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Abstract

High-precision systems often comprise many individual systems, each operating at its own frequency.
However, the vibrations from one system can be transmitted to another, which yields a response. In
high-tech applications where precision is crucial, such as compliant transmission systems, these responses
are undesired as they result in a loss in precision. Topology optimization can be employed to directly
include these unwanted vibrations in the design process of compliant mechanisms. However, the current
literature only concerns simple beam structures and suffers from issues such as premature convergence and
large intermediate-density areas. This thesis aims to employ topology optimization to design compliant
transmission systems whilst simultaneously attenuating the effects of unwanted external vibrations in the
form of base excitations. This is done by using an objective function capable of minimizing the displacement
response of a structure whilst not suffering from the aforementioned issues. The found objective function
relies on the principle of global minimization, which minimizes the largest displacements inside the structure
resulting from the applied excitation. An extension of the current research is done by only minimizing a
subset of the domain, obtaining a localized minimization whilst other areas of the domain are allowed to
exhibit larger responses. These two minimization principles are then applied to the design of a compliant
inverter mechanism, with local minimization considering two areas of interest: the entire mechanism area
and the regions around the input and output of the mechanism. The results show that global minimization
is able to obtain discrete results for a large range of frequencies. Local minimization of the mechanism
area yields lower displacement responses and, for higher frequencies, resulting topologies with displacement
behaviour similar to the principles of vibration absorption and vibration isolation. Decreasing the response
area to be minimized only to cover the input and output regions of the mechanism yields inconclusive results
in terms of obtaining lower displacement responses compared to local minimization of the mechanism
area. A proof of concept for designing a compliant transmission system whilst minimizing the response to
harmonic base excitations is established, demonstrating potential benefits for future research in this domain.

iii





Contents

1 Introduction 1

2 Compliant Mechanisms 3
2.1 Static applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Dynamic applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Compliant mechanism design methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Topology optimization: formulation 11
3.1 Design parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Optimization problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Design regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 System matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Material interpolation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Topology optimization: state of the art 19
4.1 Static applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Frequency response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Eigenfrequency optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Dynamic compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Harmonic base excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.8 Discussion on the state of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Addressing the research gaps 41

6 Methods to fill the research gap 43
6.1 Density-Weighted norm objective formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Parameter study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Case studies 51
7.1 Step 1: Stitched mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Step 2: Static mechanism in a larger design domain. . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Step 3: Global minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4 Step 4: Local minimization of the mechanism area . . . . . . . . . . . . . . . . . . . . . . . . 63
7.5 Step 5: Local minimization of the input and output area . . . . . . . . . . . . . . . . . . . . . 65
7.6 Quantitative comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Discussion 71

9 Conclusions & recommendations 73

A Derivation of the system of equations for harmonic base excitations 75

B Density Weighted norm objective function parameter study 77

C Material interpolation functions 115

D Case study static displacement results 119

E pyMOTO 121

v



1
Introduction

This report details the work of my Master of Science thesis. The goal of this research is to utilize topology
optimization to design compliant transmission systems that simultaneously mitigate the effects of unwanted
external vibrations in the form of harmonic base excitations. First, a background is presented to establish
the context and de�ne the problem for this thesis. Next, a short overview of the research gaps in the current
literature is provided, which results in the motivation and goals of this thesis. Lastly, an outline is given for
the remaining part of this thesis.

Background
In this modern age, almost all equipment in high-tech engineering applications requires an increasing
amount of precision to manufacture new technologies at an increasingly smaller scale. The mechanisms
employed in these high-precision applications are often compliant mechanisms, such as compliant
transmission systems, which rely on elastic deformation to achieve motion or force transmission instead of
traditional joints and hinges [1]. This property allows them to provide highly accurate and repeatable motion
or force transmission, making them well-suited for precision instrumentation. High-precision systems,
which are used in, for example, the semiconductor industry or space applications, are often made up of a large
number of individual systems. Each of these individual systems operates at their own speci�ed frequency.
These systems, however, are also connected to each other, which means that inevitably, the vibrations from
one system can be transmitted to another system. These vibrations can lead to a loss in precision, which
is why high-speed machinery sometimes suffers ef�ciency losses due to the need to wait for vibrations
to die out [2]. Mitigating or even eliminating the effects of unwanted vibrations is, therefore, a crucial
aspect of the design of mechanisms for high-precision environments. Common methods for mitigating
vibrations in such environments include vibration isolation, dynamic balancing, and vibration absorption.
Designing compliant transmission systems for these environments often involves problems that have several
constraints and might also con�ict with each other. A design method for compliant mechanisms capable
of handling multiple constraints is that of structural optimization. In this thesis, the method of structural
optimization, speci�cally topology optimization, is employed. Topology optimization is the process of
determining the optimal placement of material within a given design domain in order to obtain the best
performance given a certain objective function. A common objective function is to optimize the structure to
obtain maximum stiffness given a certain load.

Research gaps
Whilst the current literature on topology optimization of compliant transmission systems is extensive, the
research on topology optimization of structures in dynamic environments often only concerns simple beam
structures. An extension to the design of compliant transmission systems in environments which are
disturbed by external vibrations is therefore missing. Furthermore, the research that is done also suffers
from several issues. The method of eigenfrequency optimization, for example, is computationally costly and
does not take into account the excitation source. Furthermore, objective functions that take into account
the excitation source often suffer from issues such as premature convergence when the excitation frequency
is higher than the �rst resonance of the initial domain or have resulting topologies that still contain a large
number of intermediate densities.
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2 1. Introduction

Motivation and goals
Mitigating or even eliminating the effects of external unwanted vibrations is a crucial aspect of the design
of mechanisms for high-precision environments and topology optimization is a promising design method of
directly incorporating these external vibrations into the design process.

The goals for this thesis will, therefore, be to utilize topology optimization to design compliant
transmission systems that simultaneously mitigate the effects of unwanted external vibrations. The
presented issues will, however, have to be overcome �rst, which will require the introduction of an objective
function which does not suffer from excitation frequency issues and has a minimized occurrence of
intermediate densities in the �nal result. For simpli�cation, the external vibrations are applied as a harmonic
base excitation, and the problem is de�ned in a two-dimensional setting.

Outline
The remaining part of this thesis will include a more in-depth discussion of the information introduced in
this section, and the outline of this thesis is as follows: Chapter 2 will introduce the working principles of
compliant mechanisms, their applications, and their common design methods. To include the attenuation
principles directly into the design of compliant mechanisms, topology optimization is employed, the working
principles of which are introduced in Chapter 3. Chapter 4 outlines the state of the art of topology
optimization of both static and dynamically excited systems, which reveals a gap in the current research.
This gap is addressed in Chapter 5, where the scope of this thesis is outlined as well. Chapter 6 covers the
objective function employed to �ll the research gap, after which several case studies are done in Chapter 7.
Lastly, chapters 8 and 9 contain the discussion and conclusion, respectively.
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Compliant Mechanisms

In this modern age, almost all equipment in high-tech engineering applications requires more and more
precision to manufacture new technologies at an increasingly smaller scale. State-of-the-art instruments
such as motion stages contain a vast number of moving parts, each of which can cause issues to occur during
operation, such as backlash, hysteresis, and unwanted vibrations. This is where compliant mechanisms come
in, a term popularized by Howell [1], which describes mechanisms that achieve motion or force transmission
by utilizing �exible members such as springs or beams that undergo elastic deformation instead of traditional
joints or hinges. In this chapter, the state of the art regarding compliant mechanisms in both static and
dynamic applications are introduced, together with their common design methods. The work of Howell et
al. [1] already provides several example applications, but as there are hundreds if not thousands of works
considering the applications of compliant mechanisms, only several examples will be provided.

Due to the lack of joints and hinges, compliant mechanisms offer several advantages over traditional
mechanisms. Firstly, these mechanisms can be designed to be more compact with fewer components,
resulting in reduced costs in both assembly and maintenance processes. Secondly, the absence of moving
parts eliminates sources of friction and wear, eliminating the need for lubrication and improving reliability
and lifespan. Moreover, compliant mechanisms can be designed to provide highly accurate and repeatable
motion or force transmission, making them exceptionally well-suited for precision instrumentation [1].

An example of a compliant mechanism is given in �gure 2.3 [3], where the image on the left provides
the schematics of a displacement ampli�er considering a 'classical' design. The term 'classical' denotes that
the movement of the joints is facilitated by rotational joints, as represented in the diagram by the circular
connections. On the right, the compliant equivalent of this mechanism, which is now a monolithic structure,
is given. The motion of the structure is then facilitated by the thin, �exible members located at similar
points to the classical mechanism. These members are also called �exures, and the deforming ability of these
members allows the mechanism to achieve the desired movement.

(a) The rigid-body version with rotational joints
.
.

(b) The mechanism of �gure 2.1a but as a monolithic
structure, with �exure hinges instead of rotational joints

Figure 2.1: A mechanism with a �xed support at the bottom, which converts forces or displacements from the
input to the output which is in an orthogonal direction [3].

3



4 2. Compliant Mechanisms

Despite compliant mechanisms offering several advantages over conventional mechanisms, they do,
however, also have some disadvantages [1]. In order to provide suf�cient motion inside the mechanism,
�exure joints are often made as thin as possible. This comes with a drawback, however, of becoming a
location of stress concentration, which is not desired as, when a force is applied to the structure, the input
energy will be consumed and stored as elastic strain energy, which in turn reduces mechanical ef�ciency [4].

2.1. Static applications
Compliant mechanisms have found applications in various �elds, presenting their versatility and bene�ts.
Examples of these are �elds such as adaptable structures, medical applications, tools, transportation
components, micro-electro-mechanical systems (MEMS), or robotics [5]. Some notable examples are the
applications of compliant mechanisms in soft robotic systems [6], a compliant solar array mechanism that
can be packaged using limited space during launch and deployed in space [7], and a six-degree of freedom
positioning system capable of micrometer positioning developed by Park and yang [8]. Images of these
applications are given in �gure 2.2.

(a) A compliant soft robotic gripper [6]
.

(b) A compliant solar array [7]
.

(c) A compliant precision positioning
system [8]

Figure 2.2: Several examples of static applications of compliant mechanisms found in literature.

2.2. Dynamic applications
The previous examples considered static applications of compliant mechanisms, where the excitation load
remains constant in magnitude and does not change over time. Compliant mechanisms have, however, also
found applications for problems where a periodic load is applied, where the magnitude remains constant,
but the load changes at equal time intervals. Examples of such applications are given in this section.

2.2.1. Dynamic displacement ampli�cation
The displacement ampli�er given in �gure 2.3 considers an excitation force that is constant, but this load can
also be changed to a periodic load. This is exactly what Le Letty et al. [9] did to construct a positioning
stage actuated by piezoelectric actuators, an image of which is given in �gure 2.3a. Tanksale et al. [10]
also considered a compliant mechanism designed to amplify the dynamic input displacement, but used an
intermediate mass which was actuated close to or at its natural frequency. This allowed for the use of the
vibration absorber effect, which resulted in an ampli�cation of the output displacement. This effect was
conventionally used to reduce vibrations in a system [11], but was in this case employed to amplify the input
displacement. A schematic of the mechanism designed by Tanksale et al. [10] is given in �gure 2.3b.
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(a) A positioning stage containing three compliant
dynamic displacement ampli�ers [9]

(b) A compliant dynamic displacement ampli�er utilizing
an intermediate mass [10]

Figure 2.3: Examples of compliant dynamic displacement ampli�cation found in literature.

2.2.2. Frequency ampli�cation
Besides amplifying input displacements, compliant mechanisms can also be designed to manipulate the
relation between input and output frequencies. In Farhadi et al. [12], a compliant transmission mechanism is
designed to multiply the frequency of a reciprocating input motion. The obtained design managed to double
the input frequency at the output, and the concatenation of this mechanism also provided another doubling
in output frequency, yielding a multiplication ratio of four.

Figure 2.4: A double slider mechanism capable of amplifying the output frequency with respect to the input
frequency (a) and the accompanying input-output displacement relationship (b) [12].

The way this mechanism works is by taking advantage of the singularity properties of a double-slider
mechanism, an image of which is shown in Figure 2.4. Once the output block reaches its vertical limit, the
kinematic chain reaches the boundary of the workspace, the speci�c con�guration of which is called limb
singularity [13].

2.2.3. Adjusting eigenfrequencies
The previous sections provided examples of systems that exploited the natural frequencies of the system in
order to achieve their desired performance. For a lot of high-performance systems, however, it is actually
more important to ensure that the natural frequencies of the system do not coincide or lie too close to the
bandwidth at which the system is required to operate. If the natural frequencies of the system align with the
operating frequency range, resonance can occur, which could cause the system to fail drastically if the system
is not designed for the resulting load intensity.

Designing compliant mechanisms for speci�c eigenfrequencies or mode shapes can be done during
the design process using methods such as the Pseudo Rigid Body Modelling method (PRBM) [14] [15]
which will be outlined in section 2.3, or using a Finite Element Analysis (FEA) as a modelling method [16].
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Compared to the PRBM method, the FEA method is still the most accurate method, although it does cost
more computational effort [17]. FEA is most often used after the mechanism has been developed; however, by
utilizing commercially available �nite-element software such as ANSYS, the eigenfrequencies of the system
can be determined.

2.2.4. Handling disturbances
Chapter 1 mentioned that vibrations produced by one system can be transmitted to another system. Figure
2.5 gives a visualization of this vibration transmission.

Figure 2.5: An example of how structures in the same system are not rigidly connected but always contain a
certain amount of stiffness and damping. This allows for the transmission of vibrations at a frequency ! from
one structure to another.

This behaviour can occur when the system is in use or when it is stationary. When the system is in
use, a loss in precision will occur. In the worst case, the disturbance frequency matches a resonance of the
system, which yields a displacement response that might damage the system. Shifting the resonances of
the mechanism, however, does not necessarily minimize the displacement response of the system at a given
frequency. The objective of this thesis will, therefore, be to investigate whether a mechanism that transmits
forces or displacements can be designed whilst simultaneously optimizing the mechanism against unwanted
vibrations in the form of base excitations. Several principles can be applied to mitigate these vibrations,
which will be discussed in this section.

Vibration isolation
The principle of vibration isolation can be broadly de�ned as the process of minimizing the transmission
of vibrations from one component to the other. The capability of a system to do this is also often de�ned
as 'transmissibility'. To visualize this, a simple one-degree-of-freedom mass-spring-damper system can be
constructed as given in �gure 2.6a. This system is excited by a harmonic excitation y(t ). The transmissibility
is then de�ned as x(t )

y(t ) , and its resulting frequency response is given in �gure 2.6b.

The initial straight line indicates that all vibrations are transmitted one-to-one to the system. As the
frequency approaches a resonance frequency, the transmissibility increases, and these are maximal at the
resonance frequency, being only limited by the amount of damping in the system. Next, a sharp decline in
transmissibility follows, showing that the transmission of vibrations is minimized for higher frequencies. In
order to maximize the effectiveness of the isolation, the resonance frequency of this system is preferred to be

as low as possible to minimize the transmissibility over a large frequency range. Given that ! n Æ
q

k
m , this

can be achieved by a combination of having a relatively low stiffness k between the mass and the base and
a relatively high mass m for the mass itself. The extent to which this resonance frequency can be lowered
is often limited for passive vibration isolation systems such as this, but active vibration isolation systems
[19], which include actuators which are actuated by a control sequence, can often achieve much better
performance. Active vibration isolation is, however, beyond the scope of this thesis.
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(a) Mass-spring-damper system (b) Transmissibility plot [18]

Figure 2.6: A mass-spring-damper system and its accompanying transmissibility plot. The decaying response
de�nes the principle of vibration isolation.

Dynamic balancing
Dynamic balancing can be considered the process of designing, or sometimes modifying, a mechanism in
such a manner that vibrations caused by an imbalance in rotating components are reduced or eliminated.
This imbalance might be created due to the centre of mass of the mechanism not aligning with the axis of
rotation, which will result in a centrifugal force that generates vibrations. These unwanted vibrations will
then, in turn, affect the accuracy of the system if its application is based on precision.

There are several methods to achieve dynamic balancing in compliant mechanisms. One commonly used
approach is the duplicate mechanism principle. This method adds a second mechanism that is identical to
the �rst but rotates in the opposite direction. By connecting these two mechanisms, the shaking forces and
moments cancel each other out, resulting in dynamic balancing [20]. An example of this method is shown in
�gure 2.7, where a double pendulum is dynamically balanced using axial and mirror-symmetric mechanism
duplicates. Another method is the principle of the counter mass, where a counter-rotating mass is added to
create a counter-inertia effect. This counterbalance helps achieve dynamic balance in the mechanism [21].

Figure 2.7: A double pendulum system which is dynamically balanced by means of an identical but inverted
double pendulum system [20].
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Vibration absorption
Whereas dynamic balancing mostly concerns rotating systems, a similar principle to the counter mass
method is found for linear motion systems. This principle is known as vibration absorption, which involves
an added mass designed to 'absorb' the vibrations of the mass of interest. An example of a vibration absorber
is given in �gure 2.8a.

(a) A double mass-spring system containing a main mass
of interest and an absorber mass

(b) The frequency response of the system of �gure 2.8a
with and without the absorber mass [22]

Figure 2.8: An example diagram and frequency response of a vibration absorption system.

In �gure 2.8a, the mass of interest is the main mass mm . This mass contains a resonance which is
represented in �gure 2.8b by the red dashed line. In order to suppress the vibrations of this mass of interest
at this resonance frequency, an absorber mass ma is added to the system. The mass and stiffness of this
absorber are tuned such that the response of the mass of interest produces an anti-resonance at the frequency
of interest instead of a resonance. The resulting response is given by the black line in �gure 2.8b and shows a
zero displacement response at the same resonance frequency. In practical systems, the inclusion of damping
will not yield a zero displacement response but will result in minimized displacements.

All of these methods, however, do come with the drawback of adding mass and inertia to the system. This
increased mass and inertia will require more power to drive and control the mechanism, as well as increase
the material costs [23]. Among these methods, the duplicate mechanism principle generally adds the least
mass to the initial system according to Van der Wijk et al. [20]. Van der Wijk et al. [24] attempted to mitigate
this drawback by introducing a method of designing a mechanism where all elements contribute to both
the motion of the system as well as the dynamic balance. This approach eliminates the need for additional
masses or counterbalances and was named the inherently dynamically balanced mechanism method. The
common way of designing a dynamically balanced mechanism is to analyze the kinematics of the system �rst
and determine the balancing of the system afterwards. This results in the issue where a part or even the entire
design process has to be started anew if the balancing solution is not applicable. In Van der Wijk et al. [24],
two methods are derived for the synthesis of inherently dynamically balanced mechanisms. One with the
method of linearly independent linear momentum, and one with the method of principal vector linkages.

Considering dynamic balancing compared to vibration isolation, dynamic balancing does have an
advantage. According to Weeke et al. [25], the principle of dynamic balancing is considered superior over
vibration isolation when considering oscillating systems subjected to environmental disturbances due to
being independent of both the frequency and amplitude of the external motion. Vibration isolation, on the
other hand, focuses on reducing the transmission of vibrations from one component to another but may not
address the inherent unbalance in the system.
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2.3. Compliant mechanism design methods
With the applications and advantages of compliant mechanisms presented, the design methods used to
construct these mechanisms can be outlined. The process of designing compliant mechanisms can be
approached in various ways, depending on the speci�c goals and requirements of the mechanism. Gallego
and Herder [26] summarized the synthesis of compliant mechanisms in three main approaches: the
structural optimization approach, the building blocks approach, and the kinematic approach. The structural
optimization approach will be discussed further in section 3.

Regarding the other two approaches, the building block approach is a conceptual design procedure
that is based on the instant centres [27]. This method concatenates basic building blocks to construct a
working mechanism. This does mean, however, that this design becomes quite large relatively fast, as a lot of
individual parts are connected together. The kinematic approach can be further divided into the Rigid-Body
Replacement method and the Freedom and Constraint (FACT) method. The FACT method is a synthesis
method that maps a set of geometric entities in the freedom space into a set of geometric entities in the
constraint space to �nd solutions for the design problem [28]. However, both methods are rarely or never used
in the dynamic analysis of compliant mechanisms due to the inability to handle the complexity of dynamics.
Therefore, only the Rigid-Body Replacement method will be discussed in this section.

2.3.1. Rigid-Body Replacement method
The Rigid-Body Replacement Method is a procedure that works by, as is evident from the name, constructing
a rigid-body mechanism that satis�es the desired functionality and replacing it with its compliant
counterpart. This replacement can be done using �exure joints or the Pseudo-Rigid Body Model (PRBM).
When considering compliance within compliant mechanisms, there are two types: lumped compliance and
distributed compliance. In lumped compliance, the deformation is concentrated in one particular part of the
mechanism, and in distributed compliance, the deformation is distributed among a larger part of or even the
entire element.

Flexure joints
Lumped compliant �exure joints can be de�ned as a region in a material that allows for large de�ections
relative to the other stiffer adjacent regions, normally acquired by geometrical characteristics [26]. Simple
�exures consist of notches of various pro�les and represent hinges. Figure 2.9a shows an example of different
pro�les. These notch-type �exure hinges are commonly used for small displacements but can also be
designed for large deformations. In distributed compliant �exure joints, the designs can be much more
complex, which allows them to behave as other mechanisms such as revolute joints, prismatic joints, or
universal joints, as shown in �gure 2.9b.

(a) Notch-type �exure hinges: (a) corner �llet, (b) circular,
(c) parabolic, (d) hybrid

(b) Complex �exure joints: (a) universal joint, (b) revolute
joint, (c) and (d) prismatic joints

Figure 2.9: An overview of �exure joints commonly used in the design of compliant mechanisms [26].

Pseudo-Rigid Body Model (PRBM)
The Pseudo-Rigid-Body Model (PRBM) is a method that emulates the behaviour of a compliant mechanism
as a rigid-body mechanism. The kinematics of this rigid-body model can then describe the path of the system,
and the force properties can be approximated by a spring, which represents the compliant mechanisms'
stiffness. This method provides a quick and easy way to test multiple concepts in the early stages of the
design, due to the simpler analysis based on kinematics. While this simpli�cation allows for easier analysis, it
does have some disadvantages, such as neglecting local stress concentrations. Furthermore, the accuracy of
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this method can be limited due to the simpli�ed material behaviour. An example for both lumped compliance
and distributed compliance is shown in �gure 2.10, where it can be clearly seen that the compliant member
is modelled as a combination of a link and a spring.

(a) Lumped compliance cantilever (left). PRBM equivalent
(right)

(b) Distributed compliance cantilever (left). PRBM
equivalent (right)

Figure 2.10: Examples of the Pseudo-Rigid-Body Model (PRBM) equivalents of both lumped and distributed
compliant cantilever beams [29].

2.4. Concluding remarks
This chapter presents the properties and applications of compliant mechanisms in static and dynamic
environments, together with common design and analysis methods. Compliance mechanisms have a distinct
advantage over traditional link and joint systems, especially in precision mechanism applications. Compliant
mechanism design is, therefore, highly relevant to this thesis. Despite its advantages, however, their inherent
property of being thin and compact allows for local stress concentrations to appear. Using Finite Element
Analysis, these issues can be identi�ed and mitigated where necessary. This does, however, add additional
steps to the design process.

For the applications in dynamic environments, there seems to be a clear distinction between utilizing
and preventing vibrational behaviour. Amplifying the dynamic displacement utilizes resonance behaviour
to amplify the output displacement, while vibration isolation attempts to minimize resonance behaviour as
much as possible. Frequency ampli�cation, on the other hand, utilizes a speci�c kinematic relation to achieve
its goal. Finally, the dynamic balancing method seems to be more advantageous to vibration isolation.

The PRBM method has been presented as an effective method for designing compliant mechanisms for
static applications and for dynamic properties such as eigenfrequencies. This effectiveness comes from the
simpli�cation of the material behaviour inside the mechanism. While this greatly reduces computational
effort, it is less accurate than �nite element methods and will struggle with complex designs that have more
intricate layouts or are subjected to more requirements. The mentioned third synthesis method of structural
optimization is a technique which is able to overcome these disadvantages for compliant mechanism design,
which will be discussed in the following chapter.
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Topology optimization: formulation

Structures in engineering applications these days are getting more and more complex. There is an increasing
demand for performance measures in both static and dynamic environments, on which multiple constraints
such as size or weight can be subjected. In the high-tech industry, semiconductors are getting smaller and
smaller, thus requiring increased precision of the equipment used to construct them whilst simultaneously
increasing in size to increase production ef�ciency. For these problems with multiple constraints, topology
optimization offers a structured method of providing an optimal design.

In the early stages of the design process, the design space and performance requirements of the
mechanism are usually known, but coming up with a preliminary design is sometimes dif�cult. For compliant
mechanisms, as explained in section 2.3.1, a kinematic analysis can be done using the PRBM method.
This process, however, is often trial and error, which can be time-consuming and increase costs. Also,
it may be that some or even several requirements are in con�ict with each other. These con�icts might
be solvable by a designer, but the problem might be too dif�cult, for example, when static and complex
dynamical requirements start con�icting. Furthermore, assuming these issues do not occur, it might be
that a certain constraint is added later in the design process due to a change or overlooked problem.
Adding an extra constraint often requires a restart of a large part of or even the entire design process.
Topology optimization offers engineers a systematic method to achieve an optimal design for a given problem
subjected to constraints in the early stages of the design process. Having this preliminary design can speed
up the design process tremendously, increasing ef�ciency and reducing costs.

In the general sense, topology optimization is the process of determining the optimal distribution of
material within a given design space to obtain the maximum desired performance. It was �rst introduced by
Bendsøe and Kickuchi [30] as the homogenization method and was popularized by Bendsøe and Sigmund
[31]. Before the introduction of topology optimization, this area of structural optimization was mainly
focused on size optimization. Currently, the area of structural optimization can be categorized into three
categories: size, shape, and topology optimization. These are visualized in �gure 3.1.

Figure 3.1: The three categories of structural optimization: size optimization, shape optimization and
topology optimization for their initial structure (left) and optimized structure (right) [31].

11
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In �gure 3.1, size optimization is de�ned as optimizing the cross-sectional area of the utilized truss
members. Shape optimization covers the shape of the holes of the initial structure. These cannot change
in number or area, but their shape de�nes the optimized solution. Shape optimization, therefore, has a �xed
topology, but the domain varies. Lastly, there is topology optimization which changes the entire design space
to arrive at an optimum topology. In most optimization problems, the structure is not �xed a priori, which
means that an optimal topology and shape are often required. Dealing with these constraints during the
design process is often challenging, which is where topology optimization comes in.

As for the methods of performing topology optimization, the most prominent design parametrization
approaches are density-based topology optimization and level-set-based topology optimization. Density-
based topology optimization is a method where the design domain is divided into small cells, and
each cell is assigned a density value indicating the material distribution. Level-set-based topology
optimization represents structural boundaries using level-set functions, which require careful initialization
and manipulation. Considering vibration problems, a recent study done by Keur [32] on minimizing
eigenfrequencies of a beam structure suggests that the density-based approach holds the advantage over the
level-set approach. While the level-set approach is capable of handling more intricate vibration problems, it
requires more time and effort to set up properly. On the other hand, the density-based approach does trade
performance, in this case, the capability of achieving lower eigenfrequencies, but offers a reduction in overall
time and effort needed to achieve results. On top of that, the density-based approach offers a signi�cant
advantage in terms of computational ef�ciency. Due to these advantages, this thesis will utilize the method
of density-based topology optimization.

3.1. Design parametrization
The design parametrization approach of density-based topology optimization method was �rst introduced
by [33], and has gained signi�cant popularity over time. As the name implies, this method revolves around
the density of the material and, speci�cally, the density of each of the individual elements. Figure 3.2 provides
a visualization to better understand this method.

(a) Design domain (b) Finite element grid (c) Final topology

Figure 3.2: Design parametrization using density-based topology optimization. The state of the domain is
expressed as a function of the individual element densities within the �nite element grid, which allows for
the de�nition of 'solid' and 'void' regions.

As an example, an arbitrary design domain is given in �gure 3.2a. This domain is constrained at the
left boundary and has a force with magnitude f̂ applied to it in the middle of the right edge. Next, the
domain is discretized into a grid of �nite elements as shown in �gure 3.2b. Each element can now be given
its own density, which can vary between the values 0 and 1, where 0 indicates a void (no material), and 1
represents a fully solid element. The densities between these de�ned solid and void values however, or the
so-called intermediate densities, do not have a direct physical meaning as a material can not have only half
density. Therefore, this thesis refers to these pseudo-densities as the design variables xe. Figure 3.2c shows
the resulting topology if the objective is to maximize the stiffness of the structure to support the applied static
load. It can be noted that several of these design variables are still at intermediate densities, represented in
grey. Preferably, a binary design is obtained, which only contains void or solid elements as these have direct
physical meaning, or in other words, an interpretable design is preferably obtained. In the coming sections,
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however, it will be explained that this is not always obtainable, yet measures can be taken to come close to a
binary result.

Furthermore, the white circles visible on the intersections between the elements in �gure 3.2b are referred
to as nodes. Each node then contains two degrees of freedom, one in the x-direction and one in the
y-direction. The displacements of these individual degrees of freedom u i combined result in the global
displacement vector u, which describes the displacement of the structure as a whole. Figure 3.3 gives a
visualization of these degrees of freedom.

Figure 3.3: An example visualization of the degrees of freedom present for every node in the 2-dimonsional
system utilized in this thesis.

3.2. Optimization problem formulation
To solve an optimization problem, the problem must be formulated with an objective function and possibly
additional constraints. In engineering and optimization problems, the objective function represents the
quantity that needs to be maximized or minimized to achieve the desired optimized result. A typical objective
function used commonly in literature for topology optimization of structures subjected to a static force is
the objective of minimum compliance. The goal of this objective function is to optimize the topology of a
structure to acquire maximum stiffness properties in a speci�ed direction. This higher stiffness will then, in
turn, result in smaller displacements of the structure when subjected to the applied static load. This objective
function is often used in the minimization sense as the compliance can be seen as the weighted average
displacement in the direction of loads [34]. The compliance is a function of the design variables x mentioned
in section 3.1, and its formulation is given in equation 3.1.

min
x

: C(x) ÆfT u(x) (3.1)

As can be seen, the force vector f is commonly not a function of the design variables. The vector
u(x) represents the displacement vector which contains all displacements of the degrees of freedom of the
structure. Another common objective function is that of minimum displacement of a certain single or a set
of degrees of freedom un . These degrees of freedom are often retrieved from the displacement vector u(x) by
using a selection vector l which is a vector full of zeros and only values of one at the indices of the degrees of
freedom of interest. The formulation for this objective function is given in equation 3.2

min
x

: un (x) ÆlT u(x) (3.2)

Note that this objective function is independent of the magnitude of the force that is applied to the
structure. The objective function formulation is not limited to single objective functions however, as weighted
linear combination functions are often used to combine several functions to obtain a multi-objective
optimization [35] [36] [37].

Using only an objective function, however, is not a 'well-de�ned' problem de�nition. Nothing is stopping
the optimization from, for example, adding a substantial amount of material to resist deformations or
removing all material when the objective is to maximize the displacements. Therefore, there is a need for
constraint functions that impose certain limitations on the design problem. The most common constraint
that is used in practically all topology optimizations is the volume constraint. This constraint ensures that
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the design variables, which vary from 0 to 1, do not exceed a certain threshold when added together. In other
words, the volume constraint determines the amount of solid material and void space allowed in the design.
This is often de�ned by a volume fraction V̄ . Furthermore, a minimum value xmin is added to ensure that
the design variables do not become zero, which will make the system matrices singular. Using the objective
of minimum compliance from equation 3.1, a generalized formulation for a topology optimization including
these constraints is given in equation 3.3.

min
x

: C(x) ÆfT u(x)

subject to : V (x) · V̄

g(x) · ¯g(x)

0 · xmin · x · 1

with u(x) obtained from : K(x)u(x) Æf

(3.3)

It can be noted that an extra function g(x) is present in this formulation. This is to represent additional
constraints which may come in any form. The mentioned static compliance, for example, can also be
implemented as a speci�c requirement constraint, so as not to exceed a certain value.

3.3. Design regularization
Simply de�ning a design domain, dividing it into elements and starting the optimization, however, will not
necessarily yield properly de�ned topologies. If the objective is, for instance, to maximize the stiffness of a
structure, the optimizer will create regions with alternating solid and void elements, which is also known as
'checkerboarding' due to its checkerboard-like structure [38] [39] [40]. These regions will have arti�cially high
stiffness, which satis�es the goal of the optimizer yet yields designs which would not be feasible to produce.
Figure 3.4a shows a topology which exhibits this checkerboarding behaviour.

(a) Without density �ltering (b) Including density �ltering

Figure 3.4: Topology optimization of a minimum compliance problem with and without density �ltering.

In order to remedy this problem, the design variables can be �ltered using a density �lter. The result of
this �lter is shown in �gure 3.4b, which is the same problem as �gure 3.4a but now produces a topology which
is feasible to produce. The way the density �lter works is similar to the commonly used Gaussian blur used
in image processing [41]. The main principle behind this function is to modify the design variables xe to be
a weighted average of the design variables within a certain neighbourhood radius r . This method was �rst
introduced by Bruns and Tortorelli [42] and its formulation is given in equation 3.4. Note that the density
�lter radius r also de�nes the minimum member size of the structure.

x̂e Æ

P
i 2Ne Hei xi

P
i 2Ne Hei

, (3.4)

where Hei is a weight factor given by:

Hei Æmax(0, r min ¡ ¢ (e, i )), (3.5)

where ¢ (e, i ) is the center to center distance from element i to element e and r min the �lter radius. From
equation 3.5 it is clear that the weighting is linearly decaying. As the elements within the speci�ed radius are
further away from element i , the weighting effect becomes smaller. A visualization of this effect for �lter radii
r Æ2 and r Æ3 is given in �gure 3.5.
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(a) Initial domain (b) Density �ltering with r Æ2 (c) Density �ltering with r Æ3.

Figure 3.5: A visualization of the impact of the density �lter radius r on a single element.

From these �gures, it is clear that the value of the initial solid design variable gets spread out across
the region de�ned by the �lter radius. It can be noted that for both results, the centre element is not fully
solid anymore as the total volume fraction in this �lter domain is kept similar, and the material is spread out
linearly over the �lter radius.

The minimum value for the density �lter r needed to remedy the checkerboarding behaviour is r =2. In
this thesis, it will be desirable to provide the optimizer with as much freedom of design as possible. Therefore,
a larger �lter radius will not be necessary, as this will also in�uence the minimum member design which
might hinder some interesting intricate design properties. One last important aspect to note is that these
obtained '�ltered design variables' are the variables x̂e for which the optimum is found and are, therefore,
also the variables which are plotted to show the obtained topology.

3.4. System matrices
To solve for the objective functions as given in section 3.2, almost every case requires some form of solving
for the displacements within the system. To solve for these displacements, the equation of motion can be
constructed, of which its most general form is given in equation 3.6. A further explanation of how the second
equation is obtained is given in section 4.2.

K(x,! )u(! ) Æf(! )

K(x,! ) ÆK(x) Å j ! C(x) ¡ ! 2M(x)
(3.6)

The matrices K(x), C(x) and M(x) represent the stiffness matrix, damping matrix and mass matrix
respectively. For the static case, ! will be equal to zero, and the damping and mass terms will disappear
from the equation. Neglecting the damping matrix for now, equation 3.6 reveals that the stiffness and mass
matrices are required to solve for the displacements, unless ! =0 where only the stiffness matrix is required.
This section will elaborate on the methods used to construct these matrices and how these methods have
developed over time.

As stated earlier, the design domain is divided up into a �nite element mesh, which conveniently uses
identical elements which will have the same material properties such as an element stiffness matrix K0

e and
element mass matrix M0

e. What this allows for is to construct the stiffness and mass matrices of the entire
design domain as a sum of all the �ltered design variables x̂e from section 3.3 multiplied by the element
stiffness matrix and element mass matrix respectively. This formulation is given in equation 3.7.

K(x) Æ
NEX

eÆ1
x̂eK0

e, M(x) Æ
NEX

eÆ1
x̂eM0

e, 0 Ç x̂min · x̂e · 1, (3.7)

The condition x̂min · x̂e is added to ensure that the design variables do not achieve the value of zero, as
this will make the system matrices singular. A typical value of x̂min is 1e¡ 3. Using this formulation in topology
optimization, however, will yield a large number of design variables, which will remain at a value between
0 and 1, as they are not 'forced' towards a binary 0-1 design. Areas which contain large amounts of these
so-called intermediate densities are also known as grey areas. In equation 3.7 the element densities are used
in a linear fashion, but they can also be replaced by some arbitrary function f (x̂e). These functions are called
material interpolation functions, and several of them will be discussed in the next section.
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3.5. Material interpolation schemes
In order to obtain a binary design which contains only material and void elements, the design variable x̂e in
equation 3.7 can be replaced with some arbitrary function f (x̂e) which penalizes the design variables in order
to force the intermediate densities to either material or void. A generalized version of equation 3.7 is given in
equation 3.8.

K(x) Æ
NEX

eÆ1
f (x̂e)K0

e, M(x) Æ
NEX

eÆ1
f (x̂e)M0

e, 0 Ç x̂min · x̂e · 1, (3.8)

Throughout the years, several of these material interpolation functions have been introduced and the
most common methods used in topology optimization considering harmonics will be mentioned in the
coming subsections. Note that all interpolation functions can be used for either the stiffness interpolation
or the mass interpolation and these do not necessarily have to be the same interpolation function.

3.5.1. SIMP method
One of the most popular interpolation methods is the method of Solid Isotropic Material with Penalization
(SIMP) method which was introduced by Rozvany et al. [43]. To enforce the binary representation of solid
and void, a penalization term p is introduced. This yields the formulation given in equation 3.9, which will
be henceforth referred to as 'standard SIMP'.

f (x̂e) Æx̂p
e , p Æ3 (3.9)

The most common value for p is also given, which is p=3. If this this function is used for the mass
interpolation function, the parameter p is often exchanged for the letter q to create distinction between the
two. Without the speci�cation of x̂min · x̂e however, this method is allowed to reach a value of 0.

3.5.2. Conditional SIMP
As the design variables are penalized and come close to zero, one can note from equation 3.6 that the resulting
low stiffness will also yield a resulting high displacement when subjected to the same force excitation
magnitude. Pedersen [44] therefore introduced a conditional function for the stiffness interpolation, which
limits the design variables once a certain threshold value has been reached. This function is given in equation
3.10.

f (x̂e) Æ

(
x̂3

e for 0.1 · x̂e · 1

x̂e/100 for xmin · x̂e · 0.1
(3.10)

The threshold value for this function is set at 0.1 for this problem, but this value is often chosen by trial
and error. This threshold however, also creates a discontinuity at the value of 0.1, which was not found by
Pedersen to result in any issues, but other design problems might exist where this discontinuity is not desired.
A similar function was adopted by Tcherniak [45] but used for the mass interpolation instead, where the mass
of the element was set to zero as the design variable crossed a certain threshold x̂ethr . This function is given
in equation 3.11.

f (x̂e) Æ

(
x̂e for x̂e È x̂ethr

0 for x̂e · x̂ethr

(3.11)

One last version of the conditional SIMP function which will be introduced is the one from Du and
Olhoff [46], who introduced a mass interpolation function based on the version of Tcherniak [45] due to the
aforementioned issue of discontinuity present at the threshold value x̂ethr for the conditional SIMP method.
Du and Olhoff, therefore, introduced a function which would provide a continuous interpolation model for
these lower values of intermediate densities. This function is given in equation 3.12. Whilst a negligible
in�uence on the �nal 0-1 design was found for this approach, the discontinuity issue was resolved with this
function.

f (x̂e) Æ

(
x̂e for x̂e È 0.1

c1x̂6
e Å c2x̂7

e for x̂e · 0.1
, c1 Æ6e5, c2 Æ ¡5e6 (3.12)
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3.5.3. Modi�ed SIMP
In order to address the issue of element density approaching zero in the standard SIMP method, Sigmund
[47] proposed a modi�ed version of this method which includes the minimum value x̂min . Including this term
ensures that the design variables remain nonzero to avoid a singularity of the system matrix. The formulation
is given in equation 3.13.

f (x̂e) Æx̂min Å (1¡ x̂min )x̂p
e , p Æ3, 2 [0,1] (3.13)

3.5.4. SIMPlin
Another version of SIMP, which is essentially a modi�cation of the modi�ed SIMP version, is the function
proposed by Zhu et al. [48], which adds a small linear part to the higher-order SIMP function. For the stiffness
interpolation, this ensures that there is still stiffness present as compared to the mass of the same element
(given that a linear function is used for the mass interpolation) for very small values of the �ltered design
variables x̂e. In this thesis, this function is de�ned as SIMPlin, and the formulation is given in equation 3.14.

f (x̂e) Æx̂min Å (1¡ x̂min )(0.1x̂e Å 0.9x̂p
e ), p Æ3, 2 [0,1] (3.14)

3.5.5. RAMP
The Rational Approximation of Material Properties (RAMP) was introduced by Stolpe and Svanberg [49] as an
alternative to the standard SIMP method from equation 3.9. They concluded that the standard SIMP function
does not necessarily result in a concave function no matter how large the penalization factor p is chosen. For
this reason, a new method was devised, which is given in equation 3.15.

f (x̂e) Æ
x̂e

1Å p(1¡ x̂e)
, p Æ3 (3.15)

This function actually contains a non-zero slope for design variables approaching zero. This prevents
them from rapidly approaching zero, which could, in turn, lead to numerical instabilities or the same problem
mentioned in section 3.5.2.

3.5.6. PIS
One last interpolation scheme which will be introduced is the one presented by Zhu et al. [48], who
introduced a Polynomial Interpolation Scheme (PIS). This is a polynomial function which does not rely on a
conditional property and, therefore, does not contain any discontinuities. Furthermore, this scheme contains
a penalization factor p and an adjustable parameter ® which allows for more control over the interpolation
model if the penalization factor is increased. In this thesis, the value of ® is set at 16, and the resulting function
is given in equation 3.16.

f (x̂e) Æ
®¡ 1

®
x̂p

e Å
1

®
x̂e Æ

15

16
x̂p

e Å
1

16
x̂e, p Æ5 (3.16)

3.5.7. Comparison of methods
Whilst many more interpolation schemes exist, or can be constructed, the goal of this thesis will not be to
provide an in-depth study of the differences between the used material interpolation function and which
performs best for the given problem. Furthermore, there is no one ideal material interpolation method
which works best for all design problems, and therefore a choice of material interpolation will have to be
made. This is especially the case since the �nal case study proposed in chapter 7 will contain various forms
of excitation which not all have been used in combination with all presented functions. This study on which
material interpolation function will be used in this thesis is conducted in chapter 6. The performance of each
function is measured by its ability to obtain discrete designs for the given design problem. It was found that
the combination of PIS (equation B.1) for the stiffness interpolation and Standard SIMP (equation 3.9 are the
most appropriate choices for the introduced case study.
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3.6. Optimizer
The optimization approach adopted in this thesis is a gradient-based optimization. This means that the rate
of change of the objective function is utilized in order to �nd optima. This works speci�cally well for topology
optimization given that it scales well for many design variables, as often found in topology optimization, and
speci�cally continuous design variables, which are obtained by using the interpolation methods mentioned
in the previous section.

Using these gradients, several optimization algorithms exist which can be exploited. The focus of this
thesis does, however, not lie in the optimization strategy itself, but more on the optimization problem
formulation and, therefore, will make use of the widely adopted Method of Moving Asymptotes (MMA).
Introduced by Svanberg [50], the Method of Moving Asymptotes (MMA) is a method which is capable of
handling a large number of design variables as well as multiple constraints, making it very suitable for the
type of optimization employed in this thesis.



4
Topology optimization: state of the art

With the methodology behind topology optimization outlined, the state of the art of topology optimization
applications for both static and dynamic problems can be examined. This chapter will discuss the
methodology for statically loaded compliant mechanism design using topology optimization, as well as
provide the adaptations needed to solve problems which consider dynamic excitation loads. Furthermore,
the types of dynamic excitation problems and their challenges will be outlined as well. By understanding the
principles and challenges of topology optimization in both static and dynamic environments, the gaps in the
literature, together with the scope of this thesis, can be identi�ed.

4.1. Static applications
Since its introduction, topology optimization has been applied to a wide range of structural design problems.
The simplest example, however, is that of the minimization of static compliance. The formulation for this
objective was already given in equation 3.3 and the goal is to optimize the topology of a structure in order to
acquire maximum stiffness properties in a speci�ed direction by minimizing the static compliance (equation
3.1). This can be done for multiple forms of static excitation loads as shown in �gure 4.1.

(a) Single force (b) Multiple forces (c) Distributed force

Figure 4.1: Examples of a static compliance minimization under multiple forms of static excitation loads.

These load types show the most basic examples of how topology optimization considering a static
load can be used. A real-world application for the distributed force load, for example, is the soft robotics
application mentioned in section 2.1. Due to the fragility of the objects, the soft robotic grippers often
cannot work with the point loads that are commonly used in topology optimization. A distributed pressure
load is therefore required for this optimization problem. Modelling for unknown objects, however, can be
challenging [51].

19
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4.1.1. Force-based inverter
The examples of the previous section presented the use of topology optimization for simple clamped beam
structures subjected to static loads. In order to construct compliant mechanisms using topology optimization
as mentioned in section 2.4, a more complex problem condition needs to be formed. For the �nal case study
in this thesis it will be preferable to have a simple problem which contains all necessary components in terms
of load applications and boundary conditions, without much more. The most common example regarding
topology optimization of compliant mechanisms which satis�es these criteria is the inverter problem [52]
[53] [31].

The inverter problem is characterized by an input excitation, which results in an output motion in the
inverse direction. The advantage of this problem speci�cally is that it contains the most basic requirements
for a compliant mechanism, being a �xed boundary, an input excitation point and an output excitation point.
These excitations can then be de�ned in different forms, such as either a displacement or a force. Figure 4.2
gives the design domain for the topology optimization a force-excited inverter mechanism in its most basic
form as proposed by Bendsøe and Sigmund [31].

(a) Load case 1 (b) Load case 2

Figure 4.2: The two load cases required for the topology optimization of a force-excited inverter mechanism.

As can be seen from this �gure, there are two design domains present, and thus two problems to solve.
Each of these individual problems requires a single solve for Ku=f and contains a description of the boundary
conditions, stiffness and loading; they will henceforth be referred to as 'load case' 1 and 2 respectively. Both
load cases share the same �xed boundaries, but the �rst load case only involves the input force, and the
second load case only considers the output force. The subscripts 1 and 2 denote the respective load cases
1 and 2. The static excitation force is de�ned by f̂1(0), with accompanying displacement u1. The static
output force f̂2(0) is a pseudo force which represents an equivalent load on the output of the mechanism.
The magnitudes of f̂1(0) and f̂2(0) are similar for this problem.

Next, the optimization problem can be formulated. In order to obtain an inverter mechanism, the goal
is to maximize the output displacement resulting from the input force in the opposite direction as the
input displacement. This can also be interpreted as minimizing the negative of the output displacement.
Conveniently, the force vector f2 can be used as a location vector to locate the output displacement in load
case 1. Simultaneously, a constraint is placed on both the input and output by means of a limit on static
compliance. These compliances are obtained using the forces and accompanying displacements of each
individual load case. The optimization formulation is given in equation 4.1, note the subscripts 1 and 2
denoting the load cases 1 and 2.

min
x

: ¡ uout Æ ¡fT
2 u1(x)

subject to : fT
1 u1(x) · C̄1

fT
2 u2(x) · C̄2

V (x) · V̄

0 · xmin · x · 1

with u1(x) obtained from : K1(x)u1(x) Æf1

and u2(x) obtained from : K2(x)u2(x) Æf2

(4.1)
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Where C̄1 and C̄2 de�ne the maximum allowed static compliance for the input and the output of the
mechanism respectively. Using this formulation with the given design domain yields the topology given in
�gure 4.6. Together with the obtained topology, a visualization done in Paraview of the vertical displacements
in the mechanism is given, showing the desired inverting behaviour.

(a) Resulting topology
.

(b) Static displacements of the mechanism resulting from
the applied input force visualized in ParaView

Figure 4.3: The resulting mechanism of the optimization formulation from equation 4.1 and a visualization
of its displacements resulting from the applied input load which con�rms the working inverting function.

The formulation given in equation 4.1 can also be reversed in order to minimize the sum of the input and
output compliances whilst constraining the ratio between the input and output displacements. This does,
however, require an additional load case, which is given in �gure 4.4.

(a) Load case 1 (b) Load case 2

(c) Load case 3

Figure 4.4: The updated load cases required for the topology optimization of a force-excited inverter
mechanism which includes a third load case constaining the desired displacement.

This third load case now contains a desired value of the output displacement º . This is typically linked
to the input displacement and results in the vector º = [u3,in , u3,out ] = [1, - º ]. As actuating a compliant
mechanism with a force will not only yield an output motion but will also store kinetic energy in the structure,
the value of º is often set larger than 1. The formulation can then be adapted in order to incorporate this
added load case, as given in equation 4.2.

min
x

: C1 Å C2 ÆfT
1 u1(x) Å fT

2 u2(x)

subject to : C3 Æº T Kº · C̄º

V (x) · V̄

0 · xmin · x · 1

(4.2)
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4.1.2. Displacement-based inverter
As mentioned earlier, this problem can also be de�ned with a prescribed displacement input as the
excitation source. Using a displacement as the excitation source results in the right-hand side of the system
equation Ku=f being set to 0. To solve for these prescribed displacements, the displacement �eld needs
to be subdivided into free displacements u f and prescribed displacements up [54]. This also yields an
accompanying subdivision in the force vector of the applied loads f f , which are not present in this case,
and reaction loads fp . The resulting system equation from this subdivision is given in equation 4.3.

·
K f f K f p

Kp f Kpp

¸ ·
u f

up

¸
Æ

·
f f

fp

¸
Æ

·
0
fp

¸
(4.3)

u f ÆK¡ 1
f f

¡
¡ K f p up

¢

fp ÆKp f u f Å Kpp up

(4.4)

The resulting prescribed displacement vector up can then be �lled with the desired excitations, and the
resulting free displacement vector u f and reaction loads fp can be solved for as given by equation 4.4. The
design domain for this problem given by Koppen [54] is shown in �gure 4.5.

(a) Load case 1 (b) Load case 2

Figure 4.5: The two load cases required for the topology optimization of a displacement-excited inverter
mechanism [54].

This design domain now contains a set of prescribed displacements for each load case. In the �rst load
case, both the prescribed displacement on the input and the output are in the same direction, whilst in the
second load case, the prescribed displacements are in the desired inverting direction. In order to obtain an
inverter with this problem de�nition, the goal is to achieve a desired limited stiffness between the input and
output for the inverted direction (load case 2) whilst simultaneously retaining maximum stiffness between
the input, output and ground. This can be achieved by maximizing the compliance values from the �rst
load case, which are calculated with the prescribed displacements and their respective reaction forces, whilst
simultaneously limiting the compliance values of the second load case in the desired inverted direction. The
formulation for this problem yields an inverter mechanism, and its formulation is given in equation 4.5.

max
x

: C1,in Å C1,out Æf1,in u1,in Å f1,out u1,out

subject to : C2,in Å C2,out Æf2,in u2,in Å f2,out u2,out · C̄2

V (x) · V̄

0 · xmin · x · 1

with f1,in , f1,out obtained from : fp,1 ÆKp f ,1u f ,1 Å Kpp,1up,1

and f2,in , f2,out obtained from : fp,2 ÆKp f ,2u f ,2 Å Kpp,2up,2

(4.5)
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It can be noted that the previous paragraph mentioned maximizing compliance instead of minimizing
compliance, as well as the constraint having a maximum compliance value instead of a minimum compliance
value. This is due to the implementation of the prescribed displacements, and for a detailed explanation of
why this is necessary, the reader is referred to the work of Koppen [54]. The topology which is obtained when
using this formulation is given in �gure 4.6 along with a visualization of its vertical displacements. There are
some slight differences in topology from the force-excited case, but the same inverting behaviour is achieved.

(a) Resulting topology
.

(b) Static displacements of the mechanism resulting from
the applied input force visualized in ParaView

Figure 4.6: The resulting mechanism of the optimization formulation from equation 4.5 and a visualization
of its displacements resulting from the applied input load which con�rms the working inverting function.

4.1.3. Discussion on inverter formulations
Comparing the formulations given above, there seem to be two general principles: maximizing the
displacement given a certain stiffness or maximizing the stiffness given a certain displacement. Of these
two, the latter one is considered better conditioned, given that the output displacement of the former will
not necessarily be in the negative direction given a large amount of stiffness and will, therefore, not yield an
inverter mechanism.

The formulations for obtaining an inverter mechanism are not limited to the formulations introduced in
this section, as demonstrated by Cao et al. [55], who provide an overview of a large number of formulations
introduced in literature. This thesis will, however, be limited to the formulations introduced here due to
the function of the mechanism itself not being the subject of this thesis. For the �nal case study, the most
important aspect will be to have control over the obtained mechanism. This would ensure that all results
will obtain an inverter mechanism with similar properties which in turn allows for a fair comparison of the
results.

4.2. Harmonics
As mentioned, this thesis will focus on topology optimization considering dynamic problems. Most
commonly, dynamic problems can be solved either in the time domain or in the frequency domain. Time
domain problems often consider loads which change over time (transient loads) and, as such, require
integration over a �nite time span[56] [57] [58]. The response which is solved for is then called the transient
response and considers the time span over which is integrated. This thesis, however, will consider periodic
loading conditions and the accompanying steady-state response, or in other words, harmonic problems. This
allows for an easy conversion of the time domain governing equation to the frequency domain, which will be
done in this section.

The harmonic governing equation was already presented in equation 3.6, but in this section, the
derivation will be provided. For any given system, the general equation of motion can be de�ned as in
equation 4.6.

M(x̂)ü(t ) Å C(x̂) �u(t ) Å K(x̂)u(t ) Æf(t ) (4.6)

In this equation, M(x̂), C(x̂) and K(x̂) represent the mass matrix, damping matrix and stiffness matrix
respectively. Note that these matrices are dependent on the �ltered design variables x̂, but this notation will



24 4. Topology optimization: state of the art

be omitted in the coming section to provide clarity. Consider now a harmonic load written as a set of complex
numbers using Euler's formula as given in equation 4.7.

f(t ) Æ¸ f̂ e j ! t Æ¸ f̂
¡
cos! t Å j sin ! t

¢
Æ¸ (! ) f̂ (4.7)

Note that the load vector f is now de�ned in terms of a directional vector ¸ with unit length multiplied by
the magnitude of the applied force f̂ . This notation is chosen in order to provide a better distinction between
static and harmonic forces in later sections. The displacements resulting from this harmonic load will have a
similar form, which, together with its time derivatives, is given in equation 4.8.

u(t ) Æue j ! t

�u(t ) Æj ! ue j ! t

ü(t ) Æ ¡! 2ue j ! t

(4.8)

Both ¸ and u are arrays with complex numbers, i.e. u = Re(u) + j Im( u) and ¸ = Re(̧ ) + j Im( ¸ ) (Im( ¸ )=0).
If the results from equation 4.8 and 4.7 are substituted in equation 4.6, the complex system of dynamic
equations given in equation 4.9 is obtained.

¡ ! 2ue j ! t M Å j ! ue j ! t CÅ Kue j ! t Æ¸ f̂
¡
K Å j ! C¡ ! 2M

¢
ue j ! t Æ¸ f̂ e j ! t ,

(4.9)

since e j ! t 6Æ0 for all t 2 < . If the dependencies are then inserted again, the �nal harmonic equation of
motion given in equation 4.10 is obtained. The newly de�ned stiffness matrix K(x,! ) is often referred to as
the 'dynamic stiffness matrix'. Note also that this equation now solves for the magnitude of the displacements
u.

K(x,! )u(! ) Æ¸ (! ) f̂

K(x,! ) ÆK(x) Å j ! C(x) ¡ ! 2M(x)
(4.10)

For all subsequent sections which cover forced vibration problems, a frequency-dependent harmonic
system is considered to which the generalized equation of motion of equation 4.10 applies. Furthermore, the
frequency ! , which is used in the computation of the harmonic equations of motion, has the unit of rad/s. In
all problem de�nitions presented in this thesis, however, the excitation frequency ! exc is always presented in
Hz. The relation between radians and hertz is given in equation 4.11.

! Æ2¼[rad/s] Æ1[Hz] (4.11)

Using the harmonic equations, several interesting properties can be exploited. Instead of having only one
applied force at one speci�c frequency, multiple forces at multiple frequencies can be applied to the system
through the use of the superposition principle. Due to the linear nature of the harmonic equations of motion,
the total displacement u tot can be obtained by superposing the solution u i for each individual load case k .

u tot Æ
kX

i Æ1
u i , (4.12)

where i represents a single load case of the total load cases k .
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4.3. Frequency response
In order to analyze the behaviour of harmonic systems, the frequency response is commonly employed. This
response provides the magnitude of the displacement of a chosen degree of freedom for a range of excitation
frequencies which allows for the study of the frequency behaviour of the system. If a system is excited close
a a resonance frequency, the resulting displacement magnitudes will rise in order of magnitudes rapidly,
resulting in behaviour which is de�ned as resonance. For most structures, this resonance is undesired, which
means that having information on the location of these resonance frequencies is crucial. More information
on resonance will be provided in later sections.

One of the most in�uential responses for topology optimization considering harmonic excitations is the
response of the initial uniform design domain. This response is often used to obtain the initial resonances
of the system and subsequently de�ne one or multiple frequencies of interest which are to be examined.
Detailed reasoning behind why this is important will be given in section 4.6. One aspect which is missed or
never mentioned in all current literature however, is that the response which is used is often actually not the
response of the initial domain but actually the response of the initial domain after material interpolation.
What this means exactly is discussed in this section.

The initial uniform design domain such as the grid shown in �gure 3.2b is comprised of all design variables
xe. Most commonly, the initial value of these design variables is chosen as x0=0.5, which is an intermediate
density. If a frequency response of the initial uniform design domain is provided, it is implied that this is the
domain where all design variables are set to this value of 0.5. However, this is not the case depending on the
used material interpolation. Before this response is performed, the design variables are �ltered, which will
have no in�uence on the uniform design �eld but is still important to keep in mind. Next, the �ltered design
variables x̂e are inserted into a chosen interpolation function, such as given in section 3.5. Depending on the
interpolation function, the penalized �ltered design variables x̄e can become vastly different. The results of
the material interpolation functions given in section 3.5 are given in table 4.1. Conditional SIMP (equation
3.10) is left out of this comparison due to the value 0.5 being above the common threshold values.

Interpolation function x̂e x̄e = f (x̂e)
Linear (equation 3.7) 0.5 0.5000

Standard SIMP (equation 3.9) 0.5 0.1250
Modi�ed SIMP (equation 3.13) 0.5 0.1250

SIMPlin (equation 3.14) 0.5 0.1625
RAMP (equation 3.15) 0.5 0.2000

PIS (equation 3.16) 0.5 0.0605

Table 4.1: Filtered design variables after material interpolation

From these results, it is evident that all material interpolation functions have a substantial amount of
in�uence on the �ltered design variables. This is important as these penalized �ltered design variables x̄e

are used to construct the stiffness matrix K(x) and mass matrix M(x), which in turn are used to compute the
eigenfrequencies and obtain the undamped frequency response. To visualize the in�uence of the chosen
functions, two frequency responses of the design problem of �gure 4.7a are provided in �gure 4.8 (the design
problem associated with this response is fully de�ned in section 4.4). Figure 4.8a provides the responses when
the mass interpolation function is kept linear and the stiffness interpolation function is varied, and �gure 4.8b
presents the opposite case.

(a) Initial state x0 Æ0.5 (b) Initial state x0 Æ1.0

Figure 4.7: The design domain of the example problem given for two different initial states: the commonly
adopted intermediate state x0 Æ0.5 and a fully solid state x0 Æ1.0.



26 4. Topology optimization: state of the art

(a) Varying stiffness interpolation function varying, linear
mass interpolation function

(b) Linear stiffness interpolation function linear, varying
mass interpolation function

Figure 4.8: Frequency response comparison of the initial uniform design domain with an initial state of
x0 Æ0.5 after the application of various material interpolation functions for both the stiffness and mass
interpolation.

From these responses it is clear that the frequency response is dependent on the used material
interpolation functions, with different results for each interpolation function. For the mass interpolation,
it seems that the standard SIMP response is not visible, but this yields the same response as modi�ed SIMP.
While there is an appropriate material interpolation function for every problem, the response of the initial
uniform domain after penalization is highly relevant, as will be explained in section 4.6. One option to
circumvent the dependence on the material interpolation function is to set the initial design variables to
x0=1.0. This is shown in �gure 4.7b, and the response which is obtained by doing this is given in �gure 4.9.

Figure 4.9: Frequency response of the initial uniform design domain after the application of various material
interpolation functions for an initial state of x0=1.0.

This response shows how the obtained response is now independent of the material interpolation
functions. Interestingly, the same response is obtained as setting the material interpolation functions for
the stiffness and mass interpolation identical to each other for the x0=0.5 case. This shows that primarily
having the same penalization on the �ltered design variables gives the same result. In order to have other
combinations of interpolation functions however, the choice is made for this thesis to set the initial design
domain to x0=1.0, which should remove all in�uence from the material interpolation functions. The design
domains and load cases given in the coming sections will, however, be presented in grey instead of black for
clarity purposes and do not indicate that the initial state of the system is an intermediate density.



4.4. Damping 27

4.4. Damping
Whilst the earlier works of topology optimization of structures subjected to harmonic excitations omitted
damping for the sake of simplicity [59] [36] [4], all structures exhibit some form of damping in practice. In
order to incorporate damping inside the equations of motion, linear viscous damping is often used, which is
mathematically convenient due to taking the form of a constant coef�cient matrix, which is multiplied by the
velocities of the degrees of freedom in a structure.

The effects of damping are simply visualized within the frequency response as it limits the magnitude of
the response at the resonance frequencies. The way that these effects of damping are usually quanti�ed is by
means of the so-called damping ratio. This ratio represents the factor with which the resonance frequency
is damped in terms of response magnitude. A visualization of this effect is given in �gure 4.10, which shows
an arbitrary response with a single resonance frequency and the effects of different damping ratios. As the
damping ratio increases, the resulting magnitude of the response becomes lower.

Figure 4.10: A visualization of the effects of different damping ratio's on a resonance frequency [60].

A particular form of damping which is most commonly found for topology optimization problems which
include damping is Rayleigh damping. Though often used without argumentation, Rayleigh damping is
actually a convenient form of damping due to its linear dependency on the mass and stiffness matrix. The
equation for this type of damping is given in equation 4.13.

C(x) Æ®M(x) Å ¯ K(x) (4.13)

As the matrices K and M used in topology optimization of linear harmonic problems are often sparse, this
property is also acquired by the Rayleigh damping matrix due to its simple dependency on these matrices. If
a formulation of linear viscous damping is used which does not have this sparse property, the computational
effort required to solve the equations of motion will increase drastically [61]. As for the parameters ® and ¯ ,
these are two parameters which specify the proportional in�uence of the mass and stiffness on the damping
characteristics, respectively. To understand the in�uence of these parameters, the relation between the
Rayleigh damping parameters and the damping ratio introduced by Cook et al. [62] can be examined, which
is given in equation 4.14.

³ n Æ
®Å ¯! 2

n

2! n
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®

2! n
Å

¯! n

2
Æ
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2

µ
®

! n
Å ¯! n

¶
(4.14)

From this relation, it is evident that the damping ratio is dependent on the magnitude of the considered
eigenfrequency for Rayleigh damping. To visualize this, the resulting damping ratio is plotted in �gure 4.11
against the frequency as done by Zerwer et al. [63]. The parameters ® and ¯ are represented in this graph by
´ 1 and ´ 2 respectively.
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Figure 4.11: The effects of the proportional stiffness damping and mass damping on the damping ratio vs
frequency for Rayleigh damping [63].

For lower eigenfrequencies ! n , the damping ratio is determined more by the parameter ®, and for higher
order eigenfrequencies, the ratio is determined mostly by the parameter ¯ . As the values of the stiffness
matrix K(x) are often much larger than those of the mass matrix M(x) the damping ratio is increased for
higher order eigenfrequencies. This increase in the damping ratio for higher eigenfrequencies also results in
higher damping ratios for higher excitation frequencies ! exc. Given a set of excitation frequencies which are
spread out over a certain frequency range, using �xed values for the parameters ® and ¯ would yield different
amounts of damping for each excitation frequency. In order to compare the results of different excitation
frequencies, it is desired to have comparable damping parameters for each of the excitation frequencies of
interest. In this thesis, the excitation is considered to be known and of a single frequency, and therefore it is
desirable to have this behaviour.

An alternative form of Rayleigh damping was introduced by Silva et al. [64], which approximately imposes
a �xed damping ratio ³ during the optimization by introducing an inverse proportionality to the excitation
frequency. To derive this damping scheme, the eigenfrequency ! n is replaced by the excitation frequency
! exc in equation 4.14. Next, the parameter ® is set to zero, and the relation is rewritten in terms of ¯ . This
derivation is given in equation 4.15.

³ n Æ
1

2
¯! exc ! ¯ Æ

2³

! exc
(4.15)

The damping ratio ³ can now be chosen as desired, which will result in an approximately �xed damping
ratio at the excitation frequency ! exc. Furthermore, if the optimizer decides on a topology which contains
a resonance frequency at the speci�ed excitation frequency, a properly damped system is still guaranteed.
For this thesis, a low damping coef�cient of 0.05 is used [65]. As for why the parameter ® is set to zero, Silva
et al. [64] reported that the inclusion of ® yielded behaviour where material was removed from the load
application region in order to comply with the objective. This thesis will also consider structures subjected
to base excitations, and a study was done by Hall [61] on Rayleigh damping which also suggests removing the
mass proportional damping contribution for base excited problems and to bound the stiffness proportional
damping.

Whilst a choice is made for a speci�c damping scheme in this section, some of the examples in the
coming sections will still include �xed damping parameters in order to provide a better comparison to the
given literature. Furthermore, while this investigation into the effects of the damping parameters proposed
in literature is concluded here, further research needs to be conducted in order to provide a general approach
to choosing appropriate damping parameters which provide the desired in�uence for a given problem. This
is however not within the scope of this thesis.
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One last thing to note is the effect that damping has on the eigenfrequencies. Given in �gure 4.12 is the
undamped frequency response of an arbitrary system which contains an undamped resonance frequency at
429Hz. Together with this undamped response is the damped response which utilizes the proposed damping
scheme.

Figure 4.12: A visualization of the effects of damping on the location of the resonance frequency versus the
undamped resonance frequency.

While hard to see, the maximum response of the damped response is actually shifted compared to the
original undamped resonance frequency. This means that a computation of the eigenfrequencies will not
necessarily reveal the actual damped resonance frequency of the system. There are methods to obtain these
damped resonance frequencies, such as the one given in equation 4.16 provided by Schmidt et al. [65].

! d ,r Æ! 0

q
(1¡ 2³ 2) (4.16)

This formulation will, however, not be used in this thesis, but is important to be aware of. A distinction
will, therefore, be made in the eigenfrequencies of the system, which are obtained from the undamped
response, and the resonance frequencies of the system, which represent the resonances in the damped
response.

4.5. Eigenfrequency optimization
As stated in section 2.2.3, exciting structures near or at their resonance frequencies is not bene�cial for most
forced vibration problems. Within the realm of topology optimization, these eigenfrequencies of the designed
structure can be in�uenced by incorporating them in the objective function. This was already shown by
Diaz and Kikuchi in 1992 [66], who maximized the �rst eigenvalue ¸ 1, and thus the �rst eigenfrequency
! 1 given that ¸ n = ! 2

n , of a truss structure (�gure 4.13a). Du and Olhoff [67] achieved a similar result for
a clamped beam problem, but expanded the objective to any eigenvalue of choice ¸ n together with being
able to maximize the distance between two consecutive eigenvalues ¸ n and ¸ nÅ1 (�gure 4.13b). A notable
example of targeting the eigenfrequencies to actually induce resonance in the system is the optimization of
an atomic force microscope cantilever tip as done by Huigsloot [68] (�gure 4.13c). In this section, several
versions of the eigenfrequency optimization formulation are given, together with an assessment of the use of
eigenfrequency optimization in general.
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(a) Eigenfrequency optimization
of a truss structure [66]
.

(b) Eigenfrequency optimization
of a clamped and double clamped
beam structure [67]

(c) Eigenfrequency optimization
of an AFM cantilever beam [68]
.

Figure 4.13: Examples of eigenfrequency optimization found in literature.

4.5.1. Eigenvalue problem
First, however, the eigenvalue problem needs to be de�ned. The equation of motion given in equation 3.6
will be used as a starting point. Ignoring the damping matrix C(x) and setting the applied load vector f(! ) to
0, the equation given in 4.17 is obtained.

¡
K(x) ¡ ! 2M(x)

¢
u(! ) Æ0

¡
K(x) ¡ ! 2

n M(x)
¢
Án (! ) Æ0

(4.17)

The solution to equation 4.17 yields multiple values for ! 2
n , which is often just used as ¸ n (¸ n = ! 2

n )
and the respective eigenfrequency is represented by ! n . The accompanying eigenmodes are given by the
accompanying eigenvector un (! ), which is changed in notation to Án (! ) to provide a distinct difference.

4.5.2. Eigenfrequency maximization
In the given example of Díaz and Kikuchi [66], the �rst eigenvalue ¸ 1 was optimized for, which was the most
common form of eigenfrequency optimization. Du and Olhoff [69] however, expanded on this optimization
by formulation a generalized version which would allow for any nth eigenvalue to be optimized for. This
formulation is given in equation 4.18.

max
x

: ¸ n

subject to : V (x) · V̄

0 · xmin · x · 1

with ¸ n obtained from : (K(x) ¡ ¸ n M(x))Án (! ) Æ0

(4.18)

In this formulation, ¸ n represents the nth eigenvalue and Án is the nth eigenmode vector.

4.5.3. Eigenfrequency gap optimization
The second mentioned example covered the maximization of the distance between two consecutive
eigenvalues ¸ n and ¸ nÅ1. This was �rst covered by Bendsøe [70], who put forth the argument that by
maximizing this gap resonances and other instabilities in the system may be avoided for a wide range of
operating frequencies. The formulation is to that of eigenfrequency maximization and is given in equation
4.19



4.5. Eigenfrequency optimization 31

max
x

: ¸ 2
nÅ1 ¡ ¸ 2

n

subject to : V (x) · V̄

0 · xmin · x · 1

with ¸ n obtained from : (K(x) ¡ ¸ n M(x))Án (! ) Æ0

(4.19)

4.5.4. Weighted eigenfrequency optimization
Both of the mentioned methods focus on either a single eigenvalue or a pair of eigenvalues. In practice,
however, it is often the case that an optimization needs to be performed for multiple eigenvalues
simultaneously. One of the methods capable of handling this is the weighted eigenfrequency optimization
method introduced by Ma et al. [71] which is given in equation 4.20.

max
x

: ¯̧ Å
mX

i Æ1
wn

µ mX

nÆ1

wn

¸ n ¡ ¯̧

¶¡ 1

subject to : V (x) · V̄

0 · xmin · x · 1

with ¸ n obtained from : (K(x) ¡ ¸ n M(x))Án (! ) Æ0

(4.20)

In this formulation, wn are the weights associated with each nth eigenvalue ¸ n and ¯̧ is the desired
eigenvalue around which is being optimized. For equal weight factors, the eigenvalues closest to ¯̧ will have
the most in�uence on the objective, which results in the eigenvalue closest to ¯̧ being optimized for.

4.5.5. Mean eigenfrequency optimization
A simpler method of optimizing for multiple frequencies was the mean eigenfrequency function introduced
by Ma et al. [72]. This objective function optimizes for the harmonic mean of a subset of m eigenvalues. It
can be noted that this formulation is one of minimization instead of maximization.

min
x

:
mX

nÆ1

1

¸ n

subject to : V (x) · V̄

0 · xmin · x · 1

with ¸ n obtained from : (K(x) ¡ ¸ n M(x))Án (! ) Æ0

(4.21)

4.5.6. Localized eigenmodes
One issue that can occur when using topology optimization for a performance measure that involves the
eigenfrequencies of the structure of interest is the appearance of localized eigenmodes. This happens when
there are regions in the domain with elements that have relatively high mass and low stiffness. Pedersen
[44] found this to be the case in the void areas (de�ned by xmin ) speci�cally, where the adjacent solid
areas would act as a �xed boundary condition. Consequently, the lowest eigenvalues will correspond to
eigenmodes involving predominantly motion of the regions that contain void elements, as opposed to the
natural frequencies of the solid structure. An example of this behaviour is given in �gure 4.14, in which a
solid beam structure (black) in a design domain is surrounded by void elements (white).
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(a) Expected �rst eigenmode (b) Computed �rst (local) eigenmode

Figure 4.14: A comparison of the expected �rst eigenmode, which is similar to the one found for the clamped
beam structure de�ned by the black solid region, and the actual computed �rst eigenmode, which is a local
eigenmode which only contains displacements in the white void region [44].

Figure 4.14a shows the expected �rst eigenmode of this domain, that is the eigenmode of the beam
structure. If the eigenfrequencies of this domain are computed, however, an eigenfrequency is found at a
much lower frequency. The accompanying eigenmode is given in �gure 4.14b. This eigenmode occurs at
such a low frequency due to the relatively low stiffness and high mass of the void elements. When using
an objective function where this �rst eigenfrequency is incorporated, this eigenmode becomes a problem
due to the accompanying eigenfrequency becoming the used eigenfrequency in the objective function
instead of the desired �rst eigenfrequency. The same problem occurs for model order reduction methods,
where a set of eigenmodes is used to de�ne the system. If there are local modes present in this subset,
inaccurate information is used in the optimization, and more eigenmodes are needed to properly represent
the behaviour of the system, which in turn increases computation time.

Most of these issues occurred using the SIMP (equation 3.9) interpolation method, which resulted in the
introduction of several of the material interpolation functions introduced in section 3.5 such as conditional
SIMP [44], RAMP [49] and PIS [48]. These all aimed to avoid the occurrence of localized eigenmodes by
providing a non-zero slope when the design variables approach zero.

For this thesis, the occurrence of localized eigenmodes is, however, not a problem as the eigenfrequencies
will not be a part of the objective function. Furthermore, localized displacement behaviour is even
encouraged. What is desired however, is that the regions which displace are not made up of intermediate
densities but rather solid material. The occurrence of intermediate densities in the resulting topologies in
this thesis is, therefore, undesired.

4.5.7. Discussion on the use of eigenfrequency optimization
In this section, several methods of optimizing for the eigenfrequencies of the structure have been presented
from literature. As mentioned, controlling the resonances of a structure can be crucial depending on the
loading conditions of the structure. If a structure is unintentionally excited at a resonance frequency that
it was not designed for, the resulting large displacements might in�ict substantial amounts of damage to
the structure such that its material properties can no longer be guaranteed. There are, however, also cases
where this behaviour is actually desired, as was shown in the AFM cantilever example, but having control
of the eigenfrequencies in general is bene�cial. Having control of the eigenfrequencies, however, does not
necessarily result in a minimization of the vibrations at a given frequency.

Another key issue with eigenfrequency optimization is that it does not fully translate to forced vibration
problems. The reasoning behind this was detailed in section 4.4, which introduced the in�uence of damping
on the frequency response of a structure. In the forced vibration problems in this thesis, damping will be
taken into account, which means that there will be a difference between the obtained eigenfrequencies
of the structure, and the resonance frequencies. While this difference will be small, optimizing for the
eigenfrequencies of a structure with damping will result in optimizing for different frequencies than the actual
resonance frequencies of the structure.



4.6. Dynamic compliance 33

Furthermore, the occurrence of localized modes might also hinder eigenfrequency optimization or
optimizations which make use of the eigenfrequencies in general. Whilst material interpolation functions
have been introduced that attempt to mitigate this behaviour, these might still occur. Lastly, the
computational costs of an eigenfrequency analysis are often overlooked. To perform an eigenfrequency
analysis, meaning obtaining both eigenfrequencies and corresponding eigenvectors, the computational cost
is around 10-100 times more expensive than a linear solve as multiple solves are needed per eigen-iteration
[73]. The amount of these iterations depends on the number of eigenfrequencies which are to be searched
for. Comparing this to the linear solution of evaluating equation 4.9 for a single frequency, the eigenvalue
analysis has a much higher computational cost.

4.6. Dynamic compliance
As optimization formulations which include the eigenfrequencies of a system do not seem to translate well to
forced vibration problems, a look can be taken at objective functions speci�cally considering forced vibration.
One such objective function is dynamic compliance, which is a concept which was introduced by Ma et al.
[72], which focuses on minimizing the structural displacement response to dynamic loads. This may seem
familiar, which would be true as the dynamic compliance can be considered as the dynamic equivalent of
the static compliance which was presented in section 3.2. By using dynamic compliance as the objective
function, the optimized design will result in the stiffest structure which can effectively resist harmonic
excitations with speci�ed magnitudes and frequencies [74]. The most common form of objective function
formulation for dynamic compliance is given by Olhoff and Du [69] and is shown in equation 4.22.

Cd Æ jf(! )T u(! )j (4.22)

In this function, f(! ) and u(! ) represent the global force and displacement vectors respectively, which
both depend on the excitation frequency ! . The displacement vector u(! ) may be obtained from the equation
of motion presented in equation 3.6. One key difference from the static compliance, next to the frequency
dependency, is the inclusion of the absolute value in the function. This operation is added in order to avoid
the formulation becoming negative during the optimization [75]. In terms of what Cd actually represents, it
can be considered as the magnitude of the displacements weighted by the amplitudes of the corresponding
time-harmonic loading. It can be noted that as the excitation frequency for the load approaches zero, the
dynamic compliance function is reduced to the static compliance function.

4.6.1. Discussion on the use of dynamic compliance
One of the key arguments for using dynamic compliance is its similarity to the frequently used static
compliance formulation, together with its capability of optimizing the actual resonance frequencies of the
structure. As the excitation frequency approaches one of the resonance frequencies of the structure, the
dynamic compliance will drastically increase. This behaviour means that the objective function is able
to accurately represent the frequency behaviour of the structure. However, this does come with some
drawbacks, which will be presented in this section.

First of all, the behaviour of dynamic compliance can be analyzed with a simple example. Starting with
a simple clamped cantilever beam problem, a frequency-dependent problem can be formulated as given in
equation 4.23. The initial design domain is given in �gure 4.15, together with the domain properties in table
4.2.

min
x

: Cd Æ jf(! )T u(! )j

subject to : V (x) · V̄

0 · xmin · x · 1

with u(! ) obtained from : K(x,! )u(! ) Æ¸ (! ) f̂

(4.23)
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Figure 4.15: Design domain for the dynamic compliance
optimization example.

Property Value
l x , l y , l z 1.5, 0.5, 1.0 [m]
nx , n y 100, 50 [#]

f̂ 10 [kN]

Filter radius 2 [#]
Volume fraction 0.5 [-]

Table 4.2: Properties of the domain given
in �gure 4.15.

The magnitude of the applied harmonic force f(! ) is f̂ =10kN. For the damping, Rayleigh damping
(equation 4.13) is used with ®=1e¡ 3 and ¯ =1e¡ 8. As for the material properties, the Young's modulus is
set at 200GPa, the density at 7800 kg/m 3 and the Poisson ratio at 0.3. Lastly, the material interpolation
functions used are the modi�ed SIMP method (equation 3.13) for both the stiffness interpolation and the
mass interpolation. Next, the dynamic compliance can be computed for the frequency interval [0, 2000]Hz
with a resolution of 1Hz and plotted in �gure 4.16. In this same plot, the resonances and anti-resonances of
the structure for this frequency interval are provided.

Figure 4.16: The dynamic compliance response of the initial design domain as given in �gure 4.15.

To assess the behaviour of the dynamic compliance, the dynamic compliance is �rst optimized for
frequencies below the �rst resonance. As this resonance is located at 365Hz, the chosen frequencies are
0Hz (the static solution), 200Hz, and 350Hz. These frequencies should cover the behaviour of minimizing the
dynamic compliance up until the �rst resonance. The resulting topologies of these optimizations are given
in �gure 4.17.

(a) ! exc = 0 Hz (static solution) (b) ! exc = 200 Hz (c) ! exc = 350 Hz

Figure 4.17: The obtained topologies for the minimization of the dynamic compliance for the design domain
given in �gure 4.15 for a set of excitation frequencies below the �rst resonance of 363Hz.

From the resulting topologies alone, it is not quite clear what the objective function aims to achieve. The
topologies themselves however, do show several differences. For a higher frequency than the static solution,
it seems that the optimizer chooses to deposit less material near the excitation point. This behaviour is to be
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expected as less material will result in less mass, which will in�uence the dynamic stiffness matrix (equation
3.6) less, which in turn leads to smaller displacements at the speci�ed frequency. If the excitation frequency
comes very close to the �rst resonance, however, the optimizer struggles to converge to a binary design, and
a lot of intermediate densities remain present in the topology. In order to assess what the objective function
actually aims to achieve, the dynamic compliance responses can be assessed for the obtained topologies.
These results are given in �gure 4.18.

Figure 4.18: Dynamic compliance response comparison of the obtained topologies given in �gure 4.17.

From these results, it is clear what the objective function aims to achieve. The static solution seems to
already provide an improvement with regards to the initial structure in terms of �rst resonance location, but
increasing the excitation frequency is where the behaviour really comes to light. For higher frequencies, the
�rst resonance is 'pushed' further towards a higher frequency. This behaviour intensi�es as the excitation
frequency increases, even though the topology still contains a lot of intermediate densities. Comparing
this with the eigenfrequency optimization methods given in section 4.5 this objective function does not
necessarily control the resonance frequencies directly, but manages to force them away from the excitation
frequency, resulting in minimized displacements at the speci�ed frequency. This is highly bene�cial as the
resonance frequencies can be controlled with an optimization which only requires a linear solution instead
of the computationally costly eigenfrequency analysis.

The results from above show the behaviour of the dynamic compliance for excitation frequencies below
the �rst resonance. Above this resonance however, an interesting issue occurs. This issue was �rst addressed
by Silva et al. [76], which presents the problem of the optimization suffering from premature convergence
when the excitation frequency is set at a value higher than the �rst resonance of the initial uniform structure.
In order to test this, two frequencies can be chosen from the frequency response in �gure 4.16 which are
above the �rst resonance. For this test, the choice is made for 600Hz and 1250Hz, which provide insight into
the behaviour just beyond the �rst resonance and after the �rst anti-resonance. The resulting topologies for
these structures are given in �gure 4.19.

(a) ! exc = 600 Hz (b) ! exc = 1250 Hz

Figure 4.19: The obtained topologies for the minimization of the dynamic compliance for the design domain
given in �gure 4.15 for a set of excitation frequencies above the �rst resonance of 363Hz.
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These topologies clearly show the inability of the optimizer to converge to a binary design. In this case,
however, the optimization did not converge prematurely but was stopped by the maximum amount of 100
iterations being reached. There were, however, large oscillating steps in the objective function observed,
which might have been larger than the allowed tolerance between iterations. This would explain why there
was no premature convergence. As to why this behaviour occurs, the frequency responses of the obtained
topologies can again be examined. These are given in �gure 4.20.

(a) ! exc = 600 Hz (b) ! exc = 1250 Hz

Figure 4.20: The dynamic compliance responses of the obtained topologies from �gure 4.19.

By examining the frequency response it becomes evident why the model seems to suffer from premature
convergence. When the excitation frequency matches an anti-resonance during the optimization, the
resulting displacement response is at its lowest possible point. If the optimizer is not able to determine
why this is, it 'thinks' that it has found the lowest possible value for the dynamic compliance. Therefore, the
responses in �gure 4.20 both clearly show that there is an anti-resonance located precisely at the excitation
frequency. This is the exact behaviour which was described by Silva et al. [76].

It can be concluded from this examination that dynamic compliance works quite well as a way of
indirectly in�uencing the resonance frequencies without having to compute the eigenfrequencies every
iteration. However, this behaviour is limited to excitation frequencies below the �rst resonance of the initial
uniform structure, which makes it unsuitable for higher excitation frequencies. One last interesting thing to
note is that, as mentioned in 4.3, this initial resonance is not necessarily that of the initial uniform structure,
which has the design variables set to the desired volume fraction, but actually the initial design domain
after material interpolation. Therefore, the working range of the dynamic compliance can be increased by
choosing different material interpolation functions which yield higher �rst resonances. Choosing material
interpolation functions based on this advantage is, however, not recommended as issues like intermediate
densities have far more impact on the obtained topologies.

4.7. Harmonic base excitations
Most of the existing literature on topology optimization considering responses under forced harmonic
vibrations concerns harmonic force excitations. However, in most practical engineering structures,
excitations in the form of base excitations also commonly exist. Up till now, the base to which the structure
is connected was considered �xed, but external excitations which may originate from various sources can be
conducted to the structure through this connection.

Within the �eld of compliant mechanisms, this research area is commonly known as vibration isolation,
where the goal is to design the system in such a manner as to minimize the in�uence of the base-induced
vibrations. Several examples of this kind of goal being implemented in topology optimization can be found
in literature. Vijayan et al. [77] used the principle of vibration isolation with a discrete topology optimization
method to design a compliant isolator which was able to cancel undesired disturbances, resulting in
attenuated output amplitudes. Allahdadian et al. [78] optimized the bracing system of a multi-story structure
under harmonic base excitations. Furthermore, Zhu et al. [79] optimized the relative displacement amplitude
at a speci�ed point with added mass along the excitation direction of a structure subjected to harmonic base
acceleration excitations. This last example is visualized in �gure 4.21
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(a) Design domain (b) An example of the obtained topologies [79]

Figure 4.21: An example from literature as provided by Zhu et al. [79]. The design domain is excited by a
harmonic base excitation, and the displacement magnitude of the vertical degree of freedom of the mass
node is minimized, yielding the topology shown on the right.

In order to solve for the harmonic base excitations, the general equation of motion of equation 4.10 is
insuf�cient as there are no applied forces present in this problem. The manner in which such a problem
can be solved, however, is to directly apply an excitation to the degrees of freedom at the boundaries. A
visualization of a vertical excitation is given in �gure 4.22.

Figure 4.22: A visualization of the base excitation being applied to the vertical degrees of freedom of the base.

This type of excitation is achieved by dividing the degrees of freedom into free degrees of freedom f and
prescribed degrees of freedom p, similar to what was done in section 4.1.2. For the subset p, all degrees
of freedom of the boundary nodes are then chosen, and for the given examples above, the magnitude of
the prescribed displacement is applied to the vertical degrees of freedom whilst constraining the horizontal
degrees of freedom to zero. Applying this to equation 4.10 yields the system of equations given in equation
4.24. For a full derivation of this equation, the reader is referred to Appendix A.

·
K f f (! ,x) K f p (! ,x)
Kp f (! ,x) Kpp (! ,x)

¸ ·
u f

up

¸
Æ

·
f f

fp

¸
(4.24)

In this system of equations u f , f f and up , fp represent the displacements and forces of the free degrees
of freedom f and prescribed degrees of freedom p respectively. The matrices K(! ,x) represent the same
dynamic stiffness matrix from equation 4.10 for the free and prescribed displacements, respectively.

4.7.1. Discussion on harmonic base excitations
Similar to the dynamic compliance objective function for forced excitation, the objective function of
minimizing the displacement of a single degree of freedom, which is most commonly used, also suffers from
various issues. These will be outlined in this section.

First of all, it can be noted that an extra mass mb is added to the example problem given in �gure 4.21. This
mass is added at the node which contains the degree of freedom of interest that is to have its displacements
minimized. This mass is an essential addition as it provides initiative for the optimizer to connect this point to
the base without resorting to intermediate-density members. The result of the same design problem without
the added mass is given in �gure 4.23.
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Figure 4.23: The resulting topology from the design problem given in �gure 4.21a without additional mass
added to the response point.

From this result it is clear that a similar topology is obtained, but the members which connect the point
of interest to the rest of the structures are made up of intermediate densities. This structure complies most
with the objective function as the degree of freedom of interest is able to move freely due to being only very
lightly connected to the rest of the structure. A connected topology is, however, desired, which results in the
need for mass to be added to this point. In order to provide insight into the effect of the added mass, �gure
4.24 provides the result of a sweep over the mass mb for the values mb=1kg, 10kg and 100kg.

(a) mb = 1kg (b) mb = 10kg (c) mb = 100kg

Figure 4.24: The resulting topologies from the design problem in �gure 4.21a for a parameter sweep over the
value of the mass mb added to the response point.

These results clearly show the effects of the added mass. As the magnitude of mb increases, the members
connecting the point of interest to the rest of the structures become thicker in order to support this mass
whilst subjected to the applied base excitations. In this case, if the objective is to maximize frequency
behaviour, an added mass of 10kg would be suf�cient as it is able to provide a well-connected structure
without a large amount of extra material being deposited at the connecting members.

Furthermore, the excitation frequency issue, which is present for the dynamic compliance objective
function where an anti-resonance of the system will match the excitation frequency, is also present for the
base excited case. It is, however, the case that the initial �rst anti-resonance is located at a relatively higher
frequency than the force excited case. This can be seen by looking at the undamped frequency response given
in �gure 4.25 of the problem given in �gure 4.21a for an initial volume fraction of 1.0.

Figure 4.25: Undamped frequency response of the initial design domain given in �gure 4.21a
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This graph shows that the �rst resonance is present around 450Hz and the �rst anti-resonance is only
present at around 4300Hz. To see how the optimization performs over a frequency range the resulting
topologies of an excitation frequency of 300Hz, 750Hz and 1250Hz are given in �gure 4.26.

(a) ! exc = 300Hz (b) ! exc = 750Hz (c) ! exc = 1250Hz

Figure 4.26: The resulting topologies from the design problem in �gure 4.21a of a parameter sweep over the
excitation frequency ! exc.

These topologies show that material is mostly being deposited near the point of interest for higher
excitation frequencies. The connection to the base, however, becomes decreasingly stiff, and the optimizer
resorts to a connection formed with intermediate densities. To see how these obtained structures perform at
their respective excitation frequencies, the undamped frequency responses are given in �gure 4.27.

Figure 4.27: The undamped frequency responses for the obtained topologies given in �gure 4.26

This response shows that the result of an excitation frequency of 300Hz still performs as expected by
moving resonances away from the excitation frequency. This is due to the excitation being below the
initial �rst resonance of 450HZ. At 750Hz, however, an anti-resonance is moved very close to the excitation
frequency, and the result of 1250Hz has an anti-resonance present exactly at the excitation frequency. This
shows that the same excitation frequency issue is present for the base excitation case.

4.8. Discussion on the state of the art
In this chapter, the state of the art on topology optimization of static mechanism design and structures
excited by harmonic excitations is presented. Mechanism design of compliant mechanisms considering static
excitation forces has been done quite extensively already, and several principles on how to perform such
an optimization were given. As for optimizations regarding frequency behaviour, these are done primarily
for clamped beam structures. One of the �rst optimizations considering frequency behaviour was that of
eigenfrequency optimization. While this works as desired, the issue remains that this optimization does
not consider an excitation which is applied to the structure. Furthermore, the occurrence of localized
eigenmodes can hinder the optimization by replacing the structural modes which are considered in the
objective.
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An objective function which does consider the response to an applied load is dynamic compliance. This
function works by moving the resonances away from the excitation frequency. However, this only works
for excitation frequencies which are below the �rst resonance of the initial uniform structure. For higher
excitation frequencies, the structure which is obtained contains a large number of intermediate densities,
and when the frequency response is examined, it can be seen that an anti-resonance of the structure has lined
up with the excitation frequency. This makes this objective function unsuitable for excitation frequencies
higher than the �rst resonance of the initial uniform structure. For structures considering a harmonic base
excitation, which have been studied far less than the dynamic compliance, a similar excitation frequency
issue occurs. A new objective function is therefore needed which does not suffer from these excitation
frequency issues and is capable of handling both force and base excitations.



5
Addressing the research gaps

Chapter 4 concluded that much research has been done in the individual areas of topology optimization
considering transmission systems design and frequency behaviour. Whilst compliant mechanism design
using topology optimization has been studied extensively, the study done on the state of the art of topology
optimization of eigenfrequencies and harmonically excited structures concluded that research in this area is
still lacking. Where eigenfrequency optimization does not consider an applied load and might be hindered
by the occurrence of localized eigenmodes, forced vibration problems often only consider clamped beam
structures.

Furthermore, the objective functions used for harmonically excited structures appear to suffer from
premature convergence issues when the frequency of an anti-resonance in the system matches with the
excitation frequency during the optimization. As far as the optimizer is concerned, this is a minimum result
which satis�es the objective. The accompanying topology, however, is often still �lled with intermediate
densities, which is undesired as a discrete design is preferred. A possible solution to this problem would be
to incorporate a range of frequencies in the objective function as done by Zhu et al. [79], but solving for this
range of frequencies every iteration can become very computationally intensive.

From this research, it can be concluded that the current state of the art on topology optimization is
lacking in two areas: a computationally convenient objective function which optimizes a forced vibration
response whilst not suffering from premature convergence and the inclusion of externally induced vibrations
on compliant transmission systems design using topology optimization. The focus of this thesis will,
therefore, be to �nd an objective function which solves the presented issues and incorporate this function
within compliant transmission systems design to minimize the response to externally induced vibrations via
harmonic base excitations.

“Utilizing topology optimization to design compliant transmission systems which simultaneously mitigate
the effects of external unwanted vibrations.”

An objective function which is computationally convenient and solves the presented issues will be
outlined in chapter 6. The case study examined in this thesis will consider the design of a compliant inverter
mechanism which is disturbed by a harmonic base excitation, with the objective being to ensure that the
displacements within the obtained mechanism resulting from the applied disturbances are minimized. The
speci�c problem will be outlined in chapter 7, and the remaining part of this chapter will outline the scope of
this thesis.

41
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Scope
The design problem, which will be de�ned in chapter 7, is quite complex in nature. To solve this problem,
the modular topology optimization framework called pyMOTO [80], developed by Stijn Koppen and Arnoud
Delissen, is used. This framework allows for quick and easy changes to an optimization problem, and a more
detailed explanation of the working principle of pyMOTO is provided in Appendix E.

The optimization problems which can be solved for, however, are not limitless. A scope, therefore, has
to be set to determine what is achievable and what is not. First of all, the case study will be de�ned as
a harmonic problem, and the resulting displacements and their derivatives are de�ned in the frequency
domain. This eliminates the need for computationally costly time integrations, as only the steady-state
solution will be considered. For this same reason, the case study will only consider two dimensions, which
is suf�cient to provide a proof of concept. As for the compliant mechanisms, the focus lies on compliant
mechanisms which have a range of motion that is considerably smaller than their respective dimensions,
which are also called short stroke compliant mechanisms [54]. These assumptions yield a linear elastic
harmonic system with small displacements and rotations and, consequently, small strains. Furthermore,
these assumptions also allow for the use of superposition principles mentioned in section 4.2, such that an
excitation f tot (! ) Æf1(! ) Å f2(! ) will result in displacement xtot (! ) Æx1(! ) Å x2(! ).

Even though the problem is de�ned harmonically to reduce complexity, the frequency domain also has its
limits. The most common material used in literature is steel with a Young's modulus of E=200GPa and density
½=7800 kgm 3. Given an arbitrary steel plate of dimensions 20x10 cm clamped on two edges, the resulting �rst
three eigenfrequencies for the initial uniform structure become 1718 Hz, 3375 Hz and 3549 Hz, respectively.
In literature, however, larger sizes are more commonly used, such as 2x1 m. This results in the �rst three
eigenfrequencies of 172 Hz, 338 Hz and 355 Hz. As the eigenfrequencies of the optimized structures will
be lower than the initial structure, the range of frequencies considered in this thesis will, therefore, mostly
concern frequencies below 2000 Hz.
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Methods to �ll the research gap

As was mentioned in chapter 5, a new objective function is needed which is capable of optimizing structures
subjected to both force and base excitations whilst also being unaffected by the excitation frequency issues
mentioned in chapter 4 which result in structures with a large number of intermediate densities. An objective
function which satis�es all of these requirements was introduced by Montero et al. [37]. In this chapter, the
proposed advantages of this objective function are given together with its derivation. Next, as this thesis
will utilize this objective function in a different manner from Montero et al. [37], a thorough examination
is performed of the behaviour of this objective function in order to establish which parameter values are
required for the �nal case study.

6.1. Density-Weighted norm objective formulation
The proposed objective function makes use of the resulting displacements in the structure, which means
that the objective function is independent of the applied harmonic excitation. The displacements resulting
from the excitation, however, can have both positive and negative values and might switch from iteration
to iteration. This is undesired as the optimizer will struggle with continuously switching from positive to
negative values. A function which is always positive is the absolute value, which de�nes the magnitude of
a displacement, without its direction. This is also convenient as the resulting displacements of harmonic
excited structures, which include damping, are complex values. For an arbitrary degree of freedom j , the
absolute value of the complex displacement u j is given in equation 6.1.

ju j (! )j Æ
q

u j (! )2
real Å u j (! )2

imag Æ(u¤
j (! )u j (! ))

1
2 (6.1)

where u¤
j denotes the complex conjugate. In a given structure, however, the location of the degree of

freedom with maximum displacement at the speci�ed excitation frequency, or in other words, the dominant
mode, varies from iteration to iteration. If the objective is to minimize the displacements in the entire
structure, the formulation above can be expanded in order to incorporate all the degrees of freedom in the
structure with the use of a norm function as given in equation 6.2.

kukm (! ) Æ

Ã
nX

i Æ1
ju j (! )jm

! 1
m

(6.2)

For a single degree of freedom, this norm function has no in�uence. When all degrees of freedom of the
structure are taken into account, however, the parameter m will in�uence the outcome of this function based
on the magnitude of the displacements of each degree of freedom. If, at a given frequency, there is one degree
of freedom uk , which has the largest displacement, the rest of the displacements will naturally have lower
values. If these are taken to the power m, the larger displacement uk will exponentially rise above the other
displacements and eventually for m ! 1 :

kuk1 (! ) ¼ juk (! )j (6.3)

43



44 6. Methods to �ll the research gap

This way, the objective function accounts for the shifting locations of the degree of freedom of maximum
displacement. This function is, however, not limited to only a single degree of freedom or all degrees of
freedom in the system, and therefore, a subset S can be de�ned in order to allow for selection of degrees of
freedom. This results in the norm function de�ned as Nm given in equation 6.4.

Nm (u(! )) Æ

Ã
X

j ²S

³
u¤

j (! )u j (! )
´ m

2

! 1
m

(6.4)

In order to visualize how this objective function performs, the frequency response of an arbitrary simple
two-degree of freedom system can be examined. Taking the stiffness matrix, mass matrix, damping matrix
and force vector as:

K Æ
·

300 ¡ 200
¡ 200 200

¸
, M Æ

·
2 0
0 1

¸
, C Æ0.4264K Å 0.004264M, f Æ

·
0
10

¸
(6.5)

respectively. In �gure 6.1a, the frequency response of the magnitudes of the displacements of both
degrees of freedom is plotted, together with the norm function Nm for the value of m=2. In �gure 6.1b, the
same frequency response is given, this time with the norm function for m=12.

(a) m=2 (b) m=12

Figure 6.1: The frequency responses for the two degrees of freedom of the system given in equation 6.5,
together with the norm function response for two different values of the parameter m.

From these responses, one additional bene�t of this objective function directly becomes clear: the
proposed objective function does not contain any anti-resonances. For every frequency the system is
excited at, both degrees of freedom in the system have a displacement response. The magnitude of these
responses varies for every frequency, but one of the two always displays a higher magnitude than the other.
What the norm function tries to achieve, is to represent the frequency response of the system for each of
these dominant magnitude values. This means that where the second degree of freedom presents an anti-
resonance, the �rst degree of freedom does not, and the norm function will follow this response as it is the
dominant response at this magnitude. This results in anti-resonances not being present in the frequency
response.

Figure 6.1a does, however, show that the norm function does not exactly represent the frequency response
and is only an approximation of the true response. Increasing the parameter m to the value of 12, however,
gives the resulting function shown in �gure 6.1b, which is a much better approximation. The value of the
parameter m, therefore, represents the extent to which the true system is approximated. Larger values
of m do seem to be advantageous from these results, but this is not necessarily true when this function
is used in a topology optimization. These large values of m introduce quite some non-linearity into the
system, which may lead to numerical instabilities. These can, in turn, actually decrease accuracy or lead
to unwanted topologies, for example, in the form of asymmetric topologies where symmetry is expected.
Therefore, for each problem for which this function is utilized, the appropriate value of the parameter m
must be determined individually.
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For topology optimization considering vibrating structures, a common issue which might occur is found
in the behaviour of the void regions. As these regions have almost negligible stiffness, they can present very
high displacements. If the goal is to minimize the overall or global displacements of the system, these low-
density high-displacement areas could become the focus of the optimizer, which will work to minimize the
displacements of these regions by adding material, which then results in less severe displacements. These
less severe displacements, however, do not contribute enough to the objective to become relevant and have
more material added to the accompanying elements, resulting in a loop where the optimizer gets stuck on
choosing which region to optimize for, which in turn results in areas with intermediate densities, also known
as 'grey areas'. A similar issue might occur for maximization problems, where the very high displacements
might be considered bene�cial for the optimizer, and the optimization is ended prematurely.

In order to suppress the displacements of void regions, Montero et al. [37] suggest adding a weight to each
of these displacements based on the density values of the surrounding elements. This way, the displacements
of the degrees of freedom which are surrounded by void regions, or low-density regions, receive lower weights
than those surrounded by regions with material or high-density regions. The formulation given in equation
6.4 can therefore be altered with by incorporating a density weight a j , as given in equation 6.6.
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where the weight a j is de�ned by:
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In equation 6.7, a similar norm function to equation 6.2 can be found, this time being a w -norm function.
Sj is a subset which represents the elements surrounding a degree of freedom j . xv then represents the value
of the design variable xe of one of the surrounding elements. With this function, the weight a j is de�ned by
the w -norm of the surrounding element densities, or in other words, a density-weighted �lter. To provide a
better understanding of how this density-weighted �lter works, a visual representation is given in �gure 6.2.

(a) Surrounded by solid elements (b) Surrounded by void elements

Figure 6.2: A visualization of the area of elements considered for the density-weighted �lter weight a j .
Two examples are given, one where the node is surrounded by solid elements and one where the node is
surrounded by void elements.

In �gure 6.2a, an arbitrary �nite element grid is given, with a diagonal of non-void density elements. If
the degree of freedom of interest j is located on the node represented in black, the subset Sj is de�ned by
the yellow region. This region contains the elements directly surrounding the degree of freedom j . As can
be noted, the weight for both degrees of freedom of any node will be identical. The resulting weight for this
region will be determined by the density of these elements, and as material is present, the weight will be
relatively high and the displacement of this degree of freedom will be relevant for the objective function.
If the degree of freedom of interest j is surrounded by void elements as shown in �gure 6.2b however, the
resulting weight a j will be relatively low due to the low-density values of the surrounding elements, which
in turn results in the displacements of this degree of freedom being less relevant for the objective function.
What the parameter w in equation 6.2 represents is the penalization factor of these element density values.
As the value of w increases, the weights a j for a degree of freedom j become lower for degrees of freedom
surrounded by low-density elements and similarly higher for those in high-density element regions.
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The values Nmw obtained from equation 6.6, however, can vary tremendously in terms of orders of
magnitude during the optimization. This also results in large differences in the orders of magnitude of the
sensitivities, which will be dif�cult for the optimizer to deal with as the differences in sensitivities might
become negligible. In order to prevent this behaviour, a logarithmic scaling can be applied to the objective
function to allow for these small differences to be manageable. The applied operation to achieve this scaling
is given in equation 6.8. For the experiments which will be done later in this chapter, a value of c0=100 was
found to be suf�cient.

NmwdB Æc0 Å 10log10(Nmw ) (6.8)

As will be seen later in this section, the objective function above allows for a topology which is
disconnected from the de�ned boundaries. Therefore, an additional component is added, which is static
compliance. To de�ne static compliance, some generalized system de�nitions can be set up �rst. For any
system excited by a certain force at a certain frequency ! , the force vector can be de�ned as:

f Æ¸ (! ) f̂ , (6.9)

where f̂ represents the magnitude of the force, and ¸ (! ) represents a directional unit vector with
accompanying excitation frequency ! . For a static case, or in other words, ! =0, this is represented by ¸ (0).
This same principle can be extended to the system matrices, where the stiffness matrix can be given by
(section 4.2):

K(x,! ) ÆK(x) Å j ! C(x) ¡ ! 2M(x), (6.10)

For any ! 6Æ0 the stiffness matrix is equal to the so-called 'dynamic stiffness matrix', and for ! =0, this
de�nition results in the static stiffness matrix K(x,0) = K(x). Respectively, these matrices can be used to
obtain the dynamic displacements u(! ) and static displacements u(0) With these terms covered, the static
compliance can be de�ned as:

CS ÆuT (0)K(x,0)u(0) ÆuT (0)¸ (0) f̂ (6.11)

With the static compliance de�ned, the complete objective function can be formulated. As the order
of magnitude of the density-weighted norm function and the static compliance can vary substantially, they
are normalized by their initial values N 0

mwdB and C0
s , respectively. Lastly, two weight factors ° 1 and ° 2

are incorporated into the objective formulation. These are used to de�ne the contribution of the static
compliance to the objective and satisfy j° 1j Å ° 2 Æ1. It can be noted that the absolute value of ° 1 is used
for the satisfaction criteria. This is due to the fact that this value can also be negative, which transforms
the objective of this formulation entirely. Instead of the norm function being minimized, it will instead be
maximized (in other words, the negative will be minimized) whilst still minimizing the static compliance.
The full formulation is given by:

min
x

: Ntot (x) Æ° 1
NmwdB (x)

N 0
mwdB (x)

Å ° 2
CS(x)

C0
S(x)

subject to : V (x) · V̄

0 · xmin · x · 1

with u(! ) obtained from : K(x,! )u(! ) Æ¸ (! ) f̂

(6.12)

With the objective function formulated, its behaviour can be examined. Montero et al. [37] studied the
cases of global minimization and local maximization for a harmonic force excited system. Local minimization
was not covered under the premise of not wanting other regions of the domain to exhibit large displacements
in order to minimize displacements in the region of interest. This exact principle, however, covers areas
such as vibration isolation and dynamic balancing mentioned in section 2.2.4. The interest of this thesis will,
therefore, be to investigate the applications of both global and local minimizations of a compliant mechanism
design domain disturbed by harmonic base excitations.
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6.2. Parameter study
To determine how the proposed objective function can be used in the �nal case study, a parameter study will
have to be conducted, which expands on the research of Montero et al. [37] in order to study the behaviour
of this objective function. The goal will be to �rst con�rm the behaviour found by Montero et al. [37] and
then check whether the ability to obtain well-de�ned topologies for high frequencies without premature
convergence or a large number of intermediate densities still persists for local minimization.

As the investigation is quite extensive, the entire study can be found in Appendix B, and this section will
only provide a discussion of the results. The load cases which are used for global minimization of the force
and base excited case are given in �gure 6.3. It can be noted that an additional load case is required for static
compliance in both cases.

(a) Force excitation load case 1 (b) Force excitation load case 2

(c) Base excitation load case 1 (d) Base excitation load case 2

Figure 6.3: The load cases required to solve for the global minimization of a double-clamped beam structure
under a force and base excitation.

As for the used material interpolation functions, a study was done on what function would perform best
in terms of intermediate density occurrence for both the force and base excited case. This study can be found
in Appendix C and yielded that the Polynomial Interpolation Scheme (PIS) (equation 3.16) is preferred for the
stiffness interpolation, and standard SIMP (equation 3.9) for the mass interpolation.

6.2.1. Global minimization
Global minimization for both the force-excited and base-excited systems yielded well-de�ned results for a
large range of frequencies. It was found that the parameter ° 1, which determines the amount of contribution
that the static compliance has to the �nal result, is a necessary part of the objective function, as was found
when setting the value of ° 1 to 1.0, which yielded a structure which was disconnected from the base. The
values of ° 1=0.90, 0.95 and 0.99 provided a clear distinction on this in�uence. For the parameter w , or the
density-weighted �lter, it was found that its inclusion in global minimization provides the bene�ts of yielding
structures with little to no intermediate densities present for frequencies up to 1721Hz and 2947Hz for the
force excited and base excited case, respectively as can be seen in �gure 6.4 for ° 1=0.95. As for its appropriate
value, it was found that any w is valid, which results in the simplest choice of w =1. One thing which was
required however, was a forced symmetry over the y-axis in order to prevent the optimizer from yielding
asymmetric designs.

(a) Force excitation, ! exc=1721Hz (b) Base excitation, ! exc=2947Hz

Figure 6.4: The resulting topologies for the global minimization under both force excitation and base
excitation of the design domain given in �gure 6.3 for their respective highest frequency of interest and
° 1=0.95.
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In the previous section, it was determined that a larger value of m would allow for a better approximation
of the actual system. In this study, however, contradicting results were found for the force-excited case and the
base-excited case. The force excited case did indeed improve for larger values of m, but showed diminishing
returns for m ¸ 2. The base excited case, on the other hand, seemed to show better performance for lower
values of m. For global minimization, the parameter m was therefore suggested to be set at m=2.

6.2.2. Local minimization
The in�uence of the density-weighted norm objective function on local minimization subjected to force and
base excitations was explored for two subsets: a single degree of freedom and an area of interest L. The single
degree of freedom considers the vertical degree of freedom of the mass point mb given in �gure 6.3c.

(a) Force excitation load case 1 (b) Force excitation load case 2

(c) Base excitation load case 1 (d) Base excitation load case 2

Figure 6.5: The load cases required to solve for the local minimization of a double-clamped beam structure
under a force and base excitation. The second

For force-based local minimization, the density-weighted �lter's impact was found to be negligible for
both cases, leading to its removal ( w =0) across all experiments. While the density-weighted �lter played
a signi�cant role in preventing intermediate density regions in global minimization, static compliance
contribution seemed more important for force-based local minimization. Speci�cally, it was observed that
a lower static compliance contribution ( ° 1=0.99) led to topologies with intermediate density regions. As for
the parameter m for force-based local minimization, this had no impact on a single degree of freedom by
de�nition, and its in�uence on a local area was also limited, resulting in the choice for m=2.

In the case of a single degree of freedom, all results exhibited an anti-resonance present at the excitation
point matching the excitation frequency, which is similar behaviour to what was found in section 4.6. In
this case, however, all results converged and yielded well-de�ned topologies due to the static compliance
contribution. For an area L, low excitation frequency results exhibited collective anti-resonance behaviour
among the degrees of freedom within the area; this effect diminished at higher frequencies, however, due
to the modes becoming more complex. Nevertheless, other regions of the domain still displayed larger
displacements in order to minimize those of the area of interest.

Similarly, for base excitation-based local minimization, the density-weighted �lter ( w =0) yielded limited
impact, while parameter m exhibited different behaviour compared to the force-excited case. Although
response measurements at the point of interest did not vary signi�cantly, higher values of m resulted in the
second eigenfrequency ! 2 moving further from the excitation frequency. This behaviour diminished quickly
for m ¸ 4, however, and therefore the choice was made for m=4.

For a single degree of freedom, the resulting topologies contained large amounts of intermediate
densities, except at the lowest examined frequency of 340Hz. Surprisingly, increasing the static compliance
contribution did not remedy this issue, unlike in the force-excited case. For an area L, the results were a
lot more de�ned but still contained intermediate-density members. Both subsets demonstrated minimized
results across all frequencies, however, with higher values of ° 1 correlating with improved frequency
performance. Figure 6.6 shows two examples for the minimization of the area of interest L for the highest
frequencies of 1721Hz and 2947Hz for force-based and base excitation-based excitations, respectively.
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(a) Force excitation, ! exc=1721Hz (b) Base excitation, ! exc=2947Hz

Figure 6.6: The resulting topologies for the local minimization under both force excitation and base excitation
of the design domain given in �gure 6.3 for their respective highest frequency of interest and ° 1=0.95.

6.2.3. Conclusions
Overall, the force-excited global minimization case yielded results which were similar to those found in
Montero et al. [37], con�rming the observations found by Montero et al. Base excited global minimization
also showed similar results, only with slightly different behaviour. As for the extension to local minimization,
an area of interest appears necessary in order to obtain results which are limited in the number of
intermediate densities they present, speci�cally for the base excited case. To investigate this further, the
�nal case study will include more than one size of the area of interest in order to assess its in�uence.





7
Case studies

As mentioned in chapter 5, the case study for this thesis will consider the design of a compliant mechanism,
speci�cally an inverter mechanism, which is disturbed by a harmonic base excitation. The aim is to obtain an
inverter mechanism which is capable of achieving desired inverting behaviour, whilst presenting a minimized
displacement response resulting from an applied harmonic base excitation at a speci�ed frequency.

To achieve this goal, several intermediate steps will be taken, which will allow for a comparison of
the resulting topologies. First, an inverter mechanism will be designed within a smaller domain than the
proposed case study. The unused part of the full domain for this step can then be used in the next step to
design an isolator which minimizes the displacements at the connection points of the obtained mechanism.
These two steps consider the process of 'classical' mechanism design, where a mechanism is designed, after
which a separate isolator is constructed, which is connected to the design in order to minimize disturbances.

Next, the formulation introduced in chapter 6 will be used to perform a combined optimization, where
a mechanism is obtained which contains the inherent property of minimized displacements at a speci�ed
frequency. This will be done by �rst designing a static mechanism for the full-sized domain, which can be
used to identify a selection of frequencies of interest. Lastly, the principles of global and local minimization
subjected to a base excitation are utilized in order to obtain the �nal optimized mechanisms to complete this
case study.

7.1. Step 1: Stitched mechanism
The �rst step consists of two intermediate steps, which are the design of the mechanism and the design of the
isolator. After these designs are obtained, they can be stitched together to form the full domain mechanism,
which can be examined in order to see whether the desired minimized vibration behaviour is achieved.

7.1.1. Step 1a: Mechanism design
Section 4.1 outlined the currently used methods of designing an inverter mechanism using topology
optimization, where the presented designs considered a one on one inversion. For this case study, the
magnitude of the actual inversion, or in other words, the obtained geometrical advantage, will be a
performance indicator but will not be the goal itself. This is due to the fact that the steps, which include the
density-weighted norm function, will incorporate a weighted objective function where the static performance
of the mechanism might be altered in order to improve dynamic performance. Therefore, the most important
aspect is to obtain a mechanism which exhibits an inverted output direction. To outline the problem
formulation for this step, the design domain and accompanying load cases are visualized �rst and provided
in �gure 7.1. For this visualization and all subsequent visualizations, the threshold is set at a design density
of 0.48 unless mentioned otherwise. This will take into account some of the contours created by the density
�lter.

51
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(a) Design domain (b) Load case 1

(c) Load case 2 (d) Load case 3

Figure 7.1: The design domain and three load cases required to solve the optimization problem for step 1a of
this case study as given in equation 7.1.

The design domain is de�ned by a rectangle of 0.6 £ 0.3m, with the thickness of the domain set at 0.01m.
The domain is constrained at both the left and right boundary in all directions, and the input and output
locations are marked. The black rectangles represent a non-design domain, which will be needed later once
the base excitations are introduced, considering the results of section B.5. The �rst load case only considers
a force on the input of the domain, and the second load case only a force on the output. The magnitudes
of these of these forces are set at a similar value of 1kN. The accompanying displacements are also provided
in these �gures and are not to be confused with prescribed displacements. The third load case speci�es the
desired displacement directions for this problem, which in this case is set at º Æ[u (3)

in ,u (3)
out ] Æ[1, ¡ 2]. The

value of the output displacement is set higher than the input displacement in order to account for the strain
energy stored in the structure when actuated as was also mentioned in section 4.1.1.

With the design domain speci�ed, the optimization formulation can be constructed. The superscripts (1),
(2) and (3) represent the �rst, second and third load cases, respectively, as given in �gure 7.1.

min
x

: C(1)
in Å C(2)

out

subject to : C(3)
º · C̄º

V (x) · V̄

0 · xmin · x · 1

(7.1)

The objective of this minimization is to minimize the force-based compliances C(1)
in and C(2)

out of the input
and output respectively, whilst simultaneously constraining the compliance of the motion pattern of the
desired geometrical advantage. This formulation allows for the maximization of the stiffness of the input and
output locations whilst satisfying the desired geometric advantage and accompanying maximum stiffness
of this deformation pattern, all for a given amount of material usage. The de�nitions of the compliances in
equation 7.1 are given in equation 7.2.

C(1)
in Æ f(1)

in ¢u(1)
in

C(2)
out Æ f(2)

out ¢u(2)
out

C(3)
º Æ º (3) ¢K(3)º (3)

(7.2)
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As for further domain properties, the �nite element mesh consists of 60 £ 30 4-node quadrilateral
elements, the density-�lter radius is set at 2 and the desired volume fraction at 2.0. The material interpolation
functions which are used are the Polynomial Interpolation Scheme (PIS) from equation B.1 for the stiffness
interpolation and the standard SIMP function from equation 3.9 for the mass interpolation. The mass
matrix is not used yet in the optimization for this step, but is used to determine the eigenfrequencies and
accompanying eigenmodes of the system. The optimizer used is the MMA optimizer, where the tolerance
is set at 1e¡ 4, and the maximum iterations are limited to 100. Lastly, a minimum value for xmin =1e¡ 3 is
implemented in order to avoid the system matrices from becoming singular. Using the formulation given
in equation 7.1, the optimization can be performed, and the resulting topology is given together with a
visualization of its vertical displacements done in ParaView in �gure 7.2.

(a) Resulting topology (b) Vertical displacements of the mechanism visualized in ParaView

Figure 7.2: The resulting topology of the inverter optimization problem given in equation 7.1 together with
a visualization done in ParaView of the vertical displacements resulting from the applied static input force
which con�rms the working inverting function.

As can be seen from these results, a mechanism is obtained that exhibits the desired inverting motion
behaviour. Speci�cally, if a force of 1kN is applied to the input port, the accompanying input displacement
and resulting output displacement values in table 7.1 are obtained.

Property Value
u in 9.6473e¡ 5 [m]
uout -1.1745e¡ 4 [m]
G A -1.2175 [-]

Table 7.1: An overview of the values of the respective input and output displacements resulting from the
applied input force for the topology given in �gure 7.2a together with the obtained geometrical advantage.

Next, the eigenmodes of the obtained resulting topology can be analyzed in order to determine its
frequency behaviour. If an eigensolve is performed on the resulting structure, the eigenfrequencies can be
obtained, of which the �rst four are given in table 7.2.

Computed Eigenfrequencies ! 1 ! 2 ! 3 ! 4

394Hz 397Hz 846Hz 1222Hz

Table 7.2: An overview of the �rst four computed eigenfrequencies of the resulting topology given in �gure
7.2a

As seen in chapter 6, not all eigenmodes will have in�uence in the direction of interest. In this case, the
desired inverting occurs in the vertical direction, and as such, the vertical directions of the eigenmodes are
of interest. To visualize the four eigenmodes which accompany the eigenfrequencies given in table 7.2, their
vertical displacements are given in �gure 7.3.
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(a) ! 1 = 394Hz (b) ! 2 = 397Hz

(c) ! 3 = 846Hz (d) ! 4 = 1222Hz

Figure 7.3: A ParaView visualization of the vertical displacements within the obtained structure for the �rst
four eigenmodes of which the respective eigenfrequencies are given in table 7.2.

From this visualization, it is clear that only the �rst eigenfrequency of this subset affects the vertical
displacements of the input and output. This will affect the displacement output of the mechanism, which
therefore makes it a frequency of interest. to con�rm this, a harmonic base excitation with a magnitude of
100m/ s2 is applied to the vertical degrees of freedom of the boundaries. The resulting frequency response of
the vertical displacements of the input and output is given in �gure 7.4, together with a visualization of the
vertical displacements of the mechanism when excited by the base excitations at the �rst eigenfrequency.

(a) Frequency response of the vertical displacements of
the input and output

(b) Vertical displacement response of of the mechanism at
the �rst resonance frequency of 394Hz

Figure 7.4: The frequency response of the respective vertical displacements of the input and output together
with a visualization of the displacement response of the structure resulting from the applied base excitation
at the �rst resonance.

From the frequency response, it is clear that the �rst resonance indeed contains large displacements of
the input and output of the mechanism, with the output having larger displacements than the input. This is
con�rmed by looking at the vertical displacements in �gure 7.4b, where the displacements given in table 7.3
are obtained.

For this �rst step, the objective will, therefore, be to minimize the response to the base excitations at the
input and output port by designing for this �rst resonance of 394Hz speci�cally. This will be done in the next
step by designing an isolator for this frequency of interest.
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! exc=394Hz Response
u in 6.5345e¡ 5 [m]
uout 1.3259e¡ 4 [m]

Table 7.3: An overview of the values of the respective input and output displacements resulting from the
applied base excitations.

7.1.2. Step 1b: Isolator design
The next step is to develop an isolator for the mechanism obtained in the previous step. This isolator however,
is designed considering only the boundaries to which the mechanism is attached. This means that the isolator
which is designed is technically independent of the already-designed mechanism. What will, however, be
taken into account is the connection boundary and the mass of the mechanism, which are determined by the
dimensions and volume fraction used in the previous step.

The design domain which is used is the same 0.6 £ 0.3m rectangle, which results in a 1.8 £ 0.3m domain
once the isolator is connected to the obtained mechanism at both sides. The left boundary is, therefore,
constrained in both directions, while the right boundary is left unconstrained. The domain is provided in
�gure 7.5, together with the two load cases which are used for this problem. The �rst load case contains the
applied base excitation, which is an acceleration excitation of 100 m/ s2 to the left boundary in the vertical
direction. Furthermore, it can be noted that a non-design domain is added to the upper right side of the
domain in order to provide a base to which the mechanism from �gure 7.2a can connect. This non-design
domain is also given a distributed mass mm , which represents the mass of the obtained mechanism. This
mass is obtained using the dimensions of the domain of step 1 multiplied by the used density and volume
fraction. As the density-weighted norm function from chapter 6 is used for this problem, a static compliance
load case is required, and as such the second load case contains two forces added in the upper right corner,
which represent the forces exerted by the mechanism when actuated, in order to provide the static stiffness
contribution. Lastly, other properties considering material interpolation functions and optimizer settings are
kept similar as well.

(a) Design domain (b) Load case 1

(c) Load case 2

Figure 7.5: The design domain and two load cases required to solve the optimization problem for step 1b of
this case study as given in equation 7.3.
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As already mentioned, this problem will make use of the density-weighted norm function, speci�cally in
a local minimization sense. The local area to be minimized is the non-design domain shown in �gure 7.5.
The appropriate parameters w and m for local minimization subjected to a base excitation of an area L were
determined in section B.5 to be w =0 and m=4 respectively. For this case study, the static compliance factor
° 1 is set at 0.95, which is adequate for a lower excitation frequency such as 394Hz as examined in section B.5.
The formulation for this problem is given in equation 7.3.

min
x

: ° 1
NmwdBL (x)

N 0
mwdBL (x)

Å ° 2
CS(x)

C0
S(x)

subject to : V (x) · V̄

0 · xmin · x · 1

(7.3)

Using this formulation, the optimization can be performed. The previous step determined the frequency
at which this isolator is to be designed, which was determined to be 394Hz. Using this frequency, the resulting
topology is given together with a visualization of its vertical displacements done in ParaView in �gure 7.6.

(a) Resulting topology
.

(b) Vertical displacements of the obtained isolator
visualized in ParaView

Figure 7.6: The resulting topology of the inverter optimization problem given in equation 7.3 together with a
visualization done in ParaView of the vertical displacements resulting from the applied base excitations.

The resulting structure exhibits larger displacements in other areas in order to minimize the
displacements in the area of interest. This is in line with the results found in section B.5. Speci�cally, the
vertical displacements at the connection point are reduced to 2.0140 e¡ 6 m under the applied base excitation.
In the next step, the obtained mechanism and isolator will be combined in order to assess their performance.

7.1.3. Step 1c: Stitched design
Finally, the resulting mechanism from step 1a and the isolator from step 1b can be stitched together in order
to form the �nal structure. The resulting topology of this stitching is given in �gure 7.7.

Figure 7.7: The structure obtained when the resulting inverter mechanism and isolator of �gure 7.2a and 7.6a
respectively are stitched together.

Next, the same base excitation with a magnitude of 100 m/ s2 at the frequency of interest of 394Hz can be
applied to this mechanism. A visualization of the resulting vertical displacements is given in �gure 7.8.

From the resulting visualization in �gure 7.8, it might seem that there are still large displacements present
due to the applied base excitations. This is, however, due to the scaling of the colour scale, and the actual
results of the displacements of the input and output due to the applied base excitations are given in table 7.4
together with the results of step 1a.
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Figure 7.8: A visualization of the resulting vertical displacement magnitudes within the obtained structure
under the applied base excitations.

! exc=394Hz Step 1a Stitched
u in 6.5345e¡ 5 4.6855e¡ 5 [m]
uout 1.3259e¡ 4 5.3237e¡ 5 [m]

Table 7.4: A comparison of the values of the respective input and output displacement magnitudes resulting
from the applied base excitations for the mechanisms given in �gure 7.2a and 7.7 respectively.

It can be seen that there is indeed a minimization of the displacements in the mechanism. It can be
argued, however, whether these results are actually comparable, considering the difference in the design
domain. As the base excitation is not provided at a similar location, the comparison might be unfair. This
is, however, not the largest discussion point for this stitched mechanism. If the same input force of 1kN is
applied to this combined mechanism, the inverter property is actually lost. The static displacements resulting
from this input force are visualized in �gure 7.9.

Figure 7.9: A visualization of the displacements within the stitched structure resulting from the same applied
static input force as in step 1a.

From this visualization, it seems that the entire mechanism now moves in the positive vertical direction,
with no visible inverting direction of the output of the mechanism. This can be con�rmed by looking at the
resulting vertical displacements of the input and output, which are provided together with the results of step
1a in table 7.5. It can again be argued whether these values are comparable, but the most important part is
the lack of negative direction for the output displacement, which indicates a loss in inverter function.

Step 1a Stitched
u in 9.6473e¡ 5 4.4697e¡ 7 [m]
uout -1.1745e¡ 4 3.0925e¡ 7 [m]
G A -1.2175 0.6919 [-]

Table 7.5: The displacement values of the vertical input and output degrees of freedom resulting from the
applied static input force together with the obtained geometrical advantage for both the resulting topology
found in step 1a as well as the stitched mechanism of step 1c.

These results show that the method of separately designing an inverter mechanism and an isolator does
not necessarily yield the desired results. Whilst the resulting displacements from the applied base excitations
might be minimized, the inverting function of the mechanism is lost in the process. A combined formulation
is therefore needed, which takes both optimizations into account concurrently. This will be done in the
coming steps.
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7.2. Step 2: Static mechanism in a larger design domain
In order to provide a comparative basis for the upcoming optimizations, a new static inverter mechanism
which spans the full design domain has to be designed. The frequency behaviour of this mechanism will
be analyzed, and several frequencies of interest will be chosen which this mechanism will be optimized for.
First, the same design domain and load cases from step 1a are modi�ed to accommodate this problem and
are given in �gure 7.10.

(a) Design domain (b) Load case 1

(c) Load case 2 (d) Load case 3

Figure 7.10: The design domain and three load cases required to solve the inverter optimization problem for
step 2 of this case study as given in equation 7.4.

This design domain considers the full domain, which is de�ned by a rectangle of 1.8 £ 0.3m, with the
thickness of the domain set at 0.01m. The same boundary constraints at both edges are present, and the loads
are applied at similar respective locations. Furthermore, the magnitude the applied load is the same 1kN,
and the desired displacements directions are again set at º Æ[u (3)

in ,u (3)
out ] Æ[1, ¡ 2]. The formulation is similar

to the one given in 7.1, but this time two extra constraints are added to the input and output compliance.
This may seem counter-intuitive given that both these values are minimized, but this will allow for each of
the inverters in the coming steps to be comparable as they will all contain similar compliance values. The
updated formulation is given in equation 7.4.

min
x

: C(1)
in Å C(2)

out

subject to : C(3)
º · C̄º

C(1)
in · C̄in

C(2)
out · C̄out

V (x) · V̄

0 · xmin · x · 1

(7.4)

For the mechanism compliance constraint, the value C̄º is used as in step 1a. Considering now that the
design domain is much larger, it is expected that the resulting geometrical advantage will be lower as the
larger structure is able to store more strain energy. The de�nitions of the compliances are again given by:

C(1)
in Æ f(1)

in ¢u(1)
in

C(2)
out Æ f(2)

out ¢u(2)
out

C(3)
º Æ º (3) ¢K(3)º (3)

(7.5)

Lastly, all optimization properties are kept similar to step 1a except for the maximum amount of iterations,
which is increased to 300, and the same material interpolation functions are used. The resulting topology,
together with a visualization of its vertical displacements resulting from the applied static input load done in
Paraview, is given in �gure 7.11.
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(a) Resulting topology (b) Resulting static displacements visualized ParaView

Figure 7.11: The resulting topology of the inverter optimization problem given in equation 7.4 together with
a visualization done in ParaView of the vertical displacements resulting from the applied static input force
con�rming the working inverting function.

The resulting topology presents an inverter mechanism which differs substantially from the mechanism
found in step 1. However, this was to be expected for the larger design domain, given the same mechanism
compliance constraint. For this larger domain, the mechanism is located in the centre of the domain and
is connected to the boundaries through an intermediate structure. This connecting structure appears to
consist of a structure similar to what would be obtained from a simple clamped cantilever static compliance
optimization and a �exure which connects to the mechanism itself. The visualization given in �gure 7.11b
shows that the mechanism exhibits the desired inverting behaviour. The resulting displacement values of the
input and output, together with the obtained geometrical advantage, are given in table 7.6.

Property Value
u in 1.2000e¡ 4 [m]
uout -1.0667e¡ 4 [m]
G A -0.8889 [-]

Table 7.6: The displacement values of the vertical input and output degrees of freedom resulting from the
applied static input force together with the obtained geometrical advantage for both the resulting topology
given in �gure 7.11a.

Compared to step 1a, a higher input displacement is achieved and a lower output displacement. The
resulting geometrical advantage is, therefore, drastically lower given its de�nition. This was to be expected
however, and the magnitude of the inverting behaviour is less relevant for this case study. The important
part is that similar inverter performance is yielded such that the results obtained from the upcoming
optimizations are comparable.

Next, the frequency behaviour of the obtained structure can be examined. An eigensolve can be
performed on the topology of �gure 7.11a, but as was already found in chapter 6, the eigenmode
accompanying a given eigenfrequency does not necessarily have to show displacements in the regions of
interest, which in this case are the input and output regions, speci�cally in the vertical direction. To see which
modes will contribute the most to the displacements of these points of interest, the undamped frequency
response of the vertical displacements of the input and output for the structure subjected to the applied base
excitation with a magnitude of 100 m/ s2 can be examined. This response is given in �gure 7.12.

Figure 7.12: The frequency response of the respective vertical displacements of the input and output under
the applied base excitation.
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In this response the eigenfrequencies ! 2, ! 3, ! 7 and ! 10 are plotted as well, as the input and output of
the mechanism appear to exhibit the largest displacements at these resonance frequencies. The resonance
appearing at ! 8=1630Hz could be included as well, but the higher frequency resonance will be of more
interest in this case to provide a broader picture of the frequency behaviour. For each of these chosen
resonances, it differs whether the input or output has a larger displacement, but both are affected. A
visualization of the resonance which occurs when the structure is excited by the applied base excitations
at these frequencies is given in �gure 7.13.

(a) ! exc = 363Hz (b) ! exc = 471Hz

(c) ! exc = 1242Hz (d) ! exc = 1823Hz

Figure 7.13: A visualization of the vertical displacement magnitudes within the structure resulting from the
applied base excitation at the four respective frequencies of interest visualized in ParaView.

These results clearly show how either the input or the output exhibits a larger displacement than the
input for a given resonance. For the results of the higher frequencies 1242Hz and 1823Hz, relatively large
displacements are also present in other parts of the mechanism. The speci�c displacements of the input and
output at these four frequencies are given in table 7.7.

Property ! 2=363Hz ! 3=471Hz ! 7=1242Hz ! 8=1823Hz
u in 1.7763e¡ 4 2.6846e¡ 5 5.0102e¡ 7 1.3258e¡ 6 [m]
uout 1.9988e¡ 4 2.7723e¡ 4 8.2329e¡ 6 1.4209e¡ 6 [m]

Table 7.7: An overview of the values of the respective input and output displacement magnitudes resulting
from the applied base excitations for the four respective frequencies of interest as given in �gure 7.13.

These four frequencies will serve as the frequencies of interest for the upcoming steps, where the goal
will be to apply the proposed minimization principles in order to minimize the large displacements in the
structure occurring due to the applied base excitations at these frequencies. It is to be noted, however, that
this case study represents a worst-case scenario, where the mechanism is excited at a resonance frequency.
Practically, this would not necessarily be the case, but this scenario will provide a good insight into how the
proposed objective function performs in the hardest optimization scenario.

7.2.1. De�ning the design domain and load cases for global and local minimization
In the coming sections, a similar inverter to the one obtained in this step will be optimized for the applied
base excitations at the frequencies of interest. As the inverter mechanism formulation remains identical, the
required load cases for each of these optimizations are also identical. Figure 7.14 therefore de�nes the design
domain and load cases for steps 3, 4 and 5. Note that these are the same as those in �gure 7.10, only with
different numbering.

Figure 7.14a de�nes the design domain, which is the same 1.8m £ 0.3m domain as de�ned in step 2.
Figures 7.14b, 7.14c and 7.14d then provide load cases 2, 3 and 4 respectively. Note that the �rst load case is
left out, as this is the only load case differing for the coming steps. This load case will be de�ned separately
for each step, whilst the rest of the load cases remain the same as those given in �gure 7.14.
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(a) Design domain (b) Load case 2

(c) Load case 3 (d) Load case 4

Figure 7.14: The design domain and three of the four load cases required to solve the inverter optimization
problem for step 3, 4 and 5.

7.3. Step 3: Global minimization
In order to minimize the displacements at the resonance frequencies found in the previous step, the density-
weighted norm objective function from chapter 6 will be utilized. First, the principle of global minimization is
applied. given that the global minimization principle targets the largest displacements present in the design
domain, it is expected that topologies are obtained which minimize or do not display the large input and
output displacements found in �gure 7.13 at the speci�ed excitation frequency. As the base excitations are
now included in the problem formulation, an extra load case containing these excitations needs to be added.
Given that the design domain and inverter load cases were already de�ned in section 7.2.1, only the �rst load
case, containing the base excitations, is given in �gure 7.15.

Figure 7.15: Load case 1 used for global minimization. Note that the other load cases which are required for
this optimization problem were de�ned in section 7.2.1

All domain properties, optimizer properties and mechanism properties are kept similar to those de�ned
in step 2. The static compliance contribution needed for the density-weighted norm function is conveniently
covered by the compliance minimization already present for the mechanism optimization. Furthermore,
while a non-design domain is added at the input and output, which has mass, no additional masses are
added to this problem. The formulation for this problem is given in equation 7.6, where the the superscripts
(1), (2), (3) and (4) represent the respective load cases.

min
x

: ° 1
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0

@
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º (x) · C̄º
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V (x) · V̄

0 · xmin · x · 1

(7.6)

As for the properties of the norm function, it was determined in section B.2 that the density-weighted
�lter is to be included with a value of w =1 and the parameter m set at 2. Furthermore, the same constraint
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