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 A B S T R A C T

The digitalization era has introduced an abundance of data that can be harnessed to monitor and predict 
the health of structures. This paper presents a comprehensive framework for post-prognosis decision-making 
that utilizes deep reinforcement learning (DRL) to manage maintenance decisions on multi-component 
systems subject to imperfect repairs. The proposed framework integrates raw sensory data acquisition, 
feature extraction, prognostics, imperfect repair modeling, and decision-making. This integration considers 
all these tasks independent, promoting flexibility and paving the way for more advanced and adaptable 
maintenance solutions in real-world applications. The framework’s effectiveness is demonstrated through a 
case study involving tension-tension fatigue experiments on open-hole aluminum coupons representing multiple 
dependent components, where the ability to make stochastic RUL estimations and schedule maintenance actions 
is evaluated. The results demonstrate that the framework can effectively extend the lifecycle of the system while 
accommodating uncertainties in maintenance actions. This work utilizes the Value of Information to choose 
the optimal times to acquire new data, resulting in computational efficiency and significant resource savings. 
Finally, it emphasizes the importance of decomposing uncertainty into epistemic and aleatoric to convert the 
total uncertainty into decision probabilities over the chosen actions, ensuring reliability and enhancing the 
interpretability of the DRL model.
1. Introduction

The era of digitalization has offered a vast amount of data that 
should be processed accordingly to produce insightful information 
about the engineering assets’ current and future condition. Prognostics 
and Health Management (PHM) plays a pivotal role as being upcoming 
engineering field that analyzes the health condition of a structure and 
its components. The general concept of the PHM strategy is depicted 
in Fig.  1. Given a structure and its components, data are acquired 
from the placed sensors via one or more Structural Health Monitoring 
(SHM) techniques, which are stored in a central unit (e.g. computer). 
Subsequently, the data are processed and features are extracted by 
a feature extraction model. From the extracted features, one could 
either perform diagnosis (damage detection, localization) or progno-
sis, i.e. Remaining Useful Life (RUL) prediction. An intermediate step 
could also take place between these steps, which is the construction 
of a Health Indicator (HI). HI represents a unique characteristic de-
rived from SHM data, providing insights into the condition, whether 
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healthy or damaged, of the monitored structure or system [1]. After 
the prognostics phase, maintenance strategies should be considered and 
modeled before deciding which maintenance action suits each struc-
ture’s components, considering structural and operational conditions. 
Under the concepts of the PHM strategy, this type of decision-making 
is known as Post-Prognosis Decision-Making (PPDM) [2].

Although substantial research has been conducted on PHM, rela-
tively little attention has been devoted to the critical aspect of the 
PHM strategy: extending the useful life of structures through effective 
maintenance scheduling. This objective is the primary driver behind 
the development of prognostic models. The process of making decisions 
to prolong the operational life of structures and their components 
falls under the attention of PPDM. Despite PPDM being introduced 
differently, the most precise definition was proposed in [3], where 
PPDM is defined as the set of actions that should be optimally taken at a 
given time by satisfying a set of constraints and optimizing a set of objectives 
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formulated in an objective (cost) function, to overcome an undesirable 
upcoming predicted event.

Within the concepts of PPDM, decisions are being made given 
varying maintenance policies. These policies are rapidly evolving from 
corrective and preventive maintenance, where maintenance actions are 
taken after a failure occurrence or in a scheduled-based scenario, to 
Condition-based maintenance (CBM) that can eliminate the effects of 
unpredicted failure and optimize operations. CBM offers early warn-
ings of a potential failure, thus proactive decisions about a struc-
ture’s maintenance plan. Acquiring information from sensory data holds 
paramount significance in this context. Employing Machine Learning 
(ML) techniques to analyze this data facilitates the estimation of a 
structure’s present and future condition, particularly in terms of RUL.

The interconnectedness between PPDM and CBM (or Predictive 
Maintenance1) is readily apparent. Although PPDM is still in its infancy, 
several published works under the CBM umbrella can be found in the 
literature [4–11]. Nevertheless, these works either assumed a degra-
dation model for creating RUL trajectories or predicted deterministic 
RUL values which is not representative of a real-case scenario where 
structures are subject to stochasticity. Related works that considered 
RUL as the input to the PPDM can be divided into approaches that 
solve the decision-making problem either numerically or data-driven. 
The numerical approaches [8,9,12–15] form the cornerstones for con-
structing more complex PPDM strategies to tackle real-world problems. 
However, these models are usually tested in numerical examples that 
are much simpler and less dynamic than a real case. They often consider 
deterministic variables to describe the inputs, otherwise, it is very 
difficult to find an optimal solution.

These statements highlight that numerical approaches require do-
main knowledge and lots of adaptation and preprocessing to design 
an accurate model [16], thus lacking generalizability and robustness. 
For example, the authors in [8] followed a model-based PPDM strat-
egy for multi-component systems related to the aircraft industry with 
a limited stock of spare components. Their novelty lies in mainte-
nance planning for several repairable independent multi-component 
systems considering that spare parts are not always available. They 
added the cost of leasing parts from an external supplier when the 
aircraft shop ran out of spare parts. This strategy managed to schedule 
long-term horizons and incorporate many different variables. Despite 
their effectiveness in the aircraft industry, their approach assumes the 
available days for maintenance, leasing spare parts, and the repair 
process as deterministic values and not stochastic, which may give 
overconfidence to the decision-making model, hence increasing the gap 
between simulation and real-world applications. Similar works related 
to multi-component systems utilizing the 𝑘-out-of-𝑛 technique, which 
is a numerical approach, have been recently published [17–19] and 
evaluated on numerical examples.

As more data from varying sources are acquired and fused, PPDM 
solutions are rapidly evolving from numerical approaches to data-
driven [6,10,11,20–25], mainly through Reinforcement Learning (RL) 
after modeling the task as a Markov Decision Process (MDP) or
Partially-Observable MDP (POMDP). Data-driven approaches may in-
crease the accuracy and the future horizon on which the decisions 
take effect. In general, working with stochastic variables and noisy 
data leads to the need for ML models that are capable of capturing 
correlations between these variables and accurately approximating 
their probability distributions. When the demanding input and output 
data is large, deep learning models usually replace typical ML. In the 
context of decision-making, RL is replaced by deep RL (DRL), i.e. an 

1 In the literature related to PPDM, there is often confusion between CBM 
and Predictive Maintenance. Since PPDM predominantly relies on prognostics, 
it is frequently associated with Predictive Maintenance. However, some studies 
classify this under the broader category of CBM. Therefore, in this work, we 
will use the term CBM to encompass both approaches.
2 
ANN is used as a function approximation of the policy (responsible 
for state–action mapping) that needs optimization. Very recently, DRL 
emerged on PPDM to offer solutions in tasks with multi-component 
systems [4,6,8,11,26] where state and action spaces are large, mainly 
via utilizing the deep Q-Network (DQN) algorithm.

Recent advances in CBM frameworks have emphasized the inte-
gration of data-driven approaches with real-world maintenance con-
straints, enabling more informed and context-aware decision-making in 
engineering systems. Several works have explored stochastic degrada-
tion modeling, uncertainty-aware prognosis, and dynamic maintenance 
optimization in multi-component environments with imperfect repairs 
or operational limitations [27–29]. These studies collectively highlight 
the growing need for maintenance strategies that account not only for 
RUL predictions but also for the operational feasibility and impact of 
maintenance actions over time.

When considering maintenance decisions for PPDM, mostly perfect 
and imperfect maintenance scenarios have been examined. On the first 
hand, performing perfect maintenance, such as a perfect repair, is 
usually identical to replacing the structure with a brand-new one. Yet, 
the significant expenses associated with replacements have prompted 
a thorough exploration of the viability of repair techniques. On the 
other hand, imperfect maintenance restores the structure somewhere 
between the current condition before the repair, i.e. the As-Bad-As-Old 
(ABAO) condition, and the brand-new condition, i.e. the As-Good-As-
New (AGAN) condition. A limited number of studies has considered 
both perfect and imperfect repairs, with the majority being applied 
to numerical examples [13,19,30–32] rather than on real-world ap-
plications [33,34]. Moreover, all these works have one common lim-
itation; the lack of predicting a component’s health state after an 
imperfect repair, before the repair is actually performed, thus limiting 
maintenance scheduling optimization. This work marks the first time 
maintenance actions are scheduled within a horizon even after deciding 
on an imperfect repair in advance by considering the accumulated 
uncertainty.

The current work aligns closely with the concept of a selective main-
tenance policy. A selective maintenance policy refers to the strategic 
selection of a subset of components to maintain – within each avail-
able time slot or maintenance window – based on system condition, 
component criticality, and limited maintenance capacity. In scenar-
ios where maintenance slots are constrained and not all components 
can be serviced simultaneously, selective maintenance helps determine 
which components should be prioritized to maximize system reliability 
or cost-effectiveness [29]. Despite substantial research into PHM and 
related CBM strategies, relatively little attention has been devoted to 
dynamic selective maintenance decision-making under realistic uncer-
tainty. Most prior approaches oversimplify the complexity of real-world 
applications by assuming deterministic repair effects and constant slot 
availability.

A typical question in PPDM and generally in sequential decision-
making is related to how important the available information is to make 
a decision without requiring additional data. This is mathematically de-
scribed by the Value of Information (VoI) [35]. In PPDM literature, VoI 
is viewed as a gauge of the significance of transitioning to inspection 
tactics in addition to primary maintenance activities. For instance, the 
authors in [36] utilized the VoI analysis to facilitate the quantitative 
assessment of the expected net benefits of collecting new information 
for non-stationary stochastic or time-dependent decision environments 
modeled as POMDP with unknown uncertainties. They determined 
whether to use additional information from inspection actions before 
taking a maintenance action. Another work suggested improving the 
quality of maintenance decision-making with the help of three mainte-
nance and three inspection strategies using VoI with an application to 
a safety–critical marine structure [37]. The objective was to increase 
the lifetime of the structure by considering both maintenance decisions 
and inspections, if necessary. Maintenance decisions were derived via 
integrated crack information through Bayesian updating, thus adding 
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also a measure of the uncertainty. VoI has been additionally consid-
ered for making optimal maintenance decisions by taking into account 
imperfect maintenance scenarios [38–40]. However, these studies once 
more focused on numerical examples rather than realistic applications 
simplifying significantly the PPDM step.

To sum up, the existing literature on PHM reveals significant ad-
vancements in PPDM. However, despite these strides, several research 
gaps persist, indicating that PPDM remains in its nascent stages. Firstly, 
due to the limited number of works related to modeling the RUL 
behavior after an imperfect repair, existing PPDM frameworks that 
consider imperfect repairs are scheduling maintenance actions within 
a horizon until the point of planning that repair. Furthermore, none 
of the extant works have proposed a comprehensive framework capa-
ble of providing actionable decisions and quantifying the associated 
confidence or probability pertaining to the decision-making process. In 
other words, interpreting the confidence of the decision-making model 
in making decisions, especially within the DRL context, is missing from 
the literature related to PPDM. Additionally, a lack of research exists 
concerning the correlation between VoI, uncertainty quantification, and 
decision probabilities, which are pivotal in determining the optimal 
timing for acquiring new information within the PPDM paradigm. Fi-
nally, a thorough understanding of how various sources of uncertainty 
– epistemic and aleatoric – influence decision-making can significantly 
enhance our comprehension of the DRL model. This, in turn, facilitates 
more informed judgments regarding when to trust the model and when 
to defer to the expertise of a human specialist.

Addressing the aforementioned identified research gaps is impera-
tive for advancing the maturity and efficacy of PPDM methodologies 
within the broader domain of PHM. In this regard, this study proposes 
a novel framework related to PPDM based on DRL that works under the 
concepts of the PHM strategy. Particularly, the scientific contribution 
and novelty of this research can be summarized as follows:

• This research marks the first PPDM framework that schedules 
maintenance actions even after an imperfect repair has been 
planned by estimating the component’s health condition after the 
repair.

• The proposed framework deals with the uncertainty introduced 
by the stochastic RUL and imperfect repairs. The estimated uncer-
tainty is initially decomposed into epistemic and aleatoric, then 
is passed through the framework and is converted to probabilis-
tic decisions, thus offering interpretability and a better under-
standing of the maintenance actions being decided by the DRL 
model.

• The framework’s generalizability based on the user’s demands 
alongside the interpretation of the developed DRL model’s confi-
dence over its decisions provides a risk-averse policy. Based on 
the level of reliability the user demands, decisions taken with 
relatively low probabilities are transformed into an ‘I don’t know’ 
output message by the model instead.

• VoI guides the framework in determining the optimal times for 
acquiring new sensory data to refine its decisions, resulting in 
computational efficiency and significant resource savings. Simul-
taneously, it filters out the corresponding unsuccessful runs of the 
RL agent, guaranteeing reliable scheduling recommendations by 
the DRL model.

The remainder of this work is organized as follows. Section 2 focuses 
on constructing the entire framework related to PPDM. Section 3 
describes the experimental setup as a case study. The evaluation of 
the methodology is presented in Section 4 and in Section 5 the main 
findings and the limitation of the work are discussed.

2. Methodology

The entire process as described in Fig.  1 is particularly depicted in 
Fig.  2 for this study. After acquiring sensory data from each component 
3 
of the structure, features are extracted via a unique ANN architecture. 
Then these features are clustered via a deep clustering model. Subse-
quently, the clusters are fed to a prognostic model that estimates RUL 
under uncertainty. The predicted RUL is afterward fed to the imperfect 
repair model to predict the stochastic recovery of each component 
after the repair. This model can be extended for additional repairs as 
well, if the corresponding data are available. After formulating the 
PPDM task in Section 2.1, details related to developing the feature 
extraction, prognostic, and imperfect repair models can be found in 
Section 2.2. Having this information about recovery and predicted 
RULs of each component, the final step is to implement the PPDM 
task modeled as an MDP (firstly, as a POMDP and then converted to 
MDP) as described in Section 2.3, and solved via deep RL (Section 2.4). 
Fig.  3 depicts the necessary building blocks that form the framework 
scheme to consider for implementing the PPDM framework. Except for 
the prognostic and imperfect repair model, putting constraints on the 
decisions via action masking (Section 2.5) could improve the agent’s 
performance. Additionally, managing the introduced uncertainty and 
mapping it with the decisions (Section 2.6) is of paramount importance 
to attach interpretability to the framework. Finally, utilizing VoI assists 
in choosing the optimal time to acquire new information from sensors 
to make a new decision (Section 2.7).

2.1. Problem formulation

Before defining the problem, the terminology of several keywords 
should be defined. ‘Slots’ represent predefined time intervals in a 
schedule where maintenance actions can be implemented. Each slot has 
a ‘slot capacity’ which defines the maximum number of components 
that can be put simultaneously for maintenance. A ‘task’ refers to the 
problem PPDM should solve. A ‘horizon’ concerns a time range in which 
meaningful decisions are made.

The target of PPDM is to make optimal decisions for extending the 
useful life of each structure’s component, hence extending the lifetime 
of the structure. The current examined PPDM task considers a multi-
component system with dependent components. The dependency comes 
from the slot availability and capacity, meaning that not all compo-
nents can be maintained on the same day. Given the RUL predictions 
for each component of a multi-component system, decisions should 
be made inside a predefined horizon concerning when one or more 
maintenance actions should be taken. The decisions per component 
are ‘hold’, ‘imperfect repair’, or ‘replace’ corresponding to ‘do nothing’, 
perform an imperfect repair, and replace the component with a brand-
new one, respectively. Within the horizon, there are available slots with 
different capacities per day. The existing slots are not guaranteed to 
be available every day. An example of the task given two components 
(with green and red) is illustrated in Fig.  4. In Fig.  4(a), given the 
RULs of the two components and the corresponding available slots and 
their capacities (one, three, and two available slots respectively inside 
the horizon), the policy, i.e. the RL agent, should decide whether and 
when a maintenance action should be considered. When decisions have 
been scheduled, the horizon shifts to include the next available slot as 
shown in Fig.  4(b). Subsequently, the previous decisions are updated 
accordingly and a new decision is made for the newly available slot.

The difficulty of this task arises when an imperfect repair is decided 
as the estimated RUL after the repair will have a large uncertainty 
and the decisions thereafter might be untrustable. This highlights the 
importance of measuring this uncertainty and converting it to unbiased 
probabilities over the decisions. In this regard, a safety factor could 
be added to the framework, namely the probability threshold (𝑝𝑡ℎ𝑟𝑒𝑠ℎ) 
based on which it is shown whether the RL agent is confident about 
its decision or not. If the decision has a lower probability than 𝑝𝑡ℎ𝑟𝑒𝑠ℎ, 
then all the decisions from this step till the end of the horizon are 
transformed into ‘N/A’, meaning that the agent does not know what 
decision to make. This increases the reliability of the framework, 
especially since 𝑝  can be defined based on the user’s demands.
𝑡ℎ𝑟𝑒𝑠ℎ
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Fig. 1. Illustration of the PHM strategy.
Ideally, an existing scheduling should be updated only when the 
uncertainty of the agent towards making decisions is high. Reducing 
the frequency of acquiring new data, extracting features, applying prog-
nostics, and making decisions is of paramount importance for having 
a computationally efficient framework. Here comes the role of VoI in 
choosing which day should be the next to run the PPDM framework 
instead of running it daily.

Before framing PPDM via implementing each building block, it is 
crucial to highlight all the necessary assumptions:

1. Imperfect repairs restore the state of the structure to a point 
between ABAO and AGAN conditions, adhering to a truncated 
normal distribution [13,41,42]. Consequently, RUL following a 
repair will fall within the range of ABAO and AGAN conditions, 
neither surpassing the latter nor falling below the former. Addi-
tional sequential repairs guarantee a smaller recovery rate of the 
component than the previous repairs. 

2. The prognostic model operates independently of the repair
model. The inherent uncertainties are independent.

3. Every specimen, either with or without repair, it exhibits similar 
sensory data values at the start of each trajectory, as crack 
growth is not yet detectable. This indicates that the clustering 
assignments and the RUL estimations are expected to be similar 
at the beginning of each trajectory. 

4. Decisions should be made inside the horizon.
5. The task fails if any of the components’ RUL drops below a 
predefined threshold (𝑅𝑈𝐿𝑡ℎ𝑟𝑒𝑠ℎ).

6. The available slots and the corresponding capacities are static, 
i.e. if they are defined, they cannot change.

7. To be compatible with the available slots inside the horizon mea-
sured in days, the structure’s operating cycles per day should be 
already determined. In this regard, for simplicity, it is assumed 
that the structure operates for a specific and constant amount of 
time per day.

8. The user of the PPDM framework defines the maximum num-
ber of repairs and replacements. Consequently, the costs are 
generally considered given a budget constraint.

9. The user additionally decides the horizon length (𝐿ℎ𝑜𝑟𝑖𝑧𝑜𝑛),
𝑅𝑈𝐿𝑡ℎ𝑟𝑒𝑠ℎ, 𝑝𝑡ℎ𝑟𝑒𝑠ℎ, and the maximum number of steps (in days) to 
avoid data acquisition (this corresponds to VoI’s contribution).

The choice of 𝑝𝑡ℎ𝑟𝑒𝑠ℎ and 𝑅𝑈𝐿𝑡ℎ𝑟𝑒𝑠ℎ makes it possible to have risk-
averse or risk-prone policies. For example, a risk-averse policy will be 
considered if 𝑝𝑡ℎ𝑟𝑒𝑠ℎ is high or 𝑅𝑈𝐿𝑡ℎ𝑟𝑒𝑠ℎ low. Contrarily, if 𝑝𝑡ℎ𝑟𝑒𝑠ℎ is 
small or 𝑅𝑈𝐿  large, the policy will be risk-prone.
𝑡ℎ𝑟𝑒𝑠ℎ

4 
2.2. Feature extraction, prognostics, and imperfect repair modeling

In order to build the PPDM framework, it is crucial to construct 
the corresponding models of each step presented in the PHM strategy. 
This includes constructing a model for feature extraction capable of 
creating health indicators, a prognostic model to predict RUL, and 
an imperfect repair model to estimate the distribution of recovery 
after an imperfect repair action. The chosen feature extraction model 
that performs monotonic clustering representing health indicators is 
the Deep Soft Monotonic Clustering (DSMC) model, first introduced 
in [43]. DSMC is an unsupervised deep clustering approach developed 
for feature extraction in deteriorating systems. The model – based on 
ANNs – creatively identifies prognostic-related features from raw data 
through clustering analysis, displaying a gradually rising trend that 
indicates system deterioration. This trend is not strictly linear but rather 
flexible to accommodate the possibility of occasional system recovery 
or the presence of noise in the data, mirroring real-world situations.

After creating the soft monotonic clusters, these trajectories are fed 
into a prognostic model to perform stochastic RUL predictions utilizing 
the 95% Confidence Intervals (CI). The chosen prognostic model is the 
Hidden-Semi Markov Model (HSMM) [44] assuming Gaussian distribu-
tions for the observations. Particularly, 7 hidden states were chosen and 
the model was trained for a maximum of 100 iterations or until the 
convergence tolerance of 0.5 is met. The DSMC and HSMM models are 
trained with 5 specimens that reached the end-of-life (EOL), without 
any repair. Having RUL trajectories before and after imperfect repairs, 
the corresponding dataset 𝐷 related to the recovery of the mean RUL 
is stored. Utilizing 𝐷, the imperfect repair model can be trained.

Considering the possibility of imperfect maintenance leads to an 
improvement in the structure’s condition, falling between the ABAO 
and AGAN conditions. The main aim is to create a model that ad-
equately represents the probabilistic transition from the ABAO state 
to a better one, influenced by the uncertain nature of subsequent 
imperfect repairs. This objective is pursued through a gradual process: 
initially, modeling the first repair and then expanding the model to 
accommodate multiple repairs. The parameters of the model for a 
single repair should be trained using Bayesian inference principles to 
accurately capture the underlying randomness.

Our goal is to estimate the posterior predictive distribution, i.e. the 
probability of the recovery 𝑅 given a dataset 𝐷 (𝑃 (𝑅̂|𝐷)). To achieve 
this, following the methodology outlined in [45], the mean recovery 
(𝑅𝑚𝑒𝑎𝑛) should be estimated, with the variance of RUL post-repair 
assumed to be known. Specifically, as the prognostic model remains 
unaffected by the repair process and mechanical properties remain 
constant, it is possible, without loss of generality, to compute the 
corresponding variance by matching the values of equivalent pairs 
before and after the repair. Essentially, when the prognostic model 
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Fig. 2. Description of the entire process as implemented in this work; from acquiring 
sensor data to PPDM.

operates independently of the repair model, the variance of RUL is 
influenced solely by external factors, not by behaviors induced by the 
repairs. This distinction is valuable as it ensures that the variance 
after a repair is predetermined. Fig.  5(a) visually clarifies this concept. 
Thereby, only one distribution is needed to estimate 𝑅 which is 𝑅𝑚𝑒𝑎𝑛, 
thus 𝑃 (𝑅|𝐷) = 𝑃 (𝑅𝑚𝑒𝑎𝑛|𝐷), where 𝑅𝑚𝑒𝑎𝑛 is given by: 

𝑅𝑚𝑒𝑎𝑛 =
𝜇𝑛𝑒𝑤 − 𝜇𝑜𝑙𝑑
1 − 𝜇𝑜𝑙𝑑

(1)

Here, 𝜇𝑜𝑙𝑑 and 𝜇𝑛𝑒𝑤 are the normalized mean RULs exactly before and 
after the imperfect repair action. After estimating the distribution of 
5 
𝑅𝑚𝑒𝑎𝑛, one could estimate 𝜇𝑛𝑒𝑤 from Eq.  (1) as follows: 
𝜇𝑛𝑒𝑤 =

(

1 − 𝜇𝑜𝑙𝑑
)

𝑅𝑚𝑒𝑎𝑛 + 𝜇𝑜𝑙𝑑 (2)

It should be noted that 𝜇𝑛𝑒𝑤 and 𝜇𝑜𝑙𝑑 are random variables. To esti-
mate 𝑅𝑚𝑒𝑎𝑛, Bayesian inference is required. Following previous stud-
ies [13,42,46], the chosen likelihood is a Truncated Normal distri-
bution, i.e. 𝑃 (

𝐷|𝜇𝑚𝑒𝑎𝑛, 𝜎𝑚𝑒𝑎𝑛
)

∼ 𝑇 𝑟𝑢𝑛𝑐𝑁𝑜𝑟𝑚 (𝜇𝑚𝑒𝑎𝑛, 𝜎2𝑚𝑒𝑎𝑛, 𝑎𝑚𝑒𝑎𝑛, 𝑏𝑚𝑒𝑎𝑛), 
with prior random variables 𝜇𝑚𝑒𝑎𝑛 ∼ 𝑈

(

𝑎1, 𝑏1
)

, 𝜎𝑚𝑒𝑎𝑛 ∼ 𝑈
(

𝑎2, 𝑏2
)

. 
To ensure flexibility in choosing different pairs of prior-likelihood 
distributions depending on the domain knowledge of the imperfect 
repairs, the Markov Chain Monte Carlo (MCMC) [47] algorithm with 
No-U-Turn Sampler (NUTS) [48] has been selected to approximate the 
posterior predictive distribution of 𝑅𝑚𝑒𝑎𝑛.

The same process can be followed for multiple sequential repairs 
utilizing Eqs.  (1) and (2), where 𝜇𝑜𝑙𝑑 and 𝜇𝑛𝑒𝑤 are the normalized mean 
RULs exactly before and after the 𝑛th imperfect repair action. Fig.  5(b) 
illustrates the behavior of the distribution of 𝑅𝑚𝑒𝑎𝑛 for three sequential 
imperfect repairs. Notice how the distribution shifts towards zero with 
the increase of number of repairs. As discussed in Section 2, this is 
attributable to the assumption that each repair results in a reduced 
percentage of recovery. The red dots are realizations of 𝑅𝑚𝑒𝑎𝑛 used to 
calculate 𝜇𝑛𝑒𝑤.

Table  1 summarizes the chosen hyperparameters related to Bayesian 
Inference for estimating 𝑅𝑚𝑒𝑎𝑛. This can be extended to multiple sequen-
tial imperfect repairs if trajectories before and after the 𝑛th repair are 
available.

2.3. PPDM task and MDP formulation

The PPDM task as described above naturally fits as a POMDP since 
the observations that come from the environment are noisy. Never-
theless, as will be further discussed in Section 2.4, POMDP can be 
converted into a typical MDP by applying recurrent neural networks 
(RNN) to the ANN architecture to capture the unobserved states.

To establish a task as an MDP, it is crucial to define the environment 
in which the agent operates. The agent takes actions based on its ob-
servations within a finite horizon, 𝐿ℎ𝑜𝑟𝑖𝑧𝑜𝑛, with the goal of prolonging 
the lifecycle of a multi-component system. This involves extending 
the lifespan of each individual component or specimen by scheduling 
imperfect repairs and replacements. Fig.  6 depicts the MDP related to 
the PPDM task. Particularly, the MDP consists of the following:

• Actions: The agent could take three discrete actions: ‘hold’, ‘im-
perfect repair’, and ‘replace’, encoded as {0, 1, 2} respectively. 
The ‘hold’ action indicates that no action should be taken at the 
current step, ‘imperfect repair’ concerns the imperfect mainte-
nance decision, and the ‘replace’ action is related to replacing 
the specimen with a brand-new one that starts from its AGAN 
condition. Depending on the number of specimens that are simul-
taneously examined, the total number of actions is 3𝑁 , where 𝑁
is the number of specimens.

• States: The observation (state) space consists of the stochastic 
RUL, the number of repairs (𝑛𝑟𝑒𝑝𝑎𝑖𝑟𝑠) and replaces (𝑛𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑠) that 
have already been done until step 𝑡, the horizon length (days) 
in which the agent can take actions, the 10 next available slot 
positions (days) inside the same horizon length, and the capacity 
of slots available at each slot position. The number of next avail-
able slot positions should be large enough to give the agent more 
exploration space available. All these variables are normalized 
in the [0, 1] range according to their upper bounds. Particularly, 
the RUL is normalized based on the largest predicted RUL for 
each specimen separately, the repairs and replaces are normalized 
based on their maximum possible sequential repairs and replaces 
inside the predefined horizon, the normalized capacity is calcu-
lated by dividing with the maximum possible available slots given 
a slot position, and the next available slot positions are divided 
by the horizon length to calculate the normalized slot positions.
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Fig. 3. Basic components for implementing the PPDM task.
Fig. 4. Illustration of the PPDM task when the first (Fig.  4(a)) and second (Fig.  4(b)) RUL data points are estimated given the real-time acquired data.
Fig. 5. Recovery distribution under the assumption that the RUL model is independent of the repair process (Fig.  5(a)). Recovery distribution subject to multiple repairs (Fig.  5(b)).
Table 1
Hyperparameters related to Bayesian Inference.
 Hyperparameter Description Value  
 𝛼𝑚𝑒𝑎𝑛 Lower bound of truncated normal distribution 0.4  
 𝑏𝑚𝑒𝑎𝑛 Upper bound of truncated normal distribution 1.0  
 𝛼1 Lower bound of Uniform distribution for 𝜇𝑚𝑒𝑎𝑛 0.4  
 𝑏1 Upper bound of Uniform distribution for 𝜇𝑚𝑒𝑎𝑛 0.9  
 𝛼2 Lower bound of Uniform distribution for 𝜎𝑚𝑒𝑎𝑛 0.01  
 𝑏2 Upper bound of Uniform distribution for 𝜎𝑚𝑒𝑎𝑛 0.2  
 Acceptance rate Proportion of accepted samples to be added to the chain 0.8  
 Warmup samples Initial simulation samples (burn-in samples) 200  
 Iterations Simulation samples 50 000 
 No. chains Simulated Markov chains 1  
6 
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Fig. 6. Illustration of the MDP (states, actions, rewards).
• Rewards: A reward function should be as simple as possible 
to help the agent reach the optimal policy. In this case, the 
agent must follow a policy that minimizes maintenance actions 
(and thus the costs) and extends the structure’s health (by ex-
tending each specimen’s EOL condition). An additional negative 
reward should be added to the agent when it reaches the terminal 
state. This state is reached if any specimen’s RUL drops below 
a predefined threshold. After some trial and error, the simplest 
discovered reward function and its sub-components are given 
below: 
𝑟 = 𝑟𝑎𝑐𝑡 + 𝑟𝑐𝑜𝑠𝑡 + 𝑟𝑚𝑎𝑖𝑛𝑡 + 𝑟𝑝𝑒𝑛𝑎𝑙𝑡𝑦 + 𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (3)

𝑟𝑎𝑐𝑡 =
5𝑡

𝐿ℎ𝑜𝑟𝑖𝑧𝑜𝑛
(4)

𝑟𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = −50, if any [𝑅𝑈𝐿𝑖 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
]

, i = 1, 2,… , 𝑁 (5)

𝑟𝑐𝑜𝑠𝑡 = −2, if any(𝛼𝑡 = 1 or 𝛼𝑡 = 2) (6)

𝑟𝑚𝑎𝑖𝑛𝑡 =
3.5 ⋅

∑𝑁
𝑖=1 1 ⋅

[

𝛼𝑖𝑡 ≠ 0
]

𝑁
(7)

𝑟𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 100, if 𝑡 = 𝐿ℎ𝑜𝑟𝑖𝑧𝑜𝑛 (8)

Each part of the equation plays a crucial role in optimizing the RL 
agent. The agent tries to extend the usage of the system via Eq.  (4) 
without dropping below the predefined threshold that activates 
the penalty (Eq.  (5)). In this study, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0, but different 
values could be given depending on the desired system’s safety. 
For instance, for an aircraft’s engine, having 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.8, 
i.e. the components’ RUL should always be above 80% of the 
perfect healthy condition. Furthermore, the agent incurs a penalty 
for each scheduled maintenance action (Eq.  (6)) to encourage 
waiting before scheduling any maintenance. The agent also re-
ceives a positive reward for consolidating as many maintenance 
actions as possible within the same time slot via Eq.  (7), where 
𝑁 is the slot capacity. With this reward, the agent prompts the 
scheduling of maintenance actions at the same available slot, 
promoting a strategy with fewer schedules overall. Finally, the 
agent is rewarded with a huge value (Eq.  (8)) when an episode, 
i.e. when reaching a terminal state, has been successfully finished.

• Environment: This MDP formulation is episodic, i.e. there are one 
or more conditions that terminate the episode before resetting the 
states. The episode terminates successfully if the agent accurately 
schedules maintenance actions within the horizon without any 
specimen’s RUL dropping below 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. Otherwise, the episode 
reaches an unsuccessful early termination. When an episode is 
finished, a new one starts with random initialization of the state 
space.
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2.3.1. Random initialization of environment
The advantage of our approach is that the training is offline using 

synthetic data, thus having a theoretically infinite amount of training 
samples. The idea is to train the agent with enough data to always 
guaranteeing in-distribution real data that will be observed at the eval-
uation step. Indeed, because sensor data is converted into RUL and the 
rest of the data in PPDM are related to logistics (slot position, capacity, 
etc.), achieving a generalized training subject to the user’s demands is 
possible. This is accomplished by randomly distributing the initial RUL 
values of the environment and the other state variables per episode ac-
cordingly following a specified distribution, such as Gaussian, Uniform, 
and Poisson. Considering this, each state variable is distributed given a 
random distribution with the following characteristics2:

• Initial mean RUL [days]. Varying values of mean RUL are drawn 
from a Uniform distribution: 𝑈 (7, 40).

• RUL noise [float]. RUL noise is drawn from a Uniform distri-
bution: 𝑈 (1, 5). This noise is added to create stochastic RUL 
trajectories.

• Maximum number of repairs [integer]. At each episode, a differ-
ent number of maximum repairs is initialized, which follows a 
Uniform distribution: 𝑈 (0, 4). The upper bound reflects our case 
study (four imperfect repairs are allowed before replacement).

• Maximum number of replacements. The maximum number of re-
placements follows a Uniform distribution: 𝑈 (0, 2). The upper 
bound reflects our case study (two replacements are allowed 
within the horizon).

• Available slot position [days]. Only on specific days of the week, 
there are available slots. These days are determined by a Poisson 
distribution 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = 4). Thus, there will be avail-
able slots to schedule a maintenance action 4 days per week on 
average.

• Capacity per slot position [integer]. The capacity of each slot po-
sition is drawn from a Uniform distribution: 𝑈 (1, 4). This implies 
that at each available slot position, 1–4 slots may be available to 
put specimens for imperfect repair or replacement. One slot cor-
responds to one component/specimen. The upper bound reflects 
our case study (four components).

• Distribution of recovery [float]. As estimated by the imperfect 
repair model. Since this random variable is very sensitive and 
significantly affects the entire process, it is decided to consider 
its real estimation based on the model’s training utilizing the 
corresponding training specimens.

2 It should be marked that each state variable is an array of 𝑁 values 
representing each of the 𝑁 specimens. Each value is randomly distributed, 
hence different values are drawn for each component which enlarges the 
observation space and increases the complexity of the environment.
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Since there is no prior information related to the PPDM task, Uniform 
distributions reflect the most uncertain condition.

2.4. The DRL model

The action space at each step in a system with 𝑁 components 
should ideally be represented as an 𝑁-dimensional array, where each 
dimension corresponds to a specimen. However, due to the discrete 
nature of outputs from algorithms like DQN, which are commonly 
used in PPDM literature, representing such multidimensional arrays 
directly is challenging. To address this, a workaround involves mapping 
each combination of actions to an integer, typically using a ternary 
numerical system. For example, consider a multi-components system 
with four components and three possible actions each, and at step 𝑡
the agent chooses the action array [2, 1, 0, 0] corresponding to [‘replace’, 
‘imperfect repair’, ‘hold’, ‘hold’] for each specimen respectively. Since 
the DQN algorithm outputs a single integer, the agent should choose 
between a possible 34 discrete actions ranging between [0, 34). This 
integer should then be converted to the ternary system representing 
the desired array. Here, 𝛼𝑡 = 63 since 633 = 2100 ≡ [2, 1, 0, 0]. As 
such, a unique expression for each integer can be assigned. Note that 
if 𝛼𝑡 < 25, say, 𝛼 = 4, then 43 = 11, hence 𝛼𝑡 = [1, 1] and left zero-
padding should be applied until reaching the desired 𝑁-dimensional 
array; here, 𝛼𝑡 = [0, 0, 1, 1]. Eventually, the action space for the DQN 
algorithm is 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒(3𝑁 ), but the desired actions should ideally form 
an 𝑁-dimensional array instead. If 𝑁 is large, even DRL suffers from 
the exponentially increasing dimensionality of the action space. This 
can rapidly render the application of discrete-action RL algorithms 
intractable to domains with multi-dimensional action spaces [49]. This 
inspires motivation to choose an actor-critic method, such as Proximal 
Policy Optimization (PPO) [50] that considers 𝑁-independent Softmax 
functions to assign probabilities for each action.

Under the concepts of DRL, the PPO algorithm requires two ANN 
architectures; one that models the policy (policy network) and another 
that models the value function (value network). Fig.  7 depicts this 
architecture. Observations are fed in the shared layers including two 
Long-Short Term Memory (LSTM) layers and a Fully Connected (FC) 
layer. Subsequently, the extracted hidden features are fed into the 
policy and value network. These networks have similar architectures, 
with the only difference on the final activation function, which is 
a Softmax for the policy network to produce probabilities3 for each 
action, whilst the value network consists of a Rectified Linear Unit 
(ReLU) activation function that predicts a single value. Between each 
hidden layer, there are additional layers, namely a Dropout and a batch-
normalization layer. Adjacent to each layer shown in Fig.  7 there is a 
ReLU activation function, except between and after the LSTM layers 
where a hyperbolic tangent function (Tanh) is considered. In the same 
figure, the input dimensions of each layer are shown.

Although at each step inside an episode 𝑁𝑜𝑏𝑠 are stored, this ar-
chitecture demands a length 𝐿 of previous observations to be used, 
hence a two-dimensional array [𝑁𝑜𝑏𝑠, 𝐿]. The hidden states extracted 
by the LSTM layers reflect the unobserved states of the environment, 
hence silently converting the POMDP into an MDP inside the ANN 
architecture [11,22]. All hyperparameters related to DRL implemented 
with the PPO algorithm are stored in Table  2. A linear learning rate 
scheduler has been implemented to improve the model’s learning ca-
pabilities. Hence, the learning starts at a faster pace with 𝑙𝑟𝑚𝑎𝑥 = 10−2

and it linearly decreases until 𝑙𝑟𝑚𝑖𝑛 = 10−6. The number of observations 
depends on the number of specimens 𝑁 and is 𝑁𝑜𝑏𝑠 = 4𝑁 + 21, where 
21 stands for the next 10 available slot positions and the corresponding 

3 The output of the Softmax activation function gives an overestimation of 
probabilities making the ANN overconfident about its predictions. By applying 
uncertainty quantification techniques to these predictions, it is possible to have 
an unbiased estimate of the model’s beliefs about its decisions [51,52].
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capacity of each, plus the horizon length). Finally, to have a robust 
training process, 8 parallel environments are initialized with different 
randomness (𝑛𝑤𝑜𝑟𝑘𝑒𝑟𝑠 = 8). The PPO agent is trained in parallel in these 
environments.

2.5. Constraints & action masking

In RL, action masking is a technique used to restrict the set of 
actions that an agent can take in a given state. This restriction is 
based on the environment’s rules or constraints, preventing the agent 
from selecting actions that are not permitted or valid in that particular 
state. The theory behind action masking lies in the idea of creating a 
more realistic and efficient learning environment for the RL agent. By 
limiting the available actions, action masking reduces the complexity 
of the learning problem by focusing the agent’s attention on only the 
relevant actions. This can be particularly useful in environments where 
certain actions are not feasible or allowed in specific states, or where 
the action space is large and needs to be pruned to improve learning 
efficiency.

Action masking is applied to the action space based on the current 
state of the environment. It involves determining which actions are 
permissible or valid in the current state and filtering out the rest. 
This is typically done by defining a mask vector that indicates the 
availability of each action. The agent’s policy and value estimation are 
then computed based on the masked action space. By excluding invalid 
actions, the agent can focus its learning efforts on the subset of actions 
that are relevant to the current state. During the learning process, 
the agent explores the environment by selecting actions and observing 
the resulting rewards and next states. Action masking ensures that the 
agent only considers actions that are permissible in each state, thereby 
guiding exploration towards more promising areas of the state–action 
space.

In DRL, action masking is mainly applied in the last layer of the 
ANN. For the PPO algorithm in discrete action spaces, such as the one 
examined in this study, the ANN’s last layer used to approximate the 
policy typically contains a Softmax activation function to produce a 
measure of probabilities for taking each action. Consider the outcome 
of the ANN’s last hidden layer to be 𝑧𝛼𝑡 . This represents the logits of 
each action 𝛼𝑡. Then the probability of each action 𝛼𝑡 given state 𝑠𝑡 at 
step 𝑡 is calculated by: 

𝜋𝜃(𝛼𝑡|𝑠𝑡) =
𝑒𝑥𝑝(𝑧𝛼𝑡 )

∑

𝛼′𝑡
𝑒𝑥𝑝(𝑧𝛼′𝑡 )

(9)

The invalid action masking technique [54–56] for discrete domains 
underlines that each invalid action can be masked (its probability is 
set to zero) by assigning a huge negative number to the corresponding 
logits 𝑧𝛼𝑡 . Hence, after passing this logit through the Softmax activation 
function, the corresponding probability of taking this action will be 
very close to zero.

In this work, actions related to ‘imperfect repair’ or ‘replace’ are 
invalid when the agent has reached the maximum number of repairs 
or replacements, respectively, within an episode. Action masking is 
applied to the corresponding maintenance actions that ought to surpass 
those limits by assigning a large negative number before applying 
the Softmax activation function to assign a zero probability to the 
corresponding action. Additionally, the number of maintenance actions 
within an available slot should never exceed the capacity of that slot. A 
similar action masking approach is applied to the corresponding main-
tenance actions with the lowest probability scores until the capacity 
limit is satisfied.
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Fig. 7. ANN architecture for both policy network and value function. 𝑁𝑜𝑏𝑠 and 𝑁𝑎𝑐𝑡 reflect the number of observations and actions respectively. The ‘*’ dimension reflects the 
batch dimension.
Table 2
Hyperparameters related to DRL utilizing PPO algorithm.
 Hyperparameter Description Value  
 𝑙𝑟𝑚𝑖𝑛 Minimum learning rate 10−6  
 𝑙𝑟𝑚𝑎𝑥 Maximum learning rate 10−2  
 𝑛𝑠𝑡𝑒𝑝𝑠 Number of steps per update of weights 64  
 𝑏𝑎𝑡𝑐ℎ Batch size 128  
 𝑏𝑢𝑓𝑓𝑒𝑟 Replay buffer limit to use for retraining the model with SL 8.4 ⋅ 106  
 𝑒𝑝𝑜𝑐ℎ𝑠 Number of epochs when optimizing the surrogate loss 5  
 𝑛𝑜𝑏𝑠 Number of observations 4𝑁 + 21 
 𝐿 Length of past observations to be used by the LSTM layers 8  
 𝑑𝑟𝑎𝑡𝑒 Dropout rate 0.5  
 𝛾 Discount factor 1.0  
 𝜆𝐺𝐴𝐸 Factor for trade-off of bias vs variance for GAE 0.95  
 𝜖 Clipping parameter 0.2  
 𝐶𝑒𝑛𝑡𝑟𝑜𝑝𝑦 Entropy coefficient for the loss calculation (see [53]) 0.01  
 𝑠𝑡𝑒𝑝𝑠𝑡𝑟𝑎𝑖𝑛 Total training steps 106  
 𝑛𝑤𝑜𝑟𝑘𝑒𝑟𝑠 Environments to run in parallel with different randomness 8  
2.6. Mapping uncertainty with decision probabilities

The policy network is responsible for assigning probabilities to each 
available action at each step. However, due to the tendency of ANNs 
to be overconfident, these probabilities can be easily either close to 1.0 
or 0.0. In order to have unbiased estimates of these probabilities, the 
Mutual Information (MI) theory will be considered by decomposing the 
total uncertainty into aleatoric and epistemic uncertainties [57].

Given a dataset 𝐷 = {𝑋, 𝑌 } within the context of a discriminative 
classification task, the aleatoric uncertainty can be determined using 
Shannon’s entropy [58], computed as the expected conditional entropy: 

E𝑝(𝑥) [𝐻[𝑝(𝑦 ∣ 𝑥)]] = E𝑝(𝑥)

[

−
𝐾
∑

𝑐=1
𝑝(𝑦 = 𝑐 ∣ 𝑥) ln 𝑝(𝑦 = 𝑐 ∣ 𝑥)

]

(10)

where 𝑐 is the corresponding class (in a classification task) or ac-
tion (in an RL task), 𝐾 is the number of classes/actions, and 𝐻 [𝑝(.)]
is the entropy. The entropy of a discrete probability distribution is 
an information-theoretic measure of uncertainty and is calculated by 
MI [59]: 

𝐼 (𝑦, 𝑥) = 𝐾𝐿 [𝑝(𝑥, 𝑦)∥𝑝 (𝑥) 𝑝 (𝑦)] = 𝐻 [𝑝 (𝑦)] − E𝑝(𝑥) [𝐻 [𝑝 (𝑦|𝑥)]] (11)

where 𝐾𝐿 is the Kullback–Leibler (KL) divergence [60]. It has been 
proven in [61] that the decomposition of the uncertainty into epistemic 
and aleatoric in deep learning via the MI theory can be performed 
utilizing 𝑀 number of ANNs (deep ensembles) as follows: 

𝐼 (𝑦, 𝑀|, 𝑥, 𝑋, 𝑌 ) = 𝐻
[

E𝑝(𝑀|𝑋,𝑌 )[𝑝(𝑦|𝑥,𝑀)]
]

−E𝑝(𝑀|𝑋,𝑌 ) [𝐻 [𝑝(𝑦|𝑥,𝑀)]]

(12)
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In this equation, the term to the left reflects the epistemic uncer-
tainty, the first term on the right side is the total uncertainty, and 
the second on the right is the aleatoric uncertainty. From Shannon’s 
entropy, the total uncertainty is easily calculated. To estimate the 
aleatoric uncertainty, it is crucial to approximate the epistemic first. 
However, estimating epistemic uncertainty is difficult since we need to 
calculate the posterior distribution over the parameters 𝜃. To capture 
the epistemic uncertainty in an ANN, one approach is to use deep 
ensembles [62,63], i.e. utilizing 𝑀 models that converge differently 
due to varying random initializations. For DRL tasks this is compu-
tationally prohibitive. A better approach is to approximate these 𝑀
models with the Monte Carlo (MC) dropout technique. MC dropout is 
acknowledged as a Bayesian approximation, thereby enabling standard 
point predictions alongside meaningful uncertainty assessments [64].

Given a set of parameters 𝛩 representing the weights of an ANN, 
the posterior predictive distribution of 𝑦∗ given 𝑥∗ and 𝐷 equals: 

𝑝
(

𝑦∗ ∣ 𝑥∗, 𝐷
)

= 1
𝑇

𝑇
∑

𝑖=1
𝑝
(

𝑦∗𝑖 ∣ 𝑥∗𝑖 , 𝛩
)

(13)

where 𝑇  is the number of forward passes performed to predict a 
particular data point 𝑦 given a single input sample 𝑥. In practice, 𝑇
stochastic forward passes are conducted through the ANN with dropout 
applied at each layer for every sample, followed by extracting the mean 
and variance from the outcomes.

Setting Eq.  (13) to Eq.  (12) gives the following:
Model uncertainty = Total uncertainty - Aleatoric uncertainty

= 1 𝐻

[ 𝑇
∑

𝑝
(

𝑦∗𝑖 ∣ 𝑥∗𝑖 , 𝛩
)

]

− 1
𝑇
∑

𝐻
[

𝑝
(

𝑦∗ ∣ 𝑥∗, 𝛩
)]

(14)

𝑇 𝑖=1 𝑇 𝑖=1
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Fig. 8. Loop for deciding whether to acquire new information based on estimated VoI.
In the case of three discrete actions that are passed through the Softmax 
activation function 𝑝 (𝑦∗ ∣ 𝑥∗, 𝛩) corresponds to the array [𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3]
where 𝑝𝑖𝑗 is the probability of taking action 𝑗 = {1, 2, 3} at stochastic 
pass 𝑖 ∈ [1, 𝑇 ]. In this study and according to a previous work [64], 𝑇 =
30 has been chosen. Taking the average over 𝑇  stochastic passes makes 
an unbiased estimate of the probabilities of taking each action 𝛼𝑡 at step 
𝑡 feasible. In this regard, the policy that the agent follows can give real 
probabilities of decisions. These decisions are interconnected with the 
measured uncertainty, which is crucial for bounding its upper values 
for normalization purposes. This is justified by Lemma  1 discussed in 
Appendix  A.2. This means that the uncertainty can be normalized by 
dividing it by 𝑙𝑜𝑔3. This guarantees that the uncertainty will always 
be in the range of [0, 1]. This is useful for training the VoI model and 
utilization of 𝑝𝑡ℎ𝑟𝑒𝑠ℎ concerning reliability.

Lemma  2 presented again in Appendix  A.2 analyzes the relationship 
between 𝑝𝑡ℎ𝑟𝑒𝑠ℎ and the combined epistemic and aleatoric uncertainty. 
In this regard, we can ensure the physical meaning of the measured 
uncertainty, thus adding interpretability to our DRL model. Depending 
on the defined by the user 𝑝𝑡ℎ𝑟𝑒𝑠ℎ, if the maximum of the probabilities 
is less than this threshold, the agent’s decision is converted to the ‘N/A’
action. This is a hidden action that is not seen inside the MDP but is 
added after estimating the uncertainty during inference. In this context, 
when the agent is uncertain about its final decision, it is advisable to not 
rely solely on DRL and instead wait for human feedback. This approach 
renders the task risk-averse.

2.7. Deciding optimal time to acquire new information

Acquiring new data in real-time every day is cost-prohibitive and 
sometimes unnecessary. For instance, when all specimens are in their 
AGAN condition, it is already known that the agent should wait for 
the initial steps before taking any maintenance action. Consequently, 
there is no need to acquire new information in the subsequent steps, 
thus conserving resources. Avoiding acquiring unnecessary information 
can be achieved by utilizing VoI. The VoI theory is a concept used in 
decision theory to quantify the benefit or utility gained from acquiring 
new information. At its core, it explores how obtaining additional 
information can enhance decision-making processes, particularly in 
situations where uncertainty exists. VoI represents the value gained 
from acquiring new information at the expense of costs.

In the RL field, VoI is often analyzed within the framework of 
expected value. The agent calculates the expected value of differ-
ent actions based on their probabilities of occurrence and associated 
payoffs. By incorporating the potential value of acquiring additional 
information, the agent can adjust their actions to maximize expected 
utility. As introduced in varying prior works [36,40,65], VoI is defined 
by the following equation: 

𝑉 𝑜𝐼 = E
[

𝐶𝑎𝑐𝑡𝑖𝑜𝑛
]

− E
[

𝐶𝑎𝑐𝑡𝑖𝑜𝑛|𝐼𝑎𝑑𝑑

]

(15)

where 𝐶𝑎𝑐𝑡𝑖𝑜𝑛 is the cost of taking a specific action by the agent and 
𝐶𝑎𝑐𝑡𝑖𝑜𝑛|𝐼𝑎𝑑𝑑  is the cost of taking an action given additional information. 
In this study, the expected action costs represent the total uncertainty 
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of the agent’s decision. When 𝑉 𝑜𝐼 < 0, there is no need to acquire 
additional information and reconsider the chosen action.

Fig.  8 depicts the loop based on which the algorithm automati-
cally decides whether to acquire new information. Recalling that each 
episode in the formulated MDP finishes successfully when the agent 
reaches the end of the horizon or fails when any of the specimens’ 
RULs drops below the threshold. This means that given the current 
RUL information in real-time, operational conditions, and other logis-
tic information, the agent creates a schedule for future maintenance 
actions within the horizon. During each episode, uncertainty can be 
estimated for each step. Recalling Eq.  (15), the expected costs in this 
study are related to the estimated uncertainty. The greater the degree 
of uncertainty, the higher the expected costs. VoI is applied throughout 
the entire episode as the average of the estimated uncertainty measured 
at each step. Therefore, the expected cost given a series of actions for 
each episode is as follows: 

E
[

𝐶𝑎𝑐𝑡𝑖𝑜𝑛
]

=
∑𝑠𝑡𝑒𝑝𝑠𝑒𝑝𝑖𝑠𝑜𝑑𝑖𝑐

𝑖=0 𝑈 (𝑖)

𝑠𝑡𝑒𝑝𝑠𝑒𝑝𝑖𝑠𝑜𝑑𝑖𝑐
(16)

where 𝑠𝑡𝑒𝑝𝑠𝑒𝑝𝑖𝑠𝑜𝑑𝑖𝑐 represents the total steps until the episode has fin-
ished, either successfully or not, and 𝑈 is the total uncertainty. If 
E
[

𝐶𝑎𝑐𝑡𝑖𝑜𝑛|𝐼𝑎𝑑𝑑

]

 is estimated, VoI can be measured. If VoI is non-positive, 
the uncertainty estimated at the current episode is less than the ex-
pected uncertainty that will be observed in the next episode. In this 
case, acquiring information about the next episode is unnecessary. This 
can be extended to ignoring multi-steps ahead by counting the times 
that VoI is sequentially non-positive. Contrarily, when VoI becomes 
once positive, the expected uncertainty included in the next episode 
is less than the current one, hence the upcoming data are expected 
informative for the agent to update the decisions.

The formulation of VoI, though, demands the estimation of E
[

𝐶𝑎𝑐𝑡𝑖𝑜𝑛|𝐼𝑎𝑑𝑑

]

. Unfortunately, this information is not available before-
hand. The typical solution is to apply pre-posterior analysis in VoI. 
However, given the large number of state space, this is computationally 
expensive (since Bayesian updates are being performed). In this regard, 
the approach proposed in this work is to create a parameterized 
surrogate model 𝑓𝜃 based on ANN with parameters 𝜃 that outputs 
E
[

𝐶𝑎𝑐𝑡𝑖𝑜𝑛|𝐼𝑎𝑑𝑑

]

 s.t.: 

E
[

𝐶𝑎𝑐𝑡𝑖𝑜𝑛|𝐼𝑎𝑑𝑑

]

= 𝑓𝜃(E
[

𝐶 𝑡𝑜𝑡
𝑎𝑐𝑡𝑖𝑜𝑛

]

𝑛𝑒𝑝
,
[

𝑆0,𝑛𝑒𝑝

]

)

E
[

𝐶 𝑡𝑜𝑡
𝑎𝑐𝑡𝑖𝑜𝑛

]

𝑛𝑒𝑝
= {E

[

𝐶𝑎𝑐𝑡𝑖𝑜𝑛
]

𝑛𝑒𝑝−𝑚
,E

[

𝐶𝑎𝑐𝑡𝑖𝑜𝑛
]

𝑛𝑒𝑝−𝑚+1
,… ,E

[

𝐶𝑎𝑐𝑡𝑖𝑜𝑛
]

𝑛𝑒𝑝
}

[

𝑆0,𝑛𝑒𝑝

]

= {𝑠0,𝑛𝑒𝑝−𝑚, 𝑠0,𝑛𝑒𝑝−𝑚+1,… , 𝑠0,𝑛𝑒𝑝}

(17)

Here, a state 𝑠0,𝑛𝑒𝑝  corresponds to the first available observations of 
the episode 𝑛𝑒𝑝, 𝑚 is a hyperparameter representing the number of 
previous episodes to consider as input for the surrogate model to 
make 𝑛-episodic predictions ahead, and E [

𝐶𝑎𝑐𝑡𝑖𝑜𝑛
]

𝑛𝑒𝑝
 is the expected 

cost at episode 𝑛𝑒𝑝 as calculated by Eq.  (16). Utilizing an ANN to 
make such predictions given sequential data leads to the choice of an 
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LSTM-based architecture illustrated in Fig.  9. Three non-bidirectional 
LSTM layers are structured. Between each layer, a Tanh activation 
function has been applied. Then, the dimensions are flattened into a 
one-dimensional array (the batch dimension remains untouched). This 
array is passed through three FC layers. Adjacent to the first two FC 
layers, a ReLU activation function is applied, whilst the last FC layer 
has a Tanh activation function. After each layer, batch normalization 
and Dropout are additionally considered. The hyperparameters of the 
surrogate model are stored in Table  3. A linear learning rate scheduler 
has been implemented to improve the model’s learning capabilities. The 
optimization is performed with the Adam optimizer.

The key concept is to generate data for training the VoI model by 
evaluating the trained agent at each episode. For each episode 𝑛𝑒𝑝, 
the corresponding E [

𝐶𝑎𝑐𝑡𝑖𝑜𝑛
]

𝑛𝑒𝑝
 is calculated while simultaneously the 

initial observations 𝑠0,𝑛𝑒𝑝  of that episode are being stored. Generating 
episodes sequentially based on a real case study means that each 
sequential episode contains the next available information regarding 
input data. For example, being at 𝑛𝑒𝑝 = 2 means that the expected 
costs E [

𝐶𝑎𝑐𝑡𝑖𝑜𝑛
]

𝑛𝑒𝑝=1
, E [

𝐶𝑎𝑐𝑡𝑖𝑜𝑛
]

𝑛𝑒𝑝=2
 and E

[

𝐶𝑎𝑐𝑡𝑖𝑜𝑛|𝐼𝑎𝑑𝑑

]

1→2
 are known. 

By specifically defining the case study, the RUL trajectories and the 
distribution of recovery for multiple repairs are available. Hence, it is 
possible to initially evaluate the RL agent for generating data related 
to VoI in an offline manner utilizing the training trajectories consid-
ered for estimating the distribution of recovery, before rendering the 
scheduling in real-time with the testing trajectories.

Generating data for training the VoI model requires an adaptation 
of the environment used for training the RL agent. By initializing the 
first episode to reflect a random day based on the RUL trajectories, each 
sequential episode should reflect the exact next day. Then, scheduling 
is applied for each episode and the uncertainty can be estimated. 
This time the episodes have a strong time dependency, which justifies 
the utilization of the LSTM module. After trial and error, generating 
50 sequential episodes before randomly initializing the first episode 
for a new sequence was enough to train the VoI model. Having 50 
generated sequential episodes corresponds to the hyperparameter 𝑚, 
hence 𝑚 = 50. Consequently, in this setup, the evaluation of the agent 
can be applied in an offline manner and is possible to generate as much 
episodic data as desired. Subsequently, labeled data can be generated 
to be fed into the surrogate modeling for training. In total, 10000
episodes were generated, hence 10000∕50 = 200 random initializations 
were performed regarding the first episode of the sequence. From these 
samples, 8000 is considered to train and 2000 to validate the VoI model.

Finally, it is important to note that both successful and unsuccessful 
episodes are included as training data. An unsuccessful episode suggests 
that the (considerably well-trained) DRL model failed to make the 
correct decisions, resulting in higher uncertainty. In this context, the 
trained VoI model learns to filter out these unsuccessful episodes by 
suggesting the avoidance of data acquisition on these days. This indi-
rectly enhances the DRL agent’s performance, at the expense of fewer 
schedules within a given horizon. Although this approach recommends 
fewer schedule updates by the agent, it is more cost-efficient because 
it reduces the number of days considered to acquire new data and run 
the framework.

3. Case study

Consider a multi-component system consisting of a structure with 
four components/specimens. These components correspond to open-
hole aluminum coupons. Each working day the structure functions for 
a specific and constant number of cycles. Maintenance actions should 
be made for the structure’s components to extend the useful life of 
the entire structure. This extension concerns approximately doubling 
the average EOL of the components. It is assumed that this average 
EOL is 25–30 days, thus extending the structure’s life up to 60 days 
(𝐿 = 60) suffices. In order to increase the useful life by this 
ℎ𝑜𝑟𝑖𝑧𝑜𝑛
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Table 3
Hyperparameters related to surrogate model for the estimation of 𝐶𝑎𝑐𝑡𝑖𝑜𝑛|𝐼𝑎𝑑𝑑 .

 Hyperparameter Description Value 
 𝑙𝑟𝑚𝑖𝑛 Minimum learning rate 10−6  
 𝑙𝑟𝑚𝑎𝑥 Maximum learning rate 10−2  
 𝑏𝑎𝑡𝑐ℎ Batch size 128  
 𝑒𝑝𝑜𝑐ℎ𝑠 Number of epochs when optimizing the surrogate loss 400  
 𝑚 Length of past data to be used by the LSTM layers 30  
 𝑛 The number of multi-episode predictions 7  
 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑡𝑟𝑎𝑖𝑛 The number of samples considered for training 6400  
 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑣𝑎𝑙 The number of samples considered for validation 1600  
 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑡𝑒𝑠𝑡 The number of samples considered for test 2000  

Fig. 9. ANN architecture of the surrogate model.

amount within the horizon, four sequential repairs and two replace-
ments are allowed. This means that the maximum possible number 
of maintenance actions is 10 if four repairs are planned between two 
replacements. Nevertheless, scheduling multiple maintenance actions is 
both cost-prohibitive and pointless, especially in case when additional 
imperfect repairs do not offer a significant recovery of the component.

To test the capabilities of the methodology, feature extraction, prog-
nostics, and imperfect repair modeling have already been implemented 
in a previous work [45] based on an experimental campaign as shown 
in Fig.  10 involving tension-tension fatigue experiments on open-hole 
aluminum coupons subject to imperfect repairs. Fig.  10(a) illustrates 
the experimental setup and the different specimen conditions can be 
found in Figs.  10(b)–10(d), for the baseline, damaged and repaired 
conditions respectively. The same campaign is considered for the PPDM 
task. The raw signals corresponding to acoustic emission data are 
recorded by an AMSY-6 Vallen Systeme GmbH and two VS900-M wide-
band sensors. From the recorded data, the considered low-level features 
include amplitude, duration, energy, counts, hit time, rise time, root 
mean square error, and signal strength and are presented in Table  B.1. 
The initial five coupons are tested until failure to gather information 
about their fatigue life before repair and to determine the consistent 
lifetime percentage at which the repair is conducted. The remaining 
coupons undergo testing for 14,000 fatigue cycles, equivalent to 60% 
of the average fatigue life. Half of these are then tested until failure, 
while the other half are stopped at 11,000 cycles, which is about 60% 
of the average repaired coupon lifetime, demonstrating that it is not 
necessary to reach failure to develop the repair model. More detailed 
information about the specimens can be found in Table  B.2. Since the 
trajectories of specimens with and without repairs are different, their 
names will be defined with two numbers for clarity; the first number 
indicates the number of repairs performed, and the second refers to the 
specific specimen. For example, the specimen labeled ‘02’ without any 
repair is named specimen ‘0_2’. Similarly, specimen number ‘10’ is split 
into two names: ‘0_10’ for the trajectory without repair and ‘1_10’ for 
the trajectory with repair.

Since there have not been any practical experiments in the literature 
related to multiple imperfect repairs, additional trajectories have been 
generated based on the existing ones according to the following two 
steps:
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Fig. 10. The experimental campaign as implemented in [45]. Experimental setup (a) and specimen states (baseline (b), damaged (c), repaired (d)).
i. The first RUL data point after a repair corresponding to 𝜇𝑛𝑒𝑤 and, 
consequently, the mean of the distribution of recovery 𝜇(𝑅𝑚𝑒𝑎𝑛)
is exponentially reduced according to the following equation: 
𝜇
(

𝑅𝑚𝑒𝑎𝑛|𝑛𝑟𝑒𝑝𝑎𝑖𝑟𝑠
)

= 𝜅 ⋅ 𝑒𝑥𝑝(−𝜆𝑛𝑟𝑒𝑝𝑎𝑖𝑟𝑠), 𝑛𝑟𝑒𝑝𝑎𝑖𝑟𝑠 ∈ 0, 1, 2, … (18)

where 𝜆, 𝜅 are the parameters that need to be determined, with 
𝜆 being the rate parameter, and 𝜅 a constant. By setting 𝑛𝑟𝑒𝑝𝑎𝑖𝑟𝑠
to zero, we have: 
𝜅 = 𝜇(𝑅̂𝑚𝑒𝑎𝑛) (19)

The above equation can be used after training the imperfect 
repair model for one repair. The variable 𝜆 can be any float 
number in the range of [0, 1]. To increase the complexity of 
the task, a sharp exponential decrease has been chosen with 
𝜆 = 0.7. Consequently, after the second repair, it is expected the 
distribution of recovery to be close to zero, thus the next repairs 
will not offer any significant recovery. It is expected that the RL 
agent should capture this phenomenon during training.

ii. Starting with the first RUL data point after the 𝑛th repair, the 
corresponding RUL data point from the (𝑛− 1)th repair with the 
same value is identified. The entire trajectory is then generated 
by using the mean and variance of the trajectory from the previ-
ous repair. Additional noise, modeled by a Uniform distribution 
𝑈 (−3, 3) measured in days, is added to this generated trajectory.

The DSMC model and the HSMM are trained on specimens ‘01’-‘05’, 
and, then, both models are utilized to predict RUL on the rest of the 
specimens. From the specimens subject to imperfect repairs, specimens 
‘09’-‘11’ are taken into account for training the imperfect repair model 
based on which the RL agent is trained as well. Additionally, the RL 
agent was evaluated considering these specimens to generate the re-
quired data related to VoI. Specimens ‘06’-‘08’ correspond to ones used 
for evaluating the imperfect repair model and the outcome of the PPDM 
framework. During the evaluation phase of the RL agent, another RUL 
trajectory is generated, namely specimen ‘12’, by taking the average 
values of specimens ‘06’-‘08’, in order to include four components in the 
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Table 4
Chosen hyperparameters related to PPDM for this case study.
 Hyperparameter Description Value  
 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 No. components/specimens 4  
 𝐿ℎ𝑜𝑟𝑖𝑧𝑜𝑛 [days] Horizon length 60  
 𝑛𝑚𝑎𝑥𝑟𝑒𝑝𝑎𝑖𝑟𝑠 Maximum no. sequential repairs 4  
 𝑛𝑚𝑎𝑥𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑠 Maximum no. replaces 2  
 𝑝𝑡ℎ𝑟𝑒𝑠ℎ Probability threshold 0.6  
 𝑠𝑘𝑖𝑝𝑚𝑎𝑥𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 [days] Maximum no. episodes to skip based on VoI 10  
 𝑠𝑙𝑜𝑡𝑝𝑜𝑠 [days] Weekly slot availability as a random variable 𝜆𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = 4 
 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 Capacity of available slots per available day 𝑈 (1, 4)  

Table 5
Characteristics of test specimens/components for this case study.
 Test specimen No. Component No. EOL (cycles) EOL (days) 
 06 0 24565 29.49  
 07 1 17445 20.94  
 08 2 17250 20.71  
 12 3 19753 23.71  

multi-components system. Trajectories for the second, third, and fourth 
sequential repairs are generated utilizing the aforementioned process.

Concerning the PPDM task, the hyperparameters for this case study 
are stored in Table  4. These hyperparameters are defined by the user of 
the framework each time before training the RL agent. In this setup, we 
seek to extend the EOL condition by doubling the average total number 
of working cycles. Particularly, since the average EOL before repair is 
approximately 25000 cycles, the structure should be extended up to 
50000 cycles by performing maintenance actions to the components. 
This number of cycles is chosen to reflect a horizon of 60 working days. 
The structure containing these components is assumed to be working 
for a fixed and constant amount of time every day. In this regard, each 
day corresponds to 50000∕60 = 833 working cycles. In Table  5, the 
relation between working cycles and days for the four test specimens 
is shown.
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4. Results

In this section, the results of the entire framework are presented 
and discussed. Since the data of the chosen case study comes from the 
work presented in [45], the feature extraction (clustering assignments) 
and the distribution of recovery for a single repair are illustrated in 
Appendix  C, for comprehensiveness, and will not be discussed again. 
However, the behavior of the distribution of recovery for multiple 
repairs will be analyzed in Section 4.1 and the PPDM outcome in 
Section 4.2.

4.1. Single and multiple repairs

Three specimens are considered to train the imperfect repair model 
and another three to evaluate its performance. Based on the clustering 
assignments provided by the DSMC model, as shown in Fig.  C.1, prog-
nostics are implemented via the HSMM algorithm and illustrated in Fig. 
C.2. From these RUL trajectories before and after the first repair, the 
distribution of recovery can be estimated using the MCMC technique. 
This distribution represents the mean of recovery, while the variance 
can be estimated by the corresponding variance of RUL before repairing 
the specimen, under the assumption that the RUL model is independent 
of the repair process, as mentioned in Assumption 2. This can be 
extended for multiple repairs by assuming an exponential decrease in 
the mean of recovery. Having the distribution of recovery after the first 
repair, 𝜅 can be calculated by Eq.  (19), hence 𝜅 = 0.67. Determining 
the values of 𝜆 and 𝜅, three additional distributions are estimated 
for representing two, three, and four sequential repairs utilizing Eq. 
(18). These distributions alongside the distribution representing the 
first repair can be seen in Fig.  11.

As expected, because the exponential reduction was chosen on pur-
pose to be sharp, from the second repair and thereafter the distribution 
of recovery drastically tends to zero. Consequently, in this case study, 
performing more than one or two repairs sequentially may not assist in 
extending the useful life of the examined component. Therefore, a well-
trained agent is expected to make an ‘imperfect maintenance’ decision 
once or twice before considering a replacement of the component with 
a brand-new one.

4.2. Performance of the RL agent

The RL agent was trained on a single GPU (NVIDIA GeForce RTX 
2080). The entire training process for one million steps was approxi-
mately 40 min. The performance of the RL agent concerning the case 
study considering four components is depicted in Fig.  12. Particularly, 
Fig.  12(a) shows the agent’s reward gains as training progresses and Fig. 
12(b) the ratio of successful episodes, i.e. the episodes where the agent 
has successfully reached the end of the horizon. Based on these graphs, 
training for 1000 episodes is enough to achieve high performance. 
These plots reflect the mean values after taking a rolling horizon with 
a rolling window of 100 for all plots.

Decomposing the uncertainty into epistemic and aleatoric provides 
us with insightful information related to whether the RL agent struggles 
to take a decision due to difficulties in training (epistemic) or to 
noisy data (aleatoric). Recalling that the numbers 0, 1, and 2 repre-
sent the maintenance actions ‘hold’, ‘imperfect repair’, and ‘replace’ 
respectively, in Fig.  13, the left part illustrates a part of an episode 
where the agent makes decisions with probabilities based on the red 
bars. Additionally, the corresponding uncertainties are depicted. During 
inference, each of these steps represents the average probability after 
running the step 𝑇  times as discussed in Section 2.6. The process of 
constructing two of these steps is illustrated in the right part of the 
figure where the probabilities are shown with blue bars. The upper 
graph shows the step with large aleatoric uncertainty since each of 
the MC samples gives almost equal probabilities in choosing either 
‘hold’ or ‘imperfect maintenance’ decision. The lower graph has zero 
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uncertainties since the agent chooses the ‘hold‘ decision with maximum 
confidence for all the MC samples. Although not shown here and 
because of the satisfying training of the RL agent, it is noteworthy 
that the epistemic uncertainty is always approximately or exactly zero. 
Nevertheless, if the agent is poorly trained, having large epistemic 
uncertainty would be easily observable since each MC sample repre-
senting a specific step would give quite different probabilities over the 
actions.

4.3. Scheduling maintenance actions

During the evaluation phase, the environment was run for 60 se-
quential episodes equal to the horizon length. In Fig.  14 the scheduling 
representing the first episode is visualized. In this schedule, the actual 
EOL of each component is shown, only before taking any maintenance 
action. Here, some key findings are observed that validate the sat-
isfactory training of the RL agent based on the constructed reward 
function.

Firstly, the agent prioritizes scheduling maintenance actions for 
multiple components on the same day when the slots’ capacity allows it. 
This leads to two consequences. On the first hand, there is a preference 
for maintaining the components earlier but on the same day rather 
than waiting for more days, even though RULs may allow it. On the 
other hand, the agent prioritizes scheduling earlier to avoid any RUL 
dropping below the threshold which signifies an unsuccessful episode.

Secondly, only one imperfect repair action is considered before re-
placement, which aligns with the sharp exponential decrease in recov-
ery. The agent has learned that performing more than one sequential 
repair does not significantly increase the RUL and is cost-prohibitive. 
Simultaneously, a repair always precedes a replacement to extend the 
useful life as much as possible.

Thirdly, on day 57 and thereafter the agent considers deciding with 
a probability less than 𝑝𝑡ℎ𝑟𝑒𝑠ℎ. Thus, the scheduling from this step and 
so on becomes ‘N/A’, meaning that the agent does not know what 
decision to make. This points to the reliability of this framework in 
letting the user choose the amount of trust that should be given to the 
framework (based on the chosen by the user hyperparameter 𝑝𝑡ℎ𝑟𝑒𝑠ℎ) or 
when human feedback is preferred. As will be better shown in Fig.  17, 
only a couple of days at the end of the horizon are becoming ‘N/A’. This 
occurs primarily because, after performing imperfect repairs, the RUL 
uncertainty increases significantly. Consequently, the agent is uncertain 
whether another repair close to the horizon’s end will be beneficial.

To further show the behavior of each component in terms of RUL 
during the scheduling of the first episode, Fig.  15 depicts how the 
predicted RUL is affected based on the agent’s maintenance actions. 
Since this refers to the first episode, i.e. when all components are 
in the brand-new condition, the corresponding shown RULs represent 
the first data point of each of the trajectories as illustrated in Fig. 
C.2. This figure additionally presents the probabilities of taking each 
maintenance action. All other decisions made by the agent that are not 
shown correspond to the ‘hold’ decision and do not affect RUL behavior. 
As expected, after scheduling an ‘imperfect repair’, the variance of the 
RUL drastically increases until a ‘replace’ decision is made. Then, RUL 
contains only the variance related to its stochastic behavior as predicted 
by the prognostic model. From this figure, it is clear our previous 
statement related to scheduling components for maintenance on the 
same day rather than waiting for more days. In other words, although 
the agent could take additional ‘hold’ decisions before performing a 
maintenance action since RUL allows it, the overall cost is lower if more 
components are maintained on the same day than maintained later but 
on different dates.

Since those predicted RULs refer to the brand-new condition of each 
component, according to assumption 3, the plots have rationally similar 
trends, even after an imperfect repair maintenance action. In Fig.  C.4, 
an example of another RUL behavior is illustrated representing day 36, 
where the corresponding RUL data points have different values. For 
component 1, this day corresponds to the last row of the scheduling 
related to Fig.  17.
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Fig. 11. Posterior predictive distributions of the mean of recovery for one (Fig.  11(a)), two (Fig.  11(b)), three (Fig.  11(c)), and four (Fig.  11(d)) sequential repairs.
Fig. 12. Training performance of the RL agent with four components. Fig.  12(a) shows the rewards per episode and (Fig.  12(b)) the ratio of successful episodes as the training 
progresses.
4.4. The role of VoI in choosing the optimal time to acquire new information

Similarly to the RL agent, the VoI model was trained on a single 
GPU (NVIDIA GeForce RTX 2080). The entire training process for 
400 epochs was approximately 40 min. However, generating data to 
train the VoI model required a huge amount of time up to 23 h. This 
prolonged duration was primarily due to the uncertainty quantification 
and decomposition processes involved in generating data related to VoI. 
Each step within an episode was executed in a loop of 30 samples 
to compute MI, which contributed significantly to the overall time 
required.

The performance of the VoI model (training and validation losses) 
is illustrated in Fig.  16(a) where both losses converge satisfactorily. 
Subsequently, after running the first episode related to the case study, 
the VoI model outputs the next 10 predicted uncertainties and the 
14 
sequential number of future episodes that 𝑉 𝑜𝐼 < 0 is measured by Eq. 
(15). Following this process, the episodes where data are not required 
are depicted in Fig.  16(b). When the current episode in real-time is far 
from an ‘imperfect repair’ decision, the uncertainty remains mainly low, 
thus more episodes up to a maximum of 10 could be ignored. When 
such a maintenance action is approaching in real-time, the uncertainty 
increases, hence ignoring the next episodes should be avoided as shown 
in the last episodes of the same figure. Interestingly, for this case study 
consisting of a 60-day horizon, only 7 days were needed to acquire data, 
saving a vast amount of resources up to 88.3%.

Based on the VoI model and the episodes to ignore, it is important to 
visualize how the scheduling continues in real-time after having all the 
models trained. In Fig.  17, the first five schedules of the first component 
are shown considering VoI. In this regard, these schedules correspond 
to episodes 0, 11, 14, 25, and 36, as shown in Fig.  16(b). Importantly, it 
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Fig. 13. Probabilities of taking each decision over a part of an episode and the corresponding uncertainty estimates are presented with red color in the graph. During inference, 
each of these steps is run 𝑇  times. These samples and their corresponding probabilities are illustrated for two specific steps with blue color.  (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Scheduling for the first episode. The decisions of the RL agent for the first episode are shown inside the horizon.
is observed that until the moment an ’imperfect repair’ decision is made 
in real-time, the schedule stays almost the same. This shows the agent’s 
confidence in its decisions, aligning with the low uncertainty and the 
multiple possible disregarded episodes. However, when an imperfect 
repair action is close while one or more of the components are close to 
the actual EOL condition, the uncertainty is increased and the schedule 
must be adjusted before proceeding with a new one. Thus, VoI suggests 
acquiring new information and updating the decisions. This is akin 
to how human experts update their schedules following a significant 
maintenance action.

4.5. Sensitivity analysis based on the number of specimens

To demonstrate the RL agent’s performance limits, a sensitivity 
analysis was conducted for varying numbers of components. Similarly 
to Fig.  12, the rewards and ratio of successful episodes for each number 
of components are depicted in Figs.  18(a) and 18(b) respectively, after 
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taking the mean values of a rolling horizon with a rolling window 
of 100. From these plots, it is obvious that the performance drops as 
the number of components increases. Based on the plot of the ratio 
of successful episodes, one could agree that the performance of the 
agent is questionable for a multi-component system with more than 70 
components. Further improvements to the framework should be made 
to tackle systems with a larger number of dependable components.

5. Discussion and conclusion

The proposed PPDM framework integrates several sophisticated 
methodologies to address the challenges of maintenance scheduling 
in multi-component systems subject to imperfect repairs. This study 
introduces a novel approach that combines stochastic RUL estima-
tions, imperfect repairs modeling, DRL, uncertainty quantification and 
decomposition, and VoI to decide the optimal time to acquire new in-
formation. The integration of stochastic RUL predictions and imperfect 
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Fig. 15. RUL behavior of each component during the scheduling of the first episode within the horizon. For clarity, only the decisions related to maintenance actions. Additionally, 
the probabilities of making a decision by the agent are shown, corresponding to ‘hold’, ‘imperfect repair’, and ‘replace’ respectively.
Fig. 16. Results related to VoI model. Fig.  12(a) shows VoI model’s training and validation loss, and Fig.  12(b) the number of next sequential episodes to ignore after running 
the VoI model on the current episode.
repairs allows for a more realistic and dynamic assessment of compo-
nents’ health over time. Improving the health state of each component 
can extend the useful life of the entire structure consisting of multiple 
dependent components. The primary advantage of this framework is its 
ability to integrate all steps of the PHM strategy while keeping each of 
them independent. This design provides flexibility, allowing for the use 
of various feature extraction, prognostic, and imperfect repair modeling 
techniques to input data into the PPDM framework. Consequently, one 
could choose to utilize all, a part, or none of the implemented in this 
work steps necessary to feed the PPDM framework with information.

By incorporating the uncertainty associated with RULs and repairs, 
the framework can more accurately predict the future condition of 
the components, which is crucial for making optimal maintenance 
decisions. The utilization of DRL enables the agent to learn optimal 
maintenance strategies through interaction with the environment, even 
with large observation and action space. A key feature of the framework 
is its ability to quantify and decompose uncertainty into epistemic 
and aleatoric through techniques such as MC dropout and MI. This 
allows the framework to transform the total uncertainty into decision 
16 
probabilities, improving reliability and interpretability, something that 
is lacking particularly in DRL and scenarios where data is incomplete 
or noisy. Given measures of uncertainty, the VoI model is considered to 
determine the optimal timing for acquiring new information, thereby 
reducing unnecessary data collection and focusing resources on the 
most impactful days within the horizon.

The experimental evaluation demonstrated the framework’s effec-
tiveness in a real-world case study involving tension-tension fatigue 
experiments on open-hole aluminum coupons. The results showed that 
the framework could successfully schedule maintenance actions to 
extend the structure’s lifecycle while satisfying operational and logistic 
constraints. The potential to perform scheduling given a horizon even 
under multiple repairs highlights the superiority of the proposed ap-
proach. Moreover, estimating the decision probabilities of the agent 
provides a framework that identifies its limits. Knowing when it is 
confident in its decisions and when it is uncertain facilitates a hybrid 
approach that combines the power of AI with human feedback, en-
hancing reliability and promoting feasibility and risk-averse policies. 
Finally, a sensitivity analysis has been conducted for varying numbers 
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Fig. 17. Number of next sequential episodes to ignore after running the VoI model on the current episode.
Fig. 18. Training performance of the RL agent with different number of components ranging from 2 to 100. Fig.  18(a)) shows the rewards per episode and (Fig.  18(b)) the ratio 
of successful episodes as the training progresses.
of components, demonstrating the performance limits of the designed 
framework.

The ‘N/A’ output in the proposed framework serves as an ex-
plicit indicator of high uncertainty, derived from the combination of 
epistemic and aleatoric components. While it is primarily designed 
to support risk-averse decision-making by deferring low-confidence 
actions, its practical role in mission-critical systems—where contin-
uous autonomous operation is often required—warrants discussion. 
Crucially, the interpretation of ‘N/A’ depends on the dominant source 
of uncertainty. If the decision is driven by epistemic uncertainty, it 
reflects a lack of model knowledge, often due to under-represented 
scenarios in the training data. In such cases, retraining the agent with 
additional or more diverse data can reduce the frequency of uncertain 
outputs over time. Conversely, if the uncertainty is aleatoric, it signals 
that the input data are inherently ambiguous, noisy, or insufficient to 
support a reliable decision, regardless of model quality. In this case, the 
‘N/A’ output functions as a critical safeguard, preventing potentially 
misleading or overconfident actions in uncertain conditions. As such, 
even in continuous autonomous operations, frequent ‘N/A’ outputs, 
when they come from aleatoric uncertainty, do not undermine auton-
omy, but rather enhance system safety by transparently acknowledging 
the limits of the available information.

Despite these key contributions, important limitations exist that are 
worth discussing to enhance the practical applicability of the frame-
work. Firstly, due to the large number of hyperparameters, it is im-
possible with the current hardware to perform a parametric study 
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(except for the necessary and already implemented sensitivity analysis) 
or to apply an automatic hyperparameter tuning, such as Bayesian 
Optimization. This limits the framework in a time-consuming trial-
and-error approach. Secondly, the sensitivity analysis revealed that the 
performance of the DRL agent diminishes with an increasing number 
of components. This suggests that while the current model performs 
well for a moderate number of components, enhancements are needed 
to maintain efficacy in more complex scenarios. Future work could 
explore Hierarchical RL architectures, where decisions are made at 
multiple abstraction levels. For example, a high-level policy could 
first select subsets of components to consider, and low-level poli-
cies could then determine specific maintenance actions within each 
group. Distributed multi-agent frameworks, where individual agents 
are responsible for subsets of components and coordinate through a 
shared global reward or communication protocol, are another promis-
ing future direction. These frameworks may scale more efficiently and 
allow for parallelization of learning. Thirdly, while VoI offers runtime 
efficiency, generating data for training the VoI model is computation-
ally expensive due to uncertainty quantification and decomposition. 
Potential solutions to this challenge would focus on parallelizing the 
process (as done with RL environment workers), particularly on multi-
GPU or distributed systems. This would significantly reduce wall-clock 
time. Finally, rather than generating VoI data from all episodes, a 
representative subset of episodes with diverse uncertainty patterns 
could be selected using clustering or active learning methods, reducing 
redundant computations.
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Table B.1
The low-level features that are considered and extracted by the AMSY-6 Vallen Systeme GmbH as presented in [45].
 Feature name Unit Description  
 Threshold Decibel [dB] Values below this threshold are discarded.  
 Amplitude Volts [V] The amplitude of the corresponding signal.  
 Duration Seconds [s] The duration that a signal constantly remains above the threshold.  
 Energy 10−14V2s [eu]. Energy is the integral of the squared acoustic emission-signal over time  
 Counts – The number of positive threshold crossings of a hit.  
 Hit time Seconds [s] The absolute time when a hit is above the threshold.  
 Rise time Seconds [s] The time between the first threshold crossing and the maximum amplitude. 
 RMS – Root mean square (RMS) error.  
 Signal strength 10−9Vs [nVs] The integral of the rectified AE signal over time.  
Table B.2
Technical details. The specimens that were under repair contain two trajectories corresponding to one before and one after the repair.
 Specimen No. Specimen name(s) Repair 1 time (T1) Crack size [mm] @T1 Fatigue life (cycles) Fatigue life (s) 
 Baseline
 01 0_1 – 1.5 26 478 7349  
 02 0_2 – 3 22563 6850  
 03 0_3 – 2.5 23 342 7079  
 04 0_4 – 2.5 23 750 8737  
 05 0_5 – 6 19250 4814  
 Average – – 3.1 23 076 6966  
 1 Repair, reached EOL
 06 0_6, 1_6 14000 1 24565 6470  
 07 0_7, 1_7 14000 5 17445 4551  
 08 0_8, 1_8 14000 6 17250 4547  
 Average – 14000 4 19753 5189  
 1 Repair, did not reach EOL
 09 0_9, 1_9 14000 1 – –  
 10 0_10, 1_10 14000 4 – –  
 11 0_11, 1_11 14000 0 – –  
 Average – 14000 1.6 – –  
Fig. C.1. The predicted by the DSMC model clustering assignments concerning the test 
specimens.

Overall, this study lays a strong foundation for advancing the field 
of PPDM. By addressing the identified limitations and building on the 
proposed framework, future research can further enhance its prac-
tical applicability. This framework could be a pillar for researchers 
to improve and promote PPDM into more advanced tasks that many 
industrial processes demand. Real-world validation of the model in var-
ious industrial settings will be crucial for establishing its effectiveness 
18 
and ensuring its adoption in CBM practices across different sectors. 
Having a framework that integrates the steps of the PHM strategy 
independently could offer endless opportunities for constructing unique 
frameworks, applicable to wide or specific domains.
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Fig. C.2. Stochastic RUL predictions of the three testing specimens. These specimens correspond to the ones with repair that reached the EOL. The true RUL corresponds to the 
trajectory part that comes after the repair.
Fig. C.3. Posterior predictive distribution of the mean of recovery.

Appendix A. Extended theoretical background

A.1. Proximal policy optimization

Consider a stochastic policy 𝜋𝜃 ∶ 𝑆 ×𝐴 → [0, 1], parameterized by a 
parameter vector 𝜃, which assigns probabilities to each of the available 
actions given a state. For a finite horizon, the goal is to maximize the 
expected discounted return of the policy: 

𝐽 = E𝜏

[𝑇−1
∑

𝑡=0
𝛾 𝑡𝑟𝑡

(

𝑠𝑡, 𝑠𝑡+1
)

]

(A.1)

where 𝜏 =
(

𝑠0, 𝛼0, 𝑟0,… , 𝑠𝑇−1, 𝛼𝑇−1, 𝑟𝑇−1
) is a trajectory related to 

the environment’s variables. Policy gradient algorithms aim to derive 
the gradient of the expected discounted return ▽𝜃𝐽 concerning the 
policy parameter 𝜃 as their fundamental concept. According to Sutton 
& Barto [66] and the introduced advantage function 𝐴(𝑠𝑡, 𝛼𝑡) [67], the 
proposed policy gradient estimate to the objective 𝐽 is as follows: 

∇𝜃𝐽 = E𝜏∼𝜋𝜃

[𝑇−1
∑

𝑡=0
∇𝜃 log𝜋𝜃(𝛼𝑡|𝑠𝑡)𝐴(𝑠𝑡, 𝛼𝑡)

]

(A.2)

where: 
𝐴(𝑠𝑡, 𝛼𝑡) = 𝑄(𝑠𝑡, 𝛼𝑡) − 𝑉 (𝑠𝑡, 𝛼𝑡) (A.3)

This is the advantage function, representing the advantage of taking 
action 𝛼𝑡 in state 𝑠𝑡 compared to the average action value. Then the 
parameters 𝜃 are updated: 

𝜃𝑘+1 = 𝜃𝑘 + 𝛼∇𝜃𝐽
(

𝜋𝜃𝑘
)

(A.4)

In PPO, the advantage function is often estimated using the generalized 
advantage estimation (GAE) technique [68], which combines rewards 
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and value estimates: 

𝐴𝐺𝐴𝐸 (𝑠𝑡, 𝛼𝑡) =
∞
∑

𝜏=0
(𝛾𝜆𝐺𝐴𝐸 )𝜏

(

𝑟𝑡+𝜏 + 𝛾𝑉 (𝑠𝑡+𝜏+1) − 𝑉 (𝑠𝑡+𝜏 )
)

(A.5)

PPO parameterizes the policy using an ANN with parameters 𝜃. This 
network outputs probabilities for selecting each action given a state, 
denoted as 𝜋𝜃(𝛼|𝑠). Moreover, PPO introduces a surrogate objective 
function that constrains the policy update to be close to the current pol-
icy. This helps prevent large policy updates that can lead to instability. 
The surrogate objective is defined as: 

𝐿(𝜃, 𝑠𝑡, 𝛼𝑡) =
𝜋𝜃(𝛼𝑡 ∣ 𝑠𝑡)
𝜋old(𝛼𝑡 ∣ 𝑠𝑡)

𝐴𝐺𝐴𝐸 (𝑠𝑡, 𝛼𝑡) (A.6)

where 𝜋old is the probability of selecting action 𝛼𝑡 given state 𝑠𝑡 under 
the old policy at step 𝑡. To further stabilize training and prevent large 
policy updates, PPO introduces a clipped surrogate objective. Instead of 
directly maximizing the surrogate objective, PPO maximizes a clipped 
version of the surrogate objective, which is bounded by a specified 
clipping parameter 𝜖 :

𝐿𝑐𝑙𝑖𝑝(𝜃, 𝑠𝑡, 𝛼𝑡) =
(

𝜋𝜃(𝛼𝑡 ∣ 𝑠𝑡)
𝜋old(𝛼𝑡 ∣ 𝑠𝑡)

𝐴𝐺𝐴𝐸 (𝑠𝑡, 𝛼𝑡),

 clip
(

𝜋𝜃(𝛼𝑡 ∣ 𝑠𝑡)
𝜋old(𝛼𝑡 ∣ 𝑠𝑡)

, 1 − 𝜖, 1 + 𝜖
)

𝐴𝐺𝐴𝐸 (𝑠𝑡, 𝛼𝑡)
)

(A.7)

PPO updates the policy parameters 𝜃 by maximizing the clipped sur-
rogate objective typically using stochastic gradient ascent with Adam 
optimizer. This involves computing the gradient of the clipped surro-
gate objective with respect to 𝜃 and updating 𝜃 in the direction that 
increases the objective as follows: 

𝜃𝑘+1 = argmax
𝜃

E𝑠𝑡 ,𝛼𝑡∼𝜋old

[

𝐿𝑐𝑙𝑖𝑝(𝜃, 𝑠𝑡, 𝛼𝑡)
]

(A.8)

To further stabilize training, PPO typically performs multiple opti-
mization epochs on the collected data before updating the policy. This 
helps to reduce the variance in gradient estimates and improve sample 
efficiency. Finally, PPO can also update the parameters of the value 
function network to improve value estimation by regression on MSE 
given the equation below: 

𝜙𝑘+1 = argmin
𝜙

1
|

|

𝑘
|

|

𝑇

∑

𝜏∈𝑘

𝑇
∑

𝑡=0

(

𝑉𝜙(𝑠𝑡) − 𝑅𝑡
)2 (A.9)

where 𝑘 is a dataset containing older steps stored in the buffer, 𝑉𝜙(𝑠𝑡)
is the value function approximated by an ANN with parameters 𝜙. The 
reward 𝑅𝑡 at step 𝑡 comes from these collections stored in the buffer.

PPO is designed to provide stable and reliable training by constrain-
ing policy updates. It typically requires fewer samples to achieve good 
performance compared to some other policy gradient methods and 
performs well across a wide range of tasks and environments, making 
it a popular choice in the RL community.
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Fig. C.4. RUL behavior of each component during the scheduling of day 36 within the horizon. For clarity, only the decisions related to maintenance actions. Additionally, the 
probabilities of making a decision by the agent are shown, corresponding to ‘hold’, ‘imperfect repair’, and ‘replace’ respectively.
A.2. Proofs

Lemma 1.  Given an agent that chooses over three possible decisions, the 
measured total uncertainty produced by Shannon’s entropy and MC dropout 
is upper bounded to 𝑙𝑜𝑔3, s.t.: 

𝑈 = 1
𝑇
𝐻

[ 𝑇
∑

𝑖=1
𝑝(𝑦𝑖)

]

≤ 𝑙𝑜𝑔3 (A.10)

where 𝑈 is the total uncertainty.

Proof.  According to Shannon’s entropy and Jensen’s inequality [69], 
for 𝑘 decisions we have: 

−
𝑘
∑

𝑦=1

[

𝑝𝑦𝑙𝑜𝑔(𝑝𝑦)
]

=
𝑘
∑

𝑦=1

[

𝑙𝑜𝑔( 1
𝑝𝑦

)
]

≤ 𝑙𝑜𝑔𝑘 (A.11)

The given total uncertainty from Eq.  (14) for 3 decisions is: 

𝑈 = 1
𝑇
𝐻

[ 𝑇
∑

𝑖=1
𝑝(𝑦𝑖)

]

= −
3
∑

𝑦=1

[

1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖)𝑙𝑜𝑔

(

1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖)

)]

(A.12)

Setting 𝑃𝑦 =
1
𝑇
∑𝑇

𝑖=1 𝑝(𝑦𝑖) then Eq.  (A.12) becomes: 

𝑈 = 1
𝑇
𝐻

[ 𝑇
∑

𝑖=1
𝑝(𝑦𝑖)

]

= −
3
∑

𝑦=1

[

𝑃𝑦𝑙𝑜𝑔(𝑃𝑦)
]

≤ 𝑙𝑜𝑔3 (A.13)

Lemma 2.  Given an agent that chooses over three possible decisions, 
the probability threshold 𝑝𝑡ℎ𝑟𝑒𝑠ℎ based on which a decision is considered 
acceptable has a connection with the total uncertainty, s.t.: 

𝑈 ≤ −𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑙𝑜𝑔(𝑝𝑡ℎ𝑟𝑒𝑠ℎ) − (1 − 𝑝𝑡ℎ𝑟𝑒𝑠ℎ)𝑙𝑜𝑔
(

1 − 𝑝𝑡ℎ𝑟𝑒𝑠ℎ
2

)

(A.14)

Proof.  Since only one decision should be made for each component, 
we care only about the maximum probability 𝑝(𝑦𝑚𝑎𝑥𝑖 ) = 𝑚𝑎𝑥(𝑝(𝑦𝑖)), 𝑖 =
{1, 2, 3} ≥ 𝑝𝑡ℎ𝑟𝑒𝑠ℎ. The worst case scenario is 𝑝(𝑦𝑚𝑎𝑥𝑖 ) = 𝑝𝑡ℎ𝑟𝑒𝑠ℎ. Let us 
assume that the first decision is the maximum, thus 𝑝(𝑦1) = 𝑝𝑡ℎ𝑟𝑒𝑠ℎ. 
Then, based on Eq.  (A.13), the maximum corresponding acceptable 
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uncertainty is: 

𝑈 = −
3
∑

𝑦=1

[

1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖)𝑙𝑜𝑔

(

1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖)

)]

= − 1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖𝑡ℎ𝑟𝑒𝑠ℎ)𝑙𝑜𝑔

(

1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖𝑡ℎ𝑟𝑒𝑠ℎ)

)

−
3
∑

𝑦=2

[

1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖)𝑙𝑜𝑔

(

1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖)

)]

= − 1
𝑇
𝑇 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑙𝑜𝑔

( 1
𝑇
𝑇
)

𝑝𝑡ℎ𝑟𝑒𝑠ℎ −
3
∑

𝑦=2

[

1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖)𝑙𝑜𝑔

(

1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖)

)]

= −𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑙𝑜𝑔(𝑝𝑡ℎ𝑟𝑒𝑠ℎ) −
3
∑

𝑦=2

[

1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖)𝑙𝑜𝑔

(

1
𝑇

𝑇
∑

𝑖=1
𝑝(𝑦𝑖)

)]

(A.15)

Setting again 𝑃𝑦 =
1
𝑇
∑𝑇

𝑖=1 𝑝(𝑦𝑖) we have: 

𝑈 = −𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑙𝑜𝑔(𝑝𝑡ℎ𝑟𝑒𝑠ℎ) −
3
∑

𝑦=2
𝑃𝑦𝑙𝑜𝑔(𝑃𝑦) (A.16)

If the first decision corresponds to 𝑝𝑡ℎ𝑟𝑒𝑠ℎ then 𝑃1 = 𝑝𝑡ℎ𝑟𝑒𝑠ℎ and 
∑3

𝑦=2 𝑃𝑦 = 1 − 𝑝𝑡ℎ𝑟𝑒𝑠ℎ. According to Jensen’s inequality the entropy of 
the terms 𝑃2 and 𝑃3 is maximized when 𝑃2 = 𝑃3, hence: 

𝑃2 + 𝑃3 = 1 − 𝑝𝑡ℎ𝑟𝑒𝑠ℎ ⇔ 𝑃2 = 𝑃3 =
1 − 𝑝𝑡ℎ𝑟𝑒𝑠ℎ

2
(A.17)

Setting Eq.  (A.17) to the second term ofEq.  (A.16) we have: 

𝑈 = −𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑙𝑜𝑔(𝑝𝑡ℎ𝑟𝑒𝑠ℎ) − −
3
∑

𝑦=2

1 − 𝑝𝑡ℎ𝑟𝑒𝑠ℎ
2

𝑙𝑜𝑔(
1 − 𝑝𝑡ℎ𝑟𝑒𝑠ℎ

2
)

= −𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑙𝑜𝑔(𝑝𝑡ℎ𝑟𝑒𝑠ℎ) − (1 − 𝑝𝑡ℎ𝑟𝑒𝑠ℎ)𝑙𝑜𝑔
(

1 − 𝑝𝑡ℎ𝑟𝑒𝑠ℎ
2

)

(A.18)

The same equation will be given assuming any of the probabilities 
𝑃1, 𝑃2, 𝑃3 equals to 𝑝𝑡ℎ𝑟𝑒𝑠ℎ. If any of the maximum 𝑃𝑖 is less than 𝑝𝑡ℎ𝑟𝑒𝑠ℎ, 
then the total uncertainty in Eq.  (A.18) is always smaller than the above 
expression.
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Appendix B. Additional details of the experimental campaign

See Tables  B.1 and B.2.

Appendix C. Supplementary results

In this section, we present additional results already implemented in 
previous works concerning feature extraction (clustering assignments) 
(see Fig.  C.1), prognosis (see Fig.  C.2), and distribution of recovery for 
a single repair (see Fig.  C.3).

Data availability

Data will be made available on request.
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