

Delft University of Technology

How Developers Engineer Test Cases
An Observational Study
Aniche, Mauricio; Treude, Christoph; Zaidman, Andy

DOI
10.1109/TSE.2021.3129889
Publication date
2021
Document Version
Final published version
Published in
IEEE Transactions on Software Engineering

Citation (APA)
Aniche, M., Treude, C., & Zaidman, A. (2021). How Developers Engineer Test Cases: An Observational
Study. IEEE Transactions on Software Engineering, 48(12), 4925-4946.
https://doi.org/10.1109/TSE.2021.3129889

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSE.2021.3129889
https://doi.org/10.1109/TSE.2021.3129889

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Naming Amplified Tests Based on Improved
Coverage

Nienke Nijkamp
Delft University of Technology

n.nijkamp@student.tudelft.nl

Carolin Brandt
Delft University of Technology

c.e.brandt@tudelft.nl

Andy Zaidman
Delft University of Technology

a.e.zaidman@tudelft.nl

Abstract—Test amplification generates new test cases that im-
prove the coverage of an existing test suite. To convince developers
to integrate these new test cases into their test suite, it is crucial
to convey the behavior and the improvement in coverage that the
amplified test case provides. In this paper, we present NATIC,
an approach to generate names for amplified test cases based
on the methods they additionally cover, compared to the existing
test suite. In a survey among 16 participants with a background
in Computer Science, we show that the test names generated
by NATIC are valued similarly to names written by experts.
According to the participants, the names generated by NATIC
outperform expert-written names with respect to informing about
coverage improvement, but lack in conveying a test’s behavior.
Finally, we discuss how a restriction to two mentioned methods
per name would improve the understandability of the test names
generated by NATIC.

I. INTRODUCTION

Tools for automated test generation have been available for

a few years, however they are still cumbersome to use for

software developers [1]. One of the leading causes for the lack

of their use is the readability of the generated test cases [2].

When a test is considered readable, it will be easier to perform

tasks that require understanding it [3], such as locating the

reason why the test fails [2] or using it as documentation [4].

The name of a test can be one of the most useful sources of

information to understand a test [5], and therefore improving

the name considerably improves a test’s readability. Our goal

for this paper is to investigate how one could automatically

generate test names that convey the behavior and coverage

contribution of amplified test cases.

Test amplification is the automatic process in which based

on developer-written test cases, additional unit tests are gen-

erated that increase the instruction coverage of the existing

test suite. We call these amplified test cases [6]. In this paper,

we design and implement an approach for naming amplified

test cases generated by the test tool DSpot [7], and its IntelliJ

plugin TestCube1 [8].

The test cases generated by TestCube and DSpot have

generic and unclear names, which affects the readability of

the test cases. In this paper, we examine existing approaches

for automatically naming unit tests [5], [9], [10]. Based on the

approach by Daka et al. [9] we design NATIC, an approach to

This research was partially funded by the Dutch science foundation NWO
through the Vici “TestShift” grant (No. VI.C.182.032)

1https://github.com/TestShiftProject/test-cube

Name Amplified Tests based on Improved Coverage, using the

improvement in coverage to name the amplified test case. Daka

et al. infer names for generated test cases from the exceptions,

methods, outputs and inputs which are covered by the test

cases. In contrast to this, NATIC is specialized for amplified

test cases and uses the names of the methods where additional

instructions are covered to construct the name for the amplified

test case. Our aim is to clearly convey to the developer how

the amplified test case impacts the coverage of the test suite.
We implement NATIC as an extension to TestCube, and

conduct a survey to determine:

Research Question: How readable are the test names

generated by NATIC compared to names generated by

DSpot or names given by experts?

In our survey, 16 participants with a background in Com-

puter Science rated the names generated by NATIC, the

original DSpot names and names written by experienced Java

developers in terms of their appropriateness, how well they

convey the behavior of the test case, as well as how well

they convey the coverage improvement that the test provides.

Our results show that the names generated by NATIC clearly

outperform the existing DSpot implementation. They slightly

outperform the expert-given names in terms of conveying the

coverage improvement, but are slightly worse in conveying the

behavior of the studied test cases. Reflecting in more detail on

the studied test names, we conclude that focussing on names

based on at maximum two additionally covered methods would

yield more readable test names.
In summary, this paper makes the following contributions:

• NATIC, an approach to generate understandable names

for amplified tests, based on their coverage improvement.

• A study evaluating the approach against the names from

DSpot, and against names written by experts.

• A replication package2 that includes the implementation

of NATIC in TestCube and the data from our evaluation.

II. BACKGROUND

Writing unit tests for their software is one of the central

tasks for a developer to deliver high-quality software [11].

Unit tests check the correctness of units of a program in iso-

lation [12]. However, to this day, software developers consider

2https://doi.org/10.6084/m9.figshare.14909850

237

2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM)

DOI 10.1109/SCAM52516.2021.00036

20
21

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l W
or

ki
ng

 C
on

fe
re

nc
e

on
 S

ou
rc

e
C

od
e

A
na

ly
si

s a
nd

 M
an

ip
ul

at
io

n
(S

C
A

M
) |

 9
78

-1
-6

65
4-

48
97

-0
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SC

A
M

52
51

6.
20

21
.0

00
36

978-1-6654-4897-0/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 10:56:43 UTC from IEEE Xplore. Restrictions apply.

writing them a laborious, tedious and often difficult task [13].

This can be even more difficult when the entire testing program

has to change when the code under test is changing. For this

reason, several automated unit test generation tools exist, such

as EvoSuite [14] and TestFul [15]. For this paper, we provide

an improvement to the test amplification tool TestCube.

A. Amplifying Tests with TestCube

Software developers that want to improve their test suite,

can use automated test amplification. TestCube is an IntelliJ

plugin that uses the test amplification process of DSpot, which

improves the original test by triggering new behaviors and

adding new assertions [7]. The result of amplifying a test case

with DSpot is a set of new test cases that cover previously not

tested instructions. The tests generated by DSpot still have

usability issues, the lack of understandable test names being

an important one.

1 // Original Test Case
2 @Test public void testId() {
3 Document doc = Jsoup.parse("<div id=Foo>");
4 Element el = doc.selectFirst("div");
5 assertEquals("Foo", el.id()); }
6 // Amplified Test Case
7 @Test public void testId_assSep8() throws Exception {
8 Document doc = Jsoup.parse("<div id=Foo>");
9 Element el = doc.selectFirst("div");

10 assertFalse(doc.hasText()); }

Listing 1: Original Test Case and Amplified Test Case from DSpot

Listing 1 shows an original test case from example project

jsoup3, and an amplified test case generated by DSpot. Line 7

contains the current naming of DSpot.

B. Automatically Generating Names For Test Cases

In this paper, we define test names as good if they describe

the intent of the test case, and increase the readability for the

developer working with the amplified test cases. Benefits of

descriptive names are:

• Ease of identifying which functionality the test checks.

• Documenting the class under test, the names of the tests

can identify the supported functionality of the class.

Several approaches automatically generate names for unit

tests, all using different features of the tests they are naming.

This section compares 3 approaches: NAMEASSIST by Zhang

et al. [5], DEEPTC-ENHANCER by Roy et al. [10], and the

approach by Daka et al. [9]. From this comparison, we extract

the desired features for the implementation for TestCube. The

approach by Daka et al. does not have a name, we identify this

approach as DAKANAMING for the remainder of this paper.

1) NameAssist by Zhang et al.: NAMEASSIST is an ap-

proach proposed by Zhang et al. [5], that creates descriptive

test names using two phases: an analysis phase and a text

generation phase. The approach rates three key aspects of each

test: the action under test (usually the class under test), the

expected outcome (the assertion under test) and the scenario

3https://github.com/jhy/jsoup

under test (the body of the test). These three aspects are

combined in the text generation phase.

2) DakaNaming by Daka et al.: Daka et al. propose an

approach that extracts coverage goals from generated test

cases and ranks them to generate a unique test name [9].

The approach relies on the insight that the context of the test

suite provides information to derive descriptive names that

link the source code to the test name. The coverage goals

are ranked according to how observable their impact is for

the developer: 1) Exception Coverage, 2) Method Coverage,

3) Output Coverage and 4) Input Coverage. The authors

conducted a study with 47 participants, showing that the

generated names are as descriptive as manually written ones.

3) DeepTC-Enhancer by Roy et al.: DEEPTC-ENHANCER

is an approach proposed by Roy et al. [10], which generates

descriptive identifiers for generated test cases and test method-

level summaries of test case scenarios. This is achieved

by using existing code summarization approaches and deep

learning techniques. This approach addresses the problem of

lack of documentation and the meaningless identifiers (test and

variable names) for generated test cases.

Summary. NAMEASSIST relies on descriptive variable names,

which are not present in the amplified tests, and DEEPTC-

ENHANCER has a complex structure and functionalities not

necessary for our research, such as generating documenting

comments and variable names. Therefore, we use DAKANAM-

ING as the blueprint for our approach and adapt it to fit test

amplification. We use the methods where an amplified test

covers additional instructions to name the test.

III. NATIC

NATIC is centered around the idea that the test case name

of the amplified test should tell the developer what the test case

contributes to the overall test suite. Considering that NATIC

uses the amplified test cases from DSpot as input, and knowing

that DSpot does not generate test cases with identical coverage

improvement, we use the coverage improvement to generate

new test cases names. Specifically, NATIC uses the coverage

goals as identifiers for every test case, and generates a unique

name for every amplified test case in the test suite.

A. Coverage Goals

TestCube reports the coverage improvement for every test

it generates. NATIC extracts the methods from the test case

report to initialize them as coverage goals for the remainder

of the program (COVEREDGOALS in Algorithm 1).

B. Why Additional Method Coverage?

The name of a test case should describe and summarize

important parts of the test’s body [16]. In test amplification,

the additional coverage symbolizes the additional value the test

will bring to the existing test suite. To convey this additional

value and point the developer to the methods which are only

covered by this test—likely the fault location if this test fails—

we use the additionally covered methods to name the test case.

238

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 10:56:43 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: NATIC

Input: Amplified Test Suite = T
1 forall t ∈ T do
2 goals ← COVEREDGOALS({t}, G) \ COVEREDGOALS(T \

{t}, G)
3 name ← MERGETEXT(t, goals)
4 LABEL(t, name)

5 forall t ∈ T do
6 if t has no name then
7 C ← COVEREDGOALS({t}, G)
8 C ← REMOVEDUPLICATEGOALS({t}, G)
9 LABEL(t, UNIQUEGOALS(C))

10 forall T’ ⊂ T where all t ∈ T’ have the same name do
11 FIXAMBIGUOUSNAMES(T’)

C. Finding Unique Names

An amplified test can produce multiple coverage goals, as

it can improve the coverage in multiple methods, and multiple

amplified tests can have the same coverage goal. If there is

exactly one coverage goal for the test, the test name will have

this coverage goal. We find unique goals per test by taking the

complement of the goals covered by a test, and goals covered

in all generated tests (goals in Algorithm 1). If a test covers

the same method multiple times, the duplicate method names

are removed (REMOVEDUPLICATEGOALS in Algorithm1).

We label each test case by concatenating its goals (LABEL

in Algorithm 1). For each non-unique name we take all tests

that result in this name (T’). FIXAMBIGUOUSNAMES adds

numerical suffixes to the test names if there are still duplicates

after identifying unique goals and removing duplicate goals.

IV. EVALUATION SETUP

In this section we illustrate our study to evaluate NATIC.

We compare the names generated by DSpot, Expert written

names, and the names generated by NATIC.

A. Subjects

We employed convenience sampling for participant recruit-

ment by publishing a call for participation on various platforms

(Twitter, LinkedIn, etc.). After the participants agreed to

participate in the study and acknowledge to their data being

collected, we asked them whether they have a background in

Computer Science. For this question, we specified a back-

ground in Computer Science as being able to understand

source code and unit tests. Ultimately, 16 participants took

part in the study.

B. Tasks

Given the original test case, the amplified test cases and

their names, the participants were asked to rate their level of

agreement for every amplified test case for these aspects:

• Appropriate Name: is an appropriate name for the test.

• Behavior: gives information on the behavior of the test.

• Coverage Improvement: gives information on the cover-

age improvement of the test.

C. Objects

We compare three kinds of test names: (1) names generated

by the current implementation (DSpot), (2) names gener-

ated by our method-coverage based approach (NATIC), and

(3) names written by experienced software developers/testers

(Expert). We obtained the test names used in the study from

running DSpot on three unit tests from the open-source HTML

parser jsoup. The result from the amplification consists of

the amplified test cases with their names, DSpot or NATIC.

The Expert names were written by a Computer Science BSc

student and a PhD student, both with extensive programming

experience and knowledge of software testing. We showed

the experts the original test case, and the amplified test

case without a name. Table I gives examples of the names

used in the study, and it also lists the test case’s coverage

improvement.

D. Procedure

The study was performed as an online survey. Every

participant got the same sample of 25 test cases, with names

from the three different sources. The order of the types of

test names was randomized. The participants were given the

tasks from Section IV-B, they could add feedback to either the

survey or the test names at the end of the survey. The processed

data leads to the distributions shown in Figures 1, 2, 3.

For every test case, the participants added one answer, in

a 5-point Likert-scale (Strongly disagree, Disagree, Neutral,

Agree, Strongly agree).

V. RESULTS

In this section, we illustrate the results of our survey and

present the agreements for DSpot, Expert, and NATIC.

A. DSpot

Figure 1 represents the results for the DSpot names. Overall

answers for these test names resulted in a high level of

disagreement (either Disagree or Strongly disagree). For the

appropriate name, the level of some disagreement was 91%,

for information on the behavior of the test the level of disagree-

ment was 80%, and for information on coverage improvement

it was 91%. This indicates that participants considered the test

names neither appropriate nor informative.

B. Expert

Figure 2 represents the results for the names manually writ-

ten by experts. The agreement with these names is significantly

higher than the DSpot names. The Expert names get 83% for

some level of agreement (either Agree or Strongly agree) on

whether the name is appropriate, 80% on information on the

behavior of the test, and 79% on the information of coverage

improvement of the test. These are high acceptance rates, the

participants liked and understood these test names.

239

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 10:56:43 UTC from IEEE Xplore. Restrictions apply.

Coverage Improv. for Methods DSpot NATIC Expert

hasText
outputSettings

dropSlashFromAttribute
Name-mg43-assSep103

testOutputSettingsAndHasText testSetOutputSettingsWithText

clone
doClone

filter-mg69-assSep208 testCloneAndDoClone testCloneEmptyElement

documentType testGetChildText-mg30-assSep223 testDocumentType testDocumentTypeIsNull

TABLE I: Examples of test names used as objects for the survey

C. NATIC

Figure 3 represents the results for the names generated by

NATIC. The results for NATIC are slightly more spread-out

when compared to the other two types of names. Since the

preference for the names from this approach was more spread,

Figure 4 shows a breakdown per test.

For the NATIC test names, the level of (some) agreement

regarding appropriate name was 54%, for the information on

behavior 57%, and for the information on coverage improve-

ment 81%. The participants agreed that the test names give

information on the coverage improvement.

Strongly disagree Disagree Neutral Agree Strongly agree

0

20

40

60

80

E
v
al

u
at

io
n

fo
r

T
es

t
N

am
e

in
%

Appropriate Name

Behavior

Coverage Improvement

Fig. 1: Distribution for DSpot

Strongly disagree Disagree Neutral Agree Strongly agree

20

40

60

E
v
al

u
at

io
n

fo
r

T
es

t
N

am
e

in
%

Appropriate Name

Behavior

Coverage Improvement

Fig. 2: Distribution for Expert

Strongly disagree Disagree Neutral Agree Strongly agree

20

40

E
v
al

u
at

io
n

fo
r

T
es

t
N

am
e

in
%

Appropriate Name

Behavior

Coverage Improvement

Fig. 3: Distribution for NATIC

D. Free-text Responses

All participants could give additional feedback on the

names given to the tests. Most responses concerned the length

of the survey, participants perceived the survey as repetitive

and too long. Some participants had tips for naming the tests:

• “I usually name my tests after the direct actions, the tests
do. When I found myself disagreeing with names it was

often because the name was related to the action that was
taken by the test indirectly.”

• “The test names which talked more about the function of
the test were more helpful than either the ones that just
listed the improvements in coverage or the ones that had
a random name of a string.”

These participants needed more information than just the

coverage improvement and suggested to add information, like

the input to the test or the action taken by the test.

VI. DISCUSSION

From the individual results per test in Figure 4, we can

see that Test 5 and Test 9 (see Listing 2) have a particularly

high disagreement rating. These test names have a common

denominator, they were the only test names from NATIC that

had more than 2 goals in their name. Test 3 (see Listing 2)

had a particularly high agreement rate, which leads to our

assumption that using more than 2 goals negatively impacts

the agreement with a test name.

// Test 3, Improves Coverage in: toString, outerHtml
@Test public void testToStringAndOuterHtml() throws

Exception {}

// Test 5, Improves Coverage in: rewindToMark, cacheString,
consumeCharacterReference

@Test public void testRewindToMarkAndCacheStringAnd
ConsumeCharacterReference() throws Exception {}

// Test 9, Improves Coverage in: padding, isWhitespace,
indent, siblingIndex, nodenames, outerHtmlHead, ...

@Test public void
testPaddingAndIsWhitespaceAndIndentAndSiblingIndex()
throws Exception {}

Listing 2: Test Names Generated by NATIC

The participants of the study collectively disagreed with

the names given by DSpot. The Expert names had a higher

agreement rating than NATIC. Based on our results and the

distribution shown in Figure 4, we hypothesize that names

generated by NATIC should contain at most 2 coverage goals.

Future research has to confirm this hypothesis.

Answer to the Research Question: The results from the

experiment indicate that the names generated by NATIC

are effective at indicating the coverage improvement of an

amplified test case and, with a limitation to two method

names at most, are effective at generating appropriate names

and give information on the amplified test case.

240

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 10:56:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Likert agreement for each of the tests from NATIC

A. Threats to Validity

1) Construct Validity: The survey was distributed through

several platforms, and the only validation of the participants’

expertise was their answer regarding it. We did not distin-

guish between students and professional software developers

regarding their background in Computer Science. This risk

is mitigated through existing research stating the lack of

difference in results from Software Engineering students and

professional software developers [17].

2) Internal Validity: Despite increasing the readability of

the test cases by adding understandable names to them, the

variable names were generated by DSpot. This could affect

the readability of the overall test cases and therefore the

understanding of the test case. To mitigate this threat would

mean possibly tainting the results of the study, and was not

beneficial to the study. Another threat could be ‘cheaters’,

participants entering random data and with that skewing the

results. This was mitigated by checking the response time for

all participants. Cheaters take a significantly smaller time to

answer questions in a survey [18], and the participants in our

study all took at least the estimated 20 minutes.

3) External Validity: The methods and tests from jsoup

might not reflect larger, more complex test cases. However,

DSpot generates the same type of tests for every kind of test

that is fed into it, so that the experiment can be replicated with

larger test cases and still give the same output.

VII. CONCLUSIONS AND FUTURE WORK

Amplified test cases benefit from understandable and de-

scriptive test case names, as “good” names make it easier on

developers to identify the functionality the test checks and

documenting the class under test.

In this paper, we have presented the NATIC approach,

which is based on the approach by Daka et al. [9], however

NATIC names the tests according to the additionally covered
methods. Our study shows that the generated names were a

clear improvement over the default naming from DSpot. We

have also identified additional constraints on the amount of

goals in the names that can potentially further improve NATIC

in the future. Furthermore, NATIC currently only generates

test cases names for amplified test cases, we aim to further

improve the readability of test cases by also adding descriptive

variable names to the amplified test cases.

REFERENCES

[1] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults in
a financial application,” in Proc. Int’l Conf. on Software Engineering:
Software Engineering in Practice Track. IEEE, 2017, pp. 263–272.

[2] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling
readability to improve unit tests,” in Proc. Joint Meeting on Foundations
of Software Engineering (ESEC/FSE). ACM, 2015, p. 107–118.

[3] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” IEEE Trans.
Software Eng., vol. 40, no. 11, pp. 1100–1125, 2014.

[4] K. L. Beck, Test-Driven Development - By Example, ser. The Addison-
Wesley signature series. Addison-Wesley, 2003.

[5] B. Zhang, E. Hill, and J. Clause, “Towards automatically generating de-
scriptive names for unit tests,” in International Conference on Automated
Software Engineering (ASE). ACM, 2016, pp. 625–636.

[6] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and
B. Baudry, “A snowballing literature study on test amplification,” Jour-
nal of Systems and Software, vol. 157, p. 110398, 2019.

[7] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Monperrus, “Automatic
test improvement with DSpot: a study with ten mature open-source
projects,” Empirical Software Engineering, vol. 24, no. 4, pp. 2603–
2635, 2019.

[8] C. Brandt and A. Zaidman, “Developer-centric test amplification: The
interplay between automatic generation and human exploration.”

[9] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with
descriptive names or: Would you name your children thing1 and thing2?”
in Proc. Int’l Symposium on Software Testing and Analysis (ISSTA).
ACM, 2017, pp. 57––67.

[10] D. Roy, Z. Zhang, M. Ma, V. Arnaoudova, A. Panichella, S. Panichella,
D. Gonzalez, and M. Mirakhorli, “DeepTC-Enhancer: Improving the
readability of automatically generated tests,” in Proc. Int’l Conf. on
Automated Software Engineering (ASE). ACM, 2020, pp. 287—-298.

[11] J. Link, Unit testing in Java: how tests drive the code. Elsevier, 2003.
[12] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D. Ernst,

“An empirical comparison of automated generation and classification
techniques for object-oriented unit testing,” in Proc. Int’l Conf. on
Automated Software Engineering (ASE). IEEE, 2006, pp. 59–68.

[13] Y. Cheon and G. T. Leavens, “A simple and practical approach to unit
testing: The jml and junit way,” in European Conference on Object-
Oriented Programming. Springer, 2002, pp. 231–255.

[14] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for
object-oriented software,” in Proc. of the Joint Meeting on Foundations
of Software Engineering (ESEC/FSE). ACM, 2011, pp. 416––419.

[15] L. Baresi and M. Miraz, “Testful: automatic unit-test generation for java
classes,” in Proc. Int’l Conf on Software Engineering (ICSE), 2010, pp.
281–284.

[16] B. Zhang, E. Hill, and J. Clause, “Automatically generating test tem-
plates from test names,” in Proc. Int’l Conf. on Automated Software
Engineering (ASE). IEEE, 2015, pp. 506–511.

[17] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives of
professionals in software engineering experiments?” in Proc. Int’l Conf.
on Software Engineering (ICSE). IEEE, 2015, pp. 666–676.

[18] F. Rogers and M. Richarme, “The honesty of online survey respondents:
Lessons learned and prescriptive remedies,” Decision Analyst, Inc White
Papers, pp. 1–5, 2009.

241

Authorized licensed use limited to: TU Delft Library. Downloaded on December 08,2021 at 10:56:43 UTC from IEEE Xplore. Restrictions apply.

