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 

Abstract— The microstructure, thickness, porosity, and shear performance of the 

silver (Ag) sintering layers under different sintering pressures were investigated. 

Experimental results demonstrated that the thickness and the porosity of the 

sintering layer decreased when the sintering pressure varied from 5 MPa to 30 MPa. 

This densification phenomenon facilitated the enhancement of the Ag sintering layers. 

The shear strength was improved significantly from 44.19 MPa to 69.41 MPa when 

the sintering pressure increased from 5 MPa to 10 MPa. When the sintering pressure 

ranged from 10 MPa to 30 MPa, the shear strength presented a slow increase from 

69.41 MPa to 73.38 MPa. According to the results of the failure analysis, fracture 

mode transformation was considered as the basic reason for this phenomenon. The 

increasing sintering pressure promoted the bonding of the nano-Ag particles during 

the sintering process. Consequently, the fracture of the sintered-Ag layer 

transformed from brittle fracture to ductile fracture because of the increasing 

sintering pressure. The delamination area between Cu and Ni layers coated on the 

bottom Mo plate was clearly enlarged with the increasing sintering pressure. The 

delamination between Cu and Ni layers coated on the bottom Mo plate turned to be 

the main failure mode when the sintering pressure was higher than 10 MPa. 

 
Index Terms—Reliability, sintering, porosity, strength, bonding 

 

I. INTRODUCTION 

S the development of power electronic technology, high power chips have been widely 

used in automotive, energy transfer, and aerospace industries in the near decades [1-4]. 

The developing trend of power chips toward high voltage and high power density has 

become a challenge for the module design due to reliability concern [5, 6]. Meanwhile, it 

brings a higher requirement for the bonding technology of power chips, such as 
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high-temperature service, high bonding strength, long reliability etc.  

Traditional bonding method of power chips includes conductive adhesive bonding, wire 

bonding, soldering etc [7-9]. Adhesive bonding and wire bonding cannot be used in 

high-power applications due to their poor bonding strength, electrical and thermal 

conductivities. Considering these properties, soldering is better than the bonding methods. 

However, there are some disadvantages of soldering which restrict its application in 

high-power bonding [10, 11]. One of the critical problems is the IMC evolution at the 

soldering interfaces [12, 13], which is a potential threat to the reliability of the whole 

module. It is a critical issue, especially for the applications in automotive and aerospace 

industries. Due to reliability concern, sintering is considered as a promising method for the 

assembly of power chips [14]. 

As a replacement of soldering in high temperature applications, silver (Ag) sintering has 

drawn increasing attention to the bonding of power modules as well as other electronic 

devices [15-19]. Compared with Pb-Sn and Au-based solder alloys, Ag shows much higher 

thermal conductivity and electrical conductivity [20]. In the research by Hutzler et al  [21], 

the samples by Ag sintering shows much longer life time than that by Pb-Sn soldering 

during the power cycling tests. Though Ag has significant advantages on the physical and 

the mechanical properties, it is difficult to achieve the theoretical performances of Ag by 

solid sintering method of Ag nanoparticles. Bordia et al [22] reviews the fundamentals of 

sintering process. Due to the geometrical effect of the nanoparticles, the particle neck and 

pores suppress the properties of the sintering layer. An effective way to decrease the 

porosity in the sintering layer is to add external pressure during the sintering process. Lu et 

al [23] reported that the 5 MPa pressure significantly promoted the microstructure 

densification, and consequently increased the shear strength of the Ag sintering layer. 

Besides, the decreasing porosity also has positive effects on the thermal and electrical 

performance of the sintering layers. Therefore, pressure-assisted Ag sintering has become 

the developing trend and been used in industry. 

Currently, the typical sintering pressure used in industry ranges from 5 MPa to 30 MPa. It 

is commonly believed that the sintering pressure should be as high as possible to obtain 

high-quality bonding [24]. However, high sintering pressure aggravates the chances of 

chip failure. It is of great significance to enrich the theoretical basis to design the sintering 

parameters in pressure-assisted sintering process. In this study, the effect of sintering 

pressure on the porosity and the shear strength of the bonding surfaces was investigated. 

Moreover, the fracture modes of the specimens under different sintering pressures were 

analyzed. 

II. EXPERIMENTS 

Figure 1 (a) shows a commercially available pressure-assisted sintering equipment 

(Sinterstar, Boschman Technologies B.V.) used in this study. The sintering substrates are 

molybdenum (Mo) plates (13.6 × 13.6 × 2 mm). The dummy dies used in this study are 

smaller Mo plates (9.4 × 9.4 × 1.2 mm). The Mo plates are coated with Ni/Cu/Ag surface 

layers by electroless plating deposition. Here the thickness of Ni, Cu, and Ag layers are 1, 1, 

and 3 μm respectively. surface layers which is 5μm thick. coated with Ag. The sintering 

material is ALPHA Argomax nano-Ag film with the thickness of 65 μm. The nano-Ag film 
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is made with nano Ag particles. The top and the bottom Mo plates were fixed by a 

specially-designed fixture during the sintering process in order to guarantee the 

dimensional consistency of all the sintering specimens. The sintering temperature was 

250 ℃, and the sintering time was 3 mins. The sintering pressure was 5, 10, 20, and 30 

MPa, respectively. The specimens are as shown in Fig.1 (b). The structure of the specimen 

can be seen in the schematic diagram presented in Fig.1 (c). 

 

Fig.1 Sintering equipment and specimens: (a) Pressure-assisted sintering equipment, (b) 

sintering specimens, and (c) schematic diagram of the sintering structure 

In order to investigate the porosity and microstructure of the sintering layers, 

cross-sectional grind and polishing were carefully conducted and then ultrasonic clean was 

implemented. Here the grid and polishing papers were 500, 1000, 1500, 2000, and 3500#. 

The ultrasonic clean process was used to clean the polished Ag and impurities at the 

surfaces. The microstructure of the sintering layers were characterized by FEI scanning 

electron microscope (SEM) and energy dispersive X-ray spectroscope (EDS). Meanwhile, 

the porosity of each specimen was calculated based on visible void areas from the 

cross-sectional view. The shear strength of the specimens was evaluated by the Instron 

5569 mechanical tester with a specially-designed fixture as shown in the Figures 2 (a) and 

(b). The shear speed was 0.3 mm/min. The schematic diagram of the shear test is presented 

in Fig.2 (c). SEM was used to observe the morphology of the shear fractured locations. The 

elemental analysis of the area of interest on these locations was characterized by EDS. 
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Fig.2 Shear tester and fixture: (a) Instron 5569 mechanical tester, (b) fixture designed for 

the specimens, and (c) schematic diagram of the shear test 

III. RESULTS AND DISCUSSION 

Fig. 3 shows the Cross-sectional SEM micrographs of the sintering interfaces under the 

sintering pressures of 5, 10, 20, and 30 MPa, respectively. The dark layer next to the Mo 

layer, which consists of two elements, Ni and Cu, is formed of Ni-coated layer on the Mo 

plate and Cu-coated layer on Ni coated layer. Here the total thickness of the Ni and the Cu 

layers is about 2 μm. The layer next to the Cu layer is the Ag-coated layer exposed to air of 

the Mo substrate. The thickness of this Ag-coated layer is about 5 μm. 

 

Fig.3 Cross-sectional SEM micrographs of the sintering interfaces under the sintering 

pressures of: (a) 5 MPa, (b) 10 MPa, (c) 20 MPa, and (d) 30 MPa 

As shown in Fig.3, the sintered Ag layer is located between the two Ag-coated layers. 

The thickness of the sintered Ag layers is marked by the white lines in the figures. The 

result of the EDS line scan as shown in Fig.4 indicates that the top and the bottom layers 
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are Mo. It is clear that the sintering pressure has significant effects on the thickness of the 

sintering layers. The thickness of the sintering layers is calculated according to the ratio of 

the measured data to the scale. As presented in Fig.5, the thickness of the sintering layer is 

20.38 μm under the sintering pressure of 5 MPa. The thickness shows a decreasing trend 

while the sintering pressure increases. As the sintering pressure reaches 30 MPa, the 

thickness of the sintering layer decreases to 16.15 μm. 

 

Fig.4 EDS line scan result of the sintering interface 

 

 

Fig.5 Thickness of the sintered Ag layers 

Because the volume of void space in the sintering layer is in nano scale in this study, it is 

hard to characterize the porosity by X-ray observation because its resolution of X-ray is not 

high enough for nano voids. Therefore, the porosity of the sintering layers were calculated 

on the basis of the SEM micrographs. As shown in Fig.6, the black area represents the void 

in the microstructure. The area of the void can be calculated using AutoCAD software. 

Then the porosity of each specimen was obtained. 
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Fig.6 Calculation of the porosity in the sintered Ag layer. (a) SEM morphology, (b) 

gradation processing, and (c) area calculation 

Fig.7 shows the porosity of the sintering layers under various sintering pressures. As 

presented in the figure, the transforming tendency of the porosity is similar to the change of 

thickness due to the increase of sintering pressure. The porosity of the sintering layer 

decreases from 1.39% to 1.14% as the sintering pressure rises from 5 MPa to 30 MPa. 

Therefore, high sintering pressure facilitates the densification of the sintering layer. Here 

the values are lower than that of about 10% in the publications by Kähler et al [25]. The 

reason is that the bonding material used in this study is a commercial nano-Ag film. 

Compared with nano-Ag paste, nano-Ag film has higher density which is helpful to 

decrease the porosity of the sintered layers. Zhao et al [26] also obtained the sintered layer 

whose porosity is lower than 10% using similar Ag film on DBC substrate. 

 

Fig.7 Porosity in the sintered Ag layers 

Fig.8 shows the shear strength of the sintering specimens under different sintering 

pressures. As shown in the figure, the shear strength is about 44.19 MPa when the sintering 

pressure is 5 MPa. A significant increase of the shear strength appears and reaches 69.41 

MPa as the sintering pressure increases to 10 MPa. When the sintering pressure ranges 
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from 10 MPa to 30 MPa, the shear strength presents a slow increase. The value of the 

strength is about 73.38 MPa when the sintering pressure is 30 MPa. As discussed, the 

increasing of sintering pressure improves the density of the sintered layer. The deformation 

of the Ag nano particles enlarges the contact area among the particles. High sintering 

pressure is considered to be helpful for the solid diffusion at the interfaces. Consequently, 

the bonding quality was improved. 

 

Fig.8 Shear strength of the sintering specimens 

The SEM morphology and EDS analysis of the shear fracture under 5 MPa sintering 

pressure can be observed in Fig.9. As shown in Fig.9 (a), the top Mo plates were peeled off 

during the shear test. The SEM micrograph of the red area in Fig.9 (a) is as shown in Fig.9 

(b). The morphology of this fracture consists of two kinds of the surfaces. The EDS results 

in Fig.9 (d) and (e) demonstrate that the gray area is the fracture of the sintered Ag, while 

the dark area represents the Ni layer coated on the bottom Mo plate. Here the Ti element is 

due to the testing deviation of the EDS equipment or the impurity of the Mo plate. The 

magnified micrograph of the selected area in Fig.9 (c) shows the morphology of the shear 

fracture of the sintered Ag. Ag nano particles with the diameter of about 500 nm can be 

distinctly observed in this figure. Meanwhile, some of the coated Ag layer was removed. 

Therefore, the fracture mode of the specimens under the sintering pressure of 5 MPa 

includes two types of fracture during the shear test. One is the brittle fracture between the 

nano Ag particles in the sintering layer. The other one is the delamination between the Cu 

and Ni layers coated on the bottom Mo plate. The delamination can be clearly observed 

from the morphology and EDS line scan analysis as shown in Fig.10.  

Fig.11 shows the SEM morphology and EDS analysis of the shear fracture when the 

sintering pressure is 30 MPa. Compared with shear fracture under 5 MPa sintering pressure 

in Fig.9, the delamination area between the Cu and Ni layers coated on the bottom Mo plate 

significantly increases. As shown in Fig.11 (b), only small area of Ag fracture can be 

observed. The magnified fracture is presented in Fig.11 (c). It is obvious that the fracture in 

the sintered Ag is mainly due to the ductile failure of Ag layer. Therefore, the failure of the 

specimens under 30 MPa sintering pressure is mainly due to the delamination between the 

Cu and Ni layers coated on the bottom Mo plate during the shear test. Meanwhile, minor 

area resembles as a ductile fracture within the sintered Ag film. 
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Fig.9 Morphology and EDS analysis of the shear fracture under 5 MPa sintering pressure. (a) optical 

micrograph of the sheared specimens, (b) SEM micrograph of the shear fracture, (c) magnified area of (b), (d) 

EDS result of point 1 in (b), (e) EDS result of point 2 in (b) 

 

 

Fig.10 Morphology and EDS line scan analysis of the delamination 
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Fig.11 Morphology and EDS analysis of the shear fracture under 30 MPa sintering pressure. (a) optical 

micrograph of the sheared specimens, (b) SEM micrograph of the shear fracture, (c) magnified area of (b), (d) 

EDS result of point 1 in (b), (e) EDS result of point 2 in (b) 

Fig.12 shows the magnified morphology of the shear fractures of the sintered Ag under the sintering 

pressures of  5, 10, 20, and 30 MPa, respectively. As shown in the figure, the Ag sintered layer experiences 

brittle failure when the sintering pressure is 5 MPa. As the sintering pressure ranges from 10 to 30 MPa, the 

fracture modes are ductile failure. The transformation from brittle to ductile mode of fractures is considered 

as the reason why the shear strength appears a sharp increase due to the increase of sintering pressure from 5 

to 30 MPa. As the sintering pressure reaches 10 MPa, significant improvement (~57%) in the shear strength 

of sintering layer is observed. In contrast, the interface between the Ni/Cu coated layers over Mo turns out to 

be the weakest link in the whole package. Therefore, although clear densification appears when the sintering 

pressure increases from 10 to 30 MPa, the shear strength does not show an obvious enhancement. In order to 

obtain further improvement on the bonding strength of the whole module, it is necessary to conduct more 

studies on the materials and the coating processes of adhesion layers. 

 

Fig.12 Magnified morphology of the shear fractures of the sintered Ag under the sintering pressures of: (a) 5 

MPa, (b) 10 MPa, (c) 20 MPa, and (d) 30 MPa 
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IV. CONCLUSION 

1. Increasing the sintering pressure facilitates the densification of the sintered Ag layer. As the sintering 

pressure rises from 5 MPa to 30 MPa, the thickness and the porosity of the sintered layer decrease by 20.75% 

and 17.99% respectively. 

2. The shear strength grows significantly from 44.19 MPa to 69.41 MPa when the sintering pressure increases 

from 5 MPa to 10 MPa. Further increase of the sintering pressure shows limited enhancement on the shear 

strength in this study. 

3. The fracture mode of the specimens under the sintering pressure of 5 MPa includes two types of fracture 

during the shear test. One is the brittle fracture between the nano Ag particles in the sintering layer. The other 

one is the delamination between the Cu and Ni layers coated on the bottom Mo plate. 

4. As the sintering pressure increases from 5 MPa to 30 MPa, the shear fracture of sintered Ag transformed 

from brittle fracture to ductile fracture. Delamination between the Cu and the Ni layers coated on the bottom 

Mo plate turns to be the main fracture mode when the sintering pressure is higher than 10 MPa. 

5. Future works will focus on the reliability evaluation such as the thermal cycling and high temperature 

aging tests for the real power modules. Meanwhile, the other properties such as thermal and electrical 

performances of the sintered nano-Ag film will be of interest for investigation.  
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