reconstructions the RMS value is signifi-
cantly high is another indication that not all aberrations are measured, and
the reconstructions shown in Figure 5.14 show visually that there is a great
discrepancy between the reconstructions and the added aberration, apart
from low.

This presumption is confirmed when looking at the RMS errors when
fitting more Zernike coefficients to the measured data. When instead of
fitting 8 Zernike powers, 9 Zernike powers are fit (barchart in Figure 5.12
and visual in Figure 5.15), one can see that the RMS errors decline in all
cases where higher order Zernike coefficients are present. The least-squares
method is seen again to have lower RMS values for the cases medium, high
and extreme with respect to Janssen’s method.

Figure 5.11: Barchart detailing the RMS values between the added random
aberration and the reconstructions using the LSQ and Janssen’s method.
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Figure 5.12: Barchart detailing the RMS values between the added random
aberration and the reconstruction using 9 fitting powers using the LSQ and
Jassen’s method. Note that the y-scale is the same as in Figure 5.11.

Figure 5.13: The added Zernike coefficients for the 4 random phase aberra-
tions.
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Figure 5.14: The added and reconstructed phases of the random phase pat-
tern experiment. RMS errors are noted below the reconstructions.
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Figure 5.15: Reconstructions using 9 Zernike fitting powers, rather than 8.
It can be seen that in the cases where higher order aberrations are strongly
present, the RMS value drops for both reconstruction methods with respect
to fitting 8 Zernike powers.
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5.2 Janssen’s method estimates more accurately with fewer
fitting powers

The previous section has shown that when fitting 8 or 9 powers of Zernike
polynomials, both Janssen’s method and the least-squares method provide
comparable accuracy in reconstructing the wavefront. However, it is known
that the least-squares method presents cross-talk of coefficients when less
Zernike powers are fit than there are aberrations present in the system, as
shown in Section 2.2.4. In this section it is shown experimentally that this
is not the case for Janssen’s method. After this, statistical research using
the absolute estimation error of the Zernike coefficients shows that Janssen’s
method is more accurate when fitting n+ 1 powers when estimating amn (i.e.
fitting 3 Zernike powers for the aberrations am2 ).

5.2.1 Janssen’s method does not present cross-coupling of aber-
rations

Using the same center position and radius, different amount of Zernike pow-
ers can be fit in order to see the convergence behavior of gathered coefficients.
Due to the fact that there are only 1, 2, or 3 Zernike modes present in the
specific Zernike experiment, the convergence behavior of these experiments
visualized. A selection is shown in Figures 5.16 to 5.21, the rest is shown in
Appendix B.

From the single Zernike experiments 5_1 and 6_4 in Figure 5.16 and
Figure 5.17 it can be seen that the two reconstruction methods both perform
similarly well. When enough powers are fit, both methods estimate the
coefficient accurately.

For the 3 random Zernike experiments 3_zerns_1 and 3_zerns_3 in
Figure 5.18 and Figure 5.19 it can also be seen that the “initial guesses”
(that is the coefficient determined with the least amount of fitting powers
possible) of the coefficients are accurate, and don’t change drastically if more
Zernike powers are fit. The coefficients seem to be able to be measured
independently from each other, and there is no difference between the least-
squares method and Janssen’s method. This is as expected from the theory.

However, looking at the subsequent Zernike experiments sub_zerns_1

and sub_zerns_3 a difference can be seen between the two reconstruction
methods. The initial guesses of the least-squares method over- or under-
estimates the presence of the aberration when not enough powers are fit.
From Figure 5.20 it can be seen that defocus is overestimated more than
50% until 4 powers are fit. At 4 fitting powers, the spherical aberration
coefficient a0

4 is overestimated. All values seem to be within normal range
at 8 powers fit. The same can be seen in Figure 5.21, where the coefficient
a3

3 is overestimated at 3 and 4 fitting powers. Janssen’s method does not
present this over-estimation.
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Figure 5.16: Convergence of coefficients for the 5 1 experiment.

Figure 5.17: Convergence of coefficients for the 6 4 experiment.

Figure 5.18: Convergence of coefficients for the 3 zerns 1 experiment.
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Figure 5.19: Convergence of coefficients for the 3 zerns 3 experiment.

Figure 5.20: Convergence of coefficients for the sub zerns 1 experiment.

48



Figure 5.21: Convergence of coefficients for the sub zerns 3 experiment.

5.2.2 Least-squares method has a bigger spread between the de-
termined and added aberration coefficient

This cross-talk between two aberrations can be further exemplified by look-
ing at the difference between the estimated coefficients âmn and the reference
coefficient amn given a fitting power k. A new notation (âmn )k is introduced,
meaning the estimated coefficient âmn using k fitting powers. The goal is to
determine the minimum fitting power k for which Janssen’s method and the
least-squares method provide an accurate estimation âmn .

To do this, the fitting power has been varied from 3 to 9, looking at
log10|amn − (âmn )k| for k = n+ 1, n+ 2 and n+ 3. For example, the accuracy
of estimating â0

2 is determined for fitting powers k = 3, 4 and 5. This
accuracy is shown in a notched boxplot. In other words, the data set n+ 1
contains all values of log10|amn − (âmn )n+1| varying n from 2 to 8. For the
n + 2 dataset, the fitting powers are varied from 2 to 7 in order to prevent
taking aliasing into account. The effects of aliasing on the accuracy of the
fits can be seen in Section 5.3.

An annotated example of a notched boxplot is shown in Figure 5.22. A
boxplot shows how the data is distributed by showing the quartiles. For
instance, the first quartile is the value of the data at exactly a quarter of the
“length” of the data, i.e. the n/4th entry if the total data has n entries. The
first and the third quartile Q1 and Q3 are the outsides of the box, and the
line in the middle is the median. The whiskers show the distribution of data
outside of the Inner Quartile Range (IQR, Q3−Q1). In these boxplots, the
whiskers are positioned at Q1 − 1.5IQR and Q3 + 1.5IQR. The outliers are
data points that lie either below Q1− 1.5IQR or above Q3 + 1.5IQR. These
points are taken into account for the determination of the median and the
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quartiles.
The notched boxplot is chosen to represent the data because next to

showing the distribution of the data, it also can be used as a quick way to
informally test if the medians are equal (Chambers, 1983). This can be done
because the notch is drawn at the 95% confidence interval of the median, at
the positions

M ± 1.57
IQR√
n
, (5.1)

where M is the median, IQR the interquartile range and n the amount of
measurements.

Boxplots are made for all three experiments, the specific Zernike exper-
iment in Figure 5.23, the lens aberration experiment in Figure 5.24 and the
random phase aberration experiment in Figure 5.25. These boxplots are
shown in logarithmic scale. As recommended in Cox et al. (2013), the me-
dian and quartiles are determined using the logarithm of the data, rather
than the raw data itself.

From these boxplots it becomes apparent that Janssen’s method is better
at estimating the Zernike coefficients using n+1 Zernike powers. In all three
experiments one can see that the median Janssen’s method is lower than the
median of the least-squares method because the notches don’t overlap. The
least-squares method also has the upper whisker higher in all experiments,
making it significantly worse than Janssen’s method.

However, when fitting n+ 2 and n+ 3 Zernike powers, the difference be-
tween the two methods fades. For all three experiments the notches overlap
and the distribution shapes are very similar.

A statistical test can be done to see whether or not both distributions
are drawn from the same (continuous) distribution, namely the Kolmogorov-
Smirnov test. Using python, this test can be done by comparing the datasets
of errors from Janssen’s method and the least-squares method, and a double
sided p-value is returned. An overview of these p-values can be seen in
Table 5.1.

This test confirms the hypothesis that the distributions of errors for fit-
ting n+ 1 powers is very unlikely to be from the same distribution. Fitting
more powers, n+ 2 or n+ 3, it is even likely that the errors for the specific
Zernikes and random phase aberrations are drawn from the same distribu-
tion.

Using this data it can be determined that the least-squares method is
equally accurate in estimating the Zernike coefficient amn as Janssen’s method
if n + 2 fitting powers or more are used. It should be noted that there is
an upper bound to the amount of fitting powers that can be used due to
aliasing (Herrmann, 1981).
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Figure 5.22: An example notched boxplot. Here n is the amount of samples.
Adapted from David Doyle (2013)

Figure 5.23: Boxplot of the accuracy results of the specific Zernike experi-
ment. Note the logarithmic y-scale.
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Figure 5.24: Boxplot of the accuracy results of the lens aberration experi-
ment. Note the logarithmic y-scale.

Figure 5.25: Boxplot of the accuracy results of the random phase aberration
experiment. Note the logarithmic y-scale.
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Table 5.1: The Kolmogorov-Smirnov test double sided p-values for the Hy-
pothesis that both sets are drawn from the same distribution for the values
log10|amn − (âmn )k|.

Specific Lens Random phase
power k Zernikes aberrations aberrations

n+ 1 0.00004 0.00002 0.00000
n+ 2 0.77624 0.13240 0.96102
n+ 3 0.49903 0.31827 0.95609

5.3 Both methods experience aliasing when fitting more Zernike
powers

It has been shown that the optimal amount of Zernike powers to be fit is
8 in the current research. It is known from the least-squares method that
the quality of reconstruction gets worse when too many Zernikes are fit due
to aberration aliasing (Herrmann, 1981). Aberration aliasing stems from
the fact that higher order aberrations become indistinguishable from lower
order aberrations due to the fact that the values in the geometry matrix are
evaluated on a finite mesh. Aberration aliasing is different from the cross-
talk previously discussed because aberration aliasing does not stem from
from non-orthogonal columns. Due to the fact that the aberration aliasing
does not stem from non-orthogonality, both methods are expected to show
aberration aliasing.

It is expected that the aberration aliasing is most strongly seen in spe-
cific Zernike aberrations case. This is expected because there the added
aberrations can all be resolved using the optimal 8 powers. Fitting more
powers will therefore not add accuracy. The other two experiments, the lens
aberrations and the random phase aberrations, do contain aberrations of
higher power than the optimal 8. Therefore it is expected that the RMS
error will go down even if more than 8 powers are fit. However, a limit is
expected where the aliasing will have stronger effects than the reduction of
RMS by estimating more powers.

In the following graphs, one can see the RMS error when fitting 5 to 14
Zernike powers using the center position and radius as defined in Section 4.3.
This is shown for all experiments.

Figure 5.26 shows the convergence and subsequent divergence of the
RMS error for the specific Zernike reconstructions without aberrations that
introduce cross-talk. The subfigures show the trends of convergence and
divergence of the RMS error ε on a bigger scale, while the inset graphs show
the RMS error around its minimum value. From the inset graphs, it can be
seen that the RMS error is higher at 9 and 10 Zernike powers fit than at
8 Zernike powers, except for Janssen’s method in the experiments 5_1 and
3_zerns_1, where the fit with 9 Zernike powers resulted in a lower RMS
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value than at 8 Zernike powers. This is in accordance with the hypothesis
that the RMS value increases when increasing the Zernike powers for fitting
without any aberration of higher power being present.

What also can be seen from the same graph is the fact that Janssen’s
method tends to diverge earlier and faster the least-squares method. The
RMS error at 11 Zernike powers fitted is significantly higher for Janssen’s
method than for the least-squares method, with the exception of the exper-
iment 3_zerns_3.

In Figure 5.27, the convergence and divergence behavior of the RMS of
all experiments which do introduce cross-talk are shown. In these graphs,
Janssen’s method shows the same trend as in the experiments where there
was no cross-talk present, namely that the RMS value increases with in-
creased Zernike powers fit. Also, the Zernike fitting power at which Janssen’s
method diverges is again lower than when the least-squares method diverges.

However, the least-squares method shows a different characteristic. Even
though in the experiment sub_zerns_1, Zernike aberrations up to the 6th

power were present, the RMS value declines when increasing the fitting pow-
ers from 6 to 10. This is in accordance with the conversion of the coefficients
themselves, seen in Figure 5.20. There it can be seen that when increasing
the fitting powers, the least-squares method more accurately estimates the
coefficients present. Also, the lowest RMS error of the least-squares method
at any fitting power is not lower than the lowest RMS error of Janssen’s
method.

Figure 5.28 shows the RMS errors for the lens aberrations. In these
aberrations, aberrations are present up to the tenth Zernike power, and
combinations of aberrations are present that produce cross-talk. It can be
seen from the inset graphs that in most cases, the minimum RMS error is
seen in the least-squares case when fitting 10 Zernike powers. The exceptions
for this are 366_03 and 544_04. For Janssen’s method, the minimum value
of the RMS error is seen when fitting 9 Zernike powers, with the exceptions of
366_03 and 544_33. Only in the last case is the minimum RMS error found
with more fitting powers than 9. At either 8 or 9 fitting powers (dependent
on the experiment) the RMS error of Janssen’s method and of the least-
squares method is comparable. These graphs show again that Janssen’s
method diverges with less fitting powers than the least-squares method, as
Janssen’s method diverges either at 11 or 12 fits, while the least-squares
method diverges at 12 or 13 fits.

Figure 5.29 shows the RMS errors for different Zernike fitting powers for
the random phase measurements. These random phases also contain up to
10 powers of Zernike aberrations (with the exception of low) and cross-talk
is possible. For the least-squares method it can be seen that the lowest RMS
value is found when fitting up to 11 Zernike powers (again with the exception
of low). Janssen’s method also shows a steady decline in RMS error fitting
up to 11 Zernike powers for medium and high, while the minimum RMS
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Figure 5.26: The RMS error of the reconstructions of the first eight specific
Zernike cases for different amount of fitted Zernike powers
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Figure 5.27: The RMS error of the reconstructions of the four specific
Zernike cases for which cross-talk is present, shown for different amount
of fitted Zernike powers
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Figure 5.28: The RMS error of the reconstructions of the lens aberrations
for different amount of fitted Zernike powers
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error is reached with 9 fitting powers for low and at 10 fitting powers for
extreme. In these experiments, only in the high experiment does Janssen’s
method estimate with similar accuracy as the leas-squares method. As is the
case with the other experiments, at 12 Zernike powers fit Janssen’s method
has a significantly higher RMS error than the least-squares method.

What can be seen from all these experiments is that Janssen’s method
diverges with fewer fitted Zernike powers than the least-squares method.
For the lens aberrations and the random phase aberrations, with up to 10
Zernike powers of aberrations present, this means that the least-squares
method performs better than Janssen’s method.

Figure 5.29: The RMS error of the reconstructions of the four random phase
aberrations for different amount of fitted Zernike powers

5.4 Error landscape with respect to center position and ra-
dius is equally sharp

As was stated in Section 4.3, finding the optimal center position and radius
takes a long time compared to calculating the coefficients with a known
geometry matrix. Due to physical misalignment, this center position can
change over time. In order to compare the two methods on the influence
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of mis-estimating the center position or radius, the RMS error landscape is
calculated. The method for calculation has been described in Section 4.3.

A selection from each of the three experiments has been shown in Figures
5.30 to 5.35. The other results are shown in appendix D.

Figure 5.30 shows the RMS error landscape of the first four single Zernike
experiments. It can be seen that for all cases, the general shape of the surface
through the medians and the whisker height for all datapoints are compa-
rable. The scale difference between for instance 5_5 and 6_2 is significant,
but within the same measurement, the RMS landscapes seem the same.

This is, however, not exactly the case for Figure 5.31. For 365_03 and
365_06 it can be seen that reducing the radius change ∆r drastically changes
the RMS error for the least-squares case. Janssen’s method shows the same
effect but less drastically for the 365_03 case. This abnormality in the error
landscape indicates that something has gone wrong during the optimization
of the center and radius. In fact, when looking at the Shack-Hartmann
pattern, center position and radius are shown in Figure 5.32, it can be
seen that for 365_03 and 365_06, the center and radius are mis-estimated
grossly. With such a small radius and presented for the least-squares case
with 365_03, information from the spots outside of the radius are lost. When
∆r becomes negative, even more spots will be lost, hence the sharp increase
in RMS error. A possible reason for this error in parameter estimation is
the fact that the aberration is very small, with small coefficients and a small
peak-to-valley value. A possible solution to this problem is proposed in
Section 7. It can be seen that for the second four experiments of the lens
aberrations, the RMS landscape (presented in Figure 5.33) and the center
and radius position (Figure 5.34) seem to be found well.

Also the error landscape of the random phase experiments, shown in
5.35, seems to behave like the specific Zernike experiment and the second
four experiments of the lens aberration experiments. From these well be-
haved RMS landscapes, it can be seen that for all experiments, there are no
major differences between the least-squares method and Janssen’s method.
Therefore, they will both be equally sensitive to errors caused by the mis-
estimation of the center and radius parameters. All other experiments and
all center and radius positions can be found in appendix.
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Figure 5.30: The RMS error landscape for the first four specific Zernike
experiments. The surface is plot through the median of the values at each
points of (disp,∆r). The whiskers denote the maximum and minimum value
of the values at those points.
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Figure 5.31: The RMS error landscape for the first four lens aberration
experiments. The surface is plot through the median of the values at each
points of (disp,∆r). The whiskers denote the maximum and minimum value
of the values at those points.
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Figure 5.32: The Shack-Hartmann pattern and estimated centers and radii
for the first four Lens aberration experiments.
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Figure 5.33: The RMS error landscape for the second four lens aberration
experiments. The surface is plot through the median of the values at each
points of (disp,∆r). The whiskers denote the maximum and minimum value
of the values at those points.
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Figure 5.34: The Shack-Hartmann pattern and estimated centers and radii
for the second four Lens aberration experiments.
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Figure 5.35: The RMS error landscape for the random phase aberration
experiments. The surface is plot through the median of the values at each
points of (disp,∆r). The whiskers denote the maximum and minimum value
of the values at those points.
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5.5 Janssen’s method is at least 3.5 times slower due to using
complex numbers

Due to using complex numbers, Janssen’s method will be at least 3.5 times
slower than the least-squares method at calculating their respective coeffi-
cients. In this section the computational complexity of calculating either
the complex or real Zernike coefficients using Janssen’s method and the
LSQ method is determined. This is done comparing the complexity of the
algorithm using N Zernike fitting powers and using Y spots on the Shack-
Hartmann camera. Also assumed is that the geometry matrix and vector
containing the slopes are pre-computed, and that the cost of addition, sub-
traction, multiplication and division are all equal. The computational cost
of the least-squares method is shown in the paragraph below, and the cost
Janssen’s method is detailed in Table 5.2.

If the geometry matrix and slopes vector are pre-computed, the least-
squares method only requires a matrix-vector product to gather the coeffi-
cients. This geometry matrix, as described in Equation 2.34 has a size of
J(N)× 2Y . Here, J(N) is the total amount of Zernike modes in the first N
powers, and is expressed as

J(N) =
(N + 1)(N + 2)

2
. (5.2)

From linear algebra, one can see that to compute a matrix-vector multiplica-
tion of a p×n matrix with a vector of length n, one needs pn multiplications
and p(n − 1) additions. The total computational cost would therefore be
2pn− p, which can be simplified to 2pn when p, n� 1. The total computa-
tional cost of the least-squares matrix vector multiplication would therefore
be O(4J(N)Y ) = O(2Y (N + 1)(N + 2)).

In order for Janssen’s method to find the first N − 1 powers, one needs
to find β+ and β− ∈ CJ(N) (i.e. using the first N Zernike modes for fitting).
The slopes vector for Janssen’s method is only Y long, as opposed to 2Y
of the least-squares method. Therefore the geometry matrix for Janssen’s
method will be in C(J(N)×Y ). However, the matrix-vector product has to be
done twice.

Also, due to the complex nature of the geometry matrix and the vector
containing the slopes, one has to account for the added complexity of the
matrix vector product. When adding two complex numbers, z = x+ iy and
z′ = x′ + iy′ for instance, one can see that the addition can be done using
2 real additions, x+ x′ and y + y′. Therefore, complex addition is twice as
computationally expensive as real addition.

A similar derivation can be made for complex multiplication. Multiply-
ing z and z′ can be written as

zz′ = (xx′ − yy′) + i(xy′ + x′y). (5.3)
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To compute the complex multiplication, one has to do 4 real multiplications
and 2 additions. Assuming multiplication and addition are equally compu-
tationally expensive, the cost of complex multiplication is 6 times higher
than real multiplication or addition.

Extending this multiplication to a matrix-vector product, it was shown
above that a matrix vector product costs pn multiplications and p(n − 1)
additions. If both the matrix and vector contain complex values (which
in the case of Janssen’s method it does), the computational cost of this
matrix-vector product can be done in 4pn real multiplications and 4pn− 2p
real additions. If p and n are both much bigger than one, the approximate
cost of this matrix-vector product is O(8pn). If one implements a smarter
algorithm than direct computation, one can lower this to a computational
cost of O(7pn) (Fam, 1988).

The evaluation of δn|m| is taken to be the same cost as 2 real multipli-
cations, because n and m are real numbers.

Table 5.2: Computational steps and their complexity in calculating complex
Zernike coefficients using Janssen’s method.

Action Operations Complexity

Gather β+ and β− 2 mat-vec O(14J(N)Y )

calculate ϕmn
2 multiplications O(12J(N))
1 addition O(2J(N))

calculate cmn

evaluate δn|m| O(2J(N))

1 addition O(2J(N))
1 division O(6J(N))

calculate αmn
2 multiplications O(12J(N))
1 subtraction O(2J(N))

Total O(14J(N)Y + 38J(N))

All steps of Janssen’s method and their complexity are shown in Ta-
ble 5.2.

Substituting J(N) gives us the the computational cost of Janssen’s method
in terms of N and Y , which is O((7Y + 19)(N + 1)(N + 2)). If Y is big
enough, this can be simplified to O(7Y (N + 1)(N + 2)).

Comparing this result to the cost of the least-squares method (O(2Y (N+
1)(N + 2))), one sees that in the scenario of high Zernike power fitting and
high amount of spots, Janssen’s method is 3.5 times slower than the least-
squares method. If a lower spot count or lower Zernike power fitting is used,
Janssen’s method will be more than 3.5 times slower than the least-squares
counterpart. At 6 spots it is approximately 5 times slower, and at 19 spots
it is exactly 4 times slower.
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6 Conclusion

In conclusion, in order to compare Janssen’s method to the least-squares
method for reconstructing the wavefront using a Shack-Hartmann sensor,
three sets of aberrations have been reconstructed. For both methods and all
aberrations, four tests were done to compare the methods. In the first test,
the quality of the reconstruction has been determined by fitting the optimal
amount of Zernike aberrations. Afterwards, less than optimal Zernikes pow-
ers have been fitted to evaluate the effects of cross-talk for both methods.
Furthermore, too many Zernike aberrations were fitted in order to see the
effects of aliasing. Lastly, the error landscape was determined for all aber-
rations and both methods. Apart from this, the theoretical computational
cost was has been determined.

The first test to see the quality of the reconstruction with optimal
amount of Zernike fits shows that the quality of the fit is in general similar
for the least-squares method and Janssen’s method. It is shown that for
the cases with the specific Zernike aberrations and the lens aberrations, the
RMS error between the reconstruction and the reference phase is similar.
The RMS error was significantly higher for Janssen’s method in the case of
random aberrations, but that was due to the fact that less coefficients were
estimated.

When less than the optimal Zernike powers were fit, it was shown that
Janssen’s method estimates the coefficients more accurately. For the single
Zernike aberration case it was shown that only the least-squares method
shows cross-coupling of higher order aberrations, while Janssen’s method
does not. For all three sets of aberrations it was shown that using n + 1
fits, the coefficients amn were more accurately estimated by Janssen’s method
than by the least-squares method. This difference in accuracy disappeared
once n+ 2 fits were made.

When more than the optimal Zernike powers were fit, it was shown
that both methods suffer from aliasing. It was shown that even though the
general shape of the convergence and divergence of the error with increasing
amount of aberration fits were the same, Janssen’s method tends to diverge
more rapidly. The divergence of Janssen’s method started at fewer fitting
powers, 11 fitting powers as opposed to the least-squares 12 or 13.

The error landscape was shown the be very similar for both methods.
Janssens’s method and the least-squares method showed both a similar be-
havior when varying either the center position or radius of the beam on the
Shack-Hartmann sensor. This makes them equally sensitive to errors caused
by the mis-estimation of these parameters.

Theoretically, it was assessed what the computational intensity of both
reconstruction algorithms was. It was shown that due to the fact that the
calculations in Janssen’s method are done in the complex plane, the method
is at least 3.5 times slower than the least-squares method. Janssen’s method
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will be even slower in cases when there are relatively little spots. At 6 spots,
the method is approximately 5 times slower and at 19 spots the method is
4 times slower.

All in all, it is shown that the initial hypothesis of the lack of cross-
talk in Janssen’s method holds up also in experiments. Further research
shows the pros and cons of both methods. Depending on the needs of the
system in which the algorithm is used, both methods are good candidates
for recovering the wavefront using a Shack-Hartmann sensor.
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7 Recommendations

In order to even better understand the performance difference between the
Janssen’s method and the least-squares method when doing wavefront re-
construction, three additional experiments can be done. A solution for the
mis-estimation of the center and radius parameters is first proposed.

First of all, it is recommended that the optimization algorithm for finding
the center and radius is revisited. For the 365_03 and 365_06 experiment,
this algorithm seems to have found local minima, rather than the global
minimum. It is expected this local minimum was found because of the small
aberration that was introduced in these experiments. It can be seen that
in the experiments that did behave well, the center position and radius do
not differ that much. A good check to see if a global minimum is reached
is the fact that both methods find a similar minimum, and that the center
position and radius are close to the initial estimates. For this, the bounds
for the center position and radius can be set smaller in the initial L-BFGS-B
optimization.

Second of all, an improvement can be made by using a different SLM. In
the current research, a Holoeye PLUTO SLM is used to add aberrations to
the wavefront. From (Bondareva et al., 2014) it can be seen that there is a
significant temporal fluctuation of the phase retardation. A fluctuation of up
to 0.13π has been measured when addressing a high phase-retardation to the
SLM. Because of this flickering in the phase, the error had to be redefined
during the research. The initial error was defined as the difference between
the wavefront recovered with interferometry and the wavefront recovered
with the Shack-Hartmann sensor. This is because interferometry in general
is more accurate at reconstructing the wavefront than reconstruction with
the Shack-Hartmann sensor. However, due to the flickering of the SLM,
the reconstruction quality was worse and could not be used as a reference.
Therefore, re-doing the experiments with a more stable SLM could make
wavefront reconstruction with interferometry possible and can provide a
better reference phase for better error estimation for both Shack-Hartmann
methods.

Also, it would be interesting to repeat the experiments verifying the
absence of cross-talk with fewer spots. The absence of cross-talk between
certain Zernike aberrations has been proven only in the limit of infinite spots.
In Janssen’s case, the columns of the geometry matrix will in general not be
orthogonal due to the fact that there are a finite amount of spots, and the
non-orthogonality will be stronger for fewer spots. It would be interesting
to see the effect of this non-orthogonality on the reconstruction quality for
Janssen’s method.

Furthermore, an interesting experiment can be done using annular pupils.
In, for instance, the new European Extremely Large Telescope, the primary
mirror collecting all the light is not perfectly round. The mirror consists of
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798 hexagonal mirror segments, arranged in an annulus. The aperture will
therefore be annular, rather than circular. An interesting research question
would be whether or not the same pros and cons of Janssen’s method and
the least-squares method holds when reconstructing the full wavefront from
annular wavefront data. A great benefit for Janssen’s method is that there is
a mathematical relationship between the measured scaled coefficients αmn (ε),
where ε ∈ [0, 1] denotes the radius of the central obstruction, and the actual
present aberrations αmn , as shown in Appendix 2 of Janssen et al. (2008). A
relationship between amn (ε) and amn can be made in a similar fashion from
the results presented in Dai (2006).
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A Derivation of the conversion relations between
real and complex polynomial coefficients

Zernike polynomials form a complete set of polynomials that are orthogonal
in a continous fashion of the interior of a unit circle (Wyant and Creath,
1992). Therefore, if we restrict ourselves to the unit disc, the following equa-
tion must hold when describing an sufficiently smooth complex wavefront

∞∑
m=−∞

∑
n∈ηm

amn Z
m
n (ρ, θ) =

∞∑
m=−∞

∑
n∈ηm

αmn C
m
n (ρ, θ), (A.1)

where ηm is the set of allowed values of n such that Equations 2.5, 2.6 and
2.7 all hold.

The left hand side of this equation can be expanded in terms of sines
and cosines, where for ease of writing the radial terms will be omitted

∑
n∈ηm

{ ∞∑
m=0

amn N
m
n cos (mθ) +

∞∑
m′=1

a−m
′

n N−m
′

n sin
(
m′θ

)}

=
∑
n∈ηm

{ ∞∑
m=1

Nm
n

(
amn,r cos(mθ) + a−mn,r sin(mθ)

)
+

Nm
n

(
amn,ii cos(mθ) + a−mn,i i sin(mθ)

)}
+N0

n

(
a0
n,r + ia0

n,i

)
.

(A.2)

where subscript r and i denote the real and imaginary part of the coef-
ficient respectively.

The right hand side can equally be expanded in sines and cosines. If we
don’t write the radial terms, it can be expressed as

∑
n∈ηm

{ ∞∑
m=0

αmn (cos(mθ) + i sin(mθ)) +

∞∑
m′=1

α−m
′

n

(
cos(m′θ)− i sin(m′θ)

)}

=
∑
n∈ηm

{ ∞∑
m=1

(
αmn,r + α−mn,r

)
cos(mθ) + (−αmn,i + α−mn,i ) sin(mθ)+

(αmn,i + α−mn,i )i cos(mθ) +
(
αmn,r − α−mn,r

)
i sin(mθ)

}
+
(
α0
n,r + α0

n,i

)
.

(A.3)

Substituting Equations A.2 and A.3 back in Equation A.1, it becomes
apparent that the following relations must hold between the coefficients
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Re (amn ) =



1

Nm
n

Re
(
α|m|n + α−|m|n

)
, if m > 0

−1

Nm
n

Im
(
α|m|n − α−|m|n

)
, if m < 0

1

Nm
n

Re (αmn ) , if m = 0,

(A.4)

Im (amn ) =



1

Nm
n

Im
(
α|m|n + α−|m|n

)
, if m > 0

1

Nm
n

Re
(
α|m|n − α−|m|n

)
, if m < 0

1

Nm
n

Im (αmn ) , if m = 0.

(A.5)

These relationships hold for an imaginary wavefront. When describing a
real wavefront (which is the case in a physical experiment), the right-hand
side of Equation A.5 becomes 0, and Re (amn ) = amn .

These relations can also be reversed, expressing αmn in terms of amn

αmn =


Nm
n

a
|m|
n − ia−|m|n

2
, if m > 0

Nm
n

a
|m|
n + ia

−|m|
n

2
, if m < 0

Nm
n a

m
n , if m = 0,

(A.6)
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B Additional coefficient convergence graphs

The graphs of the specific Zernike experiment, showing the convergence of
the coefficients fit different fitting powers. These are the graphs not shown
in Section 5.2.1

Figure B.1: Convergence of coefficients for the 5 5 experiment.

Figure B.2: Convergence of coefficients for the 6 2 experiment.
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Figure B.3: Convergence of coefficients for the 6 6 experiment.

Figure B.4: Convergence of coefficients for the 3 zerns 2 experiment.
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Figure B.5: Convergence of coefficients for the sub zerns 2 experiment.

Figure B.6: Convergence of coefficients for the sub zerns 4 experiment.
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C RMS landscapes and optimized center and ra-
dius positions

This appendix shows all RMS landscapes and the corresponding center and
radius positions. Discussion of the results is found in Section 5.4.

Figure C.1: The RMS error landscape for the first four single Zernike exper-
iments. The surface is plot through the median of the values at each points
of (disp,∆r). The whiskers denote the maximum and minimum value of the
values at those points.
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Figure C.2: The Shack-Hartmann pattern and estimated centers and radii
for the first four single Zernike experiments.
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Figure C.3: The RMS error landscape for the second four single Zernike
experiments. The surface is plot through the median of the values at each
points of (disp,∆r). The whiskers denote the maximum and minimum value
of the values at those points.
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Figure C.4: The Shack-Hartmann pattern and estimated centers and radii
for the second four Single Zernike experiments.
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Figure C.5: The RMS error landscape for the last four single Zernike exper-
iments. The surface is plot through the median of the values at each points
of (disp,∆r). The whiskers denote the maximum and minimum value of the
values at those points.
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Figure C.6: The Shack-Hartmann pattern and estimated centers and radii
for the last four single Zernike experiments.
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Figure C.7: The RMS error landscape for the first four lens experiments.
The surface is plot through the median of the values at each points of
(disp,∆r). The whiskers denote the maximum and minimum value of the
values at those points.
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Figure C.8: The Shack-Hartmann pattern and estimated centers and radii
for the first four lens experiments.
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Figure C.9: The RMS error landscape for the last four lens experiments. The
surface is plot through the median of the values at each points of (disp,∆r).
The whiskers denote the maximum and minimum value of the values at
those points.
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Figure C.10: The Shack-Hartmann pattern and estimated centers and radii
for the last four lens experiments.
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Figure C.11: The RMS error landscape for the four random phase experi-
ments. The surface is plot through the median of the values at each points
of (disp,∆r). The whiskers denote the maximum and minimum value of the
values at those points.
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Figure C.12: The Shack-Hartmann pattern and estimated centers and radii
for the four random phase experiments.
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D Derivation of the non-orthogonality of the least-
squares geometry matrix

This section will prove that in the limit of infinite spots on the Shack-
Hartmann sensor, the geometry matrix constructed does not have orthogonal
columns. It is also derived which columns are not orthogonal. This is in
turn used to predict which Zernike coefficients will experience cross-talk.

Recall that the geometry matrix is constructed by averaging the partial
derivative of the Zernike polynomial over a certain sub-aperture, and put in
a matrix as follows

G =



∂Z1

∂x

∣∣∣∣
1

∂Z1

∂x

∣∣∣∣
2

· · · ∂Z1

∂x

∣∣∣∣
nspot

∂Z1

∂y

∣∣∣∣
1

∂Z1

∂y

∣∣∣∣
2

· · · ∂Z1

∂y

∣∣∣∣
nspot

∂Z2

∂x

∣∣∣∣
1

∂Z2

∂x

∣∣∣∣
2

· · · ∂Z2

∂x

∣∣∣∣
nspot

∂Z2

∂y

∣∣∣∣
1

∂Z2

∂y

∣∣∣∣
2

· · · ∂Z2

∂y

∣∣∣∣
nspot

...
...

. . .
...

...
...

. . .
...

∂ZJ
∂x

∣∣∣∣
1

∂ZJ
∂x

∣∣∣∣
2

· · · ∂ZJ
∂x

∣∣∣∣
nspot

∂ZJ
∂y

∣∣∣∣
1

∂ZJ
∂y

∣∣∣∣
2

· · · ∂ZJ
∂y

∣∣∣∣
nspot



T

.

(D.1)

nspot is taken to be very large, such that the average over the sub-aperture
is equal to evaluating the function in the center of the sub-aperture. If this
is the case, then an inner product between column i and column j can be
written as

〈Gi, Gj〉 =

nspot∑
n=1

[
∂Zi
∂x

∂Zj
∂x

∣∣∣∣
n

+
∂Zi
∂y

∂Zj
∂y

∣∣∣∣
n

]
, (D.2)

where Gi and Gj denote the columns i and j of matrix G. From Monte
Carlo integration methods, it is known that (Press et al., 1992)∫

fdV ≈ V

N

N∑
i=1

f(xi), (D.3)

where V is the volume in which the points xi are taken from randomly. If
this principle is applied to internal product, we can approximate it as an
integral

nspot∑
n=1

[
∂Zi
∂x

∂Zj
∂x

∣∣∣∣
n

+
∂Zi
∂y

∂Zj
∂y

∣∣∣∣
n

]
≈ π

N

∫
Ω

(
∂Zi(x)

∂x

∂Zj(x)

∂x
+
∂Zi(x)

∂y

∂Zj(x)

∂y

)
dx,

(D.4)

where x ∈ Ω, which denotes the unit disc. The orthogonality of the columns
of the geometry matrix G can therefore be approximated by the right hand
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side integral. To aid us in evaluating, the derivatives of the Zernikes can
be expressed as a finite sum of Zernike polynomials, which are orthogonal
on the unit disc. The x- and y-derivates can be expressed as (Stephenson,
2014)

∂Zmn
∂x

=
n−1∑
n′=0

[
anmn′,m−1Z

αm|m−1|
n′ + αmsng(m+ 1)anmn′,m+1Z

αm|m+1|
n′

]
(D.5)

∂Zmn
∂y

=
n−1∑
n′=0

[
−αmsgn(m− 1)anmn′,m−1Z

−αm|m−1|
n′ + anmn′,m+1Z

−αm|m+1|
n′

]
,

(D.6)

where

anmn′,m′ =


√

2− δm0

2− δm′0
(n+ 1)(n′ + 1)

if n ≥ |m|, (n− |m|) is even,

n′ ≥ |m′|, and (n′ − |m′|) is even

0 otherwise,

(D.7)

and

αm =

{
+1 if m ≥ 0,

−1 if m < 0.
(D.8)

Using these explicit expressions for the cartesian derivatives of Zernike poly-
nomials, one can see that the product of two different derivatives of Zernike
polynomials can be expressed as a double sum. For instance, the x-derivative
product can be expressed as

∂Zmn
∂x

∂Zm
′

n′

∂x
=

n−1∑
η=0

n′−1∑
η′=0

[
anmη,m−1Z

αm|m−1|
η + αmsng(m+ 1)anmη,m+1Z

αm|m+1|
η

]
×

[
an
′m′
η′,m′−1Z

α′m|m′−1|
η′ + α′msng(m′ + 1)an

′m′
η′,m′+1Z

α′m|m′+1|
η′

]
.

(D.9)

Due to the orthogonality of the Zernike polynomials, the integral over the
unit disc of these products only is nonzero in 2 distinct cases. The first case,
where m′ 6= 0, the integral in nonzero if

{(n,m, n′,m′) ∈ Z | n ∈ ηm, m = m′ or m = m′ ± 2,

n′ > n, n ≥ m′ + 2, n′ ∈ ηm′ , m′ 6= 0},
In the case that m′ = 0, the integral in nonzero if

{(n,m, n′,m′) ∈ Z | n ∈ ηm, m = m′ or m = m′ + 2,

n′ > n, n ≥ 2, n′ ∈ ηm′ , m′ = 0},
where in both cases ηm and ηm′ are the sets of allowed values for n and n′

dependent on m and m′ such that Equations 2.5, 2.6 and 2.7 are all met.
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E Tables of used coefficient values

Table E.1: Coefficients used in specific Zernike experiments, rounded off to
3 significant numbers

Code Coefficients

5 1
a1

5

0.750

5 5
a5

5

1.250

6 2
a2

6

0.500

6 4
a4

6

1.000

6 6
a6

6

2.000

3 zerns 1
a0

2 a4
4 a−2

6

2.000 1.500 0.500

3 zerns 2
a0

2 a−1
3 a5

5

2.000 3.000 1.500

3 zerns 3
a−2

2 a0
4 a−4

6

2.000 1.500 0.750

sub zerns 1
a0

2 a0
4 a0

6

4.000 1.500 0.750

sub zerns 2
a1

1 a1
3 a1

5

4.000 1.500 0.750

sub zerns 3
a3

3 a3
5

2.500 0.750

sub zerns 4
a2

2 a2
4 a2

6

2.500 1.000 0.500
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Table E.2: Coefficients used in LEICA experiments, rounded off to 3 signif-
icant digits

Code Coefficients

544 04

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

0.016 -0.016 0.042 -0.000 -0.029 0.027 0.096 -0.095 -0.003

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a−1

5 a1
5

-0.007 -0.003 -0.032 0.001 -0.006 0.000 -0.005 0.011 -0.006

a3
5 a5

5 a−4
6 a−2

6 a0
6 a2

6 a4
6 a−3

7 a−1
7

-0.002 0.010 -0.013 -0.018 -0.019 0.019 -0.005 -0.018 -0.014

a1
7 a3

7 a−2
8 a0

8 a2
8 a−1

9 a1
9 a0

10

-0.007 -0.000 0.038 -0.027 -0.004 0.022 -0.018 -0.018

544 08

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

0.032 -0.032 0.084 -0.001 -0.057 0.054 0.191 -0.190 -0.006

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a−1

5 a1
5

-0.014 -0.007 -0.064 0.001 -0.013 0.001 -0.009 0.021 -0.012

a3
5 a5

5 a−4
6 a−2

6 a0
6 a2

6 a4
6 a−3

7 a−1
7

-0.004 0.021 -0.026 -0.036 -0.037 0.038 -0.011 -0.035 -0.028

a1
7 a3

7 a−2
8 a0

8 a2
8 a−1

9 a1
9 a0

10

-0.013 -0.001 0.076 -0.054 -0.008 0.044 -0.036 -0.036

544 17

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

0.064 -0.065 0.169 -0.002 -0.114 0.109 0.382 -0.379 -0.011

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a−1

5 a1
5

-0.028 -0.014 -0.127 0.002 -0.026 0.002 -0.018 0.042 -0.023

a3
5 a5

5 a−4
6 a−2

6 a0
6 a2

6 a4
6 a−3

7 a−1
7

-0.009 0.042 -0.052 -0.071 -0.074 0.077 -0.022 -0.070 -0.055

a1
7 a3

7 a−2
8 a0

8 a2
8 a−1

9 a1
9 a0

10

-0.026 -0.002 0.151 -0.108 -0.016 0.087 -0.072 -0.072

544 33

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

0.128 -0.130 0.338 -0.003 -0.229 0.218 0.765 -0.758 -0.022

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a−1

5 a1
5

-0.056 -0.027 -0.254 0.005 -0.051 0.003 -0.037 0.085 -0.046

a3
5 a5

5 a−4
6 a−2

6 a0
6 a2

6 a4
6 a−3

7 a−1
7

-0.018 0.083 -0.104 -0.142 -0.149 0.154 -0.043 -0.141 -0.110

a1
7 a3

7 a−2
8 a0

8 a2
8 a−1

9 a1
9 a0

10

-0.053 -0.003 0.302 -0.216 -0.032 0.174 -0.144 -0.144
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Table E.3: Coefficients used in LEICA experiments, rounded off to 3 signif-
icant digits - cont’d

Code Coefficients

365 03

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

-0.005 -0.005 0.055 -0.002 -0.020 0.045 -0.024 -0.066 -0.005

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a1

5 a3
5

0.004 0.009 -0.036 -0.014 0.010 0.010 -0.001 -0.007 -0.020

a5
5 a−4

6 a−2
6 a0

6 a2
6 a4

6 a−3
7 a−1

7 a1
7

0.012 -0.005 -0.031 -0.030 0.020 0.004 -0.014 -0.027 0.013

a3
7 a−2

8 a0
8 a2

8 a−1
9 a1

9 a0
10

-0.012 0.035 0.003 -0.023 -0.003 0.003 -0.009

365 06

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

-0.010 -0.010 0.110 -0.004 -0.040 0.090 -0.048 -0.132 -0.010

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a1

5 a3
5

0.008 0.018 -0.072 -0.027 0.020 0.019 -0.002 -0.014 -0.041

a5
5 a−4

6 a−2
6 a0

6 a2
6 a4

6 a−3
7 a−1

7 a1
7

0.024 -0.010 -0.063 -0.060 0.039 0.008 -0.027 -0.054 0.027

a3
7 a−2

8 a0
8 a2

8 a−1
9 a1

9 a0
10

-0.023 0.071 0.005 -0.046 -0.005 0.006 -0.018

365 11

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

-0.021 -0.020 0.219 -0.008 -0.080 0.180 -0.097 -0.265 -0.019

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a1

5 a3
5

0.015 0.036 -0.143 -0.054 0.040 0.038 -0.003 -0.028 -0.082

a5
5 a−4

6 a−2
6 a0

6 a2
6 a4

6 a−3
7 a−1

7 a1
7

0.048 -0.021 -0.126 -0.121 0.078 0.017 -0.054 -0.107 0.054

a3
7 a−2

8 a0
8 a2

8 a−1
9 a1

9 a0
10

-0.046 0.142 0.010 -0.093 -0.010 0.012 -0.035

365 22

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

-0.042 -0.040 0.438 -0.016 -0.160 0.360 -0.194 -0.530 -0.038

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a1

5 a3
5

0.030 0.072 -0.286 -0.109 0.080 0.077 -0.006 -0.056 -0.163

a5
5 a−4

6 a−2
6 a0

6 a2
6 a4

6 a−3
7 a−1

7 a1
7

0.096 -0.042 -0.251 -0.242 0.157 0.034 -0.109 -0.214 0.107

a3
7 a−2

8 a0
8 a2

8 a−1
9 a1

9 a0
10

-0.093 0.283 0.021 -0.186 -0.021 0.024 -0.070
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Table E.4: Coefficients used in the random surface experiments, rounded off
to 3 significant digits

Code Coefficients

low

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

0.152 -0.243 1.759 0.234 0.677 -1.400 -0.473 -0.160 0.623

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a−1

5 a1
5

0.083 -0.275 0.111 0.274 1.008 0.114 0.554 0.269 0.010

a3
5 a5

5 a−6
6 a−4

6 a−2
6 a0

6 a2
6 a4

6 a6
6

-0.163 0.032 -0.060 -0.028 0.018 -0.091 -0.166 -0.232 0.095

a−7
7 a−5

7 a−3
7 a−1

7 a1
7 a3

7 a5
7 a7

7 a−8
8

0.046 -0.035 -0.113 -0.067 0.033 0.040 -0.015 -0.050 -0.004

a−6
8 a−4

8 a−2
8 a0

8 a2
8 a4

8 a6
8 a8

8 a−9
9

0.013 -0.004 0.002 0.020 0.038 0.023 -0.016 -0.009 0.013

a−7
9 a−5

9 a−3
9 a−1

9 a1
9 a3

9 a5
9 a7

9 a9
9

-0.007 0.005 0.016 0.010 -0.012 -0.007 0.001 0.006 0.006

a−10
10 a−8

10 a−6
10 a−4

10 a−2
10 a0

10 a2
10 a4

10 a6
10

0.000 0.001 -0.001 0.002 -0.001 -0.004 -0.006 -0.001 0.001
a8

10 a10
10

-0.001 -0.001

medium

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

-1.043 -0.111 -0.286 -0.822 -0.032 0.042 0.133 0.290 -0.646

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a−1

5 a1
5

-0.596 -0.426 0.594 0.386 -0.070 0.372 -0.380 0.435 -0.158

a3
5 a5

5 a−6
6 a−4

6 a−2
6 a0

6 a2
6 a4

6 a6
6

-0.064 0.133 0.238 -0.318 0.237 -0.165 -0.134 -0.022 0.272

a−7
7 a−5

7 a−3
7 a−1

7 a1
7 a3

7 a5
7 a7

7 a−8
8

-0.115 -0.306 0.145 0.288 -0.133 -0.043 -0.293 -0.346 0.423

a−6
8 a−4

8 a−2
8 a0

8 a2
8 a4

8 a6
8 a8

8 a−9
9

-0.163 0.567 -0.022 0.086 0.017 0.120 -0.451 0.272 -0.036

a−7
9 a−5

9 a−3
9 a−1

9 a1
9 a3

9 a5
9 a7

9 a9
9

0.048 0.211 -0.002 -0.521 0.054 0.069 0.190 0.152 0.105

a−10
10 a−8

10 a−6
10 a−4

10 a−2
10 a0

10 a2
10 a4

10 a6
10

0.229 -0.146 0.013 -0.252 -0.000 -0.068 -0.019 -0.087 0.258
a8

10 a10
10

-0.099 0.019
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Table E.5: Coefficients used in the random surface experiments, rounded off
to 3 significant digits - cont’d

Code Coefficients

high

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

0.048 -0.113 0.088 -0.423 -0.200 -0.263 -0.345 -0.176 0.006

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a−1

5 a1
5

-0.099 -0.326 0.058 -0.495 0.231 0.273 0.229 0.075 0.249

a3
5 a5

5 a−6
6 a−4

6 a−2
6 a0

6 a2
6 a4

6 a6
6

-0.014 0.095 0.292 -0.090 -0.030 0.114 0.365 -0.765 -0.158

a−7
7 a−5

7 a−3
7 a−1

7 a1
7 a3

7 a5
7 a7

7 a−8
8

-0.218 -0.180 -0.220 0.014 0.410 0.070 0.280 0.018 0.117

a−6
8 a−4

8 a−2
8 a0

8 a2
8 a4

8 a6
8 a8

8 a−9
9

-0.226 0.248 0.060 -0.067 -0.233 0.323 -0.119 0.019 -0.140

a−7
9 a−5

9 a−3
9 a−1

9 a1
9 a3

9 a5
9 a7

9 a9
9

0.380 -0.065 0.319 0.173 -0.430 -0.049 -0.132 -0.008 -0.084

a−10
10 a−8

10 a−6
10 a−4

10 a−2
10 a0

10 a2
10 a4

10 a6
10

0.022 -0.003 0.064 -0.198 0.075 0.008 0.252 0.115 0.107
a8

10 a10
10

-0.005 0.121

extreme

a−1
1 a1

1 a−2
2 a0

2 a2
2 a−3

3 a−1
3 a1

3 a3
3

-0.044 -0.362 -0.074 -0.057 -0.059 -0.066 0.605 -0.085 0.194

a−4
4 a−2

4 a0
4 a2

4 a4
4 a−5

5 a−3
5 a−1

5 a1
5

-0.125 -0.174 -0.131 0.108 -0.507 0.254 -0.211 -0.218 0.668

a3
5 a5

5 a−6
6 a−4

6 a−2
6 a0

6 a2
6 a4

6 a6
6

0.188 -0.089 -0.252 0.401 0.097 -0.388 -0.328 0.356 -0.326

a−7
7 a−5

7 a−3
7 a−1

7 a1
7 a3

7 a5
7 a7

7 a−8
8

-0.590 0.042 -0.088 -0.246 -0.148 -0.533 -0.244 0.081 -0.362

a−6
8 a−4

8 a−2
8 a0

8 a2
8 a4

8 a6
8 a8

8 a−9
9

-0.186 -0.315 0.084 0.361 0.088 0.074 -0.100 0.205 0.447

a−7
9 a−5

9 a−3
9 a−1

9 a1
9 a3

9 a5
9 a7

9 a9
9

0.417 -0.143 0.106 0.223 -0.104 0.397 -0.056 0.008 -0.075

a−10
10 a−8

10 a−6
10 a−4

10 a−2
10 a0

10 a2
10 a4

10 a6
10

0.039 0.324 0.233 0.032 -0.074 -0.017 0.086 -0.090 0.051
a8

10 a10
10

-0.110 0.148
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