

Delft University of Technology

Anticipatory Vehicle Routing for Same-Day Pick-up and Delivery using Historical Data
Clustering

van Lochem, Jelmer; Kronmueller, Maximilian; Hof, Pim Van t.; Alonso-Mora, Javier

DOI
10.1109/ITSC45102.2020.9294424
Publication date
2020
Document Version
Final published version
Published in
Proceedings of the IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020

Citation (APA)
van Lochem, J., Kronmueller, M., Hof, P. V. T., & Alonso-Mora, J. (2020). Anticipatory Vehicle Routing for
Same-Day Pick-up and Delivery using Historical Data Clustering. In Proceedings of the IEEE 23rd
International Conference on Intelligent Transportation Systems, ITSC 2020 Article 9294424 IEEE.
https://doi.org/10.1109/ITSC45102.2020.9294424
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ITSC45102.2020.9294424
https://doi.org/10.1109/ITSC45102.2020.9294424

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Anticipatory Vehicle Routing for Same-Day Pick-up and Delivery using
Historical Data Clustering

Jelmer van Lochem1,2, Maximilian Kronmueller1, Pim van ’t Hof2 and Javier Alonso-Mora1

Abstract— In this paper we address the problem of same-
day pick-up and delivery where a set of tasks are known
a priori and a set of tasks are revealed during operation.
The vehicle routes are precomputed based on the known and
predicted requests and adjusted online as new requests are
revealed. We propose a novel anticipatory insertion method
which incorporates a set of predicted requests to beneficially
adjust the routes of a fleet of vehicles in real-time. Requests
are predicted based on historical data, which is clustered in
advance. We exploit inherent patterns of the demand, which
are captured by historical data and include them in a dynamic
vehicle routing solver based on heuristics and adaptive large
neighborhood search. The proposed method is evaluated using
numerical simulations on a variety of real-world problems
with up to 1655 requests per day. Their degree of dynamism
ranges from 0.70 to 0.93. These instances represent dynamic
multi-depot pickup and delivery problems with time windows.
The method has shown to require less driven kilometers than
comparable methods.

I. INTRODUCTION
The transportation of people and goods in a reliable,

efficient and timely manner has grown to be more important
than ever. Roads and cities are becoming increasingly
congested and the impact of greenhouse gasses can already
be observed. The need for controlling transportation systems
and specifically fleets of vehicles more efficiently is therefore
steadily increasing. The family of problems tackling such
situations is called vehicle routing problems. A subclass are
stochastic and dynamic vehicle routing problems (SDVRP),
which are characterized by the reveal of information during
operation and the stochastic nature of it. A broad overview
summarizing the last three decades can be found in Psaraftis
et al. [1]. If orders need to be fulfilled before the end
of the current day we often call this situation same-day
delivery (SDD). Previous work has shown that anticipating
the future can improve the efficiency of dynamic vehicle
routing problems. In this work we show the potential of using
historical data for predictive same-day deliveries.

A. Related Work

The field of anticipatory routing attempts to solve
DVRPs by anticipating additional requests and subsequently
adjusting routes according to these expectations.

This research was supported in part by ORTEC, Amazon Research Award
and Ahold Delhaize. All content represents the opinion of the author(s),
which is not necessarily shared or endorsed by their respective employers
and/or sponsors.

1 Department of Cognitive Robotics, Delft University of Technology,
2628 CD Delft, The Netherlands (e-mail: me@jelmervanlochem.nl;
m.kronmuller@tudelft.nl; j.alonsomora@tudelft.nl).

2 ORTEC B.V., 2719 EA Zoetermeer, The Netherlands (e-mail:
pim.vanthof@ortec.com)

Van Hemert and La Poutre [2] define regions where
requests are likely to occur as fruitful regions and selectively
route vehicles trough those regions. Ghiani et al. [3]
propose sampling requests from an assumed future arrival
distribution and add these sampled requests to the current
problem definition. Both insert newly revealed requests in
their current solution. Changing routes prior to solving by
incorporating a representation of the expected request is
called anticipatory insertion.

Bent and Van Hentenryck [4] introduce the multiple
scenario approach (MSA), which creates different scenarios
by sampling requests from an assumed future arrival
distribution multiple times. Upon arrival of an additional
request, the best insertion location within all scenarios
is determined. The insertion location which is best most
frequently, among 50 scenarios using a consensus function,
is then chosen. Azi et al. [5] and Voccia et al. [6] applied
MSA to solve variations of SDD. Ghiani et al. [7] compared
the performance of anticipatory insertion to the multiple
scenario approach in solving the dynamic and stochastic TSP.
They concluded that anticipatory insertion offers comparable
performance to MSA while requiring less computational
resources.

Additional strategies are so called waiting strategies which
keep vehicles waiting at locations for which nearby future
requests are expected. Thomas [8] shows that in a single
vehicle case, on instances with up to 50 customers, waiting
strategies which make use of stochastic information can
improve upon strategies which do not. Ichoua et al. [9] show
comparable results on larger problem instances with up to 6
vehicles and 200 customers.

A common shortcoming of all mentioned methods is
that they use identical assumed arrival distributions for
their predictions and their expectation of additional future
requests. The work in this paper differs by deriving
the predictions from historical data and testing them on
untouched test sets. Further, the problem instances solved
here are considerably larger than the ones solved in the
mentioned papers.

B. Contribution

We propose a method for anticipatory routing, which
derives predicted requests from historical data. The method
does not rely on assumed arrival probabilities but builds on
patterns of the demand captured by historical data. Further,
we experimentally evaluate the performance of the proposed
approach.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2021 at 10:04:02 UTC from IEEE Xplore. Restrictions apply.

The remaining paper is organized as follows. Section
II introduces a formulation of the underlying problem. In
Section III the proposed method is described. Section IV
presents the performed experiments and the corresponding
results. The paper is concluded in Section V.

II. PROBLEM FORMULATION

The same-day delivery problem we face in this work can
be described as a dynamic multi-depot pickup and delivery
problem with time windows. This section first formally
introduces the static problem definition in Section II-A.
Secondly, the dynamic problem is described in Section II-B
based on the definition of the static problem.

A. Static Problem

Formally, let G = (N,A) be a directed graph where N
defines a set of nodes and A defines a set of arcs. N consists
of n pickup nodes (P), n corresponding delivery nodes (D),
m vehicle starting nodes and m end nodes. R defines a set
of requests of size n where each request ri is defined by
the pickup node Ni and delivery node Nn+i. Each pickup
node Ni has an associated positive load qi which should be
picked up at that node. This load is required to be delivered
to its corresponding delivery node Nn+i which means its
associated load qn+i has the same value, only negative. All
pickup and delivery nodes also have a non-negative service
duration di which defines for how long a vehicle should stay
at node Ni before it is considered to be serviced. The service
of each node Ni should start within a uniquely configurable
time window starting at ei and ending at li. Let K define a
set of vehicles of length m where each vehicle vk should
start its route at starting node N2n+k and end its route
at end node N2n+m+k. Furthermore each vehicle vk has
a limited capacity equal to Qk. Indirectly, each vehicle vk
also has a time window during which it is able to service
pickup and deliver nodes. This time window is defined by the
time windows of the start and end node of the route. More
specifically, vehicles may only depart from their starting node
N2n+k after a time e2n+k and should be at their end node
before a time l2n+m+k. Lastly, all arcs in A from node Ni

to node Nj are defined by an associated travel cost ci,j and
travel time ti,j . The objective of the problem is to find a set
of routes, of minimal traveling cost, servicing all pickup and
deliver nodes while meeting all constraints. The problem,
using a three-index vehicle flow formulation, can be defined
as described by Equations 1 to 17.

min
xi,j

∑
k∈K

∑
i∈N

∑
j∈N

cki,jx
k
i,j (1)

subject to :

xk
i,j ∈ {0, 1} i ∈ N, j ∈ N, k ∈ K (2)

xk
i,i = 0 i ∈ N, k ∈ K (3)∑

k∈K

∑
j∈N

xk
i,j = 1 i ∈ P (4)

∑
j∈N

xk
j,i −

∑
j∈N

xk
i,j = 0 i ∈ P ∪D, k ∈ K (5)

∑
j∈N

xk
i,j −

∑
j∈N

xk
n+i,j = 0 i ∈ P, k ∈ K (6)

xk
2n+l,j = 0 k ∈ K, l ∈ K\{k}, j ∈ N (7)

xk
i,2n+m+l = 0 k ∈ K, l ∈ K\{k}, i ∈ N (8)∑

j∈N
xk
2n+k,j = 1 k ∈ K (9)

∑
j∈N

xk
j,2n+k = 0 k ∈ K (10)

∑
i∈N

xk
i,2n+m+k = 1 k ∈ K (11)

∑
j∈N

xk
2n+m+k,j = 0 k ∈ K (12)

Bk
j ≥

(
Bk

i + di + ti,j
)
xk
i,j i ∈ N, j ∈ N, k ∈ K (13)

Bk
i + di + ti,n+i ≤ Bk

n+i i ∈ P, k ∈ K (14)

ei ≤ Bk
i ≤ li i ∈ N, k ∈ K (15)

Qk
j ≥

(
Qk

i + qj
)
xk
i,j i ∈ N, j ∈ N, k ∈ K (16)

max(0, qi) ≤ Qk
i ≤ min(Qk, Qk+qi) i ∈ N, k ∈ K (17)

The objective function (Equation 1) calculates the total travel
cost. The total travel cost is the sum over the individual costs
of all traversed arcs. The set of binary variables xk

i,j(i ∈
N, j ∈ N, k ∈ K) indicate which arcs from node Ni to
node Nj are traversed by each vehicle vk. The objective
function is subject to multiple constraints. The first set of
constraints (2) ensures that the set of variables xk

i,j can only
be binary. Constraints (3) ensure that all arcs have different
starting and end nodes. Constraints (4) ensure that each
pickup is only served once by a single vehicle. Constraints
(5) ensure that each individual pickup and delivery node has
as many arcs towards it as there are arcs originating from
it. Constraints (6) ensure that for each vehicle the number
of arcs originating from a delivery node is equal to the
number of arcs originating from its corresponding pickup
node. Together constraints (4), (5) and (6) ensure that each
pickup is assigned to a single vehicle, that the corresponding
delivery is assigned to the same vehicle and that continuous
routes are formed. Constraints (7) ensure that the starting
node for each vehicle can only be serviced by its appropriate
vehicle. Similarly, constraints (8) ensure that the end node for
each vehicle can only be serviced by its appropriate vehicle.
Constraints (9), (10) ensure that a single arc originates from
each start node and no arcs go towards each of them, forcing
them to be the starting nodes. Similarly, constraints (11), (12)
ensure that a single arc goes towards each end node and no
arcs originate from each of them, forcing them to be the
end nodes. Constraints (13) ensure that the time between
the start of service of two nodes, when an arc occurs, is at
least equal to the traveling time between the two nodes and

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2021 at 10:04:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Schematic overview of our solution approach.

the service duration of the first node. These constraints also
ensure that sub-tours are eliminated. Constraints (14) ensure
that each pickup node is serviced before its corresponding
deliver node. Constraints (15) ensure that the start of service
for each node is within its defined time window. Constraints
(16) ensure that the load on board of each vehicle after
servicing a node is at least equal to the load it had on board at
the previous node plus the load of the node it just serviced.
Together with constraints (17) this ensures that the upper
bound on the capacity of each vehicle is not exceeded. This
three-index vehicle flow formulation is similar to Cordeau
and Laporte [10], but it additionally allows vehicles to have
unique start and end locations, different from a single depot
case.

B. Dynamic Problem
The static problem described in Section II-A becomes

dynamic with the introduction of a release time ki for
each request at which it becomes known. The operation is
carried out along a time dimension, on which these events
occur. As a result the static problem definition will change
at discrete time events and many updated static problem
variations are required to be solved consecutively.

III. METHOD
We propose an anticipatory insertion method which

incorporates a set of predicted requests prior of solving.
Requests are predicted based on historical data, which
is clustered in advance. We exploit inherent patterns in
the demand captured by the historical data. Additionally,
we developed a dynamic vehicle routing solver which
makes use of a range of heuristics and an adaptive large
neighborhood search. We divide our solution approach into
three different components: Predicting requests (Predictor),
Section III-A, incorporating, replacing and removing
requests (Processing), Section III-B, and solving the resulting
problem (Solver), Section III-C. Our solution approach is
graphically summarized in Figure 1.

A. Request Prediction
The basic idea for request prediction is to group similar

historical requests such that potential patterns in their

occurrence can be exploited. The process consists of three
parts: First, historical requests are clustered on relevant
dimensions to create groups named request types. Second,
the number of occurrences of each request type is predicted
using a prediction model. Lastly, the predicted number of
requests for each request type are generated.

Request types are generated by clustering historical
requests using hierarchical agglomerative complete linkage
clustering (HACLC) [11]. HACLC starts with each object
being its own cluster. Next, the two clusters which have
the minimum distance to each other, using a predefined
similarity measure, are merged into a new single cluster. The
distance between two clusters is defined by the maximum
distance between two objects belonging to either one of the
clusters. This is done iteratively until a predefined maximal
distance is reached. By choosing this maximal distance the
final number and composition of the clusters can be tuned. A
set of requests is first clustered on a portion of the relevant
dimensions to separate the complete set into multiple subsets.
These smaller subsets are then further separated. We use 10
subsequent levels of clustering. The similarity measures are
individually set on each cluster level as a percentage of the
evaluated dimension, for example, 10% of the median trip
distance. A visualization of HACLC in one dimension is
shown in Figure 2. After the generation of the request types,
the number of future occurrences during a time frame for
each request type are predicted. As our prediction model
we use the Relative Frequency of Occurrence (rfo), also
called empirical probability. It describes the ratio of the
number of outcomes in which a specified event occurs with
respect to the total number of trials. The number of trials
is determined by the number of comparable time frames
available in historical data. Lastly, the predicted number of
requests for each request type are generated. The nearest
node of the road network to the mean of all requests
belonging to a request type is used as the representation of
the corresponding request.

B. Incorporation of Predicted Requests

Predicted requests are used to alter the solution of a
VRP such that later appearing requests can more likely
be served more efficiently when they become known. The

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2021 at 10:04:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Visualization of hierarchical clustering. The red
dashed line visualizes the chosen measure of similarity at
which the clusters are cut. This determines the number and
composition of the clusters.

incorporation procedure of predicted requests is three-fold:
Adding, replacing and removing requests. These methods
ensure that any structure within the solution of a dynamic
vehicle routing problem, imposed by the presence of
predicted requests, is preserved.

Before the start of the operation the predicted requests are
added to the already known ones, together they build the
starting point of solving the routing problem. Each time a
new request is placed during operation, it is determined if
one of the incorporated predicted requests is similar enough
to be replaced in the current solution and if so, which one.
To enable this operation, a request classifier is introduced.
This classifier uses the generated request types, cluster levels
and similarity measures as the prediction process to match
new requests to predicted requests. In case an additional
request is dissimilar to all request types, the additional
request is considered to not match and thus no predicted
request is removed. If a single request type remains as a
matching candidate after classification, a predicted request
belonging to that request type is replaced if one resides
within the current solution. If multiple request types remain
as candidates, the one for which the cluster center is closest
to the additional request is chosen as the final candidate.
If a predicted request is indeed replaced, the prediction
is removed and the corresponding new request is directly
inserted using sequential cheapest insertion.

Unmatched predicted requests are removed according to
two criteria. First, predicted requests are removed when the
current time exceeds the time at which they were supposed to
be made known. Predicted requests are also removed when
a vehicle is about to start traveling towards their pickup
location.

C. Solver Design

The solver passes through three phases, Construction [12],
[13], Local Search (LS) [13], [14] and Ruin & Recreate
(R&R) [12], [15], [16], [17]. Construction and LS are only
performed once at the beginning, while R&R is performed
over and over again as new requests arrive. This process is
depicted in Figure 3.

The construction method is required to create an initial
solution. We developed a heuristic which makes use of the
relatedness of requests among themselves. It tries to insert
requests which are clustered together into a single route.
This method is therefore named cluster insertion. It shows

Fig. 3: Phases of the developed vehicle routing solver. Each
block represents a process. Vertically stacked blocks are
processes that are executed in parallel.

performance comparable to parallel cheapest insertion while
requiring approximately ten times less computation time.

The LS phase uses the rearrange, shift and 2-opt operators.
The R&R phase is inspired by the procedure described by
Ropke and Pisinger [12]. We deviated from their approach
by implementing several additional removal methods as
proposed by Laporte et al. [17]. We additionally use all
removal methods equally often. For insertion heuristics we
chose the frequency to use them based on their computation
time, fast ones are used in the beginning, if the solution
doesn’t improve for several R&R phases more expensive
heuristics are used. Finally, the R&R process is parallelised
by letting multiple processes run simultaneously. When any
of these processes finds a solution improvement during an
iteration, the improved solution is directly copied to a global
best solution shared by all procedures. For this solution a
short LS phase is applied in advance of continuing the R&R
phase.

IV. EXPERIMENTAL ANALYSIS

A. Experimental Setup

To perform a qualitative analysis of the performance of
our proposed method (anticipatory method (A)), we compare
the implementation to three other optimization strategies for
solving DVRPs. The implementations of these strategies use
parts of the same solver as described in Section III-C. This
allows for a relatively fair comparison which is not subject
to the quality of the implementation. The three comparison
strategies are:
• Reactive + Cheapest Insertion (CI) This strategy is

added to serve as an upper bound. The strategy consists
of creating an initial solution based on the requests
which are known before the operation starts. The solver
goes through the construction and following LS phase
to create the initial solution. To incorporate additional
requests only a sequential cheapest insertion heuristic is
used to insert requests into the solution as they arrive.
No further re-optimization is performed. This strategy
is often also referred to as the greedy approach.

• Reactive + R&R (RR) This strategy is added to
serve as a close competitor to the anticipatory method.
The strategy consists of constructing an initial solution

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2021 at 10:04:02 UTC from IEEE Xplore. Restrictions apply.

(a) Pickup locations (b) Drop off locations

Fig. 4: Pick up and drop off locations as they are distributed
of the combined instance A and F.

followed by the LS phase. Dynamic requests are
incorporated using the sequential cheapest insertion
heuristic as in the previous strategy. Additionally, R&R
processes are run which constantly try to re-optimize
the part of the solution which has not yet been realized
or is being realized. This strategy is also referred to as
the reactive approach.

• Full information (FI) This strategy is added to serve
as a lower bound. During this strategy it is assumed that
all additional requests are already known right from the
start. The initial and final solution is therefore created
based on all requests. In creating this solution the solver
goes through the phases as visualized in Figure 3.

The problems to be solved are a range of real-world problem
instances with up to 1655 requests per day. These instances
represent dynamic multi-depot pickup and delivery problems
with time windows. All four strategies are simulated 10 times
on the 10 different instances representing one day (A - J), in
total representing the workdays of two weeks. The data was
provided by a transportation company who deals with urgent
deliveries of flowers to and from the growers, distributors and
auctions in The Netherlands and Belgium. A visualization
of the pick-up and drop-off locations is shown in Figure
6. 500 vehicles are assumed to be available from 06:00:00
AM to 23:59:59 PM located at five depot locations. Each
vehicle is required to return to the same depot location as
the one it originated from. Furthermore, vehicles are assumed
to have a capacity of 43.0, which equals the maximal size
of requests. The pickup and deliver time windows end later
than 06:00:00 AM and start before 18:00:00 PM. The time
window length varies from 1h to nearly 24h. The degree of
dynamism [18] of the described instances ranges from 0.70
to 0.93. Within the simulation it is checked every 30 seconds
whether additional requests have arrived and if so, these are
added to the problem definition; in between the problem
is considered to be static. Van Lochem [19] contains more
details on some aspects of this paper, including decisions
on methods, actual implementations, details of the used data
set, details on carrying out the experiments and parameter
choices.

B. Results

The results on the instances where the anticipatory method
performs best (instance F) and worst (instance I) as compared
to the reactive approach are shown in Figures 5a and 5b.

(a) Best instance, F.

(b) Worst instance, I.

Fig. 5: Performance of different optimization strategies on
the best and worst instance. On the left it is shown how the
distance that is planned to be traveled during the entire day
evolves during the day for each strategy. Each separate line
represents a single simulation. On the right the distributions
of the total distance traveled at the end of the day for each
strategy are shown.

In each of these Figures, on the left, it is shown how the
amount of distance that is planned to be traveled during the
entire day evolves during the day, for each strategy. Each line
represents a single simulation. On the right the distribution
of the total distance that is required to be traveled by all
vehicles is summarized for each strategy. As only a relatively
small portion of the requests is known at 06:00:00 AM,
solutions of both the reactive and greedy approach require
relatively little distance to be traveled initially. As predicted
requests are added to the problem in the anticipatory method,
the initial solution requires more distance to be traveled.
The averaged results over all instances compared to the
full information strategy are shown in Figure 6a. Using the
greedy approach, on average, 109.32±9.09% more distance
is required to be traveled. The reactive approach, on average,
needs 15.40±2.75% and the anticipatory method, on average,
only requires 10.07± 3.52% more distance to be traveled as
compared to the full information strategy.
In comparing the performance of the reactive approach
and the anticipatory method it can be seen (Figure 5b),
than even when the anticipatory method performs worst, as
compared to the reactive approach, the confidence intervals
nearly overlap completely and only a small difference in the

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2021 at 10:04:02 UTC from IEEE Xplore. Restrictions apply.

(a) Relative differences (b) Quality of predictions

Fig. 6: Left: Relative difference in average distance that is
required to be traveled for three strategies as compared to the
full information strategy, on all instances. Right: Visualizing
the quality of the predictions using the anticipatory method
for instance A.

average distance traveled can be observed. It can therefore
be concluded that, on the evaluated instances and when
making use of the described solver, the anticipatory method
does not significantly perform worse in any case. When the
anticipatory method performs best however, as compared to
the reactive approach (Figure 5a), the confidence intervals do
not overlap at all and the anticipatory method significantly
outperforms the reactive approach. Using the anticipatory
method, on average, 4.58 ± 3.48% less distance is required
to be traveled. Additionally, the anticipatory method also
requires fewer vehicles to fulfill all requests. On average,
3.34± 0.74% fewer vehicles are required.

C. Prediction Quality

The improvement of the anticipatory method over the
reactive approach is closely linked to the prediction quality
of future requests. To evaluate this quality we first label new
requests according to the classifier described in Section III-B.
Subsequently, the quality of prediction is determined through
a comparison of the labels of the predicted requests and the
labels of the new requests. Figure 6b shows the amount of
correctly predicted requests for instance A against the rfo
as percentage of the total amount of received requests. It
can be seen that a larger portion of requests is predicted
correctly in case the rfo is relatively high. In total 78% of the
predicted requests for instance A were predicted correctly.
For all instances on average 61.8%, varying between 40%
and 80%, of the requests were predicted such that they
had a counterpart. This supports our hypothesis that similar
requests which previously have occurred according to certain
patterns will also occur according to the same patterns in
the future. If reality deviates from the observed patterns,
regardless of the cause, a relatively worse prediction is
generated and therefore likely worse results are obtained.

V. CONCLUSIONS

This work introduced an anticipatory insertion method that
uses predictions of future requests based on historical data.
First, a method for predicting requests based on historical
data was introduced. Second, methods for adding, replacing
and removing predicted requests are established. These
methods ensure that any structure within the solution of a

dynamic vehicle routing problem, imposed by the presence
of predicted requests, is preserved while re-optimization can
be performed to let the solution adapt to new information.
The solver combines anticipatory routing with an adaptive
variable large neighborhood search approach. The entire
method was evaluated on 10 real-world problem instances
with up to 1655 requests per day. The proposed anticipatory
routing method is able to improve upon a competitive
reactive approach by 4.58% on average in terms of the
distance that is required to be traveled.

REFERENCES

[1] Psaraftis, “Dynamic vehicle routing problems: Three decades and
counting - Networks - Wiley Online Library,” 2016.

[2] J. I. van Hemert and J. A. La Poutré, “Dynamic Routing Problems with
Fruitful Regions: Models and Evolutionary Computation,” in Parallel
Problem Solving from Nature - PPSN VIII, ser. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2004, pp. 692–701.

[3] G. Ghiani, E. Manni, A. Quaranta, and C. Triki, “Anticipatory
algorithms for same-day courier dispatching,” Transportation Research
Part E: Logistics and Transportation Review, vol. 45, no. 1, pp. 96–
106, Jan. 2009.

[4] R. W. Bent and P. Van Hentenryck, “Scenario-Based Planning
for Partially Dynamic Vehicle Routing with Stochastic Customers,”
Operations Research, vol. 52, no. 6, pp. 977–987, Dec. 2004.

[5] N. Azi, M. Gendreau, and J.-Y. Potvin, “A dynamic vehicle
routing problem with multiple delivery routes,” Annals of Operations
Research, vol. 199, no. 1, pp. 103–112, Oct. 2012.

[6] S. A. Voccia, A. M. Campbell, and B. W. Thomas, “The Same-
Day Delivery Problem for Online Purchases,” Transportation Science,
vol. 53, no. 1, pp. 167–184, May 2017.

[7] G. Ghiani, E. Manni, and B. Thomas, “A Comparison of Anticipatory
Algorithms for the Dynamic and Stochastic Traveling Salesman
Problem,” Transportation Science, vol. 46, no. 3, pp. 374–387, Aug.
2012.

[8] B. W. Thomas, “Waiting Strategies for Anticipating Service Requests
from Known Customer Locations,” Transportation Science, vol. 41,
no. 3, pp. 319–331, Aug. 2007.

[9] S. Ichoua, M. Gendreau, and J.-Y. Potvin, “Exploiting Knowledge
About Future Demands for Real-Time Vehicle Dispatching,”
Transportation Science, vol. 40, no. 2, pp. 211–225, May 2006.

[10] J.-F. Cordeau and G. Laporte, “The dial-a-ride problem: models and
algorithms,” Annals of Operations Research, vol. 153, no. 1, pp. 29–
46, Jun. 2007.

[11] D. Defays, “An efficient algorithm for a complete link method,” The
Computer Journal, vol. 20, no. 4, pp. 364–366, Jan. 1977.

[12] S. Ropke and D. Pisinger, “An Adaptive Large Neighborhood Search
Heuristic for the Pickup and Delivery Problem with Time Windows,”
Transportation Science, vol. 40, no. 4, pp. 455–472, Nov. 2006.

[13] O. Bräysy and M. Gendreau, “Vehicle Routing Problem with Time
Windows, Part II: Metaheuristics,” Transportation Science, vol. 39,
no. 1, pp. 119–139, Feb. 2005.

[14] C. Groër, B. Golden, and E. Wasil, “A library of local search heuristics
for the vehicle routing problem,” Mathematical Programming
Computation, vol. 2, no. 2, pp. 79–101, Jun. 2010.

[15] P. Shaw, “A new local search algorithm providing high quality
solutions to vehicle routing problems,” University of Strathclyde,
Glasgow, Technical Report, Jul. 1997.

[16] H. Li and A. Lim, “A Metaheuristic for the Pickup and Delivery
Problem with Time Windows,” Proceedings 13th IEEE International
Conference on Tools with Artificial Intelligence. ICTAI 2001, vol. 12,
no. 2, pp. 160–167, Dec. 2001.

[17] G. Laporte, R. Musmanno, and F. Vocaturo, “An Adaptive Large
Neighbourhood Search Heuristic for the Capacitated Arc-Routing
Problem with Stochastic Demands,” Transportation Science, vol. 44,
no. 1, pp. 125–135, Oct. 2009.

[18] K. Lund, O. Madsen, and J. Rygaard, “Vehicle Routing Problems with
Varying Degrees of Dynamism,” Technical University of Denmark,
Technical Report, Jan. 1996.

[19] J. Van Lochem, “Improving Dynamic Route Optimisation by making
use of Historical Data,” Master’s thesis, TU Delft, Apr. 2019.

Authorized licensed use limited to: TU Delft Library. Downloaded on February 08,2021 at 10:04:02 UTC from IEEE Xplore. Restrictions apply.

