

Delft University of Technology

Unite and Lead
Finding Disjunctive Cliques for Scheduling Problems
Sidorov, Konstantin; Marijnissen, Imko; Demirović, Emir

DOI
10.4230/LIPIcs.CP.2025.35
Publication date
2025
Document Version
Final published version
Published in
31st International Conference on Principles and Practice of Constraint Programming

Citation (APA)
Sidorov, K., Marijnissen, I., & Demirović, E. (2025). Unite and Lead: Finding Disjunctive Cliques for
Scheduling Problems. In M. Garcia de la Banda (Ed.), 31st International Conference on Principles and
Practice of Constraint Programming Article 35 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH,
Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CP.2025.35
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4230/LIPIcs.CP.2025.35
https://doi.org/10.4230/LIPIcs.CP.2025.35

Unite and Lead: Finding Disjunctive Cliques for
Scheduling Problems
Konstantin Sidorov1 #Ñ

Delft University of Technology, The Netherlands

Imko Marijnissen1 # Ñ

Delft University of Technology, The Netherlands

Emir Demirović #Ñ

Delft University of Technology, The Netherlands

Abstract
Constraint programming solvers have seen much success in scheduling problems owing to their
efficient reasoning over constraints to solve complex problems in practice. Many algorithms have been
proposed for propagating information from a single constraint. However, inferring and exchanging
information across multiple constraints can provide deeper insight into the global structure of a
problem. In this work, we propose to exchange information amongst constraints by inferring the
disjointness of tasks in scheduling problems from many constraints. We do this by (i) augmenting
existing propagators, such as the Cumulative and nogoods, to report when pairs of tasks are disjoint,
and (ii) leveraging this information by introducing the SelectiveDisjunctive propagator which
generates a lower bound on the earliest completion time of cliques of disjoint tasks to determine
conflicts. This allows us to aggregate disjointness information spanning multiple constraints to gain
a better global overview of the problem, as well as more precise local information. We also identify a
problem structure where an LCG solver reasoning over Cumulative constraints separately, without
any reformulations, requires an exponential amount of time to prove infeasibility, which we both
justify theoretically and show empirically; on the other hand, our approach solves those instances
in polynomial time. On particular known RCPSP and RCPSP/max benchmarks, our approach
significantly reduces the number of conflicts required to prove optimality when resource contention
is high. Additionally, we discover new lower bounds for 16 RCPSP/max instances (closing six of
them) and four RCPSP instances (closing one), as well as new upper bounds for two RCPSP/max
instances and four RCPSP instances. Furthermore, we empirically analyse our proposed approach
to determine which features are beneficial for performance, showing that finding cliques is one of
the main bottlenecks and that detecting disjointness during search can lead to improved bounds
on certain instances, but it generally negatively impacts learning. This work paves the way for
reasoning over the disjointness of tasks inferred from a variety of standard constraints to discover
novel information sourced from multiple constraints during search.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Programming, Lazy Clause Generation, Propagation, Scheduling,
Cumulative, Disjunctive

Digital Object Identifier 10.4230/LIPIcs.CP.2025.35

Supplementary Material
Software (Pumpkin and processing scripts): https://doi.org/10.5281/zenodo.15624366
Dataset (Instances and solver logs): https://doi.org/10.5281/zenodo.15624416

Funding Konstantin Sidorov: supported by the TU Delft AI Labs program as part of the XAIT lab.
Imko Marijnissen: supported by the NWO/OCW, as part of the Quantum Software Consortium
programme (project number 024.003.037 / 3368).

1 Both authors contributed equally to this research.

© Konstantin Sidorov, Imko Marijnissen, and Emir Demirović;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 35; pp. 35:1–35:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.sidorov@tudelft.nl
http://www.ksidorov.nl
https://orcid.org/0009-0009-0655-4200
mailto:i.c.w.m.marijnissen@tudelft.nl
https://imkomarijnissen.com
https://orcid.org/0009-0008-7086-920X
mailto:e.demirovic@tudelft.nl
https://emirdemirovic.com/
https://orcid.org/0000-0003-1587-5582
https://doi.org/10.4230/LIPIcs.CP.2025.35
https://doi.org/10.5281/zenodo.15624366
https://doi.org/10.5281/zenodo.15624416
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

35:2 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

Acknowledgements The authors would like to thank Maarten Flippo for the productive discussions
on scheduling applications for constraint programming during the early phases of this project.

1 Introduction

Scheduling is one of the important classes of problems in the field of optimisation that can
be loosely described as the problem of scheduling a set of tasks to satisfy certain constraints
while optimising some objective. Constraint programming (CP) has been successful in solving
scheduling problems. The key advantage of CP is its native support for constraints that
capture task resource usage and efficient propagation algorithms to prune the search space,
such as time-tabling [29] or energetic reasoning [2]. Another promising technique is exploiting
the disjointness of tasks, as identified by Gay et al. [16] to infer bounds on tasks.

A common trait of the previously mentioned works is that they reason over a single
resource, since reasoning jointly over multiple resources significantly increases the com-
putational cost. However, the benefits of stronger inference obtained by aggregating and
exchanging information across multiple resource constraints may outweigh the drawbacks, an
opportunity underexplored in constraint programming for scheduling.

To illustrate the issues with single-resource reasoning, consider the following example:

▶ Example 1. We have two tasks on different resources and aim to minimise the latest finish
time (makespan). Individually, neither resource constraint allows us to make any non-trivial
inferences about the makespan. However, if we combine this with the information that the
two tasks cannot be executed at the same time, then we can see that they need to be executed
sequentially, which allows us to derive a tighter bound on the makespan of these two tasks.

To address this, we propose a principled solution for aggregating and exchanging information
across constraints by reasoning over the disjointness of task pairs, based on both static
incompatibilities (i.e., present in the original model) and dynamic incompatibilities (i.e.,
discovered during search). Our approach consists of three core components:
Variable creation We create Boolean variables representing whether two tasks are disjoint.
Disjointness mining We extend the existing propagators for constraints defined in the

problem to infer whether two tasks should be disjoint and allow propagators to use the
Boolean variables to perform additional propagation.

Conflict detection We introduce the SelectiveDisjunctive propagator that aggregates
this disjointness information by deriving lower bounds on the earliest completion time of
disjoint cliques of tasks to detect conflicts.

By doing so, we can detect inconsistent states for disjoint tasks by (a) aggregating information
from the whole problem in contrast to the more orthodox focus on single constraints, (b)
allowing propagators to use this shared information, and (c) computing conflicting task groups
during search, thus using information obtained later in the search. As finding maximum
cliques is an NP-hard problem [23], we propose a heuristic to find disjoint cliques of tasks
based on minimising the growth of the interval spanned by the clique when adding a task.

To support the usefulness of our contributions, we identify an instance structure for which
state-of-the-art solvers are guaranteed to incur an exponential number of conflicts unless
they reformulate the problem. While state-of-the-art LCG solvers also exhibit exponential
runtime in practice, our approach can solve the same instances in polynomial time.

To evaluate our approach, we implemented it in Pumpkin [12] and ran experiments on
well-known scheduling benchmarks (RCPSP and RCPSP/max). Comparing our approach to
baseline Pumpkin and Google OR-Tools CP-SAT [31] (a state-of-the-art CP solver that has

K. Sidorov, I. Marijnissen, and E. Demirović 35:3

won many editions of the MiniZinc Challenge since 2017) shows that our approach works
well when resource contention is high, with some instances exhibiting improvements of three
orders of magnitude. For RCPSP/max, our approach discovers 16 new lower bounds (and
closes six instances) and two new upper bounds; whereas for RCPSP, our approach yields
four new upper bounds, four new lower bounds, and one closed instance. Our ablation study
shows that the main bottleneck is finding the cliques but that it can be crucial to find the
right cliques, whereas disjointness mining hampers performance due to poor learning on most
instances.

To summarise, we address the insufficiency of local information by reasoning over the
disjointness of tasks to infer global information. We do this by (1) introducing Boolean
variables representing the disjointness between two tasks and extending existing propagators
to infer the values of these variables and use them for additional propagation, and (2)
introducing the SelectiveDisjunctive propagator that heuristically finds disjoint cliques to
detect conflicts unattainable by current approaches due to their focus on individual constraints.
We identify an instance structure for which current techniques are guaranteed to incur an
exponential number of conflicts, while our approach only requires a polynomial number of
them. We experimentally evaluate our approach and observe that it is most beneficial for
instances with high resource contention, leading to orders-of-magnitude improvements for
specific benchmarks. Through an ablation study, we find that dynamically determining which
disjoint cliques to focus on can be beneficial and that looking for disjointness during search
inhibits the learning capabilities of the solver. This work paves the way for aggregating
information across constraints to derive global information about the problem.

The rest of the paper is structured as follows. Section 2 introduces the concepts of
constraint programming relevant to our work. Section 3 reviews the previous research on
disjunctive reasoning. We present and motivate our strategy for discovering and reasoning
about disjunctive tasks in Section 4. We evaluate our approach on a range of scheduling
problems in Section 5. Finally, we conclude and review further research directions in Section 6.

2 Preliminaries

Constraint programming framework. A Constraint Satisfaction Problem (CSP) consists of
a tuple (X , C,D) where X is the set of variables, C is the set of constraints which specify
the relations between variables, and D is the domain which specifies for each variable which
values it can take; we refer to the lowest and highest domain values as lower and upper
bounds and denote them LB(x) and UB(x), respectively [32]. A solution I is a mapping that
maps each variable in X to a single value in the domain of that variable in D which satisfies
all of the constraints in C. An atomic constraint (i.e. atomic predicate) is a predicate over a
single integer variable x ∈ X and value v signified by Jx⊗ vK where ⊗ ∈ {=,≤,≥, ̸=}.

Constraint programming (CP) is a paradigm for solving CSPs; CP solvers enforce
constraints through propagators, each represented with a function f : D 7→ D′ (where
D′ ⊆ D) which removes values from D infeasible under the constraints in C. After applying
the propagators, the solver makes a decision which creates several subproblems by splitting
the domain of a variable into two or more parts. This process of applying propagators and
making decisions is performed until either a solution I is found, the problem is found to be
unsatisfiable, or a termination criterion is met.

During the search process, CP solvers can use a technique called nogood learning [10]. A
nogood is a partial assignment that cannot be extended to a full solution, typically rendered
with an implication of the form N = p1∧· · ·∧pk =⇒ ⊥ with pj being the atomic constraints

CP 2025

35:4 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

encoding the partial assignment; a nogood is unsatisfied if no pj is falsified. The purpose of
adding nogoods is to prevent the search process from (re-)exploring parts of the search space.
In this work, we use the lazy clause generation framework [14] to derive these nogoods. In
this framework, it is required that the propagators explain their inferences in terms of atomic
constraints, that is, they produce explanations of the form e1 ∧ · · · ∧ em =⇒ q.

Cumulative constraint. Cumulative is a constraint useful for many scheduling problems
to model limited renewable resources, such as available work-hours. However, determining
the satisfiability of a single Cumulative constraint is NP-complete [2], meaning that even
reasoning efficiently over a single Cumulative requires reasoning over relaxations of the
problem.

We define the Cumulative in Definition 2, the variable si encodes the start time of task
i, and (si + di) the finish time of i. Thus, in this constraint, we implicitly associate each
task i ∈ T with an interval [si, si + di). We also introduce notation for the bounds of tasks
and sets of tasks.

▶ Definition 2. Let T be a set of tasks, and let a task i ∈ T be defined by its start variable
si, resource usage ri ∈ Z≥0, and duration di ∈ Z≥0. Finally, let C ∈ Z≥0 be the capacity of
the resource. Then the Cumulative constraint is the condition that at any time point τ the
cumulative resource usage of intervals [si, si + di) covering τ does not exceed the capacity:

∀τ ∈ Z :
∑

i∈T : si≤τ<si+di

ri ≤ C. (1)

Given a task i ∈ T , we denote its: earliest start time ESTi = LB(si), earliest completion
time ECTi = LB(si) + di, latest start time LSTi = UB(si), latest completion time
LCTi = UB(si) + di, and energy ei = ri × di.

Given a set of tasks Ω ⊆ T , we denote its: total duration dΩ =
∑

i∈Ω di, earliest
start time ESTΩ = mini∈Ω LB(si), latest completion time LCTΩ = maxi∈Ω UB(si) + di,
earliest completion time ECTΩ = maxΩ′⊆Ω ESTΩ′ +dΩ′ , and total energy eΩ =

∑
i∈Ω ei

An important concept for the inference over Cumulative constraints is the mandatory part
(Figure 1a), which is a time interval that is covered by a task regardless of its placement:

▶ Definition 3. Given a Cumulative constraint over tasks T with capacity C, we denote
the mandatory part MPi of a task i ∈ T as the interval MPi := [LSTi, ECTi). We define
a height at a time point τ as total consumption of mandatory parts covering τ , that is,
Height(τ) :=

∑
i∈T : τ∈MPi

ri. We also define a reduced height at a time point τ without
Ω ⊆ T as Height−(τ, Ω) :=

∑
i∈T \Ω : τ∈MPi

ri. Finally, we define a profile Prx as a
rectangle (ax, bx, hx) where ∀τ ∈ [ax, bx] : Height(τ) = hx and we assume that all profiles
are maximal (i.e. there are no adjacent profiles with the same height).

Disjunctive (No-Overlap) constraint. In this paper, we focus on a special case of
Cumulative where the resource has unit capacity C = 1 and each task has unit resource
usage ri = 1, known as Disjunctive. Many inference procedures that are intractable for
Cumulative constraints can be efficiently executed for Disjunctive constraints. The core
inference that we use is infeasibility checking (Theorem 4), as illustrated by Figure 1b.

▶ Theorem 4 (Overload checking). Let Ω ⊆ T be a set of variables bound by a Disjunctive
constraint such that dΩ > LCTΩ − ESTΩ. Then the Disjunctive constraint has no feasible
solutions [37], and any feasible solution of the CSP satisfies(∧

i∈Ω
Jsi ≥ ESTΩ − δ−K

)
∧

(∧
i∈Ω

Jsi ≤ LCTΩ − dω + δ+K

)
=⇒ ⊥ (2)

K. Sidorov, I. Marijnissen, and E. Demirović 35:5

for arbitrary δ−, δ+ ∈ Z≥0 satisfying LCTΩ − ESTΩ + δ− + δ+ < dΩ [38].

ESTi LCTiECTiLSTi

Mandatory part

(a) Mandatory part illustration for a single task i.

Task 1

Task 2

d1 = 6

d2 = 6

EST1 = 0, LCT1 = 10

EST2 = 0, LCT2 = 10

(b) Overload checking leads to a conflict since
d1 + d2 > LCT{1,2} − EST{1,2}.

Figure 1 Key concepts related to Cumulative and Disjunctive constraints.

3 Related Work

Much work focused on inferring information based on the Cumulative efficiently [29, 34].
One of the approaches of primary interest in this work is edge-finding [29] as it is similar in
its conflict detection procedure (also known as input/output consistency tests [13, Chapter
4]). A common trait of these approaches [22, 18] is that the earliest completion time of
Ω ⊆ T is used to make inferences. For example, overload checking enforces the condition
ECTΩ > LCTΩ =⇒ ⊥, while edge finding extends this rule to ECTΩ∪{i} > LCTΩ =⇒ Ω⋖i,
updating the bounds of t such that it does not overflow the interval bounded by the tasks in
Ω. While edge-finding takes into account the earliest start times and latest finish times of
the tasks (and horizontally elastic edge-finding [18] takes into account the maximum resource
usage of the tasks), this type of reasoning does not take into account the disjointness of tasks
and its influence on the earliest completion time of a set of tasks. Furthermore, edge-finding
reasons over a single Cumulative, whereas we propose gathering information across several
Cumulative constraints to infer the earliest completion time.

Detecting disjoint pairs of tasks within a Cumulative constraints is also a viable reasoning
strategy [16], known as time-table disjunctive reasoning. This strategy can detect disjoint
task pairs dynamically by taking into account the time points at which other tasks are
guaranteed to consume some amount of resource. When it detects such disjointness using
time-tabling [29], it determines when the bounds of one of the tasks can be updated. The
main difference with our approach is that time-table disjunctive reasoning only reasons about
a single Cumulative constraint while we reason jointly over multiple constraints, and our
approach infers disjointness from other constraints besides the Cumulative.

To the best of our knowledge, the only work that addresses the reasoning over multiple
Cumulative constraints is the work by Beldiceanu and Carlsson [5]. This work introduces
a multi-resource Cumulatives constraint as a generalisation of the Cumulative, admitting
negative resource consumption and lower/upper bounds on the cumulative resource usage.
However, their reasoning makes limited use of the additional information provided by
reasoning over multiple Cumulative constraints, nor does it take into account disjointness.

Besides reasoning about Cumulative constraints, we consider other works that reason
about disjunctive tasks. One area is branch-and-bound algorithms for scheduling problems.
A common example is the resource-constrained scheduling problem (RCPSP), in which one
of the lower bounds (LB4) on makespan is the sum of durations in a group of pairwise

CP 2025

35:6 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

disjunctive tasks; with similar bounds being proposed for activity groups with at most two or
at most k of them running in parallel [24]. Thus, our approach generalises that strategy while
also working in the constraint programming context, where the tasks can be (a) arbitrarily
bounded by the solver and (b) involved in other constraints. This type of reasoning can also
be embedded into the search tree node representation, for example, as a scheduling scheme
[7], which accounts for the pairs of tasks that are either disjunctive or running in parallel.

We thus note that there are several methods that attempt to find relations between
variables and to exploit these relations to infer information about the bounds. However, the
relations discovered by the majority of state-of-the-art techniques are local to individual
resource constraints or do not reason over the disjointness of tasks; contrary to that, our
work aims to discover this disjointness dynamically during search from multiple constraints
and use information across propagators to infer the earliest completion time of a set of tasks.

4 Our Contribution: Finding Disjunctive Cliques

This section will introduce our approach for aggregating information across constraints. We
propose the following workflow:
1. Given a set of tasks T (bound by Cumulative constraints), introduce new variables δij

for all i, j ∈ T and reify them as δij → [si, si + di) ∩ [sj , sj + dj) = ∅. (Subsection 4.2)
2. Introduce the reification variables δ into other constraints (such as the Cumulative and

difference logic) and extend their propagation logic to derive implications of the form
Jvariable boundsK =⇒ δij , and propagate variable bounds based on δ. (Subsection 4.4)

3. Introduce our novel SelectiveDisjunctive propagator which derives lower bounds on
the earliest competion time of sets of pairwise disjoint tasks given (a) pairs of tasks {i, j}
such that δij = 1, and (b) the bounds on start times to discover conflicts. (Subsection 4.3)

Our approach allows us to gain a global view across multiple constraints rather than relying
on single constraints to independently make local inferences which causes limited information
exchange between propagators. Thus, our approach allows them to communicate more
elaborate facts between propagators and a CP solver, such as the disjointness of a pair of
tasks, as opposed to existing methods focusing on a local view.

4.1 Motivating Example: 3n Problem

Let us first look at a case where reasoning over a single resource is insufficient: Suppose that
we are scheduling six tasks, each with unit duration. At every time unit, we are given a fixed
amount of resources of types I, II, and III. The amount of resources consumed by each task
is illustrated in Figure 2a. How much time has to pass before all six tasks are completed?

This is possible to do in six units of time by sequentially scheduling the tasks in any
order. What cannot be inferred by reasoning over single constraints (such as time-tabling
or energetic reasoning) is that this schedule is the fastest possible (in terms of the latest
completion time). To see why, observe that the two yellow tasks cannot be run in parallel
due to the shortage of resource I, and the same is true for both the two green tasks and
the two blue tasks by similar reasoning. On the other hand, scheduling a yellow and a
green task in parallel is not possible, as it would overflow the resource II; the same holds

for a green and a blue task, as well as for a blue and a yellow task. By this point, we
have considered all pairs of tasks and concluded for each of them that they cannot be run in
parallel, making it impossible to improve upon the sequential schedule.

K. Sidorov, I. Marijnissen, and E. Demirović 35:7

1

2

3

4

6

5 I
II
III

70%
40%

I
II

70%

40%

III

I
II
III

70%
40%

(a) Conflict graph of the motivating example. Edge colour indicates
resource, solid edges connect tasks jointly consuming 140%, and dotted
edges connect tasks jointly consuming 110%. All tasks of the same
colour have the same resource usage.

102
103
104
105
106

2 3 4 5
Group size n

N
um

be
r

of
co

nfl
ic

ts
to

op
tim

al
ity

(b) Number of conflicts gen-
erated by CP-SAT solving 3n
problem instances with d = 1.

Figure 2 Motivating example: scheduling problem with tasks that are pairwise disjoint due to
various resource constraints and how CP-SAT performs on these instances.

The previous reasoning relies only on the partition of tasks into three groups such that
choosing one task from every two groups implies disjointness; this property holds if we
consider groups of size n. We generalise the reasoning above not only in terms of group size
n but also by duration d and capacity parameters p, q, M :

▶ Definition 5. Given a group size n ∈ N≥1, duration d ∈ N≥1, and parameters p, q, M ∈ N≥1
with 2p < M < p + q < 2q, the 3n problem instance is the constraint satisfaction problem
defined over variables X, Y, Z with |X| = |Y | = |Z| = n and domains D(·) ≡ [1, (3n− 1)d]:

cumulative(X ++ Y ; [d]2n; [p]n ++ [q]n; M) cumulative(Y ++ Z; [d]2n; [p]n ++ [q]n; M)
cumulative(Z ++ X; [d]2n; [p]n ++ [q]n; M)

As we established, any 3n instance is unsatisfiable, but to establish this without search,
a solver needs information about all resources. However, each resource individually only
implies that any solution occupies some time segment of duration 2n× d, and the remaining
(n − 1)d time units have to be resolved by search. This suggests that any valid sequence
of inferences that operates on Cumulative constraints separately has exponential length in
terms of n.

We prove this, and the 3n problem thus serves a role similar to pigeonhole principle
formulas [19], but for the Cumulative models instead of propositional formulas. We show
that any unsatisfiability proof of a 3n problem in the C-RES proof system [21] has length
exponential in n, which shows that any LCG solver requires an exponential number of steps
to prove unsatisfiability, as long as it introduces neither new constraints nor new variables:

▶ Theorem 6 (3n problem intractability). Let P be a C-RES proof of a CSP instance with
all clauses valid for any single constraint in Definition 5 for d = 1. Then |P| = Ω(1.05n).

Proof Sketch. First, we show that P can be encoded, with extra assumptions, as a pigeonhole
problem proof over 3n variables (Appendix A). Next, we adapt the argument by Beame and
Pitassi [4] to verify the exponential lower bound (Appendix B). ◀

We evaluate this insight empirically by running 3n instances for n ≤ 10 and d ≤ 5 with five
solvers: two LCG solvers (Google OR-Tools CP-SAT [31] and Chuffed [9]), a non-learning
CP solver (Gecode [17]), and two branch-and-cut solvers (CBC [15] and HiGHS [20]). We

CP 2025

35:8 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

ran each solver with a 12-hour time limit, 1 CPU, and 4000 MB of RAM. Both the LCG and
non-learning solvers exhibit exponential behaviour, as shown on Figure 2b for CP-SAT, and
only one of the runs n ≥ 6 proved unsatisfiability. These results suggest that LCG solvers
indeed resort to exhaustive enumeration on the 3n problem. Branch-and-cut solvers have
exhibited better performance in solving those instances, demonstrating another similarity
with pigeonhole principle formulas. HiGHS solved all instances with d ≤ 3 in seven minutes.
CBC has performed worse, as it has failed to solve instances with n ≥ 7, however, it has
successfully solved d = 1 for n ≤ 6 in less than two seconds.

4.2 SelectiveDisjunctive Constraint
Now that we have motivated the necessity for using global information, we describe how we use
information concerning the disjointness of tasks across multiple constraints by introducing the
SelectiveDisjunctive constraint. The SelectiveDisjunctive constraint (i) generalises
the disjunctive constraint in a way that allows other propagators to indicate disjoint task
pairs, and (ii) restricts the variables indicating this disjointness to be true when a pair of
intervals in the assignment is disjoint. We formalise this intuition in Definition 7.

▶ Definition 7. Let T be a set of tasks, and ∆ be the n × n matrix of Boolean variables
indexed by T . Then a SelectiveDisjunctive(T, ∆) constraint is a condition that for any
two tasks i, j ∈ T, i ̸= j either δij = 0 or [si, si + di) ∩ [sj , sj + dj) = ∅.

Introducing these variables and SelectiveDisjunctive does not prune any valid solutions,
but it allows performing two new operations: (a) fixing the variables from ∆ and (b) using
these ∆ variables in other propagations. This allows us to encode facts – such as ‘a pair of
tasks cannot overlap given a partial assignment of other tasks’ – that are not possible to
encode concisely using atomic constraints over the original model variables. More specifically,
we can now observe that Definition 7 embeds the standard Disjunctive constraint (or even
exponentially many of them); to formalise this, we first need the following notion:

▶ Definition 8. Given a search state with domains D′ and a SelectiveDisjunctive con-
straint, a conflict graph G|D′ is a graph with a vertex for each task i ∈ T and an edge for
tasks {i, j} such that D′(δij) = {1} (ommitting D when it is clear from context).

We can make two key observations based on Definition 8: (1) a conflict graph can be
seen as an exponentially large collection of Disjunctive constraints, and (2) this is also a
dynamically updating collection of Disjunctive constraints, provided that the other parts of
a constraint solving engine can propagate the domains of reification variables. On top of this,
it suggests that any reasoning for the conventional Disjunctive constraint can be deployed
for any clique of the conflict graph. In Subsection 4.3, we discuss how to find these cliques in
the conflict graph and how to apply the overload checking rule for the Disjunctive in this
context.

4.3 Overload checking for SelectiveDisjunctive

To clarify the intuition behind our inference strategy, consider the following example:

▶ Example 9. Let i, j, k be tasks with possible start times si ∈ [0, 2], sj ∈ [0, 2], sk ∈ [2, 3]
and durations di = dj = 2, dk = 3 bound by a SelectiveDisjunctive constraint such that
δij = δjk = δik = 1 in the current search state. We can observe that any feasible assignment
also satisfies Disjunctive([si, sj , sk], [di, dj , dk]). However, this constraint is infeasible by
overload checking for {si, sj , sk}: these three tasks jointly cover seven time units, but their
EST is 0 and LCT is 6, leaving only six time units among these three tasks.

K. Sidorov, I. Marijnissen, and E. Demirović 35:9

▶ Note 10. The example above purposefully does not specify why the ∆-variables are true:
the same reasoning can be carried out as soon as those intervals are established to be disjoint.
We discuss the specific strategies for deriving those facts in Subsection 4.4.

We formalise this intuition in Proposition 11 by reformulating Theorem 4 in the context
of the SelectiveDisjunctive constraint.

▶ Proposition 11 (Selective overload checking). Let T be the set of tasks bound by a
SelectiveDisjunctive constraint, and suppose that Ω ⊆ T is a clique in the conflict
graph G induced by the current variable domains. Then this constraint is infeasible if
dΩ > LCTΩ − ESTΩ, and any feasible solution of the CSP satisfies ∧

i,j∈Ω, i ̸=j

δij

∧(∧
ω∈Ω

Jsω ≥ ESTΩ − δ−K

)
∧

(∧
ω∈Ω

Jsω ≤ LCTΩ − dω + δ+K

)
=⇒ ⊥ (3)

for arbitrary δ−, δ+ ∈ Z≥0 satisfying LCTΩ − ESTΩ + δ− + δ+ < dΩ.

Unlike the Disjunctive overload checking, propagation of the SelectiveDisjunctive
requires an additional step before overload checking can be performed: finding cliques.
Finding a clique leading to a conflict, even if it exists, is NP-complete2 and we thus propose a
heuristic in Algorithm 1 that dynamically explores some of the cliques present in the conflict
graph to balance the trade-off between finding “ good” cliques and the time spent finding
them. The heuristic algorithm considers each node as a root for a clique C and then adds
tasks j ∈ T \ C which minimise LCTC∪{j} − ESTC∪{j} (breaking ties in favour of tasks with
a longer duration) while retaining the clique property. The time complexity of Algorithm 1
is O(|T |4).

4.4 Disjointness mining
We described how to deploy the SelectiveDisjunctive propagator when some of the
reification variables have been assigned, but we have not yet described how to infer the
domain of these reification variables. In this section, we describe strategies for disjointness
mining, that is, discovering, possibly during the search, pairs of tasks i, j ∈ T that are
inferred to be disjoint.

Domain disjointness. One direct source of disjointness is the current bounds of variables.
The rule can be formally stated as ∀i, j ∈ T : [ESTi, LCTi)∩ [ESTj , LCTj) = ∅ =⇒ Jδij =
1K. We perform this check during the selective overload checking (Subsection 4.3). Given a
propagation of δij via this detection, we explain the propagation according to Equation 4.{

Jsi ≤ ESTj − diK ∧ Jsj ≥ ESTjK if LCTi ≤ ESTj

Jsj ≤ ESTi − djK ∧ Jsi ≥ ESTiK otherwise
=⇒ Jδij = 1K (4)

Difference logic. Scheduling problems often include tasks dependent on the execution of
other tasks. These dependencies can be provided in the form of precedence constraints, which
provide static information about the disjointness. For example, to encode that j starts δ

time units after i, we can use the difference logic constraint si + δ ≤ sj .

2 This can be shown by reduction from the maximum clique problem

CP 2025

35:10 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

Algorithm 1 Heuristic conflict discovery procedure.

Data: A set of tasks T with intervals [ESTi, LCTi) and durations di for all i ∈ T .
Data: A conflict graph G = (T, E).
Result: A set Ω ⊆ T satisfying dΩ > LCTΩ − ESTΩ or ⊥ if none was found.
if ∃e ∈ E : de > LCTe − ESTe then

return e ; /* Check for binary conflicts */
for t0 ∈ T do

Ω← {t0} ; /* Ω is a clique containing t0 */
S, T ← ESTt0 , LCTt0 ; /* [S, T) is an interval covered by Ω */
while dΩ ≤ LCTΩ − ESTΩ do

// Collect tasks that are disjoint with Ω
Ω+ ← {j ∈ T \ Ω : [S, T) ∩ [ESTj , LCTj) ̸= ∅ ∧ ∀i ∈ Ω, {i, j} ∈ E};
if Ω+ = ∅ then

break ; /* Cannot extend Ω into a clique, try another root */

t+ ← an element of arg minj∈Ω+

(
max(T, LCTj)−min(S, ESTj),−dj

)
;

Ω← Ω ∪ {t+}, S ← min(S, EST+
t), T ← max(T, LCT+

t); /* Extend Ω */
if dΩ > LCTΩ − ESTΩ then

return Ω;
return ⊥;

These constraints encode stronger conditions than disjointness; for example, precedence
can be seen as disjointness with ordering. Thus, we can deduce the disjointness variables
from the difference constraint for appropriate parameter values (this occurs at the root level
and requires no explanation). We formalise this in the following proposition:

▶ Proposition 12. A pair of intervals [si, si + di), [sj , sj + dj) is disjoint (i.e., δij = 1 in any
feasible solution) if any of the following constraints are implied by the CSP: (a) sj − si ≥ δ

for some constant δ ≥ di, or (b) si − sj ≥ δ for some constant δ ≥ dj.

Cumulative. There are several Cumulative propagation techniques that reason about when
the combination of scheduling a task i and a set of tasks Ω ⊆ T \ {i} leads to resource
overflows to infer relations between tasks. In this work, we use resource profiles to determine
when a pair of tasks is disjoint. An example of this reasoning can be seen in Example 13.

R
es

ou
rc

e
1

Task i Task j

LCTi = LCTj = 4

R
es

ou
rc

e
2

Task kTask j

ESTj = 0, LCTj = 4

ESTk = 2, LCTk = 6

R
es

ou
rc

e
3 Task k

ESTi = 0, LCTi = 4

ESTk = 2, LCTk = 6

Task i

ESTi = ESTj = 0

Figure 3 Example where profiles (marked in grey) cause disjointness between all tasks i, j, k.

▶ Example 13. In addition to the assumptions of Example 9, suppose that the problem
has three Cumulative constraints as visualised in Figure 3. We can derive from Resource
1 that i and j are disjoint (δij = 1); if they are not, then they overlap at some point
τ∗ ∈ [max(ESTi, ESTj) = 0, min(LCTi, LCTj) = 4]. However, this would cause an overflow
of the capacity, implying disjointness. Similar reasoning derives that δjk = 1 and δik = 1.

K. Sidorov, I. Marijnissen, and E. Demirović 35:11

In this example, just as in the motivating example (Subsection 4.1), neither of the three
constraints is infeasible; in fact, each can only imply one disjointness relation. However, the
intersection of those constraints is correctly declared infeasible by (i) Cumulative mining
and (ii) SelectiveDisjunctive overload checking. Thus, combining the mining strategies
with SelectiveDisjunctive inferences can generate conflicts that are out of reach for the
conventional techniques for the Cumulative constraint. ⌟

We adapt the time-table disjunctive reasoning [16] by going over all pairs of tasks i, j ∈ T ,
and calculating their overlap oij . Then we check ∀τ ∈ oij if there exists a profile such
that scheduling the tasks together with that profile would lead to an overflow. A simple
implementation of this approach has time complexity O(|T |2|TT |), where TT is the set
of existing profiles (i.e, the time-table). This reasoning is formally stated in the following
proposition:

▶ Proposition 14. Consider a Cumulative constraint on tasks T with capacity C. Let the
overlap between two tasks i, j ∈ T be given by oij = [max(ESTi, ESTj), min(LCTi, LCTj)).
Then δij is true for any feasible solution as long as there is no point τ ∈ oij such that
Height−(τ, {i, j}) plus the resource consumption of i and j fits within the capacity:

∀τ ∈ oij : ri + rj + Height−(τ, {i, j}) > C =⇒ Jδij = 1K

Moreover, given a propagation of δij by a set of profiles P = {(a0, b0, h0), ..., (am, bm, hm)},
a0 < · · · < am, we explain the propagation according to Equation 5, assuming without loss
of generality that ESTi ≤ ESTj . For Epr, we use the big-step explanation [33].{

Jsj ≥ a0K ∧ Jsj ≤ bm − dj + 1K if LCTi ≥ LCTj

Jsi ≤ bm − di + 1K ∧ Jsj ≥ a0K otherwise
∧

(∧
P r∈P

Epr(Pr)
)

=⇒ Jδij = 1K (5)

The first part of the explanation in Equation 5 is based on the observation that either one
task subsumes the entire interval of the other (in which case the explanation depends only
on the bounds of sj), or there is a partial overlap where one task starts at the same time or
before the other and ends at the same time or before the other (in which case the overlapping
part is only defined by the upper bound on si and the lower bound on sj).

Additionally, we adapt the propagation by Gay et al. [16] and propose a rule using δ in
Equation 6 (the rule for updating si is symmetric). The rule in Equation 6 and the rule
proposed by Gay et al. [16] do not subsume one another since Equation 6 can propagate based
on information gained from other constraints, while the rule by Gay et al. can propagate
when two tasks are not fully disjoint.

Jδij = 1K ∧ ECTi > ESTj ∧ LSTi < ECTj =⇒ Jsj ≥ ECTiK (6)

Nogood. Last, we describe how to derive disjointness from nogoods: given an unsatisfied
nogood N , tasks i, j ∈ T are disjoint if falsifying each of the unassigned atomic constraints
implies δij . An example can be seen in Example 15 and it is formalised in Proposition 16.

▶ Example 15. Given two tasks i, j ∈ T such that si ∈ [0, 9], sj ∈ [7, 20] with durations
di = 2, dj = 5, consider a nogood N = {pi = Jsi ≥ 5K, pj = Jsj ≤ 11K, ...}. Suppose that in
the current search state, only the first two atomic constraints are unassigned, while the rest
are satisfied. Thus, in any feasible solution either ¬pi = Jsi ≤ 4K or ¬pj = Jsj ≥ 12K holds.
But in either case, we can derive δij via domain disjointness:

If ¬pi is true, then LCTi = 6 ≤ ESTj = 7, implying δij .
If ¬pj is true, then LCTj = 11 ≤ ESTi = 12, also implying δij .

CP 2025

35:12 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

▶ Proposition 16. Let D′ be a set of domains, and suppose that a nogood N has no falsified
atomic constraints in this domain. Then a pair of tasks i, j is disjoint if for every atomic
constraint p ∈ N not satisfied with respect to D′, δij is implied by domain disjointness.
Our procedure is a simplified version of Proposition 16 based on the two-watcher scheme [28,
27]. Whenever a watcher is updated, we perform a scan to determine whether the conditions
of Proposition 16 hold while reasoning over domain disjointness; this misses out on some
propagations, but the time required is significantly reduced. The time complexity of this
approach is O(|N |) for each nogood N . We explain this propagation due to an unsatisfied
nogood N as Esn(si, sj , pi, pj) ∧

(∧
p+∈N+ p+

)
=⇒ Jδij = 1K, where N+ ⊆ N is the set of

satisfied atomic constraints, and px = Jsx⊗ vK is one of the two undecided atomic constraints.
See Appendix C for the definition of Esn.

5 Experiments

We implemented our approach as part of Pumpkin [12]. First, we present an ablation study
in Subsection 5.1, which shows that (a) dynamic disjointness mining hinders the learning of
the solver but that it can be beneficial on specific instances, (b) an alternative efficient sorting
heuristic has a significant impact on the search but also leading to massive slowdowns on
some instances, and (c) enabling the propagation in Equation 6 does not consistently change
the performance. Next, we run a comparison on RCPSP and RCPSP/max benchmarks in
Subsection 5.2 with baseline Pumpkin and CP-SAT, which shows that our approach can
accelerate search by orders of magnitude on certain instances. Additionally, we compare our
results with bounds reported in the literature and show that our approach discovers new
lower bounds on 16 RCPSP/max instances and four RCPSP instances, as well as new upper
bounds on two RCPSP/max instances and four RCPSP instances.

Experiment Setup. The implementation of our approach with the infrastructure for running
the experiments is available in the supplementary material. We ran our experiments on
DelftBlue [11], with each run of an instance being allocated a single core of an Intel Xeon
E5-6248R 24C 3.0GHz processor and 4000 MB of RAM with a time limit of one hour.

For our evaluation, we use two models that minimise the latest completion time of all tasks
(makespan). One is RCPSP/max, a collection of Cumulative constraints and precedence
relations encoded by the constraints si + γij ≤ sj with arbitrary constants γij ∈ Z; we use
the test suites distributed by PSPLIB [25], namely, C, D, UBO, and SM suites. We also
use RCPSP, a special case of RCPSP/max where all precedence relations have the form
si +di ≤ sj ; we use the data files provided in the MiniZinc benchmarks [36], which correspond
to the AT [30], BL [3], Pack [8], Pack-d and KSD15-D [26], and PSPLIB [25] suites.

Given a minimisation objective O, each of the solvers is run with one of the two search
directions. In the primal search, the solver generates a series of problems with an extra
assumption JO ≤ onK for decreasing values of on. In the dual search, the solver generates a
series of problems with an extra assumption JO ≤ onK for increasing values of on.

We discard all the instances solved by the Pumpkin baseline within five seconds in either
search direction, leaving us with 736 RCPSP instances and 349 RCPSP/max instances.
The models we used and the data files are available in the supplementary material. We
evaluate the rate of progress of a solver towards the best-known bound with the following
metrics. First, if M(t) is the lowest makespan discovered at time t ∈ [0, T], and M∗ is the
lowest discovered makespan for this problem, then the primal integral is

∫ T

0
M(t)−M∗

M(t) and

K. Sidorov, I. Marijnissen, and E. Demirović 35:13

measures how fast the solver progresses towards good solutions [6]. Conversely, if B(t) is
the highest lower bound discovered at time t ∈ [0, T], and B∗ is the highest discovered lower
bound for this problem, the dual integral is defined as

∫ T

0
B∗−B(t)

B∗ .

5.1 Ablation Study

To evaluate the influence of individual components on the performance of the whole approach,
we ran the disjunctive approach, both in primal and dual search directions, with all sixteen
combinations of enabling and disabling the following features:
Cumulative mining Enable the mining for Cumulative as described in Subsection 4.4.
Nogood mining Enable the mining for nogoods as described in Subsection 4.4.
Sorting Restrict Ω+ in Algorithm 1 to tasks j with LCTj ≤ mini∈Ω LCTi.
Propagation Execute the propagation shown in Equation 6 on discovered disjunctive pairs.
Figure 4a reports the relative gains from enabling each feature. For each feature, we
consider all combinations of the remaining three features and evaluate the ratio between
the aforementioned integrals when adding the feature to this configuration and without the
feature.

Cum
ula

tiv
e

mini
ng

Nog
oo

d

mini
ngProp

ag
ati

on
So

rti
ng

10-5 100 105

Integral reduction from enabling a feature

Fe
at

ur
e

Integral type Dual Primal

(a) Distribution of ratio of integrals of enabling each evaluated
feature and not enabling the feature. The vertical line in the
middle corresponds to no observed difference, a ratio larger than 1
corresponds to an improvement by using the feature, and values
smaller than 1 correspond to performance degradation.

-5

0

5

10

15

Fewer More
Change of the

number of conflicts

LB
D

ch
an

ge
fr

om
en

ab
lin

g
m

in
in

g

(b) Change in LBD split by change
in # conflicts with cumulative min-
ing compared to baseline; a negat-
ive value indicates a decrease in the
LBD when using mining.

Figure 4 Impact of enabling the listed features on the solver performance.

One of the major takeaways is that cumulative mining has a predominantly negative
impact on search performance. As we understand, this happens because nogood learning
derives statements overly specific to the current search state and thus leads to less general
nogoods. To support this conclusion, we compare the average literal block distance (LBD) [1]
of nogoods produced3 with and without cumulative mining in Figure 4b, as this metric
indicates learned nogood quality. In 47% of all pairs of runs, mining leads to fewer conflicts,
while having a relatively small impact on LBD; however, in the other half of run pairs, mining
not only increases the number of conflicts but also exhibits a much larger increase in the
LBD.

3 If two runs reached different solutions, we compare the number of conflicts to the best common bound.

CP 2025

35:14 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

On the positive side, we have discovered that cumulative mining can be a beneficial
strategy for instances where many triples of tasks – but few pairs of them – are mutually
disjoint. In that case, fixing the position of a few tasks can uncover a variety of disjoint
pairs, aiding the conflict discovery. In particular, this is the case for several instances from
the Pack-d collection; we ran the mining configuration of our approach on those instances
and observed that the non-mining implementation discovers few conflicts (and thus makes
little progress), whereas the mining implementation discovers several bounds tighter than
reported by all the other approaches (see Appendix D).

Another takeaway is that the sorting heuristic has a significant influence on the search.
Enabling it reduces integrals for most instances, suggesting that the bottleneck of our
approach is the clique search, and most of the iterations of Algorithm 1 do not yield conflicts.
However, there is a group of instances for which the dual integral degrades by three orders of
magnitude or more; for this reason, we only use the sorting heuristic when the disjunctive
approach runs in the primal search direction.

Last, enabling propagation does not exhibit a consistent change in any direction; the
primal search can substantially benefit from propagation, but fails to do so consistently, and
the dual search is left virtually uninfluenced by the propagation. A similar conclusion holds
for using nogood mining in dual search, albeit the performance of primal search becomes
consistently worse with nogood mining enabled.

As a result, we use the following configurations: enable sorting and disable propagation
and mining for primal search, and disable all additional features for dual search.

5.2 Scheduling Problem Evaluation

In order to establish whether our approach is beneficial, we compare the disjunctive approach
with baseline Pumpkin and CP-SAT v9.11 using the aforementioned integrals.

We start by evaluating the influence of adding disjointness reasoning to the baseline
Pumpkin. As seen from Figure 5: (1) the disjunctive approach proves much more successful
when using dual search as opposed to primal search, and (2) the disjunctive approach
commonly translates to much larger improvements in cases where it does not hinder the
search, while it can also degrade the performance on a number of instances.

10-4

10-2

100

102

10-4 10-2 100 102

Primal integral of baseline approach

Pr
im

al
in

te
gr

al
of

di
sj

un
ct

iv
e

ap
pr

oa
ch

(a) Primal integrals.

10-2

100

102

10-4 10-2 100 102

Dual integral of baseline approach

D
ua

li
nt

eg
ra

lo
fd

isj
un

ct
iv

e
ap

pr
oa

chInstance type

at

cd

ksd

la

pack(d)

psplib-max

psplib-std

ubo

(b) Dual integrals.

Figure 5 Comparison of integrals of baseline and disjunctive approaches. Both axes are logarithmic;
lines are evenly spaced and correspond to a tenfold relative change between the integrals.

K. Sidorov, I. Marijnissen, and E. Demirović 35:15

Figure 5b suggests that the disjunctive approach can accelerate the search by at least three
orders of magnitude, which indicates that our approach can improve state-of-the-art bounds.
Indeed, our approach discovers a variety of lower bounds that are both better than the
bounds previously reported and the bounds discovered by all other evaluated approaches.
Appendix D introduces a precise criterion for reporting the bounds and the complete list of
the novel bounds.

Remarkably, our approach is able to close five of the previously open RCPSP/max J30
instances in under a second. For each of those instances, there is a disjoint clique Ω at the
root level with dΩ equal to the optimal bound. In all five cases, these cliques correspond
to various resource constraints, making them similar to the aforementioned 3n instances;
fittingly, CP-SAT has been able to certify only one of them after ten minutes of search,
whereas the other instances time out with all other approaches. To clarify this point, we
have reproduced and justified such a clique for one of those instances in Appendix E, thereby
closing one of the previously open instances without any search.

Both plots in Figure 5 suggest that instance features have a major influence on the change
in performance. To establish which instance properties aid our approach, we introduce a
measure of similarity of a Cumulative constraint to a Disjunctive constraint.

▶ Definition 17. For a Cumulative constraint over a resource with capacity C, and tasks
T , we call the quantity RC = 1

|T |
∑

i∈T
ri

C the constrainedness of that Cumulative. Given
a CSP, we say that its resource constrainedness RC is the maximum constrainedness
among its cumulative constraints. A larger value indicates more resource contention.

Figure 6 demonstrates the impact of the resource constrainedness: there is exactly one
instance with an RC under 15% which benefits from using the disjunctive approach, whereas
instances with a “ scarce” resource (i.e., RC ≥ 40%) account for the largest improvements
and have the most variability. The performance on the instances between those two values
mostly degrades, with a small number of instances seeing minor improvements.

≥ 40 %

15—40 %

≤ 15 %

10-2 100 102 104 106
Ratio of the baseline dual integral to the disjunctive dual integral

R
es

ou
rc

e
co

ns
tr

ai
ne

dn
es

s

Figure 6 Distribution of dual integral ratio of baseline and disjunctive approach for various values
of resource constrainedness. Points to the right of the vertical line correspond to improvements by
the disjunctive approach, and points to the left correspond to deterioration.

Last, we evaluate our approach against CP-SAT. Figure 7a shows that the baseline
consistently performs better on PSPLIB, with worse performance on pack(d) instances. On
the other hand, Figure 7b indicates that the disjunctive approach has a much smaller edge
against CP-SAT, yet it can improve certain instances by many orders of magnitude.

6 Conclusions

We have presented a novel way to aggregate information about the disjointness of tasks
in scheduling problems across multiple constraints. We do this by creating new variables
representing the disjointness between pairs of tasks, mining for this disjointness during search,

CP 2025

35:16 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

10-4

10-2

100

102

10-2 10-1 100 101 102 103

Dual integral of CP-SAT

D
ua

li
nt

eg
ra

lo
fb

as
el

in
e

ap
pr

oa
ch

(a) Baseline.

10-2

100

102

10-2 10-1 100 101 102 103

Dual integral of CP-SAT

D
ua

li
nt

eg
ra

lo
fd

isj
un

ct
iv

e
ap

pr
oa

chInstance type

at

cd

ksd

la

pack(d)

psplib-max

psplib-std

ubo

(b) Disjunctive.

Figure 7 Comparison of Pumpkin and CP-SAT dual integrals. All axes are logarithmic; lines on
the plots are evenly spaced and correspond to a tenfold relative change.

and heuristically finding disjoint cliques that lead to conflicts. We show that the “standard”
approaches require exponentially many conflicts to prove optimality on crafted instances,
while our approach can show their infeasibility instantaneously. We also show that our
approach provides improvements in the order of magnitudes for benchmark instances with
high resource contention, indicating that reasoning across multiple constraints during search
is of vital importance for inferring the global structure of instances.

One direction for future work would be determining what is a good clique. Another
direction would be to look into incorporating more Disjunctive reasoning over the cliques.
Additionally, future work could focus on mining jointness rather than disjointness.

References
1 Gilles Audemard and Laurent Simon. Refining restarts strategies for SAT and UN-

SAT. In Proceedings of the 18th international conference on principles and practice of
constraint programming, pages 118–126, Berlin, Heidelberg, 2012. Springer-Verlag. doi:
10.1007/978-3-642-33558-7_11.

2 Philippe Baptiste, Claude Le Pape, and Wim Nuijten. Satisfiability tests and time-bound
adjustments for cumulative scheduling problems. Annals of operations research, 92:305–333,
1999. doi:10.1023/a:1018995000688.

3 Philippe Baptiste and Claude Le Pape. Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Constraints: an
international journal, 5(1/2):119–139, January 2000. doi:10.1023/a:1009822502231.

4 Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In
Proceedings of the 37th annual symposium on foundations of computer science, FOCS ’96,
page 274, USA, 1996. IEEE Computer Society.

5 Nicolas Beldiceanu and Mats Carlsson. A new multi-resource cumulatives constraint with
negative heights. In Proceedings of the 8th international conference on principles and practice
of constraint programming, CP ’02, pages 63–79, Berlin, Heidelberg, 2002. Springer-Verlag.
doi:10.1007/3-540-46135-3_5.

6 Timo Berthold. Measuring the impact of primal heuristics. Operations research letters,
41(6):611–614, 1 November 2013. doi:10.1016/j.orl.2013.08.007.

7 Peter Brucker, Sigrid Knust, Arno Schoo, and Olaf Thiele. A branch and bound algorithm for
the resource-constrained project scheduling problem. European journal of operational research,
107(2):272–288, 1 June 1998. doi:10.1016/s0377-2217(97)00335-4.

https://doi.org/10.1007/978-3-642-33558-7_11
https://doi.org/10.1007/978-3-642-33558-7_11
https://doi.org/10.1023/a:1018995000688
https://doi.org/10.1023/a:1009822502231
https://doi.org/10.1007/3-540-46135-3_5
https://doi.org/10.1016/j.orl.2013.08.007
https://doi.org/10.1016/s0377-2217(97)00335-4

K. Sidorov, I. Marijnissen, and E. Demirović 35:17

8 Jacques Carlier and Emmanuel Néron. On linear lower bounds for the resource constrained pro-
ject scheduling problem. European journal of operational research, 149(2):314–324, 1 September
2003. doi:10.1016/s0377-2217(02)00763-4.

9 Geoffrey Chu, Peter J Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. Chuffed: The chuffed CP solver. https://github.com/chuffed/chuffed.

10 Rina Dechter. Learning while searching in constraint-satisfaction-problems. In Proceedings
of the fifth AAAI national conference on artificial intelligence, AAAI’86, pages 178–183,
Philadelphia, Pennsylvania, 1986. AAAI Press.

11 Delft High Performance Computing Centre. DelftBlue, 2024.
12 Emir Demirović, Maarten Flippo, Imko Marijnissen, Konstantin Sidorov, and Jeff Smits. Pump-

kin: a lazy clause generation constraint solver in Rust. https://github.com/ConSol-Lab/
Pumpkin, 2024.

13 Ulrich Dorndorf. Consistency tests. In Project scheduling with time windows, chapter 4, pages
31–65. Physica-Verlag HD, Heidelberg, 2002. doi:10.1007/978-3-642-57506-8_4.

14 Thibaut Feydy and Peter J Stuckey. Lazy clause generation reengineered. In Proceedings of
the 15th international conference on principles and practice of constraint programming, CP’09,
pages 352–366, Berlin, Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-04244-7_
29.

15 John Forrest, Ted Ralphs, Stefan Vigerske, Haroldo Gambini Santos, John Forrest, Lou
Hafer, Bjarni Kristjansson, jpfasano, EdwinStraver, Jan-Willem, Miles Lubin, rlougee, a-
andre, jpgoncal, Samuel Brito, h-i-gassmann, Cristina, Matthew Saltzman, tosttost, Bruno
Pitrus, Fumiaki Matsushima, Patrick Vossler, Ron @ Swgy, and to-st. coin-or/Cbc: Release
releases/2.10.12, 2024. doi:10.5281/ZENODO.13347261.

16 Steven Gay, Renaud Hartert, and Pierre Schaus. Time-table disjunctive reasoning for the
cumulative constraint. In Integration of AI and OR techniques in constraint programming, Lec-
ture notes in computer science, pages 157–172, Cham, 2015. Springer International Publishing.
doi:10.1007/978-3-319-18008-3_11.

17 Gecode Team. Gecode: Generic constraint development environment. http://www.gecode.org,
2006.

18 Vincent Gingras and Claude-Guy Quimper. Generalizing the edge-finder rule for the cumulative
constraint. In Proceedings of the twenty-fifth international joint conference on artificial
intelligence, IJCAI’16, pages 3103–3109. AAAI Press, 9 July 2016. doi:10.5555/3061053.
3061056.

19 Armin Haken. The intractability of resolution. Theoretical computer science, 39:297–308, 1985.
doi:10.1016/0304-3975(85)90144-6.

20 Q Huangfu and J A J Hall. Parallelizing the dual revised simplex method. Mathematical
programming computation, 10(1):119–142, March 2018. doi:10.1007/s12532-017-0130-5.

21 Joey Hwang and David G Mitchell. 2-way vs. d-way branching for CSP. In Principles and
practice of constraint programming - CP 2005, Lecture notes in computer science, pages 343–357,
Berlin, Heidelberg, 1 October 2005. Springer Berlin Heidelberg. doi:10.1007/11564751_27.

22 Roger Kameugne, Laure Pauline Fotso, Joseph Scott, and Youcheu Ngo-Kateu. A quad-
ratic edge-finding filtering algorithm for cumulative resource constraints. Constraints: an
international journal, 19(3):243–269, July 2014. doi:10.1007/s10601-013-9157-z.

23 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer com-
putations, pages 85–103, Boston, MA, 1972. Springer US. doi:10.1007/978-1-4684-2001-2_
9.

24 Robert Klein and Armin Scholl. Computing lower bounds by destructive improvement: An
application to resource-constrained project scheduling. European journal of operational research,
112(2):322–346, January 1999. doi:10.1016/s0377-2217(97)00442-6.

25 Rainer Kolisch and Arno Sprecher. PSPLIB - a project scheduling problem library. European
journal of operational research, 96(1):205–216, January 1997. doi:10.1016/s0377-2217(96)
00170-1.

CP 2025

https://doi.org/10.1016/s0377-2217(02)00763-4
https://github.com/chuffed/chuffed
https://github.com/ConSol-Lab/Pumpkin
https://github.com/ConSol-Lab/Pumpkin
https://doi.org/10.1007/978-3-642-57506-8_4
https://doi.org/10.1007/978-3-642-04244-7_29
https://doi.org/10.1007/978-3-642-04244-7_29
https://doi.org/10.5281/ZENODO.13347261
https://doi.org/10.1007/978-3-319-18008-3_11
http://www.gecode.org
https://doi.org/10.5555/3061053.3061056
https://doi.org/10.5555/3061053.3061056
https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/11564751_27
https://doi.org/10.1007/s10601-013-9157-z
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/s0377-2217(97)00442-6
https://doi.org/10.1016/s0377-2217(96)00170-1
https://doi.org/10.1016/s0377-2217(96)00170-1

35:18 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

26 Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mongeau. Event-based MILP
models for resource-constrained project scheduling problems. Computers & operations research,
38(1):3–13, 1 January 2011. doi:10.1016/j.cor.2009.12.011.

27 Joao Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-driven clause learning SAT solvers.
In Handbook of satisfiability, Frontiers in artificial intelligence and applications, chapter 4. IOS
Press, 2 February 2021. doi:10.3233/faia200987.

28 Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient SAT solver. In Proceedings of the 38th design automation
conference. ACM, 2002. doi:10.1109/dac.2001.935565.

29 Wim Nuijten. Time and resource constrained scheduling: a constraint satisfaction approach.
PhD thesis, Technische Universiteit Eindhoven, Eindhoven, 1994. doi:10.6100/IR431902.

30 Ramón Alvarez-Valdés Olaguíbel and José Manuel Tamarit Goerlich. Heuristic algorithms
for resource-constrained project scheduling: A review and an empirical analysis. Advances in
project scheduling, pages 113–134, 1989.

31 Laurent Perron and Frédéric Didier. CP-SAT, 7 May 2024.
32 Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of constraint programming.

Foundations of artificial intelligence. Elsevier Science, London, England, 18 August 2006.
doi:10.1016/s1574-6526(06)x8001-x.

33 Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Explaining the
cumulative propagator. Constraints: an international journal, 16(3):250–282, July 2011.
doi:10.1007/s10601-010-9103-2.

34 Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Solving RCPSP/max
by lazy clause generation. Journal of scheduling, 16(3):273–289, June 2013. doi:10.1007/
s10951-012-0285-x.

35 Peter J Stuckey. RCPSP. https://people.eng.unimelb.edu.au/pstuckey/rcpsp/. Accessed:
2025-3-29.

36 Peter J Stuckey, Thibaut Feydy, Andreas Schutt, Guido Tack, and Julien Fischer. The
MiniZinc Challenge 2008–2013. AI magazine, 35(2):55–60, 1 June 2014. doi:10.1609/aimag.
v35i2.2539.

37 Petr Vilím. o(n log n) filtering algorithms for unary resource constraint. In Jean-Charles
Régin and Michel Rueher, editors, Proceedings of CP-AI-OR 2004, volume 3011 of Lecture
Notes in Computer Science, pages 335–347, Nice, France, April 2004. Springer-Verlag. doi:
10.1007/978-3-540-24664-0_23.

38 Petr Vilím. Computing explanations for the unary resource constraint. In Roman Barták and
Michela Milano, editors, Integration of AI and OR techniques in constraint programming for
combinatorial optimization problems, second international conference, CPAIOR 2005, Prague,
Czech Republic, May 30 - June 1, 2005, volume 3524 of Lecture Notes in Computer Science,
pages 396–409. Springer, 2005. doi:10.1007/11493853_29.

39 Petr Vilím. Timetable edge finding filtering algorithm for discrete cumulative resources. In
Proceedings of the 8th international conference on integration of Ai and OR techniques in
constraint programming for combinatorial optimization problems, CPAIOR’11, pages 230–245,
Berlin, Heidelberg, 2011. Springer-Verlag. doi:10.1007/978-3-642-21311-3_22.

40 Petr Vilím, Philippe Laborie, and Paul Shaw. Failure-directed search for constraint-based
scheduling. In CPAIOR ’15: proceedings of the 12th international conference on integration
of AI and OR techniques in constraint programming for combinatorial optimization problems,
Barcelon, Spain, 2015. Springer-Verlag.

A Conversion of 3n problem proofs into pigeonhole principle
pseudo-proofs

For convenience, we reproduce the definition of the C-RES proof system subject to the
notation differences between our paper and the work of Hwang and Mitchell [21].

https://doi.org/10.1016/j.cor.2009.12.011
https://doi.org/10.3233/faia200987
https://doi.org/10.1109/dac.2001.935565
https://doi.org/10.6100/IR431902
https://doi.org/10.1016/s1574-6526(06)x8001-x
https://doi.org/10.1007/s10601-010-9103-2
https://doi.org/10.1007/s10951-012-0285-x
https://doi.org/10.1007/s10951-012-0285-x
https://people.eng.unimelb.edu.au/pstuckey/rcpsp/
https://doi.org/10.1609/aimag.v35i2.2539
https://doi.org/10.1609/aimag.v35i2.2539
https://doi.org/10.1007/978-3-540-24664-0_23
https://doi.org/10.1007/978-3-540-24664-0_23
https://doi.org/10.1007/11493853_29
https://doi.org/10.1007/978-3-642-21311-3_22

K. Sidorov, I. Marijnissen, and E. Demirović 35:19

▶ Definition 18. Given a set of variables X with domains D, a clause is a constraint of the
form

(∨N
j=1Jx

+
j = v+

j K
)
∨
(∨M

j=1 ¬Jx−
j = v−

j K
)

with x±
j ∈ X , v±

j ∈ D(x).

▶ Definition 19. Given a CSP (X ,D, C), a sequence of clauses P is an (unsatisfiability)
proof of this CSP if the last clause is empty, and every clause ω ∈ P is produced by one of
the following rules:
Resolution ω can be represented as ω′ ∨ ω′′ for some clauses ω′, ω′′ such that ω′ ∨ Jx = vK

and ω′′ ∨ ¬Jx = vK are clauses encountered earlier in the proof. We denote the result of
this operation as ω′ ⋄ ω′′.

Domain clause ω =
∨

v∈D(x)Jx = vK for some variable x.
Unique value clause ω = ¬Jx = uK ∨ ¬Jx = vK for some variable x and two distinct values

u, v ∈ D(x).
Constraint clause ω is implied by some constraint c ∈ C, that is, any solution satisfying c

also satisfies ω.

Each step of the proof is either a “ consistency” clause encoding that any variable
is assigned to exactly one value, a constraint clause (which in our case corresponds to a
propagation), or a resolution of two clauses (which typically corresponds to branching or
clause learning). The original C-RES definition by Hwang and Mitchell also restricts C to
only contain nogoods, and thus the constraint clauses are the negations of nogoods in C.
Again, that difference does not impact the proof definition, because any constraint can be
replaced by a set of all nogoods implied by it, which impacts the size of C but not the proof
length.

In this appendix, we show that the proofs of 3n instances can be encoded as the proofs
of the pigeonhole formula [19] with 3n variables, with clauses encoding the pigeonhole
subformulas for up to 2n variables. We use the following definition of a pigeonhole problem
in this text:

▶ Definition 20. A pigeonhole formula PHPm is the unsatisfiable propositional formula
on (m− 1)×m variables pi,j , 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m having the following clauses:
Pigeon clauses Any pigeon is placed in a hole: p1,i ∨ p2,i ∨ · · · ∨ pm−1,i ∀1 ≤ i ≤ m− 1.

Hole clauses No hole contains two pigeons: p̄i,j ∨ p̄i,k ∀1 ≤ i ≤ m− 1, 1 ≤ j < k ≤ m.

To simplify the description of the encoding, we switch to a more lenient notion of a proof
proposed by Beame and Pitassi [4]:

▶ Definition 21. Given a formula PHPm, an assignment α is called critical if some (m− 1)
pigeons are assigned to (m− 1) distinct holes, that is, p1,π1 , . . . , pm−1,πm−1 are satisfied by
α for some pairwise different πj ∈ [1, m], 1 ≤ j ≤ m − 1; if additionally the only assigned
pigeon has index k, then α is called k-critical.

A pair of clauses ω′, ω′′ is congruent if ω′ and ω′′ are equal for any critical assignment.
If any critical assignment satisfying clauses ω′ and ω′′ also satisfies another clause ρ, then
this clause is a critical implication by ω′ and ω′′.

One of the immediate simplifications resulting from the notion of congruency is that we
can assume without loss of generality that all clauses defined on pigeonhole variables are
defined without negations:

▶ Proposition 22 (Beame and Pitassi [4], Section 3). Given a formula PHPm, any clause ω is
congruent to a positive clause ω+ obtained by replacing all literals p̄i,j ∈ ω with a negative
polarity by the conjunction p̄i,j 7→

∨
k∈[1,m],k ̸=i pi,k of variables over all pigeons except the

i-th one.

CP 2025

35:20 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

The core result of this appendix is the reduction from 3n proofs to pigeonhole proofs:

▶ Lemma 23. Any proof P of a 3n problem instance can be encoded into a sequence of
clauses P ′ with |P ′| ≤ |P| such that the final clause is empty and any clause is either a
pigeon clause4 of PHP3n, a critical implication of previous clauses, or a subproblem clause
of the form

σ(K, V) :=
∨

k∈[1,3n−1]\K,v∈V

pk,v, |V | > |K| (7)

with 1 < |V | ≤ 2n.

We start by replacing the original 3n problem with a simpler formulation that does not
invalidate unsatisfiability proofs of 3n problems.

▶ Definition 24. Given a set of variables X, the Alldifferent(X) constraint is true for
the solutions in which any two distinct variables x, y ∈ X are assigned to different values.

▶ Lemma 25. Any proof of a 3n problem instance is also a proof of a CSP on the same
variables and constraints Alldifferent(G) with G ∈ {X ∪ Y, Y ∪ Z, Z ∪X}.

Proof. Let P be a proof of the 3n problem instance, and ω is a constraint clause in P with
respect to the original 3n instance. We show that this is also a constraint clause with respect
to the CSP in the lemma statement. This is sufficient to show that P is also a valid proof of
the new problem, because the resolution steps only depend on the previous clauses. As for
the domain and unique value clauses, they only depend on the underlying variable definitions,
which are the same between two problem instances, and are also valid for the new problem
instance.

Without loss of generality, suppose that a clause ω is implied by the first constraint in
Definition 5. Consider an arbitrary solution I that falsifies ω and thus also falsifies the
Cumulative constraint in question. Any overflow of such a constraint can be described as
either scheduling two tasks from X in parallel, scheduling one task from X and one task
from Y in parallel, or scheduling three tasks from Y in parallel. In each case, this assignment
violates the Alldifferent(X ∪Y). Thus, Alldifferent(X ∪Y) is false whenever ω is false,
or, in other words, ω is true whenever Alldifferent(X ∪ Y) is true. ◀

We now complete the reduction to pigeonhole proofs as follows:

Proof of Lemma 23. Introduce a one-to-one mapping between atomic predicates in P and
pigeonhole variables with Jxj = vK↔ pv,j for some ordering of variables X = {x1, . . . , x3n};
we further refer to this as the canonical mapping. We show that the proof P ′ produced by
(i) replacing atomic constraints in C-RES clauses with canonical mapping and (ii) discarding
tautologies satisfies the lemma conditions. More specifically, we show that each clause
ωP ∈ P ′ produced from a C-RES clause ωC ∈ P either falls into one of the three stated
categories or is tautologically true. Additionally, we enforce the following invariant: if a non-
tautological clause ωC is falsified by an assignment I of (3n−1) variables to (3n−1) different
values, then the critical assignment produced from it by canonical mapping falsifies ωP .

We start with the “ consistency” clauses. If ωC = Jxk = 1K∨· · ·∨Jxk = 3n−1K is a domain
clause, then ωP = p1,k ∨ · · · ∨ p3n−1,k is a valid clause in P ′ as a pigeon clause of PHP3n.
Additionally, if I falsifies ωP , that means that xk is unassigned; the canonical mapping leaves

4 Hole clauses are tautological with respect to critical assignments.

K. Sidorov, I. Marijnissen, and E. Demirović 35:21

k-th pigeon unassigned, which falsifies ωP . On the other hand, if ωC = ¬Jxk = uK∨¬Jxk = vK
is a unique value clause, then ωP = p̄u,k ∨ p̄v,k is true for any critical assignment and is thus
a tautology.

Next, consider the case when ωC is a constraint clause. By Lemma 25, we can
assume without loss of generality that ωC ∈ P is a constraint clause with respect to
Alldifferent(X ∪ Y). Thus, if ωC is false, then any assignment of X ∪ Y assigns the
same values to some two variables in this set. By Hall’s theorem, that means that there
is a set of variables Q ⊆ X ∪ Y with indices V and a set of values K ⊂ [1, 3n − 1] such
that |K| < |V | ≤ 2n and assigning all variables in Q to values in K falsifies ωC . Con-
versely, that means that assigning some variable in Q to a value outside of K, equivalently, in
K̄ = [1, 3n−1]\K satisfies ωC . We have encoded a condition

∨
v∈V (xv /∈ K) =

∨
v∈V (xv ∈ K̄)

implying ωC , which after applying the canonical mapping becomes ωP =
∨

k∈K̄,v∈V pk,v and
can be directly added to the proof, since it coincides with σ(K, V) from Equation 7.

Last, suppose that ωC = ω′′
C⋄ω′′

C is a resolution of some previously introduced propositional
clauses ω′

C , ω′′
C . Let ω′

P and ω′′
P be the corresponding clauses in P ′; suppose first that neither

of those clauses was skipped. In that case, we observe the encoding ωP of ωC is critically
implied by ω′

P and ω′′
P : otherwise, there would be a critical assignment α satisfying both ω′

P

and ω′′
P but falsifying ωP , and applying the canonical mapping to it yields an assignment

I satisfying ω′
C and ω′

C but falsifying ωC , contradicting the soundness of the resolution
step. In case when one (or both) of the original clauses is a tautology, the same reasoning
holds, because resolving with a tautological clause does not increase the set of falsifying
assignments. ◀

B Exponential lower bound on pigeonhole proofs

We start with an auxiliary fact that establishes a lower bound on the width of a valid proof:

▶ Lemma 26. Let n ∈ N≥1, 0 < γ ≤ 1, and consider a sequence P such that any clause in
it is either a pigeon clause of PHP(2+γ)n, a critical implication of the previous clauses, or
a subproblem clause σ(K, V), 1 ≤ |K| < |V | ≤ 2n. Then P has a clause with at least 2γn2

literals.

Proof. Given a clause ω, let Complexity(ω) be the smallest number of pigeon clauses that
imply ω on all critical assignments; in particular, Complexity(ω) = 1 for all pigeon clauses
ω ∈ PHP(2+γ)n, Complexity(⊥) = (2 + γ)n, and Complexity(σ(K, V)) = |V |.

Observe that a proof contains a clause ω̂ of complexity greater than γn and not greater
than 2n. To verify this, let V ∗ ≤ 2n be the largest cardinality of a set V used in a subproblem
clause. If V ∗ > γn, then the subproblem clause that achieves this bound also satisfies the
complexity bound. Otherwise, assume that this is not the case and that all proof clauses
have complexity that is either at most γn or more than 2n. Observe that if ω is critically
implied by ω′ and ω′′, then Complexity(ω) ≤ Complexity(ω′) + Complexity(ω′′), since the
implication relation is transitive. As the formula clauses have complexity 1 and subproblem
clauses have complexity at most γn, then all their resolvents ω have to have the complexity
of at most γn: otherwise, Complexity(ω) ≤ γn + γn ≤ 2n violates our assumption. But then
the same bound has to hold for the resolvents of those resolvents, and so on until the empty
clause, which has complexity (2 + γ)n > 2n, which is a contradiction.

We complete the proof by demonstrating that this clause satisfies the lemma conditions.
Let Ω̂ be the set of formula clauses that implies ω̂ such that γn < |Ω̂| ≤ 2n; observe that
ω̂ has at least |Ω̂|

(
(2 + γ)n − |Ω̂|

)
literals [4, Lemma 1], and this expression achieves the

smallest value 2γn2 at the endpoints of the interval on |Ω̂|. ◀

CP 2025

35:22 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

We now derive an exponential bound on the proof length of PHP3n with extra clauses:

▶ Lemma 27. Let n ∈ N≥1, and consider a sequence of clauses P such that any clause is
either a pigeon clause of PHP3n, a resolution of the previous clauses, or a subproblem clause
σ(K, V) with 1 ≤ |K| < |V | ≤ 2n. Then P has at least 20.08n clauses for sufficiently large n.

Proof. Suppose this is not the case, and we discovered a proof of length L < 20.08n. For the
rest of the proof, we say that the clause is long if it has at least n2 literals. By pigeonhole
principle, there is a variable xi,j that is contained in at least Ln2

3n(3n−1) ≥
1
9 L long clauses.

Observe that setting xi,j = 1 with xk,j = xi,ℓ = 0 for all k ̸= i, ℓ ̸= j and discarding all
satisfied clauses from both the proof and the formula yields a proof of a PHP3n−1 with the
same assumptions on subproblem clauses but having at most 8

9 L long clauses.
Repeating this variable elimination procedure for T = ⌈log9/8 L⌉ steps yields a proof of

PHP3n−T with at most
(8

9
)T

L < 1 long clause, or, in other words, no long clauses. On the
other hand, we have a pigeonhole formula with 3n− T = 3n−⌈0.08n× log9/8 2⌉ ≥

(
2 + 1

2
)

n

variables and a proof with no clauses of length at least n2. However, we can now rewrite
3n− T = γ̂n with γ̂ ≥ 1/2 and apply Lemma 26, which implies that the proof in question
has to have a clause with at least 2γ̂n2 ≥ n2 literals. That is a contradiction, therefore, P
has to have length of at least 20.08n. ◀

The derivation of the intractability theorem bound is a compilation of the results above:

Proof of Theorem 6. Let P ′ be the pigeonhole formula proof produced from P from
Lemma 23 with |P| ≥ |P ′|. By Lemma 27, we can rewrite the bound further as |P| = Ω(20.08n),
and the theorem bound follows from the 1.05 < 20.08 inequality. ◀

C Explanations

Assume without loss of generality that ESTi ≤ ESTj , as otherwise the tasks i and j can be
swapped. Then we generate the explanations Esn(si, sj , pi, pj) as prescribed by Table 1.

Table 1 List of explanations Esn(si, sj , pi, pj) produced for each pair of atomic constraints pi, pj .

Atomic predicate pi Atomic predicate pj Explanation Esn(si, sj , pi, pj)

Jsi ≤ viK Jsj ≥ vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − diK
Jsi ≤ viK Jsj ̸= vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − di + 1K
Jsi ≤ viK Jsj = vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − diK
Jsi ̸= viK Jsj ≥ vjK Jsj ≥ vi + di − 1K ∧ Jsi ≤ vj − diK
Jsi ̸= viK Jsj ̸= vjK Jsj ≥ vi + di − 1K ∧ Jsi ≤ vj − di + 1K
Jsi ̸= viK Jsj = vjK Jsj ≥ vi + di − 1K ∧ Jsi ≤ vj − diK
Jsi = viK Jsj ≥ vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − diK
Jsi = viK Jsj ̸= vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − di + 1K
Jsi = viK Jsj = vjK Jsj ≥ vi + diK ∧ Jsi ≤ vj − diK

The common idea behind the listed explanations is to lift the bounds in a way that ensures
the absence of overlap when one of the two predicates is true. For example, if pi = Jsi ≤ viK
and pj = Jsj ̸= vjK, then the first predicate Jsj ≥ vi + diK in the explanation states the
following fact: ‘if pi is true then sj starts only after task i has ended’. Similarly, the second
predicate Jsi ≤ vj − di + 1K in the explanation states that task i should end before task j

starts; we add an extra unit of time since we know that Jsj ̸= vjK =⇒ Jsj ≥ vj + 1K.

K. Sidorov, I. Marijnissen, and E. Demirović 35:23

D Novel bounds

We report the bounds discovered by our approach if they are both better than the previous
reported bounds and are not directly reproducible without using our approach. More precisely,
we report bounds that are simultaneously (a) tighter than the bounds reported in the previous
sources known to us that used the same benchmarks [25, 40, 39, 35], and (b) either tighter
than any bound derived by non-disjunctive approaches (CP-SAT and baseline Pumpkin) or
matches it but was derived at least ten times faster than with any other approach.

Novel upper bounds (makespans) are reported in Table 2, and novel lower bounds are
reported in Table 3; the same data is available as supplementary materials. All durations
reported in both tables are in MM:SS format; Table 3 additionally reports closed instances
and bounds derived with mining. To indicate the remaining optimality gap, we also state the
best known lower bound in Table 2 and the best known makespan in Table 3; in either case,
that bound is the tightest among the previously reported values and the values discovered
by non-disjunctive approaches.

Table 2 Novel upper bounds derived with our approach.

Problem Collection # Ref. objective Our objective Time Best bound

RCPSP/max C 61 378 374 07:03 345
RCPSP/max C 69 380 371 08:47 356

RCPSP J90 5-4 103 102 01:02 101
RCPSP J120 27-7 125 124 08:21 122
RCPSP J120 46-10 188 187 57:34 184
RCPSP J120 9-4 87 86 06:40 85

E Optimality proof for the RCPSP/max instance #64 of collection
J30

In this appendix, we support the optimality claim on instance # 64 from the J30 collection
by showing that the tasks with indices Ω = {1, . . . , 9, 11, . . . , 30} are pairwise disjoint, which
implies optimality since

∑
t∈Ω dt = 169. This instance has five resources, each with the

capacity of five units.
To decrease the number of considered pairs, we partition the claimed clique into six parts

and record for each of them the lowest amount of each resource consumed by a task:
1. Ω1 = {6, 11, 21, 24}; lowest resource consumption is (2, 4, 1, 2, 2).
2. Ω2 = {18, 23, 28}; lowest resource consumption is (2, 1, 2, 2, 4).
3. Ω3 = {30}; lowest resource consumption is (4, 1, 3, 2, 1).
4. Ω4 = {1, 2, 3, 4, 5, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 25, 29}; lowest resource consumption is

(1, 1, 1, 4, 1).
5. Ω5 = {7}; lowest resource consumption is (3, 5, 1, 1, 2).
6. Ω6 = {22, 26, 27}; lowest resource consumption is (1, 1, 5, 1, 2).

The last two groups consume 100% of either resource #2 or resource #3; since all other
tasks consume some amount of all resources, any pair of tasks involving a task in Ω5 ∪ Ω6 is
disjoint. The same holds for any pair of tasks involving Ω4 and any task in Ω1 ∪ · · · ∪ Ω4
due to the overflow of resource #4. Thus, it remains to show that any pair of tasks in
Ω1 ∪ Ω2 ∪ Ω3 is disjoint. Table 4 handles the six cases for all remaining pairs of task groups.

CP 2025

35:24 Unite and Lead: Finding Disjunctive Cliques for Scheduling Problems

Table 3 Novel lower bounds derived with our approach. Rows with an asterisk highlight closed
instances; rows with a dagger highlight objective values derived with enabled mining.

Problem Collection # Ref. bound Our bound Time Best objective

RCPSP/max J30 64 141 169* < 1s 169
RCPSP/max J30 65 144 162* < 1s 162
RCPSP/max J30 151 142 157* < 1s 157
RCPSP/max J30 153 163 176* < 1s 176
RCPSP/max J30 155 125 154* < 1s 154
RCPSP/max UBO50 10 154 186* 00:05 186
RCPSP/max UBO100 4 303 365 44:07 376
RCPSP/max UBO100 7 281 373 51:47 395
RCPSP/max UBO100 8 364 376 29:06 385
RCPSP/max UBO100 32 353 414 53:52 434
RCPSP/max UBO100 33 328 397 47:04 406
RCPSP/max UBO200 35 610 747 57:27 823
RCPSP/max UBO200 62 621 702 56:46 796
RCPSP/max UBO500 36 1 285 1 423 26:37 1 908
RCPSP/max UBO500 61 1 296 1 533 59:50 1 944
RCPSP/max UBO500 64 1 329 1 489 55:08 1 932

RCPSP J120 46-9 157 159 18:58 166
RCPSP Pack-d 2 745 746† 25:39 747
RCPSP Pack-d 3 624 625†* 13:54 625
RCPSP Pack-d 47 2 740 2 742† 52:35 2 745

Table 4 Disjointness justifications for every pair of tasks in Ω1 ∪ Ω2 ∪ Ω3.

Ω1 Ω2 Ω3

Ω1 #2: 4 + 4 #5: 2 + 4 #1: 2 + 4
Ω2 — #5: 4 + 4 #5: 2 + 4
Ω3 — — #1: 4 + 4

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Our Contribution: Finding Disjunctive Cliques
	4.1 Motivating Example: 3n Problem
	4.2 SelectiveDisjunctive Constraint
	4.3 Overload checking for SelectiveDisjunctive
	4.4 Disjointness mining

	5 Experiments
	5.1 Ablation Study
	5.2 Scheduling Problem Evaluation

	6 Conclusions
	A Conversion of 3n problem proofs into pigeonhole principle pseudo-proofs
	B Exponential lower bound on pigeonhole proofs
	C Explanations
	D Novel bounds
	E Optimality proof for the RCPSP/max instance #64 of collection J30

