
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

3D Printed Robot
Wireless Communication and Sensing

EE3L11
Bachelor Graduation Project
Weikai Chen & Guangran Ran

3D Printed Robot
Wireless Communication and Sensing

by

Weikai Chen & Guangran Ran

Instructor: Dr. J. (Jianning) Dong
Teaching Assistant: Ir. S. (Sachin) Yadav
Project Duration: April, 2025 - June, 2025
Faculty: Faculty of Electrical Engineering, Delft

Cover: Canadarm 2 Robotic Arm Grapples SpaceX Dragon by NASA un-
der CC BY-NC 2.0 (Modified)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Preface

This thesis has been written as part of the Bachelor of Science in Electrical Engineering at Delft Univer-
sity of Technology. It was conducted as a collaborative group project involving six students, divided into
three subgroups: wireless communication and sensing, power supply, and drive control. This thesis
specifically presents the work carried out by the wireless communication and sensing team.

The project was conducted within the framework of the GEMS Erasmus+, which aims to promote in-
novative, inclusive, and accessible learning in mechatronics education for students. As part of this
initiative, we made use of custom-designed PCBs, those PCBs served as the foundation for the de-
sign and implementation of a wireless communication system, enabling data transmission between the
hardware the host device.

Throughout this project, our understanding of wireless communication, embedded systems, and sen-
sor integration has grown. We have also gained valuable experience in team-based development and
and pratical system design.

We would like to express our sincere gratitude toward our supervisor, Prof.Jianning Dong, for his expert
guidance, and to Dr.Sachin Yadav for his support and technical assistance throughout the course of
this project.

We also want to thank our fellow group members for their contributions and collaboration: Parama
Parama Fawwaz and Delan Duijne for the power supply subgroup, and Joshua van der Geize and
Robin Appel from the drive control subgroup. Their efforts were essential to the overall success of the
project.

Weikai Chen & Guangran Ran
Delft, June 2025

i

Abstract

This project reports the design and validation of a wheeled mobile robot that collects spatially distributed
environmental data inside a building. Built on the four-board GEMS stack—Sapphire (communication),
Ruby (sensing), Diamond (motor control), and Emerald (power), the prototype integrates a CAN bus
backbone, an I2C sensor backplane, ultrasonic obstacle detection, and a Wi-Fi web interface. Re-
sponsibilities were divided among three subgroups. The wireless team implemented the CAN network,
web server, and finite-state machine for autonomous navigation. The mechanical team designed and
printed the chassis; they also developed battery management and voltage regulation. The motor con-
trol group implemented the PI control.

Integration tests show that the system satisfies every “must-have” requirement in the Programme of Re-
quirements: CAN frame loss remained below 1 % during a five-minute run, Wi-Fi throughput exceeded
1 Mbps in the range of ten meters, ultrasonic sensors detected obstacles from 10 cm to 30 cm and
temperature and humidity data were logged at 2 Hz with millisecond precision. However, late delivery
of prefabricated cabling forced a temporary hand-wired CAN harness, leaving room for mechanical
refinement.

Overall, the project demonstrates that the open-source GEMS [10] architecture can be turned into a
low-cost, modular sensor platform on wheels, providing a reproducible foundation for future research
and classroom exercises in embedded communication, control and data acquisition.

ii

Contents

Preface i

Summary ii

Nomenclature v

1 Introduction 1
1.1 Introduction from Whole Group . 1
1.2 State-of-Art Analysis . 1
1.3 Problem Definition . 2

1.3.1 The Situation . 2
1.3.2 Group Division . 2
1.3.3 What We Did . 3
1.3.4 Why It Matters . 3

1.4 Thesis Synopsis . 3

2 Literature Study 4
2.1 Communication Protocols . 5

3 Program of Requirements 7
3.1 Main Program of Requirement . 7
3.2 Subgroup Program of Requirement . 7

3.2.1 Functionality Requirements . 7
3.2.2 Implementation Requirements . 8

4 Design specification 10
4.1 System architecture overview . 10
4.2 Modular communication via CAN bus . 11
4.3 Wireless communication design . 11

4.3.1 Wi-Fi communication with host PC . 11
4.3.2 ESP-NOW communication between modules . 12

4.4 Sensor Integration and environmental monitoring . 12
4.4.1 Sensor selection . 12
4.4.2 Sensor placement . 13
4.4.3 Sampling strategy . 14

4.5 Ultrasonic sensing and motor control . 14
4.5.1 Design choice . 15
4.5.2 Ultrasonic sensor configuration . 16
4.5.3 Threshold Distance and Object Size Justification 16
4.5.4 FSM-based motor control . 17

4.6 2D grid mapping . 18
4.6.1 Constant Motion Speed . 18
4.6.2 Manual Initialization . 18
4.6.3 Turn Detection and Directional Updates . 18
4.6.4 Stepwise Environmental Sensing . 18
4.6.5 Grid resolution . 19
4.6.6 Wireless Communication and Host-Side Processing 19

4.7 Data storage and transmission . 19
4.7.1 TCP server implementation . 20

5 Prototype implementation and results 22
5.1 Communication Module Implementation . 22

iii

Contents iv

5.1.1 Inter-Sapphire Communication via CAN Bus . 22
5.2 Software Implementation . 25

5.2.1 Web Server . 25
5.2.2 Python Script . 25
5.2.3 Real-time data visualization . 26

5.3 Sensing Module Implementation . 27
5.3.1 Finite State Machine . 27
5.3.2 Temperature & Humidity Sensor Testing and Validation 27
5.3.3 Air Quality Sensor Testing and Validation . 29

5.4 Hardware Implementation . 30
5.4.1 Ultrasonic Distance Sensor on Diamond . 30
5.4.2 Alternative CAN Connection . 30
5.4.3 I2C . 31

6 Discussion 33

7 Conclusion 34

References 35

A Source Code 37
A.1 Right Sapphire . 37
A.2 Left Sapphire . 41
A.3 Left Ruby . 42
A.4 Right Ruby . 46
A.5 Python script to process sensor data . 48

B Task Division 52

Nomenclature

Abbreviations
Abbreviation Definition

GEMS Graceful Equalising of Mechatronics Students
PCB Printed Circuit Board
CAN Controller Area Network
BLE Bluetooth Low Energy
GUI Graphical user interface
FSM Finite State Machine
MCU Micro Controller Unit
TCP Transmission Control Protocol
VOC Volatile Organic Compound
SoftAP Soft Access Point
RH Relative Humidity
ToF Time of Flight
UDP User Diagram protocol
SYN Synchronize
ACK Acknowledgment
GPIO General Purpose Input/Output
I²C Inter-Integrated Circuit

Symbols
Symbol Definition Unit

V Velocity [m/s]
∆S displacement per time step [m]
GR Gear Ratio -
RPM revolutions per minute -
Ts Sampling interval [s]
WR Wheel Radius [m]
Vsound Speed of the sound [m/s]
d distance [m]

v

1
Introduction

1.1. Introduction from Whole Group
This project aims to implement a mobile robot that can collect spatially distributed data inside a building.
By driving through corridors and rooms instead of relying on fixed sensor nodes, the platform records
how environmental variables, temperature, humidity, air quality indices, and structural stresses change
from one location to the next. Such location-aware data helps facility managers spot hot spots, detect
potential failure points and optimise control strategies more effectively than a single, static measure-
ment could.

To keep costs low and the system easy to reproduce, the robot is built on the existing GEMS [10]. ar-
chitecture: four stackable printed-circuit modules (power, sensing, communication and motor control)
connected with a CAN bus. Our contribution is twofold. First, we adapt this architecture to a mobile set-
ting by integrating ultrasonic ranging, Wi-Fi telemetry and an on-board state machine for autonomous
navigation. Second, we demonstrate that the GEMS stack can serve as a flexible “sensor station on
wheels,” ready for further research or teaching in distributed data collection.

Figure 1.1: GEMS architecture

1.2. State-of-Art Analysis
In modern embedded systems, we often find powerful microcontrollers such like the ESP32 paired
with sensors, motors, and displays to form smart, interactive devices. Technologies such as the CAN

1

1.3. Problem Definition 2

bus are widely used in vehicles and industry for robust communication between devices, while Wi-Fi
enables remote control and monitoring.

In many existing systems, components like environmental sensors, motor controllers, user interfaces,
and power monitors are built as separate, standalone modules. Each part works well on its own but
doesn’t communicate or cooperate with the others. As a result, building a complete system often
requires manually managing multiple boards and writing custom code for each one.

1.3. Problem Definition
1.3.1. The Situation
Originally, our system had four separate PCBs (Emerald, Diamond, Ruby, and Sapphire), each respon-
sible for a different function:

• Emerald: Handled power supply, monitoring and system switching.
• Diamond: Manage motor control.
• Ruby: Provide sensor that measure distance and LED feedback. Transmit data from modules to
host PC.

• Sapphire: Captured environmental data such as temperature, humidity, and air quality. Provide
stable Wi-Fi signal for data transfer.

(a) Emerald PCB front view (b) Diamond PCB front view

(c) Ruby PCB front view (d) Sapphire PCB front view

Figure 1.2: 4 PCBs used in our project

Each module worked independently, but there was no centralized communication or coordination.

1.3.2. Group Division
To manage the design and integration of all PCBs and systems, the team is divided into three special-
ized subgroups. Each subgroup is responsible for specific modules and tasks. The Wireless Commu-
nication & Sensing Group handled the Sapphire and Ruby modules. The Motor Control Group was in
charge with the Diamond module. The power & Mechanical Group manage the Emerald module and
the chassis. Our subgroup was responsible for the Wireless Communication & Sensing.

1.4. Thesis Synopsis 3

1.3.3. What We Did
We developed a solution that takes all four modules into one integrated system:

• All modules communicate over multiple CAN bus. Where reserve bytes are made for future
development.

• The system allow real-time interaction with a web serve on host PC via Wi-Fi.
• Data from sensors is send to host PC and plotted as heatmaps.

This integration enables synchronized control and data sharing, making the system more intelligent,
extendable, and easier to use.

1.3.4. Why It Matters
Without integration, systems are harder to manage, cannot adapt in real-time, and waste hardware
potential. Manual operations are slow and inaccurate. Our unified setup improves usability, adds
new capabilities (like remote data logging and live control), and opens the door for more advanced
applications such as environmental mapping and autonomous behaviour.

1.4. Thesis Synopsis
This thesis presents the design and implementation of a unified, real-time embedded system composed
of four formerly separate modules. The system:

• Uses CAN bus for internal communication between hardware modules and ESP-now between
two robots.

• Connects to host PC via Wi-Fi, transmitting sensor data in real-time.
• Displays sensor readings on an OLED screen and allows users to control LEDs and motors re-
motely.

• Logs environmental data (temperature, humidity, VOC) to a CSV file via a Python-based server
on a computer.

All the above result in a flexible, extensible, and interactive system that combines sensing, actuation,
and real-time communication in a unified architecture.

2
Literature Study

In this chapter, we are going to provide the theoretical background for the choice of MCUs and the
choice of communication protocols.

MCU ESP32
The ESP32-C3-WROOM-02 is a compact, low-powerWi-Fi and Bluetooth-enabledmicrocontroller mod-
ule based on the RISC-V architecture. It is especially well-suited for embedded robotic applications
requiring secure, wireless communication with constrained resources. As highlighted in the literature,
this module provides a range of critical features that make it an attractive choice for modular and dis-
tributed robotic systems. There are also other MCUs available, such as STM32 [6] and Raspberry PI
[13]. In Table 2.1, we compared the pros and cons of these three MCUs.

Table 2.1: Comparison of ESP32, STM32, and Raspberry Pi for embedded applications

Aspect ESP32 (C3/S3) STM32 (F4/G0 class) Raspberry Pi (Zero 2 /
4)

Processing core 1–2 × RISC-V or Xtensa
@ 160–240 MHz; hard-
ware FPU on S3

ARM Cortex-M (0–4/7)
@ 48–180 MHz; op-
tional DSP/FPU

Quad-core ARMCortex-
A53 or A72 @ 1–1.5
GHz; full MMU, Linux
OS

Integrated con-
nectivity

2.4 GHz Wi-Fi, BLE,
ESP-NOW, plus on-
chip CAN (TWAI)

No native Wi-Fi/BLE;
CAN on selected parts;
ext. radio required

Gigabit Ethernet, USB,
HDMI; Wi-Fi + BLE via
on-board module

Typical power
draw

20–80 mA active; <5 µA
deep-sleep

10–40 mA active; <2 µA
stop-mode (no radio)

150–700 mA running
Linux; ~50 mA idle with
Wi-Fi off

Unit cost (USD) $2–$4 MCU incl. RF $3–$8MCU; +$4–$8 for
add-on Wi-Fi

$10–$55 board (Zero 2
W → Pi 4), incl. SoC,
RAM, storage connec-
tors

The review emphasises the ESP32-C3’s affordability, accessibility through Arduino and ESP-IDF frame-
works, and wide community adoption. These factors collectively support its use as a communication
and control node in modular robotic systems, particularly in sensor hubs and FSM-driven modules such
as Sapphire.

4

2.1. Communication Protocols 5

2.1. Communication Protocols
Controller Area Network (CAN Bus)
The Controller Area Network (CAN bus) protocol is widely adopted in distributed embedded systems,
particularly in automotive and industrial applications. It provides a robust and efficient means of com-
munication among multiple microcontrollers sharing a common communication medium. There are
also other protocols like LIN [15] and SENT SAE-J2716 [17]. According to the literature, its relevance
to mobile robotic platforms arises from several inherent features:

Table 2.2: Comparison of three automotive serial interfaces

Aspect CAN2.0 / ISO 11898 LIN2.x / ISO 17987 SENT (SAE J2716)
Typical data-rate 20 kbit/s – 1 Mbit/s

(up to 5 Mbit/s for
CAN-FD)

Fixed 19.2 kbit/s (16×
oscillator)

30 bit periods – 90
µs per nibble1 (≈ 166
kbit/s max)

Bus topology Multi-master dif-
ferential two-wire
(CANH/CANL)

Single-master, single-
wire with dominant/re-
cessive states

Unidirectional point-
to-point (sensor →
ECU)

Frame/payload 8 data bytes (64 bit)
in Classical CAN; 64
bytes in CAN-FD

2–8 data bytes per re-
sponse frame

4- or 6-nibble payload
+ CRC nibble; op-
tional status pulses

Error detection Bit-monitoring, stuff-
bit checks, CRC-15,
ACK

1-byte parity + classic
checksum (in�frame)

4-bit CRC nib-
ble per message;
Manchester-encoded
timing check

Synchronisation Self-clocking, no
global time-base
required

Synch break + synch
byte issued bymaster

Rising edge of each
tick synchronises tim-
ing; no clock line

Typical use-case Power-train, chassis,
body, industrial au-
tomation

Low-cost body elec-
tronics (window lift,
seat, HVAC)

High-resolution
sensors (throttle,
pressure, speed)
replacing analog
ratiometric signals

Node count Up to 110+ per seg-
ment

16 slaves per master
(practical)

One sender, one re-
ceiver

Implementation
cost

Medium; transceiver
+ MCU with CAN core

Low; LIN transceiver
+ low-end
MCU/UART

Very low; digital out-
put on sensor, timer
input on ECU

In robotic architectures reviewed in Chapter 4, the CAN bus is often used as the backbone for module-
to-module communication. Each functional unit (e.g., sensing, actuation, power) is assigned a unique
CAN ID, and system-wide communication is coordinated without the need for a central controller. This
architecture supports hot-swapping, modular upgrades, and redundancy—key factors in scalable robot
design.

Inter-Integrated Circuit (I2C)
I2C is a lightweight, synchronous serial communication protocol used extensively in embedded sys-
tems for short-range, low-speed data exchange. It is particularly well-suited for connecting sensors
to microcontrollers due to its simplicity and low overhead. In embedded systems, UART [16] is also
widely used. Chapter 4 identifies the following benefits of using I2C:

1SENT encodes each 4-bit nibble as 12+X clock ticks; with a 3 µs tick, the fastest nibble takes 90 µs, corresponding to
roughly 166 kbit/s for a 6-nibble message.

2.1. Communication Protocols 6

Table 2.3: Key differences between I2C and UART serial interfaces

Aspect I2C (Inter-Integrated Circuit) UART (Universal Asyn-
chronous Receiver/Trans-
mitter)

Signal lines 2 wires: SDA (data) and SCL
(clock) with pull-ups

2 wires: TX and RX (plus op-
tional RTS/CTS for flow con-
trol)

Clocking Synchronous; clock supplied
by bus master

Asynchronous; each node
uses its own baud-rate clock

Topology Multi-master, multi-slave
shared bus

Point-to-point; one TX pin to
one RX pin (or via multidrop
RS-485)

Addressing 7- or 10-bit device addresses
in every transaction

None; link is dedicated to the
connected peer(s)

Typical data-rate Standard 100 kbit/s, Fast 400
kbit/s, Fast+ 1 Mbit/s, Ultra-
Fast 5 Mbit/s

Common 9.6 k–921.6 kbit/s;
up to 5 Mbit/s on modern
MCUs

Hardware cost Requires two pull-up resistors;
open-drain drivers on MCU
pins

No extra passives; full-swing
push-pull drivers already in
MCU

Use cases Sensor clusters, EEPROMs,
ADC/DACs on a short PCB
bus

Debug consoles, GPS mod-
ules, Bluetooth modems, long-
cable links

Pros One bus can host many de-
vices; clock stretching for slow
peripherals

Simple, streaming friendly,
long cable runs possible,
minimal protocol overhead

Cons Limited bus length/capac-
itance; address collisions;
shared-bus contention

Only two endpoints unless ex-
tra transceiver; fixed baud-
rate tolerance required

I2C is typically employed in local communication between the main control microcontroller and pe-
ripheral devices such as ultrasonic sensors, temperature/humidity sensors, and gas detectors. In the
systems reviewed, I2C complements CAN by offloading sensor acquisition from the main control bus.
While CAN handles inter-module communication and state coordination, I2C handles data collection at
the node level.

ESP NOW
ESP-NOW is a commonly used wireless communication protocol developed by Espressif for short-
range and low latency data transmission. It enables easy and direct peer-to-peer communication be-
tween the microcontroller of ESP32 devices without the need of a Wi-Fi connection or any access point
[7]. ESP-NOW is typically employed for real-time communication between distributed modules in a
mobile robotic system. In Chapter 4, the benefits of using ESP-NOW will be further discussed.

3
Program of Requirements

3.1. Main Program of Requirement
• General:

The robot must operate autonomously for at least 30 minutes, log data in a CSV format wirelessly,
and is able to avoid obstacles using onboard sensors.

• Power:

The robot is powered with battery (1.5-6 V), internally regulated to 3.3 V. battery status must be
monitored, with auto-shutdown at 0 % SoC.

• User interface:

Start/stop buttons, battery switch, and led indicator for power, changing, and fault status must be
accessible for the users.

• Hardware:

Two DC motor-driven wheels, sensing mounting support, modifiable design, a suitable speed
ratio (5-1000 RPM), and cost-efficient.

• Communication & Control:

Uses CAN bus for internal communication with inputs: motor duty cycle, turning amount, and
sensor distance. Wireless connection to host device required. Obstacle detection and sensor
synchronous must be handled.

• Safety & protection:

Overcurrent and overtemperature protection included. ESP protection compliant with IEC 61000-
4-2 level 4.

3.2. Subgroup Program of Requirement
3.2.1. Functionality Requirements
Compulsory Requirements

1. The robot must autonomously detect and avoid obstacles using onboard sensors.
2. The system must wirelessly communicate with a host PC.
3. The robot must monitor environmental variables (temperature, humidity, air quality).
4. The robot must log operational and environmental data during runtime.
5. The system must visualize mapping and robot state in real time.
6. The robot must maintain internal synchronization across all modules.

7

3.2. Subgroup Program of Requirement 8

Optional Requirements

7. The system should support a manual override control mode via the host PC.
8. The robot should detect and report sensor faults or lost connections.
9. The mapping functionality should allow recovery from partial data loss.
10. The robot should issue warnings if environmental readings exceed safe levels.

3.2.2. Implementation Requirements
Compulsory Requirements

1. Modular Communication via CAN Bus

• All modules (Power, Drive Control, Sensing, Communication) must support CAN 2.0B at a
baud rate of 250 kbps.

• Each module must use a unique message ID and follow the standard 8-byte CAN frame
format.

• Modules must detect and respond to bus error frames within 10 ms.
• Message delivery success rate must be ≥ 99.5% under nominal conditions.

2. Wireless Communication with Host PC and Between Modules

• Wi-Fi link must maintain a minimum bandwidth of 1 Mbps.
• Wi-Fi range should be at least 10 m inside the building.
• ESP-NOW must achieve packet latency of ≤ 20 ms.
• Reconnection must occur within 2 seconds of a connection drop.
• Packet loss must remain < 1% over a 5-minute test period.

3. Environmental Sensing Capability

• Sensors must measure:

– Temperature: 0–50◦C, accuracy ±0.5◦C
– Relative Humidity: 20–90% RH, accuracy ±3% RH
– VOC: resolution 1 ppm, update rate ≥ 1 Hz

• Sampling interval must be configurable between 1–5 seconds.
• All sensor readings must be timestamped with millisecond precision.

4. Ultrasonic Sensing and Motor Control Logic

• Three ultrasonic sensors must be mounted facing front, left, and right.
• Sensor range: 0–200 cm, with ±1 cm accuracy at 30 cm.
• FSM must process readings and update motor control within 100 ms.
• FSM states must include: forward, turn_left, turn_right, stop.

5. Data Storage and Logging

• Logged fields: timestamp, X, Y, temperature, RH, VOC.
• System must log at least 1000 records per session.
• Data must be transmitted to TCP server at ≥ 1 Hz without packet loss.
• TCP server must store data in real-time with 0% loss over 10 minutes.

6. 2D Grid Mapping

• Data must be mapped to (X, Y) coordinates on a 2D grid.
• Grid resolution must be ≤ 0.1 m per cell.
• Grid must update within 500 ms after new data is received.

3.2. Subgroup Program of Requirement 9

7. Real-Time Data Visualization

• GUI must update sensor display at ≥ 1 Hz.
• GUI must display: robot path, FSM state, sensor values, and obstacle markers.
• User must be able to pause/resume/export data without interrupting logging.

8. System Synchronization

• System clocks must synchronize to within ≤ 50 ms drift.
• Timestamp alignment between CAN and Wi-Fi data must be accurate to ±100 ms.
• Synchronization must be validated at least once per minute.

4
Design specification

4.1. System architecture overview
The system integrates four functional modules, Power Control, Motor Control, Sensing, and Communi-
cation into an embedded platform designed for sensor fusion, environmental monitoring, and actuation.
Each module plays a distinct role in the system and communicates over a central bus architecture. A
key feature of the system is its ability to wirelessly transmit collected data to a remote host via TCP/IP
server.

Figure 4.1: I/O Protocol

At the heart of the system’s connectivity is the Communication Module, which handles user commands,
interface display, and most critically, wireless data transmission. This module connects to a local Wi-Fi
network (using Sapphire) as an Access Point and acts as a TCP server, enabling external clients such
as a PC or mobile device to connect directly.

10

4.2. Modular communication via CAN bus 11

The Communication Module receives processed data from all other modules—including temperature,
humidity, air quality, battery status, and motor speed and sends these datasets wirelessly to the con-
nected client. The transmission follows a predefined TCP protocol, sending sensor data in real time,
which can be used for live monitoring or logging.

4.2. Modular communication via CAN bus
The CAN bus acts as the central communication medium, interconnecting all modules in a multi-master
broadcast system. Each module is assigned with an unique CAN ID and transmits or listens for frames
based on its role. This allows for asynchronous, prioritized, and non-blocking data exchange, essential
for real-time embedded systems.

• Power Control Module: Periodically broadcasts voltage, current, state-of-charge, battery tem-
perature, and power readings to the network using unique CAN identifiers. The Communication
Module receives these messages for display and further transmission.

• Motor Control Module: Listens for control commands (duty cycle, turning amount) from the
Communication Module and responds with its operational data, including motor speed, torque,
and fault flags. These are published as CAN frames at regular intervals of 10 ms.

• Sensing Module: Collects environmental measurements (temperature, humidity, air quality, and
distance to obstacles) and sends them via CAN to the Communication Module. It also receives
trigger signals over CAN to synchronize data collection or LED indicators.

• Communication Module: Serves as the CAN bridge and gateway to external systems. It listens
to all relevant CAN frames, aggregates the data, and forwards it to the Wi-Fi interface. It also
generates control frames (e.g., motor commands, LED control) and sends them via CAN to other
modules.

4.3. Wireless communication design
The system architecture is modular and distributed, with each functional block—Power Control, Motor
Control, Sensing, and Communication—interconnected via a CAN bus for wired inter-module messag-
ing. However, wireless communication becomes essential when transferring data to external devices
or users.

The Communication Module acts as a wireless interface, aggregating data from all other modules over
CAN and transmitting it wirelessly. This allows real-time monitoring and control without the need for
manual operation of the system. Specifically:

• Sensor data (temperature, humidity, air quality, distance to the obstacles)
• Power metrics (voltage, current, SoC)
• Motor status (speed, duty cycle, torque)

All are collected and displayed wirelessly.

4.3.1. Wi-Fi communication with host PC
To support external data logging and remote interaction, the system sets up a Wi-Fi Access Point (AP)
[21] directly from the ESP32-based Communication Module. This allows a host PC or mobile device to
connect directly to the module over Wi-Fi without requiring an external router.

Once connected, a TCP socket server runs on the host PC, while the ESP32 functions as a TCP client
that sends sensor data periodically (every seconds) in a comma-separated format: [timestamps, x, y,
temperature, humidity, air quality]. This is used to stream real-time environmental and sensor data to
the PC, then visualize the data and log it into a CSV file for later usage.

The design also supports bidirectional extensions, where the PC could send commands back to the
ESP32 over the same TCP channel, enabling interactive control features such as mode switching or
data request on demand.

4.4. Sensor Integration and environmental monitoring 12

4.3.2. ESP-NOW communication between modules
To enable wireless communication between two modules in our embedded system, which itself uses
two ESP32 chips, each equipped with an antenna. Thesemodules are designed to be able to exchange
data wirelessly in both directions. For example, the left communication module might send commands
like motor control or LED activation to the right module. At the same time, the right module can also
send back the data to the left module such as sensor feedback or status updates. This setup requires
a reliable, low-latency, bidirectional communication link, which is why ESP-NOW is used.

ESP-NOW is a communication protocol developed by Espressif, specifically designed for ESP32 chip
and other ESP chips[7]. This communication protocol allows multiple devices to exchange small pack-
ets of data without needing a Wi-Fi connection or router, instead of using widely used TCP/IP, ESP-
NOW uses a connectionless protocol based on Wi-Fi’s MAC addresses, which will eventually signifi-
cantly reduces overhead and latency.

In terms of performance:

• Transmission time for one packet is typically around 1-3 milliseconds, making it suitable for real-
time or near real-time applications.

• Each ESP-NOW packet can carry up to 250 bytes of payload data, including any application-
specific information (e.g., control commands, sensor values).

• The protocol supports sending data to up to 20 peers simultaneously, making it easier to carry
out future expansion.

In our project, ESP-NOW is an ideal solution because:

• It supports peer-to-peer communication, which fits our need for two-way data exchange.
• It allows devices to communicate without having to connect to an existing Wi-Fi network.
• It offers low power consumption, which is beneficial for embedded system like ours.
• It supports both broadcast and unicast messaging, allowing flexibility in addressing devices.

4.4. Sensor Integration and environmental monitoring
To measure indoor environmental conditions, two digital sensors were selected: the Sensirion SHT40
for temperature and relative humidity (RH) measurement, and the Sensirion SPG40 for detecting VOCs.
These sensors were chosen after comparing multiple available options based on their accuracy, inter-
face compatibility, and simply the cost.

4.4.1. Sensor selection
From the sensor list in Table 4.1, our group prioritized devices that met the following criteria:

• High accuracy, with a temperature accuracy ≤ ±0.3°C and humidity ≤3% RH
• I2C digital communication interface, compatible with the ESP32 micro-controller
• Low cost, to keep the overall system affordable for the clients

Table 4.1: Comparison of temperature and RH sensors options

Sensor Temp. accuracy Humidity accuracy Interface Supply voltage Price (€)
SHT31 ±0.3°C ±2% RH I2C 3V / 5V 13.37
SHT31-F ±0.2°C ±2% RH I2C 3V / 5V 12.23
SHT35 ±0.1°C ±1.5% RH I2C 3V / 5V 14.80
SHT40 ±0.2°C ±1.8% RH I2C 3V / 5V 7.03
AHT20 ±3°C ±2% RH I2C 2V–5.5V 8.12

The SHT40 was selected for its compact design, high accuracy and fine resolution (0.01 °C and 0.01 %
RH). Its I2C interface [19] allows integration with the communication module, which has free I2C chan-
nels available. Compared to alternatives like SHT31, or SHT35, the SHT40 provides a strong balance

4.4. Sensor Integration and environmental monitoring 13

between performance and price.

In addition to temperature and humidity, indoor air quality was measured by selecting a sensor ca-
pable of detecting volatile organic compounds (VOC). There are more specialized sensors exist on the
markets for measuring specific air components such as CO2, NO2, or other particulate matters. VOCs
represent a broad category of harmful gases in the air. Measurement of VOCs provides a generalized
and practical indicator of indoor air quality.

The decision to choose VOCs was guided by their simplicity, relevance, and easy integration. VOC
data are easier to interpret in the context of general indoor air quality and require less supporting com-
ponents. The SGP40 sensor was selected because its output has a normalized VOC index and is
designed specifically for indoor environments. This device also supports I2C communication, making
it suitable for the architecture of the system. In addition, the power consumption is very low and it
contains an integrated temperature and humidity compensation making it a good choice. Both sensors
are shown in Figure 4.2 and Figure 4.3.

Figure 4.2: Temperature&Humidity sensor SHT40 [5] Figure 4.3: Air quality sensor SGP40 [4]

4.4.2. Sensor placement
There are four possible mounting positions for the two sensors on the 3D-printed components: front,
back, top and bottom, as illustrated in Figure 4.4. The front area is already occupied by the three ultra-
sonic sensors [1], indicates by the red arrow, and therefore cannot be used for additional components.

Figure 4.4: Side view of the robot, where support robot is at the back side

Mounting the sensors on the top side seems like a viable option, but this location presents some im-

4.5. Ultrasonic sensing and motor control 14

portant drawbacks. Firstly, when the robot operates near a window, direct sunlight may shine on the
SHT40 sensor, potentially compromising the accuracy of its temperature and humidity readings. Sec-
ondly, airflow generated by the robot’s movements could further influence the sensor’s performance.

Placing the sensors on the underside of the robot seems also not ideal. This position increases the
likelihood of dust accumulation, which will degrade sensor performance in the long time, and the risk
of physical damage will raise due to proximity to the ground.

The remaining option is the backside of the robot. This location avoids the issues associated with
the other mounting positions, offering protection from the direct sunlight, physical contamination and
airflow interference. For these reasons, the rear of the robot is considered the most suitable position
for mounting the sensors in this design.

4.4.3. Sampling strategy
Our group set the sample rate at 1 Hz (once per second) for both sensors. Since temperature, humidity,
and air quality typically change slowly over time, collecting data every second is frequent enough to
get meaningful environmental variations without loading with excessive data to the system.

By using this sampling rate, the power consumption will also be reduced and processing demands on
the microcontroller becomes more efficient. Because our system includes wireless transmission and
real-time plotting, limiting data volume is important to maintain nice performance and reliable commu-
nication.

4.5. Ultrasonic sensing and motor control
To realise effective obstacle avoidance, a robot must be capable of perceiving its real-time surroundings.
There are several advanced technologies available to achieve this functionality. For instance, radar[20]
systems can be employed to generate comprehensive environmental maps, while LiDAR sensors offer
high-resolution detection of objects by using laser-based distance measurements [11]. However, these
solutions often comewith considerable cost and require a high level of technical expertise for integration
and operation.

Given the constraints of our project, specifically limited financial budgets and technical proficiency. The
team have opted for a more accessible and cost-effective solution: the use of ultrasonic distance mea-
surement sensors. These sensors (RCWL-1601) [18] operate by emitting high-frequency sound waves
and measuring the time it takes for the echoes to return after bouncing off nearby objects. This time-of-
flight (ToF) data allows the system to calculate the distance between the sensor and any object directly
in front of it.

Table 4.2: Finite-State Machine

Sensor L Sensor R Sensor F State Description
0 0 0 Stop Wall
0 0 1 left_right Obstacle on left and right
0 1 0 right Obstacle on left and front
0 1 1 right Obstacle on left
1 0 0 left Obstacle on right and front
1 0 1 left Obstacle on right
1 1 0 left_right Obstacle on front
1 1 1 forward No obstacle

When an object is detected within a predefined range, the sensor triggers a response by sending the
distance data to the Sapphire. This module houses a finite-state machine (FSM), as shown in Table 4.2,
where ”0” indicates an object detected and ”1” indicates no object detected. FSM is responsible for
interpreting incoming data and determining the appropriate response. Based on the current state and
the detected distance, the FSM processes the information and outputs a directional command, such
as turning left, turning right, or stopping, to guide the robot around the obstacle. This approach allows

4.5. Ultrasonic sensing and motor control 15

Figure 4.5: FSM Diagram

for real-time, automated navigation adjustments using minimal hardware and computational resources,
making it both practical and efficient for budget-constrained projects. In Figure 4.5, the FSM diagram is
given. All the states operate first through the stop state before going to the other states. Each time the
system resets, it all goes to the stop state first. In case of turning 180 degrees, it operates as turning
twice.

4.5.1. Design choice
The initial design of the Ruby, incorporates one ultrasonic distance sensor and two microphones capa-
ble of detecting acoustic echoes [19], shown in Figure 4.6. The microphones theoretically provide the
capability for acoustic localization by analyzing the time delay between signals received from reflecting
surfaces. This technique can help identify the position and movement of sound-reflecting objects within
the environment.

Figure 4.6: Ruby Module

However, in practice, this approach presents several challenges. One major limitation is environmental
white noise[14], which can significantly degrade the quality and reliability of echo detection. Differenti-
ating meaningful echoes from ambient acoustic interference becomes highly complex, especially in un-
controlled or noisy environments. Additionally, the effectiveness of this localization technique depends
on the presence of sound-emitting or echo-reflective events. In our application, the target objects are
passive—they do not emit sound or generate strong acoustic signatures on their own, making it difficult
to rely solely on microphones for consistent object detection.

While microphones are still valuable for detecting loud or sudden sounds (such as claps or knocks),
they are insufficient for the precision and reliability required for autonomous obstacle detection and
avoidance. For this reason, an ultrasonic distance sensor was added to the Ruby module. Ultrasonic
sensors actively emit sound waves around 40 kHz [14] and measure the time the echo returns after
hitting an object. This active sensing capability ensures consistent detection of objects, regardless of
whether those objects emit any sound.

4.5. Ultrasonic sensing and motor control 16

4.5.2. Ultrasonic sensor configuration
The obstacle avoidance system in our robot is built around three strategically positioned ultrasonic
sensors: one facing forward, one on the left side, and one on the right side. Each sensor continuously
monitors its respective direction and is calibrated to detect objects within a specific threshold distance,
ensuring timely responses to potential collisions. The 3D-printed bumper for the sensors are designed
together with the hardware subgroup, it is shown in Figure 4.7.

These ultrasonic sensors can detect objects as small as 10 cm by 10 cm within their sensing range.
They operate by emitting ultrasonic pulses andmeasuring the time it takes for the sound waves to reflect
off nearby objects and return to the sensor. This method allows the system to accurately calculate the
distance to obstacles in real time.

Figure 4.7: 3D Modeling of Bumper

When any of the sensors detects an object that meets the predefined criteria (such as size and prox-
imity), the sensor triggers a signal that is sent to the communication module. Embedded within this
module is a FSM shown in Figure 4.5, which serves as the control logic unit of the system.

4.5.3. Threshold Distance and Object Size Justification
The first idea is to make the threshold distance 15 cm, but there are several aspects that changed. And
eventually, we have chosen 30 cm as the threshold distance as an optimal sensing distance based
on both the geometry of the beam of the ultrasonic sensor and the need for reliable early obstacle
detection. The reasons are as shown below:

• Extended Reaction Time: At 30 cm, the robot has twice the distance compared to the original
threshold to detect and react to obstacles. This is particularly beneficial for maintaining safe
navigation at higher speeds or in environments where precise maneuvering is critical.

• BeamGeometry Advantage: The ultrasonic sensor has a 15° total beam angle, which translates
to an approximate beamwidth of 8 cm at 30 cm distance:

Beamwidth = 2 ∗ (30 cm ∗ tan(7.5◦)) = 8 cm (4.1)

This wider beam footprint increases the likelihood of detecting small or partially visible obstacles
earlier, reducing the chance of unexpected collisions.

• Avoiding Near-Field Signal Instability: Ultrasonic sensors exhibit reduced accuracy at very
close range due to signal overlap or dead zones. By setting the threshold at 30 cm, we can
avoid a large part of near-field distortion ensuring stable and interpretable echo signals, shown
in Figure 4.8.

• Environmental Noise Rejection: A longer detection range allows the system to better discrimi-
nate between real object echoes and transient background noise, as the signal processing algo-
rithm has more time and data to verify object presence.

4.5. Ultrasonic sensing and motor control 17

Figure 4.8: Blind Part Demonstration

The selection of 10 cm × 10 cm as the minimum target object size is motivated by the need to minimize
dead angles and ensure robust detection within the sensor’s beam cone. The reasons are as shown
below.

• Dead Angle Minimization:
Dead angles occur when small or thin objects fall outside the beam or produce weak reflections
that the sensor cannot detect. A 10 cm-wide object ensures full beam coverage at 30 cm distance,
especially considering the 8 cm beamwidth from Equation 4.1, reducing the risk of objects slipping
through undetected.

• Reliable Reflection Surface:
With an object height and width of 10 cm, there is sufficient surface area to reflect ultrasonic waves
back to the sensor, improving echo strength and consistency. This is particularly important for
non-acoustically reflective surfaces (e.g., cloth or rubber), where larger area improves detection
reliability.

• Compact Yet Detectable:
The 10 cm× 10 cm size balances compact form factor with effective detection capability. It allows
testing and navigation around realistic indoor obstacles like chair legs, small boxes, or handheld
devices—objects common in typical operating environments.

• Alignment with Sensor Size and Placement:
The ultrasonic sensor module on the Ruby board has a physical length of 4.5 cm, centrally posi-
tioned between microphones and structural components. After the final integration, the sensors
will be taken out of Ruby and will be placed on 3D printed bumper. With a 10 cm-wide object, the
echo will reliably return even when the object is slightly off-center, eliminating blind spots caused
by narrow beam reflections.

4.5.4. FSM-based motor control
The FSM is the core of the robot’s decision-making system, interpreting the real-time input of three
ultrasonic sensors positioned to the left, right and front of the robot. These sensors provide binary
feedback, with ”1” indicating that there is no obstacle and ”0” indicating an obstacle detected within a
predefined threshold. Using this binary input, the FSM identifies the spatial context of any detected
obstacles and transitions into the appropriate control state.

As shown Table 4.2, the FSM uses sensor data to determine the safest direction to proceed. For
example:

• If all three sensors return ”0”, the robot is surrounded by obstacles, interpreted as a wall, and
enters the left-right state, potentially backing up or rotating to find a clear path.

• If only the front sensor detects an obstacle (Sensor F = 0), and both side sensors are clear, the
FSM still enters the left-right state, recognizing that a forward move would result in a collision.

• When only the left or right sensor detects an object, the FSM responds by steering the robot in
the opposite direction.

4.6. 2D grid mapping 18

• If no obstacle is detected by any sensor (1, 1, 1), the FSM enters the forward state and allows
the robot to continue moving ahead.

To handle situations where obstacles are detected on both sides or directly in front of the robot, clas-
sified as the left-right state, a simple but effective randomization strategy is employed. In such cases,
the robot uses a random number generator to determine the turning direction. Specifically, every 0.5
seconds, a floating-point number between 0 and 1 is generated. If the generated number is greater
than 0.5, the robot performs a left turn; otherwise, it turns right. This approach introduces nondeter-
ministic behavior that helps the robot escape from tight spaces or symmetrical obstacle configurations
where deterministic logic might fail.

Once a state is selected, the FSM sends the corresponding command to the motor driver, which adjusts
the robot’s motion, whether to stop, turn, or continue forward. This FSM-based navigation logic ensures
that the robot adapts intelligently and efficiently to its environment, even with minimal hardware, making
it highly suitable for low-cost autonomous systems.

4.6. 2D grid mapping
To enable environmental awareness and navigation logging, our robot implements a lightweight 2D
mapping strategy that integrates motion estimation, obstacle sensing, and wireless communication.
This method is designed to be efficient and compatible with resource-constrained embedded systems.

4.6.1. Constant Motion Speed
The robot navigates at a provided, fixed, steady speed, which is continuously reported by the motor
drive module. This simplifies position estimation, allowing displacement to be calculated using the
formula:

Distance =

∫ t1

t0

v(t) dt (4.2)

where v(t) is the velocity as a function of time, the assumption of constant velocity eliminates the need
for real-time accelerometer or wheel encoder integration.

4.6.2. Manual Initialization
At the start of operation, the host system manually defines the robot’s initial position and orientation.
This serves as the origin in the coordinate system and forms the basis for all subsequent position
estimates.

4.6.3. Turn Detection and Directional Updates
The robot includes a finite-state machine (FSM) that governs obstacle avoidance behaviour. Whenever
the FSM detects an obstacle and initiates a directional change (e.g., turn left or right), a turning signal
is transmitted wirelessly to a host PC over Wi-Fi. These turning events allow the system to update
the robot’s heading and ensure that the calculated trajectory accurately reflects its path through the
environment.

4.6.4. Stepwise Environmental Sensing
During each movement step, the robot collects environmental data using its onboard ultrasonic sensor.
At regular intervals (based on time or displacement), the system logs:

• The robot’s estimated position
• Direction
• Obstacle presence and relative location

This data is formatted and prepared for transmission to the host PC.

4.7. Data storage and transmission 19

4.6.5. Grid resolution
To make sure that our spatial mapping are efficient and the localization is accurate, it is essential to
define an appropriate resolution for the 2D grid that represents the robot’s environment. This grid
must balance spatial precision with computational efficiency to the given constraints of this embedded
system used on the robot.

The robot operates at a constant speed and updates its position at fixed time intervals. The displace-
ment per time step ∆S, is calculated using the following equation:

∆S = RPM ∗GR ∗ Ts ∗ 2πRw (4.3)

Where RPM is the motor revolutions per minute and is set to a constant value of 1000 by the drive
group, GR is the gear ratio (motor-to-wheel reduction), which is 1

200 . Ts is the sampling interval, equals
to 220 ms. Rw is the wheel radius, which is 8.5 cm.

substitute this values gives:

∆S =
1000

200
∗ 220

1000 ∗ 60
∗ 2π ∗ 0.085 ≈ 0.0098 m (4.4)

This means that in every sampling interval the displacement is 0.0098m. So in one second the displace-
ment is:

∆S =
1

0.220
∗ 0.0098 ≈ 0.045 m = 4.5 cm (4.5)

This result indicates that the robot travels approximately 4.5 cm between the position update in one
second. To reflect this physical motion accurately on our 2D map while also avoiding unnecessary
computational overhead, our team have selected a grid cell resolution of 5 cm.This resolution ensures
that each cell approximately equals a second displacement, simplifying our localization and mapping
logic.

4.6.6. Wireless Communication and Host-Side Processing
All collected data and control signals (such as turning events) are transmitted to the host PC via Wi-
Fi. A custom Python script receives and processes the data in real-time on the host PC. The script
performs the following tasks:

• Path Visualization: The robot’s movement path is plotted live, showing the current trajectory and
locations of detected obstacles.

• Data Logging: Each step’s data is stored in a structured format and written to a .CSV file. This
file includes time stamps, X and Y positions, orientations, and sensor readings, allowing for offline
analysis and future playback.

The map can be visualized dynamically or reconstructed post-run using the logged CSV data. This
results in a clear, interpretable view of the environment as perceived by the robot.

4.7. Data storage and transmission
During the initial stages of system development, the ESP32 was employed for both data transmission
and local data storage. However, limitations in the ESP32’s onboard memory restrict the amount of
data that can be stored. According to the datasheet [8], ESP32-C3 features approximately 400 KB of
SRAM, which needs to be shared between system tasks, buffers, and program execution. In addition
to that, the default flash memory available is 4 MB, which may be enough for light data logging, but is
not ideal for storing large volumes of time-series sensor data over long extended periods.

Due to these limitations, attempts to store large datasets locally on the ESP32 led to performance
issues such as memory overflows and data loss. To solve this problem, it was decided to offload the
data via a wireless connection to the host PC. This implementation is based on TCP communication

4.7. Data storage and transmission 20

between the ESP32 and a host device, in this way, the data that has to be transmitted are packed in
smaller and manageable batches, this will significantly reduce the load of the chip’s internal memory.

4.7.1. TCP server implementation
To ensure continuous and reliable transmission of data from the ESP32 to the host computer, a TCP
server-client model was established. The TCP is one of the core protocol of the internet. It allows two
devices to communicate in a reliable and organized way, by making sure that all data sent from one
device reaches the other devices without error and also in the correct order. Unlike simple protocol
like UDP(User Datagram Protocol), TCP uses a so called ”3-way handshake” process that takes place
in the TCP establishing and closing connection between two devices. In Figure 4.9 a basic 3-way
handshake process is illustrated.

Figure 4.9: 3 way handshake connection [3]

As the name suggests, the three-way handshake involves three steps [9]:

• Step 1 - SYN (Synchronize: the client initiates the connection by sending a TCP segment with
the SYN flag set. This gives an indication that the clients wants to start communication and
includes an initial sequence number to begin the exchange.

• Step 2 - SYN-ACK (Synchronize-Acknowledgment): The server receives the SYN requests
ad responds back with a segment that contains both the SYN and ACK flags set. The ACK
confirms that the server has successfully received the client’s SYN, and a new SYN from the
server includes the server’s own initial sequence number.

• ACK(Acknowledgment): The client responds then with a final ACK segment, confirming that the
SYN-ACK is received. At this point, both the client and server have acknowledged each other’s
sequence number and a reliable connection is established.

In our system it consists of the following components:

• ESP32-A (Wi-Fi server): Configured to operate in SoftAP mode, this device cerates a local
wireless network to which the other ESP32 and the host computer can connect

• ESP32-B (Data transmitter): Configured as a TCP client, this device is able to connect to the
SoftAP and transmits all the logged data over a TCP connection.

• Host PC: The host PC is connected with ESP32-A’s SoftAP Wi-Fi and receives all transmitted
data from ESP32-B and logs the data locally in a CSV file.

4.7. Data storage and transmission 21

In this system before the 3-way handshake the server and the client needs to know where the signals
have to be send, it’s mainly established using IP addresses and port numbers, which are essential for
devices identifying. When ESP32-A operate in SoftAP mode, it will creates its own Wi-Fi network and
acts as a local access point. By default, ESP32-A uses the IP address 192.168.3.x which acts as the
gateway IP address for any device that wants to connect. By setting the ESP32-B to the IP address
192.168.3.x the client can find the server device. But to make sure that the device is really the one
that was needed, port numbers can be set for both ESP32-A and ESP32-B. A port number is used
alongside the IP address to uniquely identify specific device exactly. In our design it is set as ”12345”,
just for simplicity.

5
Prototype implementation and results

In this chapter, our team present a comprehensive, step-by-step account of the implementation pro-
cess. We have successfully developed fully functional and autonomous modules by meticulously inte-
grating both software and hardware components and incorporating additional external sensors. This
implementation demonstrates our modular design’s effectiveness and highlights the robustness of the
communication architecture that underpins the system’s overall performance.

5.1. Communication Module Implementation
The implementation of the Sapphire will be explained. Sapphire is the brain of our robot. All the
information comes to Sapphire via CAN. In Figure 5.1 a simple diagram is shown for all the modules
are connected.

Figure 5.1: Global Communication Transmission Diagram

5.1.1. Inter-Sapphire Communication via CAN Bus
Initially, communication between the left and right Sapphire PCBs was implemented using ESP-NOW, a
lightweight wireless protocol. However, significant synchronization issues were observed during testing,
particularly under high-frequency data exchange and multi-node coordination. These limitations led to
the transition to a wired CAN bus solution.

ESP-NOW test between two Sapphires
In one of our tests by using ESP-NOW, the left Sapphire is set to send a data packet every 2 seconds.
The right Sapphire did receive the data, but when it tried to send a response back at the same time, it

22

5.1. Communication Module Implementation 23

caused a problem: the incoming data got overwritten or was not fully received. This means that both
sides were talking over each other.

To try and fix this, our team added a receive flag. This is added to make sure that the a device would
only send data if it had finished receiving the previous message. This would helping with this talking
over issue, but the problem did not go away. Even with the flag, data was still getting lost or corrupted
during two-way communication, as shown in Figure 5.2 and Figure 5.3.

Figure 5.2: Left sapphire module sending temp
and RH Figure 5.3: Right sapphire module sending VOC

The left Sapphire module first sent temperature and humidity data to the right Sapphire, and this initial
transmission was successfully received. However, when the right Sapphire started sending VOC values
back to the left, the data wasn’t received correctly. Instead of getting a message like ”Received VOC-
index: 89.00”, the left Sapphire only got ”Received V.00”, indicating that part of the data was lost during
transmission.

After this, when the first Sapphire sent the second set of data to the right, the received message was
then ”Receeceived hum: 47.” instead of the correct temperature value of 26.94 and humidity value of
47.11. These errors showed that the wireless communication was unreliable and the team decided
to switch to a system that is fully based on CAN bus communication, which offers better stability and
reliability.

CAN Connection inside Module
The CAN bus provides deterministic, real-time communication with built-in error detection andmessage
prioritisation. This change significantly improved the reliability and timing consistency of inter-module
communication. Each Sapphire board operates as a CAN node, exchanging structured messages that
include sensor data, control flags, and synchronisation signals.

During the coding, a library was used. ESP32-TWAI-CAN[12] is a very powerful library for CAN com-
munication. The sketch configures the ESP32-S3’s on-chip TWAI (CAN 2.0 B) controller on GPIO 5
(TX) and GPIO 4 (RX) at 500 kbit/s. Once every certain time, it constructs an 8-byte CAN frame whose
identifier field is set to a placeholder value 0xXXX—in automotive practice, a unique 11-bit identifier
distinguishes each message type (ID and data frame), so every data stream on the bus can be recog-
nised and filtered purely by that ID. The payload layout is then filled: byte 0 declares the number of
useful data bytes, byte 1 indicates the OBD-II service, byte 2 holds the parameter to request, and the
remaining bytes are padded with 0xAA to avoid long runs of identical bits that would provoke CAN bit-
stuffing. The wrapper call ESP32Can.writeFrame(frame) queues the packet for transmission; the TWAI
hardware arbitrates on the shared bus and retries automatically if another node with a higher-priority
identifier wins. Incoming traffic is polled with ESP32Can.readFrame(rxFrame, 1000). Whenever a re-
sponse arrives, the code inspects the rxFrame.identifier; if that value matches the expected unique ID
for the reply, the payload is decoded (e.g., converting byte 3 to temperature by subtracting 40 °C) and
printed. Thus, every transmitted or received message is tagged by its own unique 0xXXX identifier,

5.1. Communication Module Implementation 24

enabling orderly, collision-free communication among multiple devices on the CAN network. Below in
Table 5.1, the CAN ID setup is shown.

Table 5.1: CAN-frame map: left- and right-hand module stacks

Left-hand stack Right-hand stack
CAN frame Description Dir. ID CAN frame Description ID
voltageLeft Rec 0x100 voltageRight 0x405
currentLeft Rec 0x100 currentRight 0x405
ledIndexLeft Trans 0x200 ledIndexRight 0x500
socLeft Rec 0x110 speedRight 0x705
distanceLeft Rec 0x205 dutyCycleRight From left Sapphire

to local Diamond
0x700

distanceFront Rec 0x300 voc 0x600
speedLeft Rec 0x305 TempEmeraldRight Battery temperature 0x415
dutyCycleLeft From PI Rec 0x310 distanceRight 0x505
controlState Controlled by Wi-Fi

and FSM
Trans 0x315 socRight 0x405

TempEmeraldLeft Rec 0x115 checkstate 0x710
Environmental Temp Trans 0x320 Sendstate 0x720
Environmental Humidity Trans 0x320 dutyCycleRight_send 0x730

Every CAN message gets its own unique number, so two messages never crash into each other on the
network. As shown in Figure 5.4 and ??, the duty_cycle has been sent to Sapphire. And the duty_cycle
has been printed in Sapphire. That lets the hardware automatically give urgent messages first place
and ignore anything it doesn’t need, which means the main processor has less work to do. We also
leave empty numbers in between on purpose: if we ever want to add new or more detailed data later
(like individual-cell voltages or more precise air readings), we can just use those spare numbers without
having to rewrite the whole system.

Figure 5.4: Sending and Receiving Duty Cycle From Sapphire

Each Sapphire module interfaces with multiple sensors and PCBs using a combination of I2C and CAN
protocols:

• Environmental Sensors: The temperature/humidity and air quality sensors are connected directly
to the Sapphire boards via I2C. These sensors provide real-time environmental data, which is
processed locally and shared with other modules via CAN.

• Ultrasonic Sensors: Ultrasonic sensors are connected to the Ruby PCBs using I2C. Ruby handles
initial data acquisition and formatting, then transmits the processed data to the left Sapphire board
over the CAN bus. This layered approach offloads sensor-specific processing from Sapphire and
ensures modularity.

5.2. Software Implementation 25

Figure 5.5: Sending Command and Receiving Desired Duty Cycle

5.2. Software Implementation
5.2.1. Web Server
We have made a sketch that turns the ESP32 into a tiny web-server interface for the robot. It has the
following functions:

Table 5.2: Webserver Utility

Function Command
Motor Stop, Forward(Start)
Shut Down Shut down the entire system

Except for the commands, on the browser website, all the important variables are shown live in Fig-
ure 5.6.

Figure 5.6: Example of Webserver Interface

The layout is minimal; adding new variables is as easy as including another line in the HTML block and
appending the matching telemetry print. So, additional data can be dropped later with only a few extra
lines of code.

5.2.2. Python Script
At the core of the system there is a python-based TCP socket server. This server listens on all the net-
work interface by using (0.0.0.0) at port 12345, and allowed incoming connections from WiFi-enabled
devices, in our case the Arduino on the client device (ESP32). this client operates in Station (STA)mode

5.2. Software Implementation 26

and connects to the same local Wi-Fi network as the host computer. The server utilizes the socket mod-
ule for handling TCP communication, and use threading for concurrently managing real-time updates
and user input.

After the script get started, the socket server will first try to bind and begins listening for incoming
connections. Once a client connects, it begins receiving transmitted data from the client in the form of
newline-bounded strings. Each message starts with a tag to identify its type. Either ”T” for temperature,
humidity and air quality, or ”P” for SoC, voltage, current, onboard temperature.

The server parses each message and performs conditional processing based on the tag. For ”T” mes-
sages, the script extracts the X-Y coordinates and the corresponding sensor values, and updates the
internal data grid. In the meanwhile, these values are also written to a CSV file for permanent storage.
For ”P” messages, power data is logged into a separate CSV file, for tracking energy consumption over
time.

Another big functionality of this system is the real-time visualization. The Python script uses Matplotlib
to plots the sensor data in a XY-grid, the GUI updates it very second, reflecting the latest received data
values.

In addition to real-time updates, the system includes functionality for manual data export. A separate
thread is constantly active for keyboard input. When the user types ”save” into the terminal, the system
captures the current state of the heatmap and saves it as a PNG image. At the same time, all sensor
readings are being logged to a timestamped CSV file in a directory. On exit (keyboard interrupt), the
system performs a final export to ensure all data is preserved.

5.2.3. Real-time data visualization
By connecting to the server running on the host PC, the transmitted data from ESP332-B can be re-
ceived and processed in real time. Once the TCP server is fully established, the host continuously
listens the incoming data packets from the ESP32-B client. These packets contain temperature, hu-
midity, and air quality. They are parsed and immediately fed into a visualization interface using Python.

By using Python code in section A.5, separate heatmap-style plots are generated for each environmen-
tal parameter. These plots update every one seconds to reflect the most recent data collected from the
ESP32-B module. The X and Y axes correspond to the robot’s spatial coordinates as it moves, allowing
the system to map environmental measurements across different physical locations in real time.

Each grid cell in the plots shows a numerical value at a given (X,Y) location, with the cell color intensity
indicating the magnitude of the measurement:

• The temperature map uses a yellow-red gradient colormap, where darker red represents higher
temperatures.

• The humidity map uses a blue gradient colormap, with darker blue represents higher humidity
levels.

• The Air-quality map uses a also yellow-red gradient colormap, with darker red represents higher
VOC-index values.

This form of visualization provides an intuitive way to observe spatial patterns in the environment that
the robot is monitoring. However, because the fully integration was not completed as expected, the
corresponding X and Y coordinates could not be properly pushed to the code. As a result, an example
of these graphs is shown in Figure 5.7, where each new data point is generated as the robot’s X and Y
coordinates increment by one unit in each iteration.

Additionally, the system offers user interaction:

• The client can manually save the plots and the corresponding CSV file, the user can type the
command ”save” in the Python terminal.

• To exit and save automatically, the user simply closes the plot window. This action triggers the
program to store both the current plots and all accumulated data in CSV format for future analysis.

5.3. Sensing Module Implementation 27

Figure 5.7: temperature, humidity and air quality heatmaps

5.3. Sensing Module Implementation
5.3.1. Finite State Machine
The robot’s obstacle avoidance controller is organized as a finite-state five-state machine in Figure 4.5,
whose ’hub’ is the stop state: depending on the three ultrasonic sensors (left, right, front), the robot
either drives straight (forward when all sensors are clear), turns in place (Turn Left if only the right sensor
is clear; Turn Right if only the left sensor is clear). Each of these manoeuvres is transient—once the
pivot or linear burst is completed, the logic forces the robot back into Stop and holds it there for a fixed
five-second dwell. This pause is intentional: it lets the motor’s PI speed-control loop settle, eliminates
overshoot, and gives the sensors a stable baseline before the next decision cycle. In other words,
every left or right turn, reverse move, or forward dash ultimately funnels back through a mandatory
five-second stop to ensure the PI controller and the robot’s heading are steady before new sensor data
can trigger the next action. Due to limited time, the team have not successfully completed the final
integration. The FSM performance could not be measured yet.

5.3.2. Temperature & Humidity Sensor Testing and Validation
To evaluate environmental sensors, SHT40 (temperature and humidity) and SGP40 (air quality) are
connected to the available I²C pins on the two Sapphires. Data was then logged to a CSV file using
wireless transmission to a TCP server. Time stamps were recorded in milliseconds, and both sensors
sampled data at roughly 0.5 Hz (one reading per two seconds).

The first part of the test was conducted on the SHT40 sensor, the test environment was indoor inside the
room, the sensor was placed on the table where a distance of 20 cm further away a digital thermometer
is placed. The sensor is set to measure the data every 2 seconds to make the measurement more
readable on Wi-Fi output. both the temperature and relative humidity are then measured. The result is
shown in Figure 5.8.

Figure 5.8: Temperature and relative humidity measurements

5.3. Sensing Module Implementation 28

Looking first at the left graph, the temperature is mainly within the range of 25.68 °C to 25.82 °C.
in Figure 5.9, a wired digital thermometer measured the temperature at 25.5 °C, which results in a
difference within the 0.3°C range.

Figure 5.9: Fluke T3000 FC Wired Digital Thermometer

The second graph on the right shows the RH(relative humidity). While our group did not have the
equipment to directly measure this value, an estimation can be set using the measured temperature
and the following formula:

RH =
e

es(T)
∗ 100% (5.1)

From this formula, the e is the actual vapor pressure, for simplicity assume it is constant and has
15.825 hPa as value, and es(T) is the saturation vapor pressure at temperature T, shown in Equation 5.2.
This formula shows that relative humidity is inversely related to temperature.

es(T) = 6.112 ∗ exp(17.67 ∗ T
T + 243.5

) (5.2)

In Figure 5.8, as the temperature drops, the RH increases correspondingly at those spots. Two green
markers have been added to both graphs at t = 50 seconds and t = 200 seconds to illustrate how the
temperature can effect the RH.

At t = 50 s, the measured temperature is 25.73 °C, using the Equation 5.2.

es(25.73) ≈ 31.7 hPa (5.3)

Assuming using the constant e:

RH =
15.825

31.7
∗ 100% ≈ 49.9% (5.4)

The measured RH is equal to 49.1 %, with is pretty close to the calculated one. Another point is at t =
200 s, the measured temperature is 25.78 °C. By following the same calculation as before, the RH is
calculated as 49.8 %. From the plot, RH is read as 48.7 %, which is also very close to the calculated
one.

5.3. Sensing Module Implementation 29

5.3.3. Air Quality Sensor Testing and Validation
As part of our study, our team also conducted a test using the SGP40 sensor to evaluate indoor air
quality. The sensor was placed in the same location as the previous sensor to ensure consistent
environmental conditions. In this experiment, data was sampled every 2 seconds, like the previous
one. This test has a duration of approximately 8 minutes.

The SGP40 outputs a VOC index, using the Sensiron’s onboard VOC algorithm[2]. As shown in Fig-
ure 5.10, the VOC index gradually increases during the first 270 seconds of the measurement. This
initial rise is expected, the sensor and its internal algorithm require a warm-up phase to adapt to the
surrounding air and to set a baseline. After this period, the readings begin to stabilize, indicating that
the sensor has completed its initialization and is now ready to read reliable air quality data.

Figure 5.10: VOC-index measurement over a period of 8 minutes

The VOC index value provided by the SGP40 sensor is normalized indicator of indoor air quality. In
Figure 5.11, according to the VOC index scale from the SGP40 datasheet [4], a value below 100 is
considered to represent clean or healthy indoor air. In our experiment, our result observed a VOC
index of approximately 77, which suggests that the air quality in the testing environment was good and
free from significant VOC pollution. The scale is designed to be intuitive: value between 0-100 indicate
very low VOC presence, 100-200 signal moderate levels, and values above 200 reflect increasingly
poor air quality.

Figure 5.11: Explanation of the VOC index scale[4]

5.4. Hardware Implementation 30

5.4. Hardware Implementation
In this subsection, we are going to go through the hardware implementation related to the Wireless
subgroup. The CAN connection, I²C connection and connection via reserved pins will be discussed.

5.4.1. Ultrasonic Distance Sensor on Diamond
The forward-facing ultrasonic sensor is hosted on the Diamond PCB rather than on Ruby or Sapphire
for a purely practical reason: Both of the latter boards have exhausted their free GPIOs after allocating
lines to the left and right-hand sensors, microphones, I²C bus, status LEDs, and debugging interfaces.
Diamond still exposes two spare ADC-capable pins, A1 and A2, as shown in Figure 5.12, assigned by a
red rectangle. Shown below, on its reserved header, are ideally suited for the sensor’s digital interface.

Figure 5.12: Front of Diamond (Motor Drive) Figure 5.13: Schematic of Diamond (Motor Drive)

At runtime, the ESP32-C3 on Diamond generates a 10 µs logic-high on TRIG, waits for the reflected
ECHO pulse, then measures its width with the RMT (Remote Control) peripheral at 40 MHz resolution.
The distance d is computed locally using the function shown below:

d =
Vsound

2
∗ t (5.5)

where the speed of sound is 343 m/s at room temperature and t is the measured pulse width.

The result, quantized to steps of 1 cm, is packed into a two-byte payload and broadcasts on the CAN
bus under frame ID 0x300 (left side) or 0x505 (right side). Sapphire subscribes to that ID, combines the
forward distance with the lateral readings it already receives from Ruby, and feeds the distances into
its local finite-state machine. If the freshly updated front distance violates the 30 cm safety threshold,
Sapphire forces an immediate transition to the Stop (or Turn) state and, after the prescribed five-second
dwell, re-evaluates the path.

Putting the front ultrasonic sensor on the Diamond board fixes our lack-of-pins problem without any
messy rewiring. We just use two spare pins already present in Diamond’s connector, and the distance
reading drops straight into the same CAN message list we’re using for everything else.

5.4.2. Alternative CAN Connection
The system was designed to link the two CAN buses with a pre-fabricated cable plugged into the
dedicated CAN connector. When that cable did not arrive due to a logistics delay, we replaced it with
a ’hardwired’ direct point-to-point link.

The schematic in Figure 5.14 shows a dedicated 4-pin “CAN Connector” intended to carry the complete
bus harness: CAN +, CAN-, + BATT (raw battery rail) and GND, via a pre-fabricated shielded cable.

To replace the missing prefabricated CAN cable, we simply hard-wired Figure 5.15 the two Sapphire
boards together. A red jumper carries the battery line (+BATT) from the left board to the right one, and

5.4. Hardware Implementation 31

a black jumper does the same for ground. A twisted blue-and-white pair connects CAN+ (CAN-H) to
CAN– (CAN-L), leaving the on-board termination resistors to do their job. Any other pins in the header
are left untouched. All four jumpers are soldered in place and protected with heat shrink tubing, giving
us the same electrical connection that the cable would have provided, just without the connector.

Figure 5.14: CAN Cable Example Figure 5.15: Fly-Wiring for CAN replacement

Right now the CAN bus is held together with a tangle of temporary jumpers, but that’s only a quick fix.
Once the proper cable shows up, we’ll pull those makeshift wires, plug in the ready-made connector,
and the setup will look tidy and professional again.

5.4.3. I2C
The two-wire bus is brought out on a labelled 4-pin I²C header in the centre of every Sapphire board—
pin order (from left to right) is SDA, SCL, +3V3 and GND on a 2.54 mm pitch, as shown in Figure 5.16
assigned by red rectangle. Each header already carries 4.7 kΩ pull-ups (R20, R21) to the 3 V3 rail, so
no extra resistors are needed when a sensor is attached. For easy prototyping, we tinned the pads,
dropped in short pin headers, and soldered them flush to the PCB; the sensor break-out boards then
slide straight onto these pins like miniature “shields”.

Two boards share the same I²C bus—one carries the air-quality sensor, the other a temperature-and-
humidity sensor. Because each device has its own address, they work side-by-side with no extra
wiring or code tweaks. We run the bus at 400 kHz, so even a full data packet is finished in well under
a millisecond and never interferes with the CAN traffic. The signals stay clean with jumper leads up to
about 20 cm; for anything longer we just twist the two wires together and keep them clear of the motor
leads to avoid electrical noise.

5.4. Hardware Implementation 32

Figure 5.16: Front View of Sapphire

Swapping a sensor is genuinely plug-and-play Figure 5.16: power the board off, lift the little daughter-
board off its four-pin header, press the new one on, power back up, and—if the newcomer uses a
different I²C address—change a single line in the firmware. No tracks are cut, no other modules are
disturbed, and the system is instantly ready for newer or more accurate environmental sensors.

6
Discussion

This project included different elements working together. Even though all of us worked well individually,
bringing components together into one fully integrated system did not go as planned. The reason for
this was the time constraints we faced, along with delays in receiving some essential components.

On the other side, most of the hardware and software components were designed and tested success-
fully. The CAN communication system was reliable and helped everything organized and simple. Each
message had its own ID and we could prioritize certain types of data when needed. We also left some
unused message slots on purpose, in this way it will be much easier to add more sensors or features
later on.

The two environmental sensors, especially the SHT40 temperature and humidity sensor, produced
accurate reading during testing. We compared the temperature values to a digital thermometer and
they were placed very close. For humidity, we didn’t have direct comparison device, but used theoretical
calculations to estimate expected values, which aligned well with the sensor readings.

The air quality sensor (SGP40) also performed as expected. It needed a fewminutes to warm up, which
we knew from the documentation. After that, stable readings are provided. The final measured VOC
index was in the ”clean air” range, which made sense given the indoor environment.

The software side was one of the important parts of the project. The web server running on the ESP32
made it easy to check live values and control the robot wirelessly. The python script handling Wi-Fi
communication and updated the live plots. We were also able to log data, save graphs, and even take
snapshots using user commands.

Unfortunately, we did not succeed in combining all the systems to create a fully operational robot with
other groups. A big part of this came down to the time, each group spent too long perfecting individual
components and did leave enough time to handle fully integration and testing as a whole system. On
top of that, some key parts (like the CAN cable) didn’t arrive on time, which forced us to make some
extra works. These temporary fixes worked to some extent, but they slowed down the process and
made it more difficult to debug the final system.

Overall, the results achieved so far have been satisfactory, a solid foundation was established. How-
ever, we also gained an important lesson in the value of planning ahead, allocatingmore time for system
integration, considering worst case scenarios, and developing plans for unforeseen issues.

33

7
Conclusion

By the end of our bachelor’s project, the wireless system does everything it should. The project met its
primary objective: demonstrating a reliable, low-cost communication layer for a modular robot. A fully
functional CAN backbone now links the power, sensing and drive modules; an I²C sub-bus supports
plug-and-play environmental sensors; a five-state finite-state machine steers the robot safely around
obstacles; and a Wi-Fi web page provides live telemetry and manual control. These elements col-
lectively prove that an ESP32-based architecture can satisfy real-time requirements while remaining
affordable and easy to reproduce in an educational setting.

The first point, our goal is not clear. At the start, we never settled down on exactly what “done” looked
like, so we kept changing utilities and redoing work. We have changed the communication protocol
from Bluetooth to Wi-Fi and wireless to cabled CAN communication. For the next time, we should draft
a single-page Definition of Done that lists every final deliverable as concise, measurable bullets. Pair
each bullet with its verification method, specify immutable interface details, set deadlines, and record
excluded features. Review mid-project, freeze revisions, and use the sheet as the only benchmark for
progress.

The second point is the communication within the group. This caused a lot of delay in the progress.
For instance, the motor, power and wireless groups each did their own thing for weeks, and we only
tried to bolt everything together near the deadline, leaving almost no time to fix bugs and continue with
Should-Have. On the other hand, logistics problems are also caused by miscommunication. We had to
replace the missing prefab cable with loose jumpers; they work, but they look rough and could short out.
For the next time, to avoid encountering organisational and wiring problems, two measures should be
taken from the outset. First, use shared digital task boards (Google To Do List) and schedule mandatory
bi-weekly full-system integration meetings; these practices allow for early detection of cross-discipline
interface failures, assign clear ownership, and ensure completion in the next sprint. Second, prefab-
ricated CAN harnesses should be ordered during the initial procurement phase to ensure hardware
reliability. If temporary jumpers are required, they must be heat-shrink sleeved, fitted with strain relief
anchors, and documented with colour-coded pinout diagrams. Together, these measures will simplify
the integration process, reduce potential failures, and produce a safer, more professional wiring layout.

At the end of this thesis, we will conclude everything we did. We have built a reliable and trustworthy
communication system. Even though they are not perfect, they satisfied our PoR.

34

References

[1] David Abreu et al. “Low-Cost Ultrasonic Range Improvements for an Assistive Device”. In: Sen-
sors 21.12 (2021), p. 4250. DOI: 10.3390/s21124250. URL: https://www.mdpi.com/1424-
8220/21/12/4250.

[2] Adafruit. Adafruit SGP40 Arduino Library. https://github.com/adafruit/Adafruit_SGP40.
Accessed: 2025-06-14. 2021.

[3] AfterAcademy. “What is a TCP 3-way handshake process?” In: AfterAcademy (2020). Accessed:
2025-06-06. URL: https://afteracademy.com/blog/what- is- a- tcp- 3- way- handshake-
process/.

[4] Sensirion AG. SGP40 Datasheet – Indoor Air Quality Sensor for VOC Measurements. https:
//www.farnell.com/datasheets/4020671.pdf. Accessed: 2025-06-06. 2021.

[5] Sensirion AG. SHT4x Datasheet – Digital Humidity Sensor. https://www.farnell.com/datash
eets/3512208.pdf. Accessed: 2025-06-06. 2022.

[6] Geoffrey Brown. “Discovering the STM32 microcontroller”. In: Cortex 3.34 (2012), p. 64.
[7] Espressif Systems. ESP-NOW API Reference - ESP32 - ESP-IDF Programming Guide. https:

//docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_
now.html. Accessed: 2025-06-13. 2025.

[8] Espressif Systems.ESP32–C3–WROOM–02&WROOM–02UDatasheet. Datasheet. Version v1.5.
Shanghai, China: Espressif Systems, Apr. 2025. URL: https://www.espressif.com/sites/
default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf.

[9] GeeksforGeeks. TCP 3-Way Handshake Process. Accessed: 2025-06-06. 2024. URL: https:
//www.geeksforgeeks.org/tcp-3-way-handshake-process/.

[10] GEMS Erasmus+ — gems-erasmus.eu. https://gems-erasmus.eu/. [Accessed 15-06-2025].
[11] C L Glennie et al. “Geodetic imaging with airborne LiDAR: the Earth’s surface revealed”. In: Re-

ports on Progress in Physics 76.8 (July 2013), p. 086801. DOI: 10.1088/0034- 4885/76/8/
086801. URL: https://dx.doi.org/10.1088/0034-4885/76/8/086801.

[12] handmade0octopus. ESP32 TWAI CAN. https : / / github . com / handmade0octopus / ESP32 -
TWAI-CAN. 2015.

[13] Jolle W Jolles. “Broad-scale applications of the Raspberry Pi: A review and guide for biologists”.
In: Methods in Ecology and Evolution 12.9 (2021), pp. 1562–1579.

[14] Yutaka Kaneda and Juro Ohga. “Adaptive microphone-array system for noise reduction”. In: IEEE
Transactions on Acoustics, Speech, and Signal Processing 34.6 (1986), pp. 1391–1400.

[15] Hermann Kopetz, Wilfried Elmenreich, and Christoph Mack. “A comparison of lin and ttp/a”. In:
2000 IEEE International Workshop on Factory Communication Systems. Proceedings (Cat. No.
00TH8531). IEEE. 2000, pp. 99–107.

[16] Neha R Laddha and AP Thakare. “A review on serial communication by UART”. In: International
journal of advanced research in computer science and software engineering 3.1 (2013).

[17] Hiram RayoTorres-Rodríguez. “Design and development of a driver based on J2716 standard for
data transmission on high electrical noise environments”. In: (2016).

[18] Emily J Smith et al. “Enhancing your everyday sight: An ultrasonic visual aid”. In: Frontiers in
Biomedical Devices. Vol. 84815. American Society of Mechanical Engineers. 2022, V001T04A001.

[19] Jonathan Valdez and Jared Becker. “Understanding the I2C bus”. In: Texas instruments (2015),
p. 8.

[20] Donald R Wehner. “High resolution radar”. In: Norwood (1987).

35

https://doi.org/10.3390/s21124250
https://www.mdpi.com/1424-8220/21/12/4250
https://www.mdpi.com/1424-8220/21/12/4250
https://github.com/adafruit/Adafruit_SGP40
https://afteracademy.com/blog/what-is-a-tcp-3-way-handshake-process/
https://afteracademy.com/blog/what-is-a-tcp-3-way-handshake-process/
https://www.farnell.com/datasheets/4020671.pdf
https://www.farnell.com/datasheets/4020671.pdf
https://www.farnell.com/datasheets/3512208.pdf
https://www.farnell.com/datasheets/3512208.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
https://www.espressif.com/sites/default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf
https://www.geeksforgeeks.org/tcp-3-way-handshake-process/
https://www.geeksforgeeks.org/tcp-3-way-handshake-process/
https://gems-erasmus.eu/
https://doi.org/10.1088/0034-4885/76/8/086801
https://doi.org/10.1088/0034-4885/76/8/086801
https://dx.doi.org/10.1088/0034-4885/76/8/086801
https://github.com/handmade0octopus/ESP32-TWAI-CAN
https://github.com/handmade0octopus/ESP32-TWAI-CAN

References 36

[21] Yi-HungWei et al. “RT-WiFi: Real-Time High-Speed Communication Protocol for Wireless Cyber-
Physical Control Applications”. In: 2013 IEEE 34th Real-TimeSystemsSymposium. 2013, pp. 140–
149. DOI: 10.1109/RTSS.2013.22.

https://doi.org/10.1109/RTSS.2013.22

A
Source Code

A.1. Right Sapphire
1 #include <ESP32-TWAI-CAN.hpp>
2 #include <Wire.h>
3 #include <Adafruit_SSD1306.h>
4 #include <Adafruit_GFX.h>
5 #include <Adafruit_SGP40.h>
6

7 // === CAN Pins ===
8 #define CAN_RX 4
9 #define CAN_TX 5
10

11 // === Display Settings ===
12 #define WIDTH 128
13 #define HEIGHT 32
14 #define SDA 11
15 #define SCL 12
16

17

18 Adafruit_SSD1306 display(WIDTH, HEIGHT, &Wire, -1);
19 Adafruit_SGP40 sgp; // SGP40 object
20

21 // === Data from CAN ===
22 float voltageRight = 0.0;
23 float currentRight = 0.0;
24 uint8_t ledIndexRight = 0;
25 float socRight = 0.0;
26 float distanceRight = 0.0;
27 float speedRight = 0.0; //CAN
28 float dutyCycleRight = 0.0;
29 float dutyCycleLeft = 0.0;
30 float tempEmeraldRight = 0.0; // CAN
31 uint8_t checkState = 0;
32 // === Threshold ===
33 int threshold = 30;
34 unsigned long lastFSMUpdate = 0;
35

36 // === VOC and TEMP and HUMI ===
37 bool key = false;
38 int N = 0;
39 unsigned long lastUpdate = 0;
40

41 // Declare global variables for temp and humi
42 float Temperature = 0.0;
43 float Humidity = 0.0;
44

45 uint16_t VOC = 0;
46

47

37

A.1. Right Sapphire 38

48 void updateOLED() {
49 display.clearDisplay();
50 display.setTextSize(1);
51 display.setTextColor(SSD1306_WHITE);
52 display.setCursor(0, 0);
53 display.print("V: "); display.print(voltageRight, 2); display.print("V ");
54 display.print("I: "); display.print(currentRight, 2); display.println("A");
55 // display.print("Dist: "); display.print(distance); display.print("cm ");
56 display.print("LED: "); display.println(ledIndexRight);
57 display.print("SOC:"); display.println(socRight);
58 display.print("VOC:"); display.println(VOC);
59 display.display();
60 }
61

62 void setup() {
63 Serial.begin(115200);
64 Wire.begin(SDA, SCL);
65

66 // Search for existing I2c Address
67 Serial.println("I2C Scanner");
68 for (uint8_t addr = 1; addr < 127; addr++) {
69 Wire.beginTransmission(addr);
70 if (Wire.endTransmission() == 0) {
71 Serial.print("I2C device found at 0x");
72 Serial.println(addr, HEX);
73 delay(10);
74 }
75 }
76 Serial.println("Scan done.");
77 if (!display.begin(SSD1306_SWITCHCAPVCC , 0x3C)) {
78 Serial.println(F("OLED init failed"));
79 while (1);
80 }
81

82 display.clearDisplay();
83 display.setTextSize(1);
84 display.setCursor(0, 0);
85 display.println("Starting...");
86 display.display();
87

88 // === CAN Init ===
89 ESP32Can.setPins(CAN_TX, CAN_RX);
90 ESP32Can.setSpeed(ESP32Can.convertSpeed(500));
91 ESP32Can.setRxQueueSize(10);
92 ESP32Can.setTxQueueSize(10);
93

94 if (!ESP32Can.begin()) {
95 Serial.println("CAN init failed");
96 while (1);
97 }
98 Serial.println("CAN Ready");
99

100 // SGP40 init
101 if (!sgp.begin()) {
102 Serial.println("SGP40 not found :(");
103 while (true); // Freeze if sensor not found
104 }
105 Serial.println("SGP40 ready!");
106

107 Serial.println("Ready to send command to right Sapphire");
108 }
109

110 //not used, do not want to change structure
111 void sendCANCommand(uint8_t state) {
112 CanFrame frame = { 0 };
113 frame.identifier = 0x000;
114 frame.extd = 0;
115 frame.data_length_code = 1;
116 frame.data[0] = state;
117

118 ESP32Can.writeFrame(frame);

A.1. Right Sapphire 39

119 }
120

121 void sendLEDCANCommand(uint8_t ledIndex) {
122 CanFrame frame = { 0 };
123 frame.identifier = 0x500;
124 frame.extd = 0;
125 frame.data_length_code = 2;
126 frame.data[0] = 0x01;
127 frame.data[1] = ledIndex;
128

129 ESP32Can.writeFrame(frame);
130 }
131

132 void sendcheckCommand(uint8_t checkState) {
133 CanFrame frame = { 0 };
134 frame.identifier = 0x720;
135 frame.extd = 0;
136 frame.data_length_code = 2;
137 frame.data[0] = 0x01;
138 frame.data[1] = checkState;
139

140 ESP32Can.writeFrame(frame);
141 }
142

143

144 // uint8_t state(float distanceLeft, float distanceRight, float distanceFront){
145 // // === FSM based on distance sensors every 1s ===
146 // unsigned long now = millis();
147 // if (now - lastFSMUpdate >= 1000) {
148 // lastFSMUpdate = now;
149 // bool L = distanceLeft < threshold;
150 // bool R = distanceRight < threshold;
151 // bool F = distanceFront < threshold;
152

153 // uint8_t action = 0; // 0 = stop, 1 = forward, 2 = backward, 3 = right, 4 = left, 5 =
left/right

154

155 // if (!L && !R && !F) action = 1;
156 // else if (!L && !R && F) action = 5;
157 // else if (!L && R && F) action = 4;
158 // else if (!L && R && !F) action = 4;
159 // else if (L && !R && F) action = 3;
160 // else if (L && !R && !F) action = 3;
161 // else if (L && R && !F) action = 3;
162 // else if (L && R && F) action = 5;
163 // else action = 0;
164 // }
165 // return action;
166 // }
167 void sendDriveCommand(uint8_t command) {
168 // command: 0 = stop, 1 = forward, 2 = backward, 3 for right, 4 for left, 5 for left/right
169 CanFrame frame = { 0 };
170 frame.identifier = 0x710;
171 frame.extd = 0;
172 frame.data_length_code = 6;
173 frame.data[0] = command;
174 ESP32Can.writeFrame(frame);
175

176 if (ESP32Can.writeFrame(frame)) {
177 Serial.print("Sent Drive Command to Diamond: ");
178 Serial.println(command);
179 } else {
180 Serial.println("Failed to send drive command");
181 }
182 }
183

184 void sendDriveduty(float command) {
185 CanFrame frame = { 0 };
186 frame.identifier = 0x730;
187 frame.extd = 0;
188 frame.data_length_code = 6;

A.1. Right Sapphire 40

189 frame.data[0] = command;
190 ESP32Can.writeFrame(frame);
191

192 if (ESP32Can.writeFrame(frame)) {
193 Serial.print("Sent Drive Command to Diamond: ");
194 Serial.println(command);
195 } else {
196 Serial.println("Failed to send drive command");
197 }
198 }
199

200 void loop() {
201 VOC = sgp.measureVocIndex();
202 Serial.print("VOC: ");
203 Serial.println(VOC);
204 unsigned long now = millis();
205

206 // === CAN Receive ===
207 CanFrame frame;
208 while (ESP32Can.readFrame(frame, 10)) {
209 switch (frame.identifier) {
210 case 0x405: // voltageLeft, currentRight, socLeft
211 if (frame.data_length_code >= 6) {
212 uint16_t current_mA = (frame.data[3] << 8) | frame.data[2];
213 uint16_t voltage_mV = (frame.data[5] << 8) | frame.data[4];
214 currentRight = current_mA / 1000.0;
215 voltageRight = voltage_mV / 1000.0;
216 socRight = frame.data[1];
217 }
218 break;
219

220 case 0x500: // ledIndexLeft (receive visual feedback)
221 if (frame.data_length_code == 2) {
222 ledIndexRight = frame.data[1];
223 }
224 break;
225

226 case 0x705: // Speed
227 if (frame.data_length_code == 2) {
228 speedRight = frame.data[1];
229 }
230 break;
231

232 // case 0x700: // Duty cycle check
233 // if (frame.data_length_code == 2) {
234 // ledIndexRight = frame.data[1];
235 // }
236 // break;
237 case 0x315: // checkstate
238 if (frame.data_length_code == 2) {
239 checkState = frame.data[1];
240 }
241 sendcheckCommand(checkState);
242 break;
243 // case 0x300: // distanceLeft
244 // if (frame.data_length_code == 4) {
245 // memcpy(&distanceLeft, &frame.data[0], sizeof(float));
246 // Serial.print("distance Left: ");
247 // Serial.print(distanceLeft);
248 // Serial.println("cm");
249 // }
250 // break;
251

252 case 0x505: // distanceRight
253 if (frame.data_length_code == 4) {
254 memcpy(&distanceRight, &frame.data[0], sizeof(float));
255 Serial.print("distance right: ");
256 Serial.print(distanceRight);
257 Serial.println("cm");
258 }
259 break;

A.2. Left Sapphire 41

260

261 case 0x700: // duty_cycle right
262 if (frame.data_length_code == 4) {
263 memcpy(&dutyCycleRight, &frame.data[0], sizeof(float));
264 Serial.print("Duty Cycle: ");
265 Serial.println(dutyCycleRight);
266 sendDriveduty(dutyCycleRight);
267 }
268 break;
269

270 case 0x220: // duty left
271 if (frame.data_length_code == 4) {
272 memcpy(&dutyCycleLeft, &frame.data[0], sizeof(float));
273 Serial.print("distance front: ");
274 Serial.print(dutyCycleLeft);
275 Serial.println("cm");
276 }
277 break;
278 default:
279 Serial.print("Unknown CAN ID: 0x");
280 Serial.println(frame.identifier, HEX);
281 break;
282 }
283 }
284 }

A.2. Left Sapphire
1 WiFiClient client = server.available();
2 if (client) {
3 Serial.println("Client connected");
4 while (!client.available()) delay(1);
5 String request = client.readStringUntil('\r');
6 client.flush();
7

8 // === Command Handling ===
9 if (request.indexOf("/on") != -1) {
10 sendCANCommand(1);
11 } else if (request.indexOf("/off") != -1) {
12 sendCANCommand(0);
13 } else if (request.indexOf("/led?val=") != -1) {
14 int valIndex = request.indexOf("/led?val=") + 9;
15 uint8_t val = request.substring(valIndex, request.indexOf(' ', valIndex)).toInt();
16 if (val <= 6) {
17 sendLEDCANCommand(val);
18 }
19 } else if (request.indexOf("/forward") != -1) {
20 action = 1;
21 sendDriveCommand(action);
22 } else if (request.indexOf("/backward") != -1) {
23 action = 2;
24 sendDriveCommand(action);
25 } else if (request.indexOf("/stop") != -1) {
26 action = 0;
27 sendDriveCommand(action);
28 }
29

30 // === Web Page ===
31 client.println("HTTP/1.1 200 OK");
32 client.println("Content-Type: text/html");
33 client.println("Connection: close");
34 client.println();
35 client.println("<!DOCTYPE html><html><head><meta http-equiv='refresh' content='2'>");
36 client.println("<title>GEMS Sapphire</title></head><body style='text-align:center;'>");
37 client.println("<h1>GEMS Sapphire Status</h1>");
38 client.print("<p>Voltage: "); client.print(voltageLeft); client.println(" V</p>");
39 client.print("<p>Current: "); client.print(currentLeft); client.println(" A</p>");
40 client.print("<p>LED Index: "); client.print(ledIndexLeft); client.println("</p>");
41 client.print("<p>SoC: "); client.print(socLeft); client.println("</p>");
42 client.print("<p>Temperature: "); client.print(Temperature); client.println("</p>");

A.3. Left Ruby 42

43 client.print("<p>Humidity: "); client.print(Humidity); client.println(" </p>");
44 // client.print("<p>VOC: "); client.print(VOC); client.println("</p>");
45

46 client.println("
<button style='padding:10px;'>Turn ON Emerald</button>");

47 client.println("<button style='padding:10px;'>Turn OFF Emerald</button>");

48

49 client.println("<hr><form action='/led'>");
50 client.println("LED Index (0-6): <input name='val' type='number' min='0' max='6'>");
51 client.println("<input type='submit' value='Set LED'>");
52 client.println("</form>");
53

54 client.println("<hr><h2>Drive Control</h2>");
55 client.println("<button style='padding:10px;'>Forward</button>");
56 client.println("<button style='padding:10px;'>Backward</button>");
57 client.println("<button style='padding:10px;'>Stop</button>");
58 client.println("</body></html>");
59 client.stop();
60 }
61 }

A.3. Left Ruby
1 #include <WiFi.h>
2 #include <ESP32-TWAI-CAN.hpp>
3 #include "Adafruit_SHT4x.h"
4

5 // === Can Pins ===
6 #define CAN_RX 4
7 #define CAN_TX 5
8

9 // === Other pins ===
10 #define MIC_L 0
11 #define MIC_R 1
12 #define LED_A 3
13 #define LED_B 7
14 #define LED_C 10
15 #define BTN 9
16 #define US_TRIG 20
17 #define US_ECHO 21
18

19 #define MIC_GAIN 123
20

21 #define H 1
22 #define L 0
23 #define Z -1
24

25

26 // === WiFi Settings ===
27 const char* ssid = "GEMS_Sapphire";
28 const char* password = "equalequal";
29 const char* host = "192.168.3.4"; // Replace with your PC's IP address
30

31 const uint16_t port = 12345;
32

33 // === distance variables ===
34 long duration;
35 float distanceLeft;
36

37 // === Data from CAN ===
38 float temperature = 0.0;
39 float temp = 0.0; // temp from the Emerald
40 float humidity = 0.0;
41 uint8_t VOC = 0;
42 float voltage = 0;
43 float current = 0;
44 float SOC = 0;
45 unsigned long ts = 0;
46

A.3. Left Ruby 43

47 // === Robot Position ===
48 int x = 0;
49 int y = 0;
50 float velocity = 0.1; // meters per second (example)
51 int direction = 1; // 0=static, 1=forward, 2=backward, 3=right, 4=left
52

53 WiFiClient client;
54 unsigned long lastSendTime = 0;
55 const unsigned long sendInterval = 5000; // 5 seconds
56

57 void setup() {
58 Serial.begin(115200);
59

60 // === Ruby general pins ===
61 pinMode(LED_A, OUTPUT);
62 pinMode(LED_B, OUTPUT);
63 pinMode(LED_C, OUTPUT);
64 pinMode(US_TRIG, OUTPUT);
65 pinMode(US_ECHO, INPUT);
66

67 digitalWrite(LED_A, LOW);
68 digitalWrite(LED_B, LOW);
69 digitalWrite(LED_C, LOW);
70

71 delay(300);
72 Serial.println("Ultrasonic LED distance display");
73

74 // === Using this code to check available services ===
75 Serial.println("Scanning for networks...");
76

77 int n = WiFi.scanNetworks();
78 if (n == 0) {
79 Serial.println("No networks found.");
80 } else {
81 Serial.println("Networks found:");
82 for (int i = 0; i < n; ++i) {
83 Serial.printf("%d: %s (%d dBm)\n", i + 1, WiFi.SSID(i).c_str(), WiFi.RSSI(i));
84 delay(10);
85 }
86 }
87

88 // === Connect to WiFi ===
89 WiFi.begin(ssid, password);
90 Serial.print("Connecting to WiFi");
91 while (WiFi.status() != WL_CONNECTED) {
92 delay(500);
93 Serial.print(".");
94 }
95 Serial.println("\nWiFi connected!");
96 Serial.println(WiFi.localIP());
97

98 Serial.print("Pinging host: ");
99 Serial.println(host);
100 if (WiFi.status() == WL_CONNECTED) {
101 Serial.println("WiFi is connected.");
102 } else {
103 Serial.println("WiFi not connected.");
104 }
105

106 // === Can init ===
107 ESP32Can.setPins(CAN_TX, CAN_RX);
108 ESP32Can.setTxQueueSize(10);
109 ESP32Can.setRxQueueSize(10);
110 ESP32Can.setSpeed(ESP32Can.convertSpeed(500));
111

112 if (!ESP32Can.begin()) {
113 Serial.println("CAN init failed");
114 while (1);
115 }
116 Serial.println("CAN Ready");
117 }

A.3. Left Ruby 44

118

119 void loop() {
120 // === Check the connection ===
121 if (!client.connected()) {
122 Serial.println("Connecting to server...");
123 if (client.connect(host, port)) {
124 Serial.println("Connected to Python server!");
125 } else {
126 Serial.println("Connection failed.");
127 delay(5000);
128 return;
129 }
130 }
131

132 // === distance determination ===
133 distanceLeft = getDistance();
134 int ledIndex = mapDistanceToLED(distanceLeft);
135 single_LED(ledIndex);
136

137 // === Send CAN ===
138 distanceLeft(distanceLeft);
139 ledIndexLeft(ledIndex);
140

141 // delay(1000);
142 // === CAN receive ===
143 CanFrame frame;
144 while (ESP32Can.readFrame(frame, 10)) {
145 if (frame.identifier == 0x330 && frame.data_length_code == 8) {
146

147 memcpy(&temperature, &frame.data[0], sizeof(float));
148 memcpy(&humidity, &frame.data[4], sizeof(float));
149

150 Serial.print("Temperature: ");
151 Serial.print(temperature);
152 Serial.print(" C, Humidity: ");
153 Serial.print(humidity);
154 Serial.println(" %");
155 }
156 if (frame.identifier == 0x102 && frame.data_length_code >= 4) {
157 memcpy(&ts, &frame.data[0], sizeof(unsigned long));
158

159 Serial.print("Timestamps: ");
160 Serial.print(ts);
161 Serial.println(" ms");
162 }
163

164 if (frame.identifier == 0x110 && frame.data_length_code >= 4) {
165 memcpy(&SOC, &frame.data[0], sizeof(float));
166

167 Serial.print("SOC: ");
168 Serial.print(SOC);
169 Serial.println(" %");
170 }
171

172 if (frame.identifier == 0x100 && frame.data_length_code >= 8) {
173 memcpy(¤t, &frame.data[0], sizeof(float));
174 memcpy(&voltage, &frame.data[4], sizeof(float));
175

176 Serial.print("Voltage ");
177 Serial.print(voltage);
178 Serial.print(" mV : Current: ");
179 Serial.print(current);
180 Serial.println(" mA");
181 }
182 if (frame.identifier == 0x106 && frame.data_length_code >= 4) {
183 memcpy(&temp, &frame.data[0], sizeof(float));
184

185 Serial.print("Temp Emerald ");
186 Serial.print(temp);
187 Serial.println(" C");
188 }

A.3. Left Ruby 45

189 }
190

191

192 x = x + 1;
193 y = y + 1;
194

195 // char data[64];
196 char data_power[64];
197

198 // Data for temperature and humidity
199 snprintf(data, sizeof(data), "%d,%d,%.2f,%.2f\n", x, y, temperature, humidity);
200 client.print(data);
201 Serial.print("Sent: ");
202 Serial.println(data);
203

204 // Format voltage, current, and SoC data
205 snprintf(data_power, sizeof(data_power), "P, %lu, %.2f, %.2f, %.2f, %.2f\n", ts, SOC,

voltage, current, temp);
206 client.print(data_power);
207 Serial.print("Power: ");
208 Serial.println(data_power);
209

210 delay(3000);
211

212 }
213

214 // === equation for distance ===
215 float getDistance() {
216 digitalWrite(US_TRIG, LOW);
217 delayMicroseconds(2);
218 digitalWrite(US_TRIG, HIGH);
219 delayMicroseconds(10);
220 digitalWrite(US_TRIG, LOW);
221

222 duration = pulseIn(US_ECHO, HIGH, 30000); // timeout at ~5m
223 float distance = duration * 0.034 / 2; // cm
224 return distance;
225 }
226

227 // === map distance to LED ===
228 int mapDistanceToLED(float d) {
229 if (d < 10) return 0;
230 else if (d < 20) return 1;
231 else if (d < 30) return 2;
232 else if (d < 40) return 3;
233 else if (d < 50) return 4;
234 else if (d < 60) return 5;
235 else return 6;
236 }
237

238 void single_LED(int n) {
239 switch (n) {
240 case 0: setCharlieplex(Z, Z, Z); break;
241 case 1: setCharlieplex(L, H, Z); break;
242 case 2: setCharlieplex(L, Z, H); break;
243 case 3: setCharlieplex(Z, L, H); break;
244 case 4: setCharlieplex(H, L, Z); break;
245 case 5: setCharlieplex(H, Z, L); break;
246 case 6: setCharlieplex(Z, H, L); break;
247 }
248 }
249

250 // === Set Charlieplex ===
251 void setCharlieplex(int A, int B, int C) {
252 setCharlieplexPin(LED_A, A);
253 setCharlieplexPin(LED_B, B);
254 setCharlieplexPin(LED_C, C);
255 }
256

257 void setCharlieplexPin(int X, int S) {
258 switch (S) {

A.4. Right Ruby 46

259 case L: pinMode(X, OUTPUT); digitalWrite(X, LOW); break;
260 case H: pinMode(X, OUTPUT); digitalWrite(X, HIGH); break;
261 case Z: pinMode(X, INPUT); break;
262 }
263 }
264

265 // === send CAN distance ===
266 void distanceLeft(float distance){
267 CanFrame frame = {0};
268 frame.identifier = 0x205;
269 frame.extd = 0;
270 frame.data_length_code = 4;
271

272 // Convert float to 4 bytes
273 memcpy(&frame.data[0], &distance, sizeof(float));
274

275 ESP32Can.writeFrame(frame);
276 }
277

278 void ledIndexLeft(uint8_t ledIndex){
279 CanFrame frame = {0};
280 frame.identifier = 0x200;
281 frame.extd = 0;
282 frame.data_length_code = 1;
283

284 // Convert float to 4 bytes
285 frame.data[0] = ledIndex;
286

287 ESP32Can.writeFrame(frame);
288 }

A.4. Right Ruby
1 #include <ESP32-TWAI-CAN.hpp>
2

3 #define LED_A 3
4 #define LED_B 7
5 #define LED_C 10
6 #define CAN_RX 4
7 #define CAN_TX 5
8 #define BTN 9
9 #define US_TRIG 20
10 #define US_ECHO 21
11

12 #define MIC_GAIN 123
13

14 #define H 1
15 #define L 0
16 #define Z -1
17

18 long duration;
19 float distanceRight;
20

21 void setup() {
22 Serial.begin(115200);
23

24

25 pinMode(LED_A, OUTPUT);
26 pinMode(LED_B, OUTPUT);
27 pinMode(LED_C, OUTPUT);
28 pinMode(US_TRIG, OUTPUT);
29 pinMode(US_ECHO, INPUT);
30

31 digitalWrite(LED_A, LOW);
32 digitalWrite(LED_B, LOW);
33 digitalWrite(LED_C, LOW);
34

35 delay(3000);
36 Serial.println("Ultrasonic LED distance display");
37

A.4. Right Ruby 47

38 // === Can init ===
39 ESP32Can.setPins(CAN_TX, CAN_RX);
40 ESP32Can.setTxQueueSize(10);
41 ESP32Can.setRxQueueSize(10);
42 ESP32Can.setSpeed(ESP32Can.convertSpeed(500));
43

44 if (!ESP32Can.begin()) {
45 Serial.println("CAN init failed");
46 while (1);
47 }
48 Serial.println("CAN Ready");
49

50

51 }
52

53

54 void loop() {
55

56 // === distance determination ===
57 distanceRight = getDistance();
58 Serial.print("Distance right: ");
59 Serial.print(distanceRight);
60 Serial.println(" cm");
61

62 uint8_t ledIndex = mapDistanceToLED(distanceRight);
63 single_LED(ledIndex);
64

65 // === Send CAN ===
66 distanceRight(distanceRight);
67 ledIndexRight(ledIndex);
68

69 delay(1000);
70 }
71

72

73 float getDistance() {
74 digitalWrite(US_TRIG, LOW);
75 delayMicroseconds(2);
76 digitalWrite(US_TRIG, HIGH);
77 delayMicroseconds(10);
78 digitalWrite(US_TRIG, LOW);
79

80 duration = pulseIn(US_ECHO, HIGH, 30000); // timeout at ~5m
81 float distance = duration * 0.034 / 2; // cm
82 return distance;
83 }
84

85 int mapDistanceToLED(float d) {
86 if (d < 10) return 0;
87 else if (d < 20) return 1;
88 else if (d < 30) return 2;
89 else if (d < 40) return 3;
90 else if (d < 50) return 4;
91 else if (d < 60) return 5;
92 else return 6;
93 }
94

95 void single_LED(int n) {
96 switch (n) {
97 case 0: setCharlieplex(Z, Z, Z); break;
98 case 1: setCharlieplex(L, H, Z); break;
99 case 2: setCharlieplex(L, Z, H); break;
100 case 3: setCharlieplex(Z, L, H); break;
101 case 4: setCharlieplex(H, L, Z); break;
102 case 5: setCharlieplex(H, Z, L); break;
103 case 6: setCharlieplex(Z, H, L); break;
104 }
105 }
106

107 void setCharlieplex(int A, int B, int C) {
108 setCharlieplexPin(LED_A, A);

A.5. Python script to process sensor data 48

109 setCharlieplexPin(LED_B, B);
110 setCharlieplexPin(LED_C, C);
111 }
112

113 void setCharlieplexPin(int X, int S) {
114 switch (S) {
115 case L: pinMode(X, OUTPUT); digitalWrite(X, LOW); break;
116 case H: pinMode(X, OUTPUT); digitalWrite(X, HIGH); break;
117 case Z: pinMode(X, INPUT); break;
118 }
119 }
120

121 // === send CAN distance ===
122 void distanceRight(float distance){
123 CanFrame frame = {0};
124 frame.identifier = 0x505;
125 frame.extd = 0;
126 frame.data_length_code = 4;
127

128 // Convert float to 4 bytes
129 memcpy(&frame.data[0], &distance, sizeof(float));
130

131 ESP32Can.writeFrame(frame);
132 }
133

134 void ledIndexRight(uint8_t ledIndex){
135 CanFrame frame = {0};
136 frame.identifier = 0x500;
137 frame.extd = 0;
138 frame.data_length_code = 1;
139

140 // Convert float to 4 bytes
141 frame.data[0] = ledIndex;
142

143 ESP32Can.writeFrame(frame);
144 }

A.5. Python script to process sensor data
1 """
2 Sensor Network Visualizer & Logger
3 ----------------------------------
4

5 This Python script sets up a server application that receives sensor data over a TCP socket,
processes it in real time, logs it into CSV files, and displays it graphically using
matplotlib.

6

7 Key Features:
8 - Listens for incoming sensor data on a specified host and port.
9 - Supports three types of environmental data per grid coordinate:
10 - Temperature (°C)
11 - Humidity (%)
12 - Air Quality Index (AQI)
13 - Also logs power system telemetry:
14 - Timestamp, State of Charge (SoC), Voltage, Current, Internal Temperature
15 """
16

17

18 import socket
19 import matplotlib.pyplot as plt
20 import numpy as np
21 import threading
22 import csv
23 import os
24 from datetime import datetime
25

26 # === Configuration ===
27 host = "0.0.0.0"
28 port = 12345
29 map_size = 15

A.5. Python script to process sensor data 49

30

31 temperature_map = [[None for _ in range(map_size)] for _ in range(map_size)]
32 humidity_map = [[None for _ in range(map_size)] for _ in range(map_size)]
33 air_quality_map = [[None for _ in range(map_size)] for _ in range(map_size)]
34 lock = threading.Lock()
35 save_requested = threading.Event()
36

37 # === General CSV Setup ===
38 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
39 directory = "data"
40 os.makedirs(directory, exist_ok=True)
41

42 # === Sensing CSV Setup ===
43 csv_filename = os.path.join(directory, f"sensor_data_{timestamp}.csv")
44 csv_file = open(csv_filename, mode='w', newline='')
45 csv_writer = csv.writer(csv_file)
46 csv_writer.writerow(["x", "y", "temperature", "humidity", "air_quality"])
47

48 # === Power CSV Setup ===
49 power_csv_filename = os.path.join(directory, f"power_data_{timestamp}.csv")
50 power_csv_file = open(power_csv_filename, mode='w', newline='')
51 power_csv_writer = csv.writer(power_csv_file)
52 power_csv_writer.writerow(["timestamp", "SoC", "voltage", "current", "temperature"])
53

54 # === Save Functions ===
55 def save_to_csv(x, y, temp, hum, air_quality):
56 csv_writer.writerow([x, y, temp, hum, air_quality])
57 csv_file.flush()
58

59 def save_to_csv_power(ts, SOC, voltage, current, temperature):
60 power_csv_writer.writerow([ts, SOC, voltage, current, temperature])
61 power_csv_file.flush()
62

63 # === Manual Save Thread ===
64 def manual_save_command():
65 while True:
66 command = input("[Command] Type 'save' to export plot image:\n ").strip().lower()
67 if command == "save":
68 save_requested.set()
69

70 # === Socket Thread ===
71 def handle_socket_connection():
72 global temperature_map, humidity_map, air_quality_map
73 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
74 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
75 s.bind((host, port))
76 s.listen(1)
77 print(f"[Socket] Listening on {host}:{port}")
78

79 conn, addr = s.accept()
80 print(f"[Socket] Connected by {addr}")
81 with conn:
82 buffer = ""
83 while True:
84 data = conn.recv(1024)
85 if not data:
86 break
87 buffer += data.decode()
88

89 while "\n" in buffer:
90 line, buffer = buffer.split("\n", 1)
91 try:
92 parts = line.strip().split(",")
93 tag = parts[0]
94 values = list(map(float, parts[1:]))
95

96 # Sensor data: x, y, temperature, humidity, air_quality
97 if tag == "T" and len(values) == 5:
98 x, y, temp, hum, aq = values
99 x = int(x)
100 y = int(y)

A.5. Python script to process sensor data 50

101 if 0 <= x < map_size and 0 <= y < map_size:
102 with lock:
103 temperature_map[y][x] = temp
104 humidity_map[y][x] = hum
105 air_quality_map[y][x] = aq
106 save_to_csv(x, y, temp, hum, aq)
107 print(f"[Data] ({x},{y}): Temp={temp:.2f}°C, Hum={hum:.2f}%,

AQ={aq:.2f}")
108

109 # Power data: timestamp, soc, voltage, current, temp
110 elif tag == "P" and len(values) == 5:
111 timestamp, soc, voltage, current, temp = values
112 save_to_csv_power(timestamp, soc, voltage, current, temp)
113 print(f"[Power] Timestamp={timestamp:.2f}ms SoC={soc:.2f}%, V={

voltage:.2f}V, I={current:.2f}A, Temp={temp:.2f}°C")
114

115 else:
116 print("[Error] Unexpected number of values:", line)
117

118 except ValueError:
119 print("[Error] Invalid line:", line)
120

121 # === Start Threads ===
122 threading.Thread(target=manual_save_command, daemon=True).start()
123 threading.Thread(target=handle_socket_connection , daemon=True).start()
124

125 # === GUI Setup ===
126 plt.ion()
127 fig, (temp_ax, hum_ax, air_ax) = plt.subplots(1, 3, figsize=(15, 5))
128

129 temp_img = temp_ax.imshow(np.zeros((map_size, map_size)), cmap='hot_r', origin='lower', vmin
=0, vmax=40)

130 hum_img = hum_ax.imshow(np.zeros((map_size, map_size)), cmap='Blues', origin='lower', vmin=0,
vmax=100)

131 air_img = air_ax.imshow(np.zeros((map_size, map_size)), cmap='Greens', origin='lower', vmin
=0, vmax=500)

132

133 fig.colorbar(temp_img, ax=temp_ax)
134 fig.colorbar(hum_img, ax=hum_ax)
135 fig.colorbar(air_img, ax=air_ax)
136

137 temp_texts = [[temp_ax.text(x, y, "", ha="center", va="center", fontsize=8) for x in range(
map_size)] for y in range(map_size)]

138 hum_texts = [[hum_ax.text(x, y, "", ha="center", va="center", fontsize=8) for x in range(
map_size)] for y in range(map_size)]

139 air_texts = [[air_ax.text(x, y, "", ha="center", va="center", fontsize=8) for x in range(
map_size)] for y in range(map_size)]

140

141 # === Live GUI Update Loop ===
142 try:
143 while True:
144 with lock:
145 temp_data = np.array([[cell if cell is not None else np.nan for cell in row] for

row in temperature_map])
146 hum_data = np.array([[cell if cell is not None else np.nan for cell in row] for

row in humidity_map])
147 air_data = np.array([[cell if cell is not None else np.nan for cell in row] for

row in air_quality_map])
148

149 temp_img.set_data(temp_data)
150 hum_img.set_data(hum_data)
151 air_img.set_data(air_data)
152

153 for y in range(map_size):
154 for x in range(map_size):
155 t = temp_data[y][x]
156 h = hum_data[y][x]
157 a = air_data[y][x]
158

159 temp_texts[y][x].set_text(f"{t:.1f}" if not np.isnan(t) else "")
160 hum_texts[y][x].set_text(f"{h:.1f}" if not np.isnan(h) else "")

A.5. Python script to process sensor data 51

161 air_texts[y][x].set_text(f"{a:.1f}" if not np.isnan(a) else "")
162

163 temp_ax.set_title("Temperature (°C)")
164 hum_ax.set_title("Humidity (%)")
165 air_ax.set_title("Air Quality (AQI)")
166

167 for ax in (temp_ax, hum_ax, air_ax):
168 ax.set_xlabel("X")
169 ax.set_ylabel("Y")
170

171 if save_requested.is_set():
172 image_filename = os.path.join(directory, f"sensor_map_{datetime.now().

strftime('%Y%m%d_%H%M%S')}.png")
173 fig.savefig(image_filename)
174 print(f"[Save] Image saved as '{image_filename}'")
175 print(f"[Info] Data is being logged in '{csv_filename}'")
176 save_requested.clear()
177

178 plt.pause(1)
179

180 except KeyboardInterrupt:
181 print("\n[Exit] Interrupted by user.")
182

183 finally:
184 image_filename = os.path.join(directory, f"sensor_map_{datetime.now().strftime('%Y%m%d_%H

%M%S')}.png")
185 fig.savefig(image_filename)
186 print(f"[Save] Final image saved as '{image_filename}'")
187 print(f"[Info] Final sensor data saved in '{csv_filename}'")
188

189 plt.ioff()
190 plt.close()
191 csv_file.close()
192 power_csv_file.close()
193 print(f"[Info] Final power data saved in '{power_csv_filename}'")

B
Task Division

Table B.1: Distribution of the workload

Task Student Name(s)

Preface Weikai Chen
Nonenclature Weikai Chen
Summary Guangran Ran

Chapter 1 Introduction Guangran Ran
Chapter 2 Literature study Guangran Ran
Chapter 3 Program of Requirements Guangran Ran & Weikai Chen
Chapter 4.1 System Architecture Overview Guangran Ran & Weikai Chen
Chapter 4.2 Modular Communication via CAN Bus Guangran Ran
Chapter 4.3 Wireless Communication Design Guangran Ran & Weikai Chen
Chapter 4.4 Sensor Integration and Environmental

Monitoring
Weikai Chen

Chapter 4.5 Ultrasonic Sensing and Motor Control Guangran Ran
Chapter 4.6 2D Grid Mapping Guangran Ran & Weikai Chen
Chapter 4.7 Data Storage and Transmission Weikai Chen
Chapter 5.1 Communication Module Implementation Guangran Ran
Chapter 5.2 Software Implementation Weikai Chen & Guangran Ran
Chapter 5.3 Sensing Module Implementation Weikai Chen
Chapter 5.4 Hardware Implementation Weikai Chen & Guangran Ran
Chapter 6 Discussion Weikai Chen
Chapter 7 Conclusion Guangran Ran

Arduino code Guangran Ran & Weikai Chen
Python code Guangran Ran & Weikai Chen
CAD and Figures Weikai Chen & Guangran Ran
Document Design and Layout Weikai Chen & Guangran Ran

52

	Preface
	Summary
	Nomenclature
	Introduction
	Introduction from Whole Group
	State-of-Art Analysis
	Problem Definition
	The Situation
	Group Division
	What We Did
	Why It Matters

	Thesis Synopsis

	Literature Study
	Communication Protocols

	Program of Requirements
	Main Program of Requirement
	Subgroup Program of Requirement
	Functionality Requirements
	Implementation Requirements

	Design specification
	System architecture overview
	Modular communication via CAN bus
	Wireless communication design
	Wi-Fi communication with host PC
	ESP-NOW communication between modules

	Sensor Integration and environmental monitoring
	Sensor selection
	Sensor placement
	Sampling strategy

	Ultrasonic sensing and motor control
	Design choice
	Ultrasonic sensor configuration
	Threshold Distance and Object Size Justification
	FSM-based motor control

	2D grid mapping
	Constant Motion Speed
	Manual Initialization
	Turn Detection and Directional Updates
	Stepwise Environmental Sensing
	Grid resolution
	Wireless Communication and Host-Side Processing

	Data storage and transmission
	TCP server implementation

	Prototype implementation and results
	Communication Module Implementation
	Inter-Sapphire Communication via CAN Bus

	Software Implementation
	Web Server
	Python Script
	Real-time data visualization

	Sensing Module Implementation
	Finite State Machine
	Temperature & Humidity Sensor Testing and Validation
	Air Quality Sensor Testing and Validation

	Hardware Implementation
	Ultrasonic Distance Sensor on Diamond
	Alternative CAN Connection
	I2C

	Discussion
	Conclusion
	References
	Source Code
	Right Sapphire
	Left Sapphire
	Left Ruby
	Right Ruby
	Python script to process sensor data

	Task Division

