factory of the future drawing in space

Graduation project by Olav van der Doorn. P5 Presentation - April 20th 2018

> Tutors: Henriëtte Bier Sina Mostafavi Ferry Adema (Karel Vollers)

- 1. Introduction
- 2. Context
- 3. Approach
- 4. Macro design
- 5. Meso design
- 6. Detailing and construction
- 7. Robotic production
- 8. Development P5

Content

Goals

Research aspects:

1. The logic of the factory of the future, regarding inputs, processes and outputs.

2. How a factory can be shaped to fit into the context of a contemporary western urban area, regarding the economic, environmental and spatial aspects.

3. The connection between processes within a factory and human life outside of the factory.

4. Research robotics as a production method regarding the parametric design process and industry developments.

Concept factory in the city

factory of the future

Heavy pollution from industries

"Industrial sectors should be separated from residential sectors by an area of green open space."

vcent factory in the city

factory of the future

- Athens Charter, CIAM, 1933

Concept factory in the city

factory of the future

• Functional separation of factories from the city from the 1850's onward

Blockhood Game, Plethora

Concept network factory

factory of the future

• Mutual dependencies of quantitive and qualitative resources

New Babylon, Constant 1955-1975

- Network structure of city
- Completely automated means of production

Urban network factory / city

Urban network factory / city

Assembly line routing & production

Assembly line schematic

• Factory is combination of routing of material and production steps.

• Both have a different approach for automation

Context Java-Eiland, Amsterdam

factory of the future

Java-Eiland

- Former industrial area
- Peninsula
- 5m walk to city center

Context Java-Eiland, Amsterdam

factory of the future

--- pedestrian paths ---- mayor waterway

ontext Java-Eiland, Amsterdam

Spatial Layout functions and connections

N Spatial Layout space syntax - input

Spatial Layout space syntax

factory of the future

Steps:

- 1. Create options
- 2. Test and save the better options
- 3. Manual interference

- factory
- office
- restaurant / bar
- exhibition / lecture
- other / tech

Spatial Layout space syntax

factory of the future

Steps:

- 1. Create options
- 2. Test and save the better options
- 3. Manual interference

- factory
- office
- restaurant / bar
- exhibition / lecture
- other / tech

Spatial Layout space syntax

Spatial Layout internal connections

Spatial Layout basic shape of spaces

Cell strucure in the human thyroid, Camebridge Uni. Press

Spatial layout cell structure

in plan:

input

Spatial layout computational approach

factory of the future

process

output

in section:

input

Spatial layout computational approach

factory of the future

process

output

Spatial layout impression

Spatial layout plan

Spatial layout plan

proach computational framework

factory of the future

sub-results output

furniture, stairs...

Environmental rainwater flows

)penings sun orientation and views

factory of the future

- Both the faces direct opposed to southern sunlight and floor faces are blocked from creating openings.

- Openings for views

Openings views and sunlight

Structure shell analysis

less displacement

more displacement

Structure generated beam model

Structure interior objects

Structure final model

Structure final model

Plan situation

Plan meso workshop

0

Section meso

Section zoom-in

Section details

Interior impression

Components 3d build

Components 3d build

Components 3d build

Section connections

References robotic steel printing

production

3D printing of steel flanges:

- Printed on a steel surface (integrated in process)

- Material strength is comparable to traditional steel

factory of the future

• Combination of printing (step 1) and milling (step 2) to avoid cracks

• Controlled temperatures during printing process (lab environment)

Ref. (Grad. J. Bergsma & J. vd Zalm, 2016-2017)

Production robotic steel printing

Production steel base plate

Production printing on surface

Production printing process

Production finished printing

Production milling of final geometry

