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ABSTRACT
The application of blended acquisition has drawn considerable attention owing to its
ability to improve the operational efficiency as well as the data quality and health,
safety and environment performance. Furthermore, the acquisition of less data con-
tributes to the business aspect, while the desired data density is still realizable via
subsequent data reconstruction. The use of fewer detectors and sources also mini-
mizes operational risks in the field. Therefore, a combined implementation of these
technologies potentially enhances the value of a seismic survey further. One way to
encourage this is to minimize any imperfection in deblending and data reconstruc-
tion during processing. In addition, one may derive survey parameters that enable
a further improvement in these processes as introduced in this study. The proposed
survey design workflow iteratively performs the following steps to derive the survey
parameters responsible for source blending as well as the spatial sampling of detectors
and sources. The first step is the application of blending and sampling operators to
unblended and well-sampled data. We then apply closed-loop deblending and data
reconstruction. The residue for a given design from this step is evaluated and subse-
quently used by genetic algorithms to simultaneously update the survey parameters
related to both blending and spatial sampling. The updated parameters are fed into
the next iteration until they satisfy the given termination criteria. We also propose a
repeated encoding sequence to form a parameter sequence in genetic algorithms, mak-
ing the size of problem space manageable. The results of the proposed workflow are
outlined using blended dispersed source array data incorporating different scenarios
that represent acquisition in marine, transition zone and land environments. Clear
differences attributed solely to the parameter design are easily recognizable. Addi-
tionally, a comparison among different optimization schemes illustrates the ability of
genetic algorithms along with a repeated encoding sequence to find better solutions
within a computationally affordable time. The optimized parameters yield a notable
enhancement in the deblending and data reconstruction quality and consequently
provide optimal acquisition scenarios.

Key words: Seismic acquisition, Sampling, Iterative scheme.
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INTRODUCTION

In a conventional seismic survey, detectors and sources are
deployed at regular spatial intervals. Each source then emits a
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Blended-acquisition design of irregular geometries 1499

uniform signature with sufficiently large temporal and spatial
separations with respect to other sources. This allows the en-
ergy from the former shot to decay to an acceptable level or to
propagate outside the area of interest before the data associ-
ated with the following shot arrive at the detectors. However,
operations become costly and time consuming along with an
increase in the health, safety and environment (HSE) exposure
in the field. These factors potentially curtail our opportuni-
ties to acquire seismic data, particularly when desiring denser
sampling along with longer apertures for all azimuths. One
hence needs to design a seismic survey in a more efficient way
while satisfying geophysical requirements.

Over the last decade, blended acquisition, or sometimes
referred to as simultaneous source acquisition, has received
considerable attention in the industry owing to its ability to
drastically change the business and technical aspects of seismic
data acquisition. Furthermore, the enhancement in the survey
efficiency significantly minimizes the HSE risk during the op-
eration. This has consequently resulted in the widespread ap-
plication of the technique. Beasley, Ronald and Zerong (1998)
proposed the simultaneous deployment of two sources at both
ends of a streamer cable. They demonstrated the possibility
of separating interference noise using conventional processes
such as multichannel filtering, dip moveout and prestack mi-
gration. Berkhout (2008) proposed the concept of blending
in acquisition and processing. Blended acquisition is a way in
which seismic data are continuously recorded along with a sig-
nificant overlap among consecutive shots in time and space as
well as in temporal and spatial frequencies to produce ‘blended
shot records’. A common practice for processing this type of
data is to deblend the blended records first rather than pro-
cessing them directly (although it is expected that the emphasis
will shift to the latter in the future). In most cases, deblending
is posed as an inversion problem that iteratively estimates un-
blended data in some transform domain such as the Fourier
(Mahdad, Doulgeris and Blacquière 2011), Radon (Moore
et al. 2008), Curvelet (Lin and Herrmann 2009) and Focal
(Kontakis and Verschuur 2015) domains. The deblended data
then enable us to make use of standard processing algorithms
and to treat data as if they were acquired in a conventional,
unblended manner.

The acquisition of less data also contributes to the busi-
ness aspect as well as a reduction in the environmental foot-
print. Subsequent data reconstruction then allows the pro-
cessed data to attain the desired data density. A number
of studies have demonstrated both practical and theoretical
aspects of this technique. For instance, the well-known and
widely used approaches are transformation-based ones such

as the use of the Fourier (Xu et al. 2005), Curvelet (Hennen-
fent and Herrmann 2008), Radon (Verschuur, Vrolijk and
Tsingas 2012) and Focal (Kutscha and Verschuur 2012) do-
mains. As the forward and inverse operators for these do-
mains are not orthogonal, data reconstruction is generally
posed as an inversion problem to minimize the loss of infor-
mation in the input data. The methods utilize the redundancy
of the data that assumes the desired data can be efficiently de-
scribed in the transform domain. Along with given constraints
such as sparseness of the solution and/or a guide from non-
aliased low frequency components, the transform coefficients
are iteratively estimated, meaning that the desired signals are
separated from undesired aliasing noise in the transform do-
main. This is possible when the aliasing noise has different
properties in the model space from the signal. Once model
parameters are estimated, optimum data recovery is attain-
able via the inverse transformation even when input data do
not meet Nyquist sampling theorem. This potentially allows
us to ease survey requirements related to the spatial sampling
criteria.

As described previously, deblending resembles data re-
construction in the sense that both methods are generally
posed as an inversion problem that iteratively estimates sig-
nals in the transform domain where they are known to be
sparse and well separated from undesired events such as the
blending noise and aliasing noise. For example, Kutscha and
Verschuur (2012) and Kontakis and Verschuur (2015) dealt
with data reconstruction and deblending respectively using
similar inversion frameworks. Some recent studies have jointly
handled both deblending and data reconstruction (Cheng and
Sacchi 2015; Ishiyama et al. 2017; Li et al. 2013). In principle,
deblended and reconstructed data are iteratively estimated in
the transform domain together with prior knowledge and/or
constraints to data. By making use of the combination of op-
erators responsible for both blending and spatial sampling
schemes derived from the measured data, the forward pro-
cess to generate an estimate of blended data on the measured
grid is possible. This subsequently allows for evaluation of the
residual between the measured data and the estimated data at
each iteration. Data misfit is then used for the next iteration
to minimize the residual further. In existing blended acquisi-
tion schemes, irregularity or randomness is often embedded
into the survey parameters such as a random time delay for
each source, allowing for effective source separation (Baard-
man and van Borselen 2013). The source wavefield is made
incoherent in at least one of the sorting domains by the use of
a random time delay, a randomized distance between concur-
rent sources for each blended shot, a unique encoding for each
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source, or their combination. Similarly, irregularity is also of
importance when sampling detectors and sources. Herrmann
(2010) showed that the spatial sampling of data in an irreg-
ular fashion is a key element for implementing compressive
sensing (CS). Irregularity permits the energy of spectral leak-
age to spread over the entire spectrum and to behave as if
it were random noise. In CS, these random-like artefacts are
well-separated in a certain transform domain. Sparsity-based
inversion subsequently recovers the desired signals. The rele-
vant and conventional survey parameters for both land and
marine environments are the four spatial sampling intervals
and four apertures of the template geometries (Vermeer 2012).
In a conventional way, as long as detectors and sources are
regularly deployed, the number of parameters is still man-
ageable (Ishiyama, Mercado and Belaid 2012; Nakayama,
Belaid and Ishiyama 2013). However, this is not the case
with blending and irregular geometries. Despite their potential
benefits, designing a survey incorporating these techniques is
rather intricate as irregularity inherently requires numerous
selections of survey parameters, unlike acquisition in a reg-
ular manner. Therefore, it is obviously worthwhile to seek
an efficient and practical way to design a survey in order to
incorporate blending and irregular geometries. Additionally,
different types of survey parameters interactively influence
the quality of the subsequent processing steps and eventu-
ally that of the final subsurface image. To deal with this, we
have to optimize the parameters simultaneously rather than
sequentially.

In this paper, we introduce a survey design workflow
that iteratively optimizes the survey parameters responsible
for both the blending and spatial sampling of detectors and
sources, leading to satisfactory deblending and data recon-
struction results. The workflow includes a closed-loop ap-
proach allowing for a robust deblending and data reconstruc-
tion. The residue for a given survey design is evaluated and
subsequently input into another system based on genetic algo-
rithms (GAs) to update the blending and sampling operators.
A repeated encoding sequence (RES) is proposed and imple-
mented to form a parameter sequence for GAs, making the
size of the problem space affordable. Several numerical exam-
ples incorporating the dispersed source array (DSA) concept
(Berkhout 2012) outline the results of the proposed workflow.

FR AMEWORK OF T H E SUR V EY D ES I GN
WORKFLOW

Using the WRW (W stands for wave propagation and R for re-
flection) model proposed by Berkhout (1982), we describe the

seismic data for a given frequency and recorded by detectors
at a depth zd for sources at a depth zs as:

P(zd; zs) = D(zd)X(zd, zs)S(zs). (1)

Each column and row of the data matrix P(zd, zs) repre-
sent a shot and detector gather respectively. For example, the
vectors corresponding to the jth shot and ith detector gathers
are written as p j and p†

i , where the dagger symbol (†) repre-
sents a row vector. A collection of P(zd, zs) for each frequency
enables seismic data to be stored as a three-dimensional ma-
trix. D(zd) and S(zs) are the detector and source matrices re-
spectively. The columns and rows in D(zd) represent the spa-
tial coordinates and detector arrays, whereas the columns and
rows in S(zs) are the source arrays and spatial coordinates
respectively. X(zd, zs) is the Earth’s transfer function contain-
ing the subsurface impulse responses. It can be regarded as
unblended data with perfect spatial sampling. The amplitude
and phase information for a given frequency is embedded into
each element of each matrix. In the following, we assume
the sources and detectors to be located at the same depth,
i.e. zs = zd = z0. For notational simplicity, the detector and
source depth indices as well as the superscript of + in the
source matrix indicating the direction of wave propagation
are hereinafter omitted unless necessary.

With the use of a point detector (rather than a detector
array), the distribution of the zero and non-zero elements in D
dictates the spatial sampling of the detectors. The information
embedded into the non-zero elements is mainly attributable
to the responses of the sensor and recording system used in a
given acquisition system. Similarly, with a point source, the
distribution of the zero and non-zero elements in S dictates
the spatial sampling of the sources. The information embed-
ded into non-zero elements is mainly attributable to the source
signature. Since our primary focus is on the effect of spatial
sampling, we make the assumption of delta-functioned de-
tector and source responses, where the elements of D and S
become either zero or one. Equation (1) therefore depicts the
impact of the spatial detector and source sampling on the abil-
ity of P to be a representation of X. In an ideal situation, i.e.
carpet detectors and sources, D and S are identity matrices. In
this case, P equates to X. However, in practice, imperfections
(related to the spatial sampling) in D and S hinder P from
resembling X. Therefore, we need to pay proper attention to
the distributions of detectors and sources in order for the sub-
sequent processes to be able to retrieve X from P, which is our
goal.

C© 2018 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 1498–1521
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Berkhout (2008) proposed the theoretical framework of
source blending by introducing a blending operator, �:

S
′ = S�, (2)

where S
′

represents the blended source matrix. Each col-
umn and row of � are a shot experiment and location of a
source-to-be-blended respectively. Each element of � contains
the blending code(s) such as the amplitude and phase terms
applied to the corresponding source. With N-fold blended
sources, i.e. N sources are blended in one blended experiment
leading to one blended shot record, the blending codes of N

source units are stored in one column of �. Linearly adding
the wavefields of those individual sources forms one blended
source wavefield, after detection resulting in one blended shot
record. Using the data matrix expression in equation (1) , the
results of blended experiments, P

′
, can be formulated as:

P
′ = DXS

′ = DXS� = P�. (3)

Equation (3) implies that starting with unblended and
regularly well-sampled data X, any blended and spatial sam-
pling schemes can be modelled by multiplication with D, S
and �. As discussed previously, when designing D and S, our
choices are making their elements either zero or one. On the
other hand, many choices are available to design �. In a lin-
ear system, one element of the blending operator � for the
frequency ω is given by:

γ i, j = ai, j (ω) exp
[− jφi, j (ω)

]
, (4)

where ai, j is the amplitude term corresponding to the ith
source of the jth blended experiment, and φi, j is its phase. Any
type of source code can be accommodated in equation (4). In
the case where the blending codes are time delays τi, j , the cor-
responding phase can be written as φi, j = ωτi, j . Note that the
dispersed source array concept, where the total blended wave-
field is generated by a plurality of narrowband sources with
different centre frequencies, is also described by equations (3)
and (4) (albeit implicitly, as the equations are formulated in
the frequency domain).

Figure 1 is a schematic illustrating the proposed survey
design workflow. The blue- and red-filled steps in Figure 1
correspond, respectively, to the forward process to generate
P′ from X and the inverse process for deblending and data
reconstruction to obtain 〈X〉 from P′. The angled brackets
〈 and 〉 indicate estimated data. Since we deal with survey
design, we consider X to be known in this study. The objective

function based on the residue between X and 〈X〉 for a given
survey design is defined as:

J =
∑

ω

‖X − 〈X〉‖2
2. (5)

If the objective function is sufficiently small, the pro-
cedure stops. If not, genetic algorithms (see the green-filled
step in Fig. 1) update the blending and sampling operators
that are subsequently fed into the next iteration. Therefore,
our approach iteratively optimizes D, S and � to minimize
the objective function in equation (5), meaning that optimum
deblending and reconstruction quality is attainable using the
resultant survey design.

DEBLENDING AND D ATA
RECONSTRUCTION

In the deblending and data reconstruction step (see the red
box in Fig. 1), we go from P

′
to 〈X〉. Obviously, in this step,

we do not make use of the fact that X is known. We use the
given D, S and � derived from the overall scheme. According
to equation (3), a trivial solution to obtain 〈X〉 is the use of
the generalized pseudo-inverse matrix as:

〈X〉 = DH(DDH)−1P
′
(S

′ HS
′
)−1S

′ H, (6)

where the superscript H denotes the Hermitian conjugate.
However, this particular solution of the underdetermined sys-
tem often leads to an undesired result as blending noise and
missing traces still remain in the data. Mahdad et al. (2011) in-
troduced sparseness and coherency to an iterative deblending
scheme to constrain the solution. Ishiyama et al. (2017) then
extended it to a generalized deblending and data reconstruc-
tion workflow as follows. A least-squares criterion in combi-
nation with sparseness and coherency constraints is used to
minimize the following objective function:

J =
∑

ω

∥∥∥�P
′
∥∥∥2

2
=

∑
ω

∥∥∥P
′ − D 〈X〉 S

′
∥∥∥2

2
. (7)

Figure 2 shows a closed-loop system to solve the inverse
problem. The inversion is designed to find the optimum pa-
rameters in the model space, in our case, the Fourier domain.
With the transform operator, L, we can write the forward and
inverse transformations as:

LX = M, (8)

and

X = LHM. (9)

C© 2018 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 1498–1521
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Figure 1 Schematic illustrating the pro-
posed survey design workflow. The blue-
filled step is forward modelling to produce
blended and irregularly sampled data (go-
ing P

′
from X by applying D, S and �).

The red-filled step indicates deblending
and data reconstruction (going 〈X〉 from
P

′
). A termination criterion is based on

the residue between X and 〈X〉. If it is suf-
ficiently small, the procedure stops and
produces output from the last iteration. If
not, the green-filled step indicating GAs
updates the blending and sampling oper-
ators.

A successful estimate of the model parameters, 〈M〉, pro-
vides an estimate of the deblended and reconstructed data
according to:

〈X〉 = LH 〈M〉 . (10)

The inversion scheme also contains the forward mod-
elling step, the multiplication of 〈X〉 with the known opera-
tors, D and S

′
. This allows for a direct comparison between the

observed data, P
′
, and the estimated data, D〈X〉S′

. As a con-
sequence, an estimate of 〈X〉 from P′ can be obtained through
minimizing the objective function in equation (7).

The estimated data from the (i + 1)th update is obtained
via a gradient descent scheme as:

〈X〉i+1 =
〈
X
−

〉
i

+ αi�

〈
X
−

〉
i

, (11)

where

�

〈
X
−

〉
i

= DH(DDH)
−1

�P
−

′
i (S

′ HS′)
−1

S′ H, (12)

with

�P
−

′
i = P′ − D

〈
X
−

〉
i

S
′
. (13)

Here, 〈X
−
〉
i

represents a deblended and reconstructed es-

timate with sparseness and coherency constraints on the ith

update, 〈X〉i . αi is a scaling factor for the update that acts as
a step size to minimize the residual by satisfying:

∑
ω

∥∥∥∥�P
−

′
i − αi Ai

∥∥∥∥
2

2

→ min, (14)

with

Ai = D�

〈
X
−

〉
i

S
′
. (15)

It is computed as follows. We write the objective function
to be solved, J (�P

−
′
i − αi Ai ), as:

J
(

�P
−

′
i − αi Ai

)
=

∑
ω

tr

[(
�P

−
′
i − αi Ai

)H (
�P

−
′
i − αi Ai

)]

=
∑
ω

tr
[
�P

−
′
i
H

�P
−

′
i − αi�P

−
′
i
HAi − αi A

H
i �P

−
′
i + α2

i AH
i Ai

]
, (16)

where tr[ ] indicates the sum of the diagonal elements of a
matrix. The partial derivative of J (�P

−
′
i − αi Ai ) with respect to

αi is:

∂

∂αi
J

(
�P

−
′
i − αi Ai

)
=

∑
ω

tr
[
−�P

−
′
i
HAi − AH

i �P
−

′
i + 2αi A

H
i Ai

]
.

(17)

Figure 2 Step-by-step illustration of
closed-loop deblending and data recon-
struction (after Ishiyama et al. 2017).
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Therefore, the scalar factor that makes equation (17) zero
is given by:

αi =
∑
ω

tr
[
�P

−
′
i
HAi + AH

i �P
−

′
i

]
2

∑
ω

tr
[
AH

i Ai

] =
∑
ω

tr
[
�P

−
′
i
HAi

]
∑
ω

tr
[
AH

i Ai

] . (18)

An iterative estimate of the deblended and reconstructed
data consists of: muting based on causality, combined median
filtering and filtering in the wavenumber–frequency domain to
pass coherent events while suppressing undesired incoherent
ones and amplitude thresholding in time–space domain. Since
our data are stored as a three-dimensional (3D) matrix, as
described previously, these processes are performed with a 3D
implementation. The parameters for the filters and threshold
level are updated through the course of the iterations, starting
from harsh and then moving to mild ones.

SURVEY D ES IG N W I T H G EN E T I C
ALGORITHMS

When designing a survey or assessing a given acquisition ge-
ometry, common midpoint-based attributes such as fold and
sampling at different offset as well as azimuth ranges are
widely used, as illustrated in Cordsen, Galbraith and Peirce
(2000) and Vermeer (2012). Although they can quickly pro-
vide beneficial information on the anticipated data quality
from a given acquisition geometry, these attributes inherently
disregard the effect of processing. With the application of
blending along with irregular geometries, the quality of de-
blended and reconstructed data is inevitably a major concern;
thus, one eventually needs another means. One solution would
be to build a field-wide earth model with finer grids followed
by the forward modelling of any anticipated acquisition sce-
narios (e.g. Regone 2007). This certainly requires enormous
amounts of computer resources, funds and time, which may
not be always allocated to every occasion.

In this study, we implement genetic algorithms (GAs),
which allow us to optimize the blending and sampling oper-
ators simultaneously rather than sequentially. GAs are classi-
fied as a metaheuristic and are generally capable of handling
optimization problems with non-convexity, the existence of
many local minima, non-differentiability and a large prob-
lem space. GAs are inspired by biological evolution through
the process of natural selection. It was first introduced in
‘On The Origin of Species’ by Darwin (1859), which de-
scribes the biological development of species and survival of
minor advantageous mutations. Holland (1975) originated
the concept of GAs and demonstrated how the theory of

evolution can be exploited for optimization problems based
on binary string representations. Such strings are considered
as biological chromosomes, and evolution processes are de-
scribed in the natural selection such as mutation, selection
and crossover. Over several decades, the original definition
of GAs has gradually evolved, and the technology has been
widely adapted to a variety of optimization problems. Nu-
merous successful applications of GAs are easily recogniz-
able in different domains such as biomedicine (Monteagudo
and Reyes 2015), arts (Davies et al. 2016), architecture (Bak,
Rask and Risi 2016), music (Scirea et al. 2016), games
(Liebana et al. 2015) and recently machine learning (Kramer
2016).

As discussed previously, Fig. 1 illustrates the proposed
survey design workflow. The step in the green box corre-
sponds to GAs that iteratively update the blending and sam-
pling operators that constitute of a set of parameter vectors:

xi, j = [
di, j , si, j , γ i, j

]T
, (19)

with

di, j ∈ {0, 1}k
, si, j ∈ {0, 1}l

, γ i, j ∈ {0, 1}l×m
. (20)

Here, i and j represent the numbers of populations and
generations, and di, j , si, j and γ i, j are binary vectors indicating
detector sampling, source sampling and blending operators for
the ith individual solution in the jth generation that we aim to
update through stochastic operators in GAs. k, l and m dictate
the dimensions of the parameter vectors. k and l are attributed
to the numbers of detectors and sources to be designed for the
geometry under consideration. m then equates to the required
bit length to parametrize a given blending code per single
source. The following steps describe the implementation of
the technique to our survey design workflow.

1 Initialization: A set of parameter vectors, xi,0, called the
initial population having n individuals is randomly generated
across a given problem space as:

⎛
⎜⎜⎜⎜⎝

x1,0

x2,0

...
xn,0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

[
d1,0, s1,0, γ 1,0

]T[
d2,0, s2,0, γ 2,0

]T

...[
dn,0, sn,0, γ n,0

]T

⎞
⎟⎟⎟⎟⎠ . (21)

2 Data comparison: Once a population in generation j is
created, it goes to the forward (going from X to P

′
i, j ) and in-

verse (going from P
′
i, j to 〈Xi, j 〉) processes, as described in the

previous sections. Once 〈Xi, j 〉 is obtained using a parameter
vector xi, j , the objective function in equation (5) for the ith

C© 2018 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 1498–1521
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solution of the jth generation, equivalent to the so-called fit-
ness function, can be written as:

Ji, j (xi, j ) =
∑

ω

∥∥X − 〈
Xi, j

〉∥∥2

2
. (22)

On the basis of the residual in equation (22), D, S and � are
updated by the following stochastic operators.
3 Selection: Selection allocates more copies of solutions with
smaller misfits than solutions with larger misfits, and thus
imposes the principle of natural selection on the candidate
solutions. Although a number of selection procedures have
been proposed, the main purpose of selection is to give more
weight to better solutions than to worse ones. Our workflow
utilizes roulette-wheel selection. For the jth generation, each
individual solution possesses an expected selection probability
according to its objective function given by:

G(xi ) = ji/
n∑

i=1

ji , (23)

with

ji = exp(β Ji/ min
i∈n

Ji ), (24)

where β is a dimensionless parameter controlling the diversity
in the selection. A smaller value of β results in more diversity
in selection, whereas a larger value of β provides a chance that
solutions having a small misfit are selected.
4 Crossover: Crossover combines the information of two
parental solutions to create new, possibly better solutions.
There are various ways to accomplish this. However, the prin-
ciple of this process is that a new solution has to combine
parental information in a predefined manner. Our parameter
sequence contains different parameter vectors attributable to
the blending and sampling operators. Crossover among differ-
ent vectors is not viable as each employs different lengths and
constraints. Thus, we apply a single crossover per parameter
vector.
5 Mutation: While crossover operates on two parental solu-
tions, mutation, locally yet randomly, modifies a single so-
lution. Although there are many variations of mutation, it
commonly involves one or more changes that are made to an
individual solution. In the case where mutation involves a sub-
tle change, refinement in the vicinity of a candidate solution is
performed. On the other hand, a process with a larger change
potentially has the ability to escape from local minima. We
control this process using two parameters. One is the proba-
bility of mutants to appear in a given population. The other
one is the mutation rate that describes the number of values
to be altered within a single solution.

Figure 3 Steps to generate an RES. Twenty binary numbers exemplify
a way to form long parameter vectors from a main code. Four different
colours distinguish four base codes.

6 New population: The population created by selection,
crossover and mutation replaces the original parental pop-
ulation on the basis of elitist replacement. Since the new indi-
viduals do not necessarily provide better results, the technique
allows us to preserve some better ones from the parental pop-
ulation in a new generation.
7 By repeating steps 2–6, D, S and � are iteratively updated
to minimize the objective function in equation (22) such that
effective deblending and data reconstruction can be realized.
Within the stochastic operators, the constraints on the blend-
ing and sampling operators can be imposed in order to avoid
the generation of undesired solutions.

IMPLEMENTATION OF A R EPEATED
ENCODING SEQUENCE

Although genetic algorithms (GAs) generally have the abil-
ity to handle the large problem size, survey design inherently
provides a significant number of solutions. This is more obvi-
ous when dealing with the parameters involved in irregularity,
which is unfortunately true in our case. In addition, k and l in
equation (20) increase with the size of a survey, resulting in
parameter vectors that are extremely long. Hence, a reduction
of parameter space makes the proposed survey design work-
flow practical and computationally affordable. In this respect,
we propose a repeated encoding sequence (RES) inspired by
a nucleic acid sequence of deoxyribonucleic acid (DNA) con-
sisting of a chain of four nucleobases: adenine (A), cytosine
(C), guanine (G) and thymine (T). We make use of this as an
analogy to form a parameter sequence in GAs to reduce the
problem space. Figure 3 exemplifies a way to generate an RES
using 20 binary numbers.

We first create a main code having a random-like feature
(step 1). The prior constraints are embedded into this main
code. It is then divided into two halves to make two base codes
(step 2). These codes are flipped to create two more base codes
(step 3). The four base codes obtained in this way are finally
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combined in a predetermined order so that even a long param-
eter sequence can be formed, like a chain of four nucleobases
in DNA (step 4). The order has to be predetermined to ensure
the reproducibility of the solution.

Additionally, it is well known that DNA has a double
helix structure in which one nucleobase bonds only with one
other specific nucleobase. This is referred to as base pairs
where A bonds only with T, while C bonds only with G. We
also use this analogy for blended acquisition. We predefine
base pairs. For example, as illustrated in step 4 in Fig. 3, base
code 1 bonds with base code 4, while base code 2 bonds only
with base code 3. When blending, we first define a parame-
ter sequence of a primary source. Then, the parameters of a
secondary source that blends with the primary one are auto-
matically defined according to the concept of the base pairs.
This ensures that sources that overlap each other hold differ-
ent properties, leading to effective deblending, e.g. by applying
different spectral properties to overlapped sources.

With an RES, the optimization deals with a single main
code rather than with a whole parameter sequence. There-
fore, k and l in equation (20) become sufficiently manageable,
which enables a significant reduction in the parameter space.
Although the four base codes are repeated, each one possesses
a random-like feature and also appears in an irregular manner
based on a predetermined order. Therefore, the resulting sur-
vey parameters still employ the property of irregularity, which
enhances the effectiveness of deblending and data reconstruc-
tion. Figure 4 shows a comparison of shot records having
different spatial sampling in the time–space and frequency–
wavenumber domains. Figure 4(a,f) depict well-sampled data
that contain no spatial aliasing. The other three cases em-
ploy 50% detector decimation, keeping one out of two detec-
tors. Because of this, they show undersampling-related arte-
facts. Different spatial sampling schemes result in different
imprints in the frequency–wavenumber domain. Regularly
sampled data show coherent artefacts due to periodically miss-
ing traces (Fig. 4b,f). On the contrary, randomly sampled
data show Gaussian-noise-like aliasing artefacts (Fig. 4c,g).
Irregularly sampled data with an RES notably exhibit a sim-
ilar characteristic that consequently allows deblending and
reconstruction to effectively estimate the desired signals while
clearly separating them from undesired events (Fig. 4d,h).

NUMERICAL EXA MPL ES

A subset of synthesized two-dimensional Marmousi data is
used to numerically simulate several acquisition scenarios in-
corporating the DSA concept. Berkhout (2012) introduced a

Table 1 Properties of four DSA sources

Frequency Range (Hz) Spatial Distribution (%)

Source type 1 2–4–6–10 6.7
Source type 2 4–8–12–20 13.3
Source type 3 8–16–24–40 26.7
Source type 4 16–32–48–80 53.3

Notes: Four corner frequencies, (1) low-cut, (2) low-pass, (3) high-pass and
(4) high-cut, describe the frequency range of each source type. The spatial
distribution of each source type is expressed by percentage, e.g. 25% means
keeping one out of four shots.

Table 2 Acquisition configurations for unblended and well-sampled
data (X) and blended and irregularly sampled data (P′)

X P’

Detector interval 10 m at regular irregular
The number of

detectors
120 96 (20% decimation)

Source interval 10 m at regular irregular (see Table 1)
The number of

sources
120 (see Table 1)

The number of
activated
sources

1 2 with 600 m separation

Note: Parameters related to source sampling vary with four DSA source types
as shown in Table 1.

dispersed source array (DSA) that utilizes a set of source units,
each having a dedicated narrow frequency range. Caporal and
Blacquière (2015) discussed its benefits from different per-
spectives, some of which are reviewed as follows. A DSA per-
mits each narrowband source to be independently deployed to
satisfy its own spatial sampling criteria determined by its fre-
quency range. This subsequently allows for proper sampling of
entire frequency ranges and addresses both the oversampling
of lower frequencies and undersampling of higher frequencies.
In a marine survey, the method minimizes destructive inter-
ference from a source ghost in the spectrum using so-called
ghost matching. By towing narrowband sources at different
and proper depth levels, source notches insignificantly overlap
with the frequencies emitted from these sources.

Table 1 summarizes the spectral properties and spatial
distribution of four DSA source types used in this study.
Four corner frequencies: (1) low-cut, (2) low-pass, (3) high-
pass and (4) high-cut, describe the frequency range of each
source type. The spatial distribution of a source type is ex-
pressed by percentage, e.g. 25% means keeping one out of
four shots. Table 2 shows a comparison of acquisition con-
figurations between unblended and well-sampled data and
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1506 S. Nakayama et al.

Figure 4 Shot gathers in time–space and frequency–wavenumber domains with different spatial sampling: well-sampled (a and e), regularly
sampled (b and f); randomly sampled (c and g); irregularly sampled with an RES (d and h). Each undersampled case employs 50% detector
decimation, keeping one out of two detectors.
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Figure 5 3D view of a subset of synthesized Marmousi data: (a) well-sampled and broadband data; (b) randomly sampled and narrowband data
from source type 1; (c) source type 2; (d) source type 3; and (e) source type 4. A section parallel to x direction is a common detector gather while
one parallel to y direction is a common shot gather. Spectral properties and spatial distribution of four DSA source types are shown in Table 1.

blended and irregularly-sampled data. In addition to four DSA
sources, 20% detector decimation, keeping four out of five
detectors, is applied to each scenario. Figure 5(a) shows a
three-dimensional (3D) view of data matrix from unblended
and well-sampled data containing a broad frequency range.
It consists of 120 detectors and 120 sources with a sampling
interval of 10 m, located at the surface, i.e. zs = zd = 0. We
use these data as an input for our numerical examples and
as a reference to analyse the deblending and reconstruction
results. Figure 5(b– e) are 3D views of data matrices from un-
blended and irregularly sampled data. They are acquired by
four source units, each having its own bandwidth and spatial
sampling criteria, as previously defined. The sampling opera-
tors of the detectors and sources are derived from the use of
a random realization according to spatial sampling schemes
specified in Tables 1 and 2. In this study, the blending scheme
has the same blending performance indicator (BPI) (Berkhout
and Blacquière 2014) having a value of two. Each blended shot
record employs 600 m spatial separation between two sources.

The proposed approach tries to find survey designs allowing
for the satisfactory retrieval of broadband, deblended and re-
constructed data from a set of narrowband records acquired
in a blended manner along with irregular geometries. For com-
parison purposes, we also show the results with blending and
sampling operators created by a realization from random vari-
ables according to a discrete uniform distribution. Instead of
a single realization, we use parameters that provide a median
objective function value among 500 random realizations for
each case. We assume that the median value can represent an
anticipated situation where we rely on a random realization to
embed irregularity into blending and sampling operators. We
use ‘random’ to describe this type of data. In terms of compu-
tation time, the optimized design and random design are not
comparable. However, this comparison is still worthwhile to
differentiate between the proposed approach and one of com-
mon practices to implement irregularity and randomness to
survey parameters. We apply 100 iterations for the previously
described deblending and reconstruction. Additionally, each
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blended data set employs a time shift ranging from 0 ms to
256 ms.

To quantify the performance of deblending, Mahdad
et al. (2011) utilized the signal-to-noise ratio (SNR) expressed
as:

SNR = 10log10

⎛
⎜⎝

∑
ω

‖X‖2
2∑

ω

‖X − 〈X〉‖2
2

⎞
⎟⎠ . (25)

This SNR definition allows for a direct comparison with
the desired output, which may not be suitable for some situa-
tions. However, the principle of acquisition design permits X
to be known; thus, this quantitative measurement is applicable
to our case.

Example 1: applicability of the approach

Three blended dispersed source array (DSA) scenarios are nu-
merically simulated: (1) DSA with encoded time delay, (2)
DSA with encoded time delay and sweep and (3) DSA with
encoded time delay and partial sweep (left column in Figs 6–
8). Although data with encoded sweep signatures employ a
longer length in time, they are clipped for display purposes.
The first and second scenarios are purposely designed to re-
semble acquisition in marine and land environments. The third
scenario corresponds to a situation with a mixture of explo-
sive and vibrator sources that can possibly occur in transition
zone acquisition. Alternatively, these scenarios can be consid-
ered as situations that utilize different types of seismic sources
for a given environment. All the scenarios employ the same
blending performance indicator (BPI) of two along with the
same numbers of detectors and sources. Each blended shot
record employs 600 m spatial separation between two sources
(Table 2). The optimized design using the proposed method is
compared to one with randomly designed blending and sam-
pling operators for each scenario. Our approach optimizes the
spatial distribution of detectors and four DSA source units as
well as the encoded signatures applied to each source.

Although both of the optimized and random designs have
the same BPI and the same numbers of detectors and sources,
the optimized ones achieve better continuity and less blending
noise regardless of the acquisition scenario (middle column
in Figs 6–8). They present a notable difference attributable
solely to the way that the blending and sampling operators are
designed. The resultant SNR values are as follows: scenario 1)
8.36 dB with random and 10.92 dB with optimized, 2) 8.74
dB with random and 11.07 dB with optimized and 3) 8.83 dB
with random and 11.22 dB with optimized. The difference

plots evidently reflect these differences, where smaller errors
are easily recognizable in the optimized designs (right column
in Figs 6–8). Mahdad et al. (2011) described a deblended
record with an SNR of approximately 12 dB as the result close
to the desired output. Although the experimental settings are
different, the level of this value can still be used as a reference
to quantitatively assess the resultant 〈X〉 with respect to X.
Since our cases involve both the blending of source wavefields
and the use of fewer detectors and sources unlike their study,
the deblended and reconstructed data with randomly designed
operators obtain a suboptimal quality. On the other hand,
the optimized designs are almost comparable to the level of
desired quality. The results clearly indicate that the choice
of blending and sampling operators is one of the factors
determining the quality of deblending and reconstruction.
They also confirm the viability of our approach for deriving
the blending and sampling operators, leading to the improve-
ment of these processes for different blending and spatial
sampling schemes. This then implies the wide applicability of
the proposed method to acquisition in various situations.

Example 2: extensibility of the approach

In this example, blended dispersed source array (DSA) sce-
narios are numerically simulated using eight different subsets
within the Marmosi model. We first optimize the blending
and sampling operators of the detectors and four DSA source
units in a given subset called model 1. The optimized oper-
ators are then applied to other subsets within the Marmosi
model, called models 2–8 as:

⎛
⎜⎜⎜⎜⎝

P′
1

P2
′

...
P8

′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

D1X1S1�1

D1X2S1�1

...
D1X8S1�1

⎞
⎟⎟⎟⎟⎠ . (26)

These data are compared to those with randomly designed
operators. Each data set has the same blending performance
indicator and the same numbers of detectors and sources.
Figure 9 shows a comparison of the signal-to-noise ratio
(SNR) for each model. Although the operators are established
using model 1, they reasonably achieve a notable enhance-
ment in the SNR in all cases. Figures 10–12 show compar-
isons between data with randomly designed operators and
those with optimized operators from models 1, 3 and 6. They
clearly illustrate that the optimized blending and sampling
operators from model 1 provide a significant uplift on the
deblending and reconstruction quality in other models. The
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Figure 6 Optimized survey design in scenario 1 (DSA with time delay). Three columns differentiate: blended and irregularly sampled data;
deblended and reconstructed data; and difference between input (unblended and well-sampled data) and output (deblended and reconstructed
data). Data with randomly designed operators are shown in the odd rows, whereas ones with optimized operators are in the even rows. The top
two rows are data in common shot domain, while the bottom two rows are ones in common detector domain. Optimized operators achieve an
SNR of 10.92 dB, whereas randomly designed operators obtain an SNR of 8.36 dB.
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Figure 7 Optimized survey design in scenario 2 (DSA with time delay and sweep). Three columns differentiate: blended and irregularly
sampled data; deblended and reconstructed data; and difference between input (unblended and well-sampled data) and output (deblended and
reconstructed data). Data with randomly designed operators are shown in the odd rows, whereas ones with optimized operators are in the
even rows. The top two rows are data in common shot domain, while the bottom two rows are ones in common detector domain. Optimized
operators achieve an SNR of 11.07 dB, whereas randomly designed operators obtain an SNR of 8.74 dB.
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Figure 8 Optimized survey design in scenario 3 (DSA with time delay and partially sweep). Three columns differentiate: blended and irregularly
sampled data; deblended and reconstructed data; and difference between input (unblended and well-sampled data) and output (deblended and
reconstructed data). Data with randomly designed operators are shown in the odd rows, whereas ones with optimized operators are in the
even rows. The top two rows are data in common shot domain, while the bottom two rows are ones in common detector domain. Optimized
operators achieve an SNR of 11.22 dB, whereas randomly designed operators obtain an SNR of 8.83 dB.
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Figure 9 SNR values from different models. Blue circles indicate SNRs
from optimized designs, while red crosses indicate SNRs from random
designs. For results represented by blue circles, sampling and blending
operators are established with model 1 and then applied to other
models.

difference in the SNR among models is presumably at-
tributable to the subsurface complexity that varies from one
model to another. For instance, models 6–8 tend to have sev-
eral crossing events that likely make deblending and recon-
struction more challenging. On the other hand, few events are
recognizable in models 2–5. Nevertheless, designs with opti-
mized operators show better deblending and reconstruction
results for all models. This suggests that optimized operators
using our approach possibly enhance these processes for an
area having similar subsurface responses. This implies that
optimization at certain locations representing the area of in-
terest sufficiently provides effective operators applicable to the
entire field without the need for the location-by-location up-
date of the survey parameters. This example hence highlights
the potential extensibility of the method towards field-wide
implementation.

Example 3: viability of the approach

Mosher, Kaplan and Janiszewski (2012) proposed a way to
design a survey geometry allowing for the optimum data re-
construction of irregularly sampled data to implement the con-
cept of compressive sensing. Their approach utilizes Monte
Carlo simulation and subsequently selects a survey geometry
showing the best data recovery among several hundreds of re-
alizations. In this respect, we make a comparison among four
different optimization schemes: (1) genetic algorithms (GAs)
with a repeated encoding sequence (RES), (2) GAs without an
RES, (3) Monte Carlo simulation with an RES and (4) Monte

Carlo simulation without an RES. For a fair comparison in
terms of computation time, we apply the same number of
realizations, 800.

Blended dispersed source array data are numerically sim-
ulated using the same blending performance indicator and the
same numbers of detectors and sources. Each blended shot
record employs 600 m spatial separation between two sources
(Table 2). Figures 13 and 14 show comparisons among four
optimization schemes in common shot and detector domain.
From top to bottom, the rows correspond to: (1) GAs with
an RES, (2) GAs without an RES, (3) Monte Carlo simula-
tion with an RES and (4) Monte Carlo simulation without an
RES. Each result obtains a higher signal-to-noise ratio (SNR)
compared to the use of a random realization, e.g. an SNR of
8.36 dB from data with randomly designed operators in Fig. 6.
However, a certain difference among them is recognizable in
the SNR values: 10.92, 10.17, 10.22 and 9.63 dB respectively,
although the number of realizations is the same. With an RES,
both GAs and Monte Carlo simulation achieve a higher SNR,
implying that an RES helps to efficiently find solutions within
the limited number of realizations by reducing the problem
space. A comparison between GAs and Monte Carlo simula-
tion confirms that the ability of the evolution process derived
from stochastic operators in GAs enables us to quickly reach
acceptable solutions. With a sufficient number of realizations,
Monte Carlo simulation would provide a similar outcome to
GAs. Additionally, an RES would become ineffective, as it
adds a constraint to the size of the search space. However,
achieving ‘a sufficient number’ is unfortunately quite unre-
alistic unless an unlimited amount of resources, budget and
time are available. As a consequence, both GAs and the RES
contribute to make the proposed approach viable to update
blending and spatial sampling operators in an effective and
efficient manner.

D I S C U S S I O N

Although the use of random realizations is still a common
practice to embed irregularity into survey parameters, some
recent studies have proposed to manage it particularly for
the implementation of the compressive sensing concept. As
previously mentioned, Mosher et al. (2012) utilized Monte
Carlo simulation to find irregular acquisition geometries al-
lowing for optimum data recovery from several hundreds of
realizations. Jamali-Rad et al. (2016) proposed a way to en-
hance data reconstruction of sparsely sampled data through
optimizing the spatial locations of detectors and sources. The
principle of their approach is to find survey geometries that
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Figure 10 Comparison between optimized and randomly selected survey designs from model 1. Three columns differentiate: blended and
irregularly sampled data; deblended and reconstructed data; and difference between input (unblended and well-sampled data) and output
(deblended and reconstructed data). Data with randomly designed operators are shown in the odd rows, whereas ones with optimized operators
are in the even rows. The top two rows are data in common shot domain, while the bottom two rows are ones in common detector domain.
Optimized operators achieve an SNR of 10.92 dB, whereas randomly designed operators obtain an SNR of 8.36 dB.
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Figure 11 Comparison between optimized and randomly selected survey designs from model 3. Three columns differentiate: blended and
irregularly sampled data; deblended and reconstructed data; and difference between input (unblended and well-sampled data) and output
(deblended and reconstructed data). Data with randomly designed operators are shown in the odd rows, whereas ones with optimized operators
are in the even rows. The top two rows are data in common shot domain, while the bottom two rows are ones in common detector domain.
Optimized operators achieve an SNR of 13.25 dB, whereas randomly designed operators obtain an SNR of 10.78 dB.

C© 2018 European Association of Geoscientists & Engineers, Geophysical Prospecting, 67, 1498–1521



Blended-acquisition design of irregular geometries 1515

Figure 12 Comparison between optimized and randomly selected survey designs from model 6. Three columns differentiate: blended and
irregularly sampled data; deblended and reconstructed data; and difference between input (unblended and well-sampled data) and output
(deblended and reconstructed data). Data with randomly designed operators are shown in the odd rows, whereas ones with optimized operators
are in the even rows. The top two rows are data in common shot domain, while the bottom two rows are ones in common detector domain.
Optimized operators achieve an SNR of 8.94 dB, whereas randomly designed operators obtain an SNR of 7.25 dB.
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Figure 13 Comparison among different optimization schemes in common shot domain. Each row corresponds to different optimization scheme:
GAs with an RES (a–c); GAs without an RES (d–f), Monte Carlo simulation with an RES (g–i); and Monte Carlo simulation without an
RES (j–l). Three columns differentiate: blended and irregularly sampled data; deblended and reconstructed data; and difference between input
(unblended and well-sampled data) and output (deblended and reconstructed data). SNR values are 10.92 dB for GAs with an RES; 10.17 dB
for GAs without an RES, 10.22 dB for Monte Carlo simulation with an RES; and 9.58 dB for Monte Carlo simulation without an RES.
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Figure 14 Comparison among different optimization schemes in common detector domain. Each row corresponds to different optimization
scheme: GAs with an RES (a–c); GAs without an RES (d–f), Monte Carlo simulation with an RES (g–i); and Monte Carlo simulation without an
RES (j–l). Three columns differentiate: blended and irregularly sampled data; deblended and reconstructed data; and difference between input
(unblended and well-sampled data) and output (deblended and reconstructed data). SNR values are 10.92 dB for GAs with an RES; 10.17 dB
for GAs without an RES, 10.22 dB for Monte Carlo simulation with an RES; and 9.58 dB for Monte Carlo simulation without an RES.
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can minimize the maximum mutual coherency of a dictionary
matrix such that densely sampled data can be effectively recov-
ered from sparsely sampled data. Campman et al. (2017) also
showed its applicability to design activation times of over-
lapped sources instead of the use of time dithering from a
random realization. Additionally, Wu, Blacquière and Groen-
estijn (2015) introduced blended acquisition using shot repe-
tition that activates multiple shots at the same location within
a short time interval. They suggested that the design of shot-
repetition codes enables effective deblending by making acti-
vation times of repeated shots spatially inhomogeneous and
uncorrelated.

Nevertheless, few studies have attempted to design both
blending and sampling operators. Our study demonstrates
that the simultaneous optimization of these operators lead-
ing to an improvement in deblending and data reconstruc-
tion is attainable. Additionally, numerically simulated exam-
ples highlight several aspects of the value of the proposed
workflow. First, the method is widely applicable. Our for-
ward modelling can accommodate various types of encoded
signatures. This accordingly enables us to simulate several
scenarios that resemble acquisition in different environments.
The inverse model then makes robust deblending and recon-
struction of these data achievable, as described in Ishiyama
et al. (2017). Genetic algorithms (GAs) along with a repeated
encoding sequence (RES) allow for the simultaneous update of
blending and sampling operators and subsequently derive an
optimum design for scenarios having various blending codes
coupled with spatial sampling criteria. Second, the results in-
dicate the potential extensibility of our approach. The opti-
mization for given locations that can represent the area of
interest sufficiently provides effective operators applicable to
the entire field. By using an RES, the problem space becomes
almost irrelevant to the size of a survey as the optimization
needs to deal with a single main code only. Then, long param-
eter sequences can be generated by the combination of four
base codes like a chain of four nucleobases in deoxyribonu-
cleic acid. By making use of the base pairs as an analogy, we
can simply apply different properties to sources that overlap
each other, which certainly makes deblending more effective.
These elements surely encourage us to pursue our research
further towards field-wide application. Third, the compari-
son among different optimization schemes illustrates that GAs
with an RES contribute to make the proposed approach vi-
able to update blending and sampling operators in a compu-
tationally affordable manner. As a consequence, the proposed
survey design workflow leads to the optimum acquisition sce-
nario, allowing for an enhancement in the deblending and data

reconstruction quality as well as providing significant eco-
nomical benefits.

The proposed workflow starts with unblended and well-
sampled data, X, that contain anticipated subsurface re-
sponses in the area of interest. This indicates that the approach
can derive optimum acquisition scenarios on field-by-field ba-
sis. The quality and quantity of the available subsurface in-
formation are crucial elements. A limited knowledge of sub-
surface geology potentially results in uncertain outcomes. On
the other hand, the existence of legacy seismic data and/or
suitable well data, e.g. density and sonic logs as well as time
to depth relationship with a sufficient coverage, is of great
help in generating reliable X. As discussed previously, the op-
timization for given locations that can represent the area of
interest sufficiently provides effective operators applicable to
the entire field. Therefore, our approach unlikely requires a
field-wide subsurface model, making the method computa-
tionally affordable. It is worth noting that proper attention is
required for areas where the deployment of detectors and/or
sources is impossible or limited, e.g. due to surface obstruc-
tions. To design survey parameters specifically for these areas,
separate analysis has to be performed by imposing constraints
that can incorporate necessary operational restrictions into
parameter vectors.

As discussed previously, various studies have proposed
different ways of deblending and data reconstruction, such as
the use of different inversion schemes and transform domains.
Although our forward and inverse models are highly applica-
ble to various acquisition scenarios, different deblending and
reconstruction schemes can be accommodated in the proposed
survey design workflow. Additionally, several optimization
approaches are adaptable for the update of survey parame-
ters. Monte Carlo simulation is a possible option, although it
may not be as effective as the proposed method as shown in
Figures 13 and 14. Algorithms having similar features to GAs
are seemingly more suitable such as ant colony and par-
ticle swarm methods; those having global and population-
based search. Although the use of these metaheuristics
does not necessarily guarantee the best output within a
practical computation time, acceptable solutions are expec-
tantly achievable as shown in this study. The application
of an RES to various types of optimization methods is
fairly simple and straightforward. In this study, we keep
the number of blending performance indicator as well as
the numbers of detectors and sources the same through
the course of the iteration. In the case where little ratio-
nale behind the choice of these parameters is available,
the process can start without a constraint on them. Once
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their ranges that possibly satisfy required data quality are
reasonably defined, we can then add the constraint to subse-
quent iterations for the further update of the survey param-
eters. Therefore, the contents of our survey design workflow
can be easily and freely altered according to the needs of users.
The selection can depend on the subsurface characteristics in
the area of interest, any technical preferences, operational con-
siderations and even available resources.

The proposed workflow can be utilized for a health,
safety and environment (HSE) perspective. For the last few
decades, the consideration and awareness towards HSE have
been increasingly recognized as the most essential element in a
seismic survey. Hence, it is even one of the factors determining
a way to acquire a seismic data. Bouska (2010) and Nakayama
et al. (2015) described that blended acquisition both in land
and marine cases does not require operational complexity;
thus, standard and common practices used in a conventional,
unblended fashion are sufficient for implementation without
the need for any specialized equipment or procedure. There-
fore, it is highly unlikely that the technique brings any major
safety concerns to field operations, while significant minimiza-
tion of the operational risk in the field is doubtlessly realizable
with a shorter survey duration, especially in land, seabed and
transition zone acquisition, where adding extra sources in-
troduces a subtle change in the crew size. The deployment
of fewer detectors and sources can also improve survey pro-
ductivity without any complicated procedures. Therefore, the
implementation of blending along with efficient acquisition
geometries can lead to a potential reduction in HSE incidents
in the field. The proposed workflow makes these technologies
more technically justifiable by deriving the optimum blending
and spatial sampling operators. Furthermore, our approach is
capable of embedding any operational constraints including
HSE regulations into the optimization scheme. This conse-
quently enables us to design a safer seismic survey without
jeopardizing geophysical and business objectives.

The emission of acoustic energy is often of concern, par-
ticularly in a marine environment. Seismic sources possibly
cause both injuries and behavioural disturbances to marine
life such as cetaceans and fish. The effects on marine mam-
mals are often regarded as a particular concern because a
certain number of species rely critically on sound for orien-
tation, food finding, and communication (Tyack and Clark
2000). The use of fewer sources surely reduces the areal acous-
tic footprint leading to less total acoustic energy disposed to
the environment. In addition to sound exposure level over
the duration of the survey, the level of the peak amplitude
in the source wavefield, independent of the survey duration,

is another concern that is a potential threat to marine life.
Conventional explosive sources instantaneously emit signif-
icant amount of energy at broad frequency ranges, e.g. by
the synchronization of clustered air guns. In this respect, the
use of encoded signatures is also of help in reducing the peak
amplitude of the source energy without adversely affecting the
subsurface illumination. The proposed workflow helps to find
the blending operator including technically and environmen-
tally favourable encoded signatures. In addition, the spatial
distribution of the detectors and encoded sources can be op-
timized to comply with HSE requirements while ensuring the
quality of the subsequent deblending and data reconstruction.

There are inherent operational difficulties in carrying out
a seismic survey according to a plan precisely. Certain ac-
quisition errors in D, S and/or � are presumably inevitable
in the field operation. The iteration process in GAs provides
some insights into the sensitivity of the proposed approach
with respect to acquisition errors. A significant change in the
objective function values from one generation to the next is
rarely observable near the stage of termination. Additionally,
a certain number of solutions within the last a couple of gen-
erations show small variations in parameters as compared
to the optimum one, which accounts for slight differences in
objective function values among them. This is presumably at-
tributable to the fact that they are generated from the same
parental solutions because of the selection process and the
elitist replacement utilized in our approach where the better
solution employs the higher expected selection probability,
and the best solutions in a given generation still survive into
the subsequent generation. A comparison among these solu-
tions infers possible consequences caused by minor or partial
alteration in the optimized survey design. Assuming that this
situation can be considered as the case where the optimum
solution becomes one of the similar solutions in the last a
couple of generations, a drastic degradation in the deblending
and data reconstruction quality would be not incurred as these
solutions employ similar objective function values. Therefore,
this possibly implies that minor acquisition errors in the op-
timized design still provide close to the anticipated result. On
the other hands, an undesired result may arise from a large
discrepancy between actual and planned parameters as it pos-
sibly corresponds to an alteration of the optimum solution
to one in a far-separated generation. Further analysis is ob-
viously worthwhile to investigate and quantify significances
of acquisition errors with taking practical and operational
perspectives into consideration. This should deserve one of
our future works to further enhance the applicability of the
proposed method.
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CONCLUSIONS

We present a workflow to design the survey parameters related
to blending as well as detector and source sampling. Through
the workflow, blending and spatial sampling operators are it-
eratively and simultaneously optimized to find solutions lead-
ing to an improvement in the deblending and reconstruction
quality. The method is widely applicable. It can accommo-
date various blending and spatial sampling schemes that can
describe different acquisition scenarios. Our approach is ex-
tensible. The updated acquisition parameters for the given lo-
cation(s) that can represent the area of interest sufficiently pro-
vide effective operators applicable to the entire field. Genetic
algorithms along with an repeated encoding sequence con-
tribute to making the proposed approach viable. The blending
and sampling operators can be updated in a reasonable com-
putation time. The proposed survey-design workflow conse-
quently provides an optimum acquisition scenario that enables
us to realize the benefit of blending and efficient spatial sam-
pling; thereby enhancing the survey productivity, managing
budgetary constraints, minimizing health, safety and environ-
ment exposure in the field, as well as delivering satisfactory
data quality.
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