
Comparing
Spreadsheets
A New Strategy for Analysis,
Detection andAggregation of
Spreadsheet Differences

Willem-JanMeerkerk

Comparing
Spreadsheets

A New Strategy for Analysis, Detection and
Aggregation of Spreadsheet Differences

by

Willem-Jan Meerkerk
to obtain the degree of Master of Science

in Computer Science
at the Delft University of Technology,

to be defended publicly on Thursday June 27, 2019 at 1:00 PM.

Student number: 4142160
Project duration: September 3, 2018 – June 27, 2019
Thesis committee: Prof. Dr. A. van Deursen, TU Delft, supervisor

Dr. A.E. Zaidman, TU Delft
Dr. C.C.S. Liem, TU Delft
Mateo Mol, Infotron, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, The Netherlands
www.ewi.tudelft.nl

INFOTRON
Infotron

Linnaeusstraat 2C
Amsterdam, The Netherlands

www.infotron.nl

http://repository.tudelft.nl/
www.ewi.tudelft.nl
www.infotron.nl

Abstract

Comparing spreadsheet files is a new, unexplored research domain in computer science. Meth-
ods for regular file comparison are not straightforwardly applicable to spreadsheet files, because
they are fundamentally different. Spreadsheets are binary files, the structure of spreadsheets is
two-dimensional, they contain both data and calculations, and the content exists on different
abstraction levels. Fundamental challenges in the spreadsheet comparison problem include:
change propagation, performance, 2D alignment, the grouping of data, and movement detec-
tion. One simple modification can change the whole structure and model of the spreadsheet.
The aim of a good file comparison method is to show the actual changes made by an end-user,
not the propagated changes.

In this thesis, a new pipeline-based approach for comparing two spreadsheet files is pro-
posed. The spreadsheet comparison is solved in three phases: (1) structure analysis, (2) change
detection, and (3) change aggregation. The essential element in this approach is passing on in-
formation from the structure analysis to the change detection. In addition, the detected changes
are forwarded to the aggregation such that changes are converted into clear, understandable
differences. The final comparison result, therefore, provides information at different levels of
abstraction. New solutions like cell hashing, an optimized 2D alignment using longest com-
mon subsequences, and different algorithms for comparing worksheets, defined names, rows,
columns and cells have resulted in a state-of-the-art spreadsheet comparison approach.

In addition, this thesis presents a prototype demonstrating the proposed concepts in prac-
tice. This tool, called CompareXL, is a stand-alone application that can compare two spread-
sheet files. The user interface is built with a multi-level interaction design, showing the com-
parison results intuitively to the end-user.

Spreadsheets are commonly used and many problems arise from spreadsheet versioning
issues. Spreadsheet users have user needs related to overview, validation, completeness, error
resolving, visualization, and evolution. A spreadsheet comparison program is helpful to address
these user needs. This research shows that it is beneficial to involve users in the exploration of
solutions, because comparing spreadsheets is not only a technical problem but also a user prob-
lem. The outcome of this research offers multiple directions for future work, with the ultimate
goal that all spreadsheet version problems will soon belong to the past.

iii

Preface

Looking back at the end of this graduation project I am grateful for the last 9 months of re-
search. What started as a large and complex project has developed into a relevant and con-
crete end product. I was surprised how quickly I had a first working prototype. Apparently, the
spreadsheet comparison problem was solvable. I am very pleased that I was able to carry out
this project in the context of Infotron. For me, good theoretical knowledge always goes hand in
hand with smart applications in practice. During my study Computer Science, I have learned
many fundamentals to develop intelligent solutions. I really enjoyed putting these into practice
during this challenging graduation project.

There are a lot of people I would like to thank. First of all, thank you Arie for being my thesis
supervisor and for all your valuable input during our meetings. Thank you Mateo, and all the
colleagues at Infotron, for your help and feedback during my research, the opportunity to build
a nice spreadsheet compare tool, and all the enjoyable board game sessions ;). Thanks to my
family, and especially my parents, for the warm home and all the freedom you have given me.
Thanks to my roommates and friends, for all the fun we had during this last year of my student
time. Angeline, thank you for your love and unconditional support.

Finally, I want to give thanks to God the Father, for his infinite love, grace, joy, and support
in my life. His glorious presence was my greatest inspiration and motivation last year. I hope
that my work on this graduation project may reflect some of His great work of creation.

Willem-Jan Meerkerk
Delft, June 2019

v

Contents

Abstract iii

Preface v

1 Introduction 1
1.1 Motivation . 1
1.2 Research Context . 2
1.3 Research Objective . 2
1.4 Research Approach. 3
1.5 Thesis Structure . 3

2 Background 5
2.1 Related Work . 5

2.1.1 File Comparison . 5
2.1.2 Longest Common Subsequence . 7
2.1.3 Spreadsheet Versioning . 8
2.1.4 Comparing Spreadsheets . 10
2.1.5 Other Approaches . 12

2.2 Existing Tools . 14
2.2.1 Approach . 14
2.2.2 Results . 15
2.2.3 Conclusion . 18

3 Spreadsheet Versioning Challenges 21
3.1 Spreadsheet Context . 22

3.1.1 Version Organization . 22
3.1.2 Version Problems . 23

3.2 Spreadsheet Characteristics . 25
3.2.1 Binary File Format . 25
3.2.2 Change Propagation . 26
3.2.3 Many Edit Operations . 27
3.2.4 Different Levels of Granularity. 28
3.2.5 Large and Complex Files . 28

3.3 List of Requirements . 30

4 Finding Spreadsheet Differences 33
4.1 Change Categorization. 33
4.2 Comparison Pipeline. 36
4.3 Cell Hashing . 38

vii

viii Contents

4.4 2D Alignment . 41
4.4.1 Overview . 41
4.4.2 Detailed description in 10 steps . 42
4.4.3 Fine-tuned 1D LCS algorithm . 44
4.4.4 Fine-tuned 2D alignment algorithm . 44
4.4.5 Conclusion . 46

4.5 Comparing Worksheets . 47
4.5.1 Finding matching worksheets . 47
4.5.2 Finding worksheet state modifications . 47
4.5.3 Finding worksheet order changes . 48

4.6 Comparing Defined Names . 50
4.7 Comparing Rows and Columns . 52

4.7.1 Finding row/column insertions and deletions 52
4.7.2 Finding row/column state modifications . 53

4.8 Comparing Cells . 54
4.9 Change Aggregation . 56

4.9.1 Aggregation of workbook changes. 58
4.9.2 Aggregation of worksheet changes . 59

4.10 Reflection . 62

5 Tool: CompareXL 63
5.1 User Interface. 63
5.2 Comparison Engine . 69
5.3 Performance Optimizations . 72
5.4 Development Process . 74

6 Evaluation 75
6.1 Experiment I: Unit Tests . 75
6.2 Experiment II: Correctness Test . 77
6.3 Experiment III: Stability Test . 78
6.4 Experiment IV: Performance Test . 79
6.5 Experiment V: User Tests. 82

6.5.1 Features . 83
6.5.2 Quality. 85
6.5.3 User Reflection . 86

6.6 Discussion . 87

7 Conclusion 91
7.1 Contributions. 91
7.2 Conclusions. 92
7.3 Future work . 94

A Sample Spreadsheet File 97

B Spreadsheet Edit Operations 101

Bibliography 105

1
Introduction

1.1 Motivation

File comparison is a topic that has existed ever since the earliest times in the history of comput-
ing [1–3]. For example, the Unix diff utility was developed in the early 1970s. It is in the nature
of working with computers, that multiple versions of computer files arise. In general, many op-
erations users perform on computers are reflected back in creating a new version of a computer
file. Ever since humans work with computer files, there has been the need to compare different
versions of their files.

File comparison tools support users to understand the differences they made and help to
fix errors. It is often unclear what has changed between different versions of a computer file. A
user cannot memorize all the modifications that were made, and often a computer file is edited
by multiple users. A file comparison tool gives insight into the changes and can help users to
understand the evolution of their (possibly shared) computer file. Furthermore, a clear overview
of all differences between versions can help to identify faults.

Extensive research in the field of file comparison has been conducted. Many methods have
been developed, mostly for comparing text files. Most file comparison tools compute the longest
common subsequence of two files and highlight differences for all parts that are not in the
longest common subsequence. As a result, many file comparison software algorithms and tools
are available, and the problem of comparing text files is now well understood.

Comparing spreadsheets however is a much less explored domain. The comparison of spread-
sheet files is complex, due to various reasons.

• First of all, a spreadsheet file differs from a regular text file, because the data is stored in
binary format.

• While the structure of regular files is one-dimensional (collection of lines), the structure of
a spreadsheet file is two-dimensional (collection of rows and columns), and data exists on
different levels (workbook, worksheets, and cells).

• Regular files have clear atomic data items (characters in a line), but data items in spread-
sheet files are non-atomic (cells either contain a value or formula, or both, and have op-
tional display and formatting properties).

1

2 1. Introduction

• Regular files only contain pure data, spreadsheet files contain combinations of data and
calculations.

• A good file comparison shows the actual changes an end-user has made. In the context of
comparing spreadsheets, one simple user action (e.g. inserting a column) can change the
whole structure and model of the spreadsheet file (e.g. all cells to the right are moved, and
all formulas dependent on these cells are changed).

In the current research, spreadsheets in general and spreadsheet versioning are well under-
stood. Still, there is no complete, state-of-the-art spreadsheet comparison approach described
in the literature. The limited number of papers only provide small pieces of the whole puzzle of
spreadsheet comparison.

Besides the scientific work, the available commercial spreadsheet comparison tools all have
their shortcomings. State-of-the-art tools lack the ability to give clear overviews, have problems
comparing large and complex spreadsheets, and are unable to make a complete diff between
two spreadsheet files. None are built with the aim to be an all-purpose compare tool, that can
efficiently compare two spreadsheet files of all different types.

1.2 Research Context

This graduate project is performed at the company Infotron, located in Amsterdam. The ulti-
mate goal of Infotron is to drastically increase the quality of spreadsheets worldwide. Infotron
serves clients varying from accountants, consultants, and financial experts as well as profes-
sionals from the high tech, energy, logistics, transport, and engineering industries. In all the
experience gained by Infotron in the last years, it appeared that many spreadsheets end-users
are struggling with multiple spreadsheet versions. Several problems arise and there is no simple,
stable and well-performing solution to compare spreadsheets.

Infotron has many connections with end-users and Excel experts, which are of great signif-
icance in this research. Furthermore, the whole team of colleagues with Excel experience are
available to support this research. The collaboration of the TU Delft and Infotron has earlier led
to a publication about analyzing and visualizing spreadsheets [4], and more research is still go-
ing on. The combined effort in this graduate project will make this research of both commercial
and scientific value.

1.3 Research Objective

The goal of this thesis is to get insight into the complex comparison of spreadsheet files, and to
develop a prototype tool that can actually compare two spreadsheets files efficiently. To achieve
these goals, we need:

1. to fundamentally understand the spreadsheet comparison problem,

2. to develop a strategy to compare the differences on different levels of detail, and

3. to find a smart way to present the comparison results.

We therefore investigate the following research question:

How to develop an intelligent and applicable strategy for comparing two spread-
sheet files?

1.4. Research Approach 3

1.4 Research Approach

We decide to use prototyping as the main research tool [5]. Since it is difficult to predict the main
research challenges beforehand, the best method is to work with comparing spreadsheets in
practice. After an initial stage of background research in literature and existing tools, we start the
development of a running prototype: a tool that can compare two spreadsheets. Along the road,
we expect to face fundamental challenges that make the comparison difficult. New findings and
solutions addressing these challenges are of scientific significance and will be reported in this
thesis.

We involve different Excel end-users in this research, in the form of user interviews. The
interviews are held at companies, at the university, and with Excel experts. The goal is to obtain
more insight into the context: find out how users maintain different spreadsheets versions and
which problems they face. In the interviews, we ask users to explain their user needs for having
a compare tool. Because the result of a spreadsheet comparison is not trivial, we talk about the
expected outcome and how users can best be helped with a comparison tool. We expect that
the interviews will clarify the challenges from a user perspective.

Based on the input of end-users and our own experience during the development of the
compare tool, we define a list of requirements related to the spreadsheet comparison problem.
A requirement describes underlying user needs or technical challenges that exist when com-
paring spreadsheets. We study the literature and existing tools, and expect to conclude that the
current research and available tools are unable to give sufficient solutions to the requirements.
In this thesis, we will propose new solutions to the underlying user needs and technical chal-
lenges. Furthermore, we will present a prototype tool, called CompareXL, to demonstrate the
outcome of this research in practice.

The evaluation of this research is two-fold. First, we set up experiments to test the technical
aspects of our comparison approach. These automated tests evaluate criteria like correctness,
stability, and performance. For instance, we test the performance of the compare tool on very
large spreadsheet files. Secondly, we perform user tests to test the user aspects of our compar-
ison approach. We present the prototype to end-users and investigate the quality of the com-
parison side by side. We also ask to what extent the new solutions meet the goals of the user for
comparing spreadsheets. These user tests will evaluate criteria like correctness and complete-
ness and validate the user needs.

We conclude this research with a reflection on the spreadsheet comparison problem, based
on 9 months of experience with this subject. We discuss the results of the evaluation, to con-
clude to what extent the new contributions of this thesis solve user needs and technical chal-
lenges. Finally, we end with a list of recommendations, to encourage further exploration of this
research domain on spreadsheet comparison.

1.5 Thesis Structure

To answer the research question, the rest of this thesis is structured as follows. In Chapter 2, we
give an overview of the current literature and existing tools, to understand the background of
the spreadsheet comparison problem. In Chapter 3, we present an analysis of the spreadsheet
comparison problem, to find out why it is so difficult to compare two spreadsheet files. We sum-
marize the problems in terms of technical challenges and user needs. In Chapter 4, we propose

4 1. Introduction

nine solutions for comparing spreadsheets, together representing our new spreadsheet com-
parison strategy. The solutions solve technical challenges and address user needs. In Chapter 5,
we show our prototype tool, demonstrating the proposed concepts in practice. In Chapter 6,
we evaluate to what extent our strategy is intelligent (solving technical challenges) and appli-
cable (fitting the user needs). Finally, in Chapter 7, we wrap up our research and present the
contributions, conclusions, and suggestions for future work.

2
Background

2.1 Related Work

In this section we explain the prerequisite knowledge to understand the concepts introduced
in this thesis. Furthermore, we summarize the related work that has been done in the field of
spreadsheet versioning and comparison.

We will see that there is a lot of literature available for file comparison in general, but limited
work has been done for spreadsheet comparison. The ideas introduced in the available papers
are only pieces of the whole puzzle of spreadsheet comparison. They help to understand the
context of spreadsheets better, and some pieces are re-used and optimized in our solution for
spreadsheet comparison.

2.1.1 File Comparison

The goal of a file comparison program is to report differences between two files A and B . A
regular text file can be seen as a collection of lines. The lines are called Ai and B j , with i = 1, ..., n
and j = 1, ..., m. The differences are a collection of line changes between the two files. This is
frequently called the ‘diff’ between A and B . The diff will tell how to change the lines in the first
file to make it match the second file.

A diff does not only provide insight in the changes, it is also an important building block of
version control systems. If a complete diff between two files can be made, it is sufficient to only
save the original file A and the diff between A and B . When more versions of a file are created,
only the diffs need to be stored. The benefit is that the space required to store the different files
is reduced: only the original file (probably large) and the diffs (probably small) are saved. Other
than that, version control systems provide access to intermediate versions by applying diffs to
the original file. Because the difference information is so important for version control systems,
a complete and efficient file comparison algorithm is required.

The simplest approach to compute a diff is to scan files A and B line by line, reporting differ-
ences for the lines that are unequal. This method will work if only individual lines are changed.
However, with inserted or deleted lines the files will become out of sync and all the other lines
will be reported as different.

5

6 2. Background

Another straightforward approach is to scan both files A and B until two unequal lines are
found. At that point the files can be scanned forward until again a matching pair of lines is
found. If that occurs, the lines in between can be reported as differences. Lines skipped in A
are deletions and lines skipped in B are insertions. However, this method fails if there are lines
deleted in A and inserted in B at the same position. It is not clear how to resynchronize, resulting
again in a large set of differences. It appears that there is no trivial strategy for comparing simple
text files.

In 1976, Hunt and McIlroy [1] introduced one of the first file comparison algorithms. This
algorithm formed the starting point for the diff utility in Unix. The outcome is a minimal list
of line changes to bring the first file into agreement with the second. The line changes that are
reported are delete (<) and append (>), with the corresponding line number. An example output
of the diff algorithm is shown in Figure 2.1.

$ cat file1.txt
alpha
bravo
charlie
delta
echo
foxtrot
golf

$ cat file2.txt
whiskey
alpha
bravo
xray
yankee
zulu
echo

$ diff file1.txt file2.txt
0a1
> whiskey
3,4c4,6
< charlie
< delta

> xray
> yankee
> zulu
6,7d7
< foxtrot
< golf

Figure 2.1: Output of the diff utility on two simple text files.

The key part in their algorithm is to solve the longest common subsequence (LCS) problem.
The longest common subsequence is the sequence that contains the maximum number of lines
in A and B that are equal. In other words, finding the LCS gives the lines in A and B that are
unchanged. When the LCS is found, it is easy to extract the line changes. Lines that are in A but
not in the LCS are deleted, and lines that are in B but not in the LCS are appended. The result
of the Hunt-McIlroy algorithm is a list of all deletes and appends, summarized per segment of
consecutive lines.

To gain practical efficiency, various techniques are described by Hunt and McIlroy [1]. Match-
ing lines from the beginning and the end are stripped, to reduce the search space. There is no
need to compare identical parts at the beginning or the end of the files. Furthermore, each line
of a file is hashed into one computer word to make comparison of reasonably large files possible.
A hash is a ‘fingerprint’ of a line. Not all individual symbols in a line will be considered, but only
the hash. This will speed up the comparison and reduces the required memory space. More
optimizations like presorting into equivalence classes, merging by binary search, and dynamic
storage allocation are used to obtain better performance.

Miller and Myers [2] present a different algorithm to compare two files. Again, the lines are
treated as indivisible objects, so a file with n lines is considered as a string of n symbols. The
approach brought up here finds the edit distance between the two strings of symbols. This edit

2.1. Related Work 7

distance is the length of the shortest sequence of insertions and deletions that will convert the
first string to the second. They propose a systematic approach using three rules, to build up a
solution from the solutions to subproblems. The algorithm starts by finding identical prefixes
of A and B , the case where the edit distance is 0. Then, three rules are applied to determine
all combinations with an increasing edit distance (1, 2, and so on). This continues until the
algorithm has found a shortest possible edit script (sequence of edit commands) for converting
the first input string into the second.

This method is particularly efficient when the difference between the two files is small com-
pared to the files’ lengths. Miller and Myers [2] observed that their program often ran four times
faster than the diff command. However, for files with no lines in common, the program ran
out of memory and reported only a lower bound on the edit distance.

Their paper brings up the important point that an efficient file comparison algorithm de-
pends on the content of the files to compare. It can help to select a file comparison algorithm
when assumptions can be made about the expected overlap. One can even build a mechanism
to dynamically switch to the most efficient algorithm based on predictions on the number of
differences. For regular file comparison, one would expect at least some, and probably a large
amount of overlap between the files. This is also true for spreadsheets. When almost everything
has changed it can be more useful to report that, than to create a huge set of differences.

Of course, further optimizations are possible to the file comparison approach. In practice,
most file comparison tools find the longest common subsequence between the two files. Any
line not in the longest common subsequence is reported as an addition or deletion. Optimiz-
ing the file comparison problem is in that sense equivalent to optimizing the longest common
subsequence problem. This problem will be regarded in the next section.

2.1.2 Longest Common Subsequence

There is extensive literature available about the LCS problem. A valuable survey of LCS algo-
rithms is given by Bergroth et al. in [6]. We repeat the formal definition and paraphrase the
overview of the approaches to solve this problem, summarized in [6] and their follow-up pa-
per [7].

We are comparing two strings X [1..n] and Y [1..m], with length n and m respectively. A sub-
sequence S[1..s] of X [1..n] is obtained by deleting n−s symbols from X . A common subsequence
of X [1..n] and Y [1..m] is a subsequence that occurs in both strings. The longest common sub-
sequence, denoted by lcs(X , Y) is a common subsequence of maximal length. The length of
the lcs(X , Y) is denoted by r . The longest common subsequence does not need to be unique.
There may be several common subsequences with maximum length r .

Example 1. Let X = abcdbb and Y = cbacbaaba. Then lcs(X , Y) = acbb, or lcs(X , Y) =
bcbb. The length of the longest common subsequence r = 4.

There are two variants of the LCS problem: sometimes only the length r should be deter-
mined, sometimes the sequence itself has to be produced. Basically, every algorithm calculating
r only can be modified to solve the LCS also by introducing additional bookkeeping that records
the algorithm progression. After r is known, the LCS can be constructed by backtracking the se-
lections made.

8 2. Background

The very first feasible approach to solve the LCS problem is introduced by Wagner and Fis-
cher [8] in the year 1974. Their method is based on a dynamic programming technique. Each
character lying in the input string X is compared with characters from each position of Y . This
leads to the calculation of a LCS for all possible prefixes of X and Y . After processing all prefixes,
the length r can be found in the bottom right corner of the dynamic programming table. With
backtracking, the actual LCS can be found. The Wagner-Fischer algorithm has time and space
complexity of O(nm).

Although the time and space complexity of this dynamic programming technique is ‘only’
quadratic, it tends to be too large for many applications. Due to this, several heuristics have
been devised. Sometimes it is not the time complexity that is crucial but space becomes the
limiting resource. The whole set of LCS algorithms, which improve the dynamic programming
approach, fall into three categories: row-by-row methods, contour methods and diagonal meth-
ods. More details about the different algorithms and a performance evaluation can be found in
the survey paper [6].

A recent theoretic study on the LCS problem is presented by Bringmann et al. [9]. They con-
clude that a textbook algorithm, like Wagner-Fischer, solves LCS in time O(n2), but although
much effort has been spent, no O(n2−ε)-time algorithm is known. Recent work shows that
such an algorithm would refute the Strong Exponential Time Hypothesis (SETH). Despite the
quadratic-time barrier, for over 40 years an enduring scientific interest produced faster algo-
rithms for the LCS problem and its variations. Particular attention was given to identification
and exploitation of input parameters that yield strongly subquadratic time algorithms for spe-
cial cases of interest, e.g., differential file comparison. This line of research was successfully
pursued until 1990, when significant improvements came to a halt.

We conclude that for comparing larger sequences, it is important to select a fast algorithm. It
will be useful to start with an implementation of the ‘naive’ Wagner-Fischer algorithm [8]. Then,
other algorithms can be implemented to optimize the performance. The correctness can be
compared with the original implementation. Based on the survey paper [6], it seems fruitful to
test different implementations: Hunt-Szymanski [10], Kuo-Cross [11] and Wu, Manber, Myers,
and Miller [12].

2.1.3 Spreadsheet Versioning

Nowadays, spreadsheets are one of the most commonly used programming tools [13]. Schmitz
et al. [14] present a survey done among 180 spreadsheet users. One of their survey results is that
spreadsheet users do not formally use version control. 74% of the respondents typically has two
or more versions of a spreadsheet, and 64% of the respondents tracks different spreadsheet ver-
sions by embedding dates or version numbers in the filenames. Only 4% of the respondents save
their spreadsheets on OneDrive, which includes rudimentary, but functional, version tracking.
Despite the popularity of version control systems like Git, it has not been adopted by spread-
sheet users. This is verified in another study [15], where it is estimated that 70% of the spread-
sheet users performs manual version control. Spreadsheet users often create new versions, but
do not use version control systems.

Jansen et al. [16] obtained more understanding on how spreadsheets evolve over time.
Based on two case studies on two different sets of spreadsheets, they conclude that most spread-
sheets grow over time, both in the number of non-empty cells as unique formulas. The growth

2.1. Related Work 9

of the data is caused by adding more data points to the analysis. Growth in unique formulas
is caused by adding new functionality to the spreadsheet. Unique formulas were changed in
almost every version, only the number of changes differed per version. The motivation for most
formula changes is to implement a new feature request, to improve the maintainability of the
spreadsheet, or to correct errors that are made in previous versions.

The results of the evolution study were discussed with the creators of the spreadsheet, and
suggestions were made that could support a spreadsheet user in making a better model. First of
all, they advice to summarize the changes made in a new version. For example, choosing to only
show the changes in unique formulas instead of all formulas helps to present the changes in a
concise way to the creator of the spreadsheet. A summary helps the creator of the spreadsheet
to detect if all changes are intended and correctly implemented. Secondly, it will be useful if a
list of formulas that were frequently changed in earlier versions of the spreadsheet is generated.
This could function as a checklist to make sure that all necessary changes have been made.
Thirdly, formulas that are candidates for refactoring should be suggested. Formulas that have
to be changed in every new version can often be rewritten in such a way that changes are not
necessary. Lastly, sudden drops or spikes in changing and growing rates should be highlighted.
They sometimes indicate anomalies in the spreadsheet.

The representativeness of the selected set of spreadsheets analyzed in the paper is limited.
Still, general conclusions about spreadsheet evolution, based on real-world files from industry,
can be made. This study shows that a compare tool would help end-users in the maintainability
of their spreadsheets. All the suggestions require a comparison strategy that is efficient, able to
summarize, able to detect structural changes, and able to process the detected changes. An-
other contribution of this paper is an algorithm called FormulaMatch, that can match unique
formulas of two different versions of the same spreadsheet.

Xu et al. [17] study a concrete example of spreadsheet versions: spreadsheet templates.
Spreadsheet templates are semi-finished spreadsheets with predefined formulas and table lay-
outs. New spreadsheets based on these semi-finished spreadsheets are created. These tem-
plates are used to help end-users create spreadsheets efficiently. The research collected 47 pre-
designed templates and 490 instances, based on spreadsheets from the Enron corpus. The re-
searchers observed four kinds of errors introduced in the instances: missing formulas, range
errors, unnecessary formulas and inconsistent formulas. In the usage of 79% of the predesigned
templates, at least one error is introduced, and missing formulas are the most common type of
errors. Spreadsheet templates are often used by end-users, and their usage reflects how end-
users work with spreadsheet versions in general. Therefore, it is reasonable to conclude that
often errors are introduced when new spreadsheet versions are created. A compare tool can
help to identify errors made in spreadsheet versioning.

Dou et al. [18] introduced a versioned spreadsheet corpus, called VEnron, which was ex-
tracted from the Enron Corporation email archive. They developed a semi-automated approach
where they cluster spreadsheets that likely evolved from one to another into evolution groups.
The clustering was made on various fragmented information, such as spreadsheet filenames,
spreadsheet contents, and spreadsheet-attached emails. In each evolution group, they recov-
ered the version information of the spreadsheets. That made it possible to identify interesting
issues that arise from spreadsheet evolution. One step of their approach is to check whether
all the spreadsheets in a group share similar table structures and formulas. For that, they use

10 2. Background

the Microsoft Spreadsheet Compare tool to compare two versions of spreadsheets. This tool is
included in our existing tools survey in Section 2.2. They have also used this tool to investigate
what changes happened during the evolution in each evolution group. The changes inspected
are: structural changes, entered value changes, formula changes and calculated value changes.

The most important conclusions based on the VEron evolution analysis are the following.
First of all, 72.2% of the evolution groups involve more than one committer (user who modi-
fied the spreadsheet). This suggests that spreadsheets were often maintained by multiple users.
Most (87.5%) evolution groups have less than 5 committers. This indicates that spreadsheets
were often updated by a small group of users. Secondly, users deploy various ways to represent
version information of spreadsheets in the filename. Time is the most common type (66.7%), for
example users use the months (May, Jun, July, or Aug) to distinguish different versions. Some-
times (18.9%) indices in the filenames’ prefix or suffix are used (e.g. v2, v3, v4). But often (39.4%)
users did not use any version representation to distinct different versioned spreadsheets. It also
appeared that in 18.3% of the evolution groups users adopted more than one version represen-
tation across multiple versions. Thirdly, various spreadsheet changes occurred in all evolution
groups. For cell changes in general, entered value changes are much more common than for-
mula changes (20.3% vs. 4.2%). Still, formula changes occur often (in 19.0% of all formula cells)
during evolution. For structural changes, row changes are much more common than column
changes (11.7% vs. 3.5%). Lastly, in 16.9% of all groups a later spreadsheet version contained
more errors than the previous version. New errors are easily introduced during evolution, which
we also concluded from [17].

An improved versioned spreadsheet corpus, called VEnron2, was introduced in [19]. The
authors observed that the versioned spreadsheets in each evolution group of VEnron exhibit
certain common features, like similar table headers and worksheet names. Based on this obser-
vation, they proposed an automatic clustering algorithm, SpreadCluster. This algorithm learns
the criteria of features from the versioned spreadsheets in VEnron, and then automatically clus-
ters spreadsheets with similar features into the same evolution group. The evaluation result
shows that SpreadCluster could cluster spreadsheets with higher precision and recall rate than
the filename-based approach used by VEnron. They also applied SpreadCluster on the other
two spreadsheet corpora: FUSE and EUSES. The result of their research are multiple datasets
with versioned spreadsheets, which are available online. The datasets are not only useful to
study spreadsheet evolution, they also constitute a rich resource to evaluate a compare tool on
many versions of real-world spreadsheets.

2.1.4 Comparing Spreadsheets

The essential part of comparing spreadsheets is the comparison of two worksheets. A worksheet
is a 2D collection of cells, indexed by row and column. Every cell can either contain a value or
a formula. Not only individual cells can be changed, but also structural changes can occur in
worksheets, such as row/column insertions and row/column deletions. Currently, there are two
papers that describe an algorithm to compare the content of two worksheets, SheetDiff [20] and
RowColAlign [21].

For SheetDiff [20], the goal is to develop a method for identifying the changes between two
spreadsheets, with the explicit purpose to present them to users in a concise form. The built-
in ‘track changes’ functionality of Microsoft Excel is mentioned, but this has two limitations.

2.1. Related Work 11

Firstly, change tracking lacks the ability to compare two spreadsheets in general, because it can
only track changes that are recorded. If it is not turned on, none of the changes will be reported.
Secondly, the display of the changes is rather poor according to the authors. There is no clear
overview of all the differences. Two other commercial tools are mentioned: DiffEngineX and
Synkronizer. According to Chambers et al. [20], one of the major problems with these systems is
that they represent the differences by coloring two different spreadsheets. This requires users to
continuously switch between the two sheets and rely on their memory to judge the differences.
It would be better if the changes are shown in context on one sheet, then the comparison could
be done in place.

SheetDiff is a greedy, iterative algorithm based on the idea of finding edit operations that
each transform worksheet A into B as much as possible. SheetDiff compares A and B to find
row r and column c that contain the highest number of different cells. It computes four spread-
sheets (A− r , A− c, A+ r , A+ c) formed by deleting r or c from A, or by inserting B ’s version of
r or c into A. Of these four options, it chooses the one that minimizes the number of cells that
remain different relative to B . This choice effectively selects a row or column insertion or dele-
tion (which SheetDiff appends to its output, a list of edit operations) and also yields a worksheet
A′ that is more similar to B than A was. SheetDiff then uses this worksheet A′ for the next iter-
ation, and the algorithm continues iterating until a similarity metric threshold between A and
B is achieved. Then it computes all remaining non-identical cells by pairwise comparison and
appends an edit operation for each differing cell. The output is a list of edit operations, which
are row/column insertions, row/column deletions and individual cell changes.

Harutyunyan et al. [21] present a new algorithm that can identify differences between two
spreadsheets. The algorithm, RowColAlign, is a dynamic programming algorithm based on the
idea of finding maximal subsequences of rows and columns that are nearly unchanged in A
compared to B . RowColAlign takes A and B and first attempts to find what they have in com-
mon. This common subsequence of rows and columns is referred to as the target alignment
T (A, B) of A and B . Everything they do not have in common must be an edit operation and
must therefore appear in the output list (the list of edit operations that transforms A into B).
This is either an insertion if the row/column in question is in B but not A, or a deletion if the
row/column is in A but not B . The areas in common need not be identical, a small number of
cell-level differences are tolerated and represented as cell-level edits.

The algorithm acts in four phases. In the first, it compares A and B to identify which rows
should be deleted. In the second phase, it compares A and B to identify which columns should
be deleted. In the third phase, it deletes the rows and columns and performs pairwise compar-
isons on the remaining individual cells inside T (A, B) and T (B , A). Finally, if any row or column
pair in T remains mostly different, it is represented as a row or column edit, rather than multiple
cell-level edits.

An empirical evaluation of both algorithms is presented in the same paper. A planted model
is used to generate test cases (randomly mutated spreadsheets), for a range of parameters:
spreadsheet width and height, alphabet size, probability of row and column deletion, and prob-
ability of cell-level edit. The authors found that the SheetDiff algorithm made errors on moder-
ately difficult spreadsheets with different suggestive patterns. Overall, the error rates of Sheet-
Diff are widely-scattered, indicating that unpredictability is a consistent trait of SheetDiff. In
contrast, the new RowColAlign made no errors. This algorithm always recovered precisely the

12 2. Background

correct target alignment and cell-level edits. For extremely difficult test cases (large spread-
sheets with many changes) SheetDiff has error rates of 52%, 60% and 96% for different alphabet
sizes. RowColAlign did not make any errors even on these more difficult test cases.

Assuming that A and B are n×n arrays, the space complexity of RowColAlign is O(n2). The
time complexity is O(n4), since filling an entry in the dynamic programming table takes O(n2)
time. This run time is quadratic in the input area. This is better than the worst case asymptotic
algorithmic complexity for SheetDiff, which occasionally fails to terminate. It sometimes makes
a row or column edit and then, in a subsequent step, makes another edit that cancels out the
first edit (e.g. first a row insertion, then a row deletion). This problem is caused by the fact that
when SheetDiff selects a row or column to insert or delete, this operation not always improves
the final similarity between the spreadsheets. The fundamental issue is that similarity is not
always a monotonically increasing function as successive edits transform one spreadsheet into
another. Therefore, a greedy, local optimization algorithm such as SheetDiff cannot be guaran-
teed to terminate, and cannot be guaranteed to find the right answer every time. A dynamic
programming algorithm, such as RowColAlign, is better suited to the problem at hand.

Essentially, RowColAlign is a two-dimensional generalization of the classic dynamic pro-
gramming algorithm for solving the one-dimensional longest common subsequence problem.
In other words, RowColAlign solves the problem of aligning two 2D arrays. A worksheet in a
spreadsheet file, with rows and columns, can be seen as a 2D array. Therefore, this algorithm
seems to be a good candidate to compare the content of two worksheets.

However, there are still some limitations left. The RowColAlign algorithm is not able to cap-
ture all operations in a spreadsheet, such as copy-paste (where affected regions might not sub-
tend an entire row or column) or cell-fill (where a cell formula is dragged over and applied to
other cells). Moreover, spreadsheets with cells containing formulas are not considered in the
paper. One row insert can change all the formulas in the cells below. Another important issue is
the space and time complexity for large spreadsheets. Consider two worksheets with n = 10,000
rows, which is not uncommon in practice. Then the algorithm will run out of memory, as it will
require O(n2) space, which are 100,000,000 array entries. Basically, every row is compared with
every other row and every column is compared with every other column. Hence, heuristics or
other optimizations are required to compare the contents of two very large worksheets.

2.1.5 Other Approaches

There are a few other attempts done in the field of comparing spreadsheets.

Jansen et al. [16] developed an algorithm called FormulaMatch, able to detect and visualize
changes in formulas. The researchers begin with the statement that analyzing changes between
two spreadsheets is difficult. Simple structural changes to a worksheet, like inserting a row or
a column, can lead to a myriad of changes. The number of detected changes can be reduced
if only changes in the individual formulas are taken into account; all changes in structure, data
and formatting are ignored in their algorithm. However, it is still possible that this results in
thousands of changes. More complex spreadsheets contain a lot of formulas. For example, one
of the models in their case studies contained about 100,000 formulas. In such a spreadsheet, a
single change like moving a cell, can lead to a change in thousand related formulas. Presenting
all these changes to the user, will not help them to understand the risks induced by the applied
changes. For this reason, only the unique formulas are considered in the FormulaMatch algo-

2.1. Related Work 13

rithm. The R1C1 notation of a formula is used to detect the unique formulas in a spreadsheet.
In the default A1 notation all formulas have absolute references, e.g. =SUM(B1:B10). In the R1C1
notation all formulas have relative references, e.g. =SUM(R[-10]C:R[-1]C).

When comparing two spreadsheets, FormulaMatch starts with detecting the unique formu-
las. For every formula in the first version V0, the equivalent in the second version V1 has to be
found. To find a matching formula the similarity of the formulas in their R1C1 notation is ana-
lyzed, together with additional properties. This gives good results when the number of formulas
in both versions is the same, but not when formulas have been added or deleted. To correctly
handle the addition or deletion of formulas, a more sophisticated matching algorithm is ap-
plied. The result of FormulaMatch gives for each formula in V0 a matching formula in V1. Based
on the similarity scores it is known if the formula has been changed or not.

This paper shows that it is useful to consider unique formulas using the R1C1 notation for
determining formula differences in spreadsheets. Furthermore, the matching algorithm can
serve as a good heuristic in detecting movements of blocks of formula cells.

Schmitz et al. [22] proposed a method and tool to identify real-world formula errors. After
identifying the versions of the same spreadsheet, an automated analysis of the differences be-
tween the files is performed. Two types of differences are detected: modified cells and moved
cells. The detection of modified cells focuses on changes in formulas, changes in values are
not considered. In the calculation of formula differences the R1C1 notation is used, in which
copy-equivalent formulas share the same formula. The detection of moved cells uses a heuris-
tic regarding the surrounding of the changed cells. If the formula of a changed cell is found at
a different location in the changed worksheet, with an identical surrounding area, it is assumed
that the whole area was moved to the new location.

This paper shows that it is often useful to use heuristics for determining differences in spread-
sheets. Another important contribution is the Enron Error Corpus, a dataset of 30 spreadsheets
with errors. Two versions are available: the faulty spreadsheet and the corrected spreadsheet. It
has been documented which cells have been changed between the two versions.

Moreira [23] introduced the tool SheetGit, which aims to be a version control solution for
spreadsheet end-users. The paper claims that a set of fundamental features is implemented:
creating versions, switching between them, the option to see the differences between two ver-
sions, and sharing them through the Internet. However, it appears that this publication is more
a proposal of the ideas of the author; the figures are still mock-ups, no details about the spread-
sheet comparison are given and no evaluation of their tool is presented. The tool should be an
add-in of Excel, which offers the ability of version management in a similar way of using Git.
The differences between versions will be shown inside Excel itself. If the user selects a partic-
ular version, the mouse/cursor will recreate the actions required to turn one version into the
other. This will be impractical for a large number of differences. We conclude that the paper
about SheetGit only initially explores the idea of version management for spreadsheets, but it is
incomplete and lacks sufficient details.

14 2. Background

2.2 Existing Tools

Apart from the literature, some commercial spreadsheet comparison tools are already available.
We conducted a review to test to what extent these tools can successfully compare two spread-
sheet files. In this section, we present the currently known spreadsheet compare tools, explain
their approach and compare their features. We will see that all tools have their shortcomings.
We think these weak points reflect the underlying problems that make the spreadsheet com-
parison difficult. Therefore, we will end this section with a reflection on the shortcomings. We
conclude what needs to be solved to develop a better spreadsheet compare tool.

2.2.1 Approach

The goal of this review is two-fold: (1) to identify how the tools work from a user perspective,
and (2) to test the quality of the comparison based on some test files. These test files are created
beforehand, so that all tools can be compared using the same sample files.

Firstly, we created a sample spreadsheet S1 with dummy content covering most of the Excel
features. It contains features like cells with values, formulas, display properties, number for-
matting and comments, graphs, hidden rows/columns, defined names, and hidden worksheets.
After this we applied a range of modifications: inserted/changed/deleted values and formulas,
inserted rows/columns, a new worksheet, changes in the display and formatting, and more. The
resulting spreadsheet is called S ′1. A screenshot of both files is shown in Figure 2.2. Spreadsheet
S1 contains 3 worksheets, 96 allocated cells, whereof 78 value cells and 12 formula cells.

Furthermore, we have used two versions S2 and S ′2 of an existing large spreadsheet, with a
file size of 10.7 MB. Spreadsheet S2 contains 202 worksheets, and a total number of 1,108,880
allocated cells, whereof 60,474 values cells and 890,111 formula cells. This set of files is used to
test the performance for large, complex files.

Figure 2.2: Screenshot of the first worksheet in sample spreadsheets S1 and S ′1

2.2. Existing Tools 15

In Table 2.1 a complete list of the tools, their tested version, and the website link is given.
There are three types of tools. An add-in runs in Excel and is available when working with the
spreadsheet. A standalone tool runs as a separate application and is not dependent on Excel
itself. The third type is an online tool, running in the web browser.

Table 2.1: List of examined existing spreadsheet compare tools

Tool Type Version URL

T1 Synkronizer Add-in 11.2.809.0 https://www.synkronizer.com/
T2 Ablebits Compare Sheets Add-in 2018.4 https://www.ablebits.com/
T3 Microsoft Spreadsheet Compare Standalone 16.0 https://support.office.com/
T4 xlCompare Standalone 6.2.3 https://xlcompare.com/
T5 DiffEngineX Standalone 3.12 https://www.florencesoft.com/
T6 4TOPS Compare Spreadsheets Standalone 3.2.0.1 http://www.4tops.com/
T7 Excel Compare Standalone 3.8 http://www.formulasoft.com/
T8 xltrail Online 2.5.0 https://www.xltrail.com/
T9 CloudyExcel Online N/A http://cloudyexcel.com/
T10 XL Comparator Online N/A https://www.xlcomparator.net/

2.2.2 Results

The ten tools offer a different user experience, mostly depending on the type of tool. Table 2.2
summarizes the approach of all the compare tools. The scope of a comparison shows whether
the whole workbook, or only one individual worksheet is considered. Surprisingly, one tool
(T10) cannot even compare a whole workbook or worksheet, but only one column. Further-
more, the steps a user should take to start a comparison and the comparison output of each
tool are summarized in the table.

All tools have varying capabilities in comparing spreadsheets. Table 2.3 lists a comparison
of the compare tools, showing how well they perform on different criteria. The tools either have
support (✓), limited support (◇) or no support (−) for a feature. The performance on large,
complex spreadsheets is reported on a qualitative scale. The symbol ○○○ indicates that the
tool cannot handle large, complex files; the symbol ●●● indicates that the tool can handle
large, complex files very well.

Large and Complex Files
The two add-in tools, T1 and T2, require you to open both versions of the spreadsheets in Excel.
This has a clear disadvantage for large files, because Excel can become slow when working with
complex files. The large sample files S2 and S ′2 are so complex that Excel is constantly recalcu-
lating, becoming a little unresponsive. This blocked the comparison process for tool T1. We had
to disable the auto calculate function in order to complete the comparison. Tool T2 is saving
the files and processing them intermediately, resulting in a bad comparison performance. Fur-
thermore, it does not compare complete workbooks and is therefore not able to handle complex
files.

The stand-alone tools also have limited support for large and complex files. Tool T3 is slow in
loading and comparing such files, it took over 10 minutes to finish the comparison of S2 and S ′2.
In the meantime there is no clear progress indication, resulting in an application that appears to

https://www.synkronizer.com/
https://www.ablebits.com/compare-excel-files/
https://support.office.com/en-US/article/overview-of-spreadsheet-compare-13fafa61-62aa-451b-8674-242ce5f2c986
https://xlcompare.com/
https://www.florencesoft.com/compare-excel-workbooks-differences.html
http://www.4tops.com/compare_excel_files.htm
http://www.formulasoft.com/excel-compare.html
https://www.xltrail.com/
http://cloudyexcel.com/compare-excel/
https://www.xlcomparator.net/

16 2. Background

Table 2.2: Approach and output of the existing tools

Scope Approach Output

T1 Workbook Open two files in Excel, select
worksheets, start comparison

Side-by-side view, summary, list of
differences, merge tool, Excel report

T2 Worksheet Open two files in Excel, go to
worksheet, start comparison

Side-by-side view, merge tool

T3 Workbook Start tool, load two files, start
comparison

Side-by-side view, list of differences,
graph with differences, Excel report

T4 Workbook Start tool, load two files, start
comparison

Side-by-side view, merge tool, dif-
ference explorer, Excel report

T5 Workbook Start tool, load two files, select
worksheets, start comparison

Excel report, Excel sheets with
marked differences

T6 Workbook Start tool, load two files, start
comparison

HTML report

T7 Workbook Start tool, load two files, start
comparison

Excel report

T8 Workbook Create project, upload initial
file, add second file to version
control, select versions to com-
pare

File version history, list of work-
sheets and VBA modules, visual
worksheet diff, VBA diff, summary

T9 Worksheet Upload input files, select work-
sheets, compare

Side-by-side view

T10 Column Upload input files, select one
column in worksheet, compare

Summary (same or different rows)

be crashed. After comparison, the user interface is unresponsive, because it cannot handle the
complexity and large amount of data in the worksheets. Tool T4 simply crashes when loading
large files. Tool T5 also gets stuck, with no indication that it is doing anything. Even though this
is a stand-alone tool, Excel is still used in the background during the comparison, which is not
so efficient. Tool T6 already takes a lot of time for comparing small files, it runs endlessly on
large files.

The online version management tool T8 analyzes the uploaded files in a background process
on the server. This tool does not become unstable on large, complex files, however, it still takes
forever for such files to be processed. This is confusing to end-users, as there is no indication
when the server-side processing eventually will complete. In the end, the tool was not able to
finish the comparison S2 and S ′2, the files were stuck on ‘Processing’.

Other tools have a simple comparison strategy. Tool T7 only reports the rows that have been
inserted or deleted. It is therefore able to finish the comparison of large files, but the outcome
is not useful to determine what exactly has been changed. Tool T9 is an online tool and gives
a timeout when uploading large files, probably due to the file size. Tool T10 has a predefined
limit of 5 MB per uploaded file, and can only compare one column in one worksheet. These
tools are clearly designed for simple scenarios. The comparison of large, complex files requires
a compare tool with a more advanced strategy.

2.2. Existing Tools 17

Table 2.3: Feature comparison of the existing tools

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Cell values ✓ ✓ ✓ ✓ ✓ ✓ ◇ ✓ ◇ ◇
Cell formulas ✓ ✓ ✓ ✓ ✓ − − ✓ − −
Cell movements − − − − − − − − − −
Row/column insert ✓ − ✓ − − − − ✓ − −
Row/column hide − − − − − − − − − −
Worksheet insert − − ✓ − − − − ✓ − −
Worksheet hide − − ✓ − − − − − − −
Number formatting ✓ ✓ ✓ ✓ − − − − − −
Text formatting ✓ ✓ ✓ ✓ − − − − − −
Defined names ✓ − ✓ − ✓ − − − − −
Charts − − − − − − − − − −
Cell comments ✓ − − − ✓ − − − − −
VBA code − − ✓ ✓ ◇ − − ✓ − −
Large, complex files ●●○ ○○○ ●○○ ○○○ ○○○ ○○○ ●○○ ●○○ ○○○ ○○○

Features

In Table 2.3 we see that all tools can compare the cell values. This is the most basic concept
in a spreadsheet; a value is for example a number, date, text or currency. Even for this simple
task, the results of tool T9 are inaccurate. It reports that almost all cells in sample files S1 and
S ′1 are changed, because the cells are incorrectly aligned. If this tool would have done a direct
cell comparison (e.g. compare cell A1 with A1, cell B1 with B1, etc.) the results would have been
better. Tools T7 and T10 provide limited functionality in comparing cell values. The output of T7
is only an indication which rows have been inserted and deleted, not the individual cells. And
tool T10 only compares one column in two versions and reports the rows that are the same or
different based on this column. Most other tools are able to compare the values correctly, and
show which data have been added, changed or deleted in the cells.

Most tools (except T6, T7, T9 and T10) consider the formulas in cells. Some of them make a
distinction in the actual formula and the calculated value. If a formula depends on data of other
cells, the formula can remain the same, but the outcome of the formula can be different. It can
be useful to know which calculated values are changed. But on the other hand, this can lead to a
large number of differences. When only one cell value is changed and many cells use this value
in their formulas, many differences will be reported for a single user action. It depends on the
scenario if this is expected or not. In general, most tools show the inserted, changed and deleted
formulas correctly.

None of the tools can report cell movements. Consider the block of 5×2 cells that is moved
from E1:F5 to G6:H10, as shown in Figure 2.2. This is the result of a cut-and-paste action. All
tools doing the cell comparison correctly report this as 10 value deletions and 10 value inserts.
But for large blocks of moved information this can be confusing and result in a large set of dif-
ferences. The comparison result would be more insightful if cell movements can be detected.

Three tools (T1, T2 and T8) report row and column insertions and deletions. The detection
of row and column changes is important, because otherwise cells get misaligned and many false
positive differences are reported. Consider for example the scenario that a new column B is
inserted. All cells in the original columns B, C, D, etc. are shifted one place to the right. A

18 2. Background

adequate cell comparison should compare cell B1 with C1, cell B2 with C2, and so on. In order
to make such an alignment, it is required to know which rows are inserted and deleted, and
which columns are inserted and deleted. We see in the tools that do not detect row and column
changes, many cells are misaligned, resulting in many cells reported to be changed. This makes
the comparison result in most cases completely impossible to read, because a user cannot see
which are the relevant and which the irrelevant changes.

None of the tools detect hidden rows and columns. In principle the cells are still available,
but they are not shown in the spreadsheet. If the user does not explicitly look at the row or
column number, a user will have the illusion that data is deleted when rows or columns are
hidden, It will be useful to report to the user which rows or columns are made hidden or visible,
when this is changed.

Only two tools (T3 and T8) report worksheet changes. In all tools a clear overview of work-
sheet differences is missing, which is relevant in many situations. Especially when the number
of worksheets is large, it is difficult to figure out what has been changed on worksheet level.
Users should get to know which worksheets are inserted and/or deleted. Furthermore, there
are more changes related to worksheets. Worksheets are often made hidden or even made very
hidden, which again will give the illusion that content has been deleted. Worksheets can also be
renamed, moved, or made protected. An explicit overview of the worksheets in both versions,
with their properties, will give provide immediate overview on the worksheet changes.

Some advanced tools can optionally report display changes like text formatting and number
formatting (T1, T2, T3 and T4). This can be useful, but is not required in most situations. Some
tools can optionally report defined name changes (T1, T3 and T5). This is essential, because
calculations or references can be in the defined names of a spreadsheet. The calculation model
is not only in the formulas, it can also be in the defined names. No tool reports changes in
objects, like charts or images. Some of the tools optionally report changes in cell comments (T1
and T5). There are tools that can report changes in the VBA code (T3, T4 and T8). In T5 this
is also possible, but only if a specific macro setting is enabled in Excel. VBA code is often used
in more advanced spreadsheets, and it can therefore be essential to know the differences in the
macros used.

2.2.3 Conclusion

What did we learn from the survey of existing tools? First of all, there is no tool that covers all the
aspects of spreadsheets. In other words, no existing tool can make a complete diff between two
spreadsheet files. The list of features considered in Table 2.3 is not exhaustive, but it obviously
shows that the current tools do not aim to be a full diff tool. This is confirmed by the output
of the existing tools. There is no tool that generates a complete edit script of two spreadsheets,
containing all modifications between the files. All the output are lists, overviews, Excel or HTML
reports, or interfaces that are designed to give the user more or less insight in the changes. They
are not built to generate a complete diff, and in that sense different from file comparison tools
for regular files.

Furthermore, we conclude that most of the tools are designed with a specific use case in
mind. Some simple tools (T6, T9 and T10) can only report changes in one column or one work-
sheet and are created essentially to give a quick overview of changes in a simple table or data
sheet. There is a tool (T7) that is built to quickly identify individual rows that have been changed.

2.2. Existing Tools 19

Other tools (T2 and T4) are focused on merging changes between two versions. They provide
the required user interface to perform these tasks, such as a side-by-side view and navigation
between the differences. Another tool (T8) is designed to be a version management tool and
even integrates with Git. However, none of the tools is built with the use case to be an all-
purpose compare tool, meaning that it can be used on all spreadsheets in general. There are
clearly different use cases in which a compare tool is relevant, but the most general use case
(give a user-oriented, summarized overview of all changes in two spreadsheets) is currently not
supported by the existing tools.

We conclude that based on the currently available tools, there is enough motivation to de-
velop a new solution to address the shortcomings of the existing tools.

• First of all, such a new spreadsheet compare tool should be able to compare as many types
of spreadsheet files as possible. Spreadsheets are widely used in many domains, and there
are different variations: small and large, simple and complex, and so on. It is clear that all
tools have problems comparing spreadsheets with many values or many formulas.

• Secondly, the new tool should be able to summarize the differences and provide insight
in the changes on different levels. Most of the current tools lack the ability to give clear
overviews, for example: which of all worksheets in a workbook have been changed?

• Thirdly, it is valuable if a compare tool can give a complete diff between two spreadsheet
files. Such a compare tool can give guarantees, for example that no formulas have been
changed between two spreadsheets versions. Also, a complete diff makes integration with
version control systems possible.

In the end, more insight in the context of spreadsheet versioning will help to build a com-
pare tool that suits the user needs. The current tools clearly do not support all scenarios for
which end-users need a spreadsheet comparison tool. It is helpful to involve users in the de-
velopment process, because every user will start using a compare tool with a certain goal. In
the next chapter we will therefore present an extensive analysis of the spreadsheet versioning
domain and its challenges.

3
Spreadsheet Versioning Challenges

Comparing spreadsheets is not a trivial task. Unlike regular file comparison, there are funda-
mental issues that make the spreadsheet comparison problem difficult. The goal of this chapter
is to gain understanding in these issues. We will obtain insight in the spreadsheet versioning
problem, and define concrete requirements for this problem. The requirements are building
blocks for developing a suitable spreadsheet comparison approach. Two types of requirements
are identified: (1) user needs and (2) technical challenges for which a solution needs to be found.
By identifying the challenges, we can split the difficult problem into smaller subproblems. With
clear subproblems it is easier to invent small and applicable solutions, and the whole spread-
sheet comparison problem becomes more manageable.

The method we applied is two-fold. First, we interviewed six Excel end-users, interested
in a spreadsheet comparison tool, from different business and education contexts. The people
interviewed are listed in Table 3.1. The interviews had two goals. First, they serve to provide
more insight about the usage of spreadsheets in practice, e.g. when new versions are created,
how they are saved and shared, and so on. Furthermore, the interviews are used to investigate
problems of users regarding spreadsheet versioning. The outcome of the interviews is described
in Section 3.1.

Secondly, we started early with the development of a prototype. During six months of re-
search and implementation of the actual spreadsheet comparison tool, we experienced several
fundamental issues. More insight in these issues and the underlying characteristics of spread-
sheet files are described in Section 3.2.

We will finalize the chapter with a list of requirements in Section 3.3. The problems from
Section 3.1 are formulated in terms of user needs, reflecting the requirements for a spreadsheet
compare tool from a user perspective. The issues from Section 3.2 are formulated in terms of
technical challenges, reflecting the requirements for a spreadsheet compare tool from an imple-
mentation perspective. The outcome of this problem analysis, a list of requirements, provides a
relevant summary of the fundamental challenges that exist for the comparison of spreadsheets.

21

22 3. Spreadsheet Versioning Challenges

Table 3.1: List of people interviewed for the problem analysis

Person Position Context

A Employee Financial Control University
B Finance Manager University
C Purchase & Logistics Officer Small company
D Software Engineer Large investment company
E Performance Manager Large insurance company
F IT Manager Large insurance company

3.1 Spreadsheet Context

We asked the following questions about version organization:

• What role do spreadsheets play in your organization?

• How and when are new versions created?

We asked the following questions about version problems:

• What problems do you experience regarding different spreadsheet versions?

• How can a compare tool help to solve the problems?

3.1.1 Version Organization

Person A uses spreadsheets mainly as financial calculation models. Most spreadsheets contain
worksheets with input data, worksheets with calculations, and worksheets with output. The
spreadsheets are shared among different users using SharePoint. Every week a new version is
created with new data, the previous file is then overwritten. Old versions of the calculation
models are not maintained. The spreadsheets are shared with 40-50 end-users.

Person B also works with financial calculation models, shared using SharePoint, mostly with
a version number in the filename. Here one employee, the administrator, is responsible for
the spreadsheets. The structure is that there is one spreadsheet template, and many filled in
versions of the template by other users. Sometimes a new version of the spreadsheet template
is created. Filled in spreadsheet versions are saved in a subdirectory, which represents a group
(e.g. one month). The number of files can become very large: there is a case where 700 versions
are created in a subdirectory. The spreadsheets are shared with 30-40 end-users.

Person C uses spreadsheets for business cases and forecasts. Since the company is small,
most of the spreadsheets are small and relatively simple. All sheets have one owner. New ver-
sions of spreadsheets are created by the end-user, and spreadsheets are shared to others via
email. It is often described in the email what has been changed in the newer version.

Person D mentions that spreadsheets play an important role in their financial company.
Their spreadsheets are classified in four levels of confidence; 160 spreadsheets are in the high-
est category (business critical). He estimates that 450 employees are using spreadsheets in their
company. Many of them are managing spreadsheets versions: spreadsheets are often changed,
copied and shared. New versions appear when modifications to the spreadsheets are required
or when a data source is updated. The old versions are maintained, versions are organized on

3.1. Spreadsheet Context 23

file level (e.g. a new folder or a new file name is created). There is no version management
system used. Versions are stored centrally on a network drive, and thus accessible by other em-
ployees. The type of spreadsheets varies greatly, but most spreadsheets are calculation models
(load incoming data, perform calculations and produce output).

Person E describes that large and many spreadsheets are used in their financial company,
with many different applications. He himself is using many reports, which frequently contain
input, selection/calculations and output. There are two situations where new spreadsheet ver-
sions arise: when a spreadsheet is remodeled or when a spreadsheet is delivered with new data.
The new versions are indicated with a new file name, mostly with a different date. The spread-
sheets are stored on a network drive, where each employee has his or her own access. Some
spreadsheets are shared using SharePoint, but there is no real collaboration on spreadsheets.
One person is responsible for a spreadsheet and has knowledge about the content.

Person F works for the same company as person E and confirms the fact that spreadsheets
are used on a large scale, also in crucial processes like business decision making. The type of
spreadsheets he is responsible for are budget and forecast spreadsheets, each having around
40-50 versions per year. New versions are created on new insights. Some spreadsheets are con-
nected to a database for data import, and contain a complex calculation of the impact of costs.
Spreadsheets can be gigantic: a spreadsheet with 85 worksheets and a file size of around 82 MB
is mentioned. The spreadsheets are stored on SharePoint: the built-in version management is
sometimes used to revert back to a previous version when something went wrong in the cal-
culations. There is collaboration on the spreadsheets: 20 employees are working on the same
spreadsheet with budgets, but never at the same time. This interviewee is generally satisfied
with version organization of spreadsheets.

3.1.2 Version Problems

Person A describes the problem that end-users sometimes continue to work with an old version
instead of the newest one. Because versions of the same spreadsheet are overwritten, data in
between the versions can be lost. The way to solve this is to revert back to a previous version,
and then manually obtain the missing data and add it to the newest spreadsheet. A compare
tool however can help to identify the intermediate changes and possibly merge the different
versions. Another problem is that once in a while formulas are changed unwantedly. Despite all
spreadsheets are protected, meaning that no formula cells can be changed, some ‘experienced’
users remove the protection and do change the formulas at their own discretion. In such cases,
it is often unclear what has been changed. The main reason for using a compare tool is to have
an overview of all things that has been changed. Furthermore, the comparison results can be
used to check if all data has been filled in, and to validate if the calculation model is unchanged.
A comparison of two spreadsheet files is sufficient. It depends on the type of spreadsheet to see
which sort of differences are relevant.

The main issue of person B is to manage a large number of spreadsheet versions. Because
new versions of the main spreadsheet template can arise, one problem is that the resulting
spreadsheet files can originate from different versions of the source template. A compare tool
that can identify the version of the source file in batch will be helpful. Another problem is un-
wanted changes in spreadsheets, because from time to time formulas are incorrectly or acciden-
tally changed. The third problem is that there are sometimes multiple owners of a spreadsheet.

24 3. Spreadsheet Versioning Challenges

A compare tool that can identify changes between different versions is helpful for both prob-
lems. In this context (financial calculation models), it is important to be able to see only formula
changes. Most errors are created in the calculation model, while the data changes are uninter-
esting. Because there is one spreadsheet administrator, the compare tool may be optimized for
one or a small set of users.

Person C concludes that there are issues with spreadsheet versions, even in her small com-
pany with one user per spreadsheet. Regularly, many spreadsheet versions are saved, causing a
bit of confusion. The indication in the filename is often not sufficient to determine the contents
of the spreadsheet and the last version. The end-user would be supported by a quick overview of
the changes using a compare tool. Furthermore, the communication via email about changes
in spreadsheets is often incomplete or incorrect. For a newer version, it would be helpful if a
summary of the changes with respect to a previous version can be created. This would save the
end-user time in describing the changes, and always guarantees that a complete overview of
the changes is listed. Ideally, for both scenarios, the compare tool should integrate in the cur-
rent workflow of the end-users, for example by integration in the file system, email program or
spreadsheet software.

Person D explains that after adjusting a spreadsheet, it is often unclear what precisely has
been changed. Often an Excel user forgets what he or she did exactly after modifying a spread-
sheet. There is fear that accidentally too much has been changed, or that accidentally some-
thing has been overlooked. A complete overview of all changes between two versions will give
the user insight in their adjustments. If such a compare tool is available, it will probably be used
on a daily basis to check if all modifications are intended before saving the new version. Addi-
tionally, it is advantageous that an export of all changes between two versions can be used for
auditing purposes. In this company, all modifications to business critical spreadsheets need to
be justified. A comparison report is a proof for what exactly has been changed, and will save a
lot of time in the auditing process. For a large number of changes, it should be possible to start
with the main differences and to zoom in on the details. It would also be helpful if the compare
tool can answer questions like ‘are all formulas unchanged?’ or ‘are there only new data cells
inserted?’. Another problem is that after a longer period, it is not possible to see how a spread-
sheet functioned a number of versions ago. It would be helpful if turning points can be detected
in the evolution of a spreadsheet. Instead of manually inspecting versions, it is informative to
know that many formulas are changed in e.g. v4 and v9, probably because another calculation
method has been used.

Person E describes that version management problems are not always caused by incorrect
spreadsheets. Sometimes issues arise in the workflow. For example, a colleague was working
on an old spreadsheet version locally. He uploaded his modified version on the network drive,
overwriting the most recent version. It was not possible to go back to the previous version, caus-
ing loss of data. A compare tool would not solve this issue, but possibly an analysis of the two
versions before uploading can detect this situation and raise some warning. Another problem
that often occurs is that formula references become invalid (#REF!) after adjusting the spread-
sheet. This is caused by a human error, because cells are incorrectly moved or deleted or data
is missing. After complex modifications, it is often not possible to find which cell modifications
are causing the reference errors. In such case, the person can only revert to an earlier backup
and has to do his work again. A compare tool would be able to easily detect the cell changes and

3.2. Spreadsheet Characteristics 25

can help to identify the source of the error. This will save a lot of time. The main advantage of a
compare tool for this user is that it can provide insight in the changes, so that the end-user can
check if he has changed what he wanted to change. Besides the overview of changes, it will be
useful if the compare tool can detect errors (e.g. caused by incorrect cell formatting, or formulas
changed from correct to incorrect). An idea to accomplish this is to run a risk analysis on the
comparison result.

The main problem of person F is that it is difficult to find what went wrong when a spread-
sheet contains errors. Because of the complexity of spreadsheets, it is noticed too late that new
errors are introduced during the development of the spreadsheet. Often a lot has already been
adjusted, making it impossible to find the cause and to fix the errors. A tool that can compare
the current version with a previous back-up can help to quickly identify the source of the errors.
In the context of multiple spreadsheet users, it will be helpful if a compare tool can validate
if a user only changed the part of the spreadsheet he is responsible for. When a collaborator
uploads a new version, it is not possible to verify his contribution to the spreadsheet. A com-
parison report or a version history in a worksheet in the spreadsheet itself will help to prevent
version problems in the future.

3.2 Spreadsheet Characteristics

Independent how users operate with spreadsheets, there are conceptual problems regarding
spreadsheet comparison. In this section we will mention them in terms of typical characteristics
specific for spreadsheet files. Most of the observations emerge from practice: while investigating
sample spreadsheets, while designing a suitable comparison algorithm, and during the actual
development of the prototype. For each characteristic, we will explain why this is a complicated
factor of the spreadsheet comparison problem.

3.2.1 Binary File Format

Spreadsheets in general are stored as binary files. Unlike text files, binary files are not human-
readable. In Excel 97-2003, Microsoft used a proprietary binary file format (.xls) as its primary
file format. Since Excel 2007, the newer Office Open XML format (.xlsx) is used. In this format,
the complete spreadsheet is saved as a series of XML files. In order to save disk space, the collec-
tion of XML files is zipped into a single file. Macro-enabled spreadsheets (.xlsm) have the exact
same file format, with the addition that it contains an additional binary container with the VBA
code. There are alternative spreadsheet file formats (for instance .xlsb, .xlam, .ods). All formats
have in common that the spreadsheet is a binary file on disk.

A direct comparison of the binary spreadsheet files is not meaningful. Every time a spread-
sheet file is saved, the content of the binary file will be completely different. That is because
the underlying XML files are compressed. After compression, the chunks of the new binary file
do not correspond to chunks of the previous binary file. The idea of a regular text comparison
approach is to find the parts of the files that are the same, and create a diff for the parts that are
changed. Because all chunks of a new spreadsheet file will be different, a similar comparison
approach on the binary files is meaningless.

However, it is easy to see the raw data in a modern spreadsheet file. One can change the .xlsx
extension to .zip and extract the file. The result is a set of individual XML files, organized in a

26 3. Spreadsheet Versioning Challenges

predefined structure with folders and file names. Also media items like images are stored inside
the package. In Appendix A a tree of all XML files in the sample spreadsheet S1 (introduced
in Section 2.2) is shown. Most files in the package have a clear meaning, like workbook.xml,
sheet1.xml, and so on. The raw data of the workbook and the raw data of the first worksheet
are also listed in Appendix A.

Even though the content of those XML files looks insightful, it is not particularly helpful to
compare the raw XML data. Just like the problem with compression, it is not guaranteed that
a new version follows the exact same XML structure. Consider for example a spreadsheet that
contains one cell with the world ‘hello’. This cell value can be stored in the file sheet1.xml. Now
consider a second version of this spreadsheet that contains 10 cells with the word ‘hello’. As an
optimization, Excel decides to store the string ‘hello’ in sharedStrings.xml and to put refer-
ences to that string in sheet1.xml. The structure of the XML files is now completely changed,
rendering a comparison on the raw XML data meaningless. Many more examples can be con-
structed where the XML structure changes dramatically. For example, after reordering the work-
sheets, sheet1.xmlof the first spreadsheet no longer matches sheet1.xmlof the second spread-
sheet. This all indicates that more intelligence required to interpret changes in the raw XML
data, and that we cannot rely on existing text comparison approaches for binary spreadsheet
files.

3.2.2 Change Propagation

One edit operation in a spreadsheet can result in potentially many changes. The underlying
reason is that in fact a spreadsheet is a combination of data and calculations. Calculations are
present in the form of formulas, and formulas often reference other cells with data. Excel allows
easy manipulation of the spreadsheet, and some of the user actions cause substantial changes
in the cell references.

There are five operations that cause side-effects: row inserts, row deletes, column inserts,
column deletes and worksheet renames. In Figure 3.1a the effect of inserting an empty row is
demonstrated. Cells A2 and A3 are shifted downwards, and because of that, the reference to A2
in the formula is updated to A3. Deleting a row will result in similar side-effects. Figure 3.1b
shows the effect of inserting an empty column. The cells B1, C1 and D1 are shifted to the left,
resulting in an update of the cell range in the shown formula. Equivalently, deleting a column
will result in similar side-effects. Finally, in Figure 3.1c the effect of renaming a worksheet is
displayed. Because the formula depends on a cell in worksheet ‘Sheet1’, the reference to that
worksheet is updated to ‘Blad1’. All these operations update the structure of the worksheet or
the workbook, and therefore we will call them structure changes. The amount of additional
changes caused by these side-effects can be tremendous, because formulas often rely on many
other cells. One structure change can lead to hundreds or thousands of extra formula changes.

An end-user is only interested in the actual actions he or she performed in the spreadsheet.
If we classify inserted/deleted rows, inserted/deleted columns and worksheet renames as actual
edit operations, the end-user should be informed about such a single operation, and not the
side-effects. Therefore, it is important to detect the structure changes beforehand. If it is known
which structure changes have occurred, this can be taken into account in later stages of the
comparison.

The problem of change propagation is specific for spreadsheets files, due to the combination

3.2. Spreadsheet Characteristics 27

(a) Effect of inserting empty row 2

(b) Effect of inserting empty column B

(c) Effect of renaming worksheet ‘Sheet1’ to ‘Blad1’

Figure 3.1: Illustration of the effect of change propagation in formulas

of data and calculations. The fact that spreadsheet data is two-dimensional (rows and columns)
makes this issue even trickier. The root cause is that spreadsheet software allows easy manip-
ulation of the data, resulting in shifted rows and columns. This is beneficial for the end-user,
but difficult when developing a comparison approach, which then needs to include some sort
of alignment algorithm. We have seen that existing tools often fail when structure changes oc-
cur, and that sometimes many false positive changes are reported. For example, one simple row
insertion can result in 10,000 cell changes. For spreadsheet comparison, it is important to find
the real changes performed by the user, not the propagated changes.

3.2.3 Many Edit Operations

Regular text files have clear and simple edit operations. An edit operation is an action to convert
one file to another. Most text comparison algorithms consider two operations: line inserts and
line deletes. It is important to have clearly defined edit operations, not only for showing changes

28 3. Spreadsheet Versioning Challenges

between files, but also for switching and merging between files. Most version management
systems execute the set of edit operations to go from one version to another. This requires that
the set of edit operations is complete.

For spreadsheets, there is a whole variety of edit operations. In the initial phase of this re-
search, we did a manual inventarisation of all actions that are possible within Excel. Every action
is a modification of the underlying spreadsheet, so every action can be seen as an edit opera-
tion. We found 112 different edit operations, listed in a table in Appendix B. Probably the list is
not totally complete, and it is not always clear how to represent certain actions. Nevertheless,
this inventarisation is valuable, because it reflects the order of magnitude of the spreadsheet
comparison problem. If the goal is to develop a complete spreadsheet comparison approach,
this approach should consider cells, rows, columns, worksheets, charts, conditional formatting,
named ranges, pivot tables, styles, number formatting, and many more. It is challenging, if not
impossible, to invent a general algorithm that can compare all spreadsheet aspects at once. With
so many different edit operations, it seems that a tailor-made comparison for all the different
spreadsheet aspects is required.

3.2.4 Different Levels of Granularity

Another characteristic of spreadsheets is that the content of spreadsheets exists at different lev-
els of detail. Generally speaking, there are three different levels in a spreadsheet: (1) workbook,
(2) worksheet, and (3) cell. Every spreadsheet action will take place at one of these levels. For ex-
ample: an external data connection is defined at workbook level; a chart is added at worksheet
level; and a value or formula is entered at cell level. The inventarisation of all spreadsheet edit
operations in Appendix B includes a column at what scope (level of detail) every action occurs.
The levels of granularity can be made more specific, for instance: rows, columns, blocks of cells,
and cell details.

It is difficult to represent and report changes at different levels of detail. A regular text com-
parison approach outputs changes with a clear indication of the location: the corresponding
line number. Because there is one level of granularity, the changes can easily be reported line-
by-line. A spreadsheet comparison approach should operate on different levels of detail, and
therefore generate changes with different types of locations. The comparison result will con-
tain workbook changes, worksheet changes and cell changes. If the level of detail is made more
specific, there will also be row changes, column changes, blocks of cell changes, and cell detail
changes. It is not trivial to find a representation of the changes on different levels of granularity,
and to build an interface where such diverse changes are intuitively reported.

3.2.5 Large and Complex Files

There are two aspects that are not uncommon for spreadsheets: large files and complex files.
Besides small and normal spreadsheets, we have seen a lot of spreadsheets with file sizes in the
range of 1-80 MB. The cause of such substantial file sizes is the amount of data that is contained
in the spreadsheets. For example, the largest spreadsheet in our sample set contains more than
10 million allocated cells. All the individual cell values are stored in the spreadsheet. Theo-
retically, Excel allows very huge spreadsheets. The limits for a worksheet are 1,048,576 rows
by 16,384 columns, and the number of worksheets in a spreadsheet is limited by the available

3.2. Spreadsheet Characteristics 29

memory.
We have also seen many spreadsheets that are complex in terms of calculations. The cause of

the complexity is the amount of formulas and the difficulty of formulas contained in the spread-
sheet. Formulas are difficult when they have many different operations, many different cells
references, many conditional operations, or a long calculation chain [24]. Furthermore, it is im-
portant to notice that in the raw data, a formula cell contains both the actual formula (in text)
and the outcome of that formula (the calculated value).

Both aspects are a complicating factor for comparing spreadsheets. Large files are diffi-
cult because all raw data needs to be loaded into memory, and then all that data needs to be
processed to some kind of object model. The object model contains the whole content of the
spreadsheet (e.g. all worksheets, all cells in a worksheet, all properties of a cell, and so on) and
is potentially very large. It can take a lot of time to traverse through many cells, and more ad-
vanced algorithms will not perform well on large amounts of rows and columns.

Complex files are difficult to compare because of the propagation of changes. We have seen
in Section 3.2.2 that structure changes can lead to formula changes, caused by worksheet re-
names or row/column insertions and deletions. When such structure changes occur in com-
plex files, many formulas will be different in the two versions and many formula comparisons
need to be performed. In addition, changes in all calculated values of formula cells need to be
ignored. It is only relevant to report the actual data and formula changes, not the propagation
of such changes.

Usually, it is impossible to have an overview of the content of large and complex files, be-
cause such files contain too many worksheets, cells and formulas. Precisely for these files a
compare tool is useful, because a human is unable to browse through all the content them-
selves. Therefore, it is important to optimize the comparison approach for large and complex
files.

30 3. Spreadsheet Versioning Challenges

3.3 List of Requirements

We conclude our problem analysis with a summary of the problems regarding spreadsheet ver-
sioning, both from a user perspective and a technical perspective. Each requirement reflects a
specific user need or a technical challenge that should be solved.

The following requirements summarize the user needs:

Req 1. Overview
The main problem in spreadsheet versioning is that it is unclear what has changed. There
are potentially many changes between two spreadsheet versions. Users want a summary
and be able to zoom in, to view the changes in increasing level of detail.

Req 2. Validation
Users always start the compare tool with a certain goal in mind. They want to use the
comparison result to validate a certain hypothesis. For instance, are the formulas un-
changed, or what is the cause of the error in Sheet1? It must be possible to easily answer
such questions regarding different spreadsheet versions.

Req 3. Completeness
Spreadsheets can differ in many ways, because Excel contains many features. Sometimes
changes occur in the deep details of a spreadsheet. A spreadsheet comparison must be
complete, since users want to be sure that this is the full set of changes. A complete diff is
also required when the comparison should be used for merging spreadsheet versions.

Req 4. Error Resolving
When a new version of a spreadsheet contains errors, users want to fix the errors using the
compare tool. The erroneous version is compared with a previous version without errors.
The compare tool should be able to handle spreadsheets with errors.

Req 5. Visualization
It if often not sufficient to give an extensive list of changes. Users want to view the changes
as close as possible to their original spreadsheet. A visualization or a display of the changes
in the context of the actual spreadsheet will be helpful.

Req 6. Evolution
Besides the one-by-one spreadsheet comparison, spreadsheet evolution is an important
extension. For instance, users want to view changes over time, or the introduced errors
over time.

The following requirements summarize the technical challenges:

Req 7. Change Propagation
One single user action can lead to potentially many changes. Structure changes, for in-
stance inserting an empty row or renaming a worksheet, are propagated. Only the actual
user actions should be reported, not the propagated changes.

3.3. List of Requirements 31

Req 8. Performance
Spreadsheets can be very large and very complex. Such files are important to compare.
The comparison must be smart and efficient, in order to get results in acceptable time.

Req 9. 2D Alignment
The content of a spreadsheet is 2-dimensional, worksheets contain rows and columns.
The cells in both versions needs to be aligned, before individual cells can be compared.

Req 10. Grouping of Data
The fundamental data items in spreadsheets are usually combinations of cells. The com-
parison should report changes in terms of larger blocks, not only the changes for single
cells. For instance, one database import with many inserted rows should be reported as
one insert of a large cell range.

Req 11. Detect Movements
The data in a spreadsheet can easily move from position, for instance by a copy/paste
action. These changes should be reported as movements, instead of inserts and deletions.

4
Finding Spreadsheet Differences

In this chapter, we present our solutions to the spreadsheet comparison problem. Each section
describes a new contribution or approach that we invented during the development of our pro-
totype. The proposed solutions include argumentation, design choices and technical details.
This chapter contains the main research work of this thesis.

In Sections 4.1 and 4.2 we introduce and motivate a new spreadsheet comparison approach.
In Sections 4.3 and 4.4 we present two core ideas that are essential to solve the spreadsheet
comparison problem. In Sections 4.5 to 4.8 we describe how we actually detect changes in two
spreadsheets. In Section 4.9 we propose a method to summarize the outcome of the spreadsheet
comparison. Finally, we conclude in Section 4.10 which requirements from the previous chapter
are realized by the solutions proposed in this chapter.

4.1 Change Categorization

We propose a comparison approach where the final comparison result contains a list of cate-
gorized changes. Initially, we propose three categories: Data, Model and Structure. The idea
behind this is based on the fact that many spreadsheets can be seen as calculation models. A
calculation model in general consists of input (data), formulas (model) and the position of the
data/model items (structure) in the spreadsheet. A categorized approach has the advantage
that the comparison result is easy to interpret, and that it is easy to zoom in on changes that are
relevant for the goal for which a compare tool is used.

It is reasonable to divide the changes in these three categories, because it corresponds to
scenarios how spreadsheets are changed. A common use case for modifying a spreadsheet is the
situation where data of a calculation is updated. For example, someone wants to compute the
profit of a new month using a spreadsheet. In that case, the actual calculation model (the formu-
las) remain unchanged, while new outcome is produced based on updated data. With the pro-
posed categorized approach, it is easy to validate that this scenario has happened: one would
expect some data changes and no model changes. When the set of detected model changes
is complete, meaning that all formulas are checked, there is guarantee that no formulas have
been changed based on this comparison result. In that sense, the comparison result does not
only make the actual changes clear, it additionally gives guarantees on what has happened.

33

34 4. Finding Spreadsheet Differences

This approach fits the user need for validation. In multiple interviews with end-users it
came forward that spreadsheets errors are frequently introduced by users who edited formulas
accidentally or incorrectly. Often an Excel user is only supposed to update the data, and to leave
the formulas untouched. With the categorization of data and model, it is easy to see if formulas
were changed. If that is the case, one can directly inspect the details of the (possibly incorrect)
updated formulas. The opposite scenario is also covered: it is possible to check if only formulas
and no values have been updated. If this categorized approach is combined with a detection
per worksheet, one can even validate if in one worksheet only formula changes occurred, and
in another worksheet only data changes.

As mentioned in Section 3.2.3, in the first stage of this research, we conducted an inventari-
sation of all possible Excel actions. The complete list of all 112 actions is shown in Appendix B.
We assigned a category to all listed actions, shown in the same table. Because spreadsheets allow
for such a variety of edit operations, it is required to define which changes should be detected.
We decided to focus on the most important aspects of a spreadsheet, which are the categories
Data, Model, and Structure. Other details, like display or protection changes, are omitted in this
first proposal of a comparison approach.

We define data changes, model changes and structure changes as follows.

• Data changes are changes in the actual values of a spreadsheet: value inserts, value changes
and value deletes. Values can be of any type, like numbers, text, dates, booleans, and so on.
Values are always in cells. When values are updated, the data of a spreadsheet is changed.

• Model changes are changes in the formulas of a spreadsheet: formula inserts, formula
changes and formula deletes. Formulas are in cells, but can also occur in the defined
names of a spreadsheet. Constants in formulas are also considered as model changes (e.g.
the formula ‘=42’), because such values are defined in a formula and not in an actual cell
value. When formulas are updated, the model of a spreadsheet is changed.

• Structure changes are changes that do not effect any data or model changes. For example,
the insertion of an empty row will change the structure of a spreadsheet, but does not
change any value or formula.

We have created a collection of 28 change types that will be detected in our comparison
approach. The complete list is shown in Table 4.1, which includes the scope (level of detail), and
the category of each change. We constructed the categorization with the purpose that the sets of
data changes and model changes are complete. In other words, if no data changes are reported,
there is a guarantee that no values are inserted, updated or deleted. And if no model changes are
reported, there is a guarantee that no formulas are inserted, updated or deleted. Notice that we
intend manual updates by the user here. For example, when a worksheet is renamed (structure
change), all formulas in the spreadsheet that refer to cells in that worksheet are also updated
accordingly. In our comparison method, only one structure change will be reported and no
model changes, because no manual update to any formula has occurred. It is our objective
that this approach, where we focus on the real user actions that are performed, is intuitive to
end-users and provides a clean comparison result.

4.1. Change Categorization 35

Table 4.1: Complete list of all detected changes

Change Scope Category

1 WorksheetInsert Global Structure
2 WorksheetDelete Global Structure
3 WorksheetHidden Global Structure
4 WorksheetVisible Global Structure
5 WorksheetProtected Global Structure
6 WorksheetUnprotected Global Structure
7 WorksheetOrderChange Global Structure
8 WorksheetRename Global Structure

9 DefinedNameInsert Global Model
10 DefinedNameChange Global Model
11 DefinedNameRename Global Model
12 DefinedNameDelete Global Model

13 RowInsert Worksheet Structure
14 RowDelete Worksheet Structure
15 ColumnInsert Worksheet Structure
16 ColumnDelete Worksheet Structure
17 RowHidden Worksheet Structure
18 RowVisible Worksheet Structure
19 ColumnHidden Worksheet Structure
20 ColumnVisible Worksheet Structure

21 FormulaInsert Cell Model
22 FormulaChange Cell Model
23 FormulaChangeToValue Cell Data, Model
24 FormulaDelete Cell Model
25 ValueInsert Cell Data
26 ValueChange Cell Data
27 ValueChangeToFormula Cell Data, Model
28 ValueDelete Cell Data

36 4. Finding Spreadsheet Differences

4.2 Comparison Pipeline

There is no natural way to start a simple comparison algorithm on two spreadsheets. Unlike
regular file comparison, there is no trivial ‘start’ and ‘end’ of a spreadsheet. Initially it is un-
known which parts of a spreadsheet belong to each other, information that is required to start
the comparison. For instance, when worksheets are renamed, it is unclear which pairs of work-
sheets should be compared. Or, when rows or columns are inserted, it is unclear which pairs of
cells in a worksheet should be compared. In such case it is incorrect to compare cell A1 with A1,
cell B1 with B1, and so on.

We noticed that this problem can be solved when different steps in the comparison ap-
proach are distinguished. Therefore, we propose a comparison pipeline that contains three
phases: (1) Structure Analysis, (2) Change Detection and (3) Change Aggregation. Each consec-
utive phase is using results from the previous phase. An illustration of the complete comparison
pipeline is shown in Figure 4.1.

1. Structure Analysis 2. Change Detection 3. Change Aggregation

● Workbook analysis
 ‣ WorkbookStructure

● Worksheet analysis
 ‣ List<WorksheetStructure>

● Detect worksheet changes
 ‣ List<ExcelChange>

● Detect defined name changes
 ‣ List<ExcelChange>

● Aggregate workbook changes
 ‣ List<ExcelDifference>

● Detect row/column changes
 ‣ List<ExcelChange>

● Detect cell changes
 ‣ List<ExcelChange>

● Aggregate worksheet changes
 ‣ List<ExcelDifference>

Figure 4.1: Overview of our proposed comparison approach

In the first phase, all prerequisite structure information required for the next phase is gath-
ered. A workbook analysis and a worksheet analysis is performed. In the workbook analysis,
all inserted, deleted and matching worksheets are identified. In the worksheet analysis, for
every pair of matching worksheets the sheet name, the used cell range and the inserted and
deleted rows/columns are identified. The outcomes of the workbook and worksheet analyses,
a WorkbookStructure and multiple WorksheetStructures, contain all the necessary structure
information to begin with the actual comparison.

In second phase, four types of changes are detected: worksheet changes, defined name
changes, row/column changes and cell changes. The change detection outputs correspond-
ing changes as defined in Table 4.1. Each ExcelChange contains information about the change,
for example the cell position, as well as the old and new formula in a FormulaChange. The
worksheet change detection returns changes 1–8, the defined name change detection returns
changes 9–12, the row/column change detection returns changes 13–20, and the cell change
detection returns changes 21–28. More details about the comparison of these aspects will be
given in Sections 4.5 to 4.8.

4.2. Comparison Pipeline 37

In the final phase, the changes found in the previous phase are aggregated to differences.
We define a change as a single, atomic modification in a spreadsheet. A difference is defined
as a group of changes. Two types of changes are aggregated: global workbook changes and
worksheet changes. More details about the aggregation of changes will be given in Section 4.9.
The final outcome of our comparison pipeline is a collection of ExcelDifferences, describing
all the modifications between the two spreadsheet files.

This comparison approach has several advantages. First of all, it provides more structured
and better organized code. The pipeline approach creates phases that all have a well-defined
goal and a well-defined outcome. The entire spreadsheet comparison problem is divided in
three smaller tasks, namely (1) analyze, (2) detect and (3) aggregate. Each task has a number
of similar sub-tasks (e.g. analyze workbook and analyze worksheet). The sub-tasks, the smaller
units of the spreadsheet comparison, are easier to implement. Secondly, the sub-tasks are easier
to test too. Every part of the comparison can be individually tested with small unit tests. Thirdly,
the different phases of the comparison are easier to debug. Because every step of the pipeline
has a clear outcome, it is easy to validate which steps are correct and which steps are incorrect.
For example, if the cell detection is missing some change, it is helpful to validate if the structure
analysis was correct. Then the error must be in the cell detection itself. Finally, we will see in
Section 5.3 that this pipeline approach is straightforward to parallelize. That means that our
proposed comparison approach is in addition ready to be optimized.

38 4. Finding Spreadsheet Differences

4.3 Cell Hashing

To optimize the performance, we apply hashing on cells to speed-up the spreadsheet compar-
ison process. An efficient comparison algorithm should ‘zoom in’ as fast as possible on the
parts of both spreadsheets that are changed, and exclude the parts that are unchanged. The
bottleneck for large spreadsheets is the huge number of cells. It will help a lot if all cells, or
even complete worksheets, that are the same in both versions can be skipped for further in-
spection. For instance, assume that some sort of ‘fingerprint’ is available for worksheets. Then
the fingerprints can be compared, and with two equal fingerprints it is certain that the content
of these worksheets is the same, so they can be skipped immediately. But when only one cell in
a worksheet is updated, the complete fingerprint of the worksheet is changed, and the benefit is
gone. Therefore, it would be better to have a more localized fingerprint. Because the structure of
worksheets is two-dimensional, a fingerprint for every row and column would be an outstand-
ing idea. Unfortunately, there is no such fingerprint available in the raw XML representation of
the spreadsheet. Nevertheless, this idea did inspire us to create an intelligent pre-processing
step, leading to a substantial performance gain, namely the hashing cells, rows and columns.

Before we start the comparison pipeline, the data of both spreadsheets should be loaded
into memory. Instead of collecting all the cells (with all their details), it is enough to save a
more compact representation of all cells. We do that by computing a hash for every cell. A hash
function maps an input cell with arbitrary size (e.g. cell location, cell formula, cell formula,
and/or additional properties) to a single output with a smaller, fixed size. We decided to use the
xxHash algorithm1, which aims at being ‘an extremely fast non-cryptographic hash algorithm,
working at speeds close to RAM limits’. For our application, no cryptographic guarantees are
required for the hash function. We only need a deterministic, quick hash function that is able
to summarize cell objects. Accordingly we selected the xxHash algorithm, which is also used
for many other applications like databases, games, filters, file transfer, etc. The output of the
hash function is a 32-bits unsigned integer. In other words, every cell can be summarized to
one single number, which is unique based on the contents of the cell.

For every worksheet, we create three arrays: one to store the cell hashes, one to store the row
hashes and one to store the column hashes. Then, in a single loop through all allocated cells in
the current worksheet, every cell with corresponding row i and column j is considered. When
the cell contains a formula, the actual formula is hashed; when the cell contains a value, the ac-
tual value is hashed. The hash is stored in the 2-dimensional array with cell hashes, which is in-
dexed on row i and column j . Additionally, the same hash is added to the array with row hashes
at index i and is added to the array of column hashes at index j . We include the column/row
index in the addition operation to guarantee that the location of the cell in the corresponding
row/column is included. Otherwise, a row with one cell ‘42’ at position A1 will get same the
same hash of a row containing the same cell ‘42’ on another position B1, for instance.

The pseudo-code of the algorithm for hashing all data in a worksheet is listed in Algorithm 1.
After looping through all cells, we have a complete summary of all cell hashes, row hashes and
column hashes. When two rows contain exactly the same cells, the row hashes are constructed
to be equal. And when two columns contain exactly the same cells, the column hashes are
constructed to be equal. The cell hashes are used to speed up further comparison steps. It is

1
https://cyan4973.github.io/xxHash/

https://cyan4973.github.io/xxHash/

4.3. Cell Hashing 39

no problem to have all cell, row and column hashes of all worksheets in both spreadsheets in
memory, because each hash fits in four bytes.

Algorithm 1 Extract hashed data from a worksheet

Input: A worksheet with a dimension of n rows and m columns
Output: The cell hashes, row hashes, column hashes of this worksheet

1: function EXTRACTHASHEDDATA(sheet)
2: Let cel l s[0 . . . n, 0 . . . m], r ow s[0 . . . n] and columns[0 . . . m] be new arrays
3: for all cel l ∈ sheet .Cel l s do
4: if cel l .For mul a ≠ "" then
5: hash ← XXHASH(cel l .For mul a)
6: else if cel l .V alue ≠ "" then
7: hash ← XXHASH(cel l .V alue)
8: else
9: continue

10: end if
11: i ← cel l .Row
12: j ← cel l .Col umn
13: cel l s[i , j]← hash
14: r ow s[i]← r ow s[i]+hash× (j +1)
15: columns[j]← columns[j]+hash× (i +1)
16: end for
17: return (cel l s, r ow s, columns)
18: end function

Ideally, we want the comparison algorithm to traverse at most once through all allocated
cells in the spreadsheet. We constructed this pre-processing step such that the output allows us
to draw conclusions which parts of the worksheets are unchanged. A major advantage of this
approach is that we can immediately skip the matching parts of the two spreadsheets, based
on the same row/column hashes. After a relatively cheap pre-processing step (calculating the
hashes), the whole spreadsheet comparison problem is reduced to the comparison of only the
parts that are changed.

A requirement for correct results is that all the cell information must be included in the
hash. Otherwise the cell hashes, and the corresponding row/column hashes, will remain the
same even if the represented cells are changed. In the initial approach, it is enough to focus on
cell formulas and values. But in the future, if more advanced comparison is required, additional
attributes (e.g. style, protection, number formatting) should be appended to the hashes. The
hash function should be constructed such that it always creates a unique hash for every cell.

Every hashing approach has the potential risk of ‘hash collisions’: the situation where two
distinct pieces of data get the same hash value. Collisions can also occur by the fact that we add
cell hashes to generate our row and column hashes. In theory, a hash collision has impact on
the correctness of our comparison approach. If two distinct cells get the same hash value, they
are considered equal in the further processing steps. However, because the hashes are 32-bits
integers, there is space for 232 possible numbers, which are more than 4 billion possible hash
values. The chance of a hash collision is therefore very small. Moreover, we skip parts of the

40 4. Finding Spreadsheet Differences

spreadsheets based on row and column hashes, and not on individual cell hashes. Hence, our
approach will only be incorrect if a hash collision has occurred in every cell in a row or column.
Generally, rows and columns contain multiple cells, and a hash collision is already exceptional,
so the risk of incorrect results is therefore very low. In the case that a hash collision occurs in one
cell of a row or column, different row/column hashes will produced. In a further comparison
step, we inspect the actual cells and still conclude that the rows are equal. So this scenario, that
is unlikely to happen, will only have an impact on the performance, not on the correctness.

Another issue is that when structure changes occur (e.g. inserting a new row), many formu-
las are updated. That will create many different row hashes, even if the actual content of these
rows is unchanged. We solved this problem by calculating the hash on the formula in R1C1
notation. In the default A1 notation all formulas have absolute references, e.g. =SUM(B1:B10).
In the R1C1 notation all formulas have relative references, e.g. =SUM(R[-10]C:R[-1]C). For in-
stance, an inserted column A will update the formula in A1 notation, but in R1C1 notation the
formula will be exactly the same. A downside is that it costs time to convert all formulas to R1C1
notation, because only the formula in A1 notation is saved in the raw XML. We observed that for
performance reasons, it is better to use the formula in A1 notation for very large sheets (> 10,000
rows). Furthermore, one type of structure change, a worksheet rename, will still cause many
updated formulas in both formula notations. But even when many formulas are updated, our
approach will still produce valid results. Only the optimization of excluding unchanged rows
is omitted. In general, formulas are mostly updated due to structure changes of row/column
insert and row/column delete. Our approach is optimized for these cases.

Finally, a more fundamental issue is the fact that it is difficult to deal with combinations
of row and column inserts/deletes. In our hashing approach, the insertion of one new row and
one new column will change all the row and column hashes. In this case, we cannot exclude any
parts of the worksheet that are unmodified. Therefore, our further comparison steps must be
able to compare complete worksheets and compare all cells efficiently. The performance gain
of having all cell hashes, instead of full cell objects, is still present.

After all, the idea of calculating cell hashes, row hashes and column hashes is an important
optimization. For example, when only 10 out of 10,000 rows in a worksheet have been changed,
the cell hashing approach reduces the number of cells to be inspected with a factor of 1000. This
pre-processing step has effect on every spreadsheet comparison, because it is likely that some,
often large, parts of the spreadsheets are unchanged. This enhancement is constructed to be
general, such that it will speed up the comparison approach for all sorts of spreadsheets.

4.4. 2D Alignment 41

4.4 2D Alignment

The most difficult part of the spreadsheet comparison is the analysis of the structure of two
worksheets. We are given two worksheets containing a collection of cells, indexed by row and
column. In fact the two worksheets can be seen as two 2D matrices A and B , with size nA ×mA

and nB ×mB . In general, the number of rows nA ≠ nB and the number of columns mA ≠ mB ,
therefore the two matrices need to be aligned. The goal of the alignment is to detect which rows
r A and columns cA are deleted, and which rows rB and columns cB are inserted. Then the target
alignment T (A, B) is known, which contains the elements that are both present in matrix A
and matrix B . We will refer to this target alignment as the collection of aligned cells in the two
worksheets. Before we can compare the cells in a worksheet, we need to align the corresponding
matrices A and B to find r A , cA , rB , cB and T (A, B). The structure analysis of two worksheets is
therefore equivalent to the problem of aligning two 2D matrices with unequal size.

4.4.1 Overview

We propose a novel approach that solves the 2D alignment of two worksheets efficiently. The
idea is that we calculate the longest common subsequence l cs on row hashes of A and B . The
row hashes of A and B that are in the lcs are the matching rows, and the row hashes of A and B
that are not in the lcs are the unique rows. At this point, we conclude that all the matching rows
can be skipped as they are exactly equal. No structure changes occurred in these rows.

For the unique rows, we compute consecutive row segments: rows that are at corresponding
positions in A and B . A row segment contains unique rows only in A, unique rows only in B , or
combinations of unique rows in A and B . Based on the row segments, we conclude that inserted
rows or deleted rows are found.

For row segments that contain both different rows from A and B , we run a fine-tuned, but
complex 2D alignment algorithm (based on RowColAlign [21]) that accepts parts of the matri-
ces A and B . This algorithm finds two aligned sub-matrices, where the rows and columns are
selected such that they have maximized similarity, based on 1-dimensional LCS on rows and
columns. These two sub-matrices represent the collection of aligned cells in the current seg-
ment, and have identical dimensions. Additionally, the 2D alignment algorithm reports the
rows and columns of A to delete, and rows and columns of B to insert, to obtain the aligned
sub-matrices. This is the required structure information we are looking for. After processing all
the row segments, we conclude which rows r A and columns cA are deleted, and which rows rB

and columns cB are inserted, and concatenate the collections of aligned cells to form the target
alignment T (A, B). Now the alignment of the two 2D matrices A and B is efficiently solved.

Our approach is efficient, because we run the complex 2D alignment algorithm only on the
segments of A and B that have been changed. We avoid running the complex algorithm on the
full matrices A and B , which have probably substantial overlap and are possibly large in dimen-
sion. The key part in our approach is that we first calculate the 1-dimensional longest common
subsequence of the two arrays of row hashes. This computation is fast, for three reasons.

• First, we already optimized the row hashes: every row is represented by a single number of
four bytes.

• Secondly, we select an efficient implementation of the LCS algorithm, based on our find-
ings in Section 2.1.2.

42 4. Finding Spreadsheet Differences

• Thirdly, we apply a trimming technique where we skip the start and end parts of the two
arrays of row hashes that are equal.

Even for large worksheets with more than 10,000 rows, the computation of the 1D LCS can
be executed in a few milliseconds.

Moreover, at the start of our approach, we determine not only the LCS on the row hashes,
but also on the column hashes. Based on that, we count the number of matching rows and the
number of matching columns. If the columns turn out to be more similar than the rows, we
continue with an exact analogous approach as described in the previous paragraph, but now on
the columns rather than on the rows. For example, when column modifications are performed
all row hashes are changed. In that case we flip the approach and continue the alignment based
on column segments. This prevents that the complex 2D alignment algorithm is executed on
the whole matrices A and B . Finally, at multiple points in our approach we check for trivial
cases and draw conclusions as fast as possible.

4.4.2 Detailed description in 10 steps

Now that the general idea of our 2D alignment approach is presented, we explain it in more
detail. Our complete approach consists of 10 steps, from input (two worksheets A and B) to
output (inserted/deleted rows, inserted/deleted columns, aligned cells).

1. Extract the data from A and B . In a single loop over all allocated cells in A and B , com-
pute the used cell range, cell hashes, row hashes and column hashes. The algorithm for
extracting the hashed data is described in Algorithm 1. In the same loop, the minimum
and maximum row and column index is continuously being updated. After processing all
cells, these indices define the used cell range in the worksheet.

2. Check for trivial cases. If B is empty and A is not empty, report all rows in A as deleted
rows r A . If A is empty and B not empty, report all rows in B as inserted rows rB .

3. Determine the unique rows in A and B . First compute trimmed start and end bounds
on the two arrays of row hashes. Scan both arrays of row hashes simultaneously from the
start, proceeding to the next item until the two hashes are unequal. Repeat the same scan
from the end of both arrays. Then a start offset and end offset are found: the number
of items that are equal from the start and the end. Those parts of the two arrays can be
skipped, because they are the same. An array segment is defined on the two arrays of row
hashes, starting from the start offset and ending at last item minus the end offset.
Then, compute the longest common subsequence on the two array segments of row hashes.
The result are two lists of matching row indices, rows that are exactly equal. The unique
rows of A are calculated by enumerating until the height of A, excluding the matching
rows. Similarly, the unique rows of B are calculated by enumerating until the height of B ,
excluding the matching rows.

4. Determine the unique columns in A and B . Repeat the same procedure for calculating
the longest common subsequence, now on the two arrays of column hashes. The result
are the matching column indices, columns that are exactly equal. The unique columns
of A are all columns until the width of A, excluding the matching columns. Similarly,
the unique columns of B are all columns until the width of B , excluding the matching
columns.

4.4. 2D Alignment 43

5. Check for trivial cases. Based on the four collections (unique rows in A and B , unique
columns in A and B) conclusions can be drawn. If all collections are empty, all rows and
columns in A and B are the same and nothing has been changed. If there are only unique
rows in A and no unique rows in B , all these rows are reported as deleted rows r A . If there
are only unique rows in B and no unique rows in A, all these rows are reported as inserted
rows rB . Equivalently, if there are only unique columns in A and no unique columns in B ,
all these columns are reported as deleted columns cA . And finally, if there are only unique
columns in B and no unique columns in A, all these columns are reported as inserted
columns cB . In all these trivial cases, the 2D alignment method is finished.

6. Select a strategy, in case of both unique rows and columns in A and B . The ratio of unique
rows compared to the worksheet height and the ratio of unique columns compared to
the worksheet width is computed. The default case is to continue with the row-wise ap-
proach, if the rows are more similar than the columns. However, if the columns are more
similar than the rows, continue with the column-wise approach. The next steps will be
explained in terms of rows. The case with columns is analogous.

7. Calculate separate row segments. For all the unique rows, find consequetive segments of
rows that correspond to the same location in A and B . For example, assume that unique
rows in A are [1, 2, 3, 20, 21, 22] and unique rows in B are [11, 12, 19, 20, 21, 32, 33, 34]. Then
the individual row segments are ([1, 2, 3],[]), ([],[11, 12]), ([20, 21, 22],[19, 20, 21]), and
([],[32, 33, 34]). Three cases can be distinguished: unique rows that are only in A, unique
rows that are only in B and combinations of unique rows in both A and B .

8. Check for trivial cases. All the individual row segments are inspected. When there are
unique rows in A and no corresponding rows in B , all rows are reported as deleted rows
r A . When there are unique rows in B and no corresponding rows in A, all rows are reported
as inserted rows rB .

9. Run fine-tuned 2D alignment algorithm. For every row segment that contains both
unique rows in A and B , the content needs to be aligned. Since the number of rows is
possibly unequal, the goal is to find an alignment with the same dimensions, so that later
individual cells can be compared. The unique rows of A and B in the current segment,
together with the overall unique columns of A and B are forwarded to a RowColAlign al-
gorithm. The inner workings of the RowColAlign algorithm are described in Section 2.1.4,
more details about the modifications are given below. The algorithm outputs a target
alignment and the corresponding deleted and inserted rows and columns to reach that
target alignment from the input. A structure analysis for every individual row segment is
now available.

10. Collect results. After processing all row segments, the rows marked as deleted or inserted
in every individual row segment are combined to the overall collections r A and rB . Fur-
thermore, only the columns marked as deleted or inserted in all row segments are added
to the overall collections cA and cB . The aligned cells detected in every row segment are
appended to the overall target alignment T (A, B).
After all, the 2D alignment approach is finished here. All relevant structure changes in the
two worksheets are detected and are stored in collections r A , rB , cA and cB . In addition,
the final target alignment T (A, B) contains all the aligned cells in the two worksheets.

44 4. Finding Spreadsheet Differences

4.4.3 Fine-tuned 1D LCS algorithm

The longest common subsequence algorithm plays an important role in the alignment of the
two worksheets. For every worksheet, the LCS is at least calculated on the two arrays of row
hashes (step 3) and the two arrays of column hashes (step 4). Additionally, for different row/-
column segments the LCS is calculated multiple times in the RowColAlign algorithm (step 9),
to measure the similarity of rows and columns. It is therefore fruitful to optimize the perfor-
mance of the LCS algorithm, as it will improve the performance of the spreadsheet comparison
in general. The LCS calculation is one of the bottlenecks in terms of run time.

In Section 2.1.2 we gave an overview of the LCS algorithm and concluded that different vari-
ants should be compared to the naive implementation. We implemented four variants of the
LCS algorithm: the ‘naive’ Wagner-Fischer approach [8], and the algorithms of Hunt-Szymanski
[10], Kuo-Cross [11] and Wu, Manber, Myers, and Miller [12]. Our findings match the conclusion
of the survey paper [6], namely that the Kuo-Cross algorithm performs very well for varying in-
put types. We further optimized the implementation of this algorithm, in combination with the
ideas of the follow-up paper [7], to perform at its best for our specific input (row, column and
cell hashes). Our final implementation of the 1-dimensional longest common subsequence al-
gorithm is listed in Algorithm 2.

4.4.4 Fine-tuned 2D alignment algorithm

An optimized version of the RowColAlign algorithm solves our problem of aligning row and col-
umn segments with unequal dimensions. In Section 2.1.4 we have seen two methods in the
literature that solve this problem: SheetDiff [20] and RowColAlign [21]. We built further on the
RowColAlign approach, for two reasons. First, the SheetDiff algorithm is a greedy, local opti-
mization algorithm that can fail to terminate or can get stuck in a local optimum. Secondly,
the dynamic programming approach of the RowColAlign algorithm has proven to improve the
results of SheetDiff for aligning two 2D matrices.

We improved the RowColAlign algorithm with several modifications. Firstly, we adapted the
algorithm such that it can compare sub-matrices instead of the whole matrices A and B . This
is done by providing row indices of A and B and column indices of A and B that should be
considered. This modification allows us to ‘zoom in’ on specific row or column segments, as
we can input collections of unique rows and columns in A and B to align. Hereby we solve the
problem that RowColAlign runs out of memory for large matrices, as it requires O(n2) space.

Secondly, we added a threshold to the value in the LCS1D matrix, which contains the simi-
larity scores for all combinations of rows and columns. It requires a minimum number of cells
in a row or column to match, otherwise the rows or columns are considered to be different. This
threshold is added to prevent that for example an inserted row with one cell is matched to an
already existing row with one cell. We need at least a number of cells in a row or column to con-
firm that two rows or columns are comparable. The threshold is set to 0.05 × the row width or
the column height.

Thirdly, we defined a different cell weight for empty cells and non-empty cells. This weight
is introduced to improve the similarity score of rows and columns. We observed that rows con-
taining many empty cells were often incorrectly matched, because they have so many cells in
common. Empty cells count with a factor of 0.5, non-empty cells count with a factor of 1.0.

4.4. 2D Alignment 45

Algorithm 2 Optimized implementation of the 1D LCS algorithm

Input: Two arrays X and Y with length m and n
Output: The length r of the longest common subsequence and the corresponding items

1: function CALCULATELCS(X , Y)
2: Let MinYPrefix be a new array of length m+1
3: Let items be a new array of length m+1
4: MinYPrefix[0]← 0
5: MinYPrefix[i]← n+1,∀i ∈ 1 . . . m+1
6: items[0]← ε

7: r ← 0
8: for i ← 0 to m−1 do
9: updates ←∅

10: for k ← 0 to r do
11: r1 ← MinYPrefix[k]
12: r2 ← MinYPrefix[k+1]−1
13: for j ← r1 to r2 do
14: if X [i]= Y [j] then
15: updates ← updates∪{(k+1, j)}
16: break
17: end if
18: end for
19: for all (k, j)∈ updates, in reverse order, do
20: MinYPrefix[k]← j +1
21: items[k]← (i , j , items[k−1])
22: if k > r then
23: r ← r +1
24: end if
25: end for
26: end for
27: end for
28: return (r, items)
29: end function

Finally, the default RowColAlign algorithm does not consider formulas. We adapted the
structure of the algorithm to operate on cell hashes. In the cell hash the value or formula (either
in A1 or R1C1 notation) is encoded, depending on the type of cell. Now that the algorithm oper-
ates on general cell hashes, it can align cells with any features. It is therefore easy to extend the
algorithm in the future.

Beyond these improvements, the general technique of RowColAlign presented in [21], to
align two 2D matrices using dynamic programming, is still unchanged.

46 4. Finding Spreadsheet Differences

4.4.5 Conclusion

Our complete proposal for the 2D alignment contains specific refinements for the comparison
of worksheets in a spreadsheet. Our method is applicable to align all 2D matrices of unequal
size, in general. It performs especially well on large matrices that have many items in common.
One of the weaknesses is that it is still hard to solve the 2D alignment for matrices having both
row and column modifications. All the optimizations of considering row hashes and column
hashes are then irrelevant, because all rows and column hashes are changed in this scenario. We
earlier concluded that the combination of row and column modifications is a more fundamental
issue, with no trivial solution. Our approach will still produce correct results, but it will run the
fine-tuned 2D alignment algorithm on the whole matrices A and B . This operation can therefore
be costly in terms of time and space.

However, for realistic spreadsheets, we will see in Chapter 6 that our optimized approach
performs very well. Many optimizations that we built in came up from testing the approach on
real spreadsheets in practice. We argue that a good structure analysis, which is the 2D alignment
of worksheets, provides the foundation of a correct spreadsheet comparison. Therefore this
section represents one of the most important solutions for solving the spreadsheet comparison
problem.

4.5. Comparing Worksheets 47

In the next part of this chapter, we propose solutions on how to actually address the compari-
son of two spreadsheets S1 and S2. We explain the comparison on four different aspects, cor-
responding to the four change detection tasks of the comparison pipeline. The solutions are
described in Sections 4.5 to 4.8. Each solution will result in one or more change objects, as de-
fined in Table 4.1. After each section we will mention which type of changes are the result of the
described solution. In total 28 change types will be outputted by the comparison of all aspects
of the spreadsheet.

4.5 Comparing Worksheets

We start by explaining how to compare the collections of worksheets in two spreadsheets. In the
next subsections we describe three methods for detecting all worksheet changes.

4.5.1 Finding matching worksheets

Initially, we have two lists of worksheets in spreadsheet S1 and S2. The first step is to find the
matching worksheets. Matching worksheets are the worksheets that are present in both spread-
sheet S1 and S2, possibly with a different name. When the matching worksheets are recognized,
the deleted worksheets in S1 and the inserted worksheets in S2 are also known.

We start by matching worksheets of S1 and S2 that have exactly the same name. Then, we
compute lists of unique worksheets in S1 and S2, which are the worksheets that do not match.
When there are unique worksheets in both lists, we try to match worksheets by their internal
identifier. In the raw XML data, it is possible to retrieve the ‘xr:uid’ attribute in the worksheet
XML. This internal identifier is created when a new worksheet is added. When a worksheet is
renamed, this ‘uid’ attribute remains the same. Luckily, we can match the renamed worksheets
based on this identifier, instead of having to inspect the contents of the worksheets. If this step
produces any matches, they are added to the collection of matching worksheets and removed
from the collections of unique worksheets. Finally, the collection of deleted worksheets are the
remaining unique worksheets in S1 and the collection of inserted worksheets are the remaining
unique worksheets in S2. The pseudo-code for analyzing the worksheets is listed in Algorithm 3.

When the inserted, deleted and matching worksheets are known, it is easy to report the
corresponding changes. An worksheet inserted is reported for every inserted worksheet, and
a worksheet delete is reported for every deleted worksheet. All the matching worksheets are
checked, for any of them whose name is changed a worksheet rename is reported.

Result 1. WorksheetInsert, WorksheetDelete, WorksheetRename

4.5.2 Finding worksheet state modifications

For the collection of matching worksheets, the state of both worksheets is checked. We examine
the hidden state and the protected state. For any worksheet that is visible in S1 and hidden in
S2, a worksheet made hidden is reported. For any worksheet that is hidden in S1 and visible in
S2, a worksheet made visible is reported. Note that a worksheet can also be very hidden. This
is a specific trick in Excel to programmatically hide worksheets. Very hidden worksheets are
really hidden in the user interface and are not shown in the ‘unhide’ option. The changes for
very hidden sheets are also reported. Equivalently, we check the state of protected worksheets.

48 4. Finding Spreadsheet Differences

Algorithm 3 Analyze worksheets for insertions, deletions and matches

Input: List of worksheets W1 and W2 of two spreadsheets
Output: List of inserted worksheets I , deleted worksheets D and matching worksheets M

1: function COMPAREWORKSHEETS(W1,W2)
2: M ←∅
3: for all (s1, s2)∈ MATCHBYNAME(W1,W2) do
4: M ← M ∪{(s1, s2)}
5: end for
6: U1 ←W1−{s1 ∈M → (s1, s2)} ▷ unique worksheets in W1

7: U2 ←W2−{s2 ∈M → (s1, s2)} ▷ unique worksheets in W2

8: if U1 ≠∅∧U2 ≠∅ then
9: for all (s1, s2)∈ MATCHBYUID(U1,U2) do

10: M ← M ∪{(s1, s2)}
11: U1 ←U1−{s1}
12: U2 ←U2−{s2}
13: end for
14: end if
15: I ←U2

16: D ←U1

17: return (I , D, M)
18: end function

For any worksheet that is unprotected in S1 and protected in S2, a worksheet made protected is
reported. For any worksheet that is protected in S1 and unprotected in S2, a worksheet made
unprotected is reported. Because we use the collection of matching worksheets from the struc-
ture analysis, we are able to correctly detect state changes for worksheets that are renamed.

Additionally, we inspect the collection of inserted worksheets and examine the state of those
sheets. If a newly inserted worksheet is also made hidden, very hidden or protected, this is
reported.

Result 2. WorksheetHidden, WorksheetVisible, WorksheetProtected, WorksheetUnprotected

4.5.3 Finding worksheet order changes

Every worksheet in a spreadsheet has a position. In the XML, the first worksheet has position 0,
the second worksheet position 1, and so on. The detection of reordered worksheets is performed
on the visible sheets in S2. It is unnecessary to consider deleted sheets in S1 or hidden sheets in
S2, because order changes are only relevant for worksheets that are visible to the user. For the
visible sheets, we find the matching worksheets in S1 and S2 and determine the aligned work-
sheet order. This is the position of all matching worksheets, corrected for inserted and deleted
worksheets. The result are two collections P1 and P2 containing the aligned positions of both
matching worksheets, starting with 0 and ending with n (the number of matching worksheets).
There are no gaps for inserted or deleted worksheets.

We check the two collections of aligned worksheet orders, and return no changes if they are
exactly the same. In the case that the worksheet orders are different, we run a greedy algorithm

4.5. Comparing Worksheets 49

to find the minimum set of worksheet order changes between the two files. In every iteration,
the current positions in P1 are compared with the final positions in P2. The action that has the
highest impact to improve the current positions is then selected. This reorder action is then
recorded and simulated, updating the current positions in P1. This process is repeated until the
current positions P1 match the final positions P2. The pseudo-code for the greedy algorithm
that finds the worksheet order changes is listed in Algorithm 4.

Algorithm 4 Find the minimum set of worksheet order changes

Input: List of initial worksheet positions P1 and final worksheet positions P2

Output: List of movements M for all worksheets to move from positions P1 to P2

1: function FINDWORKSHEETORDERCHANGES(P1, P2)
2: Let M be a new array with same length of P1 and P2

3: repeat
4: D ← P2−P1

5: i ← argmaxk ∣D[k]∣
6: move ← D[(i]
7: if move > 0 then
8: st ar t ← P1[i]+1
9: end ← st ar t +move

10: step ←−1
11: else
12: st ar t ← P1[i]+move
13: end ← P1[i]
14: step ← 1
15: end if
16: for all { j ∈ P1 ∣ P1[j]≥ st ar t ∧P1[j]< end} do
17: P1[j]← P1[j]+ step
18: end for
19: P1[i]← P1[i]+move
20: M[i]← M[i]+move
21: until P1 = P2

22: return M
23: end function

For every reordered sheet, we report a worksheet order change with the original position
and the new position.

Result 3. WorksheetOrderChange

50 4. Finding Spreadsheet Differences

4.6 Comparing Defined Names

A spreadsheet can contain defined names to simplify the references in formulas. A defined
name consists of a name and value. The value is always a formula. An example is the defined
name ‘Numbers’ with value ‘=Sheet1!B1:B10’. Now a valid formula ‘=SUM(Numbers)’ can
be written, to calculate the sum of the ten numbers in B1 to B10. Defined names are easy to
manage and allow abstraction and re-use of ranges in the formulas of the spreadsheet. By de-
fault defined names are created in the workbook (global scope), but it is also possible to create
defined names in the workbook (local scope).

To compare the defined names, we first collect all the defined names in the workbook (global
scope) and worksheets (local scope), both for spreadsheet S1 and S2. We group the defined
names by their scope. Then we inspect the defined names, first on global scope, and then for
every local scope. The reason we do this is because multiple defined names can occur with the
same name but in a different scope. And a defined name can be deleted from the global scope
and added to a local scope. Both cases must be detected by the comparison.

The inspection of two collections of defined names D1 and D2 in a certain scope starts with
a grouping based on the name. The defined names in D1 and D2 with equal names are con-
sidered to be matching defined names, the rest are unique defined names in D1 and unique
defined names in D2. For the pairs of matching names, the values are compared and a defined
name change is reported when the formula is updated. However, before the actual formulas
are checked, a formula transformation based on the detected structure changes is applied. The
formula transformer takes formula f1, applies a correction for all row inserts/deletes, column
inserts/deletes and worksheet renames (if applicable), and returns a transformed formula f ′1.
Then, formula f ′1 is compared with f2 and only when the formulas are really different, we know
that a manual formula update has taken place. Only in these cases a defined name update is
reported. We skip hereby redundant changes caused by structure changes, as we are only in-
terested in the actual formula updates by users themselves. The pseudo-code for the algorithm
to transform formulas based on a set of structure changes is listed in Algorithm 5. The exact
same strategy for comparing formulas is applied when comparing the cells, as we explain in
Section 4.8.

After processing the matching defined names, the unique defined names in D1 and D2 are
considered. If a pair of unique defined names is found with exactly the same value, a defined
name rename is reported. This only happens when one matching value is found in D1 and one
matching value is found in D2; values might not be unique. This implicates that defined name
renames are only detected if the name is changed and the value is unchanged. For the rest of
the unique defined names, a defined name delete is reported if the defined name is only in D1,
and a defined name delete is reported if the defined name is only in D1.

Result 4. DefinedNameInsert, DefinedNameChange, DefinedNameRename, DefinedNameDelete

4.6. Comparing Defined Names 51

Algorithm 5 Transform a formula to correct for structure changes

Input: Original formula f , and a list of structure changes S. S can contain: modified sheet
names, inserted rows, inserted columns, deleted rows, deleted columns

Output: Transformed formula f ′ that is updated for the given structure changes
1: function TRANSFORMFORMULA(f , S)
2: if S =∅ then
3: return f
4: end if
5: T ← TOKENIZE(f) ▷ split formula (e.g. ‘=’, ‘SUM’, ‘(’, ‘B1:B10’, ‘)’)
6: f ′← ""
7: for all t ∈ T do
8: if t .TokenType is no ExcelAddress then
9: f ′← f ′+ t

10: continue
11: end if
12: addr ess ← t .Address ▷ e.g. ‘A10’ or ‘Sheet1!B3’
13: if addr ess.Worksheet ≠ ""∧ addr ess.Worksheet ∈ S.ModifiedSheets then
14: s ← {(s1, s2)∈ S.ModifiedSheets ∣ s1 = addr ess.Worksheet}
15: addr ess.UPDATEWORKSHEET(s) ▷ update worksheet, if applicable
16: end if
17: for all i ∈ S.DeletedRows, in reverse order, do
18: addr ess.DELETEROW(i , 1) ▷ delete one row, if applicable
19: end for
20: for all i ∈ S.InsertedRows do
21: addr ess.INSERTROW(i , 1) ▷ insert one row, if applicable
22: end for
23: for all i ∈ S.DeletedColumns, in reverse order, do
24: addr ess.DELETECOLUMN(i , 1) ▷ delete one column, if applicable
25: end for
26: for all i ∈ S.InsertedColumns do
27: addr ess.INSERTCOLUMN(i , 1) ▷ insert one column, if applicable
28: end for
29: if addr ess is invalid then
30: f ′← f ′+ "#REF!"
31: else
32: f ′← f ′+ addr ess
33: end if
34: end for
35: return f ′

36: end function

52 4. Finding Spreadsheet Differences

The next two steps, comparing rows and columns (Section 4.7), and cells (Section 4.8) in a work-
sheet, are performed only for all matching worksheets s1 and s2.

4.7 Comparing Rows and Columns

For the detection of row and column changes, we rely on the previously detected worksheet
structure. Every worksheet is already analyzed and at the moment of comparison, the collec-
tions of inserted rows and columns, deleted rows and columns and the used cell range of both
worksheets are known. In the next two subsections we describe how row/column inserts and
deletes and row/column state modifications are detected.

4.7.1 Finding row/column insertions and deletions

Because most of the difficult work is already done in the structure analysis, we can directly start
with inspecting the collections of inserted rows/columns and deleted rows/columns. It is not
correct to immediately report row/column inserts and row/column deletions for every result
from the structure analysis. Consider for example the case that s1 has an used cell range of
A1:D10, and that a new value is entered at cell E1000. The used cell range of s2 will then be
A1:E1000, and 990 inserted rows will be returned by the structure analysis. In this case it is
expected to only report one value insert, and no row or column modifications. The reporting
of such changes should therefore depend on the used cell range of the other corresponding
worksheet.

We argue that it is only required to report row and column changes for modifications that
fall into the used range of the other version. In the example just given, it was relevant to show
that an empty row at position 4 was inserted, because row 4-10 are shifted downwards. But an
empty row at position 11 would have no effect, the used cell range ends at position 10. Hence,
an inserted row should only be reported if the row index is within the height of worksheet s1.
A deleted row should only be reported if the row index is within the height of worksheet s2.
Equivalently, an inserted column should only be reported if the column index is within the width
of worksheet s1. And a deleted column should only be reported if the column index is within the
width of worksheet s2.

Furthermore, it can happen that the same row (or column) is deleted and inserted. The
structure analysis will return the index of such a row both in the inserted rows and deleted rows.
Now we have to make a design choice. We can report this as two changes, a row insert and a
row delete, or ignore the row changes and let the cell comparison detect updated cells. In the
first case a user will see all deleted cells in the row and all inserted cells in the row, reported as
separate changes. In the second case a user will see updated cells, or cell inserts or cell deletes
when the original or new cells are empty. It is not obvious which scenario has been occurred.
Here, we come across another fundamental issue about comparing spreadsheets. Because we
only have the original and new spreadsheet file, we do not know which intermediate steps have
been taken. It is impossible to decide if the user really deleted and inserted a row at the same
position, or updated all cells in that row manually. The end result in the raw XML is exactly the
same.

We think that it is more relevant to a user to report updated cells (second case), because it
is confusing to report both an insert and a delete at the same position but in separate changes.

4.7. Comparing Rows and Columns 53

Therefore, we compute the intersection of all inserted rows in s1 and deleted rows in s2, and
mark them as changed rows. We report for all inserted rows, except the ones that are changed
or do not fall into the used cell range, a row insert. We report for all deleted rows, except the
ones that are changed or do not fall into the used cell range, a row delete. Equivalently, the same
is done for the inserted and deleted columns. The final result of this approach is that row and
column modifications are only reported when they changed the structure of the worksheet.

Result 5. RowInsert, RowDelete, ColumnInsert, ColumnDelete

4.7.2 Finding row/column state modifications

Every row or column in a worksheet can be made hidden. It is important to detect such changes,
because it is often confusing what has happened in these scenarios. A hidden row looks like a
deleted row, but that is not the case. For the detection of state modifications, we cannot simply
traverse through all rows in s1 and s2, comparing row 1 with row 1, row 2 with row 2, and so on.
Structure changes affect the alignment of rows, and therefore we rely on the information about
inserted and deleted rows. The same holds for the columns.

To detect state modifications we need to know the matching rows and columns in s1 and s2.
For s1, the matching rows are all rows until the height of the used cell range, except the deleted
rows. For s2, the matching rows are all rows until the height of the used cell range, except the
inserted rows. We loop over all pairs of matching rows and compare the state of both rows. If
one row in s1 is visible and the corresponding row in s2 is hidden, we report a row made hidden.
If one row in s1 is hidden and the corresponding row in s2 is visible, we report a row made visible.
Again, the identical is done for the columns. Additionally, we inspect the inserted rows/columns
and report a row/column made hidden if the newly inserted row/column is hidden as well.

Surprisingly, there are performance considerations for the relatively simple task of detecting
row/column state changes. Consider the example where worksheet s1 has a used cell range of
A1:D10. Now suppose a value is inserted in cell A1048576, the last cell that will be visited with
the shortcut CTRL + DOWN. The used cell range of s2 is now changed to A1:D1048576, where the
height is increased with more than a million rows. Our approach for detecting the state changes
will examine all rows until the last cell, which is a lot of work in this case. In general, it is difficult
to avoid this issue. It was possible that one row was made hidden in this enormous amount
of rows. If the whole used cell range is not examined, such state changes will not be reported.
Of course this is an exceptional situation and the detection of row/column state changes on
normal worksheets is rather fast to check. Possibly the detection can be more optimized by a
direct inspection of the raw XML data.

Result 6. RowHidden, RowVisible, ColumnHidden, ColumnVisible

54 4. Finding Spreadsheet Differences

4.8 Comparing Cells

The strategy for the detection of cell changes relies once more on the detected worksheet struc-
ture of worksheet s1 and s2. The outcome of the structure analysis was a list of inserted rows,
deleted rows, inserted columns, deleted columns, and a collection of aligned cells.

First, a comparison of all aligned cells is performed. The collection of aligned cells consists
of pairs of cell references (c1, c2) that belong to each other in s1 and s2. For example, (A1, A1),
(B1, C1), (C1, D1), (A2, A2), (B2, C2), (C2, D2), and so on. References to empty cells are also
present in this collection. It simply defines the mapping between all cells in the complete used
cell range of s1 and s2; cells that are not related to an inserted or deleted row/column. It is
required to compare pairs of aligned cells, because structure modifications change the align-
ment of cells. Incorrect results will be obtained if all cells were simply compared based on their
location (e.g. A1 with A1, A2 with A2, and so on).

Additionally, we inspect all the cells in the inserted and deleted rows. Although a row insert
or row delete is already reported, it is likely that additional data or model changes have occurred
in the cells of inserted and deleted rows. For an empty row insert, we expect only one change
to be reported: a row insert (structure change). But for an inserted row with content, we expect
multiple changes to be reported: a row insert (structure change), plus one or more value inserts
(data change) or formula inserts (model change). Hence, we should look into the cells of the
inserted and deleted rows. It can happen that the same row is deleted and inserted. Therefore,
we first calculate the collection of the changed rows, which are the indices of rows that are both
deleted and inserted. We loop over all cells in the changed rows and compare the contents of
these cells, just like we did for the aligned cells. Then, for all cells in the inserted rows, excluding
rows that are changed, we report value inserts and/or formula inserts. And for all cells in the
deleted rows, excluding rows that are changed, we report value deletes and/or formula deletes.

Equivalently, we follow the same procedure for the inserted and deleted columns. To pre-
vent the detection of duplicate cell changes, we check the current row index for every cell while
processing the inserted and deleted columns. If an inserted/deleted row is also detected at the
current row index, we do not report a cell change for the inserted/deleted column. Consider for
example the case that both row 4 and column D are inserted, and that values are inserted at all
cells in that row and column until D4. The inserted values are then A4, B4, C4 and D4, and D1,
D2, D3 and D4. In fact, only seven values are present in the new row and new column, so we
want to report the value insert at D4 only once. Therefore, while processing the inserted cells in
column D, we detect that row 4 is already inserted and do not report a duplicate value insert of
D4.

The comparison of two cells depends on the state of each cell. We noticed that every cell is
either an:

• empty cell (neither the ‘formula’ and ‘value’ field are set)

• value cell (only the ‘value’ field is set)

• formula cell (both the ‘formula’ and ‘value’ field are set)

We conclude that there are nine possible cases when two cells c1 and c2 are compared. For
instance, when cell c1 is empty and cell c2 is a formula cell, we should report a formula insert.
When c1 only has a value and c2 has a value and a formula, we should report a value changed to
formula. And when c1 and c2 both have a value and no formula, we should compare the values

4.8. Comparing Cells 55

and report a value change. All scenarios are listed in Table 4.2. The table shows the type of
change that should be reported depending on the state of both cells.

Table 4.2: All possible cases for detecting cell changes in two cells

Cell 1

× Value
× Formula

✓ Value
× Formula

✓ Value
✓ Formula

Cell 2
× Value
× Formula

- ValueDelete FormulaDelete

✓ Value
× Formula

ValueInsert ValueChange FormulaToValue

✓ Value
✓ Formula

FormulaInsert ValueToFormula FormulaChange

In the method that compares a pair of cells, all possibilities are checked, and the correspond-
ing change is reported. In the case of two value cells, we check the values v1 and v2 and only
report a value change if v1 ≠ v2. In the case of two formula cells, we inspect formula f1 and f2.
Now we use the same strategy of transforming formula f1 into f ′1 based on structure changes, as
we earlier described in Algorithm 5. We compare f ′1 with f2 and only report a formula change if
f ′1 ≠ f2. Note that we ignore the values of two formula cells, we only compare the formulas. That
is because we are not interested in the change of calculated values of formulas. One change in
the spreadsheet can lead to many updated calculated values. We reason that it is important to
only report the manual actions performed by an end-user With this cell comparison strategy,
the user will only see the cause of his actions, and not the propagated result. As shown in Ta-
ble 4.1, three cell change types are a data change, three cell change types are a model change,
and for two changes types both the data and model are affected.

We argue that our cell comparison strategy is efficient, because we only look into the details
of a small subset of cells, namely the aligned cells. By examining the row and column hashes in
the structure analysis, we already excluded many cells that are unchanged. Therefore, only small
parts of the worksheet that contain changes are inputted to our cell change detection. Only for
these cells the details are checked. For all other cells, outside the cell detection, the optimized
cell hashes are used. Furthermore, inside the cell change detection, all cells are visited only
once.

Note that it is straightforward to extend the cell comparison. More cell properties to be
checked, for instance display or protection properties, can easily be added to the method that
compares two cells. The approach is flexible, in the sense that multiple changes can be reported
during the comparison of one pair of cells.

Result 7. ValueInsert, ValueChange, ValueChangeToFormula, ValueDelete,
FormulaInsert, FormulaChange, FormulaChangeToValue, FormulaDelete

56 4. Finding Spreadsheet Differences

4.9 Change Aggregation

In addition to the presented comparison steps, we propose a method to aggregate all detected
changes. This method will solve the user need for having an overview of all changes in increasing
level of detail. Consider for example the case where a user creates a new worksheet and imports
100,000 rows with 10 columns of data from a database. Our comparison approach up to now
will report 1 worksheet insert and 1,000,000 value inserts. In fact, this is a common scenario
and can be seen as one edit operation: insert a new worksheet with content. The idea of our
aggregation method is that it is much more informative to describe a scenario to a user, than
presenting a large list of changes.

We took a high-level overview on our comparison approach and defined 32 scenarios that
describe actual differences on spreadsheets. A difference is defined to be a group of changes.
Changes are detected by the previously presented comparison steps. In other words, our detec-
tion method outputs changes, and our aggregation method outputs differences. The differences
are more general than the changes.

In Table 4.3 all 32 types of differences are listed. Every difference contains a short text de-
scribing the operation, shown in italics. Just like the changes, every difference is categorized
into data, model and structure. For some differences, it depends on the underlying changes
to which category it belongs. The last column shows the actual aggregation that is made: the
change types that are combined. These change types correspond to the changes we earlier de-
fined in our change categorization. A collection of changes is denoted with an asterisk *, a single
change has no asterisk. For example, the ‘WorksheetInserted’ difference consists of one ‘Work-
sheetInsert’ change and multiple ‘ValueInsert’ and/or ‘FormulaInsert’ changes.

We came up with the 32 scenarios based on spreadsheet user patterns we could think of. We
were inspired by the answers from users in the interviews (Section 3.1), where they indicated
which operations they usually perform to create new spreadsheet versions. The idea is that af-
ter comparison, initially a summary of all high-level differences between the two spreadsheets
will be shown. The user can then zoom in on the details by inspecting the underlying changes
in a difference. For example, a user can see that he deleted a worksheet with content (sum-
mary). He can expand this difference and see all the values and formulas that were present in
this worksheet (details). And for instance, a user can see a list of cell ranges that were modified
in a specific worksheet (summary). He can expand each cell range to see the changed values
and formulas in this block of cells (details).

4.9. Change Aggregation 57

Table 4.3: Complete list of all aggregated differences

Difference Category Aggregation

1 EmptyWorksheetInserted
Empty worksheet ‘Sheet4’ inserted

Structure WorksheetInsert

2 EmptyWorksheetDeleted
Empty worksheet ‘Sheet1’ deleted

Structure WorksheetDelete

3 WorksheetInserted
Worksheet ‘Sheet4’ inserted

Data, Model WorksheetInsert +
ValueInsert*, FormulaInsert*

4 WorksheetDeleted
Worksheet ‘Sheet1’ deleted

Data, Model WorksheetInsert +
ValueDelete*, FormulaDelete*

5 WorksheetsHidden
2 worksheets are made hidden

Structure WorksheetHidden*

6 WorksheetsVisible
2 worksheets are made visible

Structure WorksheetVisible*

7 WorksheetsProtected
3 worksheets are made protected

Structure WorksheetProtected*

8 WorksheetsUnprotected
3 worksheets are made unprotected

Structure WorksheetUnprotected*

9 WorksheetsOrderChanged
4 worksheets are reordered

Structure WorksheetOrderChange*

10 WorksheetsRenamed
4 worksheets are renamed

Structure WorksheetRename*

11 EmptyRowsInserted
Empty rows 4-8 are inserted

Structure RowInsert*

12 EmptyRowsDeleted
Empty rows 4-8 are deleted

Structure RowDelete*

13 EmptyColumnsInserted
Empty columns B-C are inserted

Structure ColumnInsert*

14 EmptyColumnsDeleted
Empty columns B-C are deleted

Structure ColumnDelete*

15 RowsInserted
Rows 100-202 are inserted

Data, Model RowInsert* +
ValueInsert*, FormulaInsert*

16 RowsDeleted
Rows 100-202 are deleted

Data, Model RowDelete* +
ValueDelete*, FormulaDelete*

17 ColumnsInserted
Column X-Z are inserted

Data, Model ColumnInsert* +
ValueInsert*, FormulaInsert*

18 ColumnsDeleted
Column X-Z are deleted

Data, Model ColumnDelete* +
ValueDelete*, FormulaDelete*

19 RowsHidden
Rows 10-20 are made hidden

Structure RowHidden*

58 4. Finding Spreadsheet Differences

Difference Category Aggregation

20 RowsVisible
Rows 10-20 are made visible

Structure RowVisible*

21 ColumnsHidden
Columns F-H are made hidden

Structure ColumnHidden*

22 ColumnsVisible
Columns F-H are made visible

Structure ColumnVisible*

23 DefinedNamesInserted
3 defined names are inserted

Model DefinedNameInsert*

24 DefinedNamesChanged
3 defined names are changed

Model DefinedNameChange*

25 DefinedNamesRenamed
3 defined names are renamed

Model DefinedNameRename*

26 DefinedNamesDeleted
3 defined names are deleted

Model DefinedNameDelete*

27 CellRangeInserted
Cell range A4:B10 is inserted

Data, Model ValueInsert*, FormulaInsert*

28 CellRangeChanged
Cell range A4:B10 is changed

Data, Model ValueChange*, FormulaChange*

29 CellRangeDeleted
Cell range A4:B10 is deleted

Data, Model ValueDelete*, FormulaDelete*

30 SingleCellInserted
Cell A1 is inserted

Data, Model ValueInsert*, FormulaInsert*

31 SingleCellChanged
Cell B2 is changed

Data, Model ValueChange*, FormulaChange*

32 SingleCellDeleted
Cell D4 is deleted

Data, Model ValueDelete*, FormulaDelete*

Two type of changes are aggregated: changes on workbook level and changes on worksheet
level. In the next subsections we explain our aggregation method. We will often refer to the
numbered change types defined in Table 4.1, and the numbered difference types defined in
Table 4.3.

4.9.1 Aggregation of workbook changes

The first step of aggregation is applied on the list of all global changes (change type 1-12). This
complete list is grouped by changes of the same type. For instance a group with all inserted
worksheets is created, a group with all worksheets made hidden is created, and so on. Then,
we inspect each group and transform the grouped changes into differences. Three types of dif-
ferences are constructed: worksheet differences, worksheet state differences and defined name
differences.

For the worksheet changes, we consider every change individually. For a worksheet insert
and worksheet delete, we retrieve all corresponding cell changes in that worksheet. These are

4.9. Change Aggregation 59

either value/formula inserts and value/formula deletes. If no cell changes are found, an empty
worksheet inserted or an empty worksheet deleted difference is created. If some cell changes
are found, a worksheet inserted or a worksheet deleted difference is created. This is an im-
portant distinction, because it determines the difference category. Empty inserted or deleted
worksheets are considered to be structure differences, and inserted or deleted worksheets with
content are considered to be data or model differences. The actual category depends on the
underlying cell changes. If a worksheet only contains value inserts or deletes, it is a data dif-
ference. If a worksheet only contains formula inserts or deletes, it is a model difference. If it
contains both, it is both a data and model difference. We conclude that for every worksheet
change (change type 1-2), a new worksheet difference (difference type 1-4) it created.

For the worksheet state changes, we simply create one new difference for every group. It
is informative enough for a high-level difference to describe how many worksheets are made
hidden, made visible, made protected, and so on. All corresponding changes in the current
group are added to the difference. That allows to expand the details for every worksheet state
change, for example to inspect all the worksheets that are renamed. The details about the actual
changes are still stored in the change objects, for example the old and new worksheet name.
Hence, every difference object allows zooming in on all the underlying details that happened
in the described scenario. We apply the same method to defined name changes: all changes of
the same type are grouped into one difference. We conclude that for every group of worksheet
state changes (change type 3-8), one worksheet state difference (difference type 5-10) is created.
And for every group of defined name changes (change type 9-12), one defined name difference
(difference type 23-26) is created.

4.9.2 Aggregation of worksheet changes

The second step of aggregation is applied on the list of all row and column changes (change type
13-20) and cell changes (change type 21-28), for every matching worksheet. The goal is to create
differences that combine as many as possible changes logically belonging to each other. It is
intuitive to group the changes based on their location in the worksheet. Therefore, we create
three type of differences in a worksheet: consecutive blocks of rows and columns, consecutive
blocks of cells, and individual cells.

First, the row and column changes are grouped by the same change type, just like we did in
the previous step. Then, for every group we calculate the consecutive blocks of these changes.
For example, the grouping of inserted rows 1, 2, 3, 10, and 11 is transformed to inserted rows
1-3 and inserted rows 10-11. Dependent on the change type, we apply an approach to create a
new row/column difference for every consecutive block. For every block of rows/columns that
are inserted or deleted, we retrieve all cell changes in the corresponding rows/columns. If no
cell changes are found, an ‘empty rows inserted’ or an ‘empty columns inserted’ difference is
created, which is a structure difference. If some cell changes are found, a ‘rows inserted’ or a
‘columns inserted’ difference is created. The corresponding cell changes are added to the dif-
ference. The category of the difference (either data or model, or both) depends on the type of
cell changes. In addition, we mark the cell changes that are added to the row/column difference
as ‘visited’. This action is important because we track for all cell changes in a worksheet whether
they are already aggregated or not. Changes that are included in a difference are marked as ag-
gregated. Furthermore, for every block of rows/columns that are made hidden or made visible,

60 4. Finding Spreadsheet Differences

the corresponding difference containing all the rows/columns is created. We conclude that for
every block of inserted or deleted row/columns (change type 13-16), a new row/column dif-
ference (difference type 11-18) is created. And for every block of row/column state changes
(change type 17-20), a new row/column state difference (difference type 19-22) is created.

Next, we continue on the list of cell changes in the worksheet that are not yet visited. We
devised a clustering algorithm for all the remaining cell changes in a worksheet, based on their
cell location. The algorithm is listed in Algorithm 6. The aim is that all cell changes lying next
to each other based on direct neighbors (top, bottom, left, right) are grouped together. The
result of the algorithm are consecutive blocks of cell changes, where unchanged cell locations
divide the different blocks. For example, changes in A1, A2, B1, B2, F4, F5, F6 and H100 will be
clustered into three blocks: {A1, A2, B1, B2}, {F4, F5, F6} and {H100}. After running the clustering
algorithm, we determine for every resulting block the change count. For a single change, a
single cell inserted/changed/deleted difference is created. For multiple changes, a cell range
inserted/changed/deleted difference is created. We conclude that for every block of remaining
cell changes (change type 21-28), a new cell difference (difference type 27-32) is created. Note
that we combine the cell changes based on their edit action, which is either an insert, change
or delete. All the cell differences are therefore classified as insertion, change or deletion. The
category of the cell difference (either data or model, or both) again depends on the type of the
underlying cell changes.

The final outcome of the comparison pipeline is a list of global workbook differences and lists
of worksheet differences. All the differences are segregated into 32 difference types, three cate-
gories (data/model/structure), and three actions (insert/change/delete). In combination with
the descriptive text, an overview with all the constructed differences will provide a useful sum-
mary of all modifications between two spreadsheet files.

4.9. Change Aggregation 61

Algorithm 6 Cluster cell changes into consecutive blocks

Input: A list of all non-aggregated cell changes C in a worksheet
Output: A collection of change groups, clustered by their cell location

1: function CLUSTERCELLCHANGES(C)
2: Let D be a new dictionary, indexed by a key of two numbers (i , j)
3: Let Q be a new queue
4: Let r esul t be a new list
5: for all c ∈C do
6: D[(c.Row, c.Column)]← c
7: end for
8: while D ≠∅ do
9: B ← new Block() ▷ create empty block with changes

10: Q.ENQUEUE(some item from D) ▷ start with a random, non-visited change
11: while Q ≠∅ do
12: c ←Q.DEQUEUE()
13: i ← c.Row
14: j ← c.Column
15: B.ADD(c) ▷ expand block with this change
16: D[(i , j)]← ε ▷mark this change as visited
17: if D[(i −1, j)]≠ ε then ▷ check top neighbor cell
18: Q.ENQUEUE(D[(i −1, j)])
19: end if
20: if D[(i +1, j)]≠ ε then ▷ check bottom neighbor cell
21: Q.ENQUEUE(D[(i +1, j)])
22: end if
23: if D[(i , j −1)]≠ ε then ▷ check left neighbor cell
24: Q.ENQUEUE(D[(i , j −1)])
25: end if
26: if D[(i , j +1)]≠ ε then ▷ check right neighbor cell
27: Q.ENQUEUE(D[(i , j +1)])
28: end if
29: end while
30: r esul t ← r esul t ∪{B}
31: end while
32: return r esul t
33: end function

62 4. Finding Spreadsheet Differences

4.10 Reflection

In this chapter we proposed nine solutions to the spreadsheet comparison problem. We look
back at the requirements defined in Section 3.3. The next Table 4.4 summarizes which require-
ments are realized by our solutions, including the corresponding section.

Table 4.4: Status of the requirements, realized by solutions in this chapter

Requirement Status Section

1 Overview ✓ By design
2 Validation ✓ Solution 4.1
3 Completeness ∼ Solution (partly) 4.5-4.8
4 Error Resolving ✓ By design
5 Visualization × Not in this research
6 Evolution × Not in this research
7 Change Propagation ✓ Solution 4.2
8 Performance ✓ Solution 4.3
9 2D Alignment ✓ Solution 4.4
10 Grouping of Data ✓ Solution 4.9
11 Detect Movements × Not in this research

Some requirements are satisfied by the design choices we made. For example, we defined
the differences such that they provide insight at multiple levels of detail, addressing Require-
ment 1. Furthermore, we built the comparison approach such that it accepts all types of spread-
sheet files (including the ones with errors), addressing Requirement 4 .

Requirement 3 is solved to a certain degree. The provided comparison approach does not
yet compare the full set of possible edit operations on spreadsheets. We have seen that it will
require a lot of effort to create a complete spreadsheet diff tool. However, the described com-
parison methods in Sections 4.5 to 4.8 are complete for the spreadsheet aspects they apply to.
While not all spreadsheet parts are compared, we claim that the comparison of worksheets, de-
fined names, rows and columns, and cells is complete. In addition, the categories ‘data’ and
‘model’ are complete. When no data changes are detected, it is guaranteed that no values have
been updated. And when no model changes are detected, it is guaranteed that no formulas have
been updated.

At the end of this chapter, we conclude that the main research work of this thesis solved
many problems regarding spreadsheet versioning. Both four user needs and four technical chal-
lenges are resolved. After the theoretical description and motivation of our solutions, we want
to present the application of these concepts in practice. Therefore, we describe our prototype
tool in the next chapter.

5
Tool: CompareXL

Beyond the theoretical solutions explained in the previous chapter, we engineered a full spread-
sheet compare tool: CompareXL. This prototype is a stand-alone tool and has been imple-
mented simultaneously during the research work. CompareXL is able to analyze and compare
two spreadsheet files, and output a comparison result. Our implementation is two-fold: it con-
sists of a front-end (the user interface) and a back-end (the comparison engine), described in
Sections 5.1 and 5.2. Here we show screenshots of our final result, explain the design choices and
mention the technical details. Moreover, we spent a lot of time optimizing the implementation.
The goal was to develop a finished prototype that can be used particularly by end-users ‘in the
wild’, not only being a simple proof-of-concept. Many enhancements have been made, based
on testing and improving the comparison on self-created and real spreadsheets, described in
Section 5.3. We conclude with a reflection on the development process in Section 5.4.

At the time of the publication of this thesis, Infotron is exploring options for the commercial
exploitation and further development of CompareXL.

5.1 User Interface

More than 20 years ago, Shneiderman [25] introduced a useful starting point for designing ad-
vanced graphical user interfaces. It is called the Visual Information Seeking Mantra: Overview
first, zoom and filter, then details-on-demand. In our project, we followed this principle and we
were inspired by it for visualizing the comparison result in the user interface. Our final result is
in line with this proven guideline.

The user interface is designed with the user needs of Excel end-users in mind. We show the
comparison result on multiple levels of abstraction, for two reasons. First, users use the com-
pare tool with different goals: some ask high-level questions (e.g. are any formulas changed?)
and some ask detailed questions (e.g. what exactly has been changed in Sheet1?). Secondly, the
comparison of different spreadsheets can give many different outcomes (e.g. small and large
amount of differences). The user interface is built so that it is helpful in all these scenarios. Both
a high-level overview (summary) and detailed views (list of expandable differences) are avail-
able. Moreover, the user interface supports users to obtain insight in their spreadsheet versions.

On the next pages, we demonstrate CompareXL with screenshots of the full user interface.

63

64 5. Tool: CompareXL

(a) Initial screen

(b) Comparison result, shown after selecting two spreadsheet files

Figure 5.1: Screenshots of CompareXL (1)

5.1. User Interface 65

(a) Worksheet overview

(b) More advanced worksheet overview, for another comparison

Figure 5.2: Screenshots of CompareXL (2)

66 5. Tool: CompareXL

(a) Overview of all differences

(b) Overview of differences in a worksheet, with expanded details

Figure 5.3: Screenshots of CompareXL (3)

5.1. User Interface 67

Figure 5.1 shows the basic usage of CompareXL. A user can select or drop two spreadsheet
files. The comparison is immediately started when two files have been selected. First, a sum-
mary of the comparison result is shown. The total number of differences is displayed, as well
as a simple 3× 3 matrix that gives an overview of the result. This matrix summarizes horizon-
tally on category (data, model and structure), and vertically on type: insertions (green), changes
(yellow) and deletions (red). The matrix is constructed such that is easy to draw conclusions,
valid on the whole comparison result. For instance, it can be easily seen if only formulas modi-
fications are made: then only numbers in the second row are expected. Furthermore, it can be
easily identified if only insertions are made: then only numbers in the first column are expected.

There are three ways to view more details about the comparison result. Firstly, there is a
button to go to the list of all differences. Secondly, there is a button to go the overview of all
worksheets in the two files. Finally, the rows in the 3×3 matrix are clickable. That allows a user
to zoom in on the data, model and structure differences. This is nothing more than navigating
to the list of all differences, filtered on the corresponding category.

Figure 5.2 shows the worksheet overview of CompareXL. Two lists of worksheets are shown:
all worksheets in the first file and in the second file. Matching worksheets have a connection in
between, that is highlighted when a user hovers over a certain worksheet. Unique worksheets,
both in the first and second file, are shown without a connection. The background color of a
worksheet indicates modifications on the state of the worksheet. For instance, a worksheet is
inserted (green), deleted (red), made hidden (yellow), and so on. The bullets on the right of the
worksheet indicate modifications inside the worksheet. For instance, values or formulas in a
worksheet can be inserted (green bullet), changed (yellow bullet) or deleted (red bullet). Hence,
the insertion of an empty worksheet (only green background) is distinguished from the insertion
of a worksheet with content (green background and green bullet).

This worksheet overview is constructed with two goals. First, it should provide a direct in-
sight in the matching worksheets of both files. For spreadsheets with many worksheets the
worksheets correspondence is often unclear. The connections easily identify the same work-
sheets, even if worksheets are renamed or reordered (see the example in Figure 5.2b). Secondly,
it should be straightforward to know in which worksheets differences have been detected. The
bullets directly indicate that either insertions, changes or deletions are detected in a certain
worksheet. It is guaranteed that there are no modifications in worksheets without a bullet. Con-
sider for example a spreadsheet that contains 100 worksheets, and in only one worksheet some
cells are changed. Then this is immediately clear in the worksheet overview: one worksheet will
have a yellow bullet and the others not.

Figure 5.3 shows the list of differences in CompareXL. Two views are available: an overview
of all the differences, and an overview of differences per worksheet. In the complete overview,
shown after clicking on the button ‘all differences’ on the home page, we summarize all differ-
ences on workbook level and then enumerate all differences per modified worksheet. In the
overview per worksheet, shown after clicking on a worksheet in the worksheet overview, we
summarize only the differences in the selected worksheet. Hence, depending on the goals of a
user, both a complete or a zoomed-in version of the differences is available. The complete list
will be helpful if the number of differences is relatively small. For large numbers of differences,
it will be easier to select a worksheet and inspect the differences in that worksheet.

The list of differences corresponds to the aggregated differences outputted by the com-

68 5. Tool: CompareXL

parison pipeline. As explained in Section 4.9, each difference can contain several underlying
changes. For example, an inserted cell range contains the inserted values or inserted formulas.
Each difference with underlying changes can be expanded, as shown in the Figure 5.3b. Then
all details about the actual changes can be seen. The list of changes contains several columns,
depending on the type of change. For value changes and formula changes, a combined inline
diff between the old and new value or formula is computed. That is done to show a compact
and clear representation of the change. For example, when only a small part of a large formula
is changed, it is not that helpful to display the complete old and new formula. With the inline
diff, the unchanged part of the formula is shown only once (in black), together with the deleted
parts (in red) and the inserted parts (in green).

For a convenient inspection of the differences, a filter and sort option is added. Every dif-
ference list can show (1) all differences, or only (2) data differences, (3) model differences, or
(4) structure differences. For instance, a user can easily find all formula updates in a certain
worksheet using the filter option on ‘model differences’. The sort option allows sorting on (i)
difference type, (ii) rows and then columns, or (iii) columns and then rows. By default the sort-
ing is set on difference type, ordering the differences first on insertions, then on changes and
then on deletions. By changing the sorting to rows/columns, the differences are ordered based
on their cell location. This sort option follows the natural order of cells in the worksheet itself,
from top to bottom. It allows a user to inspect the differences in the same order how he would
scroll through the worksheet. The sort option on columns/rows is added equivalently.

CompareXL is implemented as a stand-alone tool using the Electron framework1. This frame-
work allows to build cross platform desktop apps with JavaScript, HTML, and CSS. CompareXL
runs hereby independently, operates alongside Microsoft Excel, comes with an easy installer
and is ready to support multiple platforms (Windows, Linux, macOS) in the future. For the de-
velopment of the user interface inside the Electron application, we used the Vue.js framework2.
The combination of a desktop application with an integrated web interface was the most flex-
ible approach for our goals. Both frameworks provided a modern infrastructure, supporting
the development process of the user interface. The final prototype of CompareXL is a modern,
scalable and well-organized stand-alone application.

1
https://electronjs.org/

2
https://vuejs.org/

https://electronjs.org/
https://vuejs.org/

5.2. Comparison Engine 69

5.2 Comparison Engine

The back-end of CompareXL is written in C# and is developed on the .NET Core framework. Its
software architecture is divided in several projects. Each project has number of namespaces,
each with their own purpose. An overview of the architecture of CompareXL is shown in Fig-
ure 5.4.

Figure 5.4: Overview of the projects and namespaces of CompareXL

In the main project, CompareXL.Engine, the complete comparison pipeline is implemented.
This project contains the analysis, change detection and change aggregation steps, including all
underlying algorithms, business logic, utility methods and I/O operations. In addition, there are
several projects that interface with the comparison engine. First of all, individual components
of the comparison approach are tested in the CompareXL.Engine.UnitTests project. Next, we
have a command line interface, CompareXL.CLI, where the comparison is executed on two given
files and the comparison result is printed in the console output. Finally, we have an application
programming interface, CompareXL.API. This project contains a small web server, Kestrel3, that
is the default web server implementation in .NET Core. This web server provides one API end-
point to compare two given spreadsheet files. The API endpoint accepts two paths to the files,
and returns the comparison result in JSON format.

The project that is not shown here is CompareXL.Desktop, which is the stand-alone Elec-
tron application. This project is developed outside the .NET Core environment, and contains a
Node.js project for building the user interface. Upon compilation of the user interface, we pack-
age the CompareXL.API executable within the stand-alone application. When the CompareXL
application is started, we start the web server as a separate process in background. The web in-
terface communicates for every comparison with the back-end via an HTTP request. The com-
parison result in JSON format is then stored and processed in the user interface. The advantage
of this approach is that we can develop the front-end and back-end completely independent of
each other.

3
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel

70 5. Tool: CompareXL

The implementation of the comparison engine relies on the CompareXL.Modelproject, where
the model classes are defined. For all 28 changes (described in Section 4.1) and all 32 aggregated
differences (described in Section 4.9) corresponding C# classes are created. The type of the class
describes type of operation that occurred (e.g. a value change), the fields of the class describe
the content of the operation (e.g. value ‘42’ at cell A10 in worksheet ‘Sheet1’). We defined a com-

Figure 5.5: Overview of the model classes of CompareXL

5.2. Comparison Engine 71

plete class hierarchy, to represent changes and differences at multiple levels in a spreadsheet.
For instance, the ExcelDifference classes are divided in workbook, worksheet, row, column,
cell range and cell differences. An overview of all the model classes is shown in Figure 5.5.

The main class in our comparison engine is ExcelComparator, which is responsible for the
comparison of two spreadsheet files. Figure 5.6 illustrates this class, with all the other imple-
mentation classes in the CompareXL.Engine namespace. The constructor reads two spread-
sheet files into memory. Then the ‘Compare’ method starts the actual comparison and executes
all three phases of the comparison pipeline. First, the workbook and worksheet structure is an-
alyzed, then changes are detected in the workbook and worksheets, and finally the comparison
result is constructed where the changes are aggregated to differences.

It is impossible to describe all the implementation details in this thesis. However, Figures 5.4
to 5.6 provide a good summary of the architecture of CompareXL.

Figure 5.6: Overview of the implementation classes of CompareXL

72 5. Tool: CompareXL

5.3 Performance Optimizations

An important phase in the development of our prototype is the time we spent on performance
optimizations. We noticed that there is a lot of diversity in spreadsheet files, and the ultimate
goal is run the comparison of all possible spreadsheet files as fast as possible. In this section we
describe three improvements. To test the effect of the enhancements, we ran two test suites on
the different versions of the code. The first was the existing unit test suite, consisting of 120 unit
tests at that time. The second was a benchmark test suite, consisting of 9 tests on real-world,
large, spreadsheet files (file size between 300 kB and 35 MB). The spreadsheets were distinctive,
some with large amounts of data, some with many complex formulas. We were interested in
optimizations that improve the overall run time, while keeping all unit tests completing suc-
cessfully. The results of the are summarized in Table 5.1.

Table 5.1: Run time of two test suites after different optimizations

Code version Unit test suite Benchmark suite

1. Initial codebase 6.489 s 245.4 s
2. Switched to single library: EPPlus 5.983 s 183.6 s
3. Implemented parallelization 5.853 s 132.5 s
4. Optimized RowColAlign algorithm 3.463 s 98.1 s

Initially, we decided to use two third-party libraries for analyzing the spreadsheet files: Gem-
box Spreadsheet4 and OpenXML SDK5. The motivation was that Gembox is fast in reading a
spreadsheet file and creating an object model of the spreadsheet. Such a high-level object model
is created for fast looping over all allocated cells in a worksheet, or retrieving the cell data at a
specific index. But in addition, we needed some specific entries from the raw XML representa-
tion of the spreadsheet, not available in the model of the Gembox library. Therefore, we added
the OpenXML SDK to read out the required information, for instance the internal worksheet
UID. It turned out that it is inefficient to use two libraries, because every spreadsheet needs
to be opened twice. This is costly for large spreadsheets, every spreadsheet should be uncom-
pressed twice and multiple I/O operations are performed. We noticed that the OpenXML SDK
had another problem: it locks the spreadsheet file, causing issues while the spreadsheet is still
opened in Excel or when a new comparison is started. In the end, we decided to switch to
one single library for analyzing the spreadsheet files: EPPlus6. EPPlus has the advantage that
it both creates an efficient object model and allows direct access to the underlying raw XML of
the spreadsheet, exactly what was needed for our implementation. Furthermore, the code of
EPPlus is open-source, licensed under LGPL. EPPlus is still used as spreadsheet libary in the fi-
nal version of CompareXL. Switching to a single spreadsheet library resulted in a 8% run time
improvement for the unit test suite and a 25% improvement on the benchmark suite. Moreover,
our source code is better organized with this improvement.

Another improvement is parallelization of parts of the code. For efficient parallelization, it

4
https://www.gemboxsoftware.com/spreadsheet

5
https://docs.microsoft.com/en-us/office/open-xml/open-xml-sdk

6
https://github.com/JanKallman/EPPlus

https://www.gemboxsoftware.com/spreadsheet
https://docs.microsoft.com/en-us/office/open-xml/open-xml-sdk
https://github.com/JanKallman/EPPlus

5.3. Performance Optimizations 73

is important to find independent tasks that are not that small, and not that large to execute. We
made two parts of our implementation run in parallel. First, the reading of the two spreadsheet
files at the start of the comparison. Secondly, the structure analysis that is executed for each
worksheet, with the single loop over all allocated cells to calculate the hashes and to perform
the 2D alignment. Both tasks are logical units to parallelize, because they operate on separated
parts of the spreadsheet. The reading of the two spreadsheet files is completely independent,
the structure analysis of worksheets only needs to store its result in a tread-safe list. The imple-
mentation of parallelization resulted in a 2% run time improvement for the unit test suite and a
28% improvement on the benchmark suite.

The last enhancement is a particular improvement in the RowColAlign algorithm, related
to the implementation of row and column segments. After a lot of debugging, we found that
the RowColAlign was comparing a redundant number of cells for row and column segments
of comparable size. With the introduction of row and column segments, the RowColAlign al-
gorithm was often executed to align a single column with another single column, or to align a
single row with another single row. These are trivial cases and an early outcome can be given,
preventing a costly LCS calculation for large rows or columns. For one sample spreadsheet we
were debugging, this enhancement reduced the comparison time from 15 minutes to 30 sec-
onds. In general, this optimization of the RowColAlign algorithm resulted in a 41% run time
improvement for the unit test suite and a 26% improvement on the benchmark suite.

We found it enlightening to test the prototype on real-world spreadsheets during the devel-
opment process. It gave us more insight in the bottlenecks of our comparison, and it resulted in
a more efficient implementation.

74 5. Tool: CompareXL

5.4 Development Process

We want to conclude this chapter with a brief summary of the engineering process. From the
first day we organized and planned this graduation project using a large Trello board, keeping
track of all todo items, meetings, and so on. We prepared 12 official meetings, and performed 6
interviews and 6 user tests. In total we created 265 Trello cards, including 149 archived, finished
todo items. The Trello board really helped to streamline the graduation project and to be always
up to date on the project status.

After an initial stage of research, we made a plan for the implementation of the compare
tool using 11 milestones. Each milestone was given a title and had a list of features to be imple-
mented. During the project, we were able to implement the following milestones:

• Milestone 1: Detect value changes

• Milestone 2: Detect worksheet changes

• Milestone 3: Detect row and column changes

• Milestone 4: Detect formula changes

• Milestone 5: Create user interface

• Milestone 6: Aggregate changes

The following milestones are left for future work:

• Milestone 7: Visualization of changes

• Milestone 8: Apply pattern recognition

• Milestone 9: Detect movements

• Milestone 10: Detect display changes

• Milestone 11: Compare VBA code

The code was organized on a private GitHub repository. In the period of 9 months, we cre-
ated 340 commits, with 39,064 additions and 17,781 deletions (lines of code). We released 7
versions of the prototype tool: 4 versions as command-line interface, 3 versions as complete
stand-alone application.

6
Evaluation

In the previous chapters, we proposed our solutions to the spreadsheet comparison problem
and we showed our prototype tool operating in practice. Now, we want to validate our solu-
tions and measure the quality of our work. We performed different experiments to evaluate our
proposed solution. In this chapter we present their methods and results.

First we state our evaluation goals. We want to validate the comparison approach on five
different aspects: correctness, completeness, user needs, stability, and performance. The corre-
sponding evaluation questions are listed in Table 6.1.

Table 6.1: List of evaluation questions

Evaluation Question Experiment

Q1 Does the comparison algorithm produce a correct comparison result? I, II, V
Q2 Does the comparison algorithm produce a complete comparison result? V
Q3 Do the comparison approach and interaction design address user needs? V
Q4 Can the comparison algorithm run on many different spreadsheets without

problems?
III

Q5 Does the comparison algorithm scale to large and complex spreadsheets? IV

We came up with five different experiments to measure these aspects quantitatively or qual-
itatively. We describe each experiment in Sections 6.1 to 6.5, by explaining their method and
summarizing their results. Then we answer the evaluation questions in Section 6.6, where we
discuss and critically analyze our results. The conclusions follow in the next chapter.

All experiments are executed on a Dell XPS 15 9550 laptop, with an Intel Core i7-6700HQ
CPU and 16 GB of memory.

6.1 Experiment I: Unit Tests

During the development of the prototype, we created a large set of unit tests to validate the
correctness of our implementation. This experiment is not performed at the end of the imple-
mentation phase, but continuously during development. The idea is that all unit tests should

75

76 6. Evaluation

pass, so that it is guaranteed that the code gives the outcome as defined in our unit tests. As all
tests are successful in the final prototype, this experiment will not find more weaknesses in our
final implementation. However, many incorrect results were fixed during implementation. This
set of unit tests makes sure that the comparison result always gives the exact result as defined in
the tests. Therefore, this serves to validate the correctness of our implementation continuously
during many development iterations.

Our test method was as follows. Every milestone in our development process had a list of
features to be implemented. For instance, the second milestone about worksheet changes con-
tained features like worksheet insert, worksheet rename, and so on. For every feature we created
two small spreadsheets that test this individual feature. For example, one spreadsheet with one
empty worksheet, and another spreadsheet with two empty worksheets. The unit test validates
that one worksheet insert is detected, and no other changes. The unit tests were created before
the features were implemented. That forced us to structurally think about normal cases, corner
cases and their expected outcome. For some cases the expected outcome was not even clear,
and more discussion or research was required. Besides the small unit tests, we created a num-
ber of larger functional tests. These tests validate the full outcome of a comparison result on
self-modified spreadsheets or real-world spreadsheets with two versions. The functional tests
validate the correctness of a complete comparison result, and contain in general many assert
statements in one test method.

The result are shown in Figure 6.1. Our test suite contains a total number of 165 unit tests,
and runs in less than 5 seconds. The code coverage is 97.7% of all code in the CompareXL.Engine
namespace. Inspection of the test code shows that a total number of 1181 assert statements are
written in the unit tests. 100% of the unit tests pass.

Figure 6.1: Results of the unit tests of CompareXL

6.2. Experiment II: Correctness Test 77

6.2 Experiment II: Correctness Test

After finishing our prototype with a definitive version, we want to test the compare tool on new,
unseen spreadsheet files. To automatically test the correctness, we need a test set with labeled
data. That is, two versions of the same spreadsheet with a list of modifications that are made.
It is difficult to obtain that data, and much work to produce itself. We in fact developed such
a set as part of the tool development process (which served as a ‘training set’), but now we are
searching for a new data set.

Fortunately, the Enron Error Corpus [22] provides us with a new dataset containing two ver-
sions of spreadsheets with labeled modifications. In this research, a method is presented to au-
tomatically find errors in real-world spreadsheets from the Enron Corpus. The original (faulty)
version and a modified (corrected) version are made available for different spreadsheets. It has
been documented which cells have been changed between the two versions. Different types
of modifications have been made, e.g. the correction of wrong calculations, wrong formulas,
wrong labels, and so on (see the first column of Table 6.2). In total 31 labeled modifications are
listed, in 28 different spreadsheet files.

Our test method was as follows. For every modification in the dataset, the two correspond-
ing spreadsheet versions are compared using the user interface of the compare tool. We man-
ually inspect the comparison result and check if the listed modification is recognized and pre-
sented correctly. This includes the correct worksheet and cell location of the modification, and
the formula or value update if applicable. If everything is correct, we count this as a correct
detection of the compare tool. Otherwise, we report the modification as not detected and write
down the reason for it.

The results are shown in Table 6.2. In total 29 of the 31 modifications are identified correctly
by our compare tool. Two modifications are not detected, both related to small bugs in the im-
plementation. In the case of Error Nr 22 a value change is reported instead of a formula change.
This is an incorrect outcome of the comparison, caused by an error in the formula comparison.
Error Nr 26 is not detected because the comparison does not check external references. This
bug can be fixed by considering the external references during the formula comparison. All the
other types errors are identified successfully. We conclude that 94% of the modifications in the
Enron Error Corpus are correctly detected by the comparison tool.

Table 6.2: Results of correctness test on the Enron Errors Corpus dataset

Modification Detected Not detected Correctness

File reference not working 0 1 0%
Fixed value 1 0 100%
Range error 12 0 100%
Wrong calculation 9 1 90%
Wrong formula 1 0 100%
Wrong labels 1 0 100%
Wrong reference 3 0 100%
Wrong values 2 0 100%

Total 29 2 94%

78 6. Evaluation

6.3 Experiment III: Stability Test

Another important quality aspect is how stable the compare tool is on new, unseen spreadsheet
files. If the compare tool will be used ‘in the wild’, we want to make sure that it performs suc-
cessful on many different files, not only the spreadsheets that we tested the compare tool on. We
already concluded that there is a lot of variety in spreadsheet files. For instance, spreadsheets
vary in file size, complexity, Excel version, encoding, and can contain many specific features like
embedded objects, encryption, macros, and so on. It might be that specific circumstances raise
errors in the implementation of the comparison method. We want to test if an actual compar-
ison result is produced on many different spreadsheets. In this test, we do not study the actual
content of the comparison result. Instead, we only focus on if a comparison result is produced,
without any unexpected exceptions raised or timeouts.

For this experiment, we used three different datasets containing versioned spreadsheet files:
VEUSES, VFUSE and VEnron2. All three datasets are produced by SpreadCluster [19], an au-
tomatic clustering algorithm that generates spreadsheet evolution groups (versioned spread-
sheets of the same source). VEUSES is built on EUSES [26], a spreadsheet corpus with spread-
sheets from a variety of sources. It contains 177 evolution groups and 363 spreadsheets. VFUSE
is built on FUSE [27], a spreadsheet corpus that contains a diverse set of spreadsheets from the
public web. It contains 188 evolution groups and 1,143 spreadsheets. VEnron2 is built on the
Enron email archive [28], with spreadsheets extracted from email messages of the Enron corpo-
ration. It contains 1,609 evolution groups and 12,254 spreadsheets. We decided to use VEnron2
[19] instead of VEnron1.1 [18], as this set contains more versioned spreadsheets and the group-
ing is more accurate. With this selection of three datasets, we tried to test the applicability of
our approach to a set of spreadsheets exhibiting a wide variation.

Our test method was as follows. All datasets are extracted, resulting in a separate folder
for every evolution group. An automatic test script inspects all folders and selects the first two
spreadsheets for every evolution group. The comparison is executed on these two versions,
and the result is recorded. We mark a test case as successful if a comparison result is returned
without any exception. A test case is erroneous if an exception is raised during the comparison.
We additionally record the type of error and the error message. If a test case runs for more than
5 minutes, we end the comparison and report a timeout.

The results are shown in Table 6.3. In total 1868 of the 1973 comparisons finished success-
fully. In total 97 comparisons ended with an error, and 8 comparisons ended with a timeout. We
conclude that the approach works well on a wide variety of spreadsheets: given a random pair
of evolved sheets, in 95% of the cases the tool can successfully produce a comparison.

Table 6.3: Results of stability test on VEUSES, VFUSE and VEnron2 datasets

Dataset N Successful Error Timeout

VEUSES 177 167 (94.4%) 10 (5.6%) 0 (0.0%)
VFUSE 188 186 (98.9%) 2 (1.1%) 0 (0.0%)
VEnron2 1608 1515 (94.2%) 85 (5.3%) 8 (0.5%)

Total 1973 1868 (94.7%) 97 (4.9%) 8 (0.4%)

6.4. Experiment IV: Performance Test 79

A summary of all errors is listed in Table 6.4. Some errors are specific shortcomings in third-
party libraries. For instance, all test cases are .xls files, and are internally converted to .xlsx by
the Gembox library. Apparently some support is missing for encrypted files. Furthermore, some
errors are specific to content and encoding of the tested spreadsheet files. This is reflected in the
errors with invalid characters and buffer errors, caused by very exotic spreadsheet files. Finally,
some errors identify real bugs in the implementation of the comparison method. Examples are
‘null reference’ exceptions and ‘argument out of range’ exceptions.

A first inspection of these errors suggests that these are not fundamental problems in the
comparison algorithm, but engineering issues in the current implementation. Further imple-
mentation effort is needed to resolve these issues in future versions of the tool.

Table 6.4: Error details and their count in the stability test

Errror Type Count

GemBox.Spreadsheet.SpreadsheetException
Current version of GemBox.Spreadsheet can’t read encrypted workbooks. 3

System.ArgumentException
Name contains invalid characters 32
The worksheet name cannot contain any of the following characters: . . . 11
We don’t support specified formula token: Empty 10

System.ArgumentOutOfRangeException
Index was out of range. Must be non-negative and less than . . . 4
Zoom must be in range from 10 to 400. 1

System.IO.EndOfStreamException
Unable to read beyond the end of the stream. 19

System.IO.IOException
An attempt was made to move the position before the beginning of the stream. 1

System.NullReferenceException
Object reference not set to an instance of an object. 14

System.Xml.XmlException
‘□’, hexadecimal value 0x0B, is an invalid character. Line 1, position 7049. 1
‘□’, hexadecimal value 0x1B, is an invalid character. Line 1, position 9109. 1

Total 97

6.4 Experiment IV: Performance Test

It is also necessary to test the performance of the compare tool on new, unseen spreadsheet
files. Some solutions are especially constructed such that the comparison method is efficient.
Furthermore, during the implementation we incorporated several optimizations, for instance
parallelization. With this experiment, we want to evaluate how fast the comparison is for dif-
ferent types of spreadsheets. Furthermore, we want to explore the limits of the compare tool by
running it on very large and complex spreadsheets.

The test data we use for this experiment is a self composed dataset of 16 large and com-
plex real-world spreadsheet files. The source of these files is initially the industrial spreadsheet

80 6. Evaluation

archive of Infotron. Furthermore, we asked interviewed users if they would like to share ver-
sions of spreadsheets they use on their own or at their company. All 16 spreadsheets have two
versions, vary in file size, and are real-world spreadsheets. Some of them are confidential.

Our test method was as follows. An automated test script loads the two versions of each
spreadsheet in the dataset. It is recorded how long it takes to load the two files. The test script
first runs an analysis to obtain statistics about the spreadsheets under test. The number of work-
sheets and the number of allocated cells, value cells and formula cells are obtained. We report
the statistics and file size of only the first of the two spreadsheets versions, as both versions are
comparable. Then the test script starts the comparison on both versions. If the comparison is
successful, the amount of differences and changes is recorded, and the time it took to execute
the full comparison. We have built in a time limit of one hour. If the comparison is not finished
after that period of time, the comparison is ended and a timeout is reported.

The results are shown in Table 6.5. It took around 4 hours to complete this experiment. Af-
ter all, 13 of the 16 comparisons (81%) finished within the time limits. We see a lot of diversity
in the spreadsheets. For instance, the largest spreadsheet only contains 3 worksheets, another
one has more than 200 worksheets. Some spreadsheets only have value cells, others have more
formula cells, but most large spreadsheets have a combination of both. The performance really
depends on the test case, the table shows that some large comparisons are done within seconds,
some take more than a minute. The cause of the timeouts is not related to the large files itself.
We compared the first version of file 13, 15 and 16 with the same first version of these files. All
comparisons on the same version of these files is finished within one minute, with of course 0
differences and 0 changes as outcome. Therefore, we conclude that the timeout of the 3 spread-
sheets is caused by the large amount of differences between the two versions. Finally, we did
not have any memory issues during this challenging performance test.

Table 6.5: Results of the performance test on large and complex spreadsheet files

File Size (MB) Sheets Allocated Cells Formula Cells Value Cells Tload (s) Tcomp (s) Ttot al (s) Differences Changes

1 1.11 22 175,025 96,137 38,852 0.98 4.61 5.59 48 552
2 3.49 27 163,971 17,931 20,740 1.10 21.22 22.32 65 5146
3 3.72 12 4,147 4 996 0.21 0.94 1.15 55 1557
4 4.22 22 208,104 86,338 35,206 1.82 6.13 7.95 35 61565
5 4.23 33 638,277 345,369 13,436 2.72 11.53 14.25 285 12072
6 4.86 46 730,679 277,433 133,320 3.71 6.30 10.01 7 13650
7 8.02 20 2,755 208 190 0.10 0.09 0.19 106 515876
8 10.05 9 56,143 0 19,947 0.12 0.35 0.47 45 25012
9 10.78 202 1,108,880 890,111 60,474 6.01 10.54 16.55 10 3593
10 12.93 11 1,083,524 1,081,540 982 7.82 15.52 23.34 1 10
11 18.25 114 3,016,593 527,998 1,522,562 10.57 571.49 582.05 8 168
12 21.48 119 4,570,060 10,703 2,677,354 18.17 34.25 52.41 325 2894664
13 27.51 113 2,678,908 1,016,752 787,012 12.08 timeout timeout - -
14 35.19 36 28,527,494 211,741 1,084 2.69 164.42 167.11 415 1831
15 45.45 118 2,906,043 1,221,760 862,748 18.32 timeout timeout - -
16 81.88 3 13,207,338 4,238 9,583,028 33.99 timeout timeout - -

Besides the extreme test cases, we are interested in the average run time of our comparison
method. Is our compare tool fast on spreadsheets with typical size and complexity? To answer
this question we revisit the spreadsheets we used for our stability test in Section 6.3, focusing
on the performance of the compare tool. In addition to the outcome, we also recorded the run

6.4. Experiment IV: Performance Test 81

time for each of the 1868 successfully executed comparisons. The results are summarized in
Figure 6.2. The run time reported in this histogram is the total time of loading and comparing
the two spreadsheets.

1297

219

69 57 29 19 20 20 12 8

118

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 >1

Comparison Time (s)

0

200

400

600

800

1000

1200

1400

C
o

u
n
t

Figure 6.2: Histogram of the comparison time on VEUSES, VFUSE and VEnron2 datasets

In total 1297 of the 1868 spreadsheets are compared within 0.1 seconds. Only 118 of the
1868 comparisons take more than 1 seconds. There is a high variance in this last segment: 93
of these comparisons take 1–10 seconds, and 25 comparisons take 11–220 seconds. The com-
plete distribution is highly skewed, most comparisons are very fast and some take a longer time.
We conclude that our compare tool is able to compare 69.4% of the spreadsheets in the three
datasets within 0–0.1 seconds, 24.3% within 0.1–1 seconds and 6.3% in more than 1 seconds.

Additionally, we recorded the file size of all test cases in the stability test. The average run
time of all successful comparisons, categorized by their file size, is shown in Table 6.6. Many
spreadsheets in these datasets have small file size (< 50 kB), and most of the spreadsheets have
small or medium file size (< 500 kB). We see that on average the comparison method is perform-
ing fast on small and medium spreadsheets. For larger spreadsheets, the average run time is
moderately fast. However, there is a higher variance: the comparison time really depends on
the content, complexity and amount of modifications. We conclude that the file size has effect
on the comparison time. The average performance of the compare tool is 1.06 seconds on all
spreadsheets in the VEUSES, VFUSE and VEnron2 datasets.

Table 6.6: Summary of the comparison time per file size

File Size Count Average Time (s) StdDev Time (s)

0 - 50 kB 1060 0.045 0.147
50 kB - 100 kB 308 0.120 0.390

100 kB - 500 kB 346 1.281 8.570
500 kB - 1 MB 72 9.181 32.601
1 MB - 10 MB 82 9.573 28.958

Total 1868 1.056 9.846

82 6. Evaluation

6.5 Experiment V: User Tests

In addition to the technical evaluation, an evaluation from the user perspective is also relevant.
Some of our solutions are created to fit user needs, and our prototype tool with the complete
user interface is designed especially for end-users. Therefore, at the end of the development
process, we evaluated the final compare tool with six different Excel end-users. Three of them
were also interviewed at the start of this research.

The goal is three-fold. First, we want to test how the prototype tool operates ‘in the wild’, in
real-world usage scenarios. How end-users react on the user interface and how they interpret
the comparison result is relevant. Secondly, we want to determine to what extent the compar-
ison method meets correctness and completeness standards from end-users. Finally, we want
to find out if the proposed solutions fit the actual user needs.

We followed the following method. The user test meetings were planned with an expected
duration of 1–1.5 hours. One week before the user test, users were asked if they could save
intermediate versions of spreadsheets they were currently working on. During the actual user
test meeting, we began with a brief demonstration of the compare tool on some demo files. We
gave users explanation about the comparison result and they inspected all the screens of the
user interface. They were asked for their first reaction. After the introduction, we tested the
prototype tool with the user in three steps.

First, the complete set of implemented differences was divided into 7 individual tasks (see
Figure 6.3). Users were asked to test these tasks one by one, by creating modified spreadsheets
versions in Excel themselves. After running a few comparisons for each task, users judged the
implementation of each task on a scale of 1 (incorrect), 2 (sometimes correct) or 3 (always cor-
rect). This part of the user test focuses on the correctness of the comparison approach. After
that, we showed a long list of all Excel features to the user. We asked if he or she could indicate
which additional spreadsheet features should be implemented in order to use the compare tool
in practice. The answers give us an idea of the completeness of our comparison approach.

Secondly, we let the user test the compare tool on real-world files they brought themselves.
The users were given enough time (15–30 minutes) to explore the prototype tool themselves.
During this period, we talked with the users and wrote down comments. After testing, the users
were asked to judge the prototype tool on the following quality aspects:

1. Overview. The tool provides a useful high-level overview on what has changed

2. Detail. The tool reports enough details on what has changed

3. Summary. The tool is able to summarize large amounts of modifications

4. Completeness. The tool is able to compare all relevant aspects of my spreadsheet

5. User-friendliness. The tool is easy to work with

6. Complexity. The tool is able to handle large and complex files adequately

7. Solution. The tool fits my goals for comparing spreadsheets

The users gave each aspect a score on a scale of 1 (not at all), 2 (not so), 3 (somewhat), 4 (very)
or 5 (extremely).

Finally, we concluded the user test with a reflection. We asked the strengths and weaknesses
of the current prototype tool and asked where the user would use the current prototype tool
for. We finished with a question if the user allows processing of the user test results in this
thesis. Optionally, he or she could give permission to save the test data for follow-up research.

6.5. Experiment V: User Tests 83

With all answers written down, the user test meeting was finished. In the next subsections we
summarize the results.

6.5.1 Features

The results of the feature evaluation are shown in Figure 6.3.

0 1 2 3 4 5 6

User Scores

Worksheet state modifications

Worksheet modifications

Defined name modifications

Row/column state modifications

Row/column modifications

Blocks of cell modifications

Individual cell modifications

Incorrect Sometimes correct Correct

Figure 6.3: Summary of scores for the 7 implemented features

Two of the six users judged both individual and blocks of cell modifications as ‘sometimes
correct’, because our comparison approach does not recognize an ‘insert and shift’ or ‘delete
and shift’ action. This insert or delete action will result in many shifted cells to the right or to
the bottom. When an empty cell is inserted in this way (user action), the result is that many
cells are moved (propagated changes). This advanced kind of change propagation is difficult
to detect, and therefore relevant future work. Our tool currently reports additional changes for
the moved cells. Besides this specific case, all other normal cell modifications were correctly
reported and aggregated.

Five of the six users judged row and column modifications as ‘sometimes correct’. All in-
correct results originate from test cases where combinations of row and column modifications
were made, which we know are difficult to correctly detect. Individual changes to only rows
and columns were always correct, and simple combinations also. Furthermore, the aggregation
of underlying changes inside inserted/deleted rows and columns was considered intuitive and
correct.

Two of the six users judged defined name modifications as ‘sometimes correct’. This is
caused by a simple bug which can easily be fixed. The aggregation of defined name inserts
resulted in a defined name deleted difference, which is incorrect.

All other tasks were always correctly detected.

84 6. Evaluation

Table 6.7: List of additional features for the compare tool requested by users

Feature Count Feature Count

Cell protection 6 Pictures 2
External data connections 6 Print options (header, footer, page breaks) 2
Pivot tables 6 Table filter state 2
Charts 5 Workbook protection 2
Conditional formatting 5 Cell comments 1
Data validation rules 5 Cell formula visibility 1
Global settings (e.g. auto calculate) 5 Row auto fit 1
Tables 5 Workbook styles 1
VBA code 5 Worksheet tab color 1
Cell number formatting 4 Cell style advanced (borders, alignment, etc.) 0
Cell merging 3 Cell style basic (background, color, font, etc.) 0
Table sort state 3 Cell style inline (font) 0
Cell hyperlinks 2 Column width 0
Embedded objects 2 Document properties 0
Ignored errors 2 Row height 0

We asked users which additional Excel features should be implemented in the comparison
approach in order to be complete for the goals of the current end-user. The answers are sum-
marized in Table 6.7. Users mentioned that the current prototype tool is already really helpful,
and that the requirements they indicate are suggestions for improvements. Most users will hap-
pily use this version of the compare tool for their daily work. Only for one user the comparison
is not complete enough yet to be a trusted tool. We can therefore conclude that the complete-
ness requirement is relative, there is always room for extension of the supported features of the
compare tool. Table 6.7 gives clear directions for further development.

6.5. Experiment V: User Tests 85

6.5.2 Quality

After an extensive test of the prototype tool on real-world files, users concluded the user test
with a quality evaluation based on their experience. All user scores are listed in Table 6.8, in-
cluding the average score per criteria. The results of this quality evaluation are visualized in
Figure 6.4.

Table 6.8: List of quality scores (1–5) given by in the user test

Overview Detail Summary Completeness User-friendly Complexity Solution

User 1 4 4 5 4 5 5 4
User 2 5 5 5 4 4 5 5
User 3 4 5 5 4 5 5 5
User 4 4 4 5 3 4 5 3
User 5 4 5 5 3 5 4 4
User 6 5 5 4 4 4 4 4

Average 4.33 4.67 4.83 3.67 4.50 4.67 4.17

Overview
Detail

Summary

Completeness

User-f
rie

ndly

Complexity

Solutio
n

0

1

2

3

4

5

U
se

r
S

co
re

s

Not at all Not so Somewhat Very Extremely

Figure 6.4: Summary of quality scores of the compare tool

The overall average score on all aspects is 4.4 of the maximum 5.0. No scores of 1 and 2
are given, and the score of 3 is also rare. The compare tool can improve the most on the ‘com-
pleteness’ aspect. User 4 (an Excel expert) will only use the tool regularly if he knows that it is
complete (to a certain extent). His goals are clearly different than the goals of the other users,
who gave a higher score on ‘solution’. More explanation of the scores given by the users is sum-
marized in the next subsection.

86 6. Evaluation

6.5.3 User Reflection

Users mentioned the following strengths of the current prototype tool (summarized):

• Clear and concise overview of changes.

• Impressive fast comparisons, very good performance.

• Well thought-out grouping of changes.

• Easy to zoom in on more details.

• Stand-alone application.

• Intuitive user interface.

• Smart inline diff of formulas.

• Helpful summary of comparison result.

• To be used by everyone.

Users mentioned the following weaknesses of the current prototype tool (summarized):

• No visual display of the changes.

• No export functionality.

• No integration with Excel.

• Implementation still contains some minor bugs.

• Not complete enough yet to be a trusted tool.

• Bad performance for some specific spreadsheets.

• Lack of overview for spreadsheets with enormous differences.

Users mentioned the following applications of the current prototype tool (summarized):

• General: instant overview of spreadsheet changes.

• Spreadsheet development: track changes.

• Spreadsheet validation: did I change what I wanted to change?

• Spreadsheet collaboration: find changes of other users.

• Spreadsheet accountability: create a report to justify all changes.

• Auditing of spreadsheets: find changes made since an earlier approved version.

• Debugging of spreadsheets: find the source of errors.

We conclude that the user test has given us more insight in the quality of the current pro-
totype tool, both on the positive and negative aspects. The current version already meets the
user needs of five of the six end-users. Further, we have gained more understanding how users
operate with a compare tool.

Finally, many improvement suggestions have been identified. After the user tests, we did a
status update of our Trello board. We created 14 new cards related to bugs in the prototype. 7
of them are simple bugs that are easy to fix. Furthermore, we created 21 new cards related to
future improvements, 5 cards of cases that need further investigation and 11 cards of questions
to think about. From an engineering perspective, that is a fruitful result of the user test.

6.6. Discussion 87

6.6 Discussion

Now that we have all the results, what can we do with it? In this section we discuss the results
of our research by reflecting on the evaluation questions. Furthermore, we provide a critical
analysis of the threats to the validity of our results.

Q1. Does the comparison algorithm produce a correct comparison result?

The comparison method is well-tested with a unit test suite covering all the default and
corner cases of all 28 implemented changes. Nonetheless, in practice, it turns out that some-
times incorrect results can be reported when combinations of row and column modifications
are made. Our research identified this as one of the fundamental issues, and there is still room
to improve this. Furthermore, our comparison approach does not detect ‘insert and shift’ and
‘delete and shift’ actions. This operation is rarely used, but will result in false positive changes.
Not the user action is reported, but the propagated changes. An advanced method should be
developed to detect this type of change. Finally, updates to external references in formulas are
not yet detected by our approach, and there is a small bug in the aggregation of defined names.
These issues can easily be fixed in a next version of the compare tool. In conclusion, three ex-
periments validate that the outcome of our comparison is correct in almost all cases for spread-
sheets comparison, except for the remarks up here.

Q2. Does the comparison algorithm produce a complete comparison result?

The comparison result is not complete in the sense that not all changes for every spread-
sheet aspect are detected. As shown in Appendix B, the complete list of all possible spreadsheet
modifications is huge. However, we claim that our comparison is complete in the sense that it
detects all 28 defined changes listed in Table 4.1. The categories data and model are complete:
we aim to detect all inserts, changes, and deletions of values and formulas. Furthermore, we
aim to detect all structure changes for rows, columns, and worksheets. Because we completely
implemented the comparison approach ourselves, this requirement is fulfilled by design. Our
unit tests validate that we do not miss any changes for the sample spreadsheets.

Q3. Do the comparison approach and interaction design address user needs?

The enthusiastic responses in the user test prove that our compare tool meets the expec-
tations of users. The quality scores given in the user tests are high. The tool can be further
improved by supporting more spreadsheet features and by fine-tuning of the user interface.
Because the goals of users for using a spreadsheet compare tool are different, it is difficult to
validate if our approach suits all needs. For example, we do not provide a visualization of the
changes, we have no integration with Excel and we do not offer export functionality. However,
the current version of the compare tool does exactly what it is expected to do: compare two
spreadsheet files and show an overview of the changes. All users in the user test mentioned
multiple applications for which they would use the demonstrated version of the compare tool.
In that sense, we conclude that the current prototype tool is already a supportive tool in many
use cases regarding spreadsheet versioning. It solves the most important user need: to obtain
an overview of all spreadsheet changes.

88 6. Evaluation

Q4. Can the comparison algorithm run on many different spreadsheets without
problems?

The results of our stability test show that our approach is in general stable on new, unseen
spreadsheet files: 94.7% of the spreadsheets are successfully compared. In 4.9% of the cases
an error occurred, and in 0.8% a timeout occurred. We conclude that there is still room for
improvement, ideally every spreadsheet should be compared without errors. The details about
the errors give directions on how to improve the stability. But in general, we conclude that the
compare tool is able to compare almost all sorts of new spreadsheets without problems.

Q5. Does the comparison algorithm scale to large and complex spreadsheets?

The average performance of our compare tool is 0.045 seconds for spreadsheets between 0
– 50 kB, 0.118 seconds for spreadsheets between 50 kB – 100 kB and 1.275 seconds for spread-
sheets between 100 kB – 500 kB. For larger spreadsheets, the average compare time is more than
10 seconds. The interpretation of these results is tricky because there is a high variance in the
running times. We conclude therefore that it really depends on the content of the spreadsheet
how long the comparison will take. The file size is only a general indication for the comparison
time. However, we can still conclude that in general our compare tool is extremely fast on small
and medium spreadsheet files. Additionally, we have seen many examples of large spreadsheets
that are rapidly processed by our comparison approach. Some files are loaded even faster than
Excel itself does.

The results of our performance test show that our compare tool is able to process 81% of
the most difficult spreadsheet files in our datasets. Spreadsheets with a tremendous amount of
allocated cells or many worksheets are processed successfully. However, we cannot guarantee
that all large and complex spreadsheets will be successfully compared. Our experiments showed
three examples where the comparison was running infinitely. Again, the run time really depends
on the content and the amount of modifications made in the spreadsheets. We conclude that
in general the prototype tool is optimized to support very large and complex files. For some
specific spreadsheets, no result can be produced; these cases need further investigation.

Threats to validity

The first factor threatening the internal validity is the limited set of Excel end-users we used
for the interviews. This affects our results of the problem analysis about spreadsheet version-
ing. We expect that if more than 6 users were interviewed, more user needs could eventually be
identified. A similar factor threatening the internal validity is the limited set of users asked for
the user test. This affects our evaluation results about correctness, completeness and the quality
scores. We tested the prototype tool with 6 end-users, and that is not enough to draw statisti-
cally significant conclusions. However, the aim of the user tests was to obtain a general idea
of how users would use the prototype tool, and to inventory their reactions. These goals have
been achieved. We have done our best to perform the interviews and user tests with different
spreadsheet user groups: companies, universities, and Excel experts, with varying spreadsheet
experience. We did not have time and opportunity to perform more interviews and user tests.
The goal of this research was not to perform a complete user study.

6.6. Discussion 89

Another factor jeopardizing both internal and external validity are the datasets we used for
the evaluation. We know that we have a bias in our set of unit tests because we created all
the sample spreadsheets ourselves. Furthermore, we ran the unit tests continuously during de-
velopment, so our implementation is adapted to these examples. For both reasons, we have
evaluated the correctness, stability and performance on new, unseen and different datasets. We
think there is enough diversity in the spreadsheet files, because we selected spreadsheets both
from other studies and from practice. Some are even confidential files from large companies.
In the end, the comparison approach is tested on a large number of different spreadsheet files.
However, we are aware that new spreadsheets can always give unexpected results in the com-
parison.

7
Conclusion

The goal of this graduation project was to investigate the problem of comparing two spread-
sheets. To that end we obtained new insights about spreadsheet versioning, and proposed the-
oretical and practical solutions to the spreadsheet comparison problem. This chapter wraps up
the research. First, we give an overview of the contributions of this thesis in Section 7.1. Then
we answer the research question and draw conclusions in Section 7.2. Finally, our suggestions
for future research work are summarized in Section 7.3.

7.1 Contributions

The main contributions of this thesis are:

• An extensive problem analysis about spreadsheet versioning. Based on user interviews
and development experience, six user needs and five technical challenges related to spread-
sheet comparison are identified.

• A new pipeline-based approach for comparing two spreadsheet files. This includes meth-
ods for (1) analyzing the spreadsheet structure, (2) detecting changes in spreadsheets, and
(3) aggregating changes into clear, understandable differences. Improvements like cell
hashing, an optimized 2D alignment using longest common subsequences, and different
algorithms for comparing worksheets, defined names, rows, columns and cells are part of
this approach.

• A new prototype tool, demonstrating the proposed approach in practice. This tool, called
CompareXL, is a stand-alone application that can compare two spreadsheet files. The user
interface is built with a multi-level interaction design, showing the comparison results in-
tuitively to the end-user.

• Empirical evidence that the proposed approach is correct and scalable, that it can handle
a wide variety of spreadsheets, and that it meets users’ needs.

91

92 7. Conclusion

7.2 Conclusions

In this thesis we explored the following research question:

How to develop an intelligent and applicable strategy for comparing two spread-
sheet files?

We have seen in Chapter 2 that there is only little literature available about the spreadsheet
comparison problem, despite the fact that a lot of research has been conducted on regular file
comparison. We built on research about the longest common subsequence algorithm and the
RowColAlign algorithm. Other papers gave us hints on how to approach a file comparison prob-
lem in general. We have seen in the same chapter that there are, according to our knowledge,
currently ten existing spreadsheet compare tools. However, they come with all sorts of limita-
tions. None of them cover all aspects of a spreadsheet, most of the tools are designed with a
specific use case in mind, and most are not able to handle all types of spreadsheet files, espe-
cially large and complex spreadsheets. We therefore concluded that there is yet no sufficient,
simple and all-purpose spreadsheet compare tool available.

In Chapter 3 we have seen that end-users face many problems regarding spreadsheet ver-
sions. Spreadsheet users have needs related to overview, validation, completeness, error resolv-
ing, visualization, and evolution. A compare tool that supports end-users on these aspects will
solve a lot of spreadsheet versioning issues. We consider a spreadsheet comparison strategy ap-
plicable if it provides solutions to these user needs. Furthermore, we found that fundamental
challenges related to spreadsheet comparison include: change propagation, performance, 2D
alignment, the grouping of data, and movement detection. We consider a spreadsheet compar-
ison strategy intelligent if it provides solutions to these technical challenges.

In Chapter 4 we have presented our new comparison strategy. We discovered the following
insights about spreadsheet comparison methods.

• One essential element in a comparison approach is passing on information from a struc-
ture analysis step to a change detection step. It is necessary to first analyze the structure
correspondence between the two spreadsheet files. Without knowledge of the matching
worksheets and inserted/deleted rows and columns, it is impossible to make a correct
comparison. Because spreadsheets are two-dimensional by nature, the structure analy-
sis should always include a 2D alignment method.

• A second essential element in a comparison approach is the ability to quickly zoom in on
parts of the spreadsheet that are different. Because spreadsheets can easily become large
and complex, it is required to optimize the change detection step such that irrelevant com-
parisons are avoided. Otherwise, it is impossible to efficiently detect changes in medium
or large sized spreadsheets.

• The third essential element in a comparison approach is forwarding results from a change
detection step to an aggregation method. It is natural to spreadsheet comparison that the
outcome contains a long list of changes. Without aggregation, the comparison result can
quickly become unclear and difficult to interpret. We propose a method to summarize the
changes into differences based on user scenarios. The user scenarios represent actual user
operations and are defined at all levels of detail in the spreadsheet. The final comparison
result, therefore, provides information at different levels of abstraction.

7.2. Conclusions 93

We concluded this chapter with the observation that four user needs and four technical
challenges are addressed by the proposed solutions. The proposed solutions are designed to
be intelligent and applicable.

We have demonstrated the application of these solutions in our prototype tool, shown in
Chapter 5. We conclude that it is challenging to design an intuitive user interface for presenting
the comparison results. We found that users use the compare tool with different goals: some ask
high-level questions and some ask detailed questions. Furthermore, the comparison of differ-
ent spreadsheets can give many different outcomes. A user interface should be designed such
that it is helpful in all these scenarios. Our prototype tool shows the comparison result on mul-
tiple levels of abstraction. It provides both a high-level overview and detailed views of all the
changes. The user interface was designed such that it is applicable to the user needs. Besides
the user interface, we have built a solid code base for our comparison engine. We conclude
that it was effective to invest in structured code, unit tests, and performance optimizations.
Moreover, it was relevant to test the comparison engine during the development process on
real-world spreadsheets. Hereby, the quality of the implementation was greatly improved, and
the examples gave us more understanding on how to develop intelligent solutions.

In Chapter 6 we have evaluated our comparison strategy on correctness, completeness, user
needs, stability, and performance. All 100% of our 165 unit tests were passing. 94% of the mod-
ifications in the Enron Error Corpus were correctly detected. The comparison approach has a
stability of 95% on 1973 new, unseen spreadsheets in the VEUSES, VFUSE and VEnron2 datasets.
69% of these spreadsheets are compared within 0–0.1 seconds, 24% within 0.1–1 seconds and
6% in more than 1 second. Our comparison approach survived a challenging performance test
and is able to compare 81% of the most difficult spreadsheet files in our datasets, without mem-
ory issues. Finally, the result of the user test is an overall average quality score of 4.4 out of
5.0. One moderate score was given on completeness (3.67), high scores were given on solution
(4.17), overview (4.33), user-friendly (4.50), detail (4.67), complexity (4.67), and summary (4.83).
We can summarize the reaction of users in the user tests the best with a quote from an Excel
expert at the end of his user test: "The current compare tool really shows great promise, with a
valuable overview of all spreadsheet differences. It proves that the spreadsheet comparison prob-
lem is actually solvable."

94 7. Conclusion

7.3 Future work

We suggest the following promising ideas for future research or applications:

• Visualization of changes. Regular file comparison tools show their results in context. It
will be helpful if the spreadsheet comparison result is also shown in context, for example
by using an abstract worksheet map. Cells in the worksheet map can then be indicated
with a color, for instance for no change (grey), inserted (green), value changed (yellow),
formula changed (blue), and deleted (red). The visualization will immediately provide
overview and insight in all worksheet changes, better than a list of all changes. This idea
requires research on how to visualize a worksheet in abstract, and how to add the change
information to the visualization.

• Apply pattern recognition. Currently, the comparison approach is built from the spread-
sheet perspective. It is interesting to see if pattern recognition or machine learning meth-
ods can create better spreadsheet comparisons. For instance, an idea is to automati-
cally detect general blocks of information (features) using a pattern recognition technique.
Then the features of version 1 and 2 can be compared, instead of checking all individual
spreadsheet aspects itself. More research is required on the application of pattern recog-
nition or deep learning on spreadsheets.

• Detect movements. Currently, a copy/paste action of cells is reported as cell deletions and
cell insertions. A method should be developed to report this type of change in terms of
movements. One possibility is to extend the aggregation method, by building a matching
algorithm on the contents of the deleted and inserted cells. Another possibility is to detect
labeled blocks of information in version 1 and 2 (e.g. using pattern recognition) and to
compare the positions of the blocks of information.

• Detect more changes. The current research focused on data, model and structure changes.
We implemented a list of 28 different change types. Users find it relevant to compare more
spreadsheet features, see for example Table 6.7. More categories can be defined, for exam-
ple, display changes, protection changes, and visibility changes. More research is required
on how to compare all these aspects and how to present them in an intuitive way.

• Compare VBA code. Beside all spreadsheet features, many spreadsheets contain macros
with VBA code. Regular text comparison algorithms can be applied to compare two ver-
sions of VBA code.

• Spreadsheet evolution. This research focused on the comparison of two spreadsheet files.
It is interesting to apply this comparison method to multiple versions of spreadsheets.
More research is required on how to create an overview of all spreadsheet changes over
time, and how to run a comparison method in batch over multiple spreadsheets, for ex-
ample to validate certain properties.

• Risk analysis. Now that we have a list of changes available between two spreadsheet files,
it is interesting to run a risk analysis on the changes. For example, if one formula is deleted
in a column of 1000 cells with the exact same formula, this is a potential risk. A whole new
research topic is how to identify risks based on spreadsheet change information.

• Excel integration. The current prototype is a stand-alone application that runs indepen-

7.3. Future work 95

dently of Excel. Although this has many advantages, it can be helpful if the comparison
can be executed directly from within Excel. For instance, a ‘compare’ button can be added
to compare the current version with a previous version, selected by the user. The results
can be shown in the stand-alone tool so that the user can continue working on his spread-
sheet with the comparison result next to it. Other possibilities of Excel integration are:
indication of all changes inside Excel, add an extra worksheet with a log of all changes or
export an Excel or PDF report of all changes. More research is required on the technical
consequences and applicability in Excel.

• Spreadsheet merging. A challenging idea is to build a spreadsheet merge tool. As a re-
sult, spreadsheets can be put under version control using existing version control systems,
like Git. An important requirement is that the spreadsheet comparison must generate a
complete diff between the two files. Most version control systems only use insertions and
additions, so probably the change detection method must be rewritten. Furthermore, a
method must be developed on how to deal with merge conflicts. We have seen that the list
of all spreadsheet features available in Excel is very extensive. The biggest research ques-
tion on this topic is therefore: how can we generate a complete diff between two spread-
sheet files?

Finally, this project is continued at the company of Infotron with further development of the
prototype tool CompareXL. The plan is to soon release a finished version of the spreadsheet
compare tool, available to all Excel end-users.

A
Sample Spreadsheet File

Example v1.xlsx

[Content_Types].xml

docProps

app.xml

core.xml

xl

calcChain.xml

sharedStrings.xml

styles.xml

workbook.xml

theme

theme1.xml

worksheets

sheet1.xml

sheet2.xml

sheet3.xml

_rels

workbook.xml.rels

_rels

.rels

workbook.xml

<?xml version="1.0" encoding="UTF-8"?>
<workbook xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"
xmlns:x15="http://schemas.microsoft.com/office/spreadsheetml/2010/11/main"
xmlns:xr="http://schemas.microsoft.com/office/spreadsheetml/2014/revision"
xmlns:xr10="http://schemas.microsoft.com/office/spreadsheetml/2016/revision10"
xmlns:xr2="http://schemas.microsoft.com/office/spreadsheetml/2015/revision2"
xmlns:xr6="http://schemas.microsoft.com/office/spreadsheetml/2016/revision6"

97

98 A. Sample Spreadsheet File

mc:Ignorable="x15 xr xr6 xr10 xr2">
<fileVersion appName="xl" lastEdited="7" lowestEdited="7" rupBuild="20325" />
<workbookPr defaultThemeVersion="166925" />
<mc:AlternateContent>
<mc:Choice Requires="x15">
<x15ac:absPath xmlns:x15ac="http://schemas.microsoft.com/office/spreadsheetml/2010/11/ac"

url="D:/CloudStation/TU Delft/Afstuderen/Testsheets/" />
</mc:Choice>

</mc:AlternateContent>
<xr:revisionPtr revIDLastSave="0" documentId="10_ncr:8100000_{DE330149-2F17-454D-8AC1-3E945D0E11FD}"
xr6:coauthVersionLast="34" xr6:coauthVersionMax="34" xr10:uidLastSave="{00000000-0000-0000-0000-000000000000}" />
<bookViews>
<workbookView xWindow="0" yWindow="0" windowWidth="28800" windowHeight="12225"

xr2:uid="{5550BFEE-4B94-45EA-A11A-0A14ABC372C1}" />
</bookViews>
<sheets>
<sheet name="Blad1" sheetId="1" r:id="rId1" />
<sheet name="Blad2" sheetId="2" r:id="rId2" />
<sheet name="Blad3" sheetId="3" r:id="rId3" />

</sheets>
<calcPr calcId="162913" />
<extLst>
<ext uri="{140A7094-0E35-4892-8432-C4D2E57EDEB5}">
<x15:workbookPr chartTrackingRefBase="1" />

</ext>
</extLst>

</workbook>

sheet1.xml

<?xml version="1.0" encoding="UTF-8"?>
<worksheet xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"
xmlns:x14ac="http://schemas.microsoft.com/office/spreadsheetml/2009/9/ac"
xmlns:xr="http://schemas.microsoft.com/office/spreadsheetml/2014/revision"
xmlns:xr2="http://schemas.microsoft.com/office/spreadsheetml/2015/revision2"
xmlns:xr3="http://schemas.microsoft.com/office/spreadsheetml/2016/revision3"
mc:Ignorable="x14ac xr xr2 xr3" xr:uid="{7B26C0A5-59D8-40D8-96C4-4658D8877606}">
<dimension ref="A1:F12" />
<sheetViews><sheetView tabSelected="1" workbookViewId="0" /></sheetViews>
<sheetFormatPr defaultRowHeight="15" x14ac:dyDescent="0.25" />
<sheetData>
<row r="1" spans="1:6" x14ac:dyDescent="0.25">
<c r="A1" t="s"><v>0</v></c>
<c r="B1"><v>1</v></c>
<c r="C1"><f>B1*10</f><v>10</v></c>
<c r="E1" t="s"><v>47</v></c>
<c r="F1" t="s"><v>52</v></c>

</row>
<row r="2" spans="1:6" x14ac:dyDescent="0.25">
<c r="A2" t="s"><v>1</v></c>
<c r="B2"><v>2</v></c>
<c r="C2"><f t="shared" ref="C2:C10" si="0">B2*10</f><v>20</v></c>
<c r="E2" t="s"><v>48</v></c>
<c r="F2" t="s"><v>53</v></c>

99

</row>
<row r="3" spans="1:6" x14ac:dyDescent="0.25">
<c r="A3" t="s"><v>2</v></c>
<c r="B3"><v>3</v></c>
<c r="C3"><f t="shared" si="0" /><v>30</v></c>
<c r="E3" t="s"><v>49</v></c>
<c r="F3" t="s"><v>54</v></c>

</row>
<row r="4" spans="1:6" x14ac:dyDescent="0.25">
<c r="A4" t="s"><v>3</v></c>
<c r="B4"><v>4</v></c>
<c r="C4"><f t="shared" si="0" /><v>40</v></c>
<c r="E4" t="s"><v>50</v></c>
<c r="F4" t="s"><v>55</v></c>

</row>
<row r="5" spans="1:6" x14ac:dyDescent="0.25">
<c r="A5" t="s"><v>4</v></c>
<c r="B5"><v>5</v></c>
<c r="C5"><f t="shared" si="0" /><v>50</v></c>
<c r="E5" t="s"><v>51</v></c>
<c r="F5" t="s"><v>56</v></c>

</row>
<row r="6" spans="1:6" x14ac:dyDescent="0.25">
<c r="A6" t="s"><v>5</v></c>
<c r="B6"><v>6</v></c>
<c r="C6"><f t="shared" si="0" /><v>60</v></c>

</row>
<row r="7" spans="1:6" x14ac:dyDescent="0.25">
<c r="A7" t="s"><v>6</v></c>
<c r="B7"><v>7</v></c>
<c r="C7"><f t="shared" si="0" /><v>70</v></c>

</row>
<row r="8" spans="1:6" x14ac:dyDescent="0.25">
<c r="A8" t="s"><v>7</v></c>
<c r="B8"><v>8</v></c>
<c r="C8"><f t="shared" si="0" /><v>80</v></c>

</row>
<row r="9" spans="1:6" x14ac:dyDescent="0.25">
<c r="A9" t="s"><v>8</v></c>
<c r="B9"><v>9</v></c>
<c r="C9"><f t="shared" si="0" /><v>90</v></c>

</row>
<row r="10" spans="1:6" x14ac:dyDescent="0.25">
<c r="A10" t="s"><v>9</v></c>
<c r="B10"><v>10</v></c>
<c r="C10"><f t="shared" si="0" /><v>100</v></c>

</row>
<row r="12" spans="1:6" x14ac:dyDescent="0.25">
<c r="B12"><f>SUM(B1:B10)</f><v>55</v></c>
<c r="C12"><f>SUM(C1:C10)</f><v>550</v></c>

</row>
</sheetData>
<pageMargins left="0.7" right="0.7" top="0.75" bottom="0.75" header="0.3" footer="0.3" />

</worksheet>

B
Spreadsheet Edit Operations

Name Scope Category

1 Workbook made protected Workbook Protection
2 Workbook made unprotected Workbook Protection
3 Workbook styles changed Workbook Display
4 Document properties changed Workbook Miscellaneous
5 Auto calculate option changed Workbook Miscellaneous
6 VBA code changed Workbook Miscellaneous
7 External data connection added Workbook Data
8 External data connection changed Workbook Data
9 External data connection deleted Workbook Data
10 Worksheet created Workbook Structure
11 Worksheet deleted Workbook Structure
12 Worksheet name changed Workbook Structure
13 Worksheet order changed Workbook Display
14 Worksheet made hidden Workbook Display
15 Worksheet made very hidden Workbook Display
16 Worksheet made visible Workbook Display
17 Worksheet made protected Workbook Protection
18 Worksheet made unprotected Workbook Protection
19 Worksheet protection changed Workbook Protection
20 Chart added Worksheet Display
21 Chart moved Worksheet Display
22 Chart changed Worksheet Display
23 Chart deleted Worksheet Display
24 Conditional formatting rule added Worksheet Display
25 Conditional formatting rule changed Worksheet Display
26 Conditional formatting rule deleted Worksheet Display
27 Data validation rule added Worksheet Display
28 Data validation rule changed Worksheet Display

101

102 B. Spreadsheet Edit Operations

Name Scope Category

29 Data validation rule deleted Worksheet Display
30 Embedded object added Worksheet Display
31 Embedded object changed Worksheet Display
32 Embedded object deleted Worksheet Display
33 Filter activated Worksheet Display
34 Filter deactivated Worksheet Display
35 Filter changed Worksheet Display
36 Header/footer added Worksheet Display
37 Header/footer changed Worksheet Display
38 Header/footer deleted Worksheet Display
39 Ignored error added Worksheet Display
40 Ignored error deleted Worksheet Display
41 Named range added Worksheet Model
42 Named range changed Worksheet Model
43 Named range deleted Worksheet Model
44 Page break added Worksheet Display
45 Page break changed Worksheet Display
46 Page break deleted Worksheet Display
47 Picture added Worksheet Display
48 Picture moved Worksheet Display
49 Picture deleted Worksheet Display
50 Pivot table added Worksheet Display
51 Pivot table changed Worksheet Display
52 Pivot table deleted Worksheet Display
53 Print options changed Worksheet Display
54 Protected range added Worksheet Protection
55 Protected range deleted Worksheet Protection
56 Sort state activated Worksheet Display
57 Sort state deactivated Worksheet Display
58 Sort state changed Worksheet Display
59 Tab color changed Worksheet Display
60 Table added Worksheet Display
61 Table changed Worksheet Display
62 Table deleted Worksheet Display
63 View options changed Worksheet Display
64 Column added Column Structure
65 Column moved Column Structure
66 Column deleted Column Structure
67 Column made hidden Column Display
68 Column made visible Column Display
69 Column width changed Column Display
70 Row added Row Structure
71 Row moved Row Structure

103

Name Scope Category

72 Row deleted Row Structure
73 Row made hidden Row Display
74 Row made visible Row Display
75 Row height changed Row Display
76 Row auto fit changed Row Display
77 Value added Cell Data
78 Value changed Cell Data
79 Value deleted Cell Data
80 Formula added Cell Model
81 Formula changed Cell Model
82 Formula deleted Cell Model
83 Cell moved Cell Structure
84 Cells merged Cell Display
85 Cells unmerged Cell Display
86 Hyperlink added Cell Display
87 Hyperlink changed Cell Display
88 Hyperlink deleted Cell Display
89 Comment added Cell Display
90 Comment changed Cell Display
91 Comment deleted Cell Display
92 Inline style changed Cell Display
93 Custom style set Cell Display
94 Default style set Cell Display
95 Style changed Cell Display
96 Borders changed Cell details Display
97 Background changed Cell details Display
98 Font changed Cell details Display
99 Formula made hidden Cell details Display
100 Formula made visible Cell details Display
101 Horizontal alignment changed Cell details Display
102 Indentation changed Cell details Display
103 Text made vertical Cell details Display
104 Text made horizontal Cell details Display
105 Cell locked Cell details Display
106 Cell unlocked Cell details Display
107 Style preset changed Cell details Display
108 Number format changed Cell details Display
109 Text rotation changed Cell details Display
110 Shrink to fit changed Cell details Display
111 Vertical alignment changed Cell details Display
112 Wrap text changed Cell details Display

Bibliography

[1] J. W. Hunt and M. D. Mcilroy, “An Algorithm for Differential File Comparison,” Bell Labora-
tories Computing Science, Tech. Rep. 41, jul 1976.

[2] W. Miller and E. W. Myers, “A File Comparison Program,” Software: Practice and Experience,
vol. 15, no. 11, pp. 1025–1040, 1985.

[3] W. F. Tichy, “RCS – A System for Version Control,” Software: Practice and Experience, vol. 15,
no. 7, pp. 637–654, 1985.

[4] F. F. J. Hermans, “Analyzing and Visualizing Spreadsheets,” Ph.D. dissertation, Delft Univer-
sity of Technology, 2013.

[5] D. E. O’Leary, “Expert System Prototyping as a Research Tool,” Applied Expert Systems,
North-Holland, Amsterdam, pp. 17–32, 1988.

[6] L. Bergroth, H. Hakonen, and T. Raita, “A Survey of Longest Common Subsequence Algo-
rithms,” in Proceedings of the Seventh International Symposium on String Processing and
Information Retrieval, ser. SPIRE ’00. IEEE, 2000, pp. 39–48.

[7] L. Bergroth, “Utilizing Dynamically Updated Estimates in Solving the Longest Common
Subsequence Problem,” in Proceedings of the 12th International Conference on String Pro-
cessing and Information Retrieval, ser. SPIRE ’05. Springer, 2005, pp. 301–314.

[8] R. A. Wagner and M. J. Fischer, “The String-to-String Correction Problem,” Journal of the
ACM (JACM), vol. 21, no. 1, pp. 168–173, 1974.

[9] K. Bringmann and M. Künnemann, “Multivariate Fine-Grained Complexity of Longest
Common Subsequence,” in Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2018, pp.
1216–1235.

[10] J. W. Hunt and T. G. Szymanski, “A Fast Algorithm for Computing Longest Common Subse-
quences,” Communications of the ACM, vol. 20, no. 5, pp. 350–353, 1977.

[11] S. Kuo and G. R. Cross, “An Improved Algorithm to Find the Length of the Longest Common
Subsequence of Two Strings,” in ACM Sigir Forum, vol. 23, no. 3-4. ACM, 1989, pp. 89–99.

[12] S. Wu, U. Manber, G. Myers, and W. Miller, “An O(NP) Sequence Comparison Algorithm,”
Information Processing Letters, vol. 35, no. 6, pp. 317–323, 1990.

[13] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the Numbers of End Users and End User
Programmers,” in 2005 IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC’05). IEEE, 2005, pp. 207–214.

105

106 Bibliography

[14] J. Smith, J. A. Middleton, and N. A. Kraft, “Spreadsheet Practices and Challenges in a Large
Multinational Conglomerate,” in 2017 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 2017, pp. 155–163.

[15] S. Roy, F. Hermans, and A. van Deursen, “Spreadsheet Testing in Practice,” in 2017 IEEE
24th International Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2017, pp. 338–348.

[16] B. Jansen, F. Hermans, and E. Tazelaar, “Detecting and Predicting Evolution in Spread-
sheets: A Case Study in an Energy Network Company,” in 2018 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). IEEE, 2018, pp. 645–654.

[17] L. Xu, W. Dou, J. Zhu, C. Gao, J. Wei, and T. Huang, “How Are Spreadsheet Templates Used
in Practice: A Case Study on Enron,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018, pp. 734–738.

[18] W. Dou, L. Xu, S.-C. Cheung, C. Gao, J. Wei, and T. Huang, “VEnron: A Versioned Spread-
sheet Corpus and Related Evolution Analysis,” in 2016 IEEE/ACM 38th International Con-
ference on Software Engineering Companion (ICSE-C). IEEE, 2016, pp. 162–171.

[19] L. Xu, W. Dou, C. Gao, J. Wang, J. Wei, H. Zhong, and T. Huang, “SpreadCluster: Recovering
Versioned Spreadsheets through Similarity-Based Clustering,” in Proceedings of the 14th
International Conference on Mining Software Repositories. IEEE Press, 2017, pp. 158–169.

[20] C. Chambers, M. Erwig, and M. Luckey, “SheetDiff: A Tool for Identifying Changes in
Spreadsheets,” in 2010 IEEE Symposium on Visual Languages and Human-Centric Com-
puting. IEEE, 2010, pp. 85–92.

[21] A. Harutyunyan, G. Borradaile, C. Chambers, and C. Scaffidi, “Planted-model evaluation of
algorithms for identifying differences between spreadsheets,” in 2012 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 2012, pp. 7–14.

[22] T. Schmitz and D. Jannach, “Finding Errors in the Enron Spreadsheet Corpus,” in 2016 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 2016,
pp. 157–161.

[23] R. Moreira, “SheetGit: A Tool for Collaborative Spreadsheet Development,” in Federa-
tion of International Conferences on Software Technologies: Applications and Foundations.
Springer, 2016, pp. 415–420.

[24] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting Code Smells in Spreadsheet
Formulas,” in 2012 28th IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2012, pp. 409–418.

[25] B. Shneiderman, “The Eyes Have It: A Task by Data Type Taxonomy for Information Visu-
alizations,” in Proceedings 1996 IEEE Symposium on Visual Languages. IEEE, 1996, pp.
336–343.

Bibliography 107

[26] M. Fisher and G. Rothermel, “The EUSES Spreadsheet Corpus: A Shared Resource for Sup-
porting Experimentation with Spreadsheet Dependability Mechanisms,” in ACM SIGSOFT
Software Engineering Notes, vol. 30, no. 4. ACM, 2005, pp. 1–5.

[27] T. Barik, K. Lubick, J. Smith, J. Slankas, and E. Murphy-Hill, “Fuse: A Reproducible, Extend-
able, Internet-Scale Corpus of Spreadsheets,” in Proceedings of the 12th Working Confer-
ence on Mining Software Repositories. IEEE Press, 2015, pp. 486–489.

[28] B. Klimt and Y. Yang, “The Enron Corpus: A New Dataset for Email Classification Research,”
in European Conference on Machine Learning. Springer, 2004, pp. 217–226.

	Abstract
	Preface
	Introduction
	Motivation
	Research Context
	Research Objective
	Research Approach
	Thesis Structure

	Background
	Related Work
	File Comparison
	Longest Common Subsequence
	Spreadsheet Versioning
	Comparing Spreadsheets
	Other Approaches

	Existing Tools
	Approach
	Results
	Conclusion

	Spreadsheet Versioning Challenges
	Spreadsheet Context
	Version Organization
	Version Problems

	Spreadsheet Characteristics
	Binary File Format
	Change Propagation
	Many Edit Operations
	Different Levels of Granularity
	Large and Complex Files

	List of Requirements

	Finding Spreadsheet Differences
	Change Categorization
	Comparison Pipeline
	Cell Hashing
	2D Alignment
	Overview
	Detailed description in 10 steps
	Fine-tuned 1D LCS algorithm
	Fine-tuned 2D alignment algorithm
	Conclusion

	Comparing Worksheets
	Finding matching worksheets
	Finding worksheet state modifications
	Finding worksheet order changes

	Comparing Defined Names
	Comparing Rows and Columns
	Finding row/column insertions and deletions
	Finding row/column state modifications

	Comparing Cells
	Change Aggregation
	Aggregation of workbook changes
	Aggregation of worksheet changes

	Reflection

	Tool: CompareXL
	User Interface
	Comparison Engine
	Performance Optimizations
	Development Process

	Evaluation
	Experiment I: Unit Tests
	Experiment II: Correctness Test
	Experiment III: Stability Test
	Experiment IV: Performance Test
	Experiment V: User Tests
	Features
	Quality
	User Reflection

	Discussion

	Conclusion
	Contributions
	Conclusions
	Future work

	Sample Spreadsheet File
	Spreadsheet Edit Operations
	Bibliography

