
Improving computer-aided diagnosis of interstitial disease in
chest radiographs by combining one-class and two-class

classifiers.

Yulia Arzhaevaa, David Taxb, and Bram van Ginnekenc

a,cImage Sciences Institute, Utrecht University, Utrecht, Netherlands;
bInformation and Communication Theory Group, Delft University of Technology,

Delft, Netherlands

ABSTRACT

In this paper we compare and combine two distinct pattern classification approaches to the automated detection
of regions with interstitial abnormalities in frontal chest radiographs. Standard two-class classifiers and recently
developed one-class classifiers are considered. The one-class problem is to find the best model of the normal
class and reject all objects that don’t fit the model of normality. This one-class methodology was developed
to deal with poorly balanced classes, and it uses only objects from a well-sampled class for training. This
may be an advantageous approach in medical applications, where normal examples are easier to obtain than
abnormal cases. We used receiver operating characteristic (ROC) analysis to evaluate classification performance
by the different methods as a function of the number of abnormal cases available for training. Various two-class
classifiers performed excellently in case that enough abnormal examples were available (area under ROC curve
Az = 0.985 for a linear discriminant classifier). The one-class approach gave worse result when used stand-alone
(Az = 0.88 for Gaussian data description) but the combination of both approaches, using a mean combining
classifier resulted in better performance when only few abnormal samples were available (average Az = 0.94 for
the combination and Az = 0.91 for the stand-alone linear discriminant in the same set-up). This indicates that
computer-aided diagnosis schemes may benefit from using a combination of two-class and one-class approaches
when only few abnormal samples are available.
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1. INTRODUCTION

The purpose of this work is the investigation of different discriminative approaches to the automated classification
of given small regions of interest (ROIs) within the lung fields in frontal chest radiographs on presence or absence
of interstitial abnormalities. Detection of interstitial lung disease (ILD) in chest radiographs is one of the most
difficult areas in radiology, for which computer-aided diagnosis (CAD) systems may provide valuable assistance.

ILD is the common term for more than 200 types of disorders, which may cause significant morbidity and
mortality.1 The interstitium of the lung is the tissue between the air sacs, and when it is damaged the textural
appearance of the lung is changed on radiological images. Whereas a large variation of abnormal patterns can
represent one type of ILD, radiographs of patients with different types of ILD may look alike. Moreover, the
difference between normal and abnormal texture patterns is ambiguous even for human experts, which is revealed
by high inter-observer variability.1, 2 Figure 1 shows an example of normal and diseased lungs on a radiograph.
Recently high-resolution computed tomography has become a modality of choice for the diagnostic of ILD.3 The
role of chest radiographs remains in initial detection of abnormalities and providing a preliminary diagnosis and
a recommendation for the following computed tomography examination.

Reliable classification of ROIs is an important part of an efficient CAD system for detection of ILD. The
majority of works in this field over the last two decades focused on the classification of a complete radiograph
being normal or abnormal.4–9 In those classification schemes multiple ROIs were manually or automatically
selected within the lung fields and texture measurements, or features, were computed from them. Then the
classification of ROIs was performed using rule-based or pattern recognition methods, and classification opinions
(class labels or probabilities to be normal/abnormal) about each ROI were obtained. Finally probabilities over
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Figure 1. A radiograph of a patient with interstitial lung disease (left) and a radiograph of a healthy person (right). The
left image clearly shows widespread shadowing with specific underlying patterns. In other cases the signs of abnormality
can be much more subtle.

regions were fused to get a conclusion for a complete image, whether it contained any interstitial abnormalities
or not. Besides its contribution to the classification of a complete image, good region classification can provide a
radiologist with a credible map showing how a disease is spread over the lung fields. In this work we focus only on
a region classification task. Two approaches are considered: standard two-class classifiers and recently developed
one-class classifiers. The two-class technique can be thought of as directly distinguishing between normal and
abnormal, while the one-class technique is a form of outlier detection: it evaluates if a region deviates from its
normal appearance. Our goal is to compare the performances of two-class and one-class classifiers, in particular
to study the effect of reducing the amount of abnormal samples in a training set, and to combine both approaches.

For a long time no quantitative analysis was provided for region classification accuracy. Performances of the
automated classification systems developed in4–8 were evaluated on image level only, though region classification
was an essential step in there. In the work of Katsuragawa et al.4 it was visually shown that texture measures
extracted from ROIs were different for normal ROIs and ROIs with different types of abnormal tissue. Van
Ginneken et al.9 first estimated the region classification performance. In their work the lung fields were subdivided
into overlapping regions of various sizes. A probability measure for a region to be abnormal was calculated using
a two-class k-nearest neighbor classifier and a separate training set for each location. It was shown that the
region classification performance was the higher the more abnormal examples were in a training set and the
less superimposed structures (vessels, rib crossings) were present in that location. Further in that work the
region probabilities were combined to receive a verdict over an image, which resulted in the image classification
performance much higher than the classification performance for the majority of regions.

In this work small ROIs are extracted manually from the middle periphery of both lung fields, where the lung
texture is less obscured by other structures. In this way we purposefully simplify the classification task because
we aim at comparing performances of different methods depending on parameters other than the ’difficulty’ of a
region. Texture features are computed from each ROI, using the moments of responses to a multi-scale Gaussian
filter bank. Several two-class classifiers are trained on subsets of data with the varying amount of abnormal
samples to study how classification performance depends on unequal representation of classes in training data.
In clinical practice normal cases are more often encountered and therefore are easier to collect than abnormal
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ones. That motivates studying two-class classification performance on unbalanced data sets, and application
of one-class classification methodology10 in particular. Moreover, interstitial lung disease reveals such a large
variety of abnormal patterns that collection of a sufficient amount of abnormal representatives for training is
an effortful and time-consuming task. One-class classifiers only need normal samples for training to estimate
parameters of a distribution model to fit normal data. We investigate the performance of several one-class
classifiers on our data. Furthermore, we use the mean combing rule to combine posterior probabilities yielded by
a one-class classifier and a two-class classifier trained on a highly unbalanced training set, and compare combining
classification performance with performances that each method is able to achieve alone.

The remainder of this paper is structured as follows. In Section 2 the data is described. In Section 3
classification methods are explained. In Section 4 the results are presented. We conclude the paper in Section 5.

2. DATA

We conducted our experiments on a database of digitized chest radiographs, consisting of 100 healthy images and
100 images containing areas with ILD collected at the University of Chicago Hospitals. This data was also used
and described in.4 All normal cases were selected based on consensus of a panel of experienced radiologists.
Abnormal cases were selected based on radiological findings, CT, clinical data and follow-up radiographs, by
consensus of the same radiologists. The radiographs were digitized to 2000 by 2000 pixels with 0.175 mm pixel
size and 10 bits intensity.

Regions of interest were manually extracted from the middle periphery of both lung fields, 4 ROIs per image
(see Figure 2). The size of regions was chosen such that a region roughly covered two ribs and a space between
them. In this way region sizes differed from region to region, but regions had similar anatomical structure.
ROIs were classified by an experienced chest radiologist into one of four possible categories–’normal’, ’definitely
abnormal’, ’possibly abnormal’ and ’containing other abnormalities’. Normal ROIs for experiments were taken
only from healthy images, 399 normal ROIs in total. We obtained 228 definitely and possibly abnormal ROIs
from 78 abnormal images. Normal ROIs from abnormal images and ROIs containing other, not ILD-related
abnormalities were excluded from the study.

2.1. Features

Each ROI was described by a set of texture features. Left lung fields were mirrored before extracting features
from ROIs placed there. Each ROI was filtered with Gaussian derivatives of the order 0, 1 and 2 at scales
σ = 1, 2, 4, 8, 16. Then the mean, standard deviation, skewness and kurtosis over ROIs were calculated from
filtered images, as well as from an initial image, and used as features. Features were normalized to have zero
mean and unit variance. The total amount of 124 features was reduced by means of principal component analysis
(PCA) retaining 99% of the variance. During classification a probability is determined for a region to be abnormal
based on these texture features.

3. CLASSIFICATION

3.1. Two-class classification

Two-class classification is a supervised classification method, which means that a classifier is first trained on
labelled samples from both normal and abnormal classes. A decision boundary between two classes or class
distributions are learned via training. In order to obtain probabilities for a test sample to belong to one or the
other class, its feature vector is passed to a trained classifier that defines class’ posterior probabilities for this
sample.

For two class classification experiments we have chosen the linear discriminant (LDC), the nearest mean,
and the nearest neighbor (1-NN) classifiers.11 The domain of supervised classification has a major division into
parametric and nonparametric methods. Our selection of classifiers represents both types of methods, though we
selected the simplest representatives. LDC is a parametric classifier. It assumes Gaussian distribution with equal
covariance matrix for both, normal c0 and abnormal c1 classes. Distribution parameters are estimated during
training. During classification posterior probabilities p(x|c0) and p(x|c1) of a test sample x are determined ac-
cording to estimated distributions. Both the nearest mean and the nearest neighbor classifiers are nonparametric
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Figure 2. An example of regions of interest within the lung fields.

classifiers. The nearest mean classifier assigns a new sample x to a class which estimated mean is closer to x
in terms of Euclidean distance. The 1-NN rule is very similar to the nearest neighbor rule: it assigns x to the
same class as its first nearest neighbor in a training set belongs to. In both rules posterior probabilities instead
of class labels can be approached using relative distances to the nearest neighbors (or means) from both classes.

In experiments we took care that ROIs from the same image were either all in a training set or all in a test
set. A classifier performance was evaluated using a modification of a leave-one-out method. Each time a different
image from our data set was used to provide test ROIs (i.e. from 1 to 4 ROIs from an image). The standard
leave-one-out technique implies that a classifier is retrained each time with ROIs from the rest of images. In
our modification we restrained the number of abnormal images to be used for training. Instead of using all
abnormal images (excluding a test one if it was abnormal) to train a classifier, a randomly selected subset of
M abnormal images was included in a training set. For M equal to the number of all abnormal images this
modification converted to the standard leave-one-out technique. By changing M training sets with a variable
degree of disbalance are obtained.

3.2. One-class classification

One-class classification is an unsupervised classification strategy because it assumes that only information of one
of the classes, the target class, is available for training. In our case the target class is the normal class. One-class
classification tries to describe the normal class of samples and learns nothing about the abnormal class during
training. Later it distinguishes abnormal samples by their dissimilarity to the normal class. This strategy fits
well into medical image analysis where poorly sampled classes are frequently encountered.

To describe the normal class of our data the Gaussian model, the Parzen density estimator, and the nearest
neighbor data description were used.10 The first method tries to fit the normal or Gaussian distribution
model to the data. The Parzen density estimator is an extension of this: the estimated density is a mixture
of Gaussian kernels centered on individual training samples. The nearest neighbor method does not estimate
density explicitly but uses distances to the first nearest neighbor. A new sample is accepted as normal when
its resemblance (distance, probability) to the modelled normal class is above a given threshold. Otherwise the
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sample is rejected as being abnormal. In our experiments a threshold was taken such that 5% of normal samples
from a training set would be rejected.

A leave-one-out technique adapted to one-class methodology was used to conduct experiments. ROIs from
every normal image were classified separately by a classifier retrained with ROIs from the remaining normal
images. ROIs from abnormal images were classified by a classifier trained with ROIs from the whole set of
normal images.

3.3. Combining classifiers

Many experimental studies have shown that combining classifiers can improve classification accuracy. It was
shown in12 that when classifiers are applied on identical data representations, classifiers outputs should be
averaged to suppress errors of individual classifiers caused by the same noise in data. In our experiments after
the initial classification of a test sample, we averaged the posterior probabilities obtained with a one-class classifier
and a two-class classifier.

4. RESULTS

In all our experiments the area under a receiver operating characteristic (ROC) curve, indicated as Az, was
used as classification performance measure13 on test data. The ROC curve plots the true positive fraction as
a function of the false positive fraction. Points on the ROC curve can be obtained by varying a threshold of
the posterior probabilities that defines abnormality of a ROI. Az indicates how reliable classification can be
performed. A value of Az = 1 represents a perfect test, Az = 0.5 is equivalent to guessing.

For three two-class classifiers an ROC curve was obtained for each number M, 2 ≤ M ≤ 78, of abnormal
images in a training set, and Az was calculated. Experiments were repeated ten times. Average Az values for
the classifiers are plotted versus M in Figure 3. In is shown in this Figure that the best performing classifier is
LDC. It yielded a high performance even when the abnormal class was very ill-sampled. The ultimate results
for LDC were: Az = 0.985 for M = 78, and Az = 0.909(±0.013) for M = 2. All three classifiers dropped their
steady performances at M ≤ 15, i.e. when there were 6 times more normal images than abnormal in the training
set.

In Table 1 the performances of one-class methods are shown. The best performing one-class classifier was
Gaussian, Az = 0.882. After applying the mean combination rule to the posterior probabilities resulted from
LDC with M = 2 (that is on average 6 abnormal ROIs) and the Gaussian model, the classification performance
improved to Az = 0.941(±0.006) (see Figure 5). For M ≥ 4 the combining classifier showed the same performance
as the stand-alone LDC. For the 1-NN classifier and the nearest mean classifier, their combination with the
Gaussian one-class classifier improves their performances for any amount of abnormal images in a training
set (see Figure 4). When comparing Figure 3 and Figure 4 it is clear that the classification performance of
combining classifiers becomes less dependent on the abnormal fraction than the performance of stand-alone
two-class classifiers.

Table 1. Classification performance of one-class classifiers in term of the area under the ROC curve, Az.

One-class classifier Az

Gaussian model 0.882
Parzen data description 0.870
Nearest neighbor data description 0.750
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Figure 3. The dependency of different two-class classifiers performance on the number of abnormal images in the training
set in terms of the area under ROC curve Az.
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Figure 4. The classification performance of the mean combining classifiers in terms of the area under ROC curve
depending on the amount of abnormal images in the training set.
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Figure 5. ROC curves for the two-class linear discriminant classifier (Az = 0.91), the one-class Gaussian data description
classifier (Az = 0.88), and the mean combining classifier (Az = 0.94).

5. CONCLUSIONS

This study has been the first one, to our knowledge, where one-class classification and the combination of
two-class and one-class classifiers were applied to the automated detection of interstitial abnormalities on chest
X-rays. It appears from this study that the standard two-class classification methods are very promising yet
simple to be used as part of a CAD scheme.

The two-class classifiers show good performance for the classification of regions that may contain interstitial
lesions on conventional chest radiographs when enough abnormal samples were presented to the classifier. How-
ever, when only few abnormal samples are available, combined schemes of the two-class and one-class classifiers
can achieve higher performance than either method individually. Another – slightly disappointing – result is
that already for very unbalanced training sets the two-class classifiers clearly outperform the one-class methods.

The very good classification results that we got for the two-class methods could be partly explained by the
’easy’ data. There are not so many subtle abnormal cases in the database, and regions in the middle periphery
of the lung fields do not normally contain a lot of variable superimposed structures like vessels that might hinder
classification. These could explain why few abnormal samples were sufficient for a classifier to generalize well
about the abnormal class. It should be noted that we applied both one-class and two-class classifiers on the same
feature sets, and we used PCA for feature space dimensionality reduction, which could be counter-productive for
classification. A subspace with large variance is not necessarily one in which the normal class is well described.
One-class classifiers might perform better after deliberate selection of features that capture characteristics of the
normal class.

Future research direction is the classification of regions that cover other parts of the lung fields. We might
construct different training sets for different locations because of the large differences in normal texture appear-
ances, e.g. between regions from the middle periphery and those close to the hilum. Combining one-class and
two-class methods could be practical for regions were ILD is less commonly encountered, for example in the lung
tops.

Proc. of SPIE Vol. 6144  614458-7

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use:  http://spiedl.org/terms



ACKNOWLEDGMENTS

This research was supported by the Technology Foundation STW, Applied Science division of NWO and the
Technology Programme of the Ministry of Economic Affairs of the Netherlands.

REFERENCES
1. Society, British Thoracic and Committee, Standards of Care, “The diagnosis, assessment and treatment of

diffuse parenchymal lung disease in adults. introduction,” Thorax 54(Suppl 1), pp. S1–S14, 1999.
2. S. Padley, D. M. Hansell, C. Flower, and P. Jennings, “Comparative accuracy of high resolution com-

puted tomography and chest radiography in the diagnosis of chronic diffuse infiltrative lung disease,” Clin
Radiol 44(4), pp. 222–226, 1991.

3. E. Kazerooni, “High-resolution CT of the lungs,” Am J Roentgenol 177(3), pp. 501–519, 2001.
4. S. Katsuragawa, K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital

radiography: detection and characterization of interstitial lung disease in digital chest radiographs,” Med
Phys 15(3), pp. 311–319, 1988.

5. S. Katsuragawa, K. Doi, and H. MacMahon, “Image feature analysis and computer-aided diagnosis in digital
radiography: classification of normal and abnormal lungs with interstitial lung disease in chest radiographs,”
Med Phys 16(1), pp. 38–44, 1989.

6. T. Ishida, S. Katsuragawa, T. Kobayashi, H. MacMahon, and K. Doi, “Computerized analysis of interstitial
disease in chest radiographs: improvement of geometric-pattern feature analysis,” Med Phys 24(6), pp. 915–
924, 1997.

7. T. Ishida, S. Katsuragawa, K. Ashizawa, H. MacMahon, and K. Doi, “Application of artificial neural network
for quantitative analysis of image data in chest radiographs for detection of interstitial lung disease,” J Digit
Imaging 11(4), pp. 182–192, 1998.

8. S. Kido, S. Tamura, N. Nakamura, and C. Kuroda, “Interstitial lung disease: evaluation of the performance
of a computerized analysis systems versus observers,” Comput Med Imaging Graph 23(2), pp. 103–110, 1999.

9. B. van Ginneken, S. Katsuragawa, B. M. ter Haar Romeny, K. Doi, and M. A. Viergever, “Automatic
detection of abnormalities in chest radiographs using local texture analysis,” IEEE Trans Med Imag 21(2),
pp. 139–149, 2002.

10. D. Tax, One-class classification; Concept-learning in the absence of counter-examples. PhD thesis, Delft
University of Technology, the Netherlands, June 2001.

11. F. van der Heiden, R. Duin, D. de Ridder, and D. Tax, Classification, parameter estimation, state estimation:
an engineering approach using MatLab, Wiley, New York, 2004.

12. D. Tax, M. van Breukelen, R. Duin, and J. Kittler, “Combining multiple classifiers by averaging or by
multiplying?,” Pattern Recognition 33, pp. 1475–1485, 2000.

13. C. Metz, “ROC methodology in radiologic imaging,” Investigative Radiology 21(9), pp. 720–733, 1986.

Proc. of SPIE Vol. 6144  614458-8

Downloaded from SPIE Digital Library on 21 May 2010 to 131.180.130.114. Terms of Use:  http://spiedl.org/terms


