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Abstract: This paper develops a defect-based risk analysis methodology for estimating rail failure risk.
The methodology relies on an evolution model addressing the severity level of rail surface defect, called
squat. The risk of rail failure is assessed by analyzing squat failure probability using a probabilistic
analysis of the squat cracks. For this purpose, a Bayesian inference method is employed to capture a
robust model of squat failure probability when the squat becomes severe. Moreover, an experimental
correlation between squat visual length and squat crack depth is obtained in order to define four severity
categories. Relying on the failure probability and the severity categories of the squats, risk of future
failure is categorized in three different scenarios (optimistic, average and pessimistic). To show the
practicality and efficiency of the proposed methodology, a real example is illustrated.

Keywords:Squat, Railway track, Bayesian inference, Failure risk, Severity analysis

squat could pose a safety threat due to potential derailment
1. INTRODUCTION (Prescott et al., 2013).

In the recent years, railways has been promoted in the Whmethis paper, risk of rail failure is assessed relying on a

world as a means of reducing road traffic congestion andobabilistic approach using a Bayesian inference method.

emission levels. In order to keep the trains running wnho%}e Bayesian approach provides robust inferences together

disruptions, an efficient maintenance policy based on ”%l/(ith a more realistic treatment of growth rate uncertainties. A

assessment of the different components of the infrastructlfre ' . o
. ) o ew studies have been carried out on the application of
is essential to anticipate problems before they occur.

Bayesian methods in safety of railway infrastructures.
Among all railway infrastructures, the track plays am\ndrade et al. (2015) employ Hierarchical Bayesian models
important role in the entire railway system. In thdo predict the evolution of the main quality indicators related
Netherlands almost half of the maintenance budget tg railway track geometry degradation including the standard
allocated to track maintenance (Zoeteman, 2014). Tldeviation of longitudinal level defects and the standard
purpose of the budget is to keep the track at a high reliabilidgviation of horizontal alignment defects. The goal is to use
level. Moreover, a robust track maintenance plan cdhe modelled indicators in planning of track maintenance
facilitate infrastructure management by capturing a set operations. An investigation on railway ballast failures is
realistic cases of component degradation. Then, tllene by Lam et al. (2014) using Bayesian inference to
infrastructure manager would be able to define whichnalyse uncertainty induced by measurement errors of
scenarios are the most relevant to consider and how uibrations in the ballast failure zones. Two integrated
manage the track maintenance in a maintenance time horizsameworks for track degradation and rail maintenance
As a high percentage of the railway system failures occur decisions are proposed relying on Bayesian networks in
the tracks, analysing the failure risk caused by surface defe@ouillaut el al. 2008; Mahboob, 2014). A nonparametric
is crucial for the track maintenance plan (Burstow et alBayesian approach with a Dirichlet Process Mixture Model
2002; Zhao et al., 2006; Liu et al.,, 2001; Hassankiadeis, used to facilitate reliability analysis in a railway system by
2011). The idea of this paper is to analyse the effect of o®khtarian et al. (2013). Train accident conseqguences can be
common defect in railway networks called squat. To assessnadelled by Bayesian networks where human errors and
defect-based risk, two major factors must be taken inteack degradation are addressed (Bearfield et al., 2005,
account. First, the track stochastic variables such as tiarsh, 2004; Castillo at al., 2015). This paper is organized
growth rate of defects where the rail structure deteriorates as follows. In Section 2, a short background on the squats is
the traffic passes along the rails. Second, the spatjalesented. Section 3 addresses the Bayesian model of rail
characteristics of the track since the track characteristics vdajlure. Section 4 presents the risk assessment model together
in space. The idea is to capture the evolution rate of the squéth a real-life example. Finally, in Section 4, conclusions
when the growth can affect the track reliability and where thae presented.

track is prone to rail failure. Moreover, in extreme cases, the
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2. SQUAT IN RAILWAY INFRASTRUCTURES 3. BAYESIAN MODEL FOR RAIL FAILURE

Surface defects can affect track availability. Those rollin@ayesian methods are widely used as a statistic technique to
contact fatigue (RCF) defects can be classified as raVvaluate robustness in stochastic data behaviours in
corrugation, squats, head checks, shatter cracking, vertipakticular, for analysis of hazard rates with a small number of
splits, head horizontal splits, and wheel burns (Magel , 200Hata samples. Potential benefits of the Bayesian approach in
Appearance of those defects results in the increase afmparison with the usual Maximum Likelihood Estimate
maintenance operations needed, more frequent tra@dLE) method are computationally explained by Ahn et al.
monitoring required, and rail failure when not detected i(2007). The MLE is an effective tool to estimate hazard rate
time in the worst case. as long as a sufficient amount of data is available. Using the
MLE, a single point value for the failure rate, which

In this paper, we investigate squats, which are surfacgaximizes the likelihood function, can be estimated.
initiated defects. The squats are observed in tracks, eitiMswever, our prior beliefs about the likely values for the
ballast tracks or slab tracks, and in all possible traffigiilure rates are not injected into the estimation model with
volumes (Kaewunruen et al., 2014). Fig 1 shows a referenge MLE. In contrast to the MLE, Bayesian inference treats
photo of severe squats with cracks already propagatediure rates as random variables. Thus, the difference is that
beneath the rail surface. in the Bayesian model, the estimation output is a probability
density function rather than a single point as in the MLE.

In Bayesian inference, prior knowledge and beliefs about
unknown parameters are represented by the probability
density distribution no()), and statistical observationg

have the likelihood f (yj4) where A is the failure rate.

Then, according to Bayes’ theorem, the posterior distribution
of rail failure probability is expressed as:

f(y) % (4)

f(y)

n(Aly) = Ot (yW)m(4) @)

Fig 1: Example of severe squats on a rail Let us assume that the failure probability is constructed by
considering a nonlinear regression model over the crack

Typically, the squats evolve from indentations into defectdepth. The data include observations of the crack depth, the
with surface cracks growing along the depth beneath the raumber of cracks with the same depth, and the number of
surface (Li et al., 2010). Once the squat gets severe in terongcks with the growth above 4 mm (see Fig 2). The
of crack depth and visual length, the train ride quality angbnlinear regression model shows the likelihood distribution
safety become considerably low (Remennikov andf parametersa (intercept) andb (slope) in the Bayesian
Kaewunruen, 2008). In practice, squats can be detected amfgérence model:
analysed using different methods, such as inspection using
human inspectors, on-board measurements via photo/video
records, axle box acceleration (ABA) measurements, and f(Y[(a/b))=exp{ 1/@+bly), )
other non-destructive testing (NDT), such as ultrasonic and

eddy current testing. While axle box acceleration (ABA) . L L
measurements are efficient in detecting both early stage aérey is the crack depth. When no prior information is
severe squats (Molodova et al. 2014; Li et al. 2015), in thiyailable about the values of parameteendb, we assume
paper the focus is the analysis of severe defects in termsufform prior distributions (Faghih-Roohi et al., 2014):

crack lengths. Thus, we rely on ultrasonic and surface photos )
of the defects. 7,(a) = Uniform( A, A) (3)

Ultrasonic (US) testing is currently one of the most

extensively employed automatic inspection technique for 7,(b) = Uniform( B, B) 4)

squats. This method can only be used to reliably detect cracks

with depths higher than 4 mm, depending on the instruments.

When a rail includes squats with cracks larger than 4 mm, tBg Bayes' theorem, the joint posterior distribution of the

evolution of the defects generates a potential risk of the raflodel parameters is proportional to the product of the

failure. This paper employs US measurements to model crdif#elinood and the priors. Monte Carlo methods are often

growth of squat. In the next two sections, the rail failurgased in Bayesian data analysis to describe the posterior
probability model is presented. distribution. The objective is to generate random samples
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from the posterior distribution and use them when it is ngample means. This produces a smoother plot than the raw
possible to compute analytically the posterior distributiorsample traces, and can make it easier to identify and
For this purpose, a slice sampling algorithm is chosen tmderstand any non-stationarity. The first fifty values of Fig.
obtainN samples of the distribution with an arbitrary densit are not comparable to the rest of the figure. However, the
function (Neal, 2003). The slice sampling algorithm is a typeest of each plot shows that the parameter posterior means
of a Markov Chain Monte Carlo (MCMC) algorithm. Amonghave converged to stationarity.

all the MCMC methods such as Gibbs sampling, and the
Metropolis—Hastings algorithm, slice sampling is easier to
implement as only the posterior needs to be specified (G|Iks 15
1996).

4. FAILURE RISK ASSESSMENT

Mean of the intercept, a

4.1 Rail Failure Probability

In this section, the risk model is presented. First, failure 100 200 300 f“%?nberi‘f’zamp‘?e‘f 700 800 900 1000
probability is calculated by considering squats with over 4

mm in crack depth measured by US. The probability dfig 3: Posterior distributions of regression parameter
failure indicate how likely is a squat to develop into a rail
break in the future. To evaluate the failure probability, we
consider squats with crack depths ranging from 1 mm to 9 1
mm. By measuring the depths every one year, we see how,s,
many cracks have reached depth of 4 mm or even more, aad
how the cracks growth over time. Then, we enumerate t@ I
squats with the same growth and crack depth, to capture themf
typical behaviour of squats in the particular track. Fig. % 02
shows the occurrence of cracks of more than 4 mm over a
track segment of around 2.35 kilometres during a period of 4 % 100 200 300 400 500 600 700 80 900 1000
years. The Mega Gross Tone (MGT) is equal to 3.719 per Number of samples

year in this track. The data collected in the Fig. 2 is used
estimate the Bayesian parameterandb, in order to capture
the failure rate. The idea is to use crack depths for several
different squats over time to calculate growth with regards
number of the squats with same growth in depth.

Ig?g 4: Posterior distributions of regression parameter

tﬂwe probability failure regression models resulted friim
samples of MCMC simulation are depicted in Fig. 5, witere
is equal to 1000. The idea of Fig. 5 is to show how squat will
be prone for rail break in the future. In this figure, the non-

; ; ; ; ; linear regression models of, &, s are used to reflect the
CI A [ oo | ; optimistic failure scenario, the average scenario and the
4b------ e b TR R ; pessimistic scenario, respectively. Thus, relying on the figure,
E sl B Lo b [ ; for each available crack depth, the probability of the squat to
P o R S o ; devglpp into a rail break is esumate.d within a time horizon,
2 ; ; 3 | ; ; sufficient to guarantee a timely maintenance. For example,
8 ] T S [ ; the squats with crack depth 7 mm induces rail to be broken if
of-——---- - @5 o4 @3 777777 Lo-o - we do not maintenance operations in a long time horizon,
Y B Lo L3 [ ; with probabilities increasing according the scenario: 0.8554
; ; ; ; ; for s, 0.8668 fors, and 0.9068 fors;. Point estimates and
2 2 4 6 8 10  Bayesian confidence intervals, representing uncertainty about
Crack depth, mm parameters after data analysis are presented in Table 1.

Fig 2: The cracks length over 4 mm versus crack growth.

Numbers indicate the occurrence of the data point. . . . .
P Table 1: Bayesian point and interval estimates

95 % confidence
interval

Scenario Parameter Mean
al 0.8001

The posterior distribution of the regression paramdterg)
is calculated based on the MCMC simulation generated in s

one thousand samples. Fig. 3 and Fig. 4 show how the bl 0.8000 [0.9860,1.0089]
parameters(a, b) vary over the samples. The posterior g, a2 1.0009

distributions show updated state of the mean value and the b2 0.8624 [0.8589, 0.8667]
level of the uncertainty of the model parameters. As seef in a3 1.9592 ’

the figures, the purpose is to check for convergence using b3 1.1346
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4.3 Rail failure risk

Relying on the failure probability scenarios and the severity
categories, the risk can be defined as:

o
3

I4+1

Re=w, [ R(Ddl
|4

Probability of failure
o o
u o

(%)

©
S

o
w

where R? is the rail failure probability for scenar® and
Categoryz, w, is the severity weight of Categom/ and

Fig 5: Bayesian estimates for rail failure probability after {h JzJ is the interval of crack depths that defines Category

time horizon sufficiently long to guarantee a timely, The idea is to use the failure probability of the crack depth

maintenance. [, P(I), for each category of severity, by considering the
severity weightw, Table 2 shows the resulting risk values of
each scenario at different categories. To illustrate, as

4.2 Squat Severity Analysis expected, the risk of failure in scenaspfor Category 1 is

As the visual lengths of squats follow a specific grovvtltr'e highest where_the cra_ck are most severe both in the length

model classifying the squats according to its severity, in thi&'d the depth while the risk for scenasjon the Category 4

section, a relation on how the visual lengths and the cracRntains the lowest value.

lengths are linked to each other is investigated. The idea is to

classify the severity of the squat when it is getting worse in ) )

terms of both, the visual length and the crack length. For thigble 2. Failure risk results

Crack depth, mm

purpose,_the visual Iength and the crack depth of 36 squats Risk Category| Category| Category| Category
were registered every six months over 2 years (see Fig. 5).| scenario 1 2 3 4

As depicted in Fig. 6, the squat growth space is divided into_S1 0.7758 0.5172 0.1621 0.0811
four categories representing the squat severity. The reason $ 0.7862 0.5241 0.1654 0.082
behind specifying the category boundaries is that the squats S 0.8173 0.5449 0.1753 0.0876

with visual length above 20 mm will potentially reappear

after a grinding operation. Thus, Category 1 shows the most

severe growth of squats where the crack length and visUdie failure risk values can be used as risk Key Performance
length both are sufficiently high to require maintenance dsdicators (KPIs) to address health condition of the rail, so to
soon as possible. Contrary to the Category 1, Category 4 ikeep informed infrastructure manager of the status of track.
safe category reflecting all the squats which are located in ttlecombination with other KPIs as defined in Jamshidi et al.

early stage of growth. There are a few squats observed(2015), the risk values can be employed to support a
categories 2 and 3. Even though the squats situated ciondition-based maintenance plan.

Category 2 are in early stage of growth in terms of visual

length, the crack depth are considerably high. In Category 3

the visual length is high whereas the crack depth is belows4 CONCLUSIONS

mm. In this paper, a probabilistic approach is used to model rail
x failure considering the squat growth. A Bayesian method was
or ; © 7 employed to make robust failure estimation, including
! optimistic, average and pessimistic scenarios. Furthermore,
e 8 ! | uncertainties of the method are also obtained and used to
E . | | calculate Bayesian confidence intervals per failure scenario.
% ; Then, according to where the squat is in the severity
o o e e e o_ oy Categories, the rail failure risk is obtained per failure scenario.
g ! In future studies, we will develop the methodology to
50 o o o0d oo o | analytically predict the rail failure over a time horizon using
; risk key performance indicators relying on different
ar o oo b 1 measurement sources. Parameters like mechanical strength
‘ ‘ : ' ‘ ‘ ‘ values, material properties and geometrical values of the rail
0 5 10 15 20 25 30 35 40

such as area of cross section, can give further details about

the way the crack will evolve over time. The evaluation on

Fig 6: Experimental categories of squat based on crack depiiagy those parameters influence the risk assessment is part of
and the visual lengths the further research.

Visual length, mm
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