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Summary

Modern surveillance radars are designed to detect moving targets of interest in an

adverse environment, which can encompass strong unwanted reflections from ground

or sea surface, clouds, precipitation, etc. Detection of weak and small moving targets

in environmental clutter remains, however, a challenging task for the existing radar

systems.

One of the main directions for modern radar performance improvement is the

application of wideband high-resolution waveforms, which provide detailed range in-

formation of objects in the observed scene. Together with such inherent advantages of

wideband waveforms as multi-path separation, clutter reduction and improved target

classification, additional benefits can be obtained by exploiting target range migration

(range walk), essential for fast moving targets in the high-resolution mode.

This thesis aims at the development of novel signal processing techniques for mi-

grating target detection in wideband radars. It involves both resolving range-velocity

ambiguities and improvement in target discrimination from ground clutter by ac-

counting for target range migration.

It is demonstrated that wideband radars can resolve range-velocity ambiguity by

transmitting a single long pulse burst with low pulse repetition frequency (PRF) and

exploring target range walk phenomena during the burst. The ambiguity function

of such waveform still has strong residuals at the locations of ambiguities, called

ambiguous sidelobes, which have to be considered in the processing of wideband data.

The presence of ground clutter in the observation scene has a detrimental effect

on the wideband radar performance. The impact of the clutter Doppler spectrum

and waveform parameters on target detection at clutter ambiguities has been investi-

gated. The improvement over the conventional waveform is demonstrated for narrow

clutter Doppler spectrum; in the presence of clutter with a wide Doppler spectrum,

the conventional staggered-PRF waveform is preferable. Performance degradation at

ambiguous-to-clutter velocities is validated on the real data sets.

Modern high-resolution parametric-free spectrum estimators IAA (Iterative Adap-

tive Approach) and SPICE (Semi-Parametric Iterative Covariance-based Estimator)

xi
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are proposed for the reconstruction of the observed scene from wideband radar mea-

surements with no velocity ambiguities. These algorithms demonstrate significant

improvement in rejection of ambiguous sidelobes over the conventional techniques.

For clutter-limited case, the covariance-aware SPICE is introduced with improved ca-

pability to discriminate targets from clutter. The advantages of the proposed methods

are demonstrated in numerical simulations and real data processing.

The ambiguous sidelobes can cause severe problems for detection of multiple tar-

gets located at similar ranges. A dedicated detector for a dense target scenario has

been introduced. It can detect multiple closely spaced targets and mitigate false

detections due to their ambiguous sidelobes, holding false alarm probability at the

required level. The improvement over conventional processing is demonstrated.

Special attention is then devoted to clutter suppression in the high range reso-

lution mode. In meter or sub-meter range resolution, the observed ground clutter,

modeled by a compound-Gaussian process, may have significant fluctuations over the

range interval, elapsed by the target. An advanced detector for range-migrating tar-

gets in compound-Gaussian clutter is developed. It performs two-dimensional clutter

filtering in Doppler frequency and in the range and benefits from clutter spatial

diversity, obtained for a target passing over different patches of clutter. A significant

improvement in the detection of fast moving targets in spiky clutter is achieved in

comparison to the existing methods. The attained gain depends on clutter charac-

teristics and target velocity: fast moving targets are easier to detect than slow ones

with equal signal-to-clutter ratio. The generalized approach for detection of range-

extended migrating targets is provided.

The performed research provides some fundamental insight for implementation of

new radar architectures with the utilization of wideband waveforms.
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Samenvatting

Moderne surveillance radars zijn ontworpen om gewenste bewegende doelen te de-

tecteren in een lastige omgeving die bestaat uit sterke ongewenste reflecties van land

of zee, wolken, neerslag, enzovoort. Het detecteren van kleine zwakke bewegende ob-

jecten in omgevingsclutter blijft nog steeds een uitdagende taak voor conventionele

radar systemen

Een van de belangrijke richtingen voor de verbetering van moderne radar, is de

toepassing van breedbandige, hoge resolutie golfvormen, welke een gedetailleerde

range informatie van het object verschaffen op de plaats van observatie. Tezamen

met de inherente voordelen van breedbandige golfvormen, zoals multipad separatie,

clutter reductie en verbeterde doelsdetectie, aanvullende voordelen kunnen worden

verkregen door het benutten van range migratie, die essentieel is voor snel bewegende

doelen in de hoge resolutie mode.

Dit proefschrift focusseert op de ontwikkeling van nieuwe signaalverwerkings-

technieken ten behoeve van het detecteren van doelen in breedbandige radars. Aan-

dacht wordt voornamelijk gegeven aan het resolveren van afstand-snelheid ambigui-

teiten en het verbeteren van doelsdiscriminatie ten opzichte van grond clutter.

Aangetoond wordt dat breedbandige radars een lage pulsherhalingsfrequentie n

burst pulse kunnen gebruiken, zodanig dat het fenomeen range-walk gedurende de hele

burst significant genoeg is om de ambiguiteit in snelheid op te lossen. De ambiguiteits-

functie van dergelijke golfvormen hebben nog steeds sterke residuen op de plaats van

de ambiguiteit, genaamd ambigue zijlobben, die moeten worden meegenomen in de

verwerking van de breedband data.

De aanwezigheid van grond clutter in het observatie beeld heeft een nadelig effect

op de werkzaamheid van een breedband radar. De invloed van het clutter Doppler

spectrum en de parameters van de golfvorm op de bepaling van het doel met clut-

ter ambiguiteit is onderzocht. De verbetering met betrekking tot de conventionele

golfvorm wordt aangetoond voor smallbandige Doppler clutter spectrum; in de aan-

wezigheid van clutter met een breedbandig Doppler spectrum verdient de conven-

tionele staggerde-PRF golfvorm de voorkeur. De vermindering van de prestatie voor

xiii
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ambigue in relatie tot clutter snelheden wordt gevalideerd aan de hand van gemeten

data.

Moderne hoge resolutie parameter-vrije spectrum schatters IAA (Iterative Adap-

tive Approach) and SPICE (Semi-Parametric Iterative Covariance-based Estimator)

worden voorgesteld voor het verwijderen van ambigue residuen van de aanwezige

doelen. Deze algorithmen laten een verbeterde prestatie zien met betrekking tot de

onderdrukking van ambigue zijlobben in verhouding met conventionele technieken. In

het geval van beperkte clutter wordt covariantie gevoelige SPICE geintroduceerd met

een verbeterde mogelijkheid om doelen van clutter te onderscheiden. De voordelen

van de voorgestelde methoden worden aangetoond met numerieke simulaties en met

gemeten data verwerking.

De ambigue zijlobben kunnen enorme problemen veroorzaken bij de detectie van

meerdere doelen die gelocaliseerd zijn op gelijke afstand van het punt van observatie.

Een aangepaste detector wordt geintroduceerd voor omstandigheden met dicht op

elkaar geplaatste doelen. Deze detector kan meerdere dicht op elkaar geplaatste doelen

onderscheiden en onderdrukt valse waarnemingen ten gevolge van ambigue zijlobben

van het doel, waarbij de vals alarm waarschijnlijkheid op het gewenste niveau wordt

gehouden. De verbetering met betrekking tot conventionele verwerkingsmethoden

wordt aangetoond.

Speciale aandacht wordt besteed aan de clutter onderdrukking in hoge range reso-

lutie mode. In meter of sub-meter range resolutie, de waargenomen grond clutter, die

gemodelleerd wordt door een samengesteld-Gaussisch proces, kan significante fluctu-

aties hebben over het range interval, dat is afgelegd door het doel. Een geavanceerde

detector voor range-migrerende doelen onder invloed van samengestelde-Gaussische

clutter is ontwikkeld. Deze detector voert twee-dimensionale clutter filtering uit met

betrekking tot de Doppler frequentie en de range en profiteert van de ruimtelijke

clutter diversiteit, die verkregen is door een doel dat over verschillend stukjes clutter

is gepasseerd. Een significante verbetering met betrekking tot de detectie van snel

bewegende doelen onder in vloed van naaldvormige clutter is bereikt in vergelijking

met de bestaande methoden. De bereikte winst hangt af van de karakteristieken van

de clutter en de snelheid van het doel: snel bewegende doelen zijn makkelijker te de-

tecteren dan langzaam bewegende, bij gelijkblijvende signaal-clutter verhouding. De

algemene benadering met betrekking tot detectie van doelen met uitgebreide range

migratie wordt voorgesteld.

Het uitgevoerde onderzoek verschaft enkele basis inzichten voor de implementatie

van nieuwe radar ontwerpen die gebruik maken van breedbandige golfvormen.
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Chapter 1

Introduction

1.1 Surveillance radars

The basic function of a radar (RAdio Detection And Ranging) is to detect objects

and estimate their position and velocity. In the operational mode a radar transmits

electromagnetic waves into the scene, then captures the echo reflected from the target

and analyzes it to retrieve target location and motion parameters. The primary

focus of this research is a surveillance radar, which is intended to provide situational

awareness for security and defense applications. Such radar has to detect all moving

targets present in the surrounding area and measure their range, velocity and bearings

in azimuth and elevation. Range and velocity of the target can be estimated from the

measured time delay and Doppler shift of the received signal respectively; the angular

location of the target is obtained by scanning the outer space with a narrow beam:

either mechanically with a standard fixed beam antenna, or electronically if a phased

array antenna is employed. Therefore, for target range and velocity estimation in a

single beam, the angular dimension is usually ignored [1].

Surveillance radars are designed to detect moving targets of interest in presence

of strong unwanted echoes from ground, sea, clouds, precipitation, etc., referred to

as clutter, or intentional interference called jammer. The presence of such parasitic

signals can significantly reduce radar capability to detect the desired echoes. Con-

sequently, the overall aim of the radar system design, including the selection of the

antenna beamwidth, waveform parameters, power budget, signal processing, etc., is

to improve visibility of weak targets against clutter and jammer. This implies en-

hancement of a target response and simultaneous suppression of a clutter echo and

jammer, by exploiting the essential distinction of these signals. An interference of

the latter class is usually concentrated in a narrow angle sector. Modern radars with

1



i
i

“”Thesis Nikita Petrov”” — 2019/6/7 — 11:54 — page 2 — #16 i
i

i
i

i
i

2 1. Introduction

phased array antennas can mitigate the impact of jammers by creating an antenna

radiation pattern with nulls in the directions of the interferers.

A clutter response in a surveillance radar, being the echo of multiple stationary

or quasi-stationary (vegetation, sea surface, clouds) objects, is typically characterized

by its large extension in space and narrow Doppler spectrum, concentrated around

zero. Thus, to improve target visibility against clutter, a radar should, on one hand,

transmit a short pulse to obtain a fine range resolution and, on the other hand,

send a signal with a long duration for accurate estimation of the Doppler frequency

shift, providing high velocity resolution. In order to meet these two contradictory

requirements conventional surveillance radars transmit periodic sequences of pulses

or sweeps (bursts or trains) as sounding signals. In order to decrease peak transmitting

power modern radars typically send frequency or phase modulated pulses of longer

duration. Each received pulse then passes through a pulse compression filter, which

recovers the range profile of the scene with the range resolution:

δR =
c

2B
, (1.1)

where B is the coherent bandwidth (bandwidth over which range compression is per-

formed) of a transmitted pulse. The coherent bandwidth of conventional surveillance

systems is typically small compared to the carrier frequency. Doppler analysis is per-

formed by measuring the phase variation of the received signal from pulse to pulse,

independently of the range measurement. The velocity resolution of a pulse burst

depends on the number of pulses M as:

δv =
λc

2(M − 1)Tr
, (1.2)

where Tr is the pulse repetition interval (PRI) of the transmitted pulse train.

A single pulse train waveform however is rarely used in surveillance radars because

of two limiting factors: ambiguities and fluctuations.

Ambuguities The essential limitation of the pulse train waveform comes from the

range-Doppler ambiguities of such signals:

• Range ambiguities occur when the m-th transmitted pulse is reflected by a

distant target and received after the pulses number m + 1, or m + 2 etc. have

been transmitted by the radar. The received echo then can be assigned to any of

the pulses transmitted already, creating ambiguities in target range estimation.

The ambiguous range of a pulse radar:

Ra =
cTr
2

(1.3)
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1.1 Surveillance radars 3

is controlled by the choice of the PRI Tr of the transmitted pulse train; c is the

speed of light.

• Radar measures target Doppler frequency shift by estimating the phase varia-

tion of the targets echo in the successive pulses. The fundamental modulo 2π

uncertainty of the phase measurements leads to ambiguous estimation of the

targets Doppler frequency fD = 2v0fc/c and therefore of its velocity v0; here

fc stands for the radar carrier frequency. The ambiguity of target Doppler fre-

quency estimation is therefore equal to the pulse repetition frequency (PRF) Fr
of the burst and leads to velocity ambiguity:

va =
λc
2Tr

, (1.4)

where λc = c/fc is the wavelength at the radar carrier frequency.

Range and velocity ambiguities are related one to another as:

Rava =
cλc
4

(1.5)

and usually tuned by the selection of PRI (or PRF) according to (1.3), (1.4), assuming

small variation of the radar carrier frequency (fc) in the burst. For surveillance radars,

operating at frequencies fc ∈ (1, 30) GHz (λc ∈ (0.01, 0.3) m), the presence of multiple

ambiguities, either in range, or in velocity, or both, must be considered.

Fluctuations The other limitation of a pulse train waveform arises due to fluctuation

of the target and clutter responses. The targets of interest are complex objects with

many surfaces, which have different range and angle towards the radar. The signal

reflected from all these surfaces is summed coherently in the receiver, creating inter-

fering picture of target reflection in angle and frequency. As a result the target may

provide very weak signals for certain observation angles or frequencies of illumination

(a phenomenon called target fading in the literature) [2]. The clutter response arises

similarly, but the shape of the reflecting area is limited by the beamwidth and range

resolution of the radar, instead of the physical dimensions of the object.

The effects of target fading and clutter fluctuation can be mitigated by observing

the scene either from multiple directions, or at various frequencies. The former ap-

proach is realized in a multi-static radar, which is beyond the scope of this study. The

latter method implies changing of radar carrier frequency within target observation

time, called frequency agility and realized in most of modern radars.

Radar waveform and signal processing should consider the presence of ambiguities

and exploit target and clutter fluctuations for better target visibility. The conven-

tional approach to design a surveillance radar leads to the selection of narrowband
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waveforms of the special form, described in the next section. Then, an emerging ap-

proach, which consists of using wideband waveforms for surveillance, is introduced. A

wideband surveillance radar is demonstrated to provide the required means to resolve

ambiguities and obtain diversity gain, with improved range and velocity resolution.

1.2 Narrowband radars

Narrowband radars are defined as radars with a fractional bandwidth (B/fc) of less

than 1%. They are mostly used for air and weather surveillance at long distances, with

the target information being extracted from the base-band signal with a bandwidth

of a few MHz. The targets of interest are located in the far field of the antenna and

typically have dimensions smaller than radar resolution cell, which is of an order of

δR ∈
(
101, 103

)
m in range.

Most of conventional surveillance radars are narrowband. In order to overcome

range-velocity ambiguities, they sequentially transmit a few bursts (pulse trains) with

different PRFs [1], commonly referred to as a staggered PRF waveform. Then, clutter

filtering, Doppler processing and target detection are performed in each burst sepa-

rately and combined by some logical processor. The efficiency of such processing is

often demonstrated in the noise-limited scenario, where fusion of detections in 2-3

bursts provides a unique estimation of targets range and velocity [2, 3].

In a complex environment scenario a moving target can be missed in some bursts.

This happens when the folded over PRF Doppler frequency shift of the target is low,

and, thus, the target echo cannot be discriminated from the clutter. The repetitive

notches of a clutter filter create so-called “blind speeds” in the Doppler processing

output. To diminish the impact of “blind speeds” on target detection, the operational

radars transmit 3-6 bursts and process the outputs by means of “K-out-of-N” rule or

other logic [1]. The selection of PRFs of the staggered waveform affects the velocity

sensitivity of such processing and usually requires some compromise between clutter

rejection, maximum velocity of a target and observation time [1, 3, 4]. In addition,

modern radars can vary carrier frequency from burst to burst (frequency hopping) to

mitigate fading effects due to the fluctuation of targets and clutter [2].

Surveillance radars usually transmit staggered waveforms with low PRF for un-

ambiguous estimation of range. This design avoids clutter folding in range and thus

prevents the situation when a weak response of ambiguous in range target has to be

detected against a strong clutter response from nearby [1]. The procedure for ambi-

guities removal poses additional limitations on the range resolution of such systems.

Namely, target extent and range migration during the observation time should be

smaller than the radar range resolution δR for correct ambiguities removal, which

implies typical δR ∈
(
101, 103

)
m.
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1.3 Wideband radars 5

The need to transmit a few different bursts is detrimental to overall radar per-

formance: the surveillance radar scans the outer space with the limited update rate

of the system which poses strict limitations on the time-on-target. This finite time-

on-target should be divided into a few bursts for ambiguities removal, which directly

implies low coherent integration gain and limited Doppler resolution of such systems

- both being crucial for detection of moving targets in clutter.

Therefore, detection of small and weak targets in a heavy environment is still a

challenging task for existing radar systems. One way to improve detection of moving

targets in clutter is to exploit high resolution waveforms and associated signal pro-

cessing. Radar systems, exploiting such waveforms for target detection, are referred

here as wideband radars.

1.3 Wideband radars

The term wideband radar appeared in the literature during the last decades to rep-

resent a new class of emerging technology, compared to the well-established narrow-

band and ultra-wideband (UWB) radars. Such radar systems serve for similar tasks,

as the narrowband radars, and operate in the same frequency bands. But they have

fractional bandwidth between 1% and 20%, over which the coherent processing can

be performed, providing fine range resolution δR ∈
(
10−1, 101

)
m. Therefore, such

systems are also called high resolution radars. In addition to target detection and

position estimation, they can provide complementary information about the target

shape and dimensions by means of accurate range profiling. This information can be

used for separation of closely spaced targets and their classification by means of range

profile analysis [5].

Wideband radars are essentially different from the UWB ones. The latter systems

have fractional bandwidth greater than 20% [6]. The spectrum of the UWB systems

is often wide enough to measure simultaneously the response of the target in different

reflection regions - optical, resonance and low-frequency (or Rayleigh). These systems

have low frequency component of the spectrum, which gives UWB radars unique

capabilities of subsurface visibility and target shape identification from the frequency

response of the target [5, 6].

Fine range resolution makes wideband radars a promising technology for surveil-

lance application. The detailed range measurement of the scene provides a number

of direct benefits for the surveillance radar. Among them:

• Improved signal-to-clutter ratio (SCR) for detection of small targets at low

altitude by reduction of the clutter patch;

• On-the-fly pre-classification of the targets from their high range resolution (HRR)

profile;
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Measured with PARSAX low-resolution responce of the plane
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Figure 1.1: Response of a moving plane (Cessna 150), measured with PARSAX radar: a - Narrow-

band mode, B = 7.9 MHz, δR ≈ 19 m; b - Wideband mode, B = 95 MHz, δR ≈ 1.6 m.

• Resolving multi-path reflections of low-altitude targets by separation of the

direct and multi-path signals in range.

The direct benefits can be obtained when the signal bandwidth is increased, but

the radar structure and processing gain are identical to conventional narrowband

surveillance radars.

Wideband radars provide alternative solution to resolve velocity ambiguity. If the
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Measured with PARSAX CNR in two resolution modes

High range resolution (1.6 m)
Low range resolution (19 m)

Figure 1.2: Clutter response, measured with PARSAX in two resolution modes: high range resolution

(δR ≈ 1.6) and low range resolution (δR ≈ 19 m)

range resolution is high enough to observe target range variation during the coherent

processing interval (CPI), then target’s velocity can be measured using target range

migration (also called range-walk) from pulse to pulse, demonstrated in Fig. 1.1, b.

This coarse measurements of target velocity should be complemented with the Doppler

information to obtain high velocity resolution. The coherent bandwidth and the total

duration of the burst are then defined by the condition that the range migration per

velocity ambiguity is large enough to select the correct velocity of the target:

vaMTr � δR. (1.6)

When the condition is satisfied, a single burst of high-resolution pulses with low PRF

can provide unambiguous measurement of the target’s range and velocity simultane-

ously, as demonstrated in e.g. [2, 7–9]. Moreover, it implies that in one burst a

fast-moving target of interest (|v0| > va) can compete with the clutter in a few adja-

cent range cells. In the HRR mode, the response of clutter is typically non-Gaussian

and may have significant fluctuations over the range interval, elapsed by the target

during the CPI. In that way, target migration provides the means to exploit clutter

diversity in one coherent pulse burst. Measured range profile of ground clutter is

presented in Fig. 1.2 in two resolution modes, showing rapid and large variation of

clutter power over range in the HRR mode.

In meter or sub-meter range resolution, provided by a wideband radar, the size of
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8 1. Introduction

a range resolution cell is small compared to target dimensions, or:

B � c

2∆R
. (1.7)

where ∆R is target range extent. Thus, the typical targets of interest become extended

in range. High resolution range response of a target provides equivalent information

about the target to multiple measurements of the target response in frequency domain

[2]. Therefore, a wideband radar can provide target diversity by observing its high

resolution range profile in one burst, as demonstrated in [10–13].

An example of the target response, observed with a low range resolution (LRR)

(δR ≈ 19 m) and with a HRR (δR ≈ 1.6 m), is demonstrated with the data record of

PARSAX radar1. An observed target is a small plane Cessna 150, approaching the

radar. Range migration of the target is clearly observed in the wideband mode, con-

trary to the narrowband case. Moreover, the target signature has fewer fluctuations in

the high-resolution mode, because of splitting the response into multiple range cells.

In fact, the reflection from the rotating propeller affects only the leading range cells

of the target in the HRR mode, while in the LRR mode it results in fluctuation of

the whole target response.

High range and velocity resolution, together with the ability to resolve velocity

ambiguity and exploit target and clutter diversity in one burst make a single burst

of high resolution pulses an attractive option for modern surveillance radars. The

properties of such a waveform, including its efficiency for clutter rejection and tar-

get detection in complex scenario, are however poorly studied in the literature. In

this thesis, that waveform is considered for application in surveillance radars and its

advantages and challenges are investigated.

1.4 Challenges and selected approach

The waveform proposed here for a wideband surveillance radar significantly differs

from the ones used in the conventional surveillance radars. The received signal is

better interpreted with the HRR models of a target and clutter, which appropriately

describe the phenomena, mentioned above. In order to benefit from the advantages

of the wideband waveform, the appropriate techniques to resolve range-velocity ambi-

guities and to extract weak targets of interest from clutter should be developed. The

proposed solution should be stable in difficult scenarios: when a few targets of interest

are present in the vicinity of each other or clutter response has rapid fluctuations in

range.

The resolution of velocity ambiguity using target migration observed in one long

burst of high-resolution pulses is a challenging problem, because the difference in the

1The detailed description of PARSAX radar is given in Appendix A
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target migration per velocity ambiguity (1.6) is often just a few range cells, depend-

ing on the waveform parameters. Testing every velocity hypothesis allows integrating

coherently the response of a point-like target in all the pulses together at the cor-

rect velocity. However, at the hypotheses a few ambiguities apart, the response is

also integrated coherently over a part of the CPI, which creates so-called ambiguous

sidelobes1. The interpretation of the coherent processing output then becomes com-

plicated due to the presence of multiple ambiguous sidelobes of the present targets and

clutter. The existing non-parametric [8, 14] techniques provide limited improvement

in suppression of ambiguous responses, while the parametric ones [9] require tuning

of some parameters to reconstruct the scene. Moreover, these techniques provide only

reconstructed target scene and do not solve the detection problem. In order to al-

leviate these limitations, novel high-resolution parametric-free spectrum estimation

algorithms, namely Iterative Adaptive Approach (IAA) [15,16] and Semi-Parametric

(sparse) Iterative Covarince-based Estimator (SPICE) [17, 18] are proposed for un-

ambiguous scene reconstruction. Then a detector, which can minimize the effect of

ambiguous sidelobes, is proposed.

The ambiguous sidelobes of the wideband waveform arise not only for target re-

sponse but also the clutter replica. The clutter response typically combines the re-

sponse of multiple objects, present in the ground patch, observed by the radar, which

can slowly move and thus have a spread spectrum. The diffuse spectrum of the clut-

ter usually limits visibility of targets with small Doppler frequency shift and thus

can affect the detection of the targets around ambiguous velocities. The degrada-

tion of target detection at the ambiguous-to-clutter velocities has been observed in

some examples, e.g. [8, 19]; however, the overall study of the impact of the clutter

spectrum on target detection with a wideband waveform is missing. The efficiency of

diffuse clutter suppression in the proposed radar mode should therefore be evaluated

for different parameters of clutter and target velocities. Such evaluation should be

done assuming some shape of clutter Doppler spectrum, e.g. the model of Billingsley

defined for vegetation clutter [20], and validated on real data records.

Target range migration during the CPI can be used to perform clutter filtering

not only in Doppler frequency, but also in range dimension. This can provide certain

benefits for detection of migrating targets against high resolution ground clutter,

which is typically non-Gaussian and whose intensity distribution function generally

has longer tail than the exponential one [21, 22]. Most distributions used to describe

spiky clutter (including Weibull, K, Student and Gaussian distributions) can be shown

in the form of the compound-Gaussian (CG) model [21–23], which provide separation

of clutter spectrum characteristics from its power probability density function (PDF).

Accounting for the clutter variation along the target range-walk and also for the target

1More details are given in Chapter 2
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response variation over its range profile should help to mitigate the low SCR zones.

In order to get these benefits, the detector providing clutter filtering in slow-time and

range simultaneously should be developed.

The applicability of the proposed approaches will be evaluated in simulations and

validated on real data records, collected with the HRR polarimetric radar system

PARSAX, available at TU Delft [24,25]. The overview of PARSAX radar is given in

Appendix A.

1.5 Outline of the thesis

The remainder of the thesis is organized as follows:

Chapter 2 describes the data model for the received signal when the coherent

bandwidth of the radar is increased. The mathematical model of a moving scatterer,

which considers possible range migration of the target within the CPI, is presented.

Target range migration is demonstrated to provide the unambiguous measurement of

its range and velocity using a single burst with HRR. The advantages and challenges

for the signal processing of wideband signals are analyzed using the ambiguity function

of a wideband burst. The provided models for clutter and targets in the HRR mode

demonstrate the benefits, which can be obtained with the use of wideband coherent

waveforms.

Chapter 3 analyzes the effect of clutter Doppler spectrum on the performance

of the wideband waveform at the ambiguous-to-clutter velocities. The influence of

the waveform parameters and clutter characteristics on moving target detection at

the ambiguous-to-clutter velocities is investigated and compared to the conventional

staggered PRF waveform. Based on this, some recommendations for waveform design

are formulated to improve target visibility against diffuse clutter in a wideband radar.

The publications related to this chapter are the following:

• N. Petrov, F. Le Chevalier, and A. Yarovoy, “Performance prediction of wide-

band unambiguous target detection in diffuse ground clutter,” in European

Radar Conference (EuRAD). IEEE, 2016, pp. 97—100 ;

• F. L. Chevalier and N. Petrov, “Diversity considerations in wideband radar

detection of migrating targets in clutter,” Science China Information Sciences,

vol. 62, no. 4, 2019.

Chapter 4 investigates the possibility to resolve velocity ambiguities and recon-

struct the observed scene in the range-velocity plane using a single burst of HRR

pulses as a sounding signal. The major challenge of the processing arises due to

strong ambiguous sidelobes in the wideband ambiguity function: thus, in presence

of ground clutter and possibly multiple targets in the data set, weak targets can
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be masked by an ambiguous sidelobe of clutter or of another target. The proposed

solution consists of applying high-resolution parametric-free spectrum estimators for

unambiguous estimation of the scene, which are demonstrated to improve rejection

of ambiguous sidelobes over the existing methods.

The publications related to this chapter are the following:

• N. Petrov and F. Le Chevalier, “Iterative adaptive approach for unambiguous

wideband radar target detection,” in European Radar Conference (EuRAD).

IEEE, 2015, pp. 45 — 48 ;

• N. Petrov and F. Le Chevalier, “Wideband spectrum estimators for unambigu-

ous target detection,” in 16th International Radar Symposium (IRS). IEEE,

2015, pp. 676—681 ;

• N. Petrov and F. Le Chevalier, “Fast implementation of iterative adaptive ap-

proach for wideband unambiguous radar detection” in 23rd European Signal

Processing Conference (EUSIPCO). IEEE, 2015, pp. 1207—1211 .

Chapter 5 considers the problem of detecting moving targets with the wideband

waveform. Due to range-migration effect, the detection is performed in the block of

adjacent range cells, in which more than one target can be present, together with

clutter. It is demonstrated that conventional radar detectors are not capable to

detect the presence of multiple targets in a data set. Two approaches to detect

multiple targets in the scene are proposed, which preserve the probability of false

alarm at the required level and minimize false detections due to ambiguous sidelobes

of the present targets. The performance of the proposed techniques is evaluated via

numerical simulations.

The publication related to this chapter is the following:

• N. Petrov, F. Le Chevalier, and A. Yarovoy, “Unambiguous detection of mi-

grating targets with wideband radar in Gaussian clutter,” in CIE International

Conference on Radar (RADAR). IEEE, 2016, pp. 1—5.

Chapter 6 considers the detection of fast moving targets at the ambiguous-to-

clutter velocities, in presence of non-homogeneous ground clutter, described by the

compound-Gaussian (CG) model. Due to target migration, fast-moving targets com-

pete with the clutter response from a few adjacent range cells during the CPI. In the

high-resolution mode, the clutter power can vary significantly in these range cells.

A detector of a range migrating target, which adapts to the clutter power variation

along its path in range, is developed. The benefits of considering clutter variation in

range for fast-moving target detection are presented and discussed.

The publications related to this chapter are the following:
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• N. Petrov, F. Le Chevalier, and A. G. Yarovoy, “Detection of range migrating

targets in compound-Gaussian clutter,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 54, no. 1, pp. 37—50, 2018;

• N. Petrov, F. Le Chevalier, N. Bogdanović, and A. Yarovoy, “Range migrating

target detection in correlated compound-Gaussian clutter,” in 25th European

Signal Processing Conference (EUSIPCO). IEEE, 2017, pp. 2216—2220 ;

• F. L. Chevalier and N. Petrov, “Diversity considerations in wideband radar

detection of migrating targets in clutter,” Science China Information Sciences,

vol. 62, no. 4, 2019.

Chapter 7 summarizes the achievements obtained in the previous chapters and

describes some open challenges, left for the future research.
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Chapter 2

Theory of wideband coherent

radars

This chapter explains the phenomena, which arise and become important if the coher-

ently processed bandwidth of the radar increases. In the first section, the response of

a moving point-like target, being observed by a wideband radar is investigated with

an emphasis on the range migration effect. It is demonstrated that with a sufficiently

large time-bandwidth product of the transmitted burst, it becomes possible to resolve

velocity ambiguities in a single low PRF mode. The advantages and challenges for

the signal processing in such a mode are analyzed with the corresponding wideband

ambiguity function. In the second section, the description of the received radar data

in a high-resolution mode is presented, with emphasis on the signature of extended

targets and clutter modeling. The provided models of targets and clutter, that will

be used throughout the text, demonstrate the benefits, which can be obtained with

the use of a wideband coherent waveform.

2.1 Signature of a moving target

2.1.1 Response of a moving scatterer

Assume a moving point-like target (scatterer) is illuminated by the wideband radar

and define the response of this target acquired by the radar, following the lines of

[8]. The wideband radar, whose processing chain is depicted in Fig. 2.1, transmits a

coherent burst of M wideband pulses in the CPI, which can be described over time

13
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Figure 2.1: Block diagram of signal processing in a wideband radar

t ∈ [0, T ] as:

stx(t) =

M−1∑
m=0

s(t−mTr)ej2πfct, (2.1)

where s(t) is the complex envelope of a single pulse defined on t ∈ [0, Tr] and m =

0 . . .M − 1 is the pulse (slow-time) index. To simplify the notations, assume that the

transmitted signal occupies frequencies f ∈ [fc, fc +B].

Assume a single point-like target is present in the angle sector, illuminated by the

radar. The transmitted signal reflects from the target and arrives back to the radar

as the scaled and delayed copy of the transmitted waveform:

srx(t) = αstx(t− τ(t)), (2.2)

where α is a complex amplitude proportional to the target radar cross section (RCS)

and propagation effects. The time delay of the received signal depends on the target

range in the beginning of CPI R0 and its radial velocity v0 as:

τ(t) =
2 (R0 − v0t)

c
= τ0 −

2v0

c
t. (2.3)

Combining (2.1), (2.2) and (2.3) together, the received signal becomes:

srx(t) = α

M−1∑
m=0

s(t−mTr − τ(t))ej2πfc(t−τ(t)). (2.4)

The received signal is down-converted to the baseband (bb) for subsequent matched

filtering and sampling. Define the fast-time as t′ = t−mTr, then the baseband signal

obeys the conventional fast-time / slow-time representation [2]:

sbb(t′,m) = αs (t′ − τ(mTr + t′)) e−j2πfcτ(mTr+t′)

= αs

(
t′ − τ0 +

2v0

c
mTr +

2v0

c
t′
)
e−j2πfc(τ0−

2v0
c mTr− 2v0

c t′).
(2.5)
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For a wideband pulse radar, the radial displacement of the target within one pulse

duration Tp ≤ Tr can be assumed negligible compared to the range resolution:

|v0Tp| � δR. However, during the whole CPI, the target can move over a radial

distance exceeding radar range resolution: v0T > δR, which is called target range

migration or range-walk. Thus, the received baseband signal can be shown as:

sbb(t′,m) ≈ αs
(
t′ − τ0 +

2v0

c
mTr

)
ej2πfc

2v0
c (mTr+t′), (2.6)

where the constant terms are (and will be) incorporated in the constant α with no

loss of generality.

Since the low PRF mode is considered, it is assumed that no range ambiguities

occur: R0 + |v0MTr| < Ra. Then, the matched filter (mf) can be applied to the

rearranged signal (2.6) pulse by pulse:

smf(t
′,m) =

∫
sbb(ξ,m)s(t′ − ξ)dξ =

∫
Sbb(f,m)S∗(f)ej2πft

′
df, (2.7)

where f denotes fast-frequency, conjugated with fast-time by Fourier transform (FT),

(·)∗ stands for the complex conjugate and Smf(f,m), Sbb(f,m), S(f) are the spec-

trum representations of smf(t
′,m), sbb(t′,m), s(t′) accordingly. The spectrum of the

received signal (2.6) is:

Sbb(f,m) =

∫
sbb(t′,m)e−j2πft

′
dt′

= αej2πfc
2v0
c mTr

∫
s

(
t′ −

(
τ0 −

2v0

c
mTr

))
ej2πfc

2v0
c t′e−j2πft

′
dt′

= αej2πfc
2v0
c mTre−j2π(f−fc 2v0

c )(τ0− 2v0
c mTr)S

(
f − fc

2v0

c

)
≈ αej2πfc

2v0
c mTre−j2πf(τ0−

2v0
c mTr)S

(
f − fc

2v0

c

)
,

(2.8)

where the term e−j2π(2v0/c)
2fcmTr for typical air and ground targets (v0 � c) can be

neglected.

Substitution of (2.8) into (2.7) and applying inverse FT over fast-frequency gives

the output of the matched filter:

smf(t
′,m) =

∫
Sbb(f,m)S∗(f)ej2πft

′
df

= αej2πfc
2v0
c mTr

∫
e−j2πf(τ0−

2v0
c mTr)S

(
f − fc

2v0

c

)
S∗ (f) ej2πft

′
df

= αej2πfc
2v0
c mTrχp

(
t′ −

(
τ0 −

2v0

c
mTr

)
, fc

2v0

c

)
,

(2.9)
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16 2. Theory of wideband coherent radars

where

χp (τ, fD) =

∫
s(t− τ)e−j2πfDts∗(t)dt =

∫
S(f − fD)ej2πfτS∗(f)df (2.10)

is the complex-valued ambiguity function of the basic pulse s(t) [2]; the degree of

ambiguity is usually measured with |χp (τ, fD)|2.

The output of the matched filter (2.9) demonstrates that the radial movement of

the target affects the received signal in three ways: first, the phase of the received

signal varies from pulse-to-pulse with the Doppler frequency fD = 2v0fc/c; second,

the target has range migration proportional to its velocity over slow-time and, third,

the response of each pulse in the burst is distorted due to Doppler shift of the returned

signal. The last factor can be diminished by selecting a Doppler-tolerant waveform

[26] as a primitive pulse s(t), which satisfies:

χp (t− τ, fD) ≈ χp (t− τ, 0) = up (t− τ) , (2.11)

and up (t) is called point spread function or impulse response of the pulse s(t).

The output of the matched filter (2.9) is sampled by the analog-to-digital converter

with the rate 1/B and becomes a function of the range cell (of fast-time index)

k′ = t′B and slow-time index m:

sft,st(k
′,m) = αej2πfDTrmup

(
k′ −

(
τ0B −

v0Tr
δR

m

))
, (2.12)

where the subscript shows that the signature is defined in fast-time (ft) / slow-time

(st) samples.

2.1.2 Interpretation of the target signature

The signature of a moving target (2.12) demonstrates a moving target has the range-

walk of v0Tr(M − 1)/δR range cells during the CPI. This effect can be neglected for

slow targets, but should be considered for processing the responses of fast moving

targets, whose range displacement during CPI is much larger than the radar range

cell. The coherent processing of these targets should be performed over the block of

K adjacent range cells, large enough to encompass the response of the target during

the whole CPI. Hereinafter, such block of range cells is called a low range resolution

segment (LRRS).

Define by k′0 = τ0B the range cell of the target at the beginning of CPI. Assume

that during the observation time the target is present in the LRRS occupying the

range cells k′ = kbeg, . . . , kbeg +K − 1, where:kbeg ≤ min
(
k′0, k

′
0 + v0MTr

δR

)
;

kbeg +K − 1 ≥ max
(
k′0, k

′
0 + v0MTr

δR

)
.

(2.13)
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2.1 Signature of a moving target 17

The number of range cells K in the LRRS is selected according to the maximum

expected velocity of a target vmax and its maximum expected range extent ∆R,max:

K ≥ |vmax|TrM + ∆R,max

δR
. (2.14)

Concentrating on the LRRS segment including the target response during CPI,

the bi-dimensional structure of the wideband target signature can be alternatively

represented after applying FT over fast-time or slow-time dimension, or after applying

both. The target signature in the four domains demonstrates the difference between

the responses of a moving target with wideband and narrowband waveforms and

defines the wideband modification of the standard Doppler processing.

To concentrate on the phase relation in the received signal, the spectrum of the

transmitted pulse is assumed to be flat within the occupied frequency band:

|S (f)|2 = const, ∀f ∈ [fc, fc +B], (2.15)

and impulse response satisfies: up(0) = 1. An example of the wideband point target

signature is depicted in Fig. 2.2. Herein the wideband radar with parameters fc = 10

GHz, B = 0.5 GHz, Tr = 1 ms, M = 64 is assumed and the target has velocity is

v0 = 45 m/s and its range at the beginning of CPI corresponds to k0 = 13.

Fast-time / slow-time signature

Concentrating on the range cells in the LRRS under test and denoting k = k′ − kbeg

and k0 = k′0 − kbeg, the received signal (2.12) can be shown as the product of the

constant term α and the target signature in the LRRS:

Tft,st(k,m) = ej2πfDTrmup

(
k −

(
k0 −

v0Tr
δR

m

))
, (2.16)

with k = 0, . . . ,K − 1.

The target signature combines the phase variation from pulse to pulse due to

Doppler frequency shift with the displacement of the impulse response of the trans-

mitted pulse along the target trajectory, which is defined in the LRRS by the line

k(m) = k0 − v0Tr
δR

m. The fast-time / slow-time signature of the moving target is

demonstrated in Fig. 2.2, a.

Fast-frequency / slow-time signature

Considering a flat spectrum of the transmitted waveform (2.15) and Doppler tolerance

of a transmitted pulse by means of S (f − fD) ≈ S (f), the target signature in the

fast-frequency / slow-time domain becomes (see derivations in Appendix B.1):

Tff,st(l,m) =
1

K
ej2πfDTrme−j2π

k0
K le

j2π
v0Tr
δRK

lm
, (2.17)
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Figure 2.2: Wideband signature of a moving target in: a - fast-time / slow-time; b - fast-time

/ normalized Doppler frequency; c - fast-frequency/ slow-time; d - fast-frequency / normalized

Doppler frequency.

where l = 0, . . . ,K − 1 is the fast-frequency index. The real part of (2.17) is demon-

strated in Fig. 2.2, c.

According to (2.17), the fast-frequency / slow-time target signature is a product of

three exponential terms. The first exponential term defines the phase variation from

pulse-to-pulse according to the Doppler frequency. The second one models the range

frequency of the target at the range cell k0. The last term is called the coupling term

due to its dependence on l and m together; it models the range migration, observed

by the wideband radar for fast targets.

Fast-frequency / Doppler frequency signature

The fast-frequency/Doppler (slow) frequency representation of the target response is

derived in Appendix B.2 and shown as:

Tff,sf(l, fd) =
M

K
e−j2π

k0
K le−j2π(fd−fD(1+ B

Kfc
l))M−1

2 Tr

· sinc

((
fd − fD

(
1 +

B

Kfc
l

))
MTr

)
,

(2.18)
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2.1 Signature of a moving target 19

where fd is unfolded Doppler frequency and sinc(x) = sin(πx)
πx . The folded Doppler fre-

quency f ′d ∈ [−Fr/2, Fr/2] can be obtained using transformation: f ′d = Frfrac
(
fd
Fr

)
,

where frac(x) = x− [x] gives frac(x) ∈ [−0.5, 0.5) and [x] is rounding towards nearest

integer operator.

This representation demonstrates the variation of the Doppler frequency in the

frequency band according to fd(l) = fD

(
1 + B

Kfc
l
)
, ∀l = 0, . . . ,K − 1. The Doppler

spectrum of the target is therefore concentrated (the main lobe of the Doppler pro-

cessing is located in) the frequency interval: fd(l) ∈
[
fD, fD

(
1 + B

fc

)]
. The fast-

frequency/slow-frequency target signature in the folded Doppler domain is depicted

in Fig. 2.2, d.

Fast-time / Doppler frequency signature

Starting from (2.18), the fast-time / Doppler frequency target signature is obtained

by applying inverse FT over fast-frequency (for details see Appendix B.3):

Tft,sf(k, fd) ≈
∣∣∣∣ δRv0Tr

∣∣∣∣Π[k0,k0− v0MTrδR
]
(k) e

j2π(fd−fD)
(

fc
BfD

(k−k0)+Tr
2

)
(2.19)

and assuming that target range-walk withing one PRI is small compared to the radar

range resolution. Here

Π[t1,t2] (t) =


1, t ∈ (t1, t2);
1
2 , (t = t1) ∨ (t = t2);

0, t /∈ [t1, t2].

(2.20)

Herein the limits of Π[t1,t2] (t) are set assuming v0 < 0 and so increasing range of the

target with time. In case v0 > 0 the limits should be flipped.

According to (2.19), the target signature in the range / Doppler domain is spread

approximately over the rectangle. The size of this rectangle in range is defined by the

target range migration in range cells during the CPI, and the spread in Doppler is

proportional to the variation of the Doppler frequency of the received signal over the

coherently processed bandwidth. The shape of the target signature in range/Doppler

domain is shown in Fig. 2.2, b

To sum up, a response of a moving target in a wideband radar experiences the

range-migration phenomenon, which can be alternatively interpreted as widening of

the target Doppler spectrum, proportionally to the target velocity and the bandwidth

of the transmitted signal. It was demonstrated that both the range cell variation of

the target during the CPI and the widening of the Doppler spectrum depends on the

actual target velocity, but not on its ambiguous measurement via Doppler frequency
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20 2. Theory of wideband coherent radars

shift, and thus can be used for discrimination of the moving targets of interest from

the quasi-stationary clutter.

2.1.3 Wideband ambiguity function

Knowing the response of the wideband burst to a moving scaterrer, the matched

filter processing for the wideband burst can be determined. The output of such

processing is characterized by the ambiguity function of the wideband pulse burst

(referred hereinafter by wideband ambiguity function):

χWB(τ0, v0) = α1

∫
srx(t; τ0, v0)s∗rx(t; 0, 0)dt. (2.21)

Here srx(t; τ0, v0) is the response of the moving target (2.2) with the target time delay

τ0 and velocity v0 of (2.3) being tackled as extra parameters; α1 is a normalization

constant, which ensures the ambiguity function property: χWB(0, 0) = 1.

Applying the transformations (2.2) - (2.16) to both signals in (2.21) and focusing

on the LRRS with the target, the wideband ambiguity function can be written as:

χWB(τ0, v0) = α1

K−1∑
k=0

M−1∑
m=0

Tft,st(k,m; τ0, v0)T ∗ft,st(k,m; 0, 0). (2.22)

Herein, the target signature in slow-time/fast-time domain (2.16) is considered. How-

ever, the other descriptions of the target signature (2.16) - (2.19) can be used to obtain

the same ambiguity function.

Let T (τ, v) be the K×M matrix, whose elements are defined by the target signa-

ture in the LRRS: Tk,m (τ, v) = Tft,st (k,m; τ, v) , ∀k = 0, . . . ,K−1,m = 0, . . . ,M−1.

The vectorization of T (τ, v) gives KM × 1 steering vector of a moving target:

a (τ, v) = vec
(
TT (τ, v)

)
. (2.23)

With these notations, the signature of a moving target in the LRRS (2.16) can

be written as: s = αa (τ0, v0). Note that the signature of a non-migrating tar-

get at the range cell k0 of the LRRS is fully described by M adjacent elements of:

a(k0−1)M,...,k0M−1 (τ, v) which is a standard one dimensional Doppler signature in

absence of range migration.

Using the steering vector notation (2.23), the wideband ambiguity function can

be obtained by:

χWB(τ0, v0) =
1

M
a (τ0, v0) aH (0, 0) . (2.24)

The examples of a narrowband (conventional Doppler processing) and of a wide-

band ambiguity function are depicted in Fig. 2.3 for a burst of M = 32 coherent
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Figure 2.3: a - Narrowband ambiguity function, B/fc = 0.001, M = 32, b - Wideband ambiguity

function, B/fc = 0.1, M = 32,

pulses with impulse response up (t) = sinc(t)e−jπt. The velocity axis is plotted in

terms of velocity ambiguities va and the range grid is normalized to the range resolu-

tion cell δR and limited to the vicinity of the target - so no range ambiguities appear.

The shape of the wideband ambiguity function in Fig. 2.3 is notably different from

the narrowband one. The narrowband ambiguity function has repetitive ambiguities

(alike grating lobes) in velocity, essential for a low-PRF pulse train. On the con-

trary, the wideband ambiguity function has one distinct main lobe, located at the

origin, and multiple responses around ambiguous velocities, called therefore ambigu-

ous sidelobes. Therefore, a burst of wideband pulses at low PRF provides a unique

possibility to measure target range and velocity unambiguously (without ambiguities)

simultaneously in one CPI.
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22 2. Theory of wideband coherent radars

The n-th ambiguous sidelobe is placed around the velocity v0 + nva, where n ∈
Z,−vmax/va ≤ n ≤ vmax/va, n 6= 0. The range spread of the sidelobe is defined by the

target range-walk at the examined velocity: thus, the n-th sidelobe spreads the energy

of the target over |n|vaMTr meters or equivalently, |n|MB/fc range cells. Similarly,

the ambiguous response is spread in velocity over |n|vaB/fc m/s, which is equal to

|n|MB/fc velocity resolution cells. Therefore, the |n|-th sidelobe is spread in both

domains over |n|MB/fc resolution elements and has the level of approximately:

SLn ≈
(

fc
|n|MB

)2

. (2.25)

Evidently, the ambiguous sidelobe at |n| = 1 is the strongest and for typical param-

eters of the burst it is between −20 to −5 dB. For example, the ambiguity function

plotted in Fig. 2.3, SL1 ≈ −10.1 dB. Such high level of the sidelobes is typically

not accepted in surveillance radars, aimed to detect weak targets in a strong clut-

ter. Typical surveillance radars require the sidelobe level of -30 dB or lower [3,6,27],

achieved with the weighting applied with range compression and Doppler processing.

Therefore, the presence of ambiguous sidelobes in the wideband ambiguity function

should be considered in processing of wideband data.

2.1.4 Effects of target acceleration and cross-range movement

The target signature (2.16) has been derived assuming constant radial movement of

the target during the CPI. However, the real targets rarely move along such an ideal

trajectory and often have moderate radial acceleration (a0) or cross-range velocity vc
during the CPI. As a result, the target range becomes non-linear function of time,

contrary to (2.3). The effect of non-linear movement can be neglected as soon as the

induced variation of the Doppler frequency does not exceed one half of the velocity

(or Doppler) resolution: δv = va/M = λc/(2T ).

The strongest echo of the target is expected to be the reflection from a non-

deformable part of the target, and the detection of the target and its parameters

estimation is performed on this signal. The signal reflected from the deformable parts

of the target (rotating blades, wheels, jets) is therefore neglected for the analysis here.

The radial acceleration of the target can be neglected with the proposed wideband

waveform as long as:

a0 <
λc

4T 2
. (2.26)

For radar operating at high carrier frequencies the condition (2.26) is rather strict:

e.g. for T = 50 ms and λc = 3 cm it becomes a0 < 3 m/s2, and might be violated by

rapidly maneuvering targets. In that case, target motion parameters can be extracted
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2.2 A model of received data 23

from the data after detection, using one of the available approximations of the target

motion [28–31]. However, target detection is usually performed ignoring possible

target acceleration, to avoid additional dimension (in addition to range and velocity)

of the target search.

To derive similar condition to the target cross-range velocity, recall that a target

observed at distance R0 during time duration MTr and moving with velocity vc
oriented perpendicular to the radar line of sight, generated the velocity spread of the

received signal over ∆v = v2
cMTr/R0. This cross-range movement can be neglected

if:

v2
c <

λcR0

4T 2
, (2.27)

which strongly depends on the range to the target. For typical parameters of the

surveillance radar (range of tens or hundreds of km and CPI less then 100 ms) the

effect of its cross-range movement is negligible.

2.2 A model of received data

The received data of a wideband radar to be analyzed is a LRRS segment under

test. It commonly contains the reflections from all the objects present in the volume,

limited by the radar beam-width and the ranges of interest, which might include

the target of interest, but also the reflections from the stationary and slowly moving

objects (as vegetation), referred to as clutter. Considering also inevitable presence of

noise, the general model of the radar data can be written as:

y =

S∑
s=1

αsa(τs, vs) + c + n, (2.28)

where c and n are vectorized versions of the clutter and noise responses in the LRRS

under test and αs,∀s = 1, . . . , S are the complex back-scattering coefficients of the

present scatterers building up a physical target, as explained shortly. To make clear

the phenomena observed by a wideband radar in presence of extended targets and

clutter in the scene, their models are briefly described here.

2.2.1 Extended targets

Surveillance radars are designed to detect and locate moving objects of interest. Typ-

ical targets of a surveillance radar are therefore planes, aircraft, small gliders, etc.

These objects have dimensions of d = 5 meters or larger, although some modern

drones can be much smaller. Most of these targets, when observed by a wideband

radar with the meter range resolution δR ≈ 1 m become extended in range. Therefore,
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a point-like model of the target, widely used for narrowband radars, is not applicable

for wideband data description anymore.

Alternatively, an extended non-deformable target can be modeled as a composi-

tion of multiple isotropic non-interacting scatterers located within the physical extent

of the target D [2, 32]. Denoting the distribution of the complex back-scattering

coefficient withing D by I(x, y, z)1, the target response can be expressed as:

s =

∫
D
I(x, y, z) a

(
2

c

√
x2 + y2 + z2, v0

)
dx dy dz. (2.29)

With no loss of generality assume that the radar is pointed along the x axis, so

x = R. Moreover, consider the case of small target cross range extent compared to

the radar cross-range resolution and write the response of an extended target as:

s =

∫
Dx

(∫
Dy,z

I(x, y, z) dy dz

)
a

(
2x

c
, v0

)
dx, (2.30)

where the inner integral denotes the cross range extent of the target at the range x.

Thus, the response of an extended target is the convolution of its projection on the

line of sight with the signature of a point like target [2].

The model (2.30) describes accurately the reflection phenomenon of extended tar-

get, but has limited applicability because of no knowledge of I(x, y, z) in practice. To

obtain a practical model, usually some assumptions about the structure of I(x, y, z)

are imposed. The most often used are the sparse structure of I(x, y, z), according to

which the target is modeled by a few point-like scatterers with various back-scattering

coefficients [32], and the statistical model, which describes I(x, y, z) as a random pro-

cess with known distribution (usually Gaussian) and correlation properties. Both

models are very general and give possibility to describe targets with different shapes

and RCS distribution in D, providing feasible models over large frequency bands

[2, 33].

The ability of a wideband coherent radar to observe physical objects as extended

targets gives it valuable advantages over the narrowband radars. As follows from

(2.30), the wideband radar can observe the variation of the target RCS in the range,

and thus provide the way to exploit target diversity within one burst. It means that

within one burst, by combining the target response from multiple range cells, the

wideband radar can decrease the probability to be trapped in the low RCS response

of the target. A narrowband radar cannot provide such information in one burst (for

typical targets) and delivers a few independent measurements of the target response

in frequency domain by shifting the carrier frequency from one burst to another.

1Scatterers location I(x, y, z) corresponds to the beginning of CPI
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2.2.2 Clutter

In a typical scenario, clutter results from the returns of ground or sea surface, clouds,

precipitation (rain, snow, hail). These returns can significantly exceed the level of the

noise, inevitable in any real system, and usually have a narrow Doppler spectrum,

concentrated around zero. However, the presence of clutter can significantly affect

the detection of moving targets of interest. Thus, clutter is essentially the limiting

factor for detection of targets with small Doppler frequency, namely the targets with

the radial velocity close to nVa, n ∈ Z.

The crucial task of the radar is to decide if the target is present in the scene, or

the returned signal contains the clutter response only. The development of a detec-

tor, which should answer this question, requires some assumptions on the statistical

model of clutter. With the LRR radars, the clutter is usually assumed to obey com-

plex multivariate Gaussian distribution, which arises by considering the number of

scatterers in the observed resolution cell to be infinitely large and therefore justified

by the central limit theorem [2,21].

When the radar resolution increases, the number of scatterers per resolution cell

cannot be assumed infinitely large anymore, which makes the application of the central

limit theorem and the following assumption on Gaussian clutter not valid anymore.

Moreover, the analysis of multiple data sets including sea and ground observations

demonstrated that the HRR clutter does not follow Gaussian model and the intensity

distribution have larger tails than the exponential distribution, which is the intensity

distribution of the Gaussian model [21, 34–37]. The physical interpretation of the

observed scattering phenomenon in HRR radar has been given in [38], where the

authors demonstrated that random but finite number of scatterers in a range cell

leads to K distribution of the observed clutter intensity, which can be obtained as a

mixture of exponential distributions [39]. Moreover, it has been demonstrated that

clutter representation by the mixture of exponential distributions is valid for a wide

class of distributions, including Weibull, K, Student and Gaussian ones [21–23]. The

extension of intensity distribution models to the multivariate models of the complex

returns led to the compound clutter models (CG process, spherically invariant random

vectors (SIRV)), which are the modern trend for high-resolution clutter modeling

and analysis [21, 22]. The compound representation of clutter allows separating its

spectrum characteristics from the power PDF, which provides useful tools for clutter

analysis and modeling.

In a general way, a complex CG vector c can be written as a product of the square

root of the positive scalar quantity τ , referred to as texture, and zero-mean complex

Gaussian vector g with unit variance, called speckle [21]. The speckle component g

models clutter spectrum characteristics and the texture defines the local power. The

texture describes the variation of the clutter power in space and time - the fluctuation
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Figure 2.4: Migrating target in a spiky clutter

in time, essential for sea clutter, being slow and usually assumed negligible within a

dwell time (or burst time of the proposed waveform) [40]. On the other hand, texture

alteration in space depends on the observed scene and radar range resolution and

thus can exhibit continuous variations of the local power in space, with the spatial

correlation interval down to a range resolution cell [40].

Most of the existing studies on CG clutter focus on a single range cells scenario,

encompassing an expected point-like target during the whole CPI (e.g. [21, 23]).

Obviously, this scenario is not adequate for the proposed waveform, which allows

target migration to be observed during CPI, and thus requires coherent processing

of a whole LRRS. The model of CG clutter in a block of range cells requires making

an assumption on the texture variations with range. The existing studies (mostly

aimed at detection of extended but non-migrating targets) are based on one of two

assumptions: either texture changes from one LRRS to another and constant within

a LRRS (completely correlated texture) [13], or it has a cell to cell variation within a

LRRS [11, 12]. For detection of range migrating targets, the first assumption has no

physical meaning since it makes clutter spatial correlation be a function of the LRRS

dimension, which, in turn, depends on the target parameters (2.14).

Then, if clutter texture variation from one range cell to another is considered, the

clutter response in the LRRS can be represented by K ×M matrix C, with

Ck,∗ =
√
τkg

T
k , ∀k = 0, . . . ,K − 1. (2.31)

Here Ck,∗ stands for the k-th row of matrix C, gk ∼ CN (0,S) is M × 1 speckle

vector and τk is the texture in the k-th range cell. Vectorization of C similarly to

the target response (2.23) gives KM × 1 vector c = vec(CT ) with elements c =

[c0, c1 . . . cKM−1]T . The clutter response in the k-th range cell is the sub-vector of

length M : ck = [ckM , . . . , c(k+1)M−1]T , so c = [cT0 , c
T
1 , . . . , c

T
K−1]T . In this setting,

high-resolution clutter can exhibit continuous variations of the local power from one

range cell to another. Accounting for such clutter power variation within the coherent

processing of a migrating target response provide a novel way to exploit clutter spatial
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diversity, as demonstrated in Fig. 2.4. Somewhat similarly, clutter range diversity is

exploited in the radar modes with high or medium PRF. There, a target at a long

distance competes with the range ambiguous response of different clutter patches in

each burst, which allows improving target detection against strong clutter nearby [1].

2.3 Conclusion

The aim of this chapter was to investigate the properties of the radar return signal

when the coherently bandwidth of the transmitted waveform is large and provide the

adequate models of a moving target and clutter for such a case. Attention has been

given to the range-migration phenomenon of moving targets, which allows resolving

velocity ambiguities in a single low PRF mode and thus obtain unambiguous esti-

mation of range and velocity in one burst. However, the ambiguity function of such

waveform has strong ambiguous sidelobes, which have to be considered in the pro-

cessing. Moreover, it was established that point-like target assumption and Gaussian

clutter model, commonly used in narrowband radars are no longer applicable for the

high resolution radars, and should be substituted with the extended target model

and compound-Gaussian clutter in the high range resolution mode. These models are

demonstrated to provide novel ways to exploit diversity on targets and clutter, which

can improve target detection in a heavy clutter scenario, as will be demonstrated in

the following chapters.
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Chapter 3

Performance prediction of

migrating target detection in

diffuse ground clutter

In this chapter the impact of clutter Doppler spectrum on wideband radar detec-

tion performance at the ambiguous-to-clutter velocities is investigated. The power

spectrum of ground clutter is modeled as the sum of diffuse and stationary compo-

nents. The exponential decay model of diffuse clutter spectrum [20] is considered to

demonstrate radar detection performance at the ambiguous-to-clutter velocities. The

analysis of the waveform parameters and clutter characteristics on target detection

performance at the ambiguous-to-clutter velocities is performed. Based on this, some

recommendations for waveform design are formulated, which aim at improvement of

moving discrimination from diffuse clutter with the wideband waveform. Numerical

analysis is validated on the real data measurements, which shows accurate prediction

of radar performance at ambiguous-to-clutter velocities using the clutter model with

a few parameters.

3.1 Introduction

The main task of surveillance radars is to detect and measure the position and mo-

tion parameters of moving targets. Radar clutter is defined as the response from the

objects, which are not of interest to the radar mission. Thus, air surveillance radars,

aimed at detecting flying objects at low altitude, such as drones, aircraft, cars, etc.

consider the reflection from ground objects and clouds as clutter [3, 27]. The perfor-

29
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30 3. Performance prediction of migrating target detection in diffuse ground clutter

mance of the surveillance radars operating at centimeter and decimeter wavelength is

essentially limited by the reflections from the ground terrain, which is called ground

or surface clutter. The reflection of the sounding signal from the stationary objects on

the ground is superimposed with the reflections from slowly moving vegetation, such as

grass, bushes, trees etc., which results in a widening of clutter Doppler spectrum and

poses additional challenges for targets detection. The spectrum of windblown ground

clutter is a limiting factor of the radar performance in a wide range of Doppler fre-

quencies. Careful modeling of the clutter spectral characteristics is an essential part

of the radar design and performance prediction.

Together with the conventional Doppler processing, modern wideband coherent

radars provide additional possibility for clutter rejection, namely, by accounting for

the range migration of the moving targets of interest. Range migration is proportional

to unambiguous velocity of the target, and therefore it does not exist for stationary or

slowly-moving scatterers of the ground surface, recognized by the surveillance radar

as clutter. The use of target range-migration for clutter rejection has been proposed

in [7, 41, 42]. The idea of that approach is to divide the signal into two delayed

bursts, possibly overlapping, and subtract the modulus of coherent processing output

of these bursts. The stationary clutter component then will be efficiently rejected,

while fast moving targets would produce the “doublet”, corresponding to the result

of the subtraction of two pulse trains. The procedure, optimized against station-

ary ground clutter, has limited performance against wind-induced fluctuation of the

clutter response.

However, the overall study on the impact of the ground clutter spectrum on target

detection at ambiguous velocities is missing. The question to be answered in this

chapter is:

• How much ground clutter can be suppressed by accounting for target range

migration during coherent processing interval?

The analysis in this chapter therefore aims at investigation of how the waveform

parameters and the clutter spectrum affect radar ability to detect targets at various

velocities, including those, where the residual ambiguous responses of clutter appear.

The analysis is based on the migrating targets model, described in Chapter 2 and

satisfying the condition of target presence in the LRRS under test (2.14).

In this chapter it is assumed that clutter can be modeled by complex Gaussian

distribution with zero mean, then it is fully characterized by its correlation prop-

erties or power spectral density (PSD). If its spectral characteristics are known, it

becomes possible to design an optimal Doppler filter for clutter rejection and, there-

fore, predict detection performance of a model target as a function of its velocity.

For the high-resolution radar clutter the assumption of Gaussian clutter model are

not applicable anymore. However, the modern models for radar clutter in the HRR
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mode allow separating clutter spectral characteristics from the PDF of its magnitude

[21]. Detection performance of a target embedded in CG clutter can be obtained by

considering jointly the impact of the clutter spectrum and magnitude distribution

[3, 21]. So, the analysis given in this chapter on the impact of clutter spectrum on

radar performance is applicable for the CG clutter as well, taking into account the

additional factors due to deviation of the clutter PDF from Gaussian.

Clutter spectrum modeling has been of interest for radar designers for decades,

since detection of moving targets in a system with high dynamic range and low noise

floor is essentially clutter limited. The early attempts to fit experimental data with

parametric models led to adaptation of the power-law [43] and Gaussian [44] PSDs

of the ground clutter. These models were supported by the experimental data of

the early radars with low dynamic range, with 35-40 dB clutter peak to noise level.

However, they have been found not representative for the clutter recorded by an

equipment with a high dynamic range [20]. An extensive analysis of the measured data

in different frequency bands led to validation of the exponentially decay clutter power

spectrum [20,45,46]. Later, the model has been verified theoretically assuming multi-

scale model of the windblown vegetation [47]. The parameters of the windblown radar

ground clutter were demonstrated to be a function of the wind-speed and radar carrier

frequency; the empirical equations for clutter PSD prediction have been derived [20].

Moreover, it was observed that apart from the diffuse clutter component, discussed

above, a steady component is present in the ground clutter, which results in a direct

current (DC) term of the clutter spetrum. The ratio of the DC to diffuse clutter has

been also derived empirically for vegetation patches of clutter [20].

In what follows the effect of clutter power spectrum on unambiguous target detec-

tion with wideband radar is analyzed. To do that, the model of clutter is introduced

in Section 3.2 and the metrics describing radar performance degradation due to the

presence of clutter are given in Section 3.3. Comparative analysis of performance

degradation due to the presence of clutter for the wideband and the conventional nar-

rowband waveform is presented in Section 3.4. The analysis of real data, performed in

Section 3.5, validates the predicted performance degradation of the wideband wave-

form in the clutter-limited scenario.

3.2 Clutter model

3.2.1 Scenario

The measurement scenario is depicted in Fig. 3.1. Here R0 defines the distance to

the clutter patch, ψ defines grazing angle and θ3a is the azimuth beam width of the
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Figure 3.1: Ground area illuminated by a surveillance radar in the pulse limited case

radar antenna. The area of the ground patch, observed by the radar for small θ3a, is:

A ≈ R0θ3aδRsec(ψ), (3.1)

where δR is the radar range resolution, denoted in Fig. 3.1 by δR,WB and δR,NB for

the wideband and the narrowband radar accordingly. In both configurations of the

radar, the ground patch is limited by the radar range resolution; the case, in which

the radar path is limited by the antenna beamwidth in elevation is not considered

here [3, 27].

Clutter response in a range cell arises as a coherent summation of multiple primi-

tive scatterers and therefore modeled by a random process, whose PDF and spectral

characteristics depend on the radar parameters and observed scene. When the ob-

served ground patch is large, central limit theorem gives rise to the Gaussian model

of clutter, which is fully characterized by its power and correlation properties. The

power of clutter response can be obtained from the radar equation in the form:

σ2
c = C0σ̃0A, (3.2)

where C0 is the constant including all the parameters in the radar equation, except of

target RCS. The observed ground surface is characterized by the radar RCS per unit

area σ̃0. The observed ground patch therefore has RCS σ̃ = σ̃0A. The value of σ̃0

depends on the radar carrier frequency, terrain type and grazing angle of the terrain;

typical levels σ̃0 can be found in various textbooks, e.g. [1].

The further analysis in this chapter compares the performance of the narrowband

and wideband radars in the clutter-limited scenario. For this analysis, it is assumed

that both radars have equal parameters, except for the range resolution (or band-

width), for which it is assumed that δNB
R = FδWB

R . Thus, the term C0 is the same for

the two radars under consideration. According to the definition of the RCS per unit
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area (3.2) and definition of the clutter patch (3.1), the clutter power per range cell in

the wideband radar is F times less of that in the narrowband radar. The reduction

of the clutter level per range cell can therefore be exploited to improve detection of

target, hidden in clutter.

In this chapter, the clutter in the range cell is modeled by a complex Gaussian

random process. This model is verified in the low-resolution radars by the central limit

theorem, assuming that the number of primitive scatterers in the observed ground

patch is large. The response of clutter in the range cell i is given by zero-mean

complex Gaussian random vector ci ∼ CN
(
0M , σ

2
cS
)
, where σ2

c is defined by (3.2),

M is the number of coherently processed pulses in the burst. The normalized clutter

covariance matrix (CM) S defines temporary correlation properties of the clutter.

3.2.2 Clutter spectrum

Clutter power spectral density in each range is assumed to have normalized PSD

including stationary and diffuse terms [20,45]:

Pcl(fd) =
r

r + 1
δ(fd) +

1

r + 1
Pac(fd), (3.3)

where fd if the Doppler frequency in Hz −Fr/2 < fd < Fr/2, Fr = 1/Tr, δ(·) is the

delta function and r is the ratio between powers of stationary and diffuse components

of the clutter. The normalization is applied such that:
∫ Fr/2

−Fr/2
Pcl(fd)dfd = 1. The

diffuse component has exponential decay PSD:

Pac(fd) =
βλc
4

exp

(
−βλc

2
|fd|
)

(3.4)

with the shape parameter β, depending on wind speed; λc = c/fc is the wavelength

at the radar carrier frequency.

The normalized clutter correlation function can be defined via FT of (3.3) and

can be expressed:

rst(τ) =
r

1 + r
+

1

1 + r

(βλc)2

(βλc)2 + (4πτ)2
, (3.5)

where τ is the time argument. Modeling of the Doppler spectrum of the received

signal is then performed over the slow-time dimension. The slow-time clutter CM S

is a Toeplitz matrix defined by its first column sm = rst(mTr), m = 0 . . .M − 1.

The real clutter can be rarely described by the diffuse or coherent clutter compo-

nent only. Typically the ratio r lies between 0 and +∞. For a high resolution radar,

providing meter or even sub-meter range resolution, the clutter is expected to be less

diffuse, so it is expected to have higher values of r. In the limiting case with r → +∞,
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clutter is modeled by a set of discrete scatterers with zero velocity e.g. [28,48]. That

allows to significantly simplify the model with the price of worse data representation,

especially for the ground patches with vegetation.

For the wideband waveform analysis clutter spatial correlation in a LRRS is mod-

eled by the Toeplitz CM D with its first column dk = exp (−γk) , k = 0 . . .K−1. The

value γ = +∞ corresponds to uncorrelated over range clutter and γ = 0 corresponds

to fully correlated over range clutter.

3.3 Performance metrics

The performance of the receiver is generally characterized by the detection charac-

teristics of the corresponding detection algorithm. The detector can have different

forms, depending on the assumed clutter characteristics and the target fluctuation

model, commonly described by the Swerling models [1]. Nevertheless, the detec-

tion performance of any detector is known to be non-decreasing function of the target

signal-to-noise ratio (SNR) in the noise-limited case, or of the target signal-to-clutter-

plus-noise ratio (SCNR) in case of clutter-limited scenario [49].

By the above, a possible approach to evaluate the influence of clutter presence in

the scene on radar performance is to evaluate the expected target SCNR at the output

of the clutter rejection filter and compare it to the filter output in the noise-limited

scenario. This metric is called SCNR loss due to the presence of clutter [27]. The noise

limited performance is considered as the benchmark for the given radar parameters.

Alternatively, improvement factor of the Doppler filters or its inverse can be used

as in [45, 48]. The improvement factor is defined as the ratio of the SCNR at the

output of the Doppler processing (application to a migrating target would consider

the output of the velocity-based coherent integration) to the SCNR at a single pulse

. Both metrics are closely related and often used in the literature together [27]. For

the analysis here SCNR loss is considered.

The coherently processed signal in the noise limited scenario for both systems is

modeled by vector y = αa + n, where n is the thermal noise vector, a is the target

signature, such that aHa = M , α is the complex amplitude, proportional to the target

RCS. In the clutter-plus-noise limited scenario y = αa + c + n, where c is the vector

of clutter.

3.3.1 Wideband waveform

The data of the wideband radar is modeled in the LRRS under test composed of

K adjacent range cells, satisfying the constraint (2.14). The noise is modeled by

KM × 1 zero mean white Gaussian vector with the noise power σ2
n, so E{nnH} =

σ2
nIKM . Similarly, the clutter is modeled by KM × 1 zero mean Gaussian vector
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with the normalized CM Q = D⊗S, which comprises temporal and spatial CM. The

normalization of Q is such that Qi,i = 1,∀i = 1, . . . ,KM . Clutter power is modeled

by setting σ2
c and thus E{ccH} = σ2

cQ.

For the single burst the optimal radar detector is implemented by the whitening

matched filter w, which depends on the clutter parameters. Consider the performance

metrics of the noise limited scenario and clutter-plus-noise limited scenario. In the

noise limited scenario, the detection performance is a function of the target SNR at

the output of the matched filter wn = C0a, where C0 6= 0 is an arbitrary scale factor:

SNR =

∣∣wH
n αa

∣∣2
wH

n (σ2
nI) wn

=
|α|2

σ2
n

aHa =
M |α|2

σ2
n

. (3.6)

In the clutter limited scenario, the detection performance is a function of the

SCNR at the output of the whitening filter wcn = k0(σ2
nI + σ2

cQ)−1a, defined as:

SCNR =

∣∣wH
cnαa

∣∣2
wH

cn (σ2
nI + σ2

cQ) wcn
= |α|2 aH

(
σ2

nI + σ2
cQ
)−1

a

=
|α|2

σ2
n

aH
(

I +
σ2

c

σ2
n

Q

)−1

a,

(3.7)

where σ2
c/σ

2
n is the clutter-to-noise ratio (CNR). Clearly, the SCNR is bounded from

above by the SNR and depends on the target signature a, CNR and clutter corre-

lation properties via Q. Referring to the target model, it is easy to observe that in

homogeneous Gaussian clutter SCNR does not depend on the range position of the

target. But, similarly to non-migrating target detection, it depends on target velocity.

Consequently, the analysis below focuses on the velocity-dependent factors imposed

by the presence of clutter. The SCNR can be seen as a product of the signal SNR

in a singe pulse |α|2 /σ2
n and the normalized response of the clutter rejection filter to

the target signature at velocity v:

F (v) = aH(v)

(
I +

σ2
c

σ2
n

Q

)−1

a(v). (3.8)

The performance degradation due to clutter presence in the scene can be charac-

terized by SCNR loss factor, which is defined as the ratio of SCNR in clutter limited

scenario to SNR in the noise limited case:

L(v) =
SCNR(v)

SNR(v)
=

aH(v)
(
I +

σ2
c

σ2
n
Q
)−1

a(v)

aH(v)I−1a(v)
=

1

M
aH(v)

(
I +

σ2
c

σ2
n

Q

)−1

a(v).

(3.9)
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3.3.2 Narrowband waveform

The reference radar is assumed narrowband, which implies negligible range-walk

within each coherent burst and small target range extent compared to the range

resolution. Herein the staggered PRF waveform with Ns = 4 staggered PRFs is

considered [1]. The staggered ratio is 11 : 16 : 13 : 17; it gives velocity unfolding

factor nav = 14.25. The staggered PRIs are therefore Tnr |n=1,...,4 = { 11
nav

: 16
nav

: 13
nav

:
17
nav
}Tr, where Tr is the average PRI on the staggered waveform, equal to the single

PRI employed in the wideband radar.

The received signal of the narrowband signal is obtained in a single range cell

containing the target, over Ns bursts, which are processed jointly for ambiguities

removal. It is assumed that the received signal is processed coherently in each burst

an then an “extractor” combines the obtained detections for ambiguity removal. This

“extractor” is usually implemented as the “K out of N” rule, applied to the detections

in each burst. The performance of the staggered PRF waveform against clutter can

be characterized by the average over bursts response of the clutter rejection filter to

the target signature:

Fstag(v) =
1

Ns

Ns∑
n=1

Fn(v) =
1

Ns

Ns∑
n=1

aHn (v)

(
I +

σ2
cl

σ2
n

Sn

)−1

an(v), (3.10)

where the steering vector of the target in each burst is modeled by an(v) =

exp(j2πfD(v)Tnr m), m = 0 . . .Ms − 1, where fD = 2vfc/c is the Doppler frequency

of the target and Ms is the number of coherently processed pulses in each PRF. The

total number of transmitted pulses is therefore M̃ = MsNs. Accordingly, the normal-

ized slow-time CM in each burst Sn is the Toeplitz matrix, defined by its first column

sm = rst(mT
n
r ), see (3.5). Note that the clutter power observed per range cell with

the narrowband radar is:

σ2
cl =

δNB
R

δWB
R

σ2
c , (3.11)

which accounts for the different range resolutions of the systems.

The average gain of the target response at the output of the clutter rejection filter

(3.10) relates SNR at the output of the Doppler filters to target SNR in one pulse.

This metric can be used to define the probability of target detection in each burst

and the overall system performance.

For the staggered-PRF waveform the SCNR loss is defined as the average loss in

the bursts:

Lstag(v) =
1

Ns

Ns∑
n=1

Ln(v) =
1

NsMs

Ns∑
n=1

aHn (v)

(
I +

σ2
cl

σ2
n

Sn

)−1

an(v), (3.12)

which estimates the degradation of system because of the clutter presence in the scene.



i
i

“”Thesis Nikita Petrov”” — 2019/6/7 — 11:54 — page 37 — #51 i
i

i
i

i
i

3.4 Simulations 37

Table 3.1: Parameters of considered wideband and narrowband waveforms

Parameters Narrowband waveform Wideband waveform

Carrier frequency fc 10 GHz 10 GHz

Bandwidth B 5 MHz 500 MHz

PRI Tr 1 ms 1 ms

Ambiguous velocity va 15 m/s 15 m/s

Pulses (in all bursts) M,M̃ 64 64

3.4 Simulations

The ability of the radar to detect moving target in presence of ground clutter is

compared for two systems:

• Narrowband radar using staggered-PRF waveform;

• A wideband coherent radar operating in a single low-PRF mode.

The noise levels of both radars under consideration are assumed equal, and the clutter

power is proportional to the radar range resolution (3.11). The parameters of the

wideband and the narrowband radars are listed in Table 3.1. Higher range resolution

of the wideband waveform results in 20 dB lower clutter level of the wideband signal

compared to the narrowband one. This difference is accounted in all the simulations

of this section.

According to the parameters listed in Table 3.1, the maximum unambiguous veloc-

ity of the staggered waveform is vmax = 14.25va = 213.75 m/s. To coherently process

the migrating target at vmax, the wideband signal should be coherently integrated

over K = 48 range cells, as defined by (2.14). The unambiguous range of the wide-

band waveform is cTr/2 = 150 km; the narrowband waveform provides unambiguous

target detection up to the range, defined by the shortest PRI: cTmin
r /2 ≈ 115 km.

The analysis below evaluates first the impact of the diffuse and coherent clutter

components on the system separately, and then the performance in presence of both

components is analyzed. Due to the mirror symmetry of the clutter power spectrum

and the filter responses of both processing schemes, only the positive velocities are

considered.

3.4.1 Diffuse clutter component

Assume r = 0 and therefore clutter is represented by the diffuse component only (3.5).

The responses of the narrowband and the wideband clutter filters as the function of

expected target velocity are shown in Fig. 3.2. In the demonstrated scenario β = 8,

which is a typical value of clutter shape parameter for breezy air [20,45]. The scenario
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Figure 3.2: Velocity response curve in clutter with β = 8: a - narrowband (staggered PRF) waveform,

CNR = 50 dB; b - wideband (single-low PRF) waveform, CNR = 30 dB.

with strong clutter is considered, in which the wideband waveform provides CNR =

30 dB and the narrowband one yields CNR = 50 dB. For the wideband scenario,

clutter is assumed non-correlated in range, γ = +∞.

The comparison demonstrates that in presence of strong clutter, the staggered

PRF waveform with the appropriate clutter filter provides more uniform response

over the velocities below vmax. At the same time, the wideband waveform provides

about 6 dB better gain for the clutter-free velocities due to longer CPI. Moreover,

the wideband processing provides overall better result for high-speed targets (above

v0 > 4va ≈ 60 m/s for the given clutter and radar parameters).

The curves in Fig. 3.2 demonstrate the response of the clutter filter for all possi-

ble velocities. To obtain a compact representation of the radar performance around
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Figure 3.3: Maximum SCNR loss vs velocity ambiguity for different clutter shape: a - narrowband

waveform, CNR = 50 dB; b - wideband waveform, CNR = 30 dB .
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Figure 3.4: Maximum SCNR loss vs velocity ambiguity for different CNR, β = 8: a - narrowband

waveform; b - wideband waveform.

ambiguous velocities, the maximum SCNR loss for every velocity ambiguity index is

evaluated:

Lmax(na) = min(L(v)), v ∈ (na − 0.5)va . . . (na + 0.5)va. (3.13)

The maximum SCNR loss vs velocity ambiguity number for the wideband and the

narrowband waveform is shown in Fig. 3.3 for three forms of the clutter spectrum

shape: β = {4.8, 8, 12}. These values of β are referred in [45] as the typical values for

the gale force, breezy and light air conditions accordingly. CNR for both waveforms

is the same as was used in the previous simulation. Simulation results shown in

Fig. 3.3 demonstrate that performance of the wideband waveform is sensitive to

the shape of the clutter spectrum, especially at the first clutter ambiguities. For

the high velocities this dependency diminishes and the wideband processing provides

lower SCNR loss than the narrowband radar. Widening of the clutter spectrum also

reduces the performance of the staggered PRF waveform, albeit uniformly for all

ambiguities by a few dBs.

Fig. 3.4 represents the maximum SCNR loss at the velocity ambiguities for dif-

ferent values of the CNR. Clutter spectrum shape is β = 8 is considered, which
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Figure 3.5: Maximum SCNR loss of the wideband waveform vs clutter spatial correlation, β = 8,

CNR = 30 dB

0 2 4 6 8 10 12 14
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Ambiguity number

M
ax

 S
C

N
R

 lo
ss

Max SCNR loss vs velocity ambiguity, CNR=30 dB, M = 64

B/fc =0.01

B/fc =0.025
B/fc =0.05

B/fc =0.1

a

0 2 4 6 8 10 12 14
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Ambiguity number

M
ax

 S
C

N
R

 lo
ss

Max SCNR loss vs velocity ambiguity, CNR=30 dB, B/f0 = 0.05

M =16
M =32
M =64
M =96

b

Figure 3.6: Maximum SCNR loss of the wideband waveform vs velocity ambiguity, β = 8: a - as the

function of the coherent bandwidth, M = 64; b - as the function of pulses in CPI, B = 500 MHz.

corresponds to breezy wind conditions. The SCNR loss of the wideband waveform

significantly depends on the CNR at least at the few first velocity ambiguities and

diminishes for high speeds. Note, that due to exponentially decay shape of the clut-

ter spectrum, the increase of CNR also widens the Doppler frequency domain, where

target detection is clutter limited, rather than noise limited. That is why the curves

in Fig. 3.3 and Fig. 3.4 have similar shapes.

Last, the influence of clutter spatial correlation on SCNR loss of the wideband

waveform is analyzed. Simulation results, demonstrated in Fig. 3.5, show that clutter

spatial correlation has minor impact on the SCNR loss.

Appendix C proves that the bandwidth determines the efficiency of the clutter

suppression with the wideband waveform. The numerical analysis in Fig. 3.6, a ver-

ifies this conclusion for CNR = 30 dB and breezy wind conditions β = 8. In fact,

the wideband waveform with 10% bandwidth (B = 1 GHz) has significant SCNR loss

only at the first ambiguous to clutter velocity at breezy wind conditions. The detec-

tion performance at higher velocities is superior to the low resolution staggered PRF

waveform, when the extra 6 dB gain of longer coherent processing of the wideband

waveform is considered. The plot for 1% bandwidth demonstrates non-applicability

of clutter suppression by migration when the displacement of the target at ambiguous
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Figure 3.7: Maximum SCNR loss vs velocity ambiguity for different CNR of discrete clutter: a -

narrowband waveform; b - wideband waveform.

velocity during CPI is small compared radar range resolution (for B/fc = 0.01, range

migration if vaMTr
δR

= BM
fc

= 0.64 range cells per ambiguity).

The effect of the number of coherently integrated pulses in the wideband burst on

the ability to suppress clutter is investigated in Fig. 3.6, b. The number of pulses in

the burst merely affects the detection performance of targets at ambiguous to clutter

velocities in Gaussian clutter. The results agrees well with the conclusion given in

Appendix C with the small deviation for M = 16, which is the result of poor Doppler

resolution in the latter case.

To sum up, the ability of the wideband radar to perform unambiguous detection

in diffuse ground clutter strongly depends on the clutter spectral characteristics. Fast

radial movement of the target and large coherent bandwidth spreads the Doppler

spectrum of the target (before migration compensation), and therefore improve clut-

ter ambiguities suppression. The performance of clutter suppression using target

migration is highly efficient against clutter with narrow Doppler spectrum, but has

limited improvement against clutter with wide Doppler spectrum. To improve the

preference of the wideband coherent radar against clutter, the waveform with the

maximum available bandwidth should be employed.

3.4.2 Discrete clutter component

Assume only discrete clutter component is present, so r → +∞. Clutter distribution

is then fully characterized by the CNR and spatial correlation. The analysis, given in

Fig. 3.7 shows that DC component has no impact on detection performance at blind

velocities for both waveforms, even for large CNR.

Efficient suppression of the DC clutter component is preserved for wide values of

the radar parameters M and B, as demonstrated in Fig. 3.8, given non-negligible

range-walk of the target exists at the ambiguous velocities. That also explains the

efficiency of the migrating target indicator (MiTI) [41,42] and similar approaches [7],
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Figure 3.8: Maximum SCNR loss of the wideband waveform vs velocity ambiguity in discrete clutter:

a - as the function of the bandwidth, M = 64; b - as the function of pulses in CPI, B = 500 MHz.
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Figure 3.9: Maximum SCNR loss of the wideband waveform vs velocity ambiguity for different power

ratio of stationary to diffuse components

demonstrated by simulations with the clutter modeled by discrete scatterers.

3.4.3 Two component clutter spectrum

The analysis above shows that the diffuse and discrete clutter components affects the

ability to detect moving targets with wideband waveform in a different manner. Thus,

in presence of two component clutter, the power ratio of two components plays an

important role. The analysis of the influence of the parameter r on the SCNR loss of

the wideband waveform is studied for CNR = 30 dB and β = 8. Simulation results are

presented in Fig. 3.9. For r � 1, the behavior reminds that of the diffuse clutter case

only, while for r � 1 a significant improvement at the first few ambiguous velocities

is observed. For the fixed clutter power, increment of r results in the reduction of the

diffuse clutter power and the clutter Doppler spread, which are the limiting factors

for unambiguous targets detection with the wideband waveform.

An empirical expression for the ratio r at moderate to LRR (15, 36, 150 m) has

been obtained from the analysis of multiple data sets, recorded in different frequency
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Figure 3.10: Maximum SCNR loss vs velocity ambiguity for different wind speed: a - narrowband

waveform, CNR = 50 dB; b - wideband waveform, CNR = 30 dB; c - narrowband waveform, CNR

= 35 dB; d - wideband waveform, CNR = 15 dB.

bands at MIT Lincoln Laboratory (LL)[20]:

10 log10(r) = −15.5 log 10(w)− 12.1 log10(fc/106) + 63.2, (3.14)

where w is the wind speed in mi/h1. This expression, being supplemented with

another empirical formula for the clutter shape parameter [20]:

β−1 =
(
log10(w)− log10(2/31.5)

)
(20 log10(3))

−1
, (3.15)

allows to predict performance of both wavforms in presence of ground clutter as the

function of wind speed and CNR. With the use of (3.15) it can be seen that the values

of β = 4.8, 8, 12 corresponds to the wind speeds w = 37.4, 6, 2.4 mi/h accordingly.

For the simulation analysis it is assumed that the ratio r of (3.14) is equal for

the wideband and the narrowband waveform. The performance prediction in various

wind conditions is shown in Fig. 3.10. There plots a and b correspond to the high

CNR = 50 dB and 30 dB for the narrowband and wideband waveform accordingly;

the plots c and d shows the performance for CNR = 35 dB and 15 dB respectively.

1In this chapter the wind speed is given in mi/h to follow the model used in the literature, 1

mi/h ≈ 0.45 m/s
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The variation of the wind speed has significant impact on the wideband waveform

performance and minor on the multi-burst narrowband waveform. When the wind

speed is less than 5 mi/h, a target at any velocity can be detected by the wideband

waveform with minor losses, the clutter model is close to the set of discrete scatterers.

To sum up, the wideband low-PRF waveform allows unambiguous detection of

moving targets in ground clutter, but its performance significantly depends on the

wind conditions. Thus, in windy conditions, the detection of moving targets at the

first blind velocities can be significantly degraded by the clutter ambiguities. The

wider the Doppler spectrum of ground clutter and the higher its CNR, the more

loss occurs at the ambiguous-to-clutter velocities. In light wind conditions (w < 7

mi/h), detection loss due to presence of clutter is low, and detection with wideband

waveform is preferred due to better range and velocity resolution it provides, and the

higher gain as a result of longer CPI. The same holds for target detection in urban

environment, when the clutter is dominated by the steady state man-made objects.

3.5 Analysis of recorded ground clutter: a case study

In this section, the clutter data recorded with the PARSAX1 radar on 2 November

2016 is analyzed for possibility of clutter rejection by exploiting target range migra-

tion. PARSAX was set to single polarization (VV) high resolution mode, with the

sounding chirps of B = 95 MHz (δR = 1.58 m), which occupies frequency from 3.265

GHz to 3.365 GHz. The PRI is Tr = 1 ms. The received data is provided after range

compression in fast-time (range cell) / slow-time format. Range compression is per-

formed with Hamming window for range sidelobe reduction. The radar was pointed

to azimuth angle 177.04 deg and elevation angle -1.9 deg. The data set consist of 3

data files, recorded within 5 minutes on the same illumination area, but with different

attenuation of the transmitted power: 20 dB, 10 dB and 0 dB. From each record 20480

slow-time samples were taken for data analysis, which corresponds to ≈ 20 sec time

interval. An additional file has been recorded with turned off transmitter and used

for thermal noise estimation. The estimated noise power has been used to normalize

the data in the clutter records such that the noise floor is at 0 dB.

The illumination area, represented in Fig. 6.1 is a man-made park to the south

of Delft. The data from range cells 1590 . . . 1639 recorded with 10 dB attenuation is

shown in Fig. 3.11. It represents a line of trees around the range cell 1600 and a

block of trees at the range cells 1615 . . . 1630, separated by grass fields. At the time of

experiment, the trees still had their leaves and the grass was still present in the fields.

The meteorological station, placed next to radar (on the rooftop of EWI building),

1The detailed description of PARSAX radar is provided in Appendix A
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Figure 3.11: Power map of the analyzed clutter data

measured the wind speed equal to 5.8, 6.3 and 6.3 m/s accordingly for the data with

attenuation 20 dB, 10 dB and 0 dB accordingly (the meteorological station provides

1 measurements per min). The average wind speed 6.1m/s ≈ 13.7mi/h gives β ≈ 6.2,

which corresponds to breezy air condition.

Since the observed clutter has significant power variation and does not satisfy

the Gaussian assumption, the analysis below is performed as follows: first, clutter

spectrum is estimated from a single range cell. Here the range cells 1618 is selected as

a representative range cell for trees clutter (the analysis in the other range cells with

trees provides similar results). Second, clutter CM in one range cell is estimated from

the time shifted data in the selected range cell and used for SCNR loss estimation using

sample covariance matrix (SCM) of the data. Alternatively, the clutter parameters

β, r, σ2
c are estimated from the data in the range cell under test, assuming γ → +∞,

and plugged in the clutter model to obtain model-based prediction of SCNR loss.

The alignment of the SCNR loss estimation by two approaches demonstrates how

reliable is the clutter model for the considered scenario and how accurately clutter

suppression using target migration can be predicted.

To estimate the parameters of the clutter model, sliding window of length

M1 = 2048 is applied to N = 20480 slow-time samples to form N −M1 + 1 data

“snapshots” for clutter auto-correlation estimation over slow-time, normalized such

that ŝ0 = 1. Then clutter shape parameters θ = {β, r} of (3.5) are estimated from this

normalized auto-correlation function with non-linear least squares (NLLS) method,
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Figure 3.12: Estimated and fitted with the model correlation of the clutter, recorded with attenua-

tion: a - 20 dB; b - 10 dB; c - 0 dB.
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Figure 3.13: Estimated and fitted with the model PSD of the clutter, recorded with attenuation: a

- 20 dB; b - 10 dB; c - 0 dB.

Table 3.2: Estimated parameters of the measured data

File name Att.
Meas. wind

speed, m/s
β

Est.

CNR, dB
Est. β Est. r

VV 20161102093629 0 6.3 6.1 35.1 86 0.41

VV 20161102093528 10 6.3 6.1 24.6 89 0.9

VV 20161102093408 20 5.8 6.2 15.2 43 0.31

which minimizes the following function:

θNLLS = arg min
θ
‖ŝ− s(θ)‖22 . (3.16)

Last, to fully specify the model, the CNR is evaluated by solving CNR = σ2
c/σ

2
n =

σ2
c+n/σ

2
n − 1, where σ2

c+n is the estimated variance of the data under consideration

and σ2
n = 1 since the data has been preliminary normalized by the measured noise

floor. Measured and fitted with the model correlation functions of the clutter are

shown in Fig. 3.12.

Fitting of the clutter autocorrelation allows better estimation of the DC clutter

component compared to the estimation of model parameters from the data PSD

[20, 45]. The quality of the model fit is evaluated by comparison of the estimated
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Figure 3.14: SCNR loss vs clutter velocity (left) and max SCNR loss vs clutter ambiguity number:

a - 20 dB attenuation; b - 10 dB attenuation; c - 0 dB attenuation.

PSD to the fitted by the model in Fig. 3.13 (zoomed over Doppler axis). The PSD of

the data was estimated with the Welch periodogram method from 10 subsets of non-

overlapping data of length M1. Four-sample Blackmann-Harris window was applied

to each subset of the data. The final spectrum estimation is the average of 10 obtained

spectrum estimates. The proposed approach of model parameters estimation tends to

underestimate clutter decay, but keeps reasonable values of the DC component. The

estimated parameters of the data are listed in Table 3.2.

The estimated and model-based CM of clutter allow to evaluate prediction of the

SCNR loss at the ambiguous to clutter velocities by the SCNR loss curves, considered

above. The performance of targets detection at ambiguous to clutter velocities is

evaluated for M = 128, which gives about 4 range cell migration per ambiguity.
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Clutter CM is estimated from the range cell under investigation from N−M1 +1 data

“snapshots”, taken from the data over slow-time with the data lag of 1 PRI between

them. The estimated SCNR loss is then calculated for different target velocities by

(3.9). For the model-based performance prediction, the estimated parameters of the

clutter (CNR, β, r) are substituted in the clutter model to build CM Q. In both cases

homogeneous and uncorrelated over range clutter was considered, so γ = +∞. The

SCNR plots vs target velocity and the maximum SCNR loss vs ambiguity number

are given in Fig. 3.14 for three values of CNR, mentioned in Table 3.2.

The results show that model-based approach allows accurate SCNR loss prediction

at the ambiguous to clutter velocities. Moreover, the processing of real data shows

that exploiting target migration allows sufficient clutter suppression for simultaneous

detection of fast and slow (due to high Doppler resolution) moving targets. For the

CNR values between 15 and 35 dB, the maximum loss at the ex-blind velocities does

not exceed 10 dB at moderate weather conditions. Some mismatch between model-

based and estimated SCNR loss is observed at the record with 10 dB attenuation. The

PSD of the clutter in this record is noticeably asymmetrical around zero velocity and

has similar shape around ambiguous velocities. In this case, the performance predicted

with the model is too optimistic, since the model does not take into account these

high frequency component of the clutter spectrum. The maximal error of predicted

performance is about 6 dB at the first ambiguous velocity of the clutter. In the other

data records, the model fits the data much better and the loss, predicted with the

model, diverges from the estimated one by 3 dB at most.

Note from the results in Table 3.2 that fitting high resolution data with the model

gives much larger values of β, and therefore faster clutter decay, than the prediction

(3.15) provides for the measured wind speed. That can be due to smaller diffuse

clutter component obtained by the HRR of the radar. Also this can be the result

of different wind speed with the altitude: the radar and meteorological station are

placed about 100 m higher then the trees are.

Similar performance prediction has been found in other range cells containing

trees. Therefore, it can be stated that detection performance at the ambiguous to

clutter velocities depends on the diffuse clutter parameters. With that parameters

estimated from the data, the optimal filter for clutter suppression can be designed

and the ability to detect moving targets at the ambiguous to clutter velocities can be

accurately predicted.

3.6 Conclusion

In this chapter the effect of clutter Doppler spectrum on radar detection at ambiguous-

to-clutter velocities is analyzed. It has been shown that radar detection degradation
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at ambiguous-to-clutter velocities is due to diffuse clutter component, which is usually

generated by slow movement of vegetation in the observed scene. The reflection from

the stationary objects has negligible impact on unambiguous target detection. The

improvement against diffuse clutter depends on the coherently processed bandwidth

of the sounding signal, but not on its time duration. Therefore, for better moving

target separation from clutter, a burst of wideband pulses with maximum available

bandwidth should be employed. Analysis of real data records shows good fitness of the

estimated loss due to presence of clutter with the one predicted with the model. The

model, being a function of CNR and wind speed, can be used for accurate prediction

of targets SCNR at ambiguous to clutter velocities. In the presented analysis of

recorded data, the loss at ambiguous to clutter velocities because of clutter presence

does not exceed 10 dB, which shows great opportunities for unambiguous moving

target detection in ground clutter with single low-PRF wideband waveform.
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Chapter 4

Resolving velocity ambiguities

with the wideband coherent

waveform

The ambiguity function of the wideband waveform demonstrates the ability to mea-

sure target range and velocity unambiguously in a single long CPI burst with low-PRF.

However, in presence of ground clutter and possibly multiple targets in the data set,

weak targets can be masked by an ambiguous sidelobe of clutter or of another target.

In this chapter, the problem of unambiguous estimation of the observed scene in the

range-velocity plane is investigated. The existing techniques are discussed and their

limitations are highlighted. High-resolution parametric-free spectrum estimators —

Iterative Adaptive Approach (IAA) and Semi-Parametric (sparse) Iterative Covarince-

based Estimator (SPICE) — are then proposed for unambiguous estimation of the

scene. Their modifications to the case with known clutter spectrum characteristics

are also investigated. The proposed techniques have better capabilities for ambiguous

sidelobes rejection over the existing methods in various scenarios, as demonstrated by

numerical simulations and validated on a real data set.

4.1 Introduction and problem statement

The ambiguity function of a wideband burst, provided in Chapter 2 (see Fig. 2.3),

demonstrates the ability to measure target range and velocity without ambiguities in

one burst. However, this ambiguity function suffers from strong ambiguous sidelobes,

which can bring additional challenges for the data processing in scenarios including

51
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clutter and/or multiple targets: a weak target can be masked by the sidelobe of

another, or the sidelobe can produce a false alarm. The estimation of the observed

scene from the measured data is considered here in such a way that the impact of the

sidelobes is minimized.

Recall that the vectorized data in the LRRS segment under test can be described

as (2.28):

y =

S∑
s=1

αsa(θs) + c + n, (4.1)

where θs = {τs, vs} is the location parameter, representing the range (at the beginning

of CPI) and the velocity of the s-th scatterer (point-like target), a(θs) and αs denote

its steering vector and complex amplitude, S is the total number of scatterers in the

observed LRRS.

The vectors c and n are independent zero-mean Gaussian vectors n ∼ CN(0, σ2
nI)

and c ∼ CN(0, σ2
cQ), Qi,i = 1,∀i = 1, . . . ,KM , which model the responses of

clutter and noise in the LRRS segment under test respectively. The clutter-plus-

noise response is therefore c + n ∼ CN(0,M), where M = σ2
nI + σ2

cQ. In this

chapter clutter-plus-noise CM M is assumed a priori known. In practice, it has to be

estimated from the reference data (e.g. range cells in the vicinity of the LRRS under

test).

For the fixed target and radar parameters, all possible combinations of the target

range and velocity, satisfying target presence in the LRRS under test (2.14), define the

target parameter space Θ. Sampling the parameter space Θ with sufficiently dense

grid allows approximating the received signal with the linear data model:

y = Ax + c + n, (4.2)

where A = [a(θ0), . . . ,a(θNtNv−1)] is the library of all possible combinations of the

target range and velocity in the LRRS under test; Nt and Nv are the number of

grid point in the range and velocity accordingly. Since the parameter space includes

the velocities |v0| > va/2, the number of grid points is larger than the dimension of

the data NtNv > KM , even if the scene is sampled with the nominal resolution in

both range δR and velocity δv. Therefore the problem of reconstruction of x from

the observed data y is ill-posed, unless some prior assumption on x is made. The

most straightforward way is to consider that only a few targets (each having a few

scattering centers) are present in the scene, which is equivalent to considering that

vector x = [x0, . . . , xNtNv−1] is sparse.

In what follows, some recently proposed method for unambiguous reconstruction

of the radar scene from the wideband measurements are analyzed and their limita-

tions are summarized in the Table 4.1 at the end of the next section. Then, some



i
i

“”Thesis Nikita Petrov”” — 2019/6/7 — 11:54 — page 53 — #67 i
i

i
i

i
i

4.2 Overview of existing techniques 53

new techniques to resolve velocity ambiguities are proposed in Section 4.3. Their

advantages over the existing methods are demonstrated via numerical simulations in

Section 4.4 and validated on a real data set in Section 4.5.

4.2 Overview of existing techniques

4.2.1 Wideband Coherent Integration

The standard method for estimation of the radar scene is a Matched Filter, also

known as Single-Frequency Least Squares estimator [50] and called wideband coherent

integration (CI) [51–53] when applied to the wideband data under consideration. CI

is developed assuming that the clutter response can be represented as a finite sum of

scatterers. Therefore, CI is obtained via:

x̂CI
i =

aH (θi) y

a (θi)
H

a (θi)
, (4.3)

performed ∀i = 0, . . . , NtNv − 1. The main shortcoming of the CI is the presence of

strong ambiguous sidelobes of the observed targets and clutter. As a consequence,

separation of real targets from the ambiguous sidelobes is challenging. Moreover, the

ambiguous sidelobes of clutter create large interference around the ambiguous veloci-

ties, making detection of targets there almost impossible (alike the “blind” velocities

of a narrowband radar). The advantage of CI is its computational simplicity, which

allows it to be efficiently implemented via Radon [54] or Keystone [52] transforms.

4.2.2 Clairvoyant estimator

The clairvoyant estimator is defined as the maximum likelihood estimation (MLE)

with the prior knowledge of the observed scene, which has been proposed in [8]. The

interfering signals for estimating complex magnitude of the target at location θi are

characterized by the CM:

K (θi) =

S∑
s=1,θs 6=θi

|αs|2 a(θs)a
H(θs) + M, (4.4)

where the parameters of all targets in the scene αs, θs,∀s ∈ S and clutter-plus-noise

CM M are assumed known. The structure of K (θi) implies mutual independence

of the data components in (4.2) [55]. For a single data realization, the clairvoyant

estimator is given by:

x̂Clair
i =

aH (θi) K−1 (θi) y

a (θi)
H

K−1 (θi) a (θi)
. (4.5)
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Introducing the CM of total interference in the LRRS1:

R =

S∑
s=1

|αs|2 a(θs)a
H(θs) + M (4.6)

and applying matrix inverse lemma to (4.5) for every target location θi = θs:

aH (θs) K−1 (θs) =

(
1 +

|αs|2 aH (θs) R−1a (θs)

1− |αs|2 aH (θs) R−1a (θs)

)
aH (θs) R−1, (4.7)

provides the estimator in the form:

x̂Clair
i =

aH (θi) R−1y

a (θi)
H

R−1a (θi)
. (4.8)

The extension of the estimator (4.8) for multiple data realizations (snapshots) is

straightforward, see [8] for details.

The required knowledge of the targets locations and magnitudes makes the clair-

voyant estimator not realizable in practice. However, the clairvoyant estimator will be

used as a benchmark in performance assessment of practical estimators. The results

obtained with the clairvoyant estimator in [8] demonstrate that velocity ambiguities

can be efficiently resolved in a scenario with multiple point-like targets present in the

scene, providing significant improvement over CI. A practical estimator then can be

made by substitution of R with its estimation from the received data.

4.2.3 Wideband Capon

Trying to adapt the clairvoyant estimator to a real scenario, where R is not known, the

wideband versions of high-resolution spectral estimators - Capon and APES [56] - have

been developed in [8]. Capon and APES exploit multiple realizations of the observed

process, obtained from data segmentation, to estimate the CM R̂ and perform spectral

estimation.

Applying Capon and APES estimators to the wideband data requires some modi-

fication of the original algorithms. The data considered for analysis here is the LRRS

under test, presented in the fast-frequency / slow-time domain, with the target signa-

ture (2.17). The data is given by the K ×M matrix Ỹ, following the model in (4.1),

but not in a vectorized form.

A new data set is generated by applying a sliding window of size K̄ × M̄

to the data, as shown in Fig. 4.1, which gives NKNM snapshots zp,q =

vec
(
Ỹp,...,p+NK−1, q,...,q+NK−1

)
, NK = K − K̄ + 1 and NM = M − M̄ + 1,

1Matrices R and K are defined for each estimator separately and essentially different
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Figure 4.1: Data rearrangement for wideband Capon estimator

p = 0, . . . , NK − 1, q = 0, . . . , NM − 1. The signature of a scatterer moving with

velocity v0 and from the initial range position k0 in the snapshot p, q has the steering

vector: ãp,q (θi) = exp
(
j2π

(
frq + f̃Dp+ f̃Dpq

))
ā � (bp ⊗ cq) with fr = −k0/K,

f̃D = v0/va, µ = B/(Kfc) and � denoting the Hadamard product. The first term

compensates the initial phase in the snapshot p, q. The steering vector in the snap-

shot p, q is obtained via the Kronecker-Hadamard multiplication of ā - the vector-

ized steering vector in the snapshot p = 0, q = 0 with the term modeling the pro-

gressive change of the Doppler and range frequencies from one snapshot to another,

modeled by the vectors bp = [1, exp
(
j2πµf̃Dp

)
, . . . , exp

(
j2πµf̃Dp(M̄ − 1)

)
]T and

cq = [1, exp
(
j2πµf̃Dq

)
, . . . , exp

(
j2πµf̃Dq(M̄ − 1)

)
]T . The steering vector ā corre-

sponds (up to a constant) to the target model (2.17) with the data dimensions set to

K̄ × M̄ . More details can be found in [8].

Wideband Capon (W-Capon) estimator is obtained via:

x̂W−Capon
i =

∑
p,q ãHp,q (θi) R̂−1zp,q∑

p,q ãHp,q (θi) R̂−1ãp,q (θi)
, (4.9)

with the CM estimated in a standard way:

R̂ =
1

NKNM

∑
p,q

zp,qz
H
p,q. (4.10)

Wideband version of APES can be obtained in a similar framework as W-Capon and

it is not discussed here due to its worse ability to suppress ambiguous sidelobes [8].

Two main assumptions are made to obtain this estimator. First, the snapshots are

assumed independent, which is not rigorously correct because of large overlap of the

adjacent windows, applied to the data set. Second, the variation of a target signature,

modeled by vectors bp and cq is not considered in the estimation of the matrix R̂.
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Figure 4.2: Sampling pattern interpretation in the fast-frequency/slow-time

The simulation results in [8] show that the ability of W-Capon to suppress the

ambiguous sidelobes of a target significantly depends on its velocity. Thus, the am-

biguous sidelobes of clutter, which has low velocity, can be efficiently suppressed. The

responses of the fast targets, on the other hand, become smeared and still produce

strong sidelobes. Clean-like algorithm has been proposed in [8] to improve the per-

formance for fast targets. However, the advantage it provides is very limited in real

scenarios.

4.2.4 Bayesian sparse estimator

An alternative formulation of the problem has been given in [9, 57]. The migrating

target model in the fast-frequency / slow-time domain (2.17) can be rewritten as:

Tff,st(l,m) = e−j2π
k0
K lej2πfDTr(1+ B

Kfc
l)m, (4.11)

which can be seen as a bi-dimensional sinusoid with the range frequency k0 sampled

with the rate 1/K and Doppler frequency fD, sampled with the rate:

Tr (l) =

(
1 +

B

Kfc
l

)
Tr, l = 0, . . . ,K − 1, (4.12)

which is a function of the fast-frequency index l. The corresponding sampling pattern

in fast-frequency / slow-time is illustrated in Fig. 4.2.

The problem therefore has been recast to reconstruction of the observed scene from

the non-uniformly sampled data. In absence of clutter, the data model (4.2) fits well

to the compressive sensing framework, as shown in [9]. However, the reconstruction

of the scene is still challenging due to the structure of the measurement or the sensing

matrix, used for data representation. Note, that the sampling pattern in Fig. 4.2

comes directly from the data model and so it is not optimized for reliable scene

reconstruction.
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Table 4.1: Comparison of algorithms for wideband unambiguous estimation

Metric \
Algorithm

Wideband CI Wideband Capon/APES
Bayesian sparse

estimator

Target

ambiguities

suppression

Poor
Good for slow targets,

Poor for fast targets
Good

Clutter

ambiguities

suppression

Poor Good
Good, requires

special processing

Complexity Low Moderate High

Parameters No
Sliding window

size

Prior PDF of

the targets power

A hierarchical Bayesian model is proposed to represent the data and reconstruct

the observed scene [9, 57]. The approach has been further extended to account for

the possible presence of diffuse clutter, modeled by auto-regressive process [19] or

targets with significantly different powers [58]. The stability of the algorithms against

possible grid mismatch has been also tackled [59]. The results of simulations and data

processing are promising, albeit they require high computational power and some

parameters to be set by the user (setting the prior distribution of the targets power).

4.2.5 Summary

The overview of the aforementioned algorithms is summarized in Table 4.1. There it

can be seen that the substantial difference between the estimators lies in their robust-

ness to the variation of the scene (noise/clutter limited) and the required adjustment

of the model (via parameters or via change of the model itself). The desired solu-

tion would require minimal number of parameters from the user and flexibility to

the variation of the scene. Moreover, the trade-offs performance vs complexity and

performance vs adjustable parameters are clearly visible in the table and essential for

the existing techniques.

4.3 Proposed approach

4.3.1 Parametric-free spectrum estimators

The limitations of the aforementioned algorithms can be alleviated with the use of

modern spectrum estimation techniques, which satisfy the following criteria:

• Provide robust estimation with a single data snapshot;
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• Applicable to non-uniform sampling grid;

• Maintain high spectral resolution to resolve ambiguities;

• Do not require setting parameters, which affect the estimation;

• Robust against possible presence of correlated noise (clutter).

Recently, a few high-resolution parametric-free spectrum estimation algorithms

have been proposed, namely Iterative Adaptive Approach (IAA) [15, 16] and Semi-

Parametric (sparse) Iterative Covarince-based Estimator (SPICE) [17,50]. These esti-

mators satisfy the aforementioned criteria and, therefore, are considered for wideband

unambiguous reconstruction here.

4.3.2 Iterative Adaptive Approach

Iterative Adaptive Approach (IAA) is a parameter-free data-adaptive spectrum esti-

mator, which has been originally proposed in [15] for source localization. Its ability to

remove sidelobes in a data-adaptive manner and its stability against scene variation

have been demonstrated in many applications, see e.g. [16, 50,60].

The idea of IAA is to estimate xi via minimization of the Weighted Least Squares

(WLS) cost function:

f1,i = (y − xia (θi))
H

K−1 (θi) (y − xia (θi)) (4.13)

at every location i. The CM K−1 (θi) defines the interference coming from all other lo-

cations, considering that as other targets, present in the scene. It is done by assuming

the CM with the structure:

K (θi) =

NtNv∑
j=1,j 6=i

|xj |2 a(θj)a
H(θj) = R− |xi|2 a(θi)a

H(θi), (4.14)

where

R =

NtNv∑
j=1

|xj |2 a(θj)a
H(θj). (4.15)

Maximizing WLS criteria (4.13) with respect to xi gives:

xIAA
i =

aH (θi) K−1 (θi) y

a (θi)
H

K−1 (θi) a (θi)
. (4.16)

Applying matrix inverse lemma to (4.16) as it is done in (4.7) gives:

xIAA
i =

aH (θi) R−1y

a (θi)
H

R−1a (θi)
. (4.17)
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Solving (4.17) and (4.15) in iterative manner gives an estimation of x̂IAA =

[xIAA
1 , . . . , xIAA

NtNv−1]T . Typically, the number of iterations is set from 5 to 15 to

obtain the estimation. The initialization is obtained with the output of CI (4.3),

or equivalently R = I. The CM model (4.15) implies that the number of point-like

targets in the scene can be as many as KM − 1, leaving one degree of freedom to the

noise. This property of the algorithm makes it very stable against different variations

of the radar scene, including the presence of multiple possibly extended targets and

clutter.

The convergence and the statistical propertied of IAA are still subject of ongoing

research. So far, only local convergence of IAA has been proved [16]. That is done

by demonstrating that IAA is an approximated MLE of |xi|2 in multi-target scenario

[15,16].

4.3.3 Semi-Parametric Iterative Covariance-based Estimator

Semi-Parametric (sparse) Iterative Covarince-based Estimator (SPICE) is obtained

by iterative minimization of the covariance fitting criterion [17,18,50]:

f2 =
∥∥∥R−1/2

(
yyH −R

)∥∥∥2

F
= tr

((
yyH −R

)H
R−1

(
yyH −R

))
= ‖y‖2 yHR−1y + tr (R)− 2 ‖y‖2 ,

(4.18)

where the CM R is defined and initialized by (4.15) similarly to IAA and ‖·‖F denotes

Frobenius norm. According to (4.15), it can be shown that:

tr (R) =

NtNv∑
j=1

‖a(θj)‖2 |xj |2 =

NtNv∑
j=1

‖a(θj)‖2 pj , (4.19)

with pj = |xj |2.

The minimization of f2 is equivalent to minimization of the function:

min
{pj}

yHR−1y +
1

‖y‖2
NtNv∑
j=1

‖a(θj)‖2 pj (4.20)

with {pj} = [p1, . . . , pNtNv ]T . It is demonstrated in [17, 18, 50] that the problem in

(4.20) is convex and it can be solved by iteratively updating:

p̂j =
‖y‖2∑NtNv

i=0 pi ‖a(θi)‖ |aH(θi)R−1y|
pj
∣∣aH(θj)R

−1y
∣∣

‖a(θj)‖
(4.21)

and the estimated CM defined by (4.15). The iteration (4.21) monotonically decreases

the cost function (4.18) and converges globally [18,50]. Therefore, iterative estimation
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can be performed until the change in the next iteration becomes smaller than some

predefined value ε. When the algorithm has converged, the estimation of x is obtained

similarly to IAA, so by (4.17), but with the last estimation of R from SPICE [18].

The recent studies [18, 61] demonstrated that SPICE is closely connected to the

LAD-LASSO (Least Absolute Deviation, Least Absolute Shrinkage and Selection Op-

erator), which provides more insight in the statistical properties of SPICE.

4.3.4 Clutter-aware estimators

In presence of clutter, which has non-sparse structure, the proposed estimators can

experience some performance degradation. A straightforward approach to diminish

the impact of clutter consists of two steps: first, filter out clutter with an adaptive

filter, which estimates clutter spectral characteristics from the reference data (e.g.

range cells in the vicinity of the LRRS under test); second - reconstruct the scene

from the whitened data with suppression of targets ambiguities. A similar approach

has been recently considered in [62] and solved with the covariance-aware version of

LASSO, hence with the a random sensing matrix, — the assumption, which cannot

be satisfied with the wideband data model, considered here. An alternative approach,

investigated here, consists of incorporation of clutter correlation properties into the

WLS criterion of IAA (4.13) and into the covariance fitting criterion of SPICE (4.18).

Assume that clutter-plus-noise CM M is given. Denote the received data and a

steering vector of a target after whitening transform by:

b (θi) = M−1/2a (θi) ;

z = M−1/2y,
(4.22)

and rewrite IAA and SPICE criteria for the whitened data set.

IAA

The WLS criterion of IAA (4.13) for the data (4.22) is written as:

g1,i = (z− x̃ib (θi))
H

K̃−1 (θi) (z− x̃ib (θi))

= (y − x̃ia (θi))
H

M−1/2

 NtNv∑
j=1,j 6=i

|x̃j |2 b (θj) bH(θj)

−1

M−1/2 (y − x̃ia (θi))

= (y − x̃ia (θi))
H

K̃−1 (θi) (y − x̃ia (θi)) = f1,i,

(4.23)

so it is equivalent to the objective function of IAA without whitening transform.

Therefore, incorporation of clutter correlation properties does not modify the IAA

estimator.
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SPICE

Applying the SPICE criteria (4.18) to the data set (4.22) gives:

g2 =
∥∥∥R̃−1/2

(
zzH − R̃

)∥∥∥2

F
= zzHzHR̃−1z + tr

(
R̃
)
− 2zzH , (4.24)

where

R̃ =

NtNv∑
j=1

|x̃j |2 b(θj)b
H(θj) = M−1/2

NtNv∑
j=1

p̃ja(θj)a
H(θj)

M−1/2

= M−1/2RM−1/2.

(4.25)

Equivalently, the function to be minimized is:

g3 = zHR̃−1z +

NtNv∑
j=1

bH(θj)b(θj)

zHz
p̃j

= yHR̃−1y +
1

yHM−1y

NtNv∑
j=1

aH(θj)M
−1a(θj)p̃j .

(4.26)

The cost function (4.26) has similar structure to that in (4.20), except of the

weights applied to pj , and therefore can be solved similarly via iteration:

ˆ̃pj =
yHM−1y∑NtNv

i=0 p̃i
√

aH(θi)M−1a(θi) |aH(θi)R−1y|
p̃j
∣∣aH(θj)R

−1y
∣∣√

aH(θj)M−1a(θj)
. (4.27)

Hereinafter the estimator (4.27) is referred to as SPICE-W.

4.4 Simulations

In this section the performance of the proposed estimators is evaluated and compared

to the existing approaches via numerical simulations.

4.4.1 Settings

The effectiveness of the algorithms is analyzed in terms of their ability to suppress

the ambiguous sidelobes and preserve the target response at the correct location in

various scenarios. For simulations, the parameters of the radar are fixed to the values

given in Table 4.2.

Moreover some processing parameters are set fixed for all the estimators: the

oversampling in range and velocity are nt = 4 and nv = 4 accordingly, compared
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Table 4.2: Simulated radar parameters

Parameter Value

Carrier frequency fc 10 GHz

Bandwidth B 1 GHz

PRI Tr 1 ms

Ambiguous velocity va 15 m/s

Pulses M 32

Range cells in LRRS K 8

to the corresponding resolutions of the waveform. The number of range cells in the

LRRS under test is set to K = 8 to satisfy the condition on the maximum velocity

(2.14) for vmax = 32 m/s. Thus, the number of range bins in the estimated image X̂

is Nt = ntK = 32 and the number of velocity bins is Nv = 2dnvMvmax/vae+1 = 561.

W-Capon is implemented with K̄ = 3K/8 = 3 and M̄ = 3M/8 = 12. IAA is

obtained with the fixed number of iterations: IIAA = 10. SPICE is run until the

stopping criterion ||x̂i − x̂i−1||2/||x̂i||2 < ε, ε = 10−4 is satisfied, or the maximal

number of iterations Imax
SPICE = 50 is reached.

To provide some insight into the behavior of the estimators in typical scenarios,

their performance is evaluated in two scenarios:

• Multiple point-like targets in white noise;

• Multiple point-like targets in clutter (colored noise).

Simulated scenarios are demonstrated in Fig. 4.3 and Fig. 4.9 below, followed by

detailed explanations.

The obtained estimation of x̂ is rearranged back into the matrix X̂ ∈ CNt×Nv and

the estimated range-velocity map is demonstrated below. For better visibility of the

ambiguous sidelobes suppression 1D plots are added, which show the maximal over

range response for every velocity cell, namely h(v) = maxt∈[0,Nt−1]

∣∣∣X̂t,v

∣∣∣.
4.4.2 Noise-limited case

In the noise limited scenario M = σ2
nI, and Fig. 4.3 represents the post-processing

SNR of the targets:

SNRs =
M |αs|2

σ2
n

. (4.28)

Simulation results in the noise-limited scenario are demonstrated in Fig. 4.4 - 4.8

for one random realization of the data.
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The range-velocity map and the velocity profile of the CI, plotted in Fig. 4.4,

illustrate the shortcomings of this method: multiple ambiguous sidelobes, present

in the estimated scene, makes the estimation of targets locations and their number

difficult. Moreover, two targets separated by one ambiguity (a case which can rarely

happen in reality, but interesting for simulation analysis) create mutual interference

to one another. If the targets have different powers, the weak target will be masked

by the presence of a strong one — the situation, not desirable in practice.

The result of the Clairvoyant estimator, depicted in Fig. 4.5, shows that in the

noise-limited scenario the ambiguities can be efficiently resolved. The estimate of the

W-Capon, demonstrated in Fig. 4.6, suffers from the sidelobes of the fast targets,

while the sidelobes level of the target at moderate velocity (v0 = va) is lower than

that of CI. This demonstrates velocity dependence of W-Capon, mentioned above.

The estimations of the scene, obtained with IAA and SPICE are presented in

Fig. 4.7 and Fig. 4.8 accordingly. These algorithms provide accurate estimations of

the scene with efficient suppression of ambiguous sidelobes. The noise-like response,

observed in IAA estimation is lower than the actual noise floor. Such a result has

been noticed in the other studies (e.g. [18]) and was explained there as capturing

a fraction of the noise power in each bin of the grid. The IAA estimate is dense,

so all elements are non-zero, but rather small. SPICE, on the other hand, provide

sparse estimation with multiple elements of X̂ equal to zero or approaching it with the

numerical precision. In the noise limited scenario SPICE-W is equivalent to SPICE

and therefore not considered herein.

In summing up the simulation results, it is noted that the proposed non-parametric

high-resolution spectrum estimators - IAA and SPICE - provide better estimation

than the existing approaches in the noise limited scenario.

Simulation scenario
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Figure 4.3: Simulation scenario in the noise-limited case
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Coherent integration
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Figure 4.4: Wideband CI in the noise-limited scenario

Clairvoyant estimator
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Figure 4.5: Clairvoyant estimator in the noise-limited scenario
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Wideband Capon
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Figure 4.6: W-Capon in the noise-limited scenario

IAA
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Figure 4.7: IAA estimator in the noise-limited scenario
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SPICE
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Figure 4.8: SPICE estimator in the noise-limited scenario

4.4.3 Clutter-limited case

In these simulations, uncorrelated over range clutter with exponential decay Doppler

spectrum1 (β = 12, r = 0) and CNR = σ2
c/σ

2
n = 20 dB is considered. Fig. 4.9 shows

clutter PSD as a background and the post-processing SCNR of the present targets:

SCNRs = |αs|2aH(θs)M
−1a(θs), (4.29)

where θs is the location parameter of the s-th target. In the velocity profiles, targets’

SNRs (4.28) are marked.

The estimates of the scene in the clutter-limited case are given in Fig. 4.10 - 4.15.

The result of wideband CI, shown in Fig. 4.10, suffers from the strong ambiguous

sidelobes of both clutter and targets. The ambiguous sidelobes of clutter, which are

present in all the range cells, generate the “blind” velocities, similarly to what usually

happens with a narrowband radar. The target at the velocity vs = 14m/s ≈ 0.94va
appears hidden in the ambiguous sidelobe of clutter and cannot be distinguished from

the latter.

The clairvoyant estimator significantly reduces the ambiguous sidelobes of clutter,

but does not completely remove them (see Fig. 4.11). Some residuals of the ambiguous

1The details about exponential decay clutter spectrum are given in Chapter 3
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Simulation scenario
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Figure 4.9: Simulation scenario in the clutter-limited case

sidelobes are present around the velocities ±va,±2va. This result demonstrates that

some limitations for unambiguous proceeding in presence of clutter exist. With the

clairvoyant estimator, the target at velocity v0 = 14m/s ≈ 0.94va becomes visible

against the ambiguous sidelobe of clutter. The ambiguous sidelobes of the other

targets are completely removed, similarly to the noise-limited scenario.

The estimate obtained with W-Capon (Fig. 4.12), demonstrates its ability to

efficiently suppress the ambiguous sidelobes of clutter, up to the level obtained with

clairvoyant estimator. However, the targets create high ambiguous sidelobes, which

makes distinction of real targets from their ambiguous sidelobes difficult.

The result of scene estimation with IAA is shown in Fig. 4.13. Ambiguous resid-

uals of clutter are comparable to that of the clairvoyant estimator. The targets in

the clutter-free regions are correctly estimated and their sidelobes are removed. The

target at velocity v0 ≈ va is visible against clutter, its magnitude is underestimated

by a few dBs. The performance for the target at the clutter ambiguity is limited, but

improved in comparison to the existing techniques.

SPICE provides the estimation of the scene (see Fig. 4.14) very similar to result of

the IAA, except for more sparse representation of the noise-limited part of the scene.

The ambiguous residuals of clutter have higher level than that of the clairvoyant

estimator or IAA and remain the limiting factor for unambiguous processing.

The result of the covariance-aware SPICE is demonstrated in Fig. 4.15. In the

velocity profile of Fig. 4.15, SCNRs of the present targets are shown. SPICE-W

provides a sparse scene estimation with the targets peaks at the correct locations

and around zeros velocity for clutter. The recovered clutter response around zero

velocity does no create a problem, as any detection at velocity below some threshold

can be simply ignored. This result demonstrates that the clutter-aware estimator is

preferable to the other techniques in clutter-limited scenario.
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Coherent integration
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Figure 4.10: Wideband CI in the clutter-limited scenario

Clairvoyant estimator
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Figure 4.11: Clairvoyant estimator in the clutter-limited scenario
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Wideband Capon
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Figure 4.12: W-Capon in the clutter-limited scenario

IAA
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Figure 4.13: IAA estimator in the clutter-limited scenario
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SPICE
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Figure 4.14: SPICE estimator in the clutter-limited scenario

SPICE-W
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Figure 4.15: SPICE-W estimator in the clutter-limited scenario



i
i

“”Thesis Nikita Petrov”” — 2019/6/7 — 11:54 — page 71 — #85 i
i

i
i

i
i

4.5 Experimental validation 71

Table 4.3: PARSAX waveform parameters

Parameter Value

Carrier frequency fc 3.265 GHz

Bandwidth B 95 MHz

PRI Tr 1 ms (0.5 ms)

Ambiguous velocity va 45 m/s (22.5 m/s)

Pulses M 64

Range cells in LRRS K 10

4.5 Experimental validation

The proposed algorithm has been tested on experimental data from PARSAX radar

collected in November, 2014. The waveform parameters are summarized in Table 4.3;

the detailed description of PARSAX radar is provided in Appendix A. The observed

scene is A13 highway between the Hague and Rotterdam. The measurement scenario

is similar to the one described in [53].

4.5.1 Targets at the noise-limited velocities

Consider the standard PARSAX mode with Tr = 1 ms, which gives va ≈ 45 m/s. The

observed scene contains the highway with a speed limit of 100 km/h ≈ 28 m/s ≈ 0.6va.

Therefore, all targets are observed at velocities below the first clutter ambiguity, so

in the noise-limited region.

Consider M = 64 pulses in a burst, which gives about 2 range cell migration per

velocity ambiguity va ≈ 45 m/s. The number of range cells in the LRRS is set to

K = 10. Since no target truth is available in advance, the output of the wideband CI

with Mref = 128 pulses is used as a reference, given in Fig. 4.16. Therein two targets

can be recognized at velocities v1 ≈ −18 m/s and v2 ≈ −23 m/s; also a weak target

at v3 ≈ 15 m/s can be observed.

The output of wideband CI is depicted in Fig. 4.17. The sidelobes of clutter and

targets raised compared to Fig. 4.16 due to shorter CPI and can be interpreted as

other cars, moving in the opposite direction. Similar to the numerical simulations, CI

suffers from the strong ambiguous sidelobes of clutter and targets, making it difficult

to distinguish between correct responses and false ones.

The estimations obtained with IAA and SPICE are shown in Fig. 4.18 and Fig.

4.19 accordingly. Both IAA and SPICE significantly suppress the ambiguous re-

sponses of the targets and reduce the ambiguous sidelobes of clutter by about 15-20

dBs. The clutter residuals at ambiguous velocities (v ≈ ±va) are lower for IAA than

for SPICE by a few dBs, similar to the simulation results.
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Coherent integration
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Figure 4.16: PARSAX data: wideband CI, M = 128, Tr = 1 ms

Clutter-aware SPICE is implemented as follows. First, clutter CM in one range

cell is estimated from L = 3M = 192 target free reference cells by means of SCM:

Ŝ =
1

L

L−1∑
l=0

z (l) zH (l) . (4.30)

Then, the CM in the LRRS is obtained as M̂ = IK⊗Ŝ, where⊗ stand for the Kroneker

product. The result of the SPICE-W is shown in Fig. 4.20. It demonstrates better

rejection of clutter ambiguities, than the aforementioned techniques, and correctly

estimates the present targets. This result demonstrates the advantage of SPICE-W,

compared to the other methods which do not benefit from the clutter estimation.

4.5.2 Target in the clutter ambiguity

To evaluate the performance in the clutter limited scenario, a new data set is created

by downsampling the data set in slow time by factor 2. The new data set consists of

M = 64 with Tr = 2 ms and va ≈ 22.5 m/s. The time duration of the burst is now

increased two times with M being constant (the new parameters are listed in braces

in Table 4.3). Range migration per velocity ambiguity, defined by BM/fc, is equal

to the previous setting. In this setting, the target at velocity v2 ≈ −23 m/s becomes
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Coherent integration
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Figure 4.17: PARSAX data: wideband CI, M = 64, Tr = 1 ms
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Figure 4.18: PARSAX data: IAA estimator, M = 64, Tr = 1 ms
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SPICE
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Figure 4.19: PARSAX data: SPICE estimator, M = 64, Tr = 1 ms

SPICE-W
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Figure 4.20: PARSAX data: SPICE-W estimator, M = 64, Tr = 1 ms



i
i

“”Thesis Nikita Petrov”” — 2019/6/7 — 11:54 — page 75 — #89 i
i

i
i

i
i

4.6 Conclusion 75

hidden by the ambiguous sidelobes of clutter and cannot be distinguished from the

clutter ambiguity with the wideband CI, as shown in Fig. 4.21.

IAA and SPICE, applied for this scenario can remove the ambiguous sidelobes of

the target in the clutter-free region, see Fig. 4.22, 4.23. The target, which is hidden

in the clutter ambiguity, is still difficult to distinguish from the clutter ambiguity,

as the clutter sidelobe at v ≈ 22 m/s provides even higher response than the actual

target at v ≈ −22 m/s does.

Clutter-aware SPICE, which result is shown in Fig. 4.24, suppresses the sidelobe

of clutter at v ≈ 22 m/s to the level approximately 8 dB lower than the actual target

response. In this estimation, the presence of two actual targets in the scene can

be recognized. This demonstrates the improvement achieved by exploiting clutter

correlation properties in the estimator.

This result demonstrates that some limitations for unambiguous scene reconstruc-

tions exist due to presence of diffuse clutter, which cannot be modeled adequately

as a combination of multiple point-like targets. This agrees well with the results in

Chapter 3.

4.6 Conclusion

Unambiguous estimation of the range-velocity scene, observed with a wideband wave-

form, is essentially limited by the presence of strong ambiguous sidelobes of the tar-

gets and clutter present in the scene. The existing method for unambiguous scene

reconstruction either has limited capabilities for sidelobes suppression or require some

parameters to be set. High-resolution parametric-free spectrum estimators - Iterative

Adaptive Approach and Semi-Parametric (sparse) Iterative Covarince-based Estima-

tor - are proposed herein for estimation of the scene. They do not require any param-

eter to be set by the user and provide a significant improvement in sidelobe rejection

over the conventional techniques in the noise-limited case. The clutter-aware version

of SPICE is proposed for improved performance in presence of diffuse clutter, whose

covariance matrix is known (or estimated from the reference data). Clutter-aware

SPICE outperforms the other methods considered in this chapter in presence of clut-

ter. The performance of different methods is validated with the analysis of a real data

set.
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Figure 4.21: PARSAX downsampled data: wideband CI, M = 64, Tr = 0.5 ms
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Figure 4.22: PARSAX downsampled data: IAA estimator, M = 64, Tr = 0.5 ms
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SPICE
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Figure 4.23: PARSAX downsampled data: SPICE estimator, M = 64, Tr = 0.5 ms

SPICE-W

-50 -40 -30 -20 -10 0 10 20 30 40 50

Velocity, m/s

0

2

4

6

8

R
an

ge
 c

el
l

0

10

20

30

40
dB

-50 -40 -30 -20 -10 0 10 20 30 40

Velocity, m/s

0

10

20

30

40

50

dB

Maximum velocity response

Figure 4.24: PARSAX downsampled data: SPICE-W estimator, M = 64, Tr = 0.5 ms
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Chapter 5

Detection of moving targets in a

single bursts low-PRF wideband

radar

In this chapter, the problem of moving target detection with a single burst of wideband

pulses is considered. Due to range-migration effect, the detection is performed over

the low range resolution segment (LRRS), which can encompass the responses of

multiple targets and clutter. It is demonstrated that conventional radar detectors are

not adequate when more than one target can be present in the data set: they either

detect the strongest target or create multiple false detections at the locations of the

ambiguous sidelobes of the present targets. Two approaches to detect the presence

of multiple targets in the scene are proposed. They preserve the probability of false

alarm at the required level and minimize false detections due to ambiguous sidelobes

of the present targets. The performance of the proposed techniques is evaluated in

numerical simulations.

5.1 Introduction and problem statement

The results of the previous chapter have demonstrated that the observed scene can

be estimated in the range-velocity plane without ambiguities using one burst of high-

resolution pulses with low PRF. However, the unambiguous estimation of the scene

does not solve the primary task of surveillance radar, namely targets detection and

localization. The obtained estimation still can be used either as a part of a detector

or at the next stages of the radar processing, e.g. for targets classification, tracking,

79
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80 5. Detection of moving targets in a single bursts low-PRF wideband radar

etc. To begin with, a conventional detection problem is recalled and the challenge of

detecting multiple targets present in the scene is discussed.

5.1.1 Detection of a single target

The conventional detection problem in radar corresponds to the binary hypothesis

testing problem, namely deciding on the presence (hypothesis H1) or absence (hy-

pothesis H0) of a target in the observed data set. For the data model, considered

herein (2.28), the observed data set corresponds to the LRRS under the test and the

detection problem is formulated as:

y =

{
H0 : c + n,

H1 : αa (θ) + c + n,
(5.1)

where a (θ) and α are accordingly the steering vector of the target its complex am-

plitude1, constant during CPI. Note that (5.1) assumes the presence of at most one

point-like target in the data set. Similarly to the previous chapters, assume that

clutter-plus-noise response in a LRRS is modeled by a zero-mean complex Gaussian

vector c + n ∼ CN (0,M) with known CM.

Since the target complex amplitude is generally unknown to the radar receiver,

the detector is designed via the generalized likelihood ratio test (GLRT) [21,49]:

Λ(y;α|θ) =
f (1)(y;α)

f (0)(y)

H1

R
H0

γ′, (5.2)

with the likelihood functions under both hypotheses given by:

f (1)(y;α) =
1

(2π)KM |M|
exp

(
−(y − αa(θ))HM−1(y − αa(θ))

)
, (5.3)

and f (0)(y) = f (1) (y;α) |α=0.

Maximization of the (5.3) over α1 provides:

α̂MLE =
a(θ)M−1y

a(θ)M−1a(θ)
, (5.4)

which being substituted into (5.2) leads to the decision rule:

T1(y|θ) =

∣∣a(θ)M−1y
∣∣2

a(θ)M−1a(θ)

H1

R
H0

γ. (5.5)

1In the previous chapter target amplitude of the location θi was denoted by xi
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In absence of targets, the statistic T1(y|θ,H0) ∼ 1
2χ

2
2 is chi-squared distributed ran-

dom variable with 2 degrees of freedom scaled by 1/2. This test preserves constant

false alarm rate (CFAR) w.r.t. M. The desired probability of False Alarm (PFA) is

set by adjusting the threshold γ according to the Cumulative Density Function (CDF)

of the chi-squared distribution. If the target is present, the statistic (5.5) follows non-

central chi-squared distribution T1(y|θ,H1) ∼ 1
2χ

2
2 [SCNR] with the non-centrality

parameter, equal to the target: SCNR = |α|2a(θ)M−1a(θ) [63].

Note, that the decision test (5.5) can be different to ensure CFAR performance

in difficult scenarios, e.g. when clutter is not Gaussian, as discussed in Chapter 6, or

when the matrix M is not known a priori, but it is estimated from the reference data

set [64,65].

The model (5.1) assumes that the target magnitude is an unknown constant. The

presence of the target under H1 therefore imposes non-zero mean of the distribution

in (5.1), but does not affect the CM. This model is referred to as First Order Gaussian

(FOG) model [66]. The alternative approach is to assume that the target amplitude

is zero-mean Gaussian distributed, and the CM of the data differs between H0 and H1

by the target component Pa(θ)aH(θ), where P is the signal power to be estimated.

Interestingly, the detection for the latter case, refereed to as Second Order Gaussian

model, is a monotonic function of the same statistics [67].

In practice, target location θ is unknown a priori. Therefore, the statistic (5.5) is

evaluated ∀θ ∈ Θ and the decision is made by [21,49]:

{
T (y) = T1(y|θ̂)RH1

H0
γ,

θ̂ = argmaxθ∈Θ T1(y|θ).
(5.6)

which is the direct consequence of (5.1), where the presence of at most one target in

the observed data set is considered. The second equation defines the location of the

target if hypothesis H1 is selected. Since the test estimates SCNR for every possible

target location, the maximization over θ ensures the detection of the target at its

correct location (or in the vicinity of it in case of grid mismatch).

Irrespective of the statistics T1(y|θ), the location of the target (5.6) is obtained

by the search over the whole target space Θ. The limitation of that procedure is its

inability to declare the presence of more than one target in the scene. In this case, the

maximization (5.6) will ignore the presence of any target, except of the one with the

highest SCNR. Recall that in the wideband case, the data vector y represents a block

of K adjacent range cells. In this case, a few targets contaminated by the clutter can

be present in the data vector y, e.g. when observing a highway with multiple moving

cars. For this situation, another approach should be considered.
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82 5. Detection of moving targets in a single bursts low-PRF wideband radar

5.1.2 Detection of multiple targets

Recall the data model, which describes the vectorized received data in the LRRS

under test:

y =

S∑
s=1

αsa(θs) + c + n. (5.7)

Moreover, it is assumed that clutter-plus-noise response is a zero-mean Gaussian

vector c + n ∼ CN (0,M) and S primitive scatterers with complex back-scattering

coefficients αs,∀s = 1, . . . , S are present in the observed LRRS.

If more than one target can be present in the scene, as in (5.7), the radar processor

should decide on how many targets S are present in the data and estimate their

parameters αs, θs,∀s = 1, . . . , S. That is equivalent to deciding in favor of one of

hypotheses:

HS : y =

S∑
s=1

αsa(θs) + c + n, S ∈ [0, Smax], (5.8)

where Smax is the maximum expected number of point-like targets in the data.

The estimation of the integer parameter S from the data set is called model order

selection [68]. With application to radar, Minimum description Length (MDL) [69],

Akaike Information Criterion (AIC) [70] and Bayesian Information Criterion (BIC)

[68] are mostly considered, e.g. [15,16,28]. The major limitation of applying informa-

tion criteria to the problem under consideration is their inability to control the false

alarm probability (PFA), similarly to the conventional detectors. Indeed, in heavy en-

vironmental conditions and presence of interfering signals and/or jammers, the ability

to increase or decrease the number of detected targets on the radar display by control-

ling PFA plays a crucial role for the radar operator. Therefore, information criteria

are not considered for detection of multiple targets herein, and another strategy is

followed.

One possible approach to detect multiple targets present in the data set consists of

applying CFAR test (5.5) to every possible target location θ ∈ Θ, without subsequent

maximization. A target is then detected at every location θ, at which the test passes

the detection threshold (5.5). The shortcoming of this approach is its sensitivity to the

sidelobes of the present targets — a sidelobe response (and especially an ambiguous

sidelobe) of a strong target will cross the threshold and create a target-like output,

similar to a false alarm. In a dense target scenario, every target will create a number

of such false targets as a result of ambiguous sidelobes.

Another way to detect the targets consists of two steps: first, estimate the observed

scene with some high-resolution estimator, which resolves velocity ambiguities of the



i
i

“”Thesis Nikita Petrov”” — 2019/6/7 — 11:54 — page 83 — #97 i
i

i
i

i
i

5.2 Proposed approach 83

targets (see Chapter 4) and, second, detect the targets from the estimated range-

velocity image, alike cell-averaging (CA), order statistics (OS) and many other tests

do [3]. The major limitation of this approach is unknown probability distribution

of the outputs of IAA and SPICE. A similar way to tackle the problem has been

investigated using IAA in [60, 71], where the advantage of IAA detector is evident

in terms of receiver operating characteristic (ROC) curves, but PFA control for the

proposed detector is missing.

5.2 Proposed approach

Consider a scenario in which more than one target can be present in the scene. Then,

the task of a detector is to decide in favor of one of the hypotheses in (5.8). Two

strategies to attack this problem are considered here.

5.2.1 RELAX-like detector of multiple targets

Assume that the targets present in the scene follow the First Order Gaussian (FOG)

model. Then the received data is distributed as:

y ∼

H0 : CN (0KM ,M) ,

HS : CN
(∑S

s=1 αsa(θs),M
)
,

(5.9)

where hypothesis HS stands for the presence of S point-like targets in the scene,

S � KM . Note also the the hypotheses H0, . . . ,HS are nested, namely HS =

HS+P |αi=0,∀i=S+1,...S+P . Define the likelihood function for each hypothesis S via:

f (S)(y;α1...S , θ1...S) =

exp

(
−
(
y −

∑S
s=1 αsa(θs)

)H
M−1

(
y −

∑S
s=1 αsa(θs)

))
πKM |M|

,

(5.10)

and since the hypotheses are nested f (S)(y) = f (S+P )(y)|αi=0,∀i=S+1,...,S+P . Because

the clutter CM is known, the whitening transform can be applied. The data vector

and the target signature are then given accordingly:

z = M−1/2y; (5.11)

b(θ) = M−1/2a(θ), ∀θ ∈ Θ. (5.12)

Maximization of the log-likelihood with respect to all the unknown parameters is

equal to minimization of the quadratic cost function F :

F (N,α1...S , θ1...S) =

(
z−

S∑
s=1

αsb(θs)

)H (
z−

S∑
s=1

αsb(θs)

)
. (5.13)
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The maximization of this cost function w.r.t. αs and θs,∀s = 1, . . . , S requires a

multidimensional search over all the unknown parameters, which is typically NP-

hard. An efficient implementation for maximization (5.13) has been proposed in [28]

and referred as RELAX spectrum estimator. RELAX is asymptotically statistically

efficient estimator, with improved performance over the CLEAN algorithm [72]. It

is expected to provide accurate estimation of the targets' parameters (αs, θs) in the

considered model, because of sufficiently large data dimensionKM . RELAX is a semi-

parametric algorithm, which requires the number of point-like targets to be known or

estimated [28]. Herein, it is proposed to use the threshold of the CFAR detector (5.5)

for detection of a new target in RELAX iteration, instead of using an information

criterion. The proposed modification allows controlling PFA for the proposed test.

Although the estimation of sinusoidal parameters can be obtained with RELAX

in presence of clutter or correlated noise, herein RELAX is applied to the whitened

data. The whitening transformation is crucial to avoid estimating the clutter response,

which can dominate over the targets responses and can occur spread in range and

velocity domain. Reconstruction of the clutter response with RELAX might lead to

high computation load and performance loss.

The proposed RELAX-like detector consists of three steps: initialization, iterative

estimation and detection, and correction.

Initialization The proposed detector of multiple point-like targets is initialized with

the statistics and the binary output of the matched filter detector (5.5), which can be

rewritten in terms of whitened data z with (5.11). Denote by ΘD = {θ ∈ Θ|T1(z|θ)>γ}
the set of locations, at which the test (5.5) passes the threshold. Also, introduce a new

set of locations ΘT, where the target are declared after the processing and initialize

it with an empty set: ΘT = {}. If card (ΘD) ≤ 1, the detection is equivalent to the

single target case and the hypothesis H0 or H1 is selected, depending on the output

of (5.6). In this case no further processing is required.

Iterative estimation and detection At the N -th iteration of the algorithm, a new

target with index N is found in the data set by maximizing observed SCNR over

θ ∈ ΘD:

θ̂N = argmax
θ∈ΘD

∣∣bH(θ)z(N−1)
∣∣2

bH(θ)b(θ)
, (5.14)

ΘT = ΘT ∪ θ̂N , (5.15)



i
i

“”Thesis Nikita Petrov”” — 2019/6/7 — 11:54 — page 85 — #99 i
i

i
i

i
i

5.2 Proposed approach 85

where the meaning of z(N) is explained shortly and ∪ defines set union. The amplitude

of the new target is estimated by:

α̂N =
bH(θ̂N )z(N−1)

bH(θ̂N )b(θ̂N )
. (5.16)

With the estimated location and magnitude, the N -th target is added to the set of

detected targets ΘT.

When a new target has been added, the parameters of N previously detected

targets are updated by iterating a few times the estimates:

z
(N)
j = z−

N∑
n=1,n6=j

αnb(θn); (5.17)

θ̂j = argmax
θ∈Θ

∣∣∣bH(θ)z
(N)
j

∣∣∣2
bH(θ)b(θ)

; (5.18)

α̂j =
bH(θ̂j)z

(N)
j

bH(θ̂j)b(θ̂j)
. (5.19)

In each iteration, the parameters of every target j are re-estimated in three steps:

first, a new data set is created by subtracting the signatures of the other targets

(5.17); second, the location of the j-th target is updated (also in ΘT) by (5.18); third,

the magnitude of the j-th target is re-estimated (5.19). When N = 1 no iteration is

required. In the converse case, the iterations are repeated until the change of the cost

function (5.13) after applying (5.17) - (5.19) for all the targets becomes smaller than

some pre-defined value ε [28].

Moreover, the search of the target location at the iteration N can be performed

in the vicinity of its previous location, which significantly decreases the search time

[73]. At this stage a larger oversampling (in both range and velocity dimensions) is

applied to improve estimation of the target locations, especially with high SCNR.

When the parameters of all the targets are estimated, the data vector and the set

of detected locations ΘD are updated:

z(N) = z−
N∑
n=1

αnb(θn); (5.20)

ΘD = θ ∈ Θ|T1(z(N),θ)>γ . (5.21)

The subtraction of the estimated target response from the data removes the detec-

tion of this target and also the false detection due to its sidelobes from the set ΘD.

Therefore, the outer loop is stopped when no more targets are detected by (5.21), or



i
i

“”Thesis Nikita Petrov”” — 2019/6/7 — 11:54 — page 86 — #100 i
i

i
i

i
i

86 5. Detection of moving targets in a single bursts low-PRF wideband radar

equivalently card (ΘD) = 0. The output of the algorithm are the locations ΘT and

magnitudes αn,∀n = 1, . . . , N of the detected targets.

To decrease the computational complexity of the algorithm and speed up its con-

vergence, the search in (5.21) can be performed only at the locations, where the test

(5.5) declares target presence (so ΘD at the initialization of the algorithm). In this

case, one target will be removed from the data set at each iteration, the maximum

number of iterations is limited by card (ΘD), where ΘD is the set of locations at the

initialization.

Correction At the final step of the processing, the detected targets should be tested

against the CFAR threshold in presence of the other targets. The locations, at which

the test is not passed are removed from the set of detected targets:

Θ̃T = ΘT −ΘT|T1

(
z
(N)
j ,θ̂j

)
<γ, ∀j=1,...,N

, (5.22)

where ΘA−ΘB denotes the difference of the sets. This post-processing is required to

remove from the output some false targets, which can arise in the RELAX procedure

when a wrong location has been selected at some iteration. For example, at one of

the iterations, the maximum was found at the sidelobe of a real target. At the next

iterations, RELAX minimizes the magnitude of this wrong target, but still keeps its

location in ΘT. The procedure (5.22) will clean the location of the false target from

the final detection set. It was found to be a useful step in the numerical simulations

of the RELAX detector. The number of detected targets and the hypothesis in (5.9)

are selected as Ŝ = card
(

Θ̃T

)
.

In the majority of the data sets the conventional CFAR detector, e.g. (5.5), with

the appropriately selected PFA will declare the presence of not more than one target

in a LRRS: card (ΘD) ≤ 1. In this case, no post-processing with RELAX is required.

This makes the proposed RELAX-like detector computationally affordable for real

applications.

5.2.2 Multiple target detection using the unambiguous estimation of

the observed scene

This approach is partially heuristic and relies on the fact that the targets with the

SCNR high enough to be detected with typical PFA ∈ [10−10, 10−5] and not competing

with the other targets (are not located in the ambiguous sidelobes of each other), have

amplitude estimation, obtained with IAA close to the amplitude MLE (5.4) at the

correct target location θi, so: α̂i
ML ≈ α̂i

IAA, but not in the location of a sidelobe.

The amplitude estimation α̂i
IAA, denoted by xi in (4.17) at the location θi resolves

the sidelobe issue (global leakage) and therefore provides a reasonable estimate of
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αi,∀θi ∈ Θ. In this way, detection can be performed ∀θi ∈ Θ in parallel without

subsequent maximization over location parameter θ.

The choice of IAA for development of this detector is motivated by its lower

error in the estimation of the target magnitude compared to SPICE, as noted in

[18] and its robustness to the presence of clutter and extended targets in the scene

with no parameters involved in the estimation. In principle, a similar strategy can

be applied with another high-resolution spectrum estimator, used instead of IAA.

However, herein only the detector using IAA is considered. Two options to incorporate

IAA estimation into the detector are investigated and referred to by IAA-(A) and

IAA-(B) accordingly.

IAA-(A) detector Assume IAA estimation is available for every possible target lo-

cation θi on the grid. Define the detector via the likelihood ratio (5.2), where the

target’s amplitude estimation αi is obtained with IAA:

Λ(y|θi) =
f (1)(y;αi = α̂IAA

i )

f (0)(y)

H1

R
H0

γ′. (5.23)

Following the lines (5.2) - (5.5) and substituting α̂IAA
i for α̂MLE

i , it can be shown that

the quadratic form in (5.3) under H1 becomes:(
y − α̂IAA

i a(θi)
)H

M−1
(
y − α̂IAA

i a(θi)
)

= yHM−1y + aH(θi)M
−1a(θi)

(∣∣α̂IAA
i

∣∣2 − 2<
(
α̂IAA
i α̂MLE

i

))
= yHM−1y + aH(θi)M

−1a(θi)
(∣∣α̂IAA

i − α̂MLE
i

∣∣2 − ∣∣α̂MLE
i

∣∣2)
= yHM−1y −

∣∣a(θi)M
−1y

∣∣2
aH(θi)M−1a(θi)

(
1−

∣∣α̂IAA
i − α̂MLE

i

∣∣2∣∣α̂IAA
i

∣∣2
)
.

(5.24)

Then, similarly to (5.5), the detection test can be written as:

T (y|θi) =

∣∣a(θi)M
−1y

∣∣2
aH(θi)M−1a(θi)

G(θi)
H1

R
H0

γ, (5.25)

where

G(θi) = 1−
∣∣α̂IAA
i − α̂MLE

i

∣∣2∣∣α̂MLE
i

∣∣2 . (5.26)

The proposed decision test (5.25) is represented as a product of the standard matched

filter detector (5.5) and the gain term: G(θi). The effect of this term can be qual-

itatively analyzed by comparison of the recovered range velocity maps with the CI
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(which is MLE for single target in the noise-limited scenario) and IAA, shown in the

previous chapter (Fig. 4.4, 4.7). Note that for the correct locations of the targets∣∣αIAA
i − αMLE

i

∣∣� ∣∣αMLE
i

∣∣ and so G(θi) ≈ 1. Thus, around the correct target location,

the test reduces to the single point-target test with an additional loss due to approx-

imation. On the other hand, for the sidelobe location
∣∣αIAA
i − αMLE

i

∣∣ ≈ ∣∣αMLE
i

∣∣ and

accordingly G(θi) ≈ 0, which allows to reject false detections due to the sidelobes of

strong targets and simultaneously detect weak targets at their correct locations. In

presence of clutter, some similar performance is expected due to IAA stability against

whitening transform (4.23). In addition, it can be seen that G(θi) ≤ 1,∀θi ∈ Θ, there-

fore the proposed modification of the test ensures a bounded false alarm property

when the threshold for the original test is applied. Moreover, for small PFA ≤ 10−6,

the false alarms appears in the target-like spikes of clutter or noise, the magnitude of

which is well-estimated by IAA. The deviation of PFA of the proposed detector from

the required level in this case is expected to be small.

IAA-(B) detector Herein the detector of multiple point-like targets is derived for

the second-order Gaussian model, which assumes that the target response is zero-

mean Gaussian process with the CM, defined by the target signature. The detection

problem for the second-order Gaussian model is:

y ∼

{
H0 : CN (0,M) ,

H1 : CN
(
0,M + Pia(θi)a

H(θi)
)
,

(5.27)

where Pi corresponds to |αi|2 in the above notations. Define the GLRT:

Λ(y;Pi|θi) =
f (1)(y;Pi)

f (0)(y)

H1

R
H0

γ′ (5.28)

with the likelihood functions given by:

f (1)(y;Pi) =
exp

(
−yH

(
M + Pia(θi)a

H(θi)
)−1

y
)

πKM |M + Pia(θi)aH(θi)|
. (5.29)

under H1 and f (0)(y) = f (1)(y;Pi)|Pi=0. Simplifying the above with:∣∣M + Pia(θi)a
H(θi)

∣∣ = |M|
(
1 + Pia

H(θi)M
−1a(θi)

)
; (5.30)(

M + Pia(θi)a
H(θi)

)−1
= M−1 − PiM

−1a(θi)a
H(θi)M

−1

1 + PaH(θi)M−1a(θi)
(5.31)

gives the GLRT in the form:

Λ(y;Pi|θi) =
(
1 + Pia

H(θi)M
−1a(θi)

)−1
exp

(
Pi
∣∣aH(θi)M

−1y
∣∣2

aH(θi)M−1a(θi)

)
H1

R
H0

γ′. (5.32)
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Table 5.1: Simulated radar parameters

Parameter Value

Carrier frequency fc 10 GHz

Bandwidth B 1 GHz

PRI Tr 1 ms

Ambiguous velocity va 15 m/s

Pulses M 32

Range cells in LRRS K 8

According to [67], the MLE of Pi can be defined:

P̂i
MLE

= max

{∣∣aH(θi)M
−1y

∣∣2 − aH(θi)M
−1a(θi)

(aH(θi)M−1a(θi))
2 , 0

}
. (5.33)

Plugging this estimation into the GLRT results in a monotonic function of the statis-

tics (5.5) (for details see [67]).

In a multi-target scenario, an approximate MLE of P̂i is obtained via IAA P̂ IAA
i =∣∣xIAA

i

∣∣2, as demonstrated in [15, 16]. Therefore, the unambiguous scene estimation,

delivered by IAA, can be incorporated into a detector via P̂ IAA
i by:

Λ(y|θi) =
f (1)(y;Pi = P̂ IAA

i )

f (0)(y)

H1

R
H0

γ′. (5.34)

Substitution of the likelihood functions into (5.34) gives the detection rule ∀θi ∈ Θ in

the form:(
1 + P̂ IAA

i aH(θi)M
−1aH(θi)

)−1

exp

(
P̂ IAA
i

∣∣a(θi)M
−1y

∣∣2
aH(θi)M−1a(θi)

)
H1

R
H0

γ′. (5.35)

The estimate P̂MLE
i is a unique maximum of the likelihood ratio over Pi, which

implies that substitution of P̂ IAA
i into the test insures a bounded false alarm property

of (5.35). Similarly to the test (5.25), the detector (5.35) is expected to provide

better suppression of the sidelobes than the matched filter detector and approach the

required level for small PFA.

5.3 Performance assessment

In this section the performance of the following tests is investigated:

• Matched Filter (MF) detector (5.5);
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• RELAX-like detector of multiple targets (5.18) - (5.22);

• IAA-A detector (5.25);

• IAA-B detector (5.35).

The test (5.6), which involves maximization over the parameter space, is not consid-

ered for comparison here since it cannot tackle the situation with multiple targets

present in the scene, which is the main objective of this chapter.

Performance of the tests is evaluated by numerical simulations in three scenarios:

• Target-free scenario;

• Single target present in the data set;

• Multiple targets present in the data set.

The radar parameters, considered in the simulations are summarized in Table 5.1. The

ambiguity function for these settings is demonstrated in Fig. 2.3, b and the level of

its first ambiguous sidelobe is SL1 ≈ −10 dB. The maximum expected target velocity

is set to vmax = 32 m/s. The number of range cells is accordingly set to K = 8 in

order to satisfy (2.14). The range-velocity map is estimated in Nt = ntK = 32 range

and Nv = 2dnvMvmax/vae + 1 = 561 velocity samples accordingly. IAA estimation

obtained after IIAA = 5 iterations is used in IAA-A and IAA-B detectors.

The clutter has exponential decay Doppler PSD1 with β = 12, r = 0 and CNR =

σ2
c/σ

2
n = 20 dB. The detection curves are plotted for the post-processing SCNR:

SCNRs = |αs|aH(θs)M
−1a(θs), (5.36)

where θs is the location parameter of the s-th target.

5.3.1 Target-free scenario

Target-free scenario is considered in order to evaluate false alarm regulation of the

considered detectors: PFA = Pr {T (y|H0) > γ} ,∀θ ∈ Θ. False alarm regulation is

evaluated by testing 100 target free scenes of NtNv cells each, so in approximately

1.8 · 106 trials. Simulations results for different tests in the noise-limited case are

shown in Fig. 5.1. The horizontal axis shows the PFA set for each test (referred as

designed PFA) and the vertical axis corresponds to the value of P̂FA evaluated in

numerical simulations.

The results in Fig. 5.1 demonstrate that only the MF detector is a CFAR test, the

other tests, namely RELAX, IAA-A and IAA-B, have bounded false alarm probability.

1The details about exponential decay clutter spectrum are given in Chapter 3
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Figure 5.1: False alarm regulation

Bounded PFA property of the RELAX-like detector comes from its structure: it

applies post-processing to the output of MF detector, which is a CFAR test. If all

the declared targets pass this post-processing, the output is equal to that of the MF

detector; otherwise, some detections are removed from the set of targets, leading to

the bounded false alarm property of the RELAX detectors. Note that with increasing

of the threshold, PFA regulation of RELAX-like test converges to the designed value,

so for typical PFA ∈ [10−10, 10−6], the RELAX-like detector has approximate CFAR

behavior.

The proposed tests, which use IAA estimation, also ensure bounded PFA property,

as follows from their structure. Simulations results demonstrate that IAA-B test ap-

proached closer the designed PFA, compared to IAA-A test. It was observed that the

difference between the designed and obtained PFA for the IAA detectors can slightly

(within one order) vary with the PSD of the clutter and the processing parameters

(oversampling in range and time, number of IAA iterations).

5.3.2 Single target present in the data set

The scenario with a single target present in the data set is considered to evaluate

the ability of the detectors to declare the target presence at its correct location and

reject the ambiguous sidelobes. Probability of detection here is defined as probability

to declare the presence of the target within a resolution cell from its correct location

θ0 = {τ0, v0}:

PD = Pr

{
max
θ∈T

T (y|θ) > γ

}
, (5.37)

where T = {θ = {τ, v} ∈ Θ | (|τ − τ0| ≤ δR/2) ∧ (|v − v0| ≤ δv/2)} .
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Figure 5.2: Probability of detection vs SCNR of a single target, PFA = 10−5

The detection curves, evaluated in 100 independent realizations of the considered

detectors, are plotted in Fig. 5.2 for PFA = 10−5. The results demonstrate that

all the detectors have similar performance, except for for IAA-A, which experiences

about 0.5 dB loss compared to the MF detector. RELAX-like and IAA-B detectors

have almost the same performance as the MF detector.

In order to account for the behavior of the detectors not only in the vicinity

of the target location but also at the location of the ambiguous sidelobes, consider

the following metric. The probability of correct set detection is the probability that

all the targets present in the scene are detected at their correct locations (within a

resolution cell in each dimension) and at the same time no false targets are declared

in the observed scene:

PCD = Pr

{(
max
θt∈Ts

T (y|θt) > γ, ∀t = 1, . . . , S

)
∧
(

max
θn∈Θ−(T1∨...∨TS)

T (y|θn) < γ

)}
,

(5.38)

where Θ − T denotes the difference of the sets Θ and T . This metric accounts

simultaneously for the correct detection of the targets and for the false alarms, which

can occur due to a spike of clutter (noise) or as a false detection at a sidelobe of one

of the present targets and has been used before e.g. in [18] (hence there the number

of targets is assumed a priori known to the detector). Performance of the algorithms

then can be compared using the counterpart of the detection characteristic, which

demonstrates PCD as a function of the target SCNR. In this metric, the optimal

detector is characterized by a non-decreasing function, which increases similarly to

the detection curve in Fig. 5.2, but saturates at the level Pmax
CD = 1 − PFAKMnva,

where KMnva defines the number of range-velocity cells with the nominal range and

velocity resolution of the waveform. The simulation results for PFA = 10−5 and
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Figure 5.3: Probability of correct set detection vs SCNR for a single target present in the data set:

a - PFA = 10−5; b - PFA = 10−8.

PFA = 10−8 are demonstrated in Fig. 5.3; the performance has been evaluated in 100

independent realizations of the scene. In this setting Pmax
CD ≈ 0.99 and Pmax

CD ≈ 1−10−5

for PFA = 10−5 and PFA = 10−8 accordingly.

The analysis presented in Fig. 5.3 demonstrates that the MF detector has only

3-7 dB SCNR range, at which PCD ≥ 0.5. It expands with increasing the detection

threshold (decreasing PFA), but it is still limited by the level of the first ambiguous

sidelobe, which is SL1 ≈ −10 dB in the considered example. The IAA detectors

expand this interval in SCNR: IAA-B by approximately 2 dB compared to the MF

detector and IAA-A by 8 dB and 12 dB for PFA = 10−5 and PFA = 10−8 accordingly.

It demonstrates that the ability of IAA to remove ambiguous responses of strong

targets is also limited. The RELAX-like detector outperforms the other tests in a

wide range of SCNR.

5.3.3 Multiple targets scenario

The scenario with two targets in the scene is considered to study the ability of the

proposed techniques to declare the presence of multiple targets at their correct lo-

cations simultaneously. For the analysis here, a scenario with two point-like targets,

moving at different velocities is considered, since the presence of more moving targets

in one LRRS will rarely happen in reality (except observing a highway with multiple

lines). Moreover, the targets are located at random locations and do not compete

with each other (so, not located in the ambiguous sidelobes of each other), but can

compete with clutter. The appropriate metric to compare the performance of the

detectors in this case if the probability of correct set detection PCD, defined in (5.38).

Two scenarios are considered. In the first case, two targets with SCNR2 = SCNR1

are present in the observed LRRS. Simulations results for this scenario are given in

Fig. 5.4, which show probability of correct set detection PCD vs SCNR of each target
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Figure 5.4: Probability of correct set detection vs SCNR for the scenario with two non-competing

targets with equal SCNR: a - PFA = 10−5; b - PFA = 10−8.
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Figure 5.5: Probability of correct set detection vs SCNR for the scenario with two non-competing

targets SCNR2 = SCNR1 + 10 dB: a - PFA = 10−5; b - PFA = 10−8.

for PFA = 10−5 and PFA = 10−8. The performance in presence of two targets shows

some degradation compared to the scenario with a single target present in the scene

(Fig. 5.3). Only the RELAX-like detector provides correct detection of the present

targets when their SCNRs are high.

In the second case, one target is stronger than the other by 10 dB: SCNR2 =

SCNR1 + 10 dB. Simulations results for the case of equal targets are given in Fig.

5.5, where the horizontal line corresponds to the SCNR of the weak target (SCNR1).

In this case, only the RELAX-like detector provides correct detection of both targets,

while PCD of the other detectors is low. Recall that the degradation of performance

in Fig. 5.4, 5.5 is due to presence of ambiguous sidelobes in the detected map. The

targets will be still detected according to the curves, shown in Fig. 5.2, but with

multiple false detections at their ambiguous sidelobes.
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5.4 Conclusion

In this chapter, the problem of detecting multiple targets in the observed low range

resolution segment has been investigated. It has been demonstrated that conventional

matched filter detector will suffer from multiple false detections at the ambiguous side-

lobes of the real targets. The standard pick-the-peak detector cannot tackle this issue

because of the possible presence of the other targets in the data vector. New tech-

niques for detecting multiple targets in the received data vector are proposed, which

preserve false alarm probability at the required level. These detectors demonstrate

improved performance in terms of probability of correct targets detection compared

to the conventional techniques. The proposed detector, exploiting RELAX estima-

tion of the targets magnitudes, provides the best performance over the considered

approaches in a wide range of targets SCNRs.
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Chapter 6

Migrating target detection in

high resolution ground clutter

In this chapter the detection of fast moving targets in the ambiguous-to-clutter (or

blind) velocities is studied, considering specific aspects of the ground clutter being

observed by a high resolution radar. Due to target migration, fast-moving targets

compete with the clutter response from a few adjacent range cells during the CPI. In

the high-resolution mode, the clutter power in these range cells can vary significantly

along range; clutter is described by the compound-Gaussian model. The method to

incorporate clutter power variation over range in the detector of a migrating target

is investigated, and the benefits of applying this detector to migrating targets are

evaluated.

6.1 Introduction

The ability of the modern radars to process coherently the waveform with a large

bandwidth has significantly increased resolution capabilities of surveillance radars,

thus providing additional possibilities for target detection and classification [2, 6, 21].

However, target detection in the high range resolution (HRR) mode has a few dif-

ferences w.r.t. the detection in the low range resolution (LRR) mode. The targets

become extended in range and have non-negligible range-walk during the CPI, but

also the clutter probability distribution diverges from Gaussian, which lead to severe

degradation of the detection algorithms, derived under the assumption of Gaussian

clutter [21].

The Gaussian model of clutter, used in narrowband radars, is found not appli-

97
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98 6. Migrating target detection in high resolution ground clutter

cable in the case of HRR. Multiple measurements campaigns, performed with differ-

ent radars and in diverse conditions, have shown the deviation of the measured data

statistic from the Gaussian model [21,34–37]. Empirical distributions of the clutter in-

tensity were systematically observed to have larger tails than exponential distribution

(intensity distribution in case of Gaussian clutter). Different multi-parametric distri-

butions, including the Weibull, log-normal, and K distributions, have been adapted

to accurately describe the data and derive efficient detectors [40, 74, 75]. However,

those detectors miss unification, as completely different detection algorithms can be

derived as optimal for the same data set, being described by different models e.g. by

Weibull and K distributions.

A typical image of high resolution ground clutter is shown in Fig. 6.1. The radar

image is recorded with the PARSAX radar, operating in S-band and providing range

resolution of 1.58 meters1. It can be easily checked that clutter power varies over

a large range of values and sometimes has abrupt changes in range. Such clutter

behavior cannot be described with the Gaussian model of clutter, so more advanced

modeling is required.

The modern trend is to represent high resolution radar clutter by the compound

noise models (compound-Gaussian (CG) process, spherically invariant random vec-

tors (SIRV)) which provide a mathematical tractable tool to deal with non-Gaussian

clutter. The appearance of these models has been explained via the phenomenolog-

ical scattering picture of high resolution radar: the number of scattering centers in

the radar footprint cannot be assumed infinitely large anymore, so the central limit

theorem is not applicable and, thus, Gaussian clutter model is not valid anymore.

Accounting for the limited number of scattering centers in the radar footprint led to

validation of K -distribution [38]. The further development of this idea results in the

approach to model non-Gaussian radar clutter by a mixture of Gaussian distributions.

Such model is called the CG model [21,76,77]. The compound models accurately de-

scribe the scattering phenomena of clutter for short observation times [21, 78]. Most

distributions used to describe spiky clutter (including Weibull, K, Student and Gaus-

sian distributions) can be shown in the form of CG model [21–23]. The main advantage

of the CG model is its ability to separate clutter spectrum characteristics from its

PDF, which allows significant simplification of the detection algorithms.

Radar detection of a point target in CG and SIRV models has been extensively

studied during the last decades, resulting in a number of handful CFAR detectors for

point targets [21, 23]. Algorithms for interference CM estimation from the reference

CG data complement the aforementioned detectors and make them adaptive [21,79].

The detection algorithms, being different, are still performed in the manner of the low-

resolution radars – in each range cell. The estimated CM thus represents slow-time

1The detailed description of PARSAX radar is provided in Appendix A
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a

b

Figure 6.1: a - Clutter map of the park near Delft, b - Satellite image of the park from Google maps

spectrum characteristics of the competing clutter [21].

The targets of interest (planes, cars etc.), observed by a high-resolution radar, are

well modeled as a set of independent point scatterers separated along the range [32].
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That allows generalizing the developed algorithms for detection of range-extended

(also called range-distributed) targets. Thus, the detection of range-extended targets

has been first studied in case of homogeneous and locally-homogeneous Gaussian

clutter [10]. Hereinafter, the clutter model with a constant texture in the block of

range cells under test is reffered to as locally homogeneous clutter model [13]. Later,

these detectors have been extended to the case of inhomogeneous clutter, modeled as

SIRV [11, 12]. The assumption of independence between adjacent range cells under

both hypotheses plays a key role in the development of the aforementioned detectors.

In fact, it allows factorization of the decision test for an extended target in terms of

single range cell statistics within the target extent [11,12]. The possibility to include

clutter range correlation has been discussed in [12] with the rather simplified model

of CG clutter: texture is either completely correlated or uncorrelated between the

range cells (in fact, clutter is simply grouped into the blocks with equal local power),

the speckle components assumed uncorrelated between different range cells. Another

approach to model target extension is applied for Doppler spread targets. In this case,

the target response is modeled as a vector, which belongs to a particular subspace of

known dimension [80]. The detector, in this case, is developed for the subspace signal

[63]. An overview of detection techniques of range-extended targets can be found in

[21].

Opposite to the target range extension, target range-walk has been commonly ne-

glected in the detection literature. This assumption is usually justified by the use of a

short CPI (a few ms) for detection in each burst, or by focusing the detection problem

on slow-moving targets discrimination from static clutter. However, for the long CPI,

considered herein, target migration cannot be neglected, especially for the targets

at the ambiguous-to-clutter velocities. Recently, some detectors of range-migrating

targets in Gaussian [54] and locally Gaussian clutter [13] have been proposed. These

detectors require knowledge of the clutter correlation properties (via CM) in two di-

mensions: in range and slow-time. In other words, the detection of range-migrating

targets requires clutter correlation in range to be considered. Thus, Dai et al. [13]

showed that assumption of clutter independence between adjacent range cells leads

to the non-CFAR performance of the adaptive (with estimated CM) detector for

range-migrating targets. A similar observation has been made in the detection of a

target crossing the clutter boundary [81]. At the same time, the analysis of HRR

real data presented in [21, 37, 40, 82] suggests that radar ground clutter is correlated

in range over a few range cells. Clutter spatial correlation was recently considered

for slow-time CM estimation in HRR radar clutter [83] and detection of targets in

range-oversampled data [84].

The main objective of this chapter is to derive a CFAR detector for the case

of range-migrating target embedded in highly heterogeneous clutter following the

CG model and to evaluate the benefits of applying CFAR detectors to migrating
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targets. This chapter is organized as follows: in Section 6.2 the CG clutter model

is recalled and the method to consider spatial correlation is introduced; then, in

Sections 6.3 and 6.4 the detectors for the spatially uncorrelated and correlated clutter

are derived accordingly. Section 6.5 considers detection of a range-migrating and

range-extended target and Section 6.6 proposes a method for range / slow-time CM

estimation from the reference data. The performance of the proposed techniques

is assessed via numerical simulations in Section 6.7 and the major benefits of the

proposed techniques are highlighted in Section 6.8.

6.2 Clutter model and problem formulation

6.2.1 Clutter model

The signature of a moving target, observed by the HRR radar requires target detection

to be performed in a LRRS, contrary to the conventional detection in a single range

cell. Accordingly, the CG clutter model, usually defined for a single range cell, has to

be expanded to the LRRS. Clutter modeling in a few adjacent range cells is subject

to different models of spatial correlation. Two clutter models have been considered so

far [36,85]: independent interference model (IIM), assuming independent clutter from

one range cell to another, and dependent interference model (DIM), which takes into

account clutter correlation over range. In the following, the clutter model is defined

for the DIM, while IIM is shown to be a particular case of the former.

The CG process c is the product of the square root of the positive scalar quantity

τ , referred to as texture, and M -dimensional zero-mean complex Gaussian vector g,

called speckle [21]. The CG model, being a product of two random variables, gives

three ways to model spatial correlation: considering either the speckle component or

texture to be correlated over the range, or both of them. To choose between these

three models of CG clutter, some results on detection of a range-migrating target

in Gaussian clutter are recalled. The adaptive detector for this scenario involves the

estimated CM of stacked bi-dimensional data in range and slow-time of sizeKM×KM
[54]. The CG model can be considered as the extension of Gaussian model, which

preserves the correlation properties of the former, and allows the power variation

along the range. Therefore, herein it is assumed for the CG clutter, that the speckle

is correlated over the range, while the texture is independent from one range cell to

another. The independence of the texture is imposed for model tractability.

The clutter response in the LRRS can be represented by K ×M matrix C, its

vectorized counterpart is KM × 1 vector c = vec(CT ), which is given element-

wise by c = [c0, c1 . . . cKM−1]T . Hereinafter the clutter response in the k-th range

cell is referred by the sub-vector of length M : ck = [ckM , . . . , c(k+1)M−1]T , so

c = [cT0 , c
T
1 , . . . , c

T
K−1]T . Similar definition of subvectors holds for other KM × 1
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vectors.

The realization of clutter in the k-th range cell can be tackled as a realization

of CG process, denoted by: ck =
√
τkgk. In the LRRS, the speckle component is a

KM -dimensional complex multivariate Gaussian vector with zero mean and known

CM: g ∼ CN (0KM ,Q). The speckle component in the k-th cell gk is the subvector of

g, so it is an M -dimensional complex multivariate Gaussian vector, which complies

with the CG model for ck. The PDF of speckle component in the LRRS g can be

written in the form:

p(g) =
exp

(
−gHQ−1g

)
πKM |Q|

=
exp

(
−
∑K−1
i=0

∑K−1
j=0 gH

i Q−1i,j gj

)
πKM |Q|

, (6.1)

where notation Qi,j = QiM...(i+1)M−1,jM...(j+1)M−1 defines M × M block of the

speckle CM, Q−1i,j stands for the ith, jth block of Q−1 and Q is a Hermitian pos-

itive definite matrix.

Due to the assumption of texture independence along range, conditional on texture

covariance and cross-covariance matrices of clutter in the range cells of a LRRS are:

E{cicHj |τi, τj} =
√
τiτjE{gig

H
j } =

√
τiτjQi,j. (6.2)

The conditional on
√
τK PDF of CG clutter in the LRRS is:

p(c|
√
τK) =

exp

(
−
∑K−1
i=0

∑K−1
j=0

cH
i Q−1

i,j cj
√
τiτj

)
πKM |Q|

∏K−1
k=0 τMk

,
(6.3)

where K : k = 0 . . .K − 1. Generally, CG model is defined by a Gaussian vector

conditional on texture τk, while here it is defined as conditional on the square root

of the texture
√
τk. Since texture is a positive scalar, the transformation between τk

and
√
τk is unique; therefore, both parameterizations give equivalent representation.

The PDF of c is obtained from p(c|√τK) by averaging over
√
τK as follows:

p(c) = E{p(c|
√
τK)} =

∫ ∞
0

· · ·
∫ ∞

0

1

πKM |Q|
∏K−1
k=0 τMk

· exp

−K−1∑
i=0

K−1∑
j=0

cHi Q−1i,j cj
√
τiτj

K−1∏
k=0

p√τ (
√
τk) d

√
τ1 . . . d

√
τK−1,

(6.4)

where p√τ
(√
τk
)

denotes the PDF of
√
τk. Note that the DIM clutter model (6.4)

might look overcomplicated, but it satisfies the general requirement for the CG clutter,

namely, if the clutter texture is equal in all the range cells (including the reference

cells, not considered in (6.4)), the CG model degenerates to the Gaussian case.
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Figure 6.2: Detection scene in spiky clutter: a - range migrating point target; b - range migrating

extended target (target response along range is random).

The PDF of clutter in the LRRS (6.4) includes multidimensional integration over

interrelated variables
√
τk and therefore it does not provide a way to derive a detector

directly. In order to design a practical detector, two simplifications are considered in

the following sections separately:

• Clutter has no spatial correlation, so it satisfies IIM;

• Clutter texture is treated as an unknown nuisance parameter.

If both simplifications are applied together, the decision rule can be obtained as a

special case of each detector, derived below.

6.2.2 Problem formulation

The scenario under consideration is shown in Fig. 6.2. Assume clutter dominated

scenario, i.e. high CNR. Then M = E
{

(c + n) (c + n)
H
}
≈ E

{
ccH

}
and the

detection problem of a point target (Fig. 6.2 a) can be formulated as:

yk =

{
H0 : ck,

H1 : αak + ck,
k = 0 . . .K − 1, (6.5)

where α is a constant amplitude of a target in the LRRS under the hypothesis of

its presence (H1), yk, ck and ak are the sub-vectors, corresponding to the received

data, the clutter and the target responses accordingly in the k-th range cell (fast-time

sample, in Fig. 6.2, the k-th row is ak). The definition of the sub-vectors is identical

to that of ck given above.

In case of a range-extended target (Fig. 6.2, b), the detection problem can be

formulated as:

yk =

{
H0 : ck,

H1 :
∑
r∈R αak(r) + ck,

k = 0 . . .K − 1, (6.6)
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where R is the set of the range cells, over which the target is spread, and ak(r) have

the same velocity v0 (non-deformable target).

The design of a point target detector (6.5) is first considered. Then, the detector

is generalized to the case of a range-extended target (6.6). The design of detectors in

the next sections follows two-step procedure: first, a detector assuming known speckle

CM is investigated, and then an adaptive detector is obtained, which utilizes speckle

CM, estimated from the reference data set.

6.3 Migrating target detection in compound-Gaussian

clutter - independent interference model

This section aims at the design of an optimal detector for migrating target in CG

clutter, when clutter has no spatial correlation and the distribution of texture, given

by pτ (τK) or, equivalently, p√τ
(√
τK
)

is known a priori.

6.3.1 Assumptions

Assume clutter in the LRRS under test satisfies IIM, namely, the clutter vectors in

different range cells are statistically independent. Statistical independence of clut-

ter in adjunct range cells implies that both the speckle and the texture are uncor-

related over range, so the cross-covariance matrices of clutter (6.2) are zero ma-

trices: E{cicHj }|i6=j = 0M,M . Furthermore, assume clutter is homogeneous over

range: p(ci) = p(cj), ∀i, j ∈ K, which implies homogeneous texture: p√τ
(√
τ1
)

=

. . . = p√τ
(√
τK−1

)
= p√τ (

√
τ) and homogeneous speckle component over range:

gi ∼ CN(0,S), ∀i ∈ K [85]. To simplify the notations in this section the M ×M
speckle CM in slow-time is referred by Q1,1 = . . . = QK−1,K−1 = S. The clutter CM

in every range cells is then given by E{ckcHk } = E{τk}S; and the CM of clutter in a

LRRS has block-diagonal structure:

M =


E{τ0}S 0M,M · · · 0M,M

0M,M E{τ1}S · · · 0M,M

...
...

. . .
...

0M,M 0M,M · · · E{τK−1}S

 . (6.7)

Straightforward application of these assumptions to (6.3) and (6.4) results in the

following PDF of clutter in the LRRS:

p(c) =

K−1∏
k=0

p(ck) =

K−1∏
k=0

∫ ∞
0

exp
(
τ−1
k cHk S−1ck

)
(πτk)

M |S|
pτ (τk) dτk, (6.8)
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which is simply a product of clutter PDFs in the K range cells under test, statistically

independent of each other.

Under hypothesis H1 the PDF of the LRRS under test is derived from the PDF

under H0 by setting the mean value of the Gaussian form to be equal to the present

signal s = αa, where a is known steering vector and α is unknown, but constant

withing CPI complex amplitude of the target. The PDF of the LRRS under hypothesis

of target presence (H1) is then written using the known steering vector of the target

in the k-th range cell ak as:

f (1)(y;α) =

K−1∏
k=0

∫ ∞
0

exp
(
−τ−1

k (yk − αak)HS−1(yk − αak)
)

(πτk)
M |S|

pτ (τk) dτk, (6.9)

where the superscript in braces stands for the hypothesis index Hi, i ∈ {0, 1}. To em-

phasize the dependence of PDF under H1 on unknown target amplitude α, assuming

the received data vector y is fixed, it is referred hereinafter by the likelihood function

[86]. Its counterpart under H0 can be obtained by: f (0)(y) = f (1)(y;α)|α=0.

6.3.2 Detector design

The detection problem (6.5) involves unknown target amplitude α. Therefore, the

GLRT is performed to derive a detector [49]:

Λ(y) =
maxα f

(1)(y;α)

f (0)(y)

H1

R
H0

T, (6.10)

where T is the threshold calculated to ensure the desired probability of false alarm

(PFA).

The kernel function of the CG model allows simplification of (6.9) under both

hypotheses in the following form, depending on the texture PDF [21,36,85]:

hM (x) =

∫ ∞
0

τ−M exp
(
−x
τ

)
pτ (τ) dτ, (6.11)

resulting in the following expression for the likelihood functions in the LRRS under

both hypothesis:

f (1)(y;α) =

∏K−1
k=0 hM

(
(yk − αak)HS−1(yk − αak)

)
|S|K πKM

(6.12)

where f (0)(y) = f (1)(y;α)|α=0.

Next, the logarithm of likelihood function under H1 is maximized over the un-

known deterministic target amplitude α by taking the derivative and setting it to
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zero. It is done using the relation for derivative of function hM (x): ∂hM (x)/∂x =

−hM+1(x) and constructing the function cM (x) = hM+1(x)/hM (x). Finally, the

amplitude estimation has the form:

α̂ =

K−1∑
k=0

cM
(
(yk − α̂ak)HS−1(yk − α̂ak)

)
aH
k S−1yk

K−1∑
k=0

cM
(
(yk − α̂ak)HS−1(yk − α̂ak)

)
aH
k S−1ak

. (6.13)

The estimation α̂ is therefore defined by the transcendental equation (6.13) and re-

quires iterative solution, subject to known PDF of the clutter texture pτ (τ). A

convergence analysis of the iteration (6.13) is still the subject of the research; some

useful properties of functions cM (x) and hM (x) can be found in [87]. In the simulations

performed, the iteration (6.13) always converged, independently on its initialization.

The detection rule is then obtained by substitution of the estimation α̂ in (6.10):

Λ̂(y) =

K−1∏
k=0

hM
(
(yk − α̂ak)HS−1(yk − α̂ak)

)
hM

(
yH
k S−1yk

) H1

R
H0

T. (6.14)

The functions cM (x) and hM (x), considered above, are identical to the ones used

for the speckle CM estimation [85] and for detection of non-migrating targets [23] in

CG clutter with known PDF. For practical application this means that estimation of

S and detection can be done on the same (or identical) chain.

6.3.3 Case study - K-distribution

A particular case of compound Gaussian distribution is K-distribution, regularly used

to describe high resolution radar clutter [34, 37, 40]. In this case, the texture follows

Gamma distribution:

pτ (τ) =
1

Γ(ν)

(
ν

µ

)ν
τν−1 exp

(
−ν
µ
τ

)
1(τ), (6.15)

where 1(x) is the Heaviside step function and Γ(x) is the Gamma function; µ and

ν are the scale and shape parameters of Gamma distribution respectively. Then the

joint PDF of the LRRS can be expressed by substitution (6.15) into (6.11) and (6.12)

and non-linear functions hM (x) and cM (x) can be written analytically:

hM (x) =
2x

ν−M
2

Γ(ν)

(
ν

µ

) ν+M
2

Kν−M

(√
4νx/µ

)
;

cM (x) =

√
ν

µx

Kν−M−1

(√
4νx/µ

)
Kν−M

(√
4νx/µ

) .

(6.16)
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Figure 6.3: Weighting coefficients for different values of clutter shape ν, M = 32: a - hM (x), b -

cM (x)

with Kn(x) being the modified Bessel function of the second kind. The plots of these

functions hM (x) and cM (x) for different shaped of K-distribution are shown in Fig.

6.3 for M = 32 and µ = 1. Analytical expression of functions hM (x) and cM (x) have

been derived for a few heavy-tailed distributions, including Weibull and Student-t

[22].

It is interesting to examine two extreme cases of K-distribution shape parameter,

i.e. ν → 0 and ν →∞. If ν →∞, then the clutter tends to Gaussian distribution with

power pτ (τ) = δ (τ − µ), where µ is the known mean power of clutter. By definition

(6.11), the function hM (x) reduces to h∞M (x) = µ−M exp (−x/µ), which is linear in a

logarithmic scale, and, accordingly, cM (x) degenerates to a constant: c∞M (x) = µ−1

(superscript of functions hM and cM stands for specific value of K -distribution shape

parameter ν). As it can be expected, in this case, MLE of α̂ simplifies to its form in

Gaussian interference:

α̂ =

∑K−1
k=0 aH

k S−1yk∑K−1
k=0 aH

k S−1ak

=
aHQ−1y

aHQ−1a
, (6.17)

where the second representation uses the speckle CM in the LRRS (6.1). Straight-

forward simplification of the GLRT (6.14) by means of (6.17) leads to the following

decision rule:

ln
(

Λ̂(y)
)

=

∣∣aHQ−1y
∣∣2

µ aHQ−1a
, (6.18)

which is a general form of a scale-invariant detector considered in [63]. The particular

case of clutter scale parameter µ = 1 then degenerates to the Matched Filter detector

(5.5).
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The other limiting case appears when ν → 0. Gamma PDF is not defined for

ν → 0, but tends to have non-informative PDF of the texture. A possible non-

informative prior can be flat over all possible values of τ bounded above by τmax:

pτ (τ) = (1(0)− 1(τmax)) /τmax. Setting the upper limit of the integral in (6.11) to

τmax and solving it for τmax → +∞ (by changing the variable z = 1/τ and using eq.

3.351.3 of [88]), it is possible to find the resulting functions h0
M (x) = Γ(M) x−M and

c0M (x) = M/x. The plots of these functions with µ = 1 are also shown in Fig. 6.3 for

comparison. The amplitude estimation then reduces to:

α̂ =

∑K−1
k=0

aH
k S−1yk

(yk−α̂ak)HS−1(yk−α̂ak)∑K−1
k=0

aH
k S−1ak

(yk−α̂ak)HS−1(yk−α̂ak)

(6.19)

and the GLRT (6.14) has the form:

Λ̂(y) =

K∏
k=1

(
(yk − α̂ak)

H
S−1 (yk − α̂ak)

yH
k S−1yk

)−M
H1

R
H0

T. (6.20)

Note that in case of any value of ν < +∞ (so, except of the Gaussian clutter), the

estimation of α̂ is defined by the transcendental equation, and so it has to be solved

iteratively.

Further note that the detector given by (6.19) and (6.20) does not involve

distribution-dependent functions hM and cM explicitly. This result, obtained with

the non-informative prior of texture is equivalent to considering clutter texture as an

additional unknown parameter, instead of random quantity with a given PDF pτ (τ).

Therefore, the detection rule, given by (6.19) and (6.20), is the distribution-free test

for the IIM of clutter.

6.4 Migrating target detection in compound-Gaussian

clutter - dependent interference model

6.4.1 Assumptions

When range correlated clutter is considered, the assumption of homogeneous texture

in (6.4) does not simplify the problem considerably. Namely, the multiple integral

cannot be factorized in terms of functions hM (x) and cM (x), given above; so the

derivation of the likelihood ratio from (6.4) seems intractable even for known PDFs

[21].

The way to overcome this limitation is to consider each texture as an unknown

deterministic parameter to be estimated in the GLRT. The same strategy is usu-

ally employed for non-migrating target detection to obtain the distribution-free test.
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It has been shown in [23] that for moderate number of pulses in CPI (M > 16)

the performance of the distribution-free detector approaches the performance of the

distribution-aware one. Moreover, the target range-walk can be observed only for

large M , therefore, from this point on, the texture is regarded as an unknown con-

stant and denoted by σ2
k.

As follows from the problem formulation and clutter model, the detection problem

(6.5) involves unknown parameters σ2
K and α. In order to derive a detector the GLRT

is performed:

Λ(y) =
maxσK,α f

(1)(y;σK, α)

maxσK f
(0)(y;σK)

. (6.21)

The likelihood function of the LRRS under H1 is:

f (1)(y;σK, α) =

exp

(
−
∑K−1
i=0

∑K−1
j=0

(yi−αai)
HQ−1

i,j (yj−αaj)

σiσj

)
πKM |Q|

∏K−1
k=0 σ2M

k

.
(6.22)

and similarly f (0)(y;σK) = f (1)(y;σK, α)|α=0.

6.4.2 Detector design

First, find the estimation of σK under both hypotheses by maximizing the loga-

rithm of (6.22) w.r.t. each σk, k ∈ K. To simplify further derivations, denote

q
(1)
i,j = (yi − αai)

H
Q−1i,j (yj − αaj) and q

(0)
i,j = yH

i Q−1i,j yj, where i, j ∈ K. Then the

sum in the exponential term of (6.22) can be expressed as:

K−1∑
i=0

K−1∑
j=0

q
(H)
i,j

σiσj
=
q

(H)
k,k

σ2
k

+ 2<

 K−1∑
j=0,j 6=k

q
(H)
k,j

σkσj

+
K−1∑

i=0,i6=k

K−1∑
j=0,j 6=k

q
(H)
i,j

σiσj
. (6.23)

Note that q
(H)
k,j is independent of σK; and that the last item in (6.23) represents terms

independent of the data in the k-th range cell. The estimation of σk is found by

taking the derivative of logarithm of (6.22) w.r.t. σk using (6.23) and setting it to

zero. Then, the estimation of σ
(H)
k is obtained as the positive solution of the quadratic

equation:

(
σ

(H)
k

)2

− σ(H)
k

K−1∑
j=0,j 6=k

<
(
q

(H)
k,j

)
Mσ

(H)
j

−
q

(H)
k,k

M
= 0, (6.24)

which is dependent on σ
(H)
j∈K,j 6=k and it also depends on α under H1 via q

(1)
k,j = q

(1)
k,j (α).

The likelihood function (6.22) for the K range cells in the LRRS depends on K
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independent unknowns σK, and results in K interrelated equations in the form of

(6.24) under each hypothesis.

By denoting: b
(H)
k = −

∑K−1
j=0,j 6=k

(
Mσ

(H)
j

)−1

<(q
(H)
k,j ) and c

(H)
k = −q(H)

k,k /M , it is

easy to show that each of K equations always (under any hypothesis Hi, i ∈ {0, 1},
with any realization of data q

(H)
k,j and any assumption on σ

(H)
j∈K,j 6=k) has two real roots,

as
(
b
(H)
k

)2

− 4c
(H)
k > 0,∀k ∈ K. Moreover, from Vieta’s formula for the second-order

polynomial, it follows that the roots of (6.24) satisfy σ
[1]
k σ

[2]
k = ck < 0, so only one

root is positive, which is the one of interest. Therefore, each equation for σ
(H)
k has a

unique solution, which can be obtained given all the other parameters are fixed:

σ̂
(H)
k = g

(H)
k

(
σ̂

(H)
j∈K,j 6=k

)
, (6.25)

where

g
(H)
k

(
σ̂

(H)
j∈K,j 6=k

)
=

1

2

(
−b(H)

k +

√(
b
(H)
k

)2

− 4c
(H)
k

)
. (6.26)

Then, under H0, the system of K equations σ̂
(0)
k = g

(0)
k

(
σ̂

(0)
j∈K,j 6=k

)
of the form

(6.25) for K unknowns σK is built and it can be solved iteratively by the fixed point

iteration for a system of equations.

Similarly, under H1, K equations for σk (6.25) are defined: σ̂
(1)
k =

g
(1)
k

(
σ̂

(1)
j∈K,j 6=k, α

)
, which depend on K + 1 unknowns: σK and α. The last equa-

tion for the system under H1 provides the estimation of amplitude α in the canonical

form:

α̂ =
aH
(
M̂(1)

)−1
y

aH
(
M̂(1)

)−1
a
, (6.27)

where the matrix M̂(1) is defined according to the clutter model (6.2):

M =

 σ2
0Q0,0 · · · σ0σK−1Q0,K−1

...
. . .

...

σK−1σ0QK−1,0 · · · σ2
K−1QK−1,K−1

 . (6.28)

with σK being substituted with their estimates under hypothesis H1, so: M̂(H) =

M|
σK=σ̂

(H)
K

. The K equations for σ̂
(1)
k (6.25) and one for α̂ form the system of K + 1

equations with K + 1 unknowns, to be solved similarly to that under H0.

In order to perform detection, the estimations σ̂
(0)
k , σ̂

(1)
k and α̂ should be sub-

stituted into the GLRT. However, straightforward substitution of estimators (6.25)
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and (6.27) into the likelihood ratio (6.21) leads to a bulky form of the decision

rule. To derive a compact representation, rewrite equation (6.24) in terms of

µ̂
(H)
k,j = (σ̂

(H)
k σ̂

(H)
j )−1q

(H)
k,j as:

K−1∑
j=0,j 6=k

<
(
µ̂

(H)
kj

)
+ µ̂

(H)
kk = M. (6.29)

Then, the exponential term of the likelihood function under each hypothesis (6.23) is:

K−1∑
k=0

K−1∑
j=0

q
(H)
k,j

σ̂
(H)
k σ̂

(H)
j

=

K−1∑
k=0

µ̂(H)
kk +

K−1∑
j=0,j 6=k

µ̂
(H)
kj

 = KM, (6.30)

where the second equality holds because of (6.29) and Hermitian structure of the

clutter CM. Consequently, the exponential term of the likelihood functions (6.22)

does not affect the detection. The GLRT has a form:

Λ(y) =

K−1∏
k=0

(
σ̂

(0)
k

σ̂
(1)
k

)2M
H1

R
H0

T, (6.31)

where T is the threshold to satisfy the appropriate probability of false alarm PFA.

The convergence of the iterative estimator (6.25) and its approximate solution

with a lower computational burden are discussed in the Appendices D.1 and D.2

accordingly.

The clutter model, given above gives the maximum fidelity to represent clutter

variation over the range. However, in some scenarios, such flexibility of the model

is not required and can be traded for a more efficient implementation. Obviously,

the most straightforward assumption to be considered is clutter independence from

one range cell to another, so IIM, which implies b
(H)
K = 0K and the decision rule

degenerates to the test derived above by equations (6.19) and (6.20). More generally,

the clutter can be assumed to have a boundary between two non-overlapping regions

with different power, modeled in terms of SIRVs. The scenarios of interest, where

such simplification can be made, include homogeneous clutter with an outlier in one

or a few adjacent range cells e.g. due to the presence of an electricity pylon or mast;

or clutter transition between two regions, e.g. between a field and a forest. The

detector for such scenario can have a simplified form of (6.31), given in Appendix

D.3. However, the latter detector requires knowledge of the clutter boundary between

two regions, and thus it less adaptive to the radar scene. Possible implementation

of such detector might include construction of the clutter map of surrounding clutter

and further estimation of the clutter boundaries from that map using an appropriate

edge detection technique (e.g. Canny or Sobel’s edge detectors [89]). Similar clutter

scenario has been considered in [81], where the authors developed a few detectors for

the case of IIM, with a block-diagonal CM in the LRRS under test.
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6.5 Extended target detector

The targets of interest, observed in HRR radar mode (with a meter or sub-meter range

resolution), become extended in range. Because of the target migration and also the

clutter correlation in range, the key assumption of [11, 12] on data independence in

adjacent range cells is obviously not valid. Therefore, for the detection of range-

extended targets with the range-walk the theory of subspace detectors [63] is adopted

here. Assume the target vectorized signal s lies in the subspace of dimension R:

Ψ = [a(0), . . . ,a(R − 1)], so s = Ψα, where α = [α0, . . . , αR−1]T . Since the target

extension in range is considered, the subspace vectors correspond to the target steering

vectors at different range cells k0, but with the same velocity v0 in (2.23). The

reflection from the moving parts of the target, such as wheels, blades etc, is neglected.

Denote by s the signature of the extended target in the LRRS (instead of

αa for a point target). The quadratic form under H1 then becomes q
(1)
i,j =

(yi − si)
H

Q−1i,j (yj − sj), where si is the sub-vector of the target signal in the i-th

range cell. With that modification, the estimation of σ̂
(H)
K has the same form as

above, i.e. (6.24).

The estimation of α̂ can be found by maximizing the likelihood function w.r.t.

each element of α in the form:

α̂r =
aH (r)

(
M̂(1)

)−1 (
y −

∑R−1
j=0,j 6=r α̂ja(j )

)
aH (r)

(
M̂(1)

)−1
a(r)

. (6.32)

Therefore, for detection of a target spread over R range cells, the detector under H1

uses K estimation of σ̂
(1)
K with the modification, described above, and R equations for

α̂r. Thus the estimations of parameters are the solutions of the system of K+R equa-

tions with K +R independent unknowns, to be solved iteratively. The detection rule

for the range-extended target can be shown in the form (6.31) with the appropriate

definition of q
(1)
i,j .

Note, that in general, the signal subspace is not known in advance. So, to make

such a detector applicable, some assumption on the target extent should be made

based on the prior knowledge of the scene or extracted from the data using some

model order selection techniques, e.g. [90].

6.6 Covariance matrix estimation and adaptive detection

In the previous section, it was assumed that slow-time/range speckle CM Q is known

a priori, which is generally not the case in real applications. A practical strategy

to overcome this limitation is to substitute known CM with its estimation from the

secondary data [21].



i
i

“”Thesis Nikita Petrov”” — 2019/6/7 — 11:54 — page 113 — #127 i
i

i
i

i
i

6.6 Covariance matrix estimation and adaptive detection 113

In Gaussian clutter, the sample CM is known to be the MLE of CM (e.g. [55]), and

it is used in the corresponding adaptive detectors [64,65]. The aforementioned detec-

tors consider CM estimation in a single range cell; in Gaussian clutter the extension

to the LRRS is straightforward. In CG clutter, the ML estimation of slow-time CM is

defined as the solution of the transcendental equation [85, 87, 91], which requires the

knowledge of texture PDF. The distribution-free CM estimator, called approximate

ML (AML) estimator [85, 92], is obtained assuming clutter texture in each reference

range cell is a deterministic unknown parameter. This estimator can be applied di-

rectly for the estimation of the slow-time speckle CM, required for the IIM detector.

In case of DIM, range/slow-time CM can be derived in a similar manner only under

the assumption of locally homogeneous environment. Herein inhomogeneous clutter

in the reference cells is considered, which follows the model of Section 6.2, and a

new algorithm for range/slow-time speckle CM estimation from that reference data

is proposed.

Assume L > KM independent and target free reference LRRSs with homo-

geneous speckle component are available. The received data in the l-th refer-

ence cell z(l) = [z0(l), z1(l), . . . , zKM−1(l)]T can be arranged by the range cells as:

z(l) = [zT0 (l), zT1 (l), . . . , zTK−1(l)]T . The speckle component of z(l) is a complex

Gaussian KM vector g(l) ∼ CN (0KM ,Q), and the texture is σK(l). The received

data in the l-th reference LRRSs then can be modeled by: z(l) = W(l)g(l), where

W(l) = diag (σ0(l), . . . , σK−1(l)) ⊗ IM represents the realizations of the texture in

the reference LRRS l, constant over slow-time. The clutter in the reference LRRS

l is complex Gaussian KM vector z(l)|W(l) ∼ CN (0KM ,M(l)), conditional on the

texture realization via:

M(l) = E{z(l)zH(l)} = W(l)E{g(l)gH(l)}W(l) = W(l)QW(l). (6.33)

Given the structure of clutter CM in the l-th LRRS, the two-step maximization pro-

cedure of [85] is adopted for the range slow-time speckle CM estimation from the

reference data set.

At the first step of maximization, the texture estimates σ̂K(l) are provided for

all the reference LRRSs: ∀l ∈ L, where L : l = 0, . . . , L − 1. Then, speckle CM is

estimated by:

Q̂ =
1

L

L−1∑
l=0

Ŵ−1(l)z(l)zH(l)Ŵ−1(l), (6.34)

with Ŵ(l) = W(l)|σK(l)=σ̂K(l).

At the second step, the speckle CM estimation Q̂ is fixed to obtain the MLE of

σk(l),∀k ∈ K,∀l ∈ L. The estimation of σk(l),∀k ∈ K in each LRRS l corresponds

to the estimation of σ̂k under H0 and obtained via (6.25) iteratively. The involved
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Algorithm 1 Range/slow-time covariance matrix estimation in CG clutter

1: Initialize: Q̂(0), IQ, Iσ, σK(L)

2: for iQ = 1, IQ do // Loop of CM estimation

3: for iσ ← 1, Iσ do // Loop of σk(l) estimation

4: σ̂k(l)← g
(0)
k

(
σ̂j∈K,j 6=k(l), Q̂(iQ − 1)

)
,∀k ∈ K, ∀l ∈ L // Eqn. (6.25)

5: end for

6: Ŵ (l)← diag (σ̂K(l))⊗ IM , ∀l ∈ L
7: Q̂(iQ)← 1

L

∑L−1
l=0 Ŵ−1(l)z(l)zH(l)Ŵ−1(l) // Update CM, eqn. (6.34)

8: Q̂(iQ)← Q̂(iQ)

Tr(Q̂(iQ))
9: end for

10: Q̂← Q̂(iQ) // Output

parameters b
(0)
k (l) and c

(0)
k (l) are the functions of the known data in the reference cell

z(l) and unknown parameters σ̂j∈K,j 6=k and Q̂, to be jointly estimated. In short, it

can be written as:

σ̂k(l) = g
(0)
k

(
σ̂j∈K,j 6=k(l), Q̂

)
. (6.35)

So the algorithm for the range slow-time speckle CM estimation involves two

nested loops. The inner loop updates the texture estimation in all the reference

LRRSs by means of (6.35); and the outer loop updates the speckle CM by means of

(6.34). The pseudo-code of the algorithm is listed in Algorithm 1.

A few comments are in order regarding the Algorithm 1. First, the algorithm

should be initialized with some estimation of CM Q. If no prior knowledge about

textures is available, the reasonable choice is the sample SCM:

Q̂SCM =
1

L

L−1∑
l=0

z(l)zH(l), (6.36)

however, other choices, such as identity matrix or random matrix, are possible [92].

Second, the number of iterations in the outer loop IQ can be limited to a few [85],

since the further improvement in CM estimation has a minor effect on detection

performance. Third, the iterative procedure in the inner loop might be initialized

with σ̂K(L) obtained at the previous step of the outer loop and then estimated in a

few iterations Iσ. The latter relies on the fact that Q̂ does not vary significantly from

one iteration to another. Note, that each loop can be stopped when the corresponding

convergence criteria, such as [85,92], is satisfied. Forth, the iterative estimation (6.34)

is normalized by Tr(Q̂) at each iteration for the identification reasons [85,92].

The adaptive detector has the form defined above, namely (6.31), where the known

matrix Q is substituted with its estimation from the reference dataset Q̂.
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Some criticism can be raised against the possibility to estimate the CM Q̂ in

real applications, since the number of reference cells required to obtain its estimation

might be large, in comparison to that in the conventional radars. Thus, assume the

clutter is Gaussian, the loss in detection using estimated CM will follow the rule of

Reed, Mallett and Brennan (RMB rule) [93], which says that to ensure 3 dB loss in

detection performance due to CM estimation, 2KM independent LRRSs, or 2K2M

range cells, should be used for the estimation. The number of the reference cells is

large, but translated in meters it is equivalent to a few hundred meters, which is com-

parable to the existing narrowband systems. For example, the standard surveillance

radar transmits 20 pulses in a burst with the bandwidth B = 5 MHz, so δR = 30

m. According to RMB rule, for 3-dB loss in detection, 40 reference range cells are

required, which is equivalent to 1200 m. The same scene observed with δR = 0.3

m (500 MHz BW) would result in 4000 reference cells. The condition for similar

performance is K2M = 2000, which can be satisfied in some scenarios (depending on

vmax). Further reduction of the reference data and computational complexity can be

obtained using structured CM estimation techniques, e.g. [94, 95].

6.7 Simulation results and discussion

In this section, the performance of the proposed algorithms is assessed by numerical

simulations. The parameters of the radar are fixed to: fc = 10 GHz, B = 1 GHz

(δR = 0.15 m), Tr = 1 ms, M = 32. The maximum expected velocity of a target is

set to: |v0| ≤ vmax = 1.5va = c/(2fcTr) = 22.5 m/s; for a point target detection we

set K = 6 to satisfy (2.14). The constraint on the maximum velocity is set to reduce

the computational time of the numerical simulations.

The texture components τ2
K follows Gamma distribution, so the clutter follows the

K -distribution, a special case of CG; the shape parameter and the scale parameter are

fixed to ν = 0.5 and µ = 1 accordingly. The speckle CM has the structure Q = D⊗S,

so the speckle correlation in slow-time is defined by M ×M matrix S and in range

by K ×K matrix D.

For PFA and PD assessment, 106 and 103 Monte-Carlo trials are performed ac-

cordingly.

6.7.1 Detector for independent interference model

Convergence analysis and false alarm regulation First, the convergence of the pro-

posed iterative amplitude estimation, involved in the decision test, is studied. Two

amplitude estimators are considered: the estimator relying on the known PDF of

texture (6.13) and the distribution-free estimator (6.19). The convergence is studied
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Figure 6.4: Convergence of the amplitude estimators (6.13) and (6.19) vs clutter shape
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Figure 6.5: False alarm regulation in K-distributed clutter, ν = 0.5: a - Known distribution of

texture, b - Distribution-free test

by numerical evaluation of the widely used criteria:

C(i) =
|α̂i+1 − α̂i|
|α̂i|

, (6.37)

where α̂i stands for the estimation of α at i-th iteration with the corresponding

estimator. The estimation of criteria C(i) is shown in Fig. 6.4 for ν = {0.1, 0.5, 10},
averaged over 103 trials with different velocities. The convergence is achieved in all

the scenarios after about 15 iterations, when the criteria reaches the precision floor.

Moreover, the convergence is linear for ν ≥ 0.5 and has a plateau region at the first

few iterations in case of very spiky clutter. Also, the difference between distribution-

free estimator and the one, optimized for the given clutter shape is minor and can be

observed only for Gaussian-like clutter (ν ≥ 10).

Apart from the amplitude estimation, a priori known distribution of texture is in-
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Figure 6.6: False alarm mismatch of the distribution-free test vs iteration number

volved in the detection test via function hM (6.14). Therefore, it is interesting to study

the convergence impact on the decision test directly. That can be done by comparing

the false alarm regulation vs iteration of the test (6.14) and the distribution-free test

(6.20). The results for ν = 0.5 are shown in Fig. 6.5, with the threshold defined

by T = P
− M
M−1

FA . This relation for the threshold is obtained by noticing that the

detection test in (6.13), (6.14) for the case of a non-migrating target (v0 ≈ 0) can be

simplified to the form (6.41) listed below, considering the asymptotic behavior of hM
[96]. For the case of a migrating target, an analytical expression for the probability

of a false alarm is not available, however, the relation above fits accurately to the

numerical simulations performed, independently on the target velocity. Simulation

results, demonstrated in Fig. 6.5, show that the test, relying on the known clutter

distribution (6.14) converges to the desired performance already after 1 iteration,

while the distribution-free-test (6.20) requires 2 iterations in the studied case. For

comparison, PFA regulation of the test:

|aHQ−1y|2

(aHQ−1a) (yHQ−1y)

H1

R
H0

TLRR−NMF. (6.38)

is also shown in Fig. 6.5. The latter detector is derived under the locally-Gaussian

assumption Q = IK ⊗ S and referred to by LRR NMF (normalized matched filter).

Incorrect clutter model results in significant (of a few orders) PFA degradation of the

aforementioned detector.

It has been noted that the test with known clutter distribution performs CFAR

detection for any values of clutter shape parameter after one iteration. Conversely, the

distribution-free test requires different number of iterations to converge, depending on

the clutter spikiness, as studies in Fig. 6.6 for PFA = 10−4. The plots show that for

practical values of clutter shape parameter ν = 0.5÷ 10, two iterations are sufficient
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Figure 6.7: Detection probability of a migrating target in K-distributed clutter, ν = 0.5, v0 =

7.5m/s, PFA = 10−6

to get CFAR behavior. In what follows 1 iteration is run for the performance analysis

of the test with a priori known clutter distributions and 2 iterations are run for the

distribution-free test.

In practice, the PDF of clutter is unknown, but it can be estimated from data

in homogeneous environment, resulting in a faster convergence of the detector. If

a reliable estimation of texture PDF cannot be retrieved from the data due to fast

varying radar scene, such as urban environment, distribution-free detector seems more

attractive. The distribution-free test also avoids calculation of functions cM (x) and

hM (x) — the procedure being sometimes hard to implement

Detection performance The other important characteristic of a detector is the de-

tection probability. Two crucial factors influence the detection performance: correct

model of clutter and representative model of the target. Incorrect model of clutter

results in a detector not satisfying CFAR property, as shown above. On the other

hand, target migration is often ignored for detection, resulting in a simple detection

rule. For example, detection of non-migrating targets in CG clutter is performed

per range cell with the distribution-free test, known as normalized matched filter

(NMF) or adaptive cosine estimator (ACE). This test is CFAR test. However, it has

significant loss in detection performance, when applied for a migrating target, result-

ing from the target model mismatch. For example, consider a point target, moving

with velocity v0 = 0.5va = 7.5m/s, which migrates v0MTr = 0.24m = 1.6δR during

CPI. In Fig. 6.7, the detection performance of NMF applied to one range cell with

narrowband target signature (NB NMF) is compared with two proposed techniques

(known texture distribution and distribution-free) together with the clairvoyant de-

tector. Clairvoyant detector is implemented as the matched filter detector, applied

for the LRRS under test with the correct steering vector of the target and assuming
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a priori known clutter CM in the LRRS (6.7). The latter implies predefined values

of textures in the K range cells under test and therefore implemented by:

|aHM−1y|2

(aHM−1a)

H1

R
H0

Tclair. (6.39)

The horizontal axis of Fig. 6.7 corresponds to SCR after coherent integration and

whitening:

SCR =
|α|2

E{τ}
aHQ−1a. (6.40)

This result clearly shows that not accounting for target migration results in severe

loss in the detection performance. This loss increases for fast moving targets propor-

tionally to the smearing of the target response due to migration and diminishes for

slow-moving targets. In the limiting case of v0 = 0 the distribution-free test for a

migrating target (6.19), (6.20) at the range cell k0 can be simplified to:

|aH
k0

S−1yk0 |2(
aH
k0

S−1ak0

) (
yH
k0

S−1yk0

) H1

R
H0

T. (6.41)

where ak0 is K × 1 vector of ones, since no Doppler frequency shift is present for a

stationary target. Therefore, the proposed distribution-free test for migrating target

degenerated to the NMF, when target migration is negligible. If the test (6.41),

considering no migration in the target model, is applied to other velocities with their

narrowband signature, it is referred by NB NMF and was mentioned above.

An interesting phenomenon can be observed with a careful analysis of Fig. 6.2.

There, a moving target of interest is shown to cross a number of range cells during

CPI. The number of these range cells is proportional to the velocity of the target

MTrv0/δR, given the parameters of the radar are fixed. Intuitively, the faster the

target, the more it migrates, the lower should be the probability to miss the target

due to a possible clutter spike in one range cell, so the higher the probability of

detection: target range-walk along non-Gaussian clutter thus can provide a new way

to exploit clutter diversity. Such diversity on clutter is intrinsic for a migrating target

and makes the detection probability in high resolution clutter velocity-dependent. A

numerical study of this phenomenon is demonstrated in Fig. 6.8 for three different

shape parameters of K-distribution. Note that by the model definition, the test for

a target with v = 0 is equivalent to NMF applied for one range cell. In all the cases,

the fast moving target is easier to detect than the stationary one: the improvement is

significant for very spiky clutter - about 7 dB for ν = 0.5, reasonable for moderately

spiky clutter - about 4 dB for ν = 1 and negligible for the Gaussian-like clutter -

about 0.5 dB for ν = 10. In the limiting case ν → +∞, the clutter is Gaussian and
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Figure 6.8: Detection probability of a migrating target with the distribution-free test for different

velocities of the target, PFA = 10−6 and clutter shape parameter a - ν = 0.5; b - ν = 1; c - ν = 10

the detector simplifies to (6.18), which does not depend on target velocity. Also, the

detection improvement increases non-linearly with the target range-walk enlargement.

The major improvement is observed, when the target migrates at least one range cell.

Thus, 5 dB improvement in detection can be observed for ν = 0.5 and 1.6 range cells

migration (v0 = 0.5va); additional range-walk of 1.6 range cells (v0 = va) then brings

only in 1 dB additional gain in detection performance; another increase in the target

migration by 1.6 range cell (v0 = 1.5va with total migration of 4.8 range cells) then

results in less than 1 dB gain. Clearly, the detection improvement gradually saturates

with increasing the velocity. For ν ≥ 1 the difference between v0 = va and v0 = 1.5va
is minor. The phenomenon is akin to range-extended target detection in non-Gaussian

clutter, where the detection performance depends on the target extent [11, 12]. The

major difference between the two approaches is that for a range migrating target,

its signature is summed up coherently along the range walk, while the response of a

range extended target is integrated incoherently along its extent.

To sum up, target range walk provides a novel way to exploit diversity on clutter.
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Figure 6.9: ROC curves for a target with SCR = 0 dB after coherent integration in K-distributed

clutter: a - v0 = 0.5va, ν = 0.5; b - v0 = 0.5va, ν = 1; c - v0 = 1.5va, ν = 0.5; d - v0 = 1.5va, ν = 1

The observed diversity gain is not linear and saturates as the number of the range

cells increases: the major improvement is obtained by the first 3 range cells migration,

and the effect fully saturates for a range-walk over 5 range cells.

An alternative way to represent the advantages of the proposed detectors over

the existing techniques is to evaluate the ROC of them. The scenario for numerical

evaluation of the ROC curves is similar to that considered above: a point target with

SCR = 0 dB after coherent integration moving with velocity v0 = 0.5va = 7.5 m/s or

v0 = 1.5va = 22.5 m/s is considered. The clutter follows K-distribution with shape

parameters: ν = 0.5 and ν = 1. The performance comparison is performed for all the

detectors mentioned above, namely: detector of migrating target with prior knowledge

of texture PDF and distribution-free one, LRR NMF, NB NMF and the clairvoyant

detector. Simulation results are shown in Fig. 6.9, each plot corresponds to a specific

combination of ν and v0. The results show significant improvement of the proposed

techniques with respect to the conventional detectors (LRR NMF and NB NMF).
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Figure 6.10: Convergence of DIM estimator (6.25) in K-distributed clutter: a - ν = 0.5, b - ν = 0.1

Note the different nature of performance degradation of these algorithms: LRR NMF

suffers from the incorrect model of clutter and therefore loses CFAR property; on the

other hand, NB NMF keeps CFAR property, but brings significant loss in detection

because of target signature mismatch. The loss of the proposed algorithms compared

to the clairvoyant detector is negligible. The comparison of the plots with equal

clutter shape parameter allows to see the benefits of a fast moving target detection

over slow one in spiky clutter, already mentioned above.

6.7.2 Detector for dependent interference model

Convergence analysis and false alarm regulation The convergence of the estimator

(6.25) is analyzed by numerically evaluating the widely used criterion:

C(i) =
||Ŵ(H)

i+1 − Ŵ
(H)
i ||2

||Ŵ(h)
i ||2

, (6.42)

where Ŵ
(H)
i stands for the matrix W = diag (σ0, . . . , σK−1)⊗IM built of the estima-

tions σ̂K at i-th iteration under hypothesis H. In this simulation, uncorrelated over

slow time clutter component is considered S = IM ; the range correlation is defined by

the vector dk = exp(−γk), which is the first column of symmetrical Toeplitz matrix

D. The case of γ → ∞ corresponds to IIM; and γ → 0 corresponds to completely

correlated over range speckle.

Fig. 6.10 shows the convergence of the estimator (6.24) (averaged over 102

Monte-Carlo runs for 320 range-velocity cells each) under both hypotheses for the

case of range-correlated speckle: γ = 0.3 and γ = 1; and uncorrelated over range

speckle: γ = 10 (the correlation intervals τcor = γ−1 for the three scenarios are

τcor = {3.3; 1, 0.1} range cells accordingly). Note that in most of the cases the esti-

mator converges linearly to the precision floor, except of the very spiky clutter ν = 0.1

under the hypothesis of target presence (H1). The estimator converges more rapidly
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Figure 6.11: False alarm regulation: a - vs speckle covariance matrix; b - vs target velocity.

in case of weakly correlated in range clutter; for negligible clutter spatial correlation,

the convergence under H0 is much faster than under H1. The shape of clutter distri-

bution affects the convergence only for very spiky clutter, K-distribution clutter with

shape parameters between 0.5 and +∞ has similar convergence rate (Fig. 6.10, a).

Clutter slow-time correlation properties and target velocity have minor effect on the

convergence.

To prove the CFAR-ness of the DIM detector, its ability to preserve constant PFA
for different target and clutter parameters is studied. The parameters of interest

are the speckle CM Q, clutter texture σK and the target velocity. The number of

iterations is set to 20 to reach the convergence point for all the scenarios with γ ≥ 1

and ν ≥ 0.5.

First, the CFAR behavior with respect to the speckle CM Q and the clutter texture

is studied. The clutter with spatial (range) and temporal (slow-time) correlation is

considered. The slow-time CM S is a symmetrical Toeplitz matrix defined by its first

column sm = exp(−ρm); the range CM D follows the above definition. For compari-

son, a random complex Wishart distributed matrix Q ∼ CWKM (IKM , 2KM) is also

examined. The texture components σ2
K follows Gamma distribution with the shape

parameter ν = 0.5 and the scale parameter µ = 1. The simulations results presented

in Fig. 6.11 (a) show that the proposed detector ensures CFAR behavior w.r.t. the

speckle CM and the clutter texture. The detection threshold is well approximated by

T = P
− M
M−1

FA . This coincides with IIM detector.

Similarly, Fig. 6.11 (b) shows that the proposed detector ensures CFAR behavior

with respect to the target velocity. In this simulation only spatially correlated clutter

with γ = 1 and ρ → +∞ was considered. This shows that the proposed detector

ensures CFAR-ness w.r.t. the speckle CM, the clutter texture, and the target velocity.

Detection performance The analysis of the detection performance as a function of

target SCR (6.40) is shown in Fig. 6.12 for target velocities v0 = 0 m/s and v0 =
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Figure 6.12: Detection probability of range migrating target in CG clutter with: v = 0 m/s and

v = 15 m/s
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Figure 6.13: ROC curves of migrating target detector in CG clutter

va = 15 m/s and different clutter spatial correlation: γ = 1 and γ → +∞; S = IM ,

PFA = 10−4. Comparison in Fig. 6.12 includes the proposed detector, referred

hereinafter by DIM-LRT, and the clairvoyant detector, which assumes σK and so M

are known a priori, and therefore it is a matched filter detector [49]. The loss of the

proposed detector in comparison to the clairvoyant one is about 1 dB in each scenario.

The analysis shows that detection performance depends on the target velocity,

similarly to the case of spatially uncorrelated clutter. The detection performance, as

a function of SCR does not depend on clutter spatial correlation. That statement

should be kept loose, since the SCR itself depends on both spatial and temporal

correlation of clutter.

To conclude the analysis of a point target detection with a range-walk in spiky

clutter with known speckle CM, the performance is studied in terms of ROC curves.
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Table 6.1: Extended target models with ∆R/δR = 4: discrete scatterers locations and percentage of

the total energy

Model number
Cell number

1 2 3 4

1 1/4 1/4 1/4 1/4

2 1/2 1/4 1/4 0

3 3/4 1/4 0 0

4 1 0 0 0

The four detectors are examined, namely: LRR NMF - Normalized matched filter

applied to a LRRS, which consider a locally Gaussian clutter model; NB NMF -

Normalized matched filter applied per range cell, modeling no target migration occur

during CPI; the proposed detector, referred to as DIM-LRT, and the clairvoyant

detector described above. Simulation results in Fig. 6.13 show the advantages of

applying CFAR detector for range migrating targets, similar to the case of IIM.

6.7.3 Extended target detector

Herein the performance of the proposed detector for range-extended migrating targets

is analyzed. A target of interest with known extent ∆R/δR = 4 is modeled by the

discrete scatterer model with different spatial distribution [12], given in Table 6.1. For

this scenario it is assumed that |v0| ≤ va, so K = 8 is selected in order to satisfy (2.14).

Since the analytical expression of the PFA is not available, the threshold providing

PFA = 10−4 for ∆R/δR = 4 is estimated via Monte-Carlo routine. This threshold

is then used to evaluate numerically the detection performance for the target models

given in Table 6.1. Range correlated clutter with: γ = 1 and ρ→ +∞ is considered.

The detection performance is evaluated for target velocities v0 = 0 and v0 = va = 15

m/s. Target SCR is defined as SCR = E
E{τ}a

HQ−1a, where E =
∑4
i=r wr |αr|

2
and

wr are the weighting coefficients, given in Table 6.1.

The simulation results in Fig. 6.14, a show that non-coherent averaging along

target extent allows detection improvement for a stationary target, which is a well-

known phenomenon. The detection gain is less than that shown in [12] due to range-

correlated clutter and different parameters of the waveform. The detection perfor-

mance of a migrating extended target, on the other hand, is almost independent of

the target extent, as shown in Fig. 6.14, b. That is due to the fact that averaging over

the target and over clutter provides the same gain - due to diversity. That is why,

being merged together, additional averaging only leads to saturation of the diversity

effect, but not to additional gain. The correct interpretation of Fig. 6.14, b is the

following: for a target, migrating sufficiently enough to exploit clutter diversity along
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Figure 6.14: Detection performance for the extended target: a - stationary target: v0 = 0 m/s; b -

migrating target: v0 = 15 m/s.

the range-walk, the detection performance depends only on the SCR of the extended

target, defined above, but not on the shape of target power distribution over range.

With that result, the conclusion given in [6] can be extended: to improve detection

performance, radar range resolution should be selected such, that the target of interest

is spread over 5-10 range cells as a result of its range extent and its range migration.

So meter resolution should be enough for detection of typical air and ground targets.

6.7.4 Adaptive detector of a point target

False alarm regulation The adaptive detector should preserve the CFAR property

w.r.t. Q, σK and the target velocity. The aim of this subsection is to clarify the

reason to use the DIM for deriving the adaptive detector instead of IIM. This is done

by comparison of the PFA regulation for two adaptive detectors, derived under the

models, referred above. For the IIM detector, a single range cell SCM is estimated and

the CM of the LRRS then has the block diagonal structure (6.28). In Fig. 6.15 the

false alarm dependency on the (expected) target velocity is studied for two adaptive

detectors. First, the DIM detector with the SCM from L = 2KM reference LRRSs

is analyzed and, second, the IIM detector with the diagonal blocks estimated from

L = 2M reference cells is considered. The results presented in Fig. 6.15 show that for

the limited number of reference cells IIM does not hold the CFAR property w.r.t. the

target velocity, while DIM detector does. This phenomenon has simple explanation:

the signature of the migrating target has strong auto-correlation over range. The

IIM detector over-amplify these components, as it assumes there is no clutter cross-

correlation in adjacent range cells. On the other hand, for any real clutter and finite

number of reference cells, some cross-correlation is present, and recognized by the IIM

detector as a target component, which leads to the variation of the PFA with target

velocity.
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Figure 6.15: False alarm regulation of two adaptive detectors in spatially-correlated K-distributed

clutter, ν = 0.5, γ = +1, ρ = +∞: a - Detector for the DIM; b - Detector for the IIM.
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Figure 6.16: Detection probability of the adaptive detector for the range migrating target in CG

clutter with v = 15 m/s

Detection performance The detection performance of the adaptive detector is ana-

lyzed in two scenarios: in the first case, the reference data contains only the speckle

clutter component, so the MLE of CM is obtained with the SCM from this reference

data (6.36). In the second case, the reference data follows the CG model, and the

proposed in Algorithm 1 CM estimator, referred to as FPCM, is employed. There

are L = 2KM and L = 5KM reference cells considered and 106 Monte-Carlo trials

are performed in order to set the threshold satisfying PFA = 10−4 in each case. For

the FPCM estimation the number of iterations is fixed to Iσ = 5 and IQ = 20. Sim-

ulations results for the target moving with velocity v0 = 15 m/s in range correlated

clutter with γ = 1 are shown in Fig. 6.16. The detection loss for the case of L = 2KM

is about 3.5 dB and 4 dB for the SCM of the speckle and the proposed estimation of

the CM accordingly; and about 0.9 and 1.5 dB for the case of the L = 5KM . Both

cases agree well (within 1 dB) with the theoretical performance degradation of the

adaptive detectors in a single range cell [79, 93].
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6.8 Conclusion

In this chapter, a novel detector for range migrating targets in non-Gaussian clutter

has been proposed and analyzed. As radar clutter, being observed by a high-resolution

radar, does not follow Gaussian distribution anymore, the CG model has been con-

sidered, which allows modeling of clutter power variation along range. The detector

for a range migrating target in CG clutter is then introduced showing superior per-

formance (e.g., in the considered example the proposed detector outperformed the

traditional one by 20 dB for target with 1.6 range cells migration during CPI) over

the conventional detectors in non-Gaussian clutter. It is shown that target range walk

is beneficial for detection, as it brings additional diversity on clutter, alike incoherent

integration along the target extent. Therefore, fast moving targets are easier to de-

tect with a high resolution radar, than slow targets with the same SCR. Performance

assessment of the proposed detector shows that a few range cells migration during

the coherent burst provides a few dB detection gain, depending on clutter spikiness.

The diversity of clutter accumulates with the non-coherent integration of the target

response along its extent. The best detection performance is achieved when the target

is spread over 5-10 range cells as a result of its range extent and its range migration.

So meter resolution is sufficient for detection of typical air and ground targets.
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Chapter 7

Conclusion and future work

Modern surveillance radars are designed to detect moving targets of interest in a

adverse environment, which can encompass strong unwanted reflections from ground

or sea surface, clouds, precipitation, etc. Detection of weak and small moving targets

in environmental clutter remains a challenging task for the existing radar systems.

To address this challenge, future radars should adopt new waveforms and novel signal

processing techniques for improved target discrimination from clutter.

One way to improve radar performance in a heavy environmental clutter is to ex-

ploit wideband high-resolution waveforms. A fine range resolution of such waveforms

can improve visibility of small targets by decreasing the clutter level per range cell,

reduces the effect of a multi-path and provides target classification capability by ex-

ploiting their high-resolution range profiles. Moreover, the detailed measurement of

the target range provides an alternative solution for range-Doppler ambiguities and

target fading, obtained with a single low-PRF burst of high-resolution pulses: such

waveform allows resolving ambiguities by measuring target range displacement within

the CPI and delivers multiple range samples along the target physical extent, which

can be used to alleviate the target fading effect.

In this thesis, the feasibility of using a single burst of high-resolution pulses as

a sounding signal in surveillance radars is investigated. The appropriate models of

a moving target and clutter are provided for the high-resolution mode of the radar.

The special processing for target detection in difficult scenarios, when either multi-

ple targets are present in the vicinity of each other, or the scene is corrupted with

heavy clutter, has been proposed. The performed research provides some basic in-

sight for implementation of new radar architectures with the utilization of wideband

waveforms.

129
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7.1 Results and novelties

The research performed has led to the following novel results:

• The unambiguous measurement of target range and velocity can be obtained in

one burst if its time-bandwidth product is large enough. It is demonstrated that

in the noise-limited scenario radar scene can be reconstructed from a single-

low PRF measurement with no velocity ambiguities. The ambiguous residuals

of the targets present in the scene, called ambiguous sidelobes, can be effi-

ciently suppressed with modern non-parametric high-resolution spectrum es-

timators. IAA (Iterative Adaptive Approach) and SPICE (Semi-Parametric

Iterative Covariance-based Estimator) are proposed for unambiguous scene re-

construction. These estimators outperform the existing non-parametric estima-

tors in typical scenarios. The performance of scene reconstruction is limited in

presence of diffuse clutter, whose ambiguities cannot be completely suppressed

with the proposed approach.

• A dedicated detector has been proposed for detection of multiple closely spaced

targets in the scene and its properties have been studied. The problem of mul-

tiple targets detection in the observed low range resolution segment has been

investigated. It has been demonstrated that conventional matched filter de-

tector will suffer from multiple false detections at the ambiguous sidelobes of

the real targets, while the pick-the-peak detector is not designed for detection

of more than one target in the data set. A novel detector has been proposed,

which uses RELAX spectrum estimator, and allows detecting multiple targets

in the observed scene. It is implemented as a simple post-processing of the out-

put of a conventional matched-filter detector and ensures bounded false alarm

property.

• A waveform with maximum coherent bandwidth should be employed for better

clutter suppression. The presented results demonstrated that the ability of a

wideband radar to detect a target in the ambiguous response of diffuse ground

clutter strongly depends on the clutter spectral characteristics, the radial ve-

locity of the target and the coherently processed bandwidth. The performance

of clutter suppression using target migration is highly efficient against clutter

with a narrow Doppler spectrum, but it has limited improvement against clutter

with wide Doppler spectrum. The most difficult regions to detect a target is the

first ambiguity of clutter. The fast targets are easier to detect due to widening

of their Doppler spectrum. To improve the performance of a wideband coher-

ent radar against clutter, the waveform with the maximum available bandwidth

should be employed.
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• Performance comparison of the proposed waveform with the conventional multi-

burst one has been carried out. The detailed analysis, carried out in Chapter

3, demonstrated that wideband waveform and associated signal processing is

preferable in scenarios, when clutter level is low or it has narrow Doppler spec-

trum. In the scenarios with wide Doppler spectrum of clutter the conventional

multi-burst waveform provides better performance.

• An optimal detector of range-migrating targets, which performs two-dimensional

clutter filtering: in Doppler frequency and in range, is proposed and its perfor-

mance is evaluated. In the high-resolution mode of the radar, the observed

ground clutter can have large and rapid variation of power in range, well de-

scribed by the compound-Gaussian model. A novel detector of range-migrating

targets in non-homogeneous clutter has been proposed, which accounts for clut-

ter power variation in range and clutter Doppler spectrum simultaneously. The

added feature of the proposed detector to adapt to clutter variation in range

allows exploiting clutter diversity in range, beneficial for detection of weak tar-

gets in spiky clutter. This gained diversity on clutter depends on the target

velocity and makes the detection probability in spiky clutter velocity depen-

dent: fast moving targets are easier to detect with a high-resolution radar than

slow targets with the same SCR.

• Diversity on target provide the same benefits as diversity on clutter. Target

diversity, obtained for an extended target by integration the response along

its range extent can be alternatively achieved by integrating the response of

a point-like target, migrating the same number of range cells in presence of

non-Gaussian clutter. The radar range resolution should be selected such, that

the target of interest, is spread over 5-10 range cells as a result of its range

extent and its range migration. So meter resolution of the surveillance radar is

sufficient for detection of typical air targets with a spatial diversity in one burst.

7.2 Recommendations for future research

• Extension of wideband signal processing to multi-band signals. One limitation

of using wideband signals for surveillance comes from the wide frequency occu-

pancy of such signals and, as a result, of higher chance to have an interfering

signal in some part of the spectrum. The methods for estimating the inter-

fering signal and adaptive filtering of the corrupted frequency band should be

considered. The observed useful signal in multiple frequency sub-bands should

be merged together to recover the high range resolution. The impact of such

filtering on the unambiguous processing (distortion of the main lobe, increase
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of the sidelobe level) has to be investigated.

• Adaptive estimation of the target range extent from the measurements, combina-

tion of target detector with an extended object tracking. The existing detectors

of range extended targets relies on a priori knowledge of the target sizes. In

practice, this information is unknown and therefore should be tuned by the

operator. The methods for simultaneous estimation of a target extent and its

detection from clutter are strongly required element for a fully adaptive radar

detector. The estimation of the target extent is also required for accurate target

tracking. So, merging of this information, extracted at detection and at tracking

stages, can improve both the detection probability and the tracking accuracy.

• Development of high-resolution polarimetric clutter maps and clutter map de-

tectors for range-migrating targets. The migrating target detector, proposed in

Chapter 6, can be adapted to the high-resolution clutter maps, which describe

the expected power of clutter in every observed range-angular cell, possibly for

every polarization. The information, contained in such clutter maps can be used

on its own for non-iterative estimation of the target amplitude or provide an

initial guess for the iterative solution. Moreover, the obtained clutter map can

demonstrate the areas over which the application of the proposed detector is

beneficial, and those, where clutter can be assumed Gaussian and the matched

filter detector will provide equal performance.

• Experimental validation in other frequency bands The results, presented in the

thesis, should be validated on real data sets from different sensors, operating at

different frequency bands (L, X, Ku, K, Ka).

• Improved measurement of the target angle by exploiting its range extension. Mul-

tiple range samples with the target and clutter diversity can be fused together to

improve the accuracy of the target angular measurement. Alternatively, these

responses can be processed jointly to discriminate between the presence of a

single target in the beam and the scenario with multiple targets in the vicin-

ity of each other. Both problems can be tackled assuming an extended target

response in one high-resolution burst is available.

• Efficient implementation. Computational load of the proposed techniques has

to be evaluated and their efficient implementation should be studies.
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Appendix A

Description of radar equipment

The applicability of the proposed wideband signal processing is tested with the po-

larimetric agile radar (PARSAX), available at TU Delft [97].

A.1 PARSAX radar

PARSAX is a software defined radar with digital waveform generator of agile wave-

forms and programmable digital receiver, operating in S band [97, 98]. The main

characteristics of the radar are summarized in Table A.11 and the antenna system

of PARSAX is demonstrated in Fig. A.1. PARSAX is located on the rooftop of the

EEMCS (EWI) building at TU-Delft, at a height of about 100 m.

Detailed measurements of the PARSAX radar demonstrated its possibility to op-

erate with the bandwidth up to 100 MHz [99]. The frequency response of the whole

PARSAX system at the intermediate frequency (IF) is demonstrated in Fig. A.2 [99].

Therefore, PARSAX provides nearly wideband (B = 100 MHz, B/fc ≈ 3%) mode

with the range resolution of 1.5 m.

A.2 Deramping processing of LFM signal

In its standard operational mode, PARSAX transmits bursts of linear frequency mod-

ulated (LFM) sweeps, also called chirps, and performed range compression via der-

amping processing.

1In the target model the lower frequency of the band fc is considered. Thus, in its wideband

mode (B = 100 MHz) PARSAX has fc = 3.265 GHz.
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136 A. Description of radar equipment

Figure A.1: PARSAX antenna system

Figure A.2: Amplitude characteristic of the whole PARSAX system at intermediate frequency, from

[99]

A LFM signal is characterized by its instantaneous frequency:

f(t) = fc +
B

Ts
t = fc + βt, t ∈ [0, Ts], (A.1)

where β defines the sweep rate and Ts is the sweep time. Accordingly, a transmitted

sweep can be written as:

stx(t) = exp

(
fct+

βt2

2

)
. (A.2)

The transmitted signal reflects from the target and arrives back to the radar as a
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Table A.1: Parameters of PARSAX radar

Spectrum

Central frequency: 3.315 GHz;

Modulation bandwidth: 2 - 100 MHz;

Resolution: 75 - 1.5 m.

Antennas

Two parabolic reflectors:

Rx: diameter=2.12 m, beam width=4.6 deg, gain=32.8 dB;

Tx: diameter=4.28 m, beam width=1.8 deg, gain=40.0 dB;

Isolation receiver-transmitter: HH=-100 dB, VV=-85 dB.

Transmitter

Solid state power amplifiers;

100 Watt max per channel;

80 dB attenuators (8 bits control bus).

Reciver

Dynamic range: better 70 dB (SFDR);

Noise floor: approx. -93 dBm

ADC at IF (125 MHz, sampling 400 MHz, 14 bits);

4 channels FPGA-based digital processor.

Waveforms

Four channel arbitrary waveform generator

(sampling up to 1.2 GHz, 16 bits);

Sounding signals with BT-product up to 100.000 in real time;

Standard mode: LFM with deramping processing.

delayed by τ(t) and attenuated copy of the transmitted wavefrorm:

srx(t) = α exp

(
fc(t− τ(t)) +

β(t− τ(t))2

2

)
. (A.3)

The deramping, also called stretched processing, is implemented by mixing the

received signal with the replica of the transmitted waveform and filtering out high-

frequency component1, schematically demonstrated in Fig. A.3. The obtained signal

is called beat signal and it is given by:

sb(t) = α exp

(
βτ(t)t+ fct−

βτ(t)2

2

)
. (A.4)

Assuming a constant radial motion of the target τ(t) = τ0− 2v0
c t with v0 � c, the

mixed signal can be written as:

sb(t) ≈ α exp ((βτ0 + fD) t) = α exp (fbt) , (A.5)

1In the PARSAX radar, a superheterodyne receiver is employed, which mixes the signals at the

intermediate frequency (IF). For simplicity this step is skipped with no effect on the final result.
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Figure A.3: Deramping processing of LFM waveform

where fb is the beat frequency and fD = fc
2v0
c is the Doppler frequency, originated

from the target motion. Moreover, with the wideband waveform the approximation:

fb = βτ0 + fD ≈ βτ0 (A.6)

holds for the typical target velocities [53]. Range compression of the LFM waveform

is therefore obtained as the FFT of the beat signal. To minimize the effect of the

range sidelobes, Hamming window is applied in the standard mode, hence selection

of other window is possible.

The maximum range, available with the deramping processing, is limited by the

sampling frequency of beat signal fsb:

Rmax =
cτmax

2
=

c

2β
fbmax =

c

2β

fsb
2
. (A.7)

The range resolution is proportional to the frequency resolution of the beat signal.

To preserve equal coherent gain for all targets at ranges up to Rmax, the beat fre-
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A.2 Deramping processing of LFM signal 139

quency is estimated in the time interval [τmax, Ts], τmax = 2Rmax/c, providing range

resolution:

δR =
c

2B

Ts − τmax

Ts
. (A.8)

Note that every transmitted sweep is followed by small pause (20 µs) to minimize the

transition process due to instantaneous frequency change by B.

In the wideband setting, PARSAX has the following parameters: B = 100 MHz,

Ts = 1 ms, Tr = 1.02 ms, fs = 400/22 ≈ 18.2 MHz. According to the sampling

criteria (A.7), the maximum range can be Rmax = 13.6 km. However, the radar

provides only Ns = 5100 range samples per sweep, which represents with the nominal

range resolution Rmax = cNs/(2B) = 7650 m and gives τmax = 51 µs. Substitution

of τmax into (A.8) gives the range resolution of δR ≈ 1.58 m and, equivalently, the

coherently processed bandwidth is B ≈ 95 MHz.
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Appendix B

Wideband target signature

B.1 Target signature in fast-frequency/slow-time

From (2.8) and (2.9) if follows that the range compressed signal can be represented

in fast-frequency /slow-time domain as:

sff,st(f,m) = αS

(
f − fc

2v0

c

)
S∗ (f) ej2πfc

2v0
c mTre−j2πf(τ0−

2v0
c mTr). (B.1)

The assumption of the Doppler tolerant pulses in the transmitted burst (2.11) is

equivalent to considering S (f − fD) ≈ S (f), which gives:

sff,st(f,m) = α |S (f)|2 ej2πfc
2v0
c mTre−j2πfτ0ej2πf

2v0
c mTr . (B.2)

Focusing on the LRRS of the range cells k′ = kbeg, . . . , kbeg +K − 1 is equivalent

to shifting the range frequency of the signal by e−j2πfkbeg/B followed by its sampling

in the frequency domain at the rate δf = c/(2KδR) = B/K. Then, the fast-frequency

/ slow-time representation of the LRRS with the target is:

Tff,st(l,m) = α

∣∣∣∣S (BK l

)∣∣∣∣2 ej2πfDTrme−j2π k0K le
j2π

v0Tr
δRK

lm
, (B.3)

where l = 0, . . . ,K − 1 is the fast-frequency index.

Assuming a flat spectrum of the transmitted waveform over the frequency band

(2.15) and normalization up(0) = 1, the target signature in the fast-frequency / slow-

time domain becomes:

Tff,st(l,m) =
1

K
ej2πfDTrme−j2π

k0
K le

j2π
v0Tr
δRK

lm
. (B.4)
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142 B. Wideband target signature

B.2 Target signature in fast-frequency/

slow-frequency

Given the target response (B.2) the fast-frequency/slow-frequency representation is

obtained by applying DFT over the slow-time dimension:

sff,sf(f, fd) =

M−1∑
m=0

sff,st(f,m)e−j2πfdTrm

= α |S (f)|2 e−j2πfτ0
M−1∑
m=0

e−j2π(fd−fD(1+ f
fc

))Trm

(B.5)

where fD = fc
2v0
c .

Performing DFT over slow-time gives:

M−1∑
m=0

e−j2π(fd−fD(1+ f
fc

))Trm =
1− e−j2π(fd−fD(1+ f

fc
))TrM

1− e−j2π(fd−fD(1+ f
fc

))Tr

=
e−j2π(fd−fD(1+ f

fc
))MTr2

e−j2π(fd−fD(1+ f
fc

))Tr2
·

sin
(

2π
(
fd − fD

(
1 + f

fc

))
MTr

2

)
sin
(

2π
(
fd − fD

(
1 + f

fc

))
Tr
2

)
≈Me−j2π(fd−fD(1+ f

fc
))M−1

2 Tr · sinc

((
fd − fD

(
1 +

f

fc

))
MTr

)
,

(B.6)

where the approximation sin(Mπx)
sin(πx) ≈ M sin(Mπx)

Mπx = Msinc(Mx) has been used as-

suming that fd is unfolded Doppler frequency. Substitution (B.6) into (B.5) results

in:

sff,sf(f, fd) = αM |S (f)|2 e−j2πfτ0e−j2π(fd−fD(1+ f
fc

))M−1
2 Tr

·sinc

((
fd − fD

(
1 +

f

fc

))
MTr

)
.

(B.7)

Assuming a flat spectrum of the transmitted pulse and sampling it in the fast-

frequency domain similarly to (B.2) and considering normalization up(0) = 1 gives:

Tff,sf(l, fd) =
M

K
e−j2π

k0
K le−j2π(fd−fD(1+ B

Kfc
l))M−1

2 Tr

· sinc

((
fd − fD

(
1 +

B

Kfc
l

))
MTr

)
.

(B.8)
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B.3 Target signature in fast-time/slow-frequency

Starting from equation (B.7), the fast-time/slow-frequency target signature is ob-

tained by applying inverse FT over fast-frequency:

sft,sf(f, fd) = αM

∫
|S (f)|2 e−j2πτ0fej2π(fd−fD(1+ f

fc
))Tr2

·e−j2π(fd−fD(1+ f
fc

))MTr2 sinc

((
fd − fD

(
1 +

f

fc

))
MTr

)
ej2πtfdf

= αMej2π(fd−fD)Tr2

∫
|S (f)|2 e−j2π

(
τ0+

fDTr
2fc

)
f

·e−j2π
1
2

(
(fd−fD)MTr−

fDMTr
fc

f
)
sinc

(
(fd − fD)MTr −

fDMTr
fc

f

)
ej2πtfdf.

(B.9)

To preform inverse FT, remind its properties:

F−1 (G(f)) = g(t);

F−1
(
G(k0f + f0)e−j2πft0

)
=

1

|k0|
g

(
t− t0
k0

)
e−j2πf0

t−t0
k0 ;

F−1 (G(f)H(f)) = g(t) ∗ h(t);

F−1
(

sinc(f)e−j2π
f
2

)
= Π[0,1] (t) ,

(B.10)

where g(t)∗h(t) denotes convolution of functions g(t) and h(t) and Π[t1,t2] (t) is defined

in (2.20). Applying these properties to (B.9) and using fD
fc

= 2v0
c , one can obtain:

sft,sf(f, fd) = α

∣∣∣∣ fc
fDTr

∣∣∣∣ ej2π(fd−fD)Tr2 · up(t)

∗Π[0,1]

 t−
(
τ0 + fDTr

2fc

)
− fDMTr

fc

 e
−j2π(fd−fD)MTr

(
t−(τ0+

fDTr
2fc )

− fDMTr
fc

)

= α

∣∣∣∣ fc
fDTr

∣∣∣∣up(t) ∗Π
[τ0+ 2

c
v0Tr

2 ,τ0+ 2
c
v0Tr

2 − 2
c v0MTr]

(t)

·ej2π(fd−fD)
(
fc
fD

(t−(τ0+ 2
c
v0Tr

2 ))+Tr
2

)
,

(B.11)

assuming v0 < 0 (and so target range is increasing function of time) to set the limits

of Π[t1,t2] (t). In case v0 > 0 the limits should be flipped. The term fc
fDTr

= BδR
v0Tr

ex-

presses the magnitude of the target response in the range/Doppler domain. Sampling

the target signature in the fast-time withing the LRRS of interest as k = tB − kbeg

and assuming up(k) ≈ δ(k) and negligible range-walk of a target withing one PRI

compared to the range resolution (and thus the term 2
cB

v0Tr
2 < δR is neglected) gives
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144 B. Wideband target signature

the target signature:

Tft,sf(k, fd) ≈
∣∣∣∣ δRv0Tr

∣∣∣∣Π[k0,k0− v0MTrδR
]
(k) e

j2π(fd−fD)
(

fc
BfD

(k−k0)+Tr
2

)
. (B.12)

Note that if the signal is sampled in the range domain, the limits of the function

Π[t1,t2] (t) should be rounded to the nearest integers.
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Appendix C

Clutter suppression with

wideband coherent waveform

This appendix demonstrates how the parameters of the wideband waveform affect the

ability of clutter suppression using range migration.

The analysis in performed in fast-time (range) k / slow (Doppler) frequency fd
domain. In this case the response of a moving target with velocity v0 and range cell

at the beginning of CPI k0 can be expressed as (see Appendix B.3):

Sft,sf(k, fd; k0, v0) ≈ α
∣∣∣∣ fc
fDBTr

∣∣∣∣Π[k0,k0− v0MTrδR
]
(k) ejψ(k,fd;k0,v0), (C.1)

where fD = fc
2v0
c , or δR

v0Tr
= fc

fDBTr
, and

ψ(k, fd; k0, v0) = 2π (fd − fD)

(
fc
BfD

(k − k0) +
Tr
2

)
. (C.2)

Since radar clutter is usually characterized by its PSD in the Doppler domain,

the analysis of clutter suppression with the wideband waveform is performed in the

range/Doppler frequency domain. Rewrite the target signature in terms of folded

Doppler frequency, which can be directly measured with the considered waveform.

Define the Doppler cell sampled at the nominal Doppler resolution of the waveform

δfD = Fr/M by d =
[
M frac

(
fd
Fr

)]
, where d = −M/2 + 1, . . . ,M/2. From (2.18)

and discussion afterwards the Doppler spectrum of the target (with v0 < 0) is spread

from dl =
[
M frac

(
fdFr

(
1 + B

fc

))]
to du = [M frac (fdFr)]. For the target competing

with the clutter ambiguity, it can be assumed that its whole Doppler spectrum lies

in the same Doppler ambiguity with index n, and then dl =
[
M frac (fdFr) + Mv0Tr

δR

]
.
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146 C. Clutter suppression with wideband coherent waveform

Target and clutter spectrum: f
c
 = 10 GHz, v

0
=45 m/s, R

0
 = 7.2 m
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Figure C.1: Clutter and target range-Doppler spectrum for two waveforms with equal time-

bandwidth product (fc = 10 GHz): (blue) - B = 0.25 GHz, M = 128; (green) - B = 0.5 GHz,

M = 64.

Considering that the magnitude of the target response is small outside its range and

Doppler spread (approximating u∗p(k) ≈ δ(k)), the target response in fast-time (range)

/ folded Doppler domain is expressed by:

Sft,fD(k, d; k0, v0) ≈


α
|fD|

fc
BTr

ejψ
′(k,d;k0,v0), k ∈

[
k0, k0 − v0MTr

δR

]
∩ d ∈ [dl, du];

0, k /∈
[
k0, k0 − v0MTr

δR

]
∪ d /∈ [dl, du],

(C.3)

with ψ′(k, d; k0, v0) being the counterpart of (C.2) for the sampled Doppler frequency.

The applicability of this approximation can be checked in Fig. 2.2, b.

The target signature in the range/Doppler domain, allows SCNR (3.7) represen-

tation after clutter filtering in the form [2,49]:

SCNR (k0, v0) ≈
k0− v0MTrδR∑
k=k0

du∑
d=dl

|Sft,fD(k, d; k0, v0)|2

Pcl(k, dδfD ) + Pn(k, dδfD )

=
|α|2

|fD|2

k0− v0MTrδR∑
k=k0

du∑
d=du+

Mv0Tr
δR

1

Pcl(dδfD ) + Pn
,

(C.4)

where the clutter dependence on the range cell k and the noise dependence on the

range and Doppler frequency have been omitted under the assumption on their

homogeneity: Pcl(k, fd) = Pcl(fd),∀k = 0, . . . ,K − 1 and Pn(k, fd) = Pn,∀k =

0, . . . ,K − 1,∀fd ∈ [−Fr/2, Fr/2]. Skipping the dependence of SCNR on k0 for the
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same reason, the SCNR loss at velocity v0 can be expressed as:

L (v0) ≈

 du∑
d=du+

Mv0Tr
δR

1

Pcl(dδfD ) + Pn

/
 du∑
d=du+

Mv0Tr
δR

1

Pn


=

du∑
d=du+

Mv0Tr
δR

1

CNR(dδfD ) + 1
.

(C.5)

The analysis of (C.5) demonstrates that the SCNR loss depends on the target mi-

gration v0MTr/δR, PSD of competing clutter and Doppler resolution of the waveform

δfD . It can be noted, that larger bandwidth of the transmitted waveform provides

wider Doppler spectrum of the target, over which clutter spectrum is averaged in

(C.5), as the green line in Fig. C.1 shows. Increasing the CPI of the waveform, on

the other hand, results in larger range migration of the target, demonstrated with

the blue line in Fig. C.1, but with no enlargement of its Doppler spectrum (hence

it is sampled with more dense Doppler resolution δfD ). As the result, the loss factor

at velocity ambiguity can be improved only with the increase of the bandwidth in

(C.5). Therefore, the efficiency of clutter ambiguity suppression with the wideband

waveform is determined by the bandwidth of the transmitted signal.
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Appendix D

Detector of a range migrating

target in spiky clutter

D.1 Convergence analysis

In this appendix, we derive the sufficient condition for the convergence of the iterative

estimation of σHK . We consider the case H = 0 for simplicity and skip the subindex

(H) in notations for simplicity; the analysis under H1 can be performed in a similar

manner. Since σk > 0,∀k ∈ K, we use for our analysis an equivalent form of (6.24):

(
1

σk

)2

+

(
1

σk

) K−1∑
j=0,j 6=k

< (qk,j)

qk,k

1

σj
− M

qk,k
= 0, (D.1)

and find the unique positive solution of the quadratic equation by:

σ−1
k = g(σ−1

k ) =
1

2

(
−bk +

√
Dk

)
, (D.2)

where bk =
∑K−1
j=0,j 6=k

<(qk,j)
qk,k

1
σj

and Dk =
(∑K−1

j=0,j 6=k
<(qk,j)
qk,k

1
σj

)2

+ 4M
qk,k

. The K

equations defined by (D.2) can be written in a form of fixed point matrix equation:

σ−1
K = G(σ−1

K ). (D.3)

The system of K equitation for g(σ−1
k ) converges at least linearly if ||JG

(
σ−1
K
)
|| < 1,

where JG

(
σ−1
K
)

is the Jacobian matrix of the first partial derivatives of G evaluated

at σ−1
K and || · || is any induced matrix norm [100].
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150 D. Detector of a range migrating target in spiky clutter

The first partial derivatives of (D.2) have the form:

∂g
(
σ−1
k

)
∂
(
σ−1
k

) = 0; (D.4)

∂g
(
σ−1
k

)
∂
(
σ−1
j

) = −< (qk,j)

qk,k

(
−bk +

√
Dk

2
√
Dk

)
(D.5)

and by selecting the infinite matrix norm, we can write:

||JG

(
σ−1
K
)
||∞ = max

k

K−1∑
j=0,j 6=k

∣∣∣∣< (qk,j)

qk,k

(
−bk +

√
Dk

2
√
Dk

)∣∣∣∣
≤ max

k

K−1∑
j=0,j 6=k

∣∣∣∣< (qk,j)

qk,k

∣∣∣∣ ,
(D.6)

where we used the fact that (D.1) has two real roots of different sign. The sufficient,

but not necessary condition for convergence can be given:

K−1∑
j=0,j 6=k

∣∣∣∣< (qk,j)

qk,k

∣∣∣∣ < 1, ∀k ∈ K, (D.7)

which is the function of the data and CM Q, but not the function of the initialization

or current estimation σK. So, if the estimation converges for a particular realization

of the data, it does so with any initialization of σK ∈ R>0.

Under H0, the same can be written in terms of the speckle component:

K−1∑
j=0,j 6=k

σj

∣∣∣<(gH
k Q−1k,jgj

)∣∣∣
σkgH

k Q−1k,kgk

< 1, ∀k ∈ K. (D.8)

By denoting rk,j =
gH
k Q−1

k,jgj

gH
k Q−1

k,kgk
the speckle range correlation coefficient, it becomes

K−1∑
j=0,j 6=k

σj
σk
|< (rk,j)| < 1, ∀k ∈ K. (D.9)

Thus, the iterative algorithm converges linearly to the unique solution if for any range

cell k the clutter correlation with all the other range cells j, weighted by the ratio of

the square root of power in that range cells is bounded. The latter has very simple

physical interpretation: if the clutter is correlated in range, its power cannot fluctuate

very rapidly with the range.

Remark: in our numerous numerical simulations and real data analysis, we never

met a situation when the algorithm did not converge, even if the condition (D.9) for

the particular realization was not satisfied.
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D.2 Approximate solution

In this appendix, we solve (6.25) by expanding it in Taylor series around the approx-

imate solution σ̆
(H)
k :

f(σ
(H)
k ) =

(
σ

(H)
k

)2

+ b
(H)
k σ

(H)
k + c

(H)
k

≈ f(σ̆
(H)
k ) +

∂f(σ
(H)
k )

∂σ
(H)
k

∣∣∣∣
σ
(H)
k =σ̆

(H)
k

(
σ

(H)
k − σ̆(H)

k

)
,

(D.10)

and select for the initial approximation the root of f(σ
(H)
k ) in case of IIM, i.e.: σ̆

(H)
k =√

−c(H)
k . The solution of f(σ

(H)
k ) = 0 is:

σ̂
(H)
k ≈

−2c
(H)
k

2

√
−c(H)

k + b
(H)
k

. (D.11)

The latter estimation of σ̂
(H)
k is still iterative since the coefficients depend on the other

unknowns, but it can be calculated more efficiently than the original equation for

σ̂
(H)
k , especially under H0 since c

(0)
k does not vary with iterations. The proposed fast

estimation especially applicable for the speckle CM estimation (6.35) with moderate

range correlation.

D.3 Detector of a target crossing a clutter boundary

It is assumed that clutter inhomogeneity can be modeled in terms of SIRVs and two

non-overlapping regions of clutter are present in the LRRS under test. To design the

detector for this scenario, it is assumed that the transition between these two regions

is known, so the range cells in the LRRS under test can be divided into two non-

overlapping sets: K0 and K1, satisfying K0 ∩ K1 = {}, K0 ∪ K1 = K, card(K0) = N

and card(K1) = K −N , with 1 < N < K. Herein ∩ stands for the sets intersection,

∪ for the sets union, card(·) for the cardinality of the set and {} for the empty set.

Denote unknown clutter power in each group by scalars σ̃0 and σ̃1 and perform the

procedure similar to the above. The estimations of ˆ̃σ0 and ˆ̃σ1 are the positive roots

of the system of two equations:
(
σ̃

(H)
K0

)2

− σ̃(H)
K0

<
(
q̃
(H)
0,1

)
NMσ

(H)
K1

− q̃
(H)
0,0

NM = 0;(
σ̃

(H)
K1

)2

− σ̃(H)
K1

<
(
q̃
(H)
1,0

)
(K−N)Mσ

(H)
K0

− q̃
(H)
1,1

(K−N)M = 0,

(D.12)
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where q̃
(H)
p,s =

∑
i∈Kp

∑
j∈Ks q

(H)
i,j . The estimation of α̂ is found similarly from (6.27)

with M̂(1) = M|
σK=ˆ̃σ

(1)
K

. The detection test is:

Λ(y) =

1∏
i=0

(
ˆ̃σ

(0)
Ki

ˆ̃σ
(1)
Ki

)2Mcard(Ki)
H1

R
H0

T. (D.13)

The proposed solution is computationally more efficient than (6.31) since it only

requires to solve the system of 2 equations instead of K under each hypothesis. How-

ever, clutter spatial distribution should be known a priori to set the boundaries

between different regions, which makes the detector less adaptive to the scene. In

practice, these boundaries are unknown and therefore have to be estimated from the

clutter map with an appropriate edge detection technique (e.g. Canny or Sobel’s edge

detectors [89]).
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