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Abstract: This paper develops a defect-based risk analysis methodology for estimating rail failure risk. 
The methodology relies on an evolution model addressing the severity level of rail surface defect, called 
squat. The risk of rail failure is assessed by analyzing squat failure probability using a probabilistic 
analysis of the squat cracks. For this purpose, a Bayesian inference method is employed to capture a 
robust model of squat failure probability when the squat becomes severe. Moreover, an experimental 
correlation between squat visual length and squat crack depth is obtained in order to define four severity 
categories. Relying on the failure probability and the severity categories of the squats, risk of future 
failure is categorized in three different scenarios (optimistic, average and pessimistic). To show the 
practicality and efficiency of the proposed methodology, a real example is illustrated. 
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1. INTRODUCTION 

In the recent years, railways has been promoted in the whole 
world as a means of reducing road traffic congestion and 
emission levels. In order to keep the trains running without 
disruptions, an efficient maintenance policy based on risk 
assessment of the different components of the infrastructure 
is essential to anticipate problems before they occur.   

Among all railway infrastructures, the track plays an 
important role in the entire railway system. In the 
Netherlands almost half of the maintenance budget is 
allocated to track maintenance (Zoeteman, 2014). The 
purpose of the budget is to keep the track at a high reliability 
level. Moreover, a robust track maintenance plan can 
facilitate infrastructure management by capturing a set of 
realistic cases of component degradation. Then, the 
infrastructure manager would be able to define which 
scenarios are the most relevant to consider and how to 
manage the track maintenance in a maintenance time horizon. 
As a high percentage of the railway system failures occur in 
the tracks, analysing the failure risk caused by surface defects 
is crucial for the track maintenance plan (Burstow et al., 
2002; Zhao et al., 2006; Liu et al., 2001; Hassankiadeh, 
2011).  The idea of this paper is to analyse the effect of one 
common defect in railway networks called squat. To assess a 
defect-based risk, two major factors must be taken into 
account. First, the track stochastic variables such as the 
growth rate of defects where the rail structure deteriorates as 
the traffic passes along the rails. Second, the spatial 
characteristics of the track since the track characteristics vary 
in space. The idea is to capture the evolution rate of the squat 
when the growth can affect the track reliability and where the 
track is prone to rail failure. Moreover, in extreme cases, the 

squat could pose a safety threat due to potential derailment 
(Prescott et al., 2013).  

In this paper, risk of rail failure is assessed relying on a 
probabilistic approach using a Bayesian inference method. 
The Bayesian approach provides robust inferences together 
with a more realistic treatment of growth rate uncertainties. A 
few studies have been carried out on the application of 
Bayesian methods in safety of railway infrastructures. 
Andrade et al. (2015) employ Hierarchical Bayesian models 
to predict the evolution of the main quality indicators related 
to railway track geometry degradation including the standard 
deviation of longitudinal level defects and the standard 
deviation of horizontal alignment defects. The goal is to use 
the modelled indicators in planning of track maintenance 
operations. An investigation on railway ballast failures is 
done by Lam et al. (2014) using Bayesian inference to 
analyse uncertainty induced by measurement errors of 
vibrations in the ballast failure zones. Two integrated 
frameworks for track degradation and rail maintenance 
decisions are proposed relying on Bayesian networks in 
(Bouillaut el al. 2008; Mahboob, 2014). A nonparametric 
Bayesian approach with a Dirichlet Process Mixture Model  
is used to facilitate reliability analysis in a railway system by 
Mokhtarian et al. (2013). Train accident consequences can be 
modelled by Bayesian networks where human errors and 
track degradation are addressed (Bearfield et al., 2005, 
Marsh, 2004; Castillo at al., 2015).  This paper is organized 
as follows. In Section 2, a short background on the squats is 
presented. Section 3 addresses the Bayesian model of rail 
failure. Section 4 presents the risk assessment model together 
with a real-life example. Finally, in Section 4, conclusions 
are presented. 
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2. SQUAT IN RAILWAY INFRASTRUCTURES  

Surface defects can affect track availability. Those rolling 
contact fatigue (RCF) defects can be classified as rail 
corrugation, squats, head checks, shatter cracking, vertical 
splits, head horizontal splits, and wheel burns (Magel , 2001). 
Appearance of those defects results in the increase of  
maintenance operations needed, more frequent track 
monitoring required, and rail failure when not detected in 
time in the worst case.  

In this paper, we investigate squats, which are surface-
initiated defects. The squats are observed in tracks, either 
ballast tracks or slab tracks, and in all possible traffic 
volumes (Kaewunruen et al., 2014). Fig 1 shows a reference 
photo of severe squats with cracks already propagated 
beneath the rail surface. 

 

Fig 1: Example of severe squats on a rail 

Typically, the squats evolve from indentations into defects 
with surface cracks growing along the depth beneath the rail 
surface (Li et al., 2010). Once the squat gets severe in terms 
of crack depth and visual length, the train ride quality and 
safety become considerably low (Remennikov and 
Kaewunruen, 2008). In practice, squats can be detected and 
analysed using different methods, such as inspection using 
human inspectors, on-board measurements via photo/video 
records, axle box acceleration (ABA) measurements, and 
other non-destructive testing (NDT), such as ultrasonic and 
eddy current testing. While axle box acceleration (ABA) 
measurements are efficient in detecting both early stage and 
severe squats (Molodova et al. 2014; Li et al. 2015), in this 
paper the focus is the analysis of severe defects in terms of 
crack lengths. Thus, we rely on ultrasonic and surface photos 
of the defects.  

Ultrasonic (US) testing is currently one of the most 
extensively employed automatic inspection technique for 
squats. This method can only be used to reliably detect cracks 
with depths higher than 4 mm, depending on the instruments.  
When a rail includes squats with cracks larger than 4 mm, the 
evolution of the defects generates a potential risk of the rail 
failure. This paper employs US measurements to model crack 
growth of squat. In the next two sections, the rail failure 
probability model is presented.  

3.  BAYESIAN MODEL FOR RAIL FAILURE 

Bayesian methods are widely used as a statistic technique to 
evaluate robustness in stochastic data behaviours in 
particular, for analysis of hazard rates with a small number of 
data samples. Potential benefits of the Bayesian approach in 
comparison with the usual Maximum Likelihood Estimate 
(MLE) method are computationally explained by Ahn et al. 
(2007). The MLE is an effective tool to estimate hazard rate 
as long as a sufficient amount of data is available. Using the 
MLE, a single point value for the failure rate, which 
maximizes the likelihood function, can be estimated. 
However, our prior beliefs about the likely values for the 
failure rates are not injected into the estimation model with 
the MLE. In contrast to the MLE, Bayesian inference treats 
failure rates as random variables.  Thus, the difference is that 
in the Bayesian model,  the estimation output is a probability 
density function rather than a single point as in the MLE.  
 

 In Bayesian inference, prior knowledge and beliefs about 
unknown parameters are represented by the probability 
density distribution ( )0π λ , and statistical observations y 

have the likelihood ( )y|f λ  where λ  is the failure rate. 

Then, according to Bayes’ theorem, the posterior distribution 
of rail failure probability is expressed as: 

( ) ( ) ( )
( ) ( ) ( )0

0

y|
|y   y|

y

f
f

f

λ π λ
π λ λ π λ= ∝  (1) 

Let us assume that the failure probability is constructed by 
considering a nonlinear regression model over the crack 
depth. The data include observations of the crack depth, the 
number of cracks with the same depth, and the number of 
cracks with the growth above 4 mm (see Fig 2). The 
nonlinear regression model shows the likelihood distribution 
of parameters a (intercept) and b (slope) in the Bayesian 
inference model:  

( | ( , )) exp( 1/ ( ))f y a b a b y= − + ⋅  (2) 

where y is the crack depth. When no prior information is 
available about the values of parameters a and b, we assume 
uniform prior distributions (Faghih-Roohi et al., 2014):  

( )0 1 2( ) ,a Uniform A Aπ =  (3) 

( )0 1 2( ) ,b Uniform B Bπ =  (4) 

By Bayes' theorem, the joint posterior distribution of the 
model parameters is proportional to the product of the 
likelihood and the priors. Monte Carlo methods are often 
used in Bayesian data analysis to describe the posterior 
distribution. The objective is to generate random samples 
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from the posterior distribution and use them when it is not 
possible to compute analytically the posterior distribution. 
For this purpose, a slice sampling algorithm is chosen to 
obtain N samples of the distribution with an arbitrary density 
function (Neal, 2003). The slice sampling algorithm is a type 
of a Markov Chain Monte Carlo (MCMC) algorithm. Among 
all the MCMC methods such as Gibbs sampling, and the 
Metropolis–Hastings algorithm, slice sampling is easier to 
implement as only the posterior needs to be specified (Gilks, 
1996).  

 
4. FAILURE RISK ASSESSMENT 

4.1  Rail Failure Probability 

In this section, the risk model is presented. First, failure 
probability is calculated by considering squats with over 4 
mm in crack depth measured by US. The probability of 
failure indicate how likely is a squat to develop into a rail 
break in the future. To evaluate the failure probability, we 
consider squats with crack depths ranging from 1 mm to 9 
mm. By measuring the depths every one year, we see how 
many cracks have reached depth of 4 mm or even more, and 
how the cracks growth over time. Then, we enumerate the 
squats with the same growth and crack depth, to capture the 
typical behaviour of squats in the particular track. Fig. 2 
shows the occurrence of cracks of more than 4 mm over a 
track segment of around 2.35 kilometres during a period of 4 
years. The Mega Gross Tone (MGT) is equal to 3.719 per 
year in this track. The data collected in the Fig. 2 is used to 
estimate the Bayesian parameters, a and b, in order to capture 
the failure rate. The idea is to use crack depths for several 
different squats over time to calculate growth with regards to 
number of the squats with same growth in depth. 

    

 

Fig 2: The cracks length over 4 mm versus crack growth. 
Numbers indicate the occurrence of the data point. 

 

The posterior distribution of the regression parameters (a, b) 
is calculated based on the MCMC simulation generated in 
one thousand samples. Fig. 3 and Fig. 4 show how the 
parameters (a, b) vary over the samples. The posterior 
distributions show updated state of the mean value and the 
level of the uncertainty of the model parameters. As seen in 
the figures, the purpose is to check for convergence using 

sample means. This produces a smoother plot than the raw 
sample traces, and can make it easier to identify and 
understand any non-stationarity. The first fifty values of Fig. 
3 are not comparable to the rest of the figure. However, the 
rest of each plot shows that the parameter posterior means 
have converged to stationarity.  

 

 

Fig 3: Posterior distributions of regression parameter a  

 

 

Fig 4: Posterior distributions of regression parameter b 

 

The probability failure regression models resulted from N 
samples of MCMC simulation are depicted in Fig. 5, where N 
is equal to 1000. The idea of Fig. 5 is to show how squat will 
be prone for rail break in the future. In this figure, the non-
linear regression models of s1, s2, s3 are used to reflect the 
optimistic failure scenario, the average scenario and the 
pessimistic scenario, respectively. Thus, relying on the figure, 
for each available crack depth,  the probability of the squat to 
develop into a rail break is estimated within a time horizon, 
sufficient to guarantee a timely maintenance. For example, 
the squats with crack depth 7 mm induces rail to be broken if 
we do not  maintenance operations in a long time horizon, 
with probabilities increasing according the scenario: 0.8554 
for s1, 0.8668 for s2 and 0.9068 for s3. Point estimates and 
Bayesian confidence intervals, representing uncertainty about 
parameters after data analysis are presented in Table 1. 

 

Table 1: Bayesian point and interval estimates 

Scenario Parameter Mean 
95 % confidence 

interval 

s1 
a1 0.8001 

[0.9860,1.0089] 

[0.8589, 0.8667] 

b1 0.8000 

s2 
a2 1.0009 
b2 0.8624 

s3 
a3 1.9592 
b3 1.1346 
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Fig 5: Bayesian estimates for rail failure probability after a 
time horizon sufficiently long to guarantee a timely 
maintenance.  

 

4.2 Squat Severity Analysis 

As the visual lengths of squats follow a specific growth 
model classifying the squats according to its severity, in this 
section, a relation on how the visual lengths and the crack 
lengths are linked to each other is investigated. The idea is to 
classify the severity of the squat when it is getting worse in 
terms of both, the visual length and the crack length. For this 
purpose, the visual length and the crack depth of 36 squats 
were registered every six months over 2 years (see Fig. 5).  

As depicted in Fig. 6, the squat growth space is divided into 
four categories representing the squat severity. The reason 
behind specifying the category boundaries is that the squats 
with visual length above 20 mm will potentially reappear 
after a grinding operation. Thus, Category 1 shows the most 
severe growth of squats where the crack length and visual 
length both are sufficiently high to require maintenance as 
soon as possible. Contrary to the Category 1, Category 4 is a 
safe category reflecting all the squats which are located in the 
early stage of growth. There are a few squats observed in 
categories 2 and 3. Even though the squats situated in 
Category 2 are in early stage of growth in terms of visual 
length, the crack depth are considerably high. In Category 3 
the visual length is high whereas the crack depth is below 4 
mm.     

 

Fig 6: Experimental categories of squat based on crack depths 
and the visual lengths 

 

 4.3 Rail failure risk  

Relying on the failure probability scenarios and the severity 
categories, the risk can be defined as: 

1

( )
zi

zi

l

z
s z s

l

R w P l dl
+

= ∫
 

(5) 

where z
sR  is the rail failure probability for scenario s and 

Category z,  wz is the severity weight of Category z and 

1
,

i iz zl l
+

    is the interval of crack depths that defines Category 

z. The idea is to use the failure probability of the crack depth 
l, Ps(l), for each category of severity, z, by considering the 
severity weight wz.Table 2 shows the resulting risk values of 
each scenario at different categories. To illustrate, as 
expected, the risk of failure in scenario s3 for Category 1 is 
the highest where the crack are most severe both in the length 
and the depth while the risk for scenario s1 in the Category 4 
contains the lowest value. 

 

Table 2. Failure risk results 

Risk 
Scenario 

Category 
1 

Category 
2 

Category 
3 

Category 
4 

s1 0.7758 0.5172 0.1621 0.0811 
s2 0.7862 0.5241 0.1654 0.0827 
s3 0.8173 0.5449 0.1753 0.0876 

 

The failure risk values can be used as risk Key Performance 
Indicators (KPIs) to address health condition of the rail, so to 
keep informed infrastructure manager of the status of track. 
In combination with other KPIs as defined in Jamshidi et al. 
(2015), the risk values can be employed to support a 
condition-based maintenance plan.    

 

5. CONCLUSIONS 

In this paper, a probabilistic approach is used to model rail 
failure considering the squat growth. A Bayesian method was 
employed to make robust failure estimation, including 
optimistic, average and pessimistic scenarios. Furthermore, 
uncertainties of the method are also obtained and used to 
calculate Bayesian confidence intervals per failure scenario. 
Then, according to where the squat is in the severity 
categories, the rail failure risk is obtained per failure scenario. 
In future studies, we will develop the methodology to 
analytically predict the rail failure over a time horizon using 
risk key performance indicators relying on different 
measurement sources. Parameters like mechanical strength 
values, material properties and geometrical values of the rail 
such as area of cross section, can give further details about 
the way the crack will evolve over time. The evaluation on 
how those parameters influence the risk assessment is part of 
the further research.  
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