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“Brian, the eponymous hero of the Monty Python film, furious at having

been proclaimed Messiah and being followed wherever he went by a horde

of worshippers, tried hard but in vain to convince his pursuers to stop be-

having like a flock of sheep and to disperse. ‘You are all individuals!’ he

shouted. ‘We are all individuals!’ duly responded, in unison, the chorus

of devotees. Only a small lonely voice objected: ‘I am not...’ Brian tried

another argument. ‘You have to be different!’ he cried. ’Yes, we are all

different! the chorus rapturously agreed. Again, just one voice objected:

‘I am not...’ Hearing that, the crowd looked around angrily, eager to lynch

the dissenter if only he could be found in the mass of lookalikes.”

Zygmunt Bauman 2005 Liquid Life, Cambridge
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Preface

Anyone attentive while walking in the business centre of a large metropolis in the mid-

day or in a busy train station in the peak hour, can only wonder how come so many

people are able to walk that fast without bumping into each other? For a researcher this

puzzle is a source of inspiration since understanding dense crowds is a difficult task.

Studying pedestrians is a fascinating mixture between human psychology, crowd soci-

ology and engineering rationality. This interdisciplinary aspect and ethical dimension

is exactly what kept my interest through these rich and intense years.

What brought a sense of accomplishment was the opportunity to apply the knowledge

acquired in this dissertation in my native country Brazil. From the perspective of daily

commuters, the conditions of the public transport network in Brazil’s big cities are

very unsatisfying. The metro, regional trains and bus systems are frequently run with

far too insufficient capacity creating extreme discomfort and very often real danger.

During a period of almost two years I had the opportunity to work closely with the

metro companies of Rio de Janeiro and São Paulo trying to address the numerous

problems facing their stations and carriages. The application of the simulation model

developed in this dissertation to assess a new metro station in Rio de Janeiro was a per-

sonal confirmation of the usefulness and the value of what is known as the ‘Pedestrian

and Evacuation Dynamics’ research field.

The Nomad pedestrian simulation model implemented and applied during this disser-

tation was a significant achievement for me, given that it had the double role of being a

research platform and an application tool. The large effort to make it accurate, capable

to simulate complex pedestrian facilities with good computational efficiency and user

friendliness gave me a unique working experience. Furthermore, the extensive calibra-

tion and validation procedures developed in this dissertation produced the confidence

that allowed the free distribution of Nomad. It was with great satisfaction that I saw

during these years, many professionals applying Nomad for their research and their

commercial projects.

I want to start thanking my supervisors professor Serge Hoogendoorn and dr. Winnie

Daamen for accepting me in their group and giving me the opportunity to dedicate so

intensively in these studies. This PhD was certainly not an easy process but their strong

support and commitment kept me afloat and pointing to the right direction even in less

calm moments.
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Also I want to thank all my colleagues through out these years for their nice ca-

maraderie, friendship and knowledge. My long stay had the positive effect of intro-

ducing me to many colleagues and it would be beyond the purpose of this preface

to mention all of them. However, some colleagues became friends and these I want

to mention for the great moments we shared: Giselle, Femke, Tamara, Francesco(s),

Andrea, Frank, Chris, Adam, Yufei, Daniel, Pavle, Bernat, Niharika and Goof.

This dissertation profited from a very inspiring conversation on statistical testing with

professor Geurt Jongbloed from the Faculty of Electrical Engineering, Mathematics

and Computer Science (EWI). Also thanks for Anders Johansson and Dietmar Bauer

for the generous offer of pedestrian trajectories.

My partner deserves the largest gratitude that I can express. Wendelien kept me steady

and comforted always! Her love was a sure place where I could retreat to find the

fundamental support that one needs for such a project.

This dissertation was a long journey, so long that my little daughter Lina blossomed

and became an incredible individual that makes me proud like nothing else. I want to

dedicate this dissertation to Lina that grew seeing me working for long hours behind

(many) screens.

At the end of this process, Suely Rolnik played a vital role of helping me staying in

the path to reach the end and I want to thank her for her wisdom and understanding.

Mario Campanella, November 2016
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Summary

In the first part of this dissertation we performed a state-of-the art of walker models,

distinguishing models by characteristics relevant from a model developer point of view

(chapter 2). We introduced an agent-based model representation for walker models us-

ing a ‘humanised’ description of model components. The descriptions are unique by

equating the model components to pedestrian behavioural and physical aspects. The

agent representation results in a logical and meaningful way to compare the different

types of models resulting in model families that differ according to the type of ‘reas-

oning’ that pedestrians undertake to predict their next moves.

We applied the agent representation to create a scoring system to evaluate the types of

models. The aim of the scoring system was to determine which type was most suited

to be further developed to simulate large pedestrian facilities and what components

should be improved or introduced. We identified that Nomad originally proposed by

Hoogendoorn and Bovy (2002) ranked amongst the best walker models, had some im-

portant features such as being originated from a pedestrian theory that should facilitate

the further development.

Nomad was changed from a pure reactive model to a reactive/anticipative model (chapter

3). A level of anticipation is provided by a zero acceleration assumption that enforces

Nomad pedestrians to consider future positions of nearby pedestrians to derive their

interaction reactions. Furthermore, the reactive interaction component was modified

to intensify the lateral avoiding manoeuvres in frontal collision paths eliminating the

unrealistic interactions occurring with the original formulation of Nomad and with the

original Social Force models.

New behaviours that are common in pedestrian facilities such as waiting, passing turn-

stiles, queuing choice behaviour, and changing levels using stairs and escalators are

modelled and implemented in Nomad. All these new activities are implemented ac-

cording to the normative principles proposed in the Nomad pedestrian theory allowing

for a complete integration between the different behavioural levels.

Microscopic models are notoriously slower when compared with macroscopic models

(Duives et al. (2013)). Therefore, we proposed new numerical methods in chapter 3 to

improve the computation efficiency without significant loss of accuracy. The numerical

method is composed by a variable time step numerical scheme based on the principle

xv
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that pedestrians that do not have much traffic in their vicinity, can walk with less regard

to the neighbouring pedestrians.

The variable time step resulted in significant performance gains. A very large simu-

lation area of more than 80,000 m2 containing more than 3,000 pedestrians was ac-

celerated almost 5 times without loss of accuracy and numerical stability. This unique

method can be easily adapted to most walker models with the exception of CA models.

Walker models are not reliable if not presented with validations indicating their over-

all accuracy. An obstacle for the popularisation of walker models, is the impractical

effort to calibrate and validate models for each specific situation that they are applied.

Therefore, models and their parameters must present good validations in a significant

array of different situations that will (hopefully) account for the situations encountered

by real pedestrians in complex pedestrian facilities.

The first step in preparing models like Nomad for their prediction tasks was to invest-

igate what are the conditions that the calibration and validation process must possess

to increase the probability that Nomad (and other walker models) are predicting ped-

estrian behaviours accurately.

For that we first introduced methodologies in chapter 4 that describe and logically or-

ganise the processes of calibration and validation of walker models. The most import-

ant component of the methodology is the scenario, that contains all items necessary

to obtain a measure of accuracy. Its core is a function that maps the reference and

simulated data into an indicator that is used to quantify the accuracy of the model.

The methodology is based on the principle that walker models that will be of general

use need to be calibrated and validated using several flows and performance indicat-

ors that account for different walking situations (multi-scenarios). Furthermore, the

calibration methodology requires a final significance test to confirm that the calibrated

parameters (or the component of the model) are significant (influences the outcomes).

In chapter 5 we realised a series of calibrations using synthetic trajectories generated

by Nomad. The parameters that created the data became the ‘ground truth’ values al-

lowing for comparisons of calibration results with the original parameter values. This

allowed for a detailed assessment of factors affecting calibration and resulted in con-

clusions about the accuracy of the calibration processes.

Chapter 6 presents extensive calibrations of Nomad with empirical data obtained from

several experiments. The calibrations in this chapter were performed for the individu-

als resulting in parameter sets optimised for their particular trajectories. These indi-

vidual results allowed for detailed analysis of pedestrian behaviours that are not easily

measurable by analysing the parameter values defining the components of the Nomad

model. Calibrated parameters were compared over population heterogeneity, level of

urgency, types of flow and local conditions.

We performed detailed validations of eight parameter sets in chapter 7 using quantitive

indicators that included average travel times, u× k relations and bottleneck capacity.
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The accuracy from the different parameter sets were compared using empirical data

from four different flows. We found that the accuracy of single scenario sets to predict

flows other than those used in their calibrations is much lower than the accuracy of

multi-scenario sets. We also found that adding a second performance indicator in the

calibration of multi-scenario sets improved significantly the accuracy of predictions in

flows other than those used in the calibrations.

The investigations ended in chapter 8 with examples of novel applications of walker

models that go beyond the assessments of safety regulations. Nomad was used for de-

termination of bottlenecks and circulation problems, applied to an optimisation prob-

lem, and for the determination of the maximum demand that would fulfil comfort cri-

teria. To accomplish the case studies in large pedestrian facilities, new features of

Nomad namely waiting behaviours, escalators and stairs, queuing and server activities

were face validated and applied. The application of Nomad showed the feasibility to

apply walker models to reveal insights about pedestrian behaviour in large pedestrian

facilities.
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Samenvatting

In het eerste deel van deze dissertatie bestuderen we de state-of-the-art in loopmodel-

len waarbij we modelkarakteristieken in kaart brengen die relevant zijn voor modelont-

wikkeling (hoofdstuk 2). We introduceren een microscopisch atomaire (zogenoemde

agent-based) representatie voor loopmodellen gebruik makend van een ‘menselijke’

beschrijving van model componenten. Deze beschrijvingen zijn uniek in de wijze

waarop de model componenten direct gekoppeld zijn aan gedragsmatige en fysieke

aspecten van voetgangers. De atomaire agent representatie resulteert in een logische

en begrijpbare manier om verschillende modeltypen te vergelijken en hier families van

modellen uit af te leiden die onderling verschillen in het denkproces van voetgangers

om hun volgende stappen te voorspellen.

Met behulp van de agent representatie hebben we een scoringssysteem ontwikkeld om

de verschillende typen modellen te evalueren. Het doel van dit scoringssysteem is om

vast te stellen welk modeltype het best geschikt is als startpunt voor verdere ontwikke-

ling met het oog op het simuleren van grootschalige voetgangersfaciliteiten en welke

modelcomponenten dienen te worden verbeterd of ontwikkeld. We identificeren No-

mad, oorspronkelijk gepresenteerd door Hoogendoorn and Bovy (2002), als een van

de beste loopmodellen dankzij enkele belangrijke karakteristieken waaronder het feit

dat er een voetgangerstheorie aan ten grondslag ligt wat verdere modelontwikkeling

faciliteert.

Nomad is aangepast van puur reactief model naar reactief-anticiperend model (hoofd-

stuk 3). Een mate van anticipatie is toegevoegd waarbij Nomad-voetgangers rekening

houden met verwachtte interacties met nabije voetgangers onder de aanname van geen

acceleratie. Verder is het modelcomponent voor reactieve interacties aangepast om

laterale uitwijkmanoeuvres bij kans op frontale botsing te versterken. Dit voorkomt

onrealistische interacties die zichtbaar zijn bij de oorspronkelijke formuleringen van

Nomad en andere Social Force modellen.

Nieuwe vormen van gedrag zijn geïmplementeerd in Nomad die te zien zijn in veel

voetgangersfaciliteiten, zoals wachten, het passeren van toegangspoortjes, (keuze)gedrag

rondom wachtrijen en het loopgedrag bij vaste trappen en roltrappen. Al deze nieuwe

activiteiten zijn geïmplementeerd volgens normatieve principes in de Nomad voetgan-

gerstheorie wat zorgt voor een complete integratie in alle niveaus van gedrag.

Microscopische modellen zijn notoir langzamer in vergelijking tot macroscopische

xix
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modellen (Duives et al. (2013)). Daarom introduceren we nieuwe numerieke metho-

des in hoofdstuk 3 om de rekenefficiëntie te verbeteren zonder significante afbreuk in

nauwkeurigheid. De numerieke methodes maken gebruik van een numeriek schema

met variabele tijdstap en nemen daarbij in acht dat voetgangers met weinig ander ver-

keer in hun nabijheid kunnen lopen zonder rekening te houden met naburige voetgan-

gers.

De variabele tijdstap zorgt voor een significante vooruitgang. Een zeer grote simulatie-

omgeving van 80.000 m2 met meer dan 3.000 voetgangers is tot vrijwel 5 maal sneller

door te rekenen zonder in te leveren op nauwkeurigheid of numerieke stabiliteit. Deze

unieke methode kan eenvoudig geïntroduceerd worden in de meeste loopmodellen met

uitzondering van Cellulair Automata modellen.

Loopmodellen zijn onbetrouwbaar zolang hun nauwkeurigheid niet is gevalideerd. Een

obstakel in het populariseren van loopmodellen is de omvangrijke moeite ten aanzien

van het kalibreren en valideren van deze modellen voor elke specifieke situatie waar-

voor de modellen worden toegepast. Modellen en modelparameters dienen daarom

gevalideerd te worden in een significante set aan situaties wat (hopelijk) representatief

is voor de situaties ervaren door echte voetgangers in complexe voetgangersfaciliteiten.

De eerste, voorbereidende stap in het toepassen van modellen zoals Nomad voor het

maken van voorspellingen is het bestuderen van de omstandigheden waarvoor kalibra-

tie en validatie uitgevoerd moet worden. Dit om zeker te stellen dat het voorspelde

voetgangersgedrag voldoende nauwkeurig is.

Hiertoe introduceren we in hoofdstuk 4 methodes die de kalibratie- en validatiepro-

cessen beschrijven en op logische wijze structureren. Het belangrijkste onderdeel van

deze methodes is het scenario, welk alle vereiste aspecten dient te bevatten zodat de

mate van modelnauwkeurigheid betrouwbaar kan worden vastgesteld. De kern is een

functie wat de referentiedata en simulatiedata combineert tot een indicator die het mo-

gelijk maakt om de modelnauwkeurigheid te kwantificeren.

De methodologie is gebaseerd op het principe dat loopmodellen welk voor generieke

toepassingen gebruikt worden, dienen te worden gekalibreerd en gevalideerd gebruik

makend van meerdere verkeersstroom- en functioneringsindicatoren en op basis van

verschillende loopsituaties (multi-scenario). Verder dient de kalibratiemethode ook

een uiteindelijke significantietest te bevatten om vast te stellen dat alle gekalibreerde

parameters (of de modelcomponenten) daadwerkelijk significant zijn (en dus de mo-

deluitkomsten beïnvloeden).

In hoofdstuk 5 voeren we een serie kalibraties uit op basis van synthetische trajectoriën

gegenereerd in Nomad. Door de parameters die ten grondslag liggen aan de syntheti-

sche trajectoriën te positioneren als werkelijkheid kunnen we de kalibratie uitkomsten

vergelijken en beoordelen. Dit stelt ons in staat om te bestuderen welke factoren de

kalibratie beïnvloeden en om conclusies te trekken over de nauwkeurigheid van de

kalibratie alsmede de gevolgen van het gebruik van verschillende parametersets.



Samenvatting xxi

Hoofdstuk 6 presenteert uitgebreide kalibraties in Nomad met empirische data uit ver-

schillende experimenten. De kalibraties in dit hoofdstuk zijn uitgevoerd op individu

niveau wat leidt tot geoptimaliseerde parametersets voor hun specifieke trajectoriën.

Deze individuele resultaten maken gedetailleerde analyses van voetgangersgedrag mo-

gelijk wat doorgaans moeilijk meetbaar is wanneer men de geaggregeerde parameter-

waarden van deze modelcomponenten beschouwd. Zo zijn gekalibreerde parameters

vergeleken ten aanzien van populatie heterogeniteit, mate van urgentie, typen van ver-

keersstromen en lokale omstandigheden.

In hoofdstuk 7 voeren we gedetailleerde validatie uit op acht parametersets waarbij

we gebruik maken van kwantitatieve indicatoren waaronder gemiddelde reistijden,

snelheid-dichtheid relaties en knelpuntcapaciteiten. We vergelijken de nauwkeurig-

heid van de verschillende parametersets op basis van empirische data van vier ver-

schillende stromen. We laten zien dat de nauwkeurigheid van enkel-scenario sets voor

het voorspellen van andere stromen dan waarop is gekalibreerd veel lager ligt dan de

nauwkeurigheid van multi-scenario sets. Tevens laten we zien dat het toevoegen van

een tweede functioneringsindicator in de multi-scenario kalibratie de nauwkeurigheid

van de voorspellingen significant verbetert.

Tot slot in hoofdstuk 8 besluiten we deze studie met voorbeelden van innovatieve toe-

passingen van loopmodellen die verder gaan dan het beoordelen van veiligheidsregels.

Nomad is toegepast voor het vaststellen van knelpunt- en circulatieproblemen, voor een

optimalisatieprobleem en voor het bepalen van de maximale vraag wat nog voldoet aan

comfort criteria. Voor het doorrekenen van deze casussen in grote voetgangersfacili-

teiten zijn de nieuwe modelkarakteristieken van Nomad – betreffende wachtgedrag,

trappen en roltrappen, wachtrijen en service activiteiten – geverifieerd en toegepast.

Deze toepassingen van Nomad tonen de haalbaarheid om op basis van loopmodellen

inzichten te verkrijgen over voetgangersgedrag in grote voetgangersfaciliteiten.
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(2010)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xxiii



xxiv TRAIL Thesis series

2.9 An agent representation of a utility-based walker model (based on Rus-

sell and Norvig (1995)). . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.10 The space discretisation of the target area of the discrete choice models

(from Antonini et al. (2004)). . . . . . . . . . . . . . . . . . . . . . . 34

2.11 The three positions ahead and the architecture of the steering fuzzy

model (from Nasir et al. (2014)). . . . . . . . . . . . . . . . . . . . . 35

2.12 The model characteristics that will be assessed in this overview organ-

ised according to the PAGE concept. . . . . . . . . . . . . . . . . . . 36

2.13 a) Typical local conflict in a 40 cm cell grid. b) In the 20 cm cell

grid pedestrians can be part of more than one conflict. Hatched cells

contribute to the non-local conflict (from Kirchner et al. (2004)). . . . 44

2.14 A hexagonal lattice and the six walking directions (from Maniccam

(2003)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 The scheme of the three levels modelling approach from Hoogendoorn

and Bovy (2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Three optimal routes starting from origins 1, 2, 3 and 4 (represented

by the stars) leading to the same destination accessible via three doors.

The background colour are rings representing the cost maps. In grey

are all walls and obstacles and in yellow the destination. Locations

above the white dotted line on the left have optimal routes via the upper

corridor and below via the lower corridor. Locations on the line such

as origin 3 always present two optimal routes. . . . . . . . . . . . . . 57

3.3 The path following component elements. . . . . . . . . . . . . . . . . 61

3.4 The interaction acceleration ~ao(t) applied by the pedestrian due to the

obstacle. The function against the distance d is shown in top. . . . . . 62

3.5 The anticipation of pedestrian positions. For avoidance purposes the

leftward pedestrian considers the anticipated dashed positions. . . . . 63

3.6 The influence area that determines the interaction zone extending to the

front and to the back of the pedestrian. The maximum extensions of the

influence area are respective ief and ieb for the frontal and backward

parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 The influence area and the isofields with similar influence on the inter-

action behaviour. The pedestrian in white is walking to the right. (a)

A value of c+0 that resulted from calibrations. (b) A more extreme case

of influence from the frontal walking direction. . . . . . . . . . . . . 65

3.8 The interaction acceleration ~arn(t) applied by the left pedestrian due to

the opposing pedestrian in the direction along their centres. . . . . . . 66



LIST OF FIGURES xxv

3.9 The lateral interaction acceleration ~arl(t) applied by the left pedestrian

due to the opposing pedestrian. . . . . . . . . . . . . . . . . . . . . . 67

3.10 The graphic representation of a collision between two Nomad ped-

estrians. For simplicity, the collisions occur between circular shaped

pedestrians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.11 The trajectory of a pedestrian towards the waiting location inside the

waiting area illustrating three possible situations. . . . . . . . . . . . 71

3.12 Choice areas (striped area) and servers (turnstiles). Brown pedestrians

are in queues or being served. Red pedestrians are still reaching their

chosen queues. The green pedestrian is changing queue after predict-

ing a smaller queuing time. . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 Scheme of a walking area that ends with a stair and a escalator. The

floor Route map with equi-cost lines (section 3.1) for a stair and a es-

calator. The red lines represent the area where pedestrians will choose

the stairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.14 The representation of one simulation step conducted by the Nomad-

Model class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.15 The UML class diagram of the pedestrian class with the most import-

ant fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.16 The UML class diagram of the infrastructure classes with their most

important fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.17 The UML class diagram of the activity class with the most important

fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.18 The three isolation levels that determine the variable time-steps. . . . 82

3.19 The left figure shows the real dynamics of the isolated pedestrian p.

The right figure shows both pedestrians walking at maximum speed

towards each other and a circular isolation area to determine the isola-

tion level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Calibration methodology for walker models. It is a loop initiating in

the upper left corner and ending after the optimal parameter set θ∗

is shown to be statistically significant for the outcomes of the model,

therefore considered estimated (θ̂) ending the calibration. . . . . . . . 89

4.2 Validation methodology for walker models. It is a single iteration ini-

tiating on the left with the calibrated parameter set and ending with the

validation criteria on the right. . . . . . . . . . . . . . . . . . . . . . 92



xxvi TRAIL Thesis series

4.3 A generic example of a sensitivity analysis of two parameters. The

multi-objective function is used to calculate the errors around of θ∗n =
1.6. The dashed curve shows a significant and the solid curve shows a

low significant parameter. . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 The three experimental set-ups (from left to right): the bidirectional

flow, the narrow bottleneck and the crossing flows. The arrows repres-

ent the direction of the flows with the percentage of the demands on

the flows and the dotted lines the origins of the flows. . . . . . . . . . 106

5.2 The stepwise inflow demands for the bidirectional flow. . . . . . . . . 106

5.3 Estimation errors for all clean and noisy single-scenario calibrations. . 109

5.4 A trajectory (walking from the right to the left) and the accelerations

for a pedestrian walking alone in the narrow bottleneck simulation.

The error ε is the sum of the errors from parameters a0, r0 and τ. . . . 111

5.5 A trajectory (walking from the left to the right) and the accelerations

for a pedestrian walking practically alone in the bidirectional simula-

tion. The error ε is the sum of the errors from parameters a0, r0 and

τ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 A snapshot of the narrow bottleneck simulation with two pedestrians

interacting in the entrance of the corridor for a simulation and for the

experiments when the congestion sets in (from Daamen et al. (2005b)). 113

5.7 The average of the absolute values of the acceleration against the walk-

ing time for the clean trajectories. The colour represents the sum of the

errors from parameters a0, r0 and τ. We enlarged the ids of pedestrians

that have their trajectories plotted in separate figures. . . . . . . . . . 114

5.8 A trajectory (walking from the left to the right) and the accelerations

for the pedestrian that applied the highest accelerations and spent one

of the longest walking times in the bidirectional simulation. The error

ε is the sum of the errors from parameters a0, r0 and τ. . . . . . . . . 115

5.9 A trajectory (walking from the right to the left) and the local density

for the pedestrian that encountered one of the highest local densities

near the corridor entrance and moderate walking times in the narrow

simulation. The error ε is the sum of the errors from parameters a0, r0

and τ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.10 The average of the local density against the walking time for the clean

trajectories. The colour represents the sum of the error values from

parameters a0, r0 and τ. For the narrow trajectories the density is lim-

ited to the region at two meters distance from the corridor entrance.

The numbers near the dots are the ids of the pedestrians. . . . . . . . 116



LIST OF FIGURES xxvii

5.11 A trajectory (walking from the right to the left) and the local density

for the pedestrian that encountered one of the highest local densities

near the corridor entrance and moderate walking times in the narrow

simulation. The error ε is the sum of the errors from parameters a0, r0

and τ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.12 The average of the local density against the lateral acceleration inside

the corridor of the narrow bottleneck flow with clean trajectories. The

colour represents the error values from parameter aW. . . . . . . . . . 117

5.13 The average of the local density against the walking time for the noisy

trajectories. The colour represents the sum of the error values from

parameters a0, r0 and τ. For the narrow trajectories the density is lim-

ited to the region at two meters distance from the corridor entrance. . 118

5.14 Estimation errors for all clean and noisy multi-scenario calibrations. . 120

5.15 The cumulative distribution of the parameters estimated for the bid-

irectional, crossing and the multi-scenario with the noisy trajectories. . 123

6.1 Schemes of the areas in which the trajectories where located for the

normal walking calibrations. The arrows represent the dominant dir-

ection of the flows. The red dotted areas define the perimeter of the

trajectories used for calibration. . . . . . . . . . . . . . . . . . . . . 131

6.2 Schemes of the areas in which the trajectories where located for the

evacuation calibrations (red dotted areas). The arrows represent the

dominant direction of the flows. . . . . . . . . . . . . . . . . . . . . 131

6.3 Schemes of the areas in which the trajectories were located for the

interaction calibrations. The arrows represent the dominant direction

of the flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Two pedestrians walking close but not colliding in the evacuation ex-

periment. The circular body formulation in Nomad predicts a collision. 134

6.5 Two interacting trajectories from the bidirectional experiment. . . . . 143

6.6 Two trajectories from the normal crossing experiment, illustrating the

large avoidance manoeuvres that occur even in low densities. The dots

corresponds to time steps of 0.2s. . . . . . . . . . . . . . . . . . . . . 143

6.7 Trajectories of the experiments used to estimate the parameter aW (in-

teraction with obstacles). . . . . . . . . . . . . . . . . . . . . . . . . 152

6.8 The distributions of the significant parameters τ, a0 and r0 for the nor-

mal experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.9 The average values of τ in the speed intervals. . . . . . . . . . . . . . 157



xxviii TRAIL Thesis series

6.10 The average values of a0 in the speed intervals. . . . . . . . . . . . . 158

6.11 The average values of r0 in the speed intervals. . . . . . . . . . . . . 159

6.12 The average values of c+0 and c−0 in the speed intervals. . . . . . . . . 160

6.13 The average values of ief and ieb in the speed intervals. . . . . . . . . 162

6.14 The average values of tA in the speed intervals. . . . . . . . . . . . . 162

6.15 The average values of aW in the speed intervals. . . . . . . . . . . . . 163

7.1 The representation of the Kolmogorov-Smirnov statistics for two travel

time distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2 Representations of the cumulative distributions of the exit times. . . . 173

7.3 Speed-density plots for the experimental trajectories with the fitted

curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.4 Box-plots with the relative errors of the travel times for the parameter

sets. The dotted lines show the score intervals (‘Good’ at 5% and ‘Me-

dium’ at 10%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.5 Box-plots with the relative errors of the capacities for the parameter

sets in the narrow bottleneck. The dotted lines show the score intervals

(5% and 10%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.6 The speed density relations resulting from the parameter setmultiTF.

The filled dots correspond to the average speeds for the density bins.

The white dots are the standard deviation displacements. The thick

middle line is the average speeds for the experiments and the dotted

lines are the standard deviation displacememnts. . . . . . . . . . . . . 186

8.1 Overview of the maximum densities for the future Schiphol scenario.

The walking area is divided in 2x2m squares and the densities (ped/m2)

during the day are recorded. Only the maximum densities are shown

and they do not necessarily occur at the same time. . . . . . . . . . . 191

8.2 Location and numbering of reservation posts. . . . . . . . . . . . . . 192

8.3 Average time of passengers at a reservation post as a function of the

number of reservation posts on the platform. . . . . . . . . . . . . . . 193

8.4 The Jardim Oceanico station with a simulation snapshot. . . . . . . . 194

8.5 The maximum periods in minutes that areas of the platforms reached

LOS D for the capacity demand. These areas are a 2x2m cell grid the

maximum LOS D periods were not necessarily reached simultaneously. 195

C.1 Experiments that originated the trajectory data used in this dissertation. 210



LIST OF FIGURES xxix

C.2 Schemes of the normal walking experiments set-ups. . . . . . . . . . 211

C.3 Scheme of the evacuation experiments set-up. . . . . . . . . . . . . . 212

C.4 Schemes of the interaction experiments set-ups. . . . . . . . . . . . . 213

D.1 Example of the smoothing of a trajectory from the narrow bottleneck

experiment described in appendix C. The blue crosses are the tracked

locations and the red stars the smoothed. . . . . . . . . . . . . . . . . 216

D.2 Example of the interpolation after the smoothing algorithm. The blue

stars are the smoothed locations and the red dots are the interpolated

locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216



xxx TRAIL Thesis series



List of Tables

2.1 A walker agent representation with examples of the four PAGE agent

elements (derived from Russell and Norvig (1995)). . . . . . . . . . . 20

2.2 Overview of walker models. . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Mean walking speeds in stairs taken from Weidmann (1993) . . . . . 75

5.1 Distribution means and deviations for the parameters that produced

heterogeneity or were estimated. . . . . . . . . . . . . . . . . . . . . 104

5.2 Heterogeneous parameters and input errors for the reference sets. . . . 105

5.3 The average relative errors ε for the three parameters a0, r0 and τ. The

results include only the significant calibrations. The values below are

the percentages of significant calibrations from the total. . . . . . . . 110

5.4 The average relative errors ε for the aW parameter. The values in brack-

ets include only the significant calibrations. The values below are the

percentages of significant calibrations. . . . . . . . . . . . . . . . . . 110

5.5 The average relative errors ε for the multi-scenario calibrations using

the mean of the original parameter distributions. The values in brack-

ets include only the significant calibrations. The values below are the

percentages of significant calibrations from the total. . . . . . . . . . 120

5.6 The average relative errors ε and standard deviations for the aW para-

meter. The values in brackets include only the significant calibrations.

The values below are the percentages of significant calibrations. . . . 121

5.7 The average relative errors ε for the individual flows calculated with

the correct values θ
sy
i and with the mean µsy of the distributions. . . . 122

5.8 The average relative distances between the correct values of the para-

meters to the calibrated results using the multi-scenario. . . . . . . . . 124

6.1 Description of the 11 calibrations and the amounts of trajectories es-

timated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xxxi



xxxii TRAIL Thesis series

6.2 Overview of the parameters calibrated in this chapter. The double lines

separate the parameters according to the pedestrian characteristics and

the three model components: path following, pedestrian and obstacle

interactions. The single lines separate the four parts of the pedestrian

interaction component: pedestrian avoidance, influence area, lateral

avoidance and anticipation. . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 The parameters that are calibrated in each experiment. . . . . . . . . 134

6.4 The speed intervals used to classify the estimated parameters and the

maximum size the parameter samples can have per interval. The table

only presents the normal experiments. The evacuation and interac-

tion experiments did not present enough calibrations to create many

samples with the minimum sample size of 5 parameters. . . . . . . . 140

6.5 The average values of the significant parameters for the eleven calib-

rations. The first column has the average walking speed for all tra-

jectories. The parameters that showed no significant estimations were

replaced by a cross (×). Empty spaces are parameters that were not

calibrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Percentages of significant parameters in each experiment. . . . . . . . 142

6.7 Correlations between the parameters a0 and r0 for the evacuation ex-

periments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.8 The significant correlations between the parameters ief and c+0 for the

normal and interaction experiments. . . . . . . . . . . . . . . . . . . 147

6.9 The average values of the product v × tA that represent the average

anticipated distance for all experiments. . . . . . . . . . . . . . . . . 148

6.10 Results of the log-likelihood ratio test between the unrestricted model

and the restricted model without a1 and r1. The table also shows the

amount of times that the log-likelihood of the unrestricted model is

larger than the restricted. The last column shows the percentages of

significant calibrations of both parameters. . . . . . . . . . . . . . . . 152

6.11 The amount of positive results of the KS tests for pairs of parameter

samples for each experiment type. The last column shows the percent-

ages for each type of experiments of the positive results from the total

amount of tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.12 The sum of all KS distances (ST ) for the normal walking experiments.

The bold values present the lowest and highest values of ST . . . . . . 154

6.13 The similarity statistics ST for the interaction experiments. . . . . . . 155

6.14 Parameter differences for τ, a0 and r0 for the evacuation experiments

with different levels of urgency and population composition . . . . . . 156



LIST OF TABLES xxxiii

6.15 The similarity statistics ST for the evacuation experiments. . . . . . . 156

7.1 Overview of the parameters sets used in the validations in this chapter. 172

7.2 The three score intervals for the errors of the quantitative indicators. . 176

7.3 Overview of the experiments used in each validation assessment. . . . 177

7.4 Overview of the mean travel times T T exp for the four flows. . . . . . 177

7.5 Overview of the statistical accuracy used to determine the amount of

runs in the validation mappings (the values shown represent 5% of the

experimental average values). . . . . . . . . . . . . . . . . . . . . . . 179

7.6 Minimum amount of simulation runs necessary for the validation map-

pings. Only the worse case per mapping is posted. . . . . . . . . . . . 180

7.7 Overview of all validation errors in percentage (%). . . . . . . . . . . 181

7.8 Overview of combined validation errors for all flows in percentage (%). 184



xxxiv TRAIL Thesis series



Notation

Overview of pedestrian state variables

Symbol Explanation

~r position: location of the pedestrian

from the origin (m,m,m).

~v velocity: vector with the speeds.

in each reference axis (m/s,m/s,m/s).

~a acceleration: vector with the acceleration values.

in each reference axis (m/s2,m/s2,m/s2).

~z dynamic state: the three dynamic components (~r,~v,~a).

Xp trajectory: the set of all states of a pedestrian p.

Overview of pedestrian traffic variables

Symbol Explanation

u speed.

û average speed.

k density.

q flow.

u× k speed density relation.

u×q speed flow relation.

q× k flow density relation.

qc capacity.

T T travel time.

ξ traffic state (for the Nomad model

are the velocities and positions from pedestrians).

xxxv
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Overview of Nomad parameters. The double lines separate the parameters ac-

cording to the pedestrian characteristics and the three model components: path

following, pedestrian interactions and obstacle interactions. The single lines sep-

arate the four parts of the pedestrian interaction component: pedestrian avoid-

ance, physical interaction, influence area, lateral avoidance and anticipation.

Symbol Explanation

rad pedestrian radius (m).

v0 free-speed (m/s), speed at which pedestrians would walk when unhindered.

τ acceleration time (s), the time required to accelerate towards the free-speed v0

in the direction of the desired path. Small values of τ will force pedestrians to

walk very close to their desired path and to their free-speeds. Any deviation

from the path will generate large path following accelerations.

a0 interaction strength (m/s2), controls the intensity in which pedestrians

are avoiding each other. Larger values of a0 indicate an increase

of the avoidance accelerations due to other pedestrians.

r0 interaction distance (m), controls how sensitive the avoidance accelerations

are to the distance between pedestrians. Small values of r0 (∼ 0.0m ) signify

that only small distances between pedestrian cause avoidance accelerations.

k0 controls the intensity of the longitudinal physical forces between pedestrians.

k1 controls the intensity of the tangential physical forces between pedestrians.

c−0 transforms the shape of the influence area behind pedestrians from circular

(value = 1) to an ellipsoid. For values smaller than one the main axis of the

ellipsoid is in the walking direction otherwise; in the perpendicular direction.

c+0 transforms the shape of the influence area in front of pedestrians from circular

to an elongated ellipsoid similar to c−0 .

ief influence area extension at the front (m), the largest distance at the front

at which a pedestrian will provoke avoiding behaviours.

ieb influence area extension at the back (m), the largest distance at the front

at which a pedestrian will provoke avoiding behaviours.

a1 lateral interaction strength for pedestrians (m/s2), controls the intensity

of the extra lateral component of the avoidance accelerations when

pedestrians are walking towards each other.

r1 lateral interaction distance for pedestrians (m), controls how responsive

the extra lateral avoidance accelerations are to the lateral distances of

pedestrians walking towards each other.

tA anticipation time (s), the time in the future that pedestrians project the current

locations of neighbouring pedestrians.

aW obstacle interaction strength (m/s2), controls the intensity in which

pedestrians are avoiding obstacles. Larger values of aW indicate

an increase of importance of the obstacle avoidance accelerations.



Notation xxxvii

Overview of pedestrian simulation variables

Symbol Explanation

WF the walking facility in which the pedestrians are walking.

It comprises of all walking areas and infrastructures (obstacles).

c the cells in which the walking area is divided into.

T the period of time in which a pedestrian traffic occurs.

∆T the discrete interval of time in which the simulation

state is updated.

P the set of all pedestrians that walk in WF during T .

A all areas accessible to pedestrians in WF.

I the set of all infrastructures present in WF.

θ the set of parameters that are used in walker models.

β all the information necessary to run a simulation

with a walker model apart of the value of the parameters.
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Chapter 1

Introduction

Most metropoles face pedestrian congestion on a daily basis. The movement of com-

muters in cities such as Rio de Janeiro, São Paulo, London, New York, Tokyo and

Shanghai creates large demands on their public transport systems, routinely exposing

pedestrians to crowded stations and public transport vehicles. The large demand of

daily movements is not diminishing; on the contrary more commuters will use public

transportation.

According to the United Nations, approximately 53% of the world population was

urban in 2015 and 70% will be in 2050 (UN (2007)). The trend shows both an in-

crease in the absolute number of large cities and cities reaching unprecedented sizes.

However, most of this growth will not occur in the largest cities, but in smaller and

secondary cities (Cohen (2004)).

This means that many more cities will have their CBD (Central Business Districts),

their primary transportation nodes (especially in the peak hours) and other heavily used

pedestrian areas crowded with high intensity pedestrian flows. Furthermore, there is a

global consensus about the necessity to mitigate carbon emissions and to improve the

sustainability and liveability of cities (UN (2010)). This consensus is putting pressures

to city managers to discourage car travel favouring alternative modes of transport and

simultaneously to support pedestrianism (Gehl (2010)). Cities will need to prepare for

these concentrations of pedestrians.

The costs and difficulties in managing large and dense crowds on a daily basis lead

to the anticipation of the effects of large crowds in the design phase of heavily used

walking areas. Creating good circulation, reserving buffer areas, avoiding extreme

densities and providing short travel times should be an integral part of the design of

pedestrian facilities (TRB (2000)).

1
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1.1 Background

The movements that pedestrians perform are complex and pedestrian flows show a

wide range of phenomena from individual to collective patterns. Pedestrians are cap-

able to perform very high accelerations when initiating movement or when stopping

(Goffman (1972)). They can walk in directions including backwards and sidestepping

(Wolff (1973)). Self-organised collective patterns such as lanes that are formed in bi-

directional flows or stripes in 90◦crossing flows appear without coordination, makes

operations highly efficient and influence the traffic characteristics of pedestrian flows

(Helbing et al. (2005), Hoogendoorn and Bovy (2006)). Behaviours vary among other

things according to the composition of the population and their cultural backgrounds

(Chattaraj et al. (2009)), time of the day (Weidmann (1993)) and demographics (Daa-

men and Hoogendoorn (2009a)).

When assessing pedestrian flows for evacuation regulations or for normal conditions,

especially during peak hours it is necessary to determine precisely where are the areas

with high levels of density and flows. However, the complexities of pedestrian beha-

viour can create uneven distributions of pedestrians (heterogeneous distribution) and

flow interactions that can very often not be predicted by simple calculations.

1.1.1 Designing pedestrian facilities

A common practice is to consider the maximum flow of pedestrians per unity of time

(capacity qc) and apply it to determine corridor widths and size of exits. However, ca-

pacity conditions cause the development of queues and congestion and as Fruin (1971)

recognises on page 71: “capacity design is planned congestion". Therefore, this is

not a good practice since good pedestrian facility should provide safety, efficiency and

attractiveness to pedestrians (Gehl (2010)).

Intense pedestrian flows need to be kept safe by avoiding unhealthy or dangerous situ-

ations, efficient by not causing unnecessary delays and attractive encouraging people

to walk. This is not an easy task since pedestrian facilities usually include several func-

tions in the same area such as transportation, recreation, shopping and business. This

mix of functions creates many opportunities for different behaviours to coexist.

To design pedestrian facilities it is necessary to predict pedestrian behaviours quantit-

atively and accurately to assess different layouts and plans. The problem can be sum-

marised as: to find the balance between the cost of construction and future expansion

of pedestrian facilities and the different planning objectives.

To operationalise this, studies and guidelines were proposed and have been applied for

more than 40 years. (Fruin (1971), Predtechenskii and Milinskii (1978), TRB (2010)).

What these guidelines have in common is that they rely on simple calculations and

graphs to estimate widths of sidewalks, corridors, stairways or quantity of escalators.
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These methods divide pedestrian facilities into uni- or bi-dimensional components,

apply the expected demand and by varying the components parameters reach desired

level-of-service (LOS)1 or travel times.

Although practical and popular, these guidelines suffer from the inherent problem of

not considering heterogeneity in the pedestrian population, the fact that different pop-

ulations may occur at different times and the heterogeneity in distribution over the

network, caused by the distribution of origins and destinations, but also by the demand

compared to local capacity.

Many pedestrian facilities cannot be easily translated into a network of components.

Atriums or transfer station halls are often large two or even three dimensional areas

that cannot be represented by unidimensional components. Furthermore, real areas

include localised obstacles such as boards, ticket machines and seats. Therefore, more

advanced tooling is needed to support the design process and assess the movements

and distributions of pedestrians over time.

Simulations are being used for different purposes in natural and social sciences (Hart-

mann (1996)). They are applied when problems get too complex to be described in its

entirety by analytic equations. This is the type of problems that arise when we need to

determine pedestrian traffic in large pedestrian facilities submitted to large flows and

with complex pedestrian behaviours (Still (2000)). It is just natural that accurate ped-

estrian flow models are needed and are being promoted for traffic engineers, architects,

urban planners and fire engineers (Kuligowski and Gwynne (2005)).

Pedestrian models are able to simulate the dynamics of walking in practically all con-

figurations (Schadschneider et al. (2009)). Furthermore, they allow to quantitatively

and objectively compare the performance of different designs. Pedestrian models are

developed to cope with complexity of situations and generate visual evidence of the

dynamics of situations by means of renderings of the flows.

1.1.2 Need for the development of accurate pedestrian models

Shmueli (2010) argues that models that have a good predictive capacity and simultan-

eously provide a platform for exploration of human behaviours are more valuable to

science (fidelity of behaviours). We take the view that this is also valid for the science

of pedestrian modelling.

To be useful for practical applications, pedestrian models have to fulfil some require-

ments: Kuligowski and Gwynne (2005) mention model characteristics (representation

and approach), accuracy of the outcomes (verification and validation) and commercial

aspects of models. Daamen (2004) enumerates the refinement of the input, the type

of performance indicators available in the output, functionality of the model (which

1Level Of Service associates levels of comfort with density intervals (Fruin (1971)). It is an effective

tool to relate individual well being to traffic characteristics.
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behaviours the model is capable to reproduce) and user-friendliness of the graphical

user interface.

Fidelity to human behaviour, accuracy of the outcomes and the functionality available

are requirements to both scientific research and practical applications and will become

the focus of this dissertation.

Behavioural fidelity

The large and complex range of pedestrian behaviours, reflected by their individual

movements and collective patterns must be correctly represented by pedestrian models.

Pedestrian models must be able to predict correctly self-organised patters that naturally

occur in different types of flows: lane formation, diagonal stripes and zipper effect

(Hoogendoorn and Daamen (2005b)).

If models are able to simulate individuals (microscopic models) then their movement

should resemble what is observed on average from real pedestrians: smooth move-

ments, large accelerations, no restriction in the walking direction, good collision avoid-

ance and (occasional) sidestepping.

This requirement of high fidelity is not easy to be accomplished and no model predicts

individual behaviours and collective patterns perfectly and probably will never do so.

Quantitative accuracy

Models must be thoroughly tested and made adequate for the tasks of prediction (Galea

(1998)). Models reproducing walking behaviour will very likely present errors when

compared to reality. However, this does not deter the use of models if their predictions

are validated against empirical data.

Most practical applications assess situations with large flows that usually result in con-

gestion and high densities. Therefore, models must be shown to be accurate in the

whole range of traffic variables, especially in high densities (Campanella et al. (2012)).

Therefore, models should present quantitive evidence of the predictions of these phe-

nomena (Campanella et al. (2008)).

Microscopic pedestrian models suffer from the problem of having too many parameters

(Bellomo et al. (2011)). The principle of parsimony that states that models should be

as simple as possible should be considered when developing models to keep them as

generic as possible and reducing the complexity of the calibration task.

Model functionality

The majority of the pedestrian models is developed to predict situations where ped-

estrians are only walking. Moreover, their application in large facilities requires other
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activities such as waiting, queuing, shopping and should thus be covered by the model.2

1.1.3 Pedestrian models development cycle

Obtaining a pedestrian model that is of scientific and practical use requires several im-

portant steps. In this dissertation we will focus in developing walker models following

development cycle for a model based on empirics and theory, proposed in Daamen

(2004) and presented in figure 1.1.

Empirics,

experiments
Theory

Simulation

model
Application

calibration

face validation

validation

Figure 1.1: The cycle for the development of pedestrian models (adapted from

Daamen (2004)).

The first step is to collect data and evidence on pedestrian behaviours. Since model-

ling of pedestrian flows is an inductive science, this is achieved by observation in real

situations (Shi et al. (2007)) and in laboratory experiments (Daamen and Hoogendoorn

(2003)). Data collection can be performed using field observations and questionnaires

(Hill (1982)) or via sensors: video recordings and video tracking tools (Hoogendoorn

et al. (2003)), infrared (Kerridge et al. (2005)), laser scanning (Bauer and Kitazawa

(2010)), bluetooth and wifi sensors (Millonig and Gartner (2008)); and gps for route

choices (Van Der Spek et al. (2009)).

The knowledge gathered in observations is used to derive and test walking principles

and behavioural assumptions. These principles are mostly qualitative synthesis of em-

pirical evidence such as the fact that pedestrians interact more intensively with pedes-

trians nearby and in their front. These are used to justify modelling decisions (Mous-

saïd et al. (2011)) or to develop a walking theory (Hoogendoorn (2001)). The develop-

ment of a theory is more powerful because it can be tested against empirical evidence

and allows for deduction of new walking principles.

2User oriented aspects are important for the regular use of walker models. These are discussed

extensively in Daamen (2004) and Kuligowski and Gwynne (2005). Given that this is not the topic of

this dissertation we will not discuss these aspects. However, we point that it is desired that the model
presents good computational performance to be of practical use, especially for simulations involving

many pedestrians (>1,000 peds).
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The third step is to create a model based on the theory. Sometimes a mathematical

model is developed and subsequently a simulation model that can be implemented in a

computer is derived from it. Here we simplify and consider these as one step.

The last step is the application of the simulation model in cases that will be used to

calibrate the model parameters (Schadschneider et al. (2010)) and more importantly

validate its predictions (Ronchi et al. (2014)).

1.2 Research scope

Figure 1.1 showed the four steps necessary to develop pedestrian models for applica-

tion and study of behaviours. One dissertation cannot cover all steps in depth. There-

fore, we limit the scope of this research. We will concentrate on the last two steps: the

development of the simulation model and the steps necessary to successfully apply it

(the two last boxes and the arrows connecting them).

According to Hoogendoorn (2007) amongst the most important characteristics of traffic

models are the level-of-detail in traffic representation and in behaviour modelling. Sec-

tion 1.2.1 will discuss level-of-detail of pedestrian models and the choice made in this

dissertation.

The other important research scope of this dissertation refers to the ‘tasks’ pedestrians

perform. Pedestrians do not only walk but also perform activities during their trips.

Furthermore, pedestrians make choices regarding the trip and pedestrian models need

to incorporate all these behaviours. Section 1.2.2 presents these tasks on different

behaviour levels and the choice of focusing on the walking behaviour.

1.2.1 Level-of-detail of models

Level-of-detail in traffic representation refers to the size of the smallest parts of the

traffic. Microscopic representation describes each pedestrian as an individual, while

macroscopic representation incorporates pedestrians as continuum groups distributed

over certain areas (Bellomo et al. (2012)). The level-of-detail in behavioural represent-

ation indicates if the model describes the movement of each pedestrian (microscopic)

or the movement of the entire population by means of the three traffic characteristics

speed, density and flow.

Most types of models are either microscopic (Cellular Automata and Social Force) or

macroscopic (Continuum). However, some models that describe the walking area as a

system of interconnected links are of referred to as mesoscopic models (Bellomo et al.

(2012)). Løvås (1994) and Daamen (2004) are examples of such models. At each link

the walking speeds are set according to their occupation (density). Such models are

able to predict important features of pedestrian traffic such as spill-back upstream of



Chapter 1. Introduction 7

congestions. Although theoretically possible, such models must be calibrated with a

large amount of specific data to simulate detailed features of the walking areas such as

columns and crossing flows in wide areas. This makes them not practical to be used in

complex pedestrian areas.

In general, macroscopic modelling allows for faster simulations, big pedestrian facilit-

ies and large population size (Duives et al. (2013)). These models are being promoted

for real-time applications when models are deployed for crowd-management purposes

(Hoogendoorn et al. (2014)). Encouraging developments such as by Hoogendoorn

et al. (2014) are showing that self-organised phenomena can be predicted by macro-

scopic models. However, these are preliminary results that still need further develop-

ment. Furthermore, the continuum nature macroscopic models is not appropriate to

study individual behaviour (Hughes (2002)).

Microscopic models offer the possibility of detailed descriptions of the environment

and of the pedestrians (Bellomo et al. (2012)). They are suitable for simulations of di-

verse types of pedestrian facilities (Kuligowski et al. (2010)). Microscopic models are

per definition predicting movements of individuals and this allows for heterogeneous

populations that are important for the realistic description of pedestrian flows (Mous-

saïd et al. (2012)). For all these reasons, we choose microscopic models as the focus

of this dissertation.

This thesis deals with a microscopic model with individual pedestrian behaviours.

1.2.2 Modelling paradigm and pedestrian behavioural levels

By definition, a trip starts at an origin and ends at a destination and this also holds for

pedestrians. Between the origin and destination the trip may include many activities.

Walking can be regarded as the movement to connect the activity locations. A typical

trip starts with a plan of what the pedestrian is going to do during the trip, the start

time and the (initial) routes he or she will take. The initial decisions can be re-evaluated

during the trip due to (un)foreseen conditions until the final destination is reached. This

general description applies to the most common trip purposes like commuting between

an origin and destination. Leisure walking in a park, shopping in a commercial area

and evacuating from a building do may not follow a plan and present walking and

re-evaluations according to a specific goals or desires.

To simulate such a trip many different aspects of pedestrian behaviours need to be

modelled. Hoogendoorn and Bovy (2004) describes the pedestrian behaviours using a

three level modelling approach. The three level concept originated in traffic modelling

and is being adopted by many pedestrian modellers (Schadschneider et al. (2009),

Papadimitriou et al. (2009), Antonini et al. (2006), Sahaleh et al. (2012), Johansson

(2013)).
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The strategic level contains all planning done before the trip initiates. This plan in-

cludes the choice of activities that will be performed during the trip, the order that they

will be performed and the route that will be taken. The tactical level deals with all

changes of the plan and all choices that are made during the trip. The operational level

describes how pedestrians move in space and the behavioural actions such as walking,

waiting. Models that implement the operational level are also referred to as walker

models and are the base of any pedestrian simulation model. Details of the three level

pedestrian model are presented in chapter 3.

The importance of the operational level and the fact that it is not yet fully developed

and thoroughly tested motivated us to concentrate only in this level. This allowed

for an in-depth investigation of the operational level including developments of new

behaviours and validation of the walking behaviour in several situations.

All pedestrian levels described in this dissertation are implemented, but only the oper-

ational level is studied in depth.

1.3 Research objectives

We mentioned before that we are interested in walker models that are predictive (accur-

ate) and explanatory (based on a theoretical framework). After inspecting the literature

we can see that there is a discrepancy between the relatively wide use of models (Galea

and Galparsoro (1994), Klüpfel and Meyer-Konig (2003), Daamen et al. (2008), Ku-

ligowski et al. (2010)) and the non existence of good calibration and validation ap-

proaches. Developers validate their models in different ways making it difficult to

assess them.

Furthermore, there are no studies comparing the outcomes of calibrations regarding

the different situations pedestrians are walking in. What is the accuracy of parameters

obtained with certain flows such as unidirectional flows that do not display frontal

avoidance interactions when predicting bidirectional or crossing flows?

These fundamental issues regarding the accuracy and general use of walker models did

not get much attention, not even for commercial models, thus motivating the develop-

ment of methodologies and using them to investigate the processes of calibration and

validation.

The main objective of this thesis is to develop calibration and validation methods

that result in parameter sets of general use that are accurate in many walking situations,
including situations not used in the calibration.

By comparing several characteristics of different types of models we chose the Nomad

model proposed by Hoogendoorn and Bovy (2003) to be implemented, improved and

be used in the investigations of this thesis.
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Nomad not only has been proven to deliver good results (Hoogendoorn et al. (2004))

but it is also derived from a normative theory that pretends to explain pedestrian beha-

viours by the principle of utility maximisation (Hoogendoorn (2001)). The maximisa-

tion principle is a basis for all the developments proposed in this dissertation.

The original Nomad model only modelled the walking and its original version had a

limited application due to a lack of other behaviours such as waiting and level changes.

Furthermore, the Nomad model also needed improvements in accuracy and computa-

tional efficiency to simulate large facilities.

The second and final objective of this thesis is to investigate, develop, implement, cal-
ibrate and validate a walker model that is accurate and able to simulate large pedestrian

facilities. This objective is achieved with a new version of the Nomad model that is
modified to include behaviours that occur in large pedestrian facilities.

1.4 Research approach

Research objectives result in research questions that are answered using the approaches

described below.

How to compare walker models based in model characteristics that are necessary

to accurately simulate large pedestrian facilities? (chapter 2)

We undertake a literature research that identifies how the existing types of walker

models describe pedestrian behaviour in the individual level. We use an agent based

description of walker models to describe the characteristics of models based in the

‘PAGE’ components - Perception, Action, Goals and Environment from Russell and

Norvig (1995). These components result in a ‘humanised’ description of the charac-

teristics needed to simulate large pedestrian facilities.

The question is answered by assigning scores to the desired characteristics of the four

‘Page’ components. Each walker model receives a total score that is the sum of all

characteristics scores. The total score and the scores obtained in the four ‘PAGE’

components are used to objectively compare different walker model types.

How to model and implement walking behaviour and pedestrian activities found

in large pedestrian facilities? (chapter 3)

We use the normative principle of utility maximisation put forward in the Nomad ped-

estrian theory (Hoogendoorn and Bovy (2002)) to modify the original Nomad model.

All new features are developed by defining indicators described as utilities to be gained

or as a cost to be minimised.
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What are the requirements for calibration and validation that result in parameter

sets that are accurate in predictions of complex situations occurring in large ped-

estrian facilities? (chapter 4)

We use the hypothesis that states that: parameter sets calibrated with several indicators

will likely perform better in many situations than specialised parameter sets. We use

this hypothesis to propose methodologies to calibrate and validate walker models that

combine different flows and performance indicators in what we called multi-scenario

calibrations.

How to determine the accuracy of calibration procedures and how to improve

their quality? (chapter 5)

In this question we are interested in assessing the quality of the calibrations. For that,

we adapt the trajectory based calibration (Hoogendoorn and Daamen (2010)) that es-

timates optimal parameters for individual pedestrians to the multi-scenario methodo-

logy from chapter 4.

The procedure keeps all pedestrians in their video tracked positions at each time step.

For each individual, the procedure determines via an optimisation algorithm the para-

meter set that results in the maximum log-likelihood estimate of the predicted acceler-

ations for this individual along his or her trajectory.

We apply the trajectory based calibration to synthetic trajectories (trajectories created

by Nomad simulations that provide known parameters). By comparing the resulting

calibration to the ‘correct’ parameter values we are able to assess the calibration pro-

cedure and determine the factors that affect its accuracy and assess the beneficial ef-

fects of using multi-scenario calibrations.

What is the influence of type of flows, population composition, urgency and local

conditions to walking behaviour? (chapter 6)

To answer this question we use calibration results to discuss the influence of some

walking variables in the individual walking characteristics. The trajectory based cal-

ibration gives an opportunity to investigate in the individual level how pedestrians be-

have.

The most important parameters of Nomad are calibrated from trajectories originated

from 11 different experiments resulting in 11 sets of parameter samples.

The parameter samples are composed by statistically significant parameters that are

analysed according to different variables of interest: type of flows, population com-

position, urgency and local conditions.
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To what degree multi-scenario calibrations improve the accuracy of parameters?

(chapter 7)

To answer this question, we use three parameters sets obtained in chapter 6 and five

new parameter sets calibrated using the methodology proposed in chapter 5. The cal-

ibration procedure uses errors from macroscopic performance indicators resulting in

one parameter set representing the average behaviour of the whole population.

The parameter sets are divided between the so called specialised and multi-scenario

sets. The specialised sets are obtained with travel times errors from one of three differ-

ent experiments that create unidirectional, bidirectional and narrow bottleneck flows.

The calibrations result in 3 sets of specialised parameters.

The multi-scenarios sets are obtained using the combined error of the three flows. One

multi set uses only the travel time errors and the other uses the combined error of travel

times and u× k relations.

The accuracy of the calibrated sets is assessed using a validation procedure derived

from the methodology presented in chapter 5. The procedure uses average relat-

ive errors to obtain assessments in percentages varying from ‘Good’(0-5% error),

‘Medium’(5-10%) and ‘Bad’ (>10%).

The parameter set accuracy is measured on the three flows used in the calibrations

and on a crossing flow. These measurements allow to compare the accuracy of the

specialised and multi-scenario parameter sets over a wide range of flows that includes

novel situations to investigate the occurrence of overfitting (Van Lint (2009)).

How a walker model can be used to reveal insights about pedestrian operations in

transport nodes? (chapter 8)

The case studies represent real problems proposed by operators of large pedestrian

facilities comprising an airport, train platforms and a complete metro station. We detect

the development of congestion, assess LOS values and its durations, and we measure

queuing and walking times.

For these case studies we use the full version of Nomad that includes the strategic level

with activity and route choice behaviours and tactical level with activity area and queue

choices.

1.5 Thesis contributions

This thesis deals with improving the accuracy of the Nomad model for application and

behaviour investigation. It also deals with methods to improve the quality of calib-

rations and validations of walker models. Within this research several scientific and

practical contributions have been achieved.
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1.5.1 Scientific contributions

The main scientific contribution of this thesis is the development and extensive ana-

lysis of the calibration and validation processes. All investigations were performed

with newly developed methods, comparing different objective functions with emphasis

on multi-objectives. The investigations also covered heterogeneity in pedestrian pop-

ulations and used several flow situations. These investigations resulted in important

contributions that are presented below.

Calibration and validation methodology

A novel methodology that describes the components of calibration and validation of

pedestrian models is proposed. The methodology is generic and can be used to calib-

rate any walker model with any aspect of pedestrian traffic. This methodology is based

on separate scenarios that are paired using multi-objective functions.

Use of synthetic trajectories for analysis of calibration procedures

The approach of calibrating the Nomad model using synthetic trajectories is novel in

pedestrian research. Using trajectories obtained in simulations allowed to evaluate the

performance of the calibration procedure and to find factors that affected calibrations.

Multi-scenario quantitative validation

We proposed and applied a multi-objective function to be used in validations by model

developers to perform quantitative validations. This approach uses a multi-objective

that averages the indicator errors in a final error that is translated into ordinal scores

such as ‘Bad’, ‘Medium’ and ‘Good’. The average error and the associated score

allows for cross comparisons between different parameters in the same model and

comparisons between different models.

Investigation of pedestrian characteristics with individual calibrations

Another contribution was the use of calibrations based on individual trajectories. This

method allows for findings on pedestrian behaviour that are not obtained with direct

analysis of the movements.

Agent-based model representation

The agent-based representation of walker models is divided over four ‘human-like’ ele-

ments that describe pedestrians: their Perception of the environment, the Actions they
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can perform, their Goals and the Environment that they are walking in. The represent-

ation is a novel type of analyses of modelling strategies from different types of models.

The representation enables an objective assessment of models using quantitative scores

that measured the model elements against empirical evidence.

Introducing anticipation in the walking behaviour

An interaction behaviour of pedestrians introduces anticipation in walker models. In-

stead of reacting only at the current distances to opposing pedestrians, the new beha-

viour uses the expected distance in a nearby future. This behaviour gives significantly

better results for frontal collisions and reflects how humans anticipate (Olivier et al.

(2013)).

Modelling of non-walking behaviours

Waiting behaviours are used in simulations of areas in which pedestrians do not walk.

The waiting behaviours cover small areas to be occupied by single or cover large areas

such as train platforms and arrival halls with many pedestrians interacting. If the loc-

ation is very dense, waiting pedestrians move slightly, letting others pass by in a step-

and-sliding movement as observed by Wolff (1973).

Another contribution are new ordered queues behind servers that represent turnstiles or

security checks. The modelled queues allow for traffic to pass very close or even cross

them if the queues are blocking the traffic while not disturbing the queuing process.

Efficient numerical methods

The computational performance of microscopic models is directly dependent on the

size of the discretised time-step. We developed a variable time-step scheme that only

uses the smallest time-step for pedestrians walking in situations so dense that they face

imminent collision.

1.5.2 Practical contributions

The practical contributions of this dissertation are related to the implementation of

the Nomad model in a simulation tool. This tool that is available without costs in

(www.pedestrians.tudelft.nl).

The simulation tool implements the three behavioural levels and was developed with

modular and scalable architecture for future developments. The tool has several forms

of inputs, a graphical user interface (gui) and can be used in different types of optim-

isation problems.
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The Nomad model was applied in three test cases using novel methods to obtain in-

sights in assessing transport nodes. The contribution was the setup and realisation of

investigations that used the results of simulations to solve optimisation problems.

1.6 Outline of the thesis

Figure 1.2 presents the scheme of how the chapters follow logically from each other.

case studies

calibr./valid.

chap.7

chap.3 chap.4

chap.8

chap.2

chap.9

application multi-scenario      

calibr./valid.

empirics

chap.6

calibration      

chap.5

methodology

Nomad

model

individual

characteristics

accuracy

methodology

state-of-the-art

conclusion

Figure 1.2: The structure of the thesis.

Chapter 2 gives an overview of pedestrian models by selecting the most important

characteristics models must present to perform detailed assessments. The overview

follows an agent-based framework to compare the characteristics of different types of

models and their developments. The conclusion of the chapter indicates the reasons

for choosing the Nomad model for improvement, extension, calibration, validation and

application.

Chapter 3 presents the Nomad pedestrian theory and the equivalent model. The chapter

discusses and presents modifications of the Nomad model aiming at modelling new be-

haviours, improving its accuracy and increasing the computational performance. This

model is used in the following chapters.

Chapter 4 provides an overview of calibration and validation procedures including their

shortcomings. These lead to the development of a generic calibration and validation

methodology. The methodology is based on different simulation scenarios forming

multi-objective functions.

Chapter 5 shows how synthetic trajectories are used to calibrate parameters of Nomad

that represent individual behaviours. The calibrations follow the methodology presen-

ted in chapter 4 and the distributions of calibrated parameters are used to investigate

factors affecting the accuracy of calibrations.

Chapter 6 uses the trajectory based calibration presented in chapter 5 on trajectories

obtained from walking experiments. The results of the diverse calibrations are used
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to determine distributions of parameters that are used to study individual behaviour.

The distribution of parameters over the population represents the large heterogeneity

encountered in pedestrian behaviours.

Chapter 7 investigates the improvement in prediction accuracy when using multi-

scenarios in calibrations with macroscopic performance indicators. The calibrations

and validations follow the methodology from chapter 4 providing quantitative meas-

ures of accuracy using experimental data.

Chapter 8 presents three applications of the improved Nomad model using the most

accurate parameter set obtained in chapter 7. The cases studies illustrate novel uses of

walker models to answer questions regarding pedestrians comfort in large pedestrian

facilities. The cases also shows uses of the new behaviours of Nomad introduced in

chapter 3.

The conclusion in chapter 9 presents a synthesis of the main contributions of the thesis.

These are related to the current field of pedestrian modelling and simulation by high-

lighting the implications to the application of models. Furthermore, the findings of

thesis are reflected upon indicating future directions of research.
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Chapter 2

An agent-based perspective on walker

models

Planning for pedestrian traffic started in the decade of 1970. This was much later

than planning for car traffic (Helbing (1997)). The late start of pedestrian planning

occurred even though there was plenty of evidence of the dangers due to overcrowding

(Still (2000), Helbing et al. (2002)).

According to Van Wageningen-Kessels (2013) the first microscopic car traffic model

was proposed in 1953, the field rapidly developed and soon car traffic models were

applied by practitioners. However, pedestrian planners had to wait for another 20 years

for the first walker models and even longer for their regular use.

Batty (2001) gives a historical account of the development of the pedestrian models

of the 60’s and 70’s. He hypothesises that the static nature of the models and the lack

of detailed and accurate predictions explain why decision makers did not apply these

early models. Johansson (2013) mentions the much larger complexity of pedestrian

behaviours when compared to car traffic as an inhibitor for their development.

Even though some microscopic models from the 70’s as described in Hirai and Tarui

(1975) and Okazaki (1979) are comparable to models appearing later in the 90’s they

had not much impact on the development of the field after their publication. Both

models were developed in Japan and did not catch the attention of traffic planners, fire

engineers or scientists in Europe or in the US, which had experience with car models.

It is considered that pedestrian modelling begins in the mid 80’s as an independent

research field and really got popular in the 90’s (Batty (2001), Helbing et al. (2002)).

Since then, the tools to study, collect data and to model pedestrians advanced fast.

In this thesis we take the view exposed in chapter 1 that models must accurately predict

the individual walking and activity movements encountered in large pedestrian facil-

ities. None of previous overviews such as Duives et al. (2013), Bellomo and Dogbe

(2011), Kuligowski et al. (2010), Schadschneider et al. (2009), Gwynne et al. (1999)

17
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discuss models according to these two requirements. Thus we need a different ap-

proach to assess walker models.

Here, we will review the existing walker model paradigms according to empirics of

walking behaviour and assess their suitability to simulate large pedestrian facilities. It

is not our aim to present an exhaustive list of walker models.

A second aim of the state-of-the-art is to choose a model to be further developed in

this thesis. We show that the Nomad model meets all the requirements and allows for

the implementation of behaviours occurring in large pedestrian facilities, thus being

generic in its applicability. The model assessments in this chapter are done using

a novel agent-based representation that relates model characteristics to behavioural

aspects of pedestrians.

In the 80’s the field of Artificial Intelligence introduced agent-based modelling ap-

proaches to solve problems of complex systems with large amounts of interacting parts

(Russell and Norvig (1995)). The advantage is that highly nonlinear situations can be

studied by the outcomes of the collective behaviour of the constituent parts.

There is not a universal definition of what makes a model agent-based. We adopt a

generic definition by Russell and Norvig (1995) on page 33: For each possible percept

sequence, an ideal rational agent should do whatever action is expected to maximise

its performance measure, on the basis of the evidence provided by the percept sequence

and whatever built-in knowledge the agent has.

Microscopic models (or individual-based models according to Hoogendoorn (1999))

are always described by a separation between the individuals and the environment

(Duives et al. (2013), Bandini et al. (2014), Gwynne et al. (1999), Papadimitriou et al.

(2009), Kuligowski et al. (2010), Bellomo and Dogbe (2011)). Therefore, they natur-

ally fit in an agent-based representation.

Characterising pedestrian models in the agent paradigm is not new but it was never

formalised for pedestrians (Batty (2001), Nagel and Marchal (2005), Helbing and Jo-

hansson (2009), Klügl (2008)). We do not consider agent-based a special type of model

even when authors did name their models as such: Kukla et al. (2003), Bansal et al.

(2008), Teknomo and Gerilla (2005), Toyama et al. (2006), Pelechano et al. (2007),

Doniec et al. (2008)). All walker models that we encountered in our overview are

successfully classified into four distinct agent types: rule, force, goal and utility-based

models. These categories will be explained in the following sections.

In this chapter we propose the agent representation of walker models in section 2.1.

Section 2.2 presents walker models according to the agent representation. We proceed

in section 2.3 to present characteristics of walker models that represent pedestrian be-

haviours and model characteristics necessary to simulate large pedestrian facilities.

The rule, force, goal and utility-based models are assessed according to the agent rep-

resentation and discussed in section 2.4. Section 2.5 presents the conclusions from the

review of walker models, requirements for application in large pedestrian facilities and

with arguments why we decided to further develop the Nomad model.
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2.1 Agent representation of walker models

This section proposes an agent representation for walker models that is based on the

PAGE concept of Percepts, Action, Goals and Environment described in Russell and

Norvig (1995). These four elements represent the tasks (walking, waiting . . . ) and

elements of the walking behaviour and are used to characterise the walker models.

Figure 2.1 proposes the representation of pedestrian behavioural levels as explained in

sections 1.2 and 3.1. The figure shows how pedestrians walking on a dynamic environ-

ment may need to make choices (tactical level) based in what they are perceiving from

the environment. These choices must be in accordance to their strategic goals directing

the current actions (operational level).
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Figure 2.1: An agent-based adaptation of the three pedestrian behavioural levels

by Hoogendoorn and Bovy (2004). The representation is inspired by Russell and

Norvig (1995).

Given the focus of this thesis on the operational level (walker model), the strategic

and tactical levels will not be further elaborated in this overview. A walker agent is a

representation of the walking behaviour of a pedestrian using the ‘humanised’ PAGE

elements.

The walker agent perceives its surroundings for pedestrians and infrastructures; based

on the interpretation of its percepts and its goals it will decide on an action and per-
form it, thus affecting the environment.

Perception is all the information that agents get from the environment and from other

pedestrians. They will perceive the pedestrian traffic, the infrastructures and inform-

ation via signs or communication. We use the more general name of infrastructures

instead of obstacles to include all possible objects that pedestrians interact with. Per-

ception is not only the result of sensing, but also the interpretation thereof (thus includ-

ing observation and interpretation errors).

Actions are everything that they can do in the walking facility, such as walking, accel-

erating, stopping, waiting and taking elevators.
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Goals involve the aims of agents when walking such as spending the minimum amount

of walking effort (Zipf (1949)), maximising utilities (Hoogendoorn and Bovy (2002))

or avoiding collisions (Moussaïd et al. (2011)). Note that the goals do not necessarily

have to be represented explicitly by the agent. The goals describe the performance

measure by which the agent is designed.

For each individual the environment comprehends the available walking and non-

walking areas, infrastructure and the environmental conditions such as the presence of

smoke or light.

An important aspect of agents is their state. The state of pedestrians ξ are their dy-

namic state~z (position~r, velocity~v and acceleration ~a) and other properties that may

be used in models such as urgency (Daamen and Hoogendoorn (2009a)) and fatigue

(Shields et al. (2009)). Table 2.1 shows examples of agent states and PAGE elements.

Table 2.1: A walker agent representation with examples of the four PAGE agent

elements (derived from Russell and Norvig (1995)).

state percepts actions goals environment

position, vision, signs, accelerate, avoid collisions, walking areas,

velocity, communication stop, wait, maximise utilities, ramps, stairs,

urgency, steer, interact, minimise effort escalators,

fatigue climb stairs obstacles

The following section will present the four types of agents: rule, force, goal and utility-

based. The types of walker agents differ according to the process of applying the

percepts to perform the actions.1

The most simple walker agent has actions defined by rules, selected as reactions to

the perceived traffic and infrastructures. The force-based agents do not have explicit

actions, the actions ‘emerge’ from reactions to the percepts. Goal oriented models

also have actions emerging but the reactions have an explicit intention of collision

avoidance. The last type is utility-based that assigns utilities to different intentions and

to reactions that also result in emergent actions.

2.2 Walker modelling paradigms

This section classifies walker models as they are known in the pedestrian modelling

literature according to the four agent categories: rule, force, goal and utility models.

1Other types of agent are suggested by Russell and Norvig (1995) but they involve higher level of

reasoning usually associated with the strategic and tactical levels.
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2.2.1 Rule-based reactive agents

The most simple process to apply the percepts is using rules that directly describe the

actions to be performed without using any state variable. An example is the first rule

for a CA model proposed by Blue and Adler (1999): If two pedestrians need to sidestep

to the same lateral cell then assign it to one of them with a probability of 50%.

Rule-based selection of actions represents a reactive behaviour and consequently, such

models create rule-based reactive agents. The rules are in general of the if-then type.

Most rule-based models do not use the dynamic state to apply the rules, therefore not

needing to keep the agent state.

The limitation of such models is the necessity of predicting all situations pedestrians

can encounter and encoding the actions to overcome them. The more complex the

situations, the more exceptions must be described by the rules (Schadschneider et al.

(2009)) turning them less intuitive and less naturalistic. Figure 2.2 shows a represent-

ation of a rule-based reactive agent.
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Figure 2.2: An agent representation of a rule-based reactive walker model.

Cellular Automata (CA)

Particle Hopping models are spatially and temporally discrete models. The walking

area is divided into cells that (usually) accommodate only one pedestrian (figure 2.3).

At each time-step of the simulation a pedestrian can stay in its current cell or ‘hop’ to

a neighbouring cell. The typical cell size is 40−50cm that approximately represents

the private space of a standing pedestrian.

If only one pedestrian is allowed in a cell and the movement of all pedestrians is up-

dated simultaneously, the particle hopping model is named Cellular Automata (Wolfram

(2002)). However, after decades of development this distinction is not relevant for

walker models and we will use the popular term CA for all particle hopping models

(Schadschneider et al. (2009)).
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Figure 2.3: A particle, its possible directions of motion and the corresponding

transition probabilities pi j for the case of a von Neumann neighbourhood (from

Schadschneider et al. (2009)).

Some models do not allow hopping in diagonals in what is called the Neumann neigh-

bourhood (figure 2.3). Other models make use of a Moore neighbourhood that al-

low the access of eight neighbouring cells to increase the possible walking directions

(Gipps and Marksjo (1985), Burstedde et al. (2001)). Blue and Adler (1999) proposed

a model that creates pedestrians with different speeds by hopping up to three cells at

one time step extending the cell neighbourhood.

Figure 2.3 shows a case of a CA model defining the probability rules for the neigh-

bouring cells. This shows the distinctive characteristic of rule based models: rules can

be deterministic or probabilistic. Usually this distinction appears in the rules that deal

with solving conflicts that arise when more than one pedestrian is assigned to the same

cell (see figure 2.13).

Deterministic rules require the model to have a rule for all conflicts, creating very large

number of rules. The model proposed by Kukla et al. (2001) has up to 80 rules. The

majority of the models have probabilistic assignments to solve conflicts. These can

be in the form of a random draw (Burstedde et al. (2001)), the introduction of friction

effects (Kirchner et al. (2003)) or to non-parallel update schemes (Keßel et al. (2002)).

Some CA models present a ‘dynamic floor field’ that acts similarly as a pheromone

type of behaviour in which a ‘chemical’ attractive trail is left by walking pedestrians

that creates a lane behaviour significantly reducing conflicts (Burstedde et al. (2001)).

This floor field also is used to create different groups of pedestrians that walk after

each other in different directions.

Suma et al. (2012) introduces anticipation in a CA model to mitigate conflicts likely

to occur. They propose an anticipation floor field that recognises the cells likely to be

occupied by walking pedestrians. The probability rules for these cells are modified

taking into account the likelihood that they will be occupied.

Schadschneider et al. (2009) discuss the different solutions for conflicts and their con-

sequences for the accuracy and realistic depiction of human behaviours. The authors

mention that creating very complex solutions for conflict resolution generally has a

negative impact in the computational efficiency of CA models.

CA models are shown to present good results for aggregate indicators, such as fun-

damental relations and egress times (Schadschneider and Seyfried (2009a)) and some
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form of self-organising phenomena (Blue and Adler (1999), Burstedde et al. (2001)).

Furthermore, due to their simplicity, CA models usually present the best computation

efficiency under the walker models.

The literature shows us that much effort was put into improving the prediction of CA

models. These efforts require many artefacts complicating CA models without making

them a good predictor of individual behaviours (Schadschneider and Seyfried (2009b)).

Space Syntax model

Another type of rule based models is derived from Space Syntax principles (Hillier

and Hanson (1984)). The Space Syntax model was proposed by Penn and Turner

(2001) and further developed in Turner and Penn (2002). Their basic hypothesis is

derived from empirical studies by the psychologist James Gibson (Gibson (1979)).

They describe the main movement hypothesis in Turner and Penn (2002) on page 480

as: When engaging in natural movement, a human will simply guide him or herself by

moving towards further available walkable surface. The existence of walkable surface

will be determined via the most easily accessed sense, typically his or her visual field.

This hypothesis is implemented by means of a two-dimensional grid with cells of ar-

bitrary size over the walking area (figure 2.4).

Figure 2.4: The 32 angular bins containing the centre of the visibility cells (small

dots) for the pedestrian (large dot), from Penn and Turner (2001).

Each pair of cells that is able to be connected by a line not passing through an obstacle

are put in a visibility graph prior to the simulation. At each position a pedestrian will

have a field of view that contains a set of angular bins with their visible vertices. The

walking behaviour is resulting from simple rules:

1. Choose randomly a vertex that is visible and inside your field of view.

2. Take on average, n steps towards that vertex, based on a Poisson distribution.

3. Repeat 1.
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Bins with more vertices have a larger probability to be chosen creating the tendency

of walking towards further available space as intended by the hypothesis. Therefore,

pedestrians will tend to follow corridors but areas with doors and obstacles disrupt

this tendency creating movements that somewhat resemble an explorative behaviour.

These simple rules were expanded including side-stepping to address conflicts.

Simulations of an art gallery showed good agreement between observed and simulated

occupancy of rooms. However, they point that pedestrians have small probabilities to

exit corridors and simulations of large open spaces results in random walk.

Space syntax models show the power of simple rules to create a kind of leisure beha-

viour. However, they certainly need to be further developed to predict realistic pedes-

trian flows and self-organised phenomena.

2.2.2 Force-based reactive models

Force models are also reactive agents where the percepts are directly input into a move-

ment equation, usually describing the acceleration. What distinguishes them from the

rule-based models is the fact that the actions are not explicitly determined, but are the

consequence of the different forces acting. These models are therefore more realistic

because they combine forces for the emergence of the actions.

Force based models consider pedestrians as particles that attract or repel each other

according to particular behaviours. The collision avoidance behaviours usually involve

repulsion forces and grouping behaviours usually involve attractive behaviours.

Force models usually use the dynamic state variables such as position and speed from

themselves and other pedestrians to obtain the accelerations. Therefore, they need to

keep their state in memory becoming force-based reactive agents with state (Figure

2.5).
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Figure 2.5: An agent representation of a force-based reactive walker model with

state.
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Social Force

The most popular force model is the so called Social Force model that has been de-

veloped in many different variations since its original proposal by Helbing and Molnar

(1995) as a purely reactive model.

The social force model associates the behaviours of pedestrians to ‘forces’ that guide

their behaviours. From the perspective of a reference pedestrian α all other pedestrians

and infrastructures exert a force that are added to calculate the total effect to the velo-

city of pedestrian α. These forces are: to follow a certain path (that will eventually lead

to a destination), to keep distances to other pedestrians and infrastructures (preventing

collisions) and to be close to pedestrians that are part of an interest group such as a

family or street artists. These are formulated according to the following equation by

Helbing and Molnar (1995):

~Fα(t) =~F0
α (~vα,v

0
α~eα)+∑

β

~Fαβ(~eα,~rα −~rβ)+∑
B

~FαB(~eα,~rα−~rα
B)+∑

i

~Fαi(~eα,~rα −~ri, t)

(2.1)

where:
~Fα(t) is the total social force exerted into pedestrian α at the location~rα.
~F0

α is the force towards the desired direction~eα.
~Fαβ is the repulsive force of other pedestrians β at the locations~rβ.
~FαB is the repulsive force of infrastructures B at their closest locations~rα

B to α.
~Fαi is the attractive force of other pedestrians i at the locations~ri.

Equation (2.1) shows the purely reactive nature of the social force model indicating

that collisions are not anticipated and therefore they can occur depending on the traffic

conditions.

The social force model assumes that pedestrians will always try to follow a trajectory

with a desired direction ~eα(t) at a constant desired speed v0
α (free-speed). In case

pedestrians need to change their velocity, they will do so with an acceleration that is

linearly dependent on the difference between the desired velocity v0
α~eα and the current

velocity~vα :

~F0
α (~vα,v

0
α~eα) =

1

τα

(

v0
α~eα −~vα

)

(2.2)

where

τα is the relaxation time. The smaller its value the less a pedestrian will give way to

others and the closer he or she will stay to his or her desired velocity. Extreme small
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values of τ result in uncooperative behaviour.

The perception of the pedestrian is anisotropic in the shape of an ellipse with semi-axis

b. This causes a stronger repulsion from pedestrians closer to the walking direction

than to those in lateral positions. The repulsion force is governed by an exponential

equation:

~Fαβ(~eα,~rα −~rβ) =−V 0
αβe−b/σ·~eαβ (2.3)

where:

V 0
αβ is the repulsion strength.

σ is the repulsion distance factor. The smaller this factor the closer pedestrians must

be to repel each other.

The acceleration ~FαB is similarly described by an exponential equation. The authors

did not implement attraction forces, but mentioned the dependence to time t accounting

for the attenuation of the attraction force with the passage of time.

This first formulation of the social force model already exhibited good results with

the authors mentioning the formation of lanes in bidirectional flows and oscillations in

bidirectional bottlenecks. Since its proposal, the social force model has been further

developed and validated to include other features and to improve some of the problems

identified (Steffen and Seyfried (2008)).

Aube and Shield (2004) used the social force model to implement leader-follower and

grouping behaviour that would occur in evacuations.

In Helbing et al. (2002) the social force model is extended with pressure forces due to

collisions. Helbing et al. (2005) introduces the notion of impatience that increases the

free-speed v0
α if the walking time is longer than expected by the pedestrian.

Steffen and Seyfried (2008) point out that the interaction forces as formulated ori-

ginally cause abrupt reactions and sharp turns that are not realistic. They propose a

simple type of anticipation to smooth the reactions. They report that the behaviours

were improved in single lane situations but not for other situations.

Chraibi and Seyfried (2008) also modify the repulsion force in a unidimensional single

lane social force model to avoid oscillations that occur when pedestrians are constantly

reacting with pedestrians in the front and in the back. Their model introduces an event

driven interaction component that will adapt the velocities keeping a minimum dis-

tance to the pedestrian in front. They report improvements to prediction of the funda-

mental diagrams for densities until 1.0peds/m2 but their model seems unable to reach

densities higher than 1.6peds/s.

Zanlungo et al. (2011) introduced anticipation into a social force model by using an-

ticipated positions in a similar way as described in section 2.2.3. The authors report

better results than by an original social force model.
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Johansson (2013) introduced three waiting behaviours in a social force model. All of

them have the pedestrian fixing his gaze to a point accounting for situations such as

looking at information boards. The first and most simple waiting behaviour does not

fix the waiting location but sets v0
α = 0. The pedestrian however is still submitted to

the interaction forces, thus drifting accordingly. The second waiting behaviour fixes

a preferred waiting position that pedestrians will always try to return to if they had

to give way for passing pedestrians. The third allows the waiting position to wander

relaxing the condition of always walking back to a previously chosen waiting position.

Force based CA model

Gipps and Marksjo (1985) proposed the first CA walker model. Differently from what

was later more popular it had repulsion and attraction forces instead of rules. In this

model each cell gets a repulsive score that is calculated due to the proximity of ped-

estrians. Simultaneously, the location of a cell in relation to the destination provides a

benefit. The next cell is chosen not by a set of rules but by the one that gives the best

gain between the repulsion score and the benefit of the distance to the destination.

Magnetic force

Okazaki (1979) proposed a force model based on the magnetic force equation (2.4).

Pedestrians and obstacles are of the same positive pole and therefore repulsive. The

destinations are negative and therefore attractive to pedestrians. The maximum velo-

city of pedestrians is limited and is an individual parameter.

~F =

[

kq1,q2

|r|3

]

~r (2.4)

where:
~F is the magnetic force.

k is a constant value.

q1 is the intensity of magnetic load of a pedestrian.

q2 is the intensity of a magnetic pole.

~r : is the vector from a pedestrian to a magnetic pole.

Although it is probably the oldest walker model, it already presented several interesting

features such as three different walking strategies: following the shortest route, follow-

ing a previously set route and a seeking strategy without known route. The model also

presents queuing and waiting behaviours. Unfortunately, no modelling details for these

special features were presented and also no validation evidence.
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2.2.3 Goal-based models

Pure force models have the disadvantage of not being explicit in the goals that pedestri-

ans want to achieve whilst walking. Force models propose minimising walking time as

the main pedestrian strategy, but they mostly provide a ‘drive’ towards the destination.

Goal based-models make the minimisation of walking time explicit. Furthermore, they

usually combine it with a second goal of collision avoidance. The collision avoidance

is different from the reaction force from the force models in that it explicitly searches

for locations that do not result in collisions. The search for paths without collision

results from an intention that is not equal to the purely reactive repulsion forces that

just create a tendency to avoidance of collisions.

Goal-based walker models present optimisation strategies that will govern pedestrian

actions. To realise that, they need to anticipate the consequences of their actions,

compare alternatives and choose the action that best fulfils their goals. At the moment

of this review the only goal based models are collision avoidance models and this

section will concentrate on them. Collision avoidance models constitute the newest

type of walker models and were originated in the computer graphic community (Pettré

et al. (2014)). Figure 2.6 shows the representation of goal oriented models.
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Figure 2.6: An agent representation of a goal-based walker model (based on Rus-

sell and Norvig (1995)).

Collision avoidance models are purely anticipatory models. Usually, these models de-

termine the imminence of collisions and according to some logic they produce velocity

changes to prevent these collisions to occur. Paris et al. (2007) propose the notion of

admissible velocities as the set of velocities that pedestrians can maintain without risk-

ing a collision. Therefore, if a pedestrian is currently walking with an inadmissible

velocity, he or she (probably) changes it.

Models differ in the way they calculate the probability of collisions and in the way

they modify the inadmissible velocities. Given the complex dynamics of the pedes-

trian traffic, anticipatory models need to make simplifying assumptions of the future

progress of the traffic. The most common is the zero acceleration asumption that states

that: Pedestrians keep the same velocity in the nearby future.
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Figure 2.7(a) taken from Paris et al. (2007) shows the most general case of collision

prediction between a reference pedestrian and an opponent. It uses the zero accel-

eration assumption to create the cone with the time x position search space for 360◦

walking directions for the reference pedestrian. The opponent is assumed to maintain

the same velocity, thus his or her search space is a cylinder with the radius equal to the

sum of both pedestrian radii (assuming circular pedestrians). The intersection of both

geometric figures is the possible collisions boundary (black polygon). Figure 2.7(b),

also taken from Paris et al. (2007), shows the various collision polygons for different

speeds of the reference pedestrian.

(a) (b)

Figure 2.7: (a) The position x time space representation of two pedestrians. The

purple cone is the space with possible locations of the reference pedestrian walk-

ing on a constant speed for all directions. The blue cylinder is the space of the

other pedestrian walking on constant velocity. The black polygon is the inter-

section boundary of possible collisions. (b) The same representation for different

speeds of the reference pedestrian (from Paris et al. (2007)).

The zero acceleration assumption allows the calculation of some important variables

concerning collision avoidance behaviour: the time-to-collision (TTC), time-to-interaction

(TTI), distance-to-interaction (DTI) and minimum pedestrian distance (MPD). If a col-

lision will occur, the TTC is the time it takes for the pedestrians to collide (Daamen

and Hoogendoorn (2006)). If no collision occurs, TTI and DTI are the time it would

take and the distance to reach the minimum distance (MPD) between the two pedestri-

ans (Degond et al. (2013)). TTI and DTI are positive for a pedestrian if the interaction

location will be reached in the future and negative otherwise.

Anticipation models can be divided into two categories: models that determine the

behaviour according to the admissible velocities space (Pettré et al. (2009), Asano et al.

(2010), Karamouzas and Overmars (2010) and Moussaïd et al. (2011)) and models that

use perception clues to predict the avoiding behaviour (Ondřej et al. (2010)). Degond

et al. (2013) and Pettré et al. (2014) present reviews of collision avoidance models.
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Admissible velocity models

Figure 2.7 shows that the space of admissible velocities is too large for simulations

with many pedestrians, requiring simplifying assumptions to restrict the space. The

most common assumption is to limit the field-of-view with an arc φ and a maximum

anticipation time (Pettré et al. (2009), Karamouzas and Overmars (2010), Asano et al.

(2010)) or maximum interaction distance (Moussaïd et al. (2011)).

Paris et al. (2007) proposed the first of collision avoidance model by calculating the

admissible speeds and proposing a cost function to choose one of them. The model

determines the minimum speed (and correspondent orientation) the reference pedes-

trian needs to pass in front of the opponent and the maximum speed that he or she can

have to pass behind the opponent (with MPD as a safety factor) for four different an-

ticipation times. These velocities form the boundaries of the admissible velocities for

the anticipation time for the interaction with a pedestrian or an obstacle. With the set

of admissible velocities for the entire interaction population the model applies a score

system based on several assumptions, such as the desire to stay close to a direction

leading to the destination. The velocity with the lowest score is chosen.

The authors reported that the model was able to reproduce the interaction behaviour

accurately and that the calibrated model managed to reproduce some self organised

phenomena such as lane formation. However, they only obtained good validations

results for models calibrated in the same experimental setup indicating a strong spe-

cialisation of the model. They also reported that the computational time was somewhat

high even considering the relatively low flows simulated.

Moussaïd et al. (2011) simplifies the admissible velocity models by not trying to guar-

antee a collision free model (this model includes a collision model for situations with

high densities). The authors describe the walking behaviour into simple equations that

calculate the pedestrian velocities without searching the whole space of admissible ve-

locities. Instead, they limit the area of perception into a field of view with a radius that

they called “horizon distance”. If pedestrians and obstacles are inside the field-of-view,

their anticipated positions are used to determine the DTI of each of them and input in

the equations that calculate the new direction and the speed.

The authors report some qualitative and quantitative validation results. Their model

was able to reproduce turbulent flows in very dense situations and fit a speed x occu-

pation fundamental relation. However, these were preliminary results and the model

used different set of parameters in the validations and there is no evidence that a single

set would perform well in all conditions. Furthermore, no evidence of important self-

organised behaviour such as lane formation was presented.

The synthetic vision model

Ondřej et al. (2010) also proposes a model that does not guarantee a collision free

solution. The model is based on the empirical evidence that pedestrians are able to
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predict collisions based on the variation of the bearing to the other object and that they

are able to predict the TTC based on the rate of the size change of the other object.

Figure 2.8(a) shows the relationship between the bearing angle derivative α̇ and the

three possible situations in crossing trajectories (the reference pedestrian is walking

up): if the reference pedestrian passes over the interaction point after the other pedes-

trian then α̇ < 0, if they collide then α̇ = 0 and α̇ > 0 otherwise.

α̇ < 0 α̇ = 0 α̇ > 0

(a) (b)

Figure 2.8: (a) The relationship between the bearing angle derivative α̇ and the

three possible situations in crossing trajectories. (b) The model inputs are de-

duced from the relative position and velocity between the reference pedestrian W

and the perceived pedestrian (from Ondřej et al. (2010)).

Figure 2.8(b) shows the graphic representation of the three input values for the ref-

erence pedestrian W given the perceived pedestrian i: (αi, α̇i,TTIi). The model first

determines the set Pcol of the perceived pedestrians that risk colliding with W by satis-

fying the following conditions:

pi ∈ Pcol if TTIi > 0 and | α̇i |< τ1(TTIi) (2.5)

The condition states that pedestrian W must be walking towards the interaction location

and that the absolute value of the rate of bearing change is smaller than a threshold

value τ1. The value of τ1 increases exponentially when TTIi → 0.

The model is called ‘synthetic-vision’ because it uses a 3D visual field to determine

the points of interest in the pedestrians and obstacles. The synthetic-vision model has

the merits of being simpler than models that enforce only admissible velocities and

the authors report realistic results, particularly self-organised behaviour such as lane

formation and diagonal stripes in 90◦ crossing flows. However, there is no evidence

that the model can handle complex and dense situations.

2.2.4 Utility-based models

Frequently, walking behaviour involves a combination of factors. Whilst pedestrians

may want to reach their destinations as quickly as possible, they may also want to min-
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imise the effort required to avoid other pedestrians. These different goals may conflict

if the traffic ahead is intense. Utility models make use of the idea that pedestrians show

some degree of rationality by finding trade-offs. These trade-offs are achieved by as-

signing relative weights on the different utilities (’the quality of being useful’) gained

or lost when walking.

Utilities are functions that map a pedestrian state onto a real number, which describes

the associated degree of usefulness. Another way to understand utility is to think on its

inverse: the cost. A pedestrian walks by simultaneously minimising the cost of time to

achieve a destination and the cost of accelerating (as a proxy for effort) to avoid traffic

and obstacles.

Utility-based models for human behaviour were introduced in economics to model

market dynamics based on the idea that people are always trying to maximise their

benefits. Humans do not always appear to behave rationally when making decisions

(Ariely (2008)). However, for modelling walking behaviour utility models offer a

powerful and practical framework to combine different goals.

Earlier utility-based models for pedestrians were developed for pedestrian route choices

in business areas (Seneviratne and Morrall (1985)) and choices between stairs and es-

calators in metro stations (Cheung and Lam (1998)). Both are respectively for the

strategic and tactical levels. Only later, utility-based walker models were proposed:

Nomad by Hoogendoorn et al. (2003) and discrete choice models (Antonini et al.

(2004)). Recently, a fuzzy logic model by Nasir et al. (2012) was proposed combining

an inference model with social forces.
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Figure 2.9: An agent representation of a utility-based walker model (based on

Russell and Norvig (1995)).
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Nomad

What distinguishes the Nomad model from all other models is that it is derived from

a normative pedestrian walking theory (Hoogendoorn (2001)). The theory applies the

principle of least effort by Zipf (1949) to walking and to activities performed between

walking. In the Nomad theory, the idea of minimising effort is not directly related to

physical effort, but to the more general concepts of utility and cost.

The Nomad model is a complete pedestrian model in which all three levels: strategic,

tactical and operational are derived from the same normative theory. Furthermore,

Nomad is the only explicit activity based model. Activities such as buying tickets,

waiting in platforms are an integral part of its formulation. This makes Nomad a

complete platform for modelling behaviours in complex pedestrian facilities. Below,

we will introduce the Nomad walker model that is the focus of this dissertation (for

details of the activity and route choice models refer to Hoogendoorn and Bovy (2004)).

In the theory, every action of pedestrians during walking, such as overtaking, accel-

erating and slowing down creates costs. These costs are associated with the physical

effort that they require. Therefore, pedestrians will walk minimising them. The Nomad

model assign cost functions to these manoeuvres and to interactions with other pedes-

trians and obstacles. The total cost function is minimised resulting in the acceleration

model. The resulting mathematical formulation of the original Nomad model given

certain assumptions is similar to the original Social Force model presented in section

2.2.2. The complete formulation of the Nomad walker model is presented in chapter 3.

The Nomad model was later expanded in Hoogendoorn (2004) with an impatience

factor that depends on the difference between the current speed and the free-speed

of the pedestrians. The idea is that if pedestrians are much slower (or much faster)

than their free-speed, they will more forcefully accelerate towards it and will take less

avoiding manoeuvres inside the traffic. This would represent an ‘aggressive’ behaviour

due to urgency as explained in section 2.3.6.

The original Nomad model was successfully applied (Hoogendoorn et al. (2004)) and

shown to reproduce many important flow properties such as self-organised phenom-

ena (Hoogendoorn and Bovy (2003)). However, the same problems of non realistic

walking behaviours in certain situations existing in social force models appointed by

Steffen and Seyfried (2008) occur with the original formulation of the Nomad model.

Discrete Choice models

Discrete choice walker models were proposed by Antonini et al. (2004) and further

developed by Robin et al. (2009). The basic idea is that pedestrians choose the next

location from 33 possible cells in a discretised target area in their front (figure 2.10).

There are two overlapping sections that create the 33 cells. First, 11 different sized

angular sections divide a 170◦arc. Secondly, there are three arched zones that represent
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Figure 2.10: The space discretisation of the target area of the discrete choice mod-

els (from Antonini et al. (2004)).

the position pedestrians could reach if they decelerate, remain in the same speed or

accelerate.

The original model has 8 attributes that account for the intentions of pedestrians such

as reaching a destination and the interaction with other pedestrians. The original model

implements a utility function Vj with five variables responsible for the choice of the

next target area cell. The variables account for the occupation attribute of the cell,

the location of the cell regarding the movement direction (expressing the preference to

keep the current walking direction), the location of the cell regarding the direction of

the destination, the cost of accelerating and decelerating.

Vj = βoccupation ·occupation j +βdirection ·direction j +βdestination ·destination j

+βacc · vλacc
norm +βdec · vλdec

norm

(2.6)

where:

β are the alternative-specific coefficients.

vnorm represents the normalised speed module of the decision maker.

Later, Robin et al. (2009) expanded the basic choice model by introducing two more

components in the utility functions: one accounting for leader-follower behaviour (as-

suming that the decision maker is attracted by a leader that is walking in a similar

direction and not too far ahead) and the other for explicit collision avoidance beha-

viours (captures the effects of possible collisions on the decision maker’s trajectory).

Robin et al. (2009) uses one set of empirical trajectory data to calibrate the model

and two different sets to validate the model. The authors report that the trained model

delivered good results including lane formation, but there is no evidence of the general

application of the calibrated parameters.

Fuzzy logic force models

The proposed fuzzy logic model by Nasir et al. (2012) combines the characteristically

reactive nature of force models with the inferential power of utility models. The en-

vironmental stimulus are represented by the interaction forces of a Social Force Model
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Figure 2.11: The three positions ahead and the architecture of the steering fuzzy

model (from Nasir et al. (2014)).

(section 2.2.2) and the action is chosen by a fuzzy logic steering model presented in

figure 2.11.

The model discretises radially three positions in front of the pedestrian and for each

position it calculates the environmental forces based in attraction and repulsion forces

from social force equations (equation (2.1)). These forces are fuzzified into six mem-

bership functions (MF’s): High Attractive (HA), Medium Attractive (MA), Low At-

tractive (LA), Low Repulsive (LR), Medium Repulsive (MR), High Repulsive (HR).

These three positions and the six MF’s create 63 = 216 fuzzy rules that transfer the

inputs of the system to the output that is the walking direction. These rules guide

pedestrians towards attractive areas and avoid the repulsive interactions.

Nasir et al. (2014) calibrated the fuzzy variables using a genetic algorithm and reported

good agreement for single trajectories. Pedestrians are repelled by the obstacles and

attracted by the desired route.

The fuzzy part of the model creates a decision layer that is more powerful (and more

complex) than the simple addition of the social forces. One could imagine that other

decision parameters could be incorporated in the walker model approaching it to the

other utility models. By the time of this literature research the model was still very

basic and no pedestrian interactions were included. Until this type of model shows

good performance in dense situations and in several types of flow we cannot consider

it for more complex walking situations.

2.3 Agent characteristics for model assessment

We saw in the previous section that the agent representation helps to understand what

type of ‘reasoning’ is implemented in walker models. In this section we use the PAGE

concept to relate agent characteristics to walking processes found in large pedestrian

facilities and to a realistic depiction of individual pedestrian behaviour.
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The characteristics will be used to create scoring indicators. The indicator will receive

a value 1 if the criteria is met. The value of the scores is not important. What is import-

ant is the fact that models with non 0 score in the Perception and Goal characteristics

can be considered more ‘realistic’ (as ‘human like’) and more ‘general’ in the Actions

and Environment.

Parameters reflect modelling decisions or results from calibrations that focused on par-

ticular performance indicators. It is not our intention to assess the types of models

according to the closeness of the reported parameter values to empirical data. Model

characteristics will receive a good score if they are similar to empirical evidence and

the parameter values can assume realistic values. Figure 2.12 shows the characteristics

that are included in the assessments.
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Figure 2.12: The model characteristics that will be assessed in this overview or-

ganised according to the PAGE concept.

Figure 2.12 also shows heterogeneity as an assessment criteria. Studies showed that the

amount of heterogeneity (variation of the individual characteristics) in the population

affects the traffic characteristics. Including heterogeneity as an extra score for the other

agent characteristics would increase significantly weight of heterogeneity in the final

score. Therefore, it is presented as a separate assessment criteria in section 2.3.1.

The perception is discussed in section 2.3.2. We assess in section 2.3.3 if the models

implement other types of behaviours besides normal walkings such as waiting, taking

escalators, passing turnstiles and if they implement level changes.

Agents may have several goals that are explicit, such as in goal and utility-based mod-

els or implicit by having been used to derive the model. Section 2.3.4 presents goals

that create a wide range of factors influencing walking behaviour.

The discretisation type of the environment has a large influence on the outcomes of the

model and is discussed and, assessed in section 2.3.5. The type of infrastructures such
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as stairs and turnstiles is directly connected with the available actions and will not be

assessed in the environment.

Section 2.3.6 present the agent state variables representing human factors that are rel-

evant for modelling non normal behaviours.

All sections will end with a list of the criteria that the agent characteristics are assessed.

The first item of the list is the absence or the most basic case of the characteristic and

receives a 0 score. Every other possible criterion in the list add 1 to the model score,

thus is represented by a +1.

2.3.1 Heterogeneity

The variability of an individual is called intra-pedestrian heterogeneity. Usually, mod-

els are not developed to describe the behaviour of a specific individual. Therefore, we

will not consider intra-pedestrian heterogeneity as a comparison characteristic.

Variations among individuals also known as inter-pedestrian heterogeneity, are much

more important. Campanella et al. (2009a), Moussaïd et al. (2012) and Yang et al.

(2014) showed that increasing levels of heterogeneity increased the probability of grid-

locks in bidirectional flows.

Several characteristics of walking behaviour vary between pedestrians. Pedestrians

walk faster when they are young (Buchmueller and Weidmann (2006)), may display

more or less cooperative behaviour (Wolff (1973)), walk differently due to cultural

characteristics (Chattaraj et al. (2009)) and are less manoeuvrable when they are old

(Luchies et al. (2002)). This shows that walker models must allow for variation in

the population. Therefore, we will put a larger importance to models that implement

heterogeneous populations.

The most important characteristic that is an input to all walker models is the free-speed.

This is the speed at which pedestrians would walk when no pedestrians or obstacles

are in the vicinity. The free-speed has been measured for several different factors, such

as gender, culture, age group and time of the day (Weidmann (1993), Daamen and

Hoogendoorn (2006)).

Other pedestrian characteristics may be present in models and their variability may de-

scribe heterogeneous populations. Given the significant differences between the types

of models, we will not include the amount or the kind of parameters that are varied.

Only if the model allows variability of behaviour.

The heterogeneity criteria are:

0 if population is homogeneous.

+1 if the free-speed varies.

+1 if other pedestrian characteristics are varied.
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2.3.2 Perception characteristics

Modelled pedestrians perceive the state of other pedestrians and of the infrastructures.

Real pedestrians mostly rely on vision to perceive other pedestrians (Goffman (1972),

Patla and Vickers (2003)). Furthermore, pedestrians put their attention on a limited re-

gion of the vision field concentrated around their walking axis (Johansson et al. (2007),

Moussaïd et al. (2009), Kitazawa and Fujiyama (2010)). This means that their interac-

tion behaviour is dependent on the relative direction of movements and is more intense

for pedestrians on a collision route (Goffman (1972)) and for those that are closer (Jo-

hansson et al. (2007), Moussaïd et al. (2009)). This characterises an anisotropy regard-

ing the area around a walking pedestrian and a spatial limit (bounded area). Areas in

front and close to the walking directions are perceived and interpreted more intensively

than areas laterally and backwards.

In the remainder we will name the perception area as the influence area (see section

3.2.7). Therefore, models that limit the perception of pedestrians (bounded) for in-

teraction purposes and put more importance to pedestrians in their walking direction

reflect a more natural behaviour.

The perception criteria are:

0 if the perception is isotropic.

+1 if the perception varies with distances.

+1 if the perception is anisotropic.

Kitazawa and Fujiyama (2010) performed eye tracking experiments and determined

that pedestrians perceive static obstacles already at 4.6m and rarely in angles larger

than 45◦ from the walking direction. However, there is very little other empirical

evidence on the perception of infrastructures and given that the interactions with static

infrastructures are much simpler than between pedestrians (see the description of the

shy-away distance behaviour in section 2.3.4) we will not assess the perception of

obstacles specifically.

2.3.3 Action characteristics

All walker models implement explicitly or implicitly the basic actions required for

walking: accelerating longitudinally and laterally, and interacting with other pedestri-

ans. Models that are more basic than that are not considered in this review. 2

2Wolff (1973) describes the so-called step-and-slide movement that plays an important role in colli-

sion avoidance in dense situations. The step-and-slide is a the combination of side-stepping (an almost
instantaneous change of 90◦walking direction). Side-stepping is important and is possible in all models

presented in this review.
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Other more complex behaviours such as waiting, taking escalators, passing turnstiles

are less frequently modelled. However, these are needed for the application of the

models in large pedestrian facilities. We create three criteria based in requirements for

pedestrian models (Daamen (2004) and Kuligowski et al. (2010)): waiting behaviours,

queues and server behaviours and level changing such as stairs and escalators.

The waiting actions criteria are:

0 if only normal walking is modelled.

+1 waiting behaviours.

+1 queuing behaviours.

+1 changing level behaviours.

2.3.4 Goal characteristics

Pedestrians may have several goals that influence their behaviours. We will enumerate

the goals that are present in walker models from a higher to a lower behavioural level.

The highest level goal defines the intentions of the pedestrians, their travel-purpose.

The behaviours occurring on different travel-purpose such as commuting to known

destinations, evacuation from dangerous situations or shopping are very different.

The next level of goal to be pursued by pedestrians is social stimulus. Independent of

their travel-purpose, pedestrians may aim to walk in groups or follow a leader (Connell

(2001), Still (2000)).

The lowest and most common level of goals is the interaction with other pedestrians

and obstacles. On any travel-purpose pedestrians will always try to avoid a collision.

Therefore, some sort of pedestrian and obstacle interaction component must be present.

However, collisions do happen and are important for the realistic outcomes of models

(Helbing et al. (2000a)). Some studies show the positive effects of adding friction

effects to models (Kirchner et al. (2003), Henein and White (2007)). Therefore, the

existence of contact forces components are included in the assessment characteristics.

In the following, we describe each goal in more detail.

Travel purpose

Weidmann (1993) distinguishes four travel purposes: business district patrons, com-

muters, shoppers and leisure walkers. The walking speeds measured in these areas

are in descending order from business districts to leisure reflecting the different beha-

viours. These are similar to those proposed in TRB (2010).
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Commuters and business district patrons are purposeful walkers. They know where

they are going and walk directly to their destination. Shoppers display a more explor-

atory behaviour. According to empirical observations by Borgers and Timmermans

(2014) only 50% of the pedestrians in a shopping area walk along shortest distances.

Leisure walking would be encountered in parks, museums, open-air concerts or public

squares. These behaviours are arguably difficult to define and are rarely mentioned in

the pedestrian modelling context.

Most locations with high pedestrian flows such as train stations, airports and cent-

ral business districts that need the application of walker models present mostly com-

muters. This explains why most models available represent commuter walking beha-

viours.

However, there is interest in applications of pedestrian modelling for evacuation and

for shopping areas (Haklay et al. (2001)). Although most model developers consider

evacuation behaviours similar to commuters aiming to exits (Kuligowski et al. (2010)),

there is empirical evidence that not all pedestrians behave similarly (Leach (1994))

requiring modification to the model. Shopping behaviour is different from commuting

and most models would need different approaches (Borgers et al. (2009)).

We consider it a positive development if models are able to be applied for more travel

purposes.

The travel-purpose criteria are:

+1 if commuters are modelled.

+1 if the shopping or an exploratory behaviour is modelled.

+1 if evacuation is modelled.

Social stimulus (group, leader-follower)

Empirical results show that the presence of groups has a great influence on the move-

ment of crowds (Duives et al. (2014b), Costa (2010), Moussaïd et al. (2010), Zanlungo

et al. (2014)). In general, larger groups are slower and the size of groups tends to

influence the group geometries.

Similarly, the tendency of delegating decisions to other pedestrians in extreme situ-

ations plays an important role in evacuations by creating groups that start evacuating

together (Helbing et al. (2005), Isobe et al. (2004), Saloma et al. (2003)). The most

common consequence is the unequal use of emergency exits delaying evacuations. 3

3The term ‘herding’ is not well defined in the context of pedestrian behaviours. Schadschneider

et al. (2009) suggests that these terms should be avoided because they imply a loss individuality. Instead
he affirms that these terms should be replaced by a social attachment theory (the typical response to a

variety of threats and disasters is not to flee but to seek the proximity of familiar persons and places).



Chapter 2. An agent-based perspective on walker models 41

Arguably, we see less group formation and leader-follower dynamics in areas visited

regularly by commuters such as train stations and central business districts than in

public events, commercial streets and concerts. Therefore, it is understandable that

very few models implement them. However, they are important for other types of

travel purpose and especially to evacuation behaviour analysis. Therefore we consider

that it is a positive to model them.

The social stimulus criteria are:

0 if only individual walking is modelled.

+1 if walking in groups is also implemented.

+1 if leader-follower is also implemented.

Pedestrian interaction

We showed that reactive force models predict behaviours by quantifying a direct effect

(usually a repulsive acceleration) of nearby pedestrians. Usually the interaction beha-

viour is than the simple addition of all interaction effects. These models are reported to

work well in intense flows predicting several self-organised phenomena (Helbing et al.

(2001)). However, purely reactive models tend to rely too much in speed reduction

for interactions instead of lateral avoidance manoeuvres, creating non realistic frontal

collisions (Steffen (2010)).

Goal based models, usually involve pre-computation of collisions to determine colli-

sion free paths that result in anticipation. These models are reported to predict good

behaviours in low and mid density flows (Sparnaaij (2015)). In high intensity flows

when the number of possible collisions increases dramatically they may not find vi-

able solutions or take too long to find them.

In the literature we observe that purely reactive models such as social force mod-

els were modified receiving anticipation components to improve their predictions.

Sparnaaij (2015) shows that in the majority of the situations that he tested a social

force model modified with anticipation by Moussaïd et al. (2009) performed better

than a purely anticipatory model by Karamouzas (2012).

These results are in agreement with empirical studies that suggest that pedestrians ap-

ply a mixed strategy of reactive and anticipatory behaviour when interacting with other

pedestrians and obstacles (Duives et al. (2014a)). In situations where pedestrians are

far, anticipation strategies improve the interactions by reducing the conflicts (Olivier

et al. (2013), Duives et al. (2014a)) or unexpected behaviours (Johansson (2009)). In

short distances pedestrians do not have opportunities to anticipate and become more

reactive to neighbouring pedestrians (Wolff (1973)).
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These findings suggest that these different ‘strategies’ should be modelled: the anti-

cipation of other pedestrian movements into the future and reactive change of the path

due to the proximity of another pedestrian or infrastructure. Therefore, we consider

that combining anticipatory with reactive behaviours is more realistic and accurate:

The collisions avoidance criterion is:

0 if pure reactive behaviour is modelled.

+1 if anticipation is combined with reactive behaviours.

Interaction with infrastructures

Pedestrians keep a safe distance (shy-away distance) to different types of infrastruc-

tures (Weidmann (1993)). It varies according to the type of the infrastructures (1.0m

for shop windows and about half of this for concrete walls) and the roughness of the

walls (shy-away distance for metal walls is about half the distance for concrete walls).

Daamen (2004) presents a table with shy-away distance according to the types of the

infrastructures. Therefore, we assess if the models implement the shy-away distance

behaviour.

The shy-away distance criterion is:

0 if no shy-away distance is modelled.

+1 if the shy-away distance is modelled to a fixed distance.

+1 if the shy-away distance varies with type of infrastructures and materials.

Contact forces

The ultimate cause of injury and deaths in crowd disaster are the crushing forces in

the bodies (Helbing and Mukerji (2012), Still (2014)). Very few studies managed to

determine quantitatively the pressure inside real crowds (Fruin (1993)) and relate them

with densities. This lack of data makes it impossible to a quantitative assessment of the

pressure calculation models. However, several important crowd phenomena are related

or resulting from the forces generated by physical contact.

Helbing et al. (2000b) shows that pedestrian flows with large fluctuations have a tend-

ency to gridlock. They called this phenomena ‘freezing by heating’ caused by friction

forces when pedestrians rub their shoulders. Helbing et al. (2000a) show that these

phenomena can reduce the capacities of exits.

Johansson et al. (2008) and Helbing et al. (2007) show how turbulence and stop-and-

go waves with very high body pressures form in extremely dense situations. In such
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situations pedestrians loose almost all control of their walking and the physical forces

predominantly determine their movement.

Therefore, models that predict the pressure forces in collisions are more realistic and

more useful than models without collision.

The contact force criteria are:

0 if no contact force is modelled.

+1 if friction is modelled.

+1 if pressure is modelled.

2.3.5 Environmental characteristics

The most important aspect of the environment is the discretisation of the walking area.

It is very determinant for the outcomes if pedestrians are free to walk in any location

(continuous models) or are restricted (discrete models) 4.

Discrete walking areas limit the locations of pedestrians to the centre of the cells. The

most common discretisation are square grids with sides representing the human width

around 0.5m. This is possible because according to Fruin (1971) the private space of

standing pedestrians is almost square (0.5mx0.4m). However, newer empirical evid-

ence points out that in very narrow corridors pedestrians displace laterally in ‘zipper

like’ patterns and not in parallel lanes (Hoogendoorn and Daamen (2005b)). Figure

C.1 in appendix C shows these patterns in a narrow corridor.

These zipper patterns cannot be reproduced in squared grids walking areas with ped-

estrians occupying single cells. Schadschneider et al. (2009) mention that motion in

directions not parallel to the main axis of the lattice are difficult to realise and can only

be approximated by a sequence of steps parallel to the main directions.

For discrete environments with single occupied cells, everything must be conform to

the dimensions of the lattices. For square grids of 0.5m doors with 0.8m cannot be

correctly represented. Furthermore, densities are limited by the size of the cells:

kmax =
1

(cell size)2 (2.7)

Because of these limitations models with smaller grid cells have been proposed (Fang

et al. (2012)), where pedestrians occupy multiple cells. However, Kirchner et al. (2004)

point that conflicts due to pedestrians trying to move to the same cells increase signi-

ficantly (figure 2.13).

4We do not include the environmental models that describe the development of weather, temperature,

fire and smoke because their influence to walking behaviour is not the focus of this dissertation.
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Figure 2.13: a) Typical local conflict in a 40 cm cell grid. b) In the 20 cm cell grid

pedestrians can be part of more than one conflict. Hatched cells contribute to the

non-local conflict (from Kirchner et al. (2004)).

Other types of lattices were also proposed. Maniccam (2003) compared a hexagonal

lattice with a square grid CA model for a bidirectional corridor (figure 2.14). Marconi

and Chopard (2002) also proposed a hexagonal lattice model with friction equations.

The hexagonal lattice does provide more walking directions, but only allows for 90◦

crossing paths to be reproduced via jagged paths.

Figure 2.14: A hexagonal lattice and the six walking directions (from Maniccam

(2003)).

All the mentioned problems with discrete environment result in models with continu-

ous representation of space being more realistic.

The type of walking area environmental characteristic criterion is:

0 if the walking area is discrete.

+1 if the walking area is continuous.

2.3.6 State (human factors)

The necessity to include the dynamic properties such as position and velocity in the

state is dependent on the type of the model and we do not consider this a positive fea-

ture of models. However, human factors that affect walking behaviours are important

modelling decisions and are discussed in this section.
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Empirical studies show that evacuation behaviour is strongly influenced by human

factors. Evacuations in extreme situations have different effects on the behaviour of

pedestrians (Leach (2004)). Depending on the level of urgency or hazard conditions

pedestrians may walk faster and become more ‘pushy’ (Helbing et al. (2000a)). Some

people in extreme situations simply do not react and stay paralysed often dying from

inaction (Leach (2004)). This thesis is not focusing on evacuations in extreme situ-

ations that are still not completely understood and results in non normal behaviours

(Leach (1994), Kobes et al. (2010), Galea et al. (2010)).

Instead we will concentrate on two human factors that affect normal walking: urgency

and fatigue (Kuligowski (2009), Choi et al. (2011)).

It is safe to assume that almost everyone in an evacuation situation during extreme

circumstances will have a sense of urgency. That is kind of an ‘instinct’: the urge to

leave a dangerous situation due to time pressure (Kuligowski (2009)). It is a common

answer to the cognitive process of perceiving and assessing the situation of danger

(Sime (1986)). Daamen and Hoogendoorn (2012) applied slow whoops and strobo-

scope lights to create an aggressive environment in evacuation experiments. They

found out that these conditions increased walking speeds and to a lesser degree door

capacities. This shows that behaviour associated to an increased sense of urgency has

an influence on evacuation behaviour and could be important in models.

Shields et al. (2009) pointout that evacuees from the World Trade Center presented

mental and physical fatigue that significantly slowed their pace after descending sev-

eral floors. Galea et al. (2010) analysed the consequences of fatigue in the evacuation

of the World Trade Center and obtained through a survey that 10% of the stoppages

where due to fatigue. Choi et al. (2011) made experiments in tall buildings obtaining

similar conclusions. Daamen and Hoogendoorn (2009a) mention that during evacu-

ation experiments fatigue could explain the decrease of capacity for experiments with

similar populations performed at the end of the day.

We will consider that if a model presents any of them it is more realistic.

The human factors criteria are:

0 if no human factor is modelled.

+1 if urgency is modelled.

+1 if fatigue is modelled.

2.4 Results of model assessment

We chose the most representative models and those that present the latest developments

from each type to be assessed. All walker models that we discuss in this review were
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subjected to at least one quantitative validation report to justify their inclusion in this

review.

The models are evaluated using the scores presented in section 2.3. Each model char-

acteristic score is the sum of the different criteria. Table 2.2 shows the range for each

characteristic in brackets and the total scores for all models calculated by adding the

scores of all characteristics.

We did not use weights to increase the importance of the subcategories of the charac-

teristics. Table 2.2 shows that only goal characteristics change significantly the ranking

of models.

The scores of the other 5 characteristics are more influenced by the agent type. The

force, goal and utility models receive larger scores for the other 5 characteristics than

the rule models. A sensitivity analysis showed that weighting the other characteristics

did not change the rankings significantly.

Furthermore, by having nine subcategories, the goal characteristics already have a lar-

ger influence in the outcomes and we consider that it is subjective to decide which goal

characteristics are more important to other goal characteristics.

The first observation is that the best model (Nomad) achieved 12 points from a total

possible of 19 showing that all models can be further improved.

Social force, collision avoidance, Nomad and discrete choice models perform reason-

ably well. The Nomad model also scored well in four of the five assessment categories.

The discrete nature of CA models makes them score badly. The biggest problem being

the difficulties to introduce heterogeneity, to simulate collision avoidance and to model

other actions. Results have shown that CA models are able to estimate accurately

aggregated indicators such as exit capacities and fundamental diagram relations. The

wide use of CA models indicates that accuracy in estimating aggregate indicators may

be enough for several applications. However, for the questions being asked in this

dissertation a CA model is not able to estimate individual behaviour with high detail

and accuracy.

The large amount of social force model modifications and the good scores from some

of them shows the potential of these models to be applied for individual walking be-

haviour. However, there is no publicly applied (non-commercial) of the social force

model that can be implemented for complex situations.

Collision avoidance models are a promising new type of model that seem to be ac-

curate in reproducing individual behaviours, but there is not enough evidence of their

accuracy and computational performance in very high densities. Furthermore, it is not

shown yet that such models are generic enough to be able to simulate significantly

different situations with the same set of parameters and still be accurate.

From the utility models Nomad is the most promising for further development and ad-

aptation for the simulation of complex situations. Furthermore, the pedestrian theory
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Table 2.2: Overview of walker models.
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Total

Range (2) (2) (3) (3) (2) (1) (1) (2) (1) (2) (19)

R
u

le

Blue and Adler (1999) CA 1 2 0 1 0 0 0 0 0 0 4

Burstedde et al. (2001) CA 0 1 0 1 1 0 0 0 0 1 4

Kirchner et al. (2003) CA 0 1 0 1 0 0 0 0 0 0 2

Suma et al. (2012) CA 0 1 0 1 0 1 0 0 0 0 3

Turner and Penn (2002) SS 0 1 0 1 0 0 0 0 0 0 2

F
o

rc
e

Gipps and Marksjo (1985) CA 1 1 0 1 0 0 0 0 0 0 3

Okazaki (1979) MF 1 0 1 2 0 0 0 1 2 0 7

Helbing and Molnar (1995) SF 1 2 0 1 0 0 0 1 2 0 7

Aube and Shield (2004) SF 1 2 0 1 2 0 0 1 2 0 9

Helbing et al. (2005) SF 1 2 0 1 0 0 2 1 2 1 10

Zanlungo et al. (2011) SF 1 2 0 1 0 1 2 1 2 0 10

Johansson (2013) SF 1 2 1 1 0 0 0 1 2 0 8

G
o

a
l Paris et al. (2007) CO 1 2 0 1 0 0 0 1 2 0 8

Ondřej et al. (2010) CO 1 2 0 1 0 0 0 0 2 0 7

Moussaïd et al. (2011) CO 1 2 0 1 0 0 2 0 2 0 9

U
ti
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Hoogendoorn and Bovy (2002) NO 2 2 0 1 0 0 2 2 2 0 11

Hoogendoorn (2004) NO 2 2 0 1 0 0 2 2 2 1 12

Antonini et al. (2004) DC 1 2 0 1 0 0 0 0 2 0 6

Robin et al. (2009) DC 1 2 0 1 1 0 0 0 2 0 7

Nasir et al. (2014) FL 0 2 0 1 0 0 0 1 2 0 6

Where: CA - Cellular Automata, MF - Magnetic Force, SF - Social Force, SS - Space Syntax,

CO - Collision Avoidance, NO - Nomad, DC - Discrete Choice, FL - Fuzzy Logic
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that is the foundation of Nomad is a powerful explanatory tool to interpret the out-

comes and to orient the developments. The discrete choice models are also promising.

Their direct derivation from empirical data makes them very useful for investigation

of pedestrian movements. However, these models will get more complex when other

actions such as waiting behaviours and other travel purposes are implemented.

In the following, we will discuss the assessment of the five agent characteristics and

the heterogeneity for the type of models.

2.4.1 Heterogeneity

Only the Nomad model explicitly proposes heterogeneity to other parameters than the

free-speeds. However, there is no impediment for Social force and discrete choice

models to be used in the same way. The same cannot be said for collision avoidance

models. Their strict enforcement of avoidance manoeuvres make it difficult to vary

walking behaviours among the population. Even though one CA model proposed three

different free-speeds, heterogeneity is not easily enforced in spatially discrete models.

The restriction of hopping fixed distances strongly limits variation in behaviour. This

is shown by the low amount of heterogeneous CA models.

2.4.2 Perception

An anisotropic perception corresponding to real pedestrian perception appears in all

spatially continuous models apart from the magnetic and the fuzzy logic models. The

fine description of continuous environments is clearly benefitting these models with

more realistic description of pedestrians perception.

There are differences in the perception area between the types of models. CA models

are clearly in disadvantage here because of the grids. CA models can only define a

limited geometry of neighbouring cells for the perception area. Social force and the

Nomad models apply perception areas that are elliptical with the reference pedestrian

in one of the focal points. This perception area also considers the influence of pedestri-

ans very close, but behind the reference pedestrian. This is justified by the use of other

senses such as hearing or the use of the short term memory of a passing pedestrian

for perception outside the field-of-view. The collision avoidance and discrete choice

models use more a strict ‘vision’ based perception. They define a visual field-of-view

with a fixed angle spreading from the walking direction. It is still disputed which of

the two perception areas is more realistic, but the elliptical perception area is certainly

more general by including the area behind the pedestrian.
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2.4.3 Actions

No model presented changing level behaviours indicating an important blank spot in

their development. Furthermore, not many different actions were proposed. Two spa-

tially continuous force models implemented waiting behaviours indicating that it is

possible to implement them in the Nomad model (as we show in section 3.3). To im-

plement different actions in collision avoidance and discrete choice models will con-

siderably increase their complexity. For collision avoidance models, the movements

that would occur in dense situations such as train platforms would probably need to be

attenuated due to non realistic accelerations and trajectory changes.

2.4.4 Goals

From the maximum of 9 goal points possible to be achieved, Nomad was the best

performing with 5. If we combine all the goal attributes from the different Social force

models we achieve 8 points. Other types of models score worse. These observations

indicate the complexity of implementing all these sometimes conflicting goals in a

single model.

Travel purpose

Apart from the space syntax model all models have a ‘drive’ to reach a destination cor-

responding to commuter behaviour. Only the magnetic model mentions an explorative

behaviour but without any description of how it was implemented. It seems that it is

not impossible for any other type of model to simulate different behaviours exchanging

the drive to the destination for a different walking strategy. However, the discussion on

the difficulty to implement different actions in collision avoidance and discrete choice

models probably applies for the implementation of other travel purposes.

Social stimulus

Only CA and Social force models presented implementations of group behaviour. In

reality, the ‘dynamic floor field’ for CA models creates lane behaviour and recent stud-

ies showed that they do not reproduce realistic group behaviour.

There is nothing preventing the other model types to implement grouping and leader

following behaviour. A simple solution would be to adapt the boids model introduced

by Reynolds (1987). However, it could be significantly more complex to realise them

with collision avoidance models due to the inevitable difficulties arising from conflict-

ing stimuli such as avoidance and attractive behaviours.

Similarly to the group behaviour it would be possible for the other types of models to

implement leader-follower using attractive accelerations.
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Pedestrian interaction

The survey showed that the models in general are divided into reactive (almost all

models) and anticipatory (collision avoidance). One implementation of the Social force

model and one of the CA included foresight by accounting for anticipated positions of

pedestrians effectively combining both strategies. The superior results reported by the

authors support the claim that models should combine the strategies.

Obstacle interaction

Only spatially continuous models can implement shy-away distances that vary accord-

ing to the situation and this is reflected by the low scores of CA models. It appears that

all types of models are able to enforce a shy-away distance, but only the Nomad model

explicitly mentions it and it also allows for the dependency to the type of obstacle.

Contact forces

The mechanism of calculating the pressure during collisions is similar in all types

of models (see section 3.2.11 for details). Pedestrians are considered non-rigid bodies

and the deformation is the overlapping distance of the colliding pedestrians. All imple-

mentations consider circular pedestrians for simplicity, although this is not obligatory.

Only CA models do not offer a possibility to easily calculate pressure forces. Some

authors introduce a friction force to solve some conflict situations, but these are not

comparable to real physical forces.

2.4.5 Environment

Here, the models divide themselves very clearly between CA models and the rest. CA

models are discrete by definition and the rest spatially continuous. However, discrete

choice and fuzzy logic models make a discretisation in the perception areas to reduce

the search complexity. It is not clear how this discretisation affects pedestrian freedom

to reach all locations, therefore we did not take any points from these models.

2.4.6 State (human factors)

The CA model with a human factor presented an abstract concept of ‘happiness’ for

two different states of pedestrians. The other two human factors implementations by a

Social force model and the Nomad were similar and basically increased the speed of

pedestrians given some conditions of urgency. This same principle could be easily in-

troduced to any model apart from CA models that are not able to easily apply different

speeds for pedestrians.
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2.5 Conclusions

This state-of-the art assessed the different types of walker models with the objective to

choose the most promising for further research on walking behaviour as well as to gain

insight into pedestrian behaviours. The discussion of the models followed an agent-

based programming paradigm. The proposed agent-based representation for assessing

walker models allowed for an in-depth and logical comparison of common aspects of

walker models. The applied scoring system is a quantitative tool to evaluate, compare

and to identify the blank spots of particular models.

It is not possible to make accurate assessments, as often not all information on the

model is present. However, the scores gave a good indication of the strength and

weaknesses of the models.

We concluded the assessments by identifying that the utility-based models and most

notably the Nomad model is most suited to be used for both investigations on individual

behaviours and to simulate complex situations. The Nomad model did not perform

badly in any of the agent-based elements. Where Nomad did not score well we did

not identify an impossibility for it to be improved making Nomad the ideal model to

be used in this dissertation. The social force models would also qualify by being not

very dissimilar than the Nomad model in its original derivation. However, contrary to

Nomad they lack a pedestrian theory to enhance their explanatory power.

CA models received the lowest scores, mostly due to the time and spatial discretisation

that limit significantly the realism of the movements. Other promising types of models

are the collision avoidance and the discrete choice models that scored only slightly

worse than Nomad and the Social Force model.

The discussion on the different aspects of modelling walking behaviour revealed some

gaps on modelling walking behaviour:

• The exploration of the effects of heterogeneity in pedestrian behaviour.

• Different actions besides walking required in pedestrian facilities.

• Other travel purposes, such as leisure and shopping behaviours.

• Group behaviour and leader-follower behaviour.

• Introduction of fatigue.

• Models that combine anticipation with reactive behaviours.

Not all of these gaps are covered in this dissertation and we made a prioritisation of

implementing the different actions needed for complex pedestrian areas and improving

the accuracy by modifying the interaction behaviours introducing anticipation to the

Nomad model (chapter 3).
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The other gaps (new travel purposes, group and leader-follower behaviour and fatigue)

are a natural continuation of the developments of this dissertation and together with

the necessary empirical data are left to be explored in the future.



Chapter 3

Nomad walker model and simulation

The Nomad model was proposed by Hoogendoorn and Bovy (2002) and Hoogendoorn

and Bovy (2003). Its underlying principle states that pedestrians continuously minim-

ise the effort required to walk. In the Nomad pedestrian theory the walking effort is

expanded to the more generic concept of walking cost and utility earned by performing

an activity (see section 2.2.4 for the definitions of utility). Simply put, pedestrians gain

utility when performing activities and ‘pay’ a cost when walking. In the Nomad theory

both costs and utilities are expressed in time units. Nomad pedestrians are maximising

the sum of both, thus it is an activity based normative theory (pedestrian economicus).

The normative approach stems from the homo economicus concept used in several

economic theories. The concept refers to the idea that humans behave rationally and

always aim at maximising their self-interests (Wikipedia (2016)).

All relevant tasks pedestrians must fulfil are modelled using the cost minimisation

principle. Section 3.1 puts forward the description of the Nomad three level pedestrian

theory that divides these tasks into logical units. The Nomad simulation tool features

an implementation of these three levels allowing for complex simulations to be run.

However, only the operational level (walker model) is the focus of this dissertation and

is explained in detail in this chapter.

This chapter presents the theoretical and mathematical foundations of the Nomad

walker model (Section 3.2). Nomad is a spatially and time continuous model that

describes individual pedestrians. The model described in this chapter reproduces the

commuter behaviour of purposeful pedestrians going straight to a goal. Nomad model

is extended to model special behaviours such as waiting behaviours in section 3.3.

The derivation of the model can be found in Hoogendoorn and Bovy (2002) and some

of the extensions in Campanella et al. (2009c). Here, we recall the most important

aspects of the derivation of the walker model and emphasise the connection between

the model and the behavioural assumptions. The behavioural hypothesis that guides

the development of the model are explicitly presented in the sections in an ordered list

with the prefix H.

53
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Nomad is implemented as a simulation model and has been used in several occasions to

predict pedestrian flows (chapter 8). The implementation was made with several goals:

accuracy, richness of behaviours and computational performance. Section 3.4 presents

new features that aim at these three goals. This section also presents an overview of

important features of the system architecture of the Nomad simulation tool. This shows

the modularity, and thus the ease to extend Nomad with other behaviours. Section 3.5

ends the chapter with a summary and future developments of the Nomad model.

3.1 Nomad three level pedestrian model

The Nomad model is based on the three level pedestrian theory approach. These levels

break the important aspects of pedestrians behaviour into distinct tasks reducing the

model complexity. The strategic level incorporates the tasks that must be completed

before the trip starts (the plan), the tactical level describes the choices and decisions in-

cluding changes in the original plan during the trip and the operational level describes

the walking behaviour or how pedestrians navigate to accomplish the plan. Figure 3.1

shows the scheme of the Nomad pedestrian model.
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Figure 3.1: The scheme of the three levels modelling approach from Hoogendoorn

and Bovy (2004).

This dissertation does not detail the two higher levels but here we present a short in-

troduction. It also shows the relations between the strategic and tactical levels to the

operational level by describing a typical trip of a Nomad pedestrian of a commuter

type that (may) perform activities before reaching its destination. Commuters have at

least one destination and walk towards it (see section 2.3.3).

The activities that commuters perform during the trip such as buying a transport ticket

or stopping for information are usually performed sequentially in different locations.

Therefore, the set of activities is chained and the activity locations become intermediate

destinations before the end of the trip on the final destination.
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The plan (strategic level)

The first action of commuters is to plan their trip and this is the task of the strategic

level. The plan consists of the schedule (ordered list) of the activities and the cor-

responding routes linking the origin, activity areas and destination. According to the

Nomad theory the planned trip has the highest possible utility that a pedestrian can gain

from performing the intermediate activities, reaching the destination and discounting

the walking costs. Thus, the trip is an optimal schedule of activities for which the

ordering of activities and the choice of the routes are performed simultaneously (Hoo-

gendoorn and Bovy (2002)). The optimal route can have constrain due to obligatory

order of activities (passengers must book a ticket before boarding a train).

In the implementation of Nomad, we made a simplifying assumption that the prior

activity set is also ordered. However, if more than one location can receive the activity

function or be the final destination, the plan is the chain of activities in which the choice

of the activity area locations and the connecting routes is optimal.

The list of input of the strategic level contains:

1. The origin and the destination.

2. A set of activities that will be performed during the trip.

3. The locations of the activity areas.

4. The complete description of the walking area.

Let us consider {li, j} the set of locations where activity Ai can be performed. The

set S = {Ai} of activities to be performed includes the activity ‘exiting’ at the final

destination. Let us also consider that performing the activity Ai in li, j yields an util-

ity U(Ai, li, j). The utility corresponds to an intrinsic value obtained by realising the

activity at the specific location (‘this restaurant is very good’).

The cost Ct(Ai, li, j) is a measure of the expected waiting time to be served at location

li, j. It is a negative utility (cost) proportional to the amount of people in the location or

walking towards it.

The expected time spent in the location performing activity Ai also generates a negative

utility. The cost Cs(Ai, li, j) is proportional to the expected service time at li, j.

The last cost is proportional to the expected walking time Cw(li−1, li, j) from the location

li−1,k of the previous activity Ai−1 to li, j.

The utility Uchoice obtained when choosing location li, j to perform activity Ai coming

from location li−1,k is:

Uchoice(Ai, li, j, li−1,k) =U(Ai, li, j)− [Ct +Cs] (Ai, li, j)−Cw(li−1,k, li, j) (3.1)
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The resulting optimal activity chain S∗ with the activities and location areas will be the

one that results in the maximum sum of all Uchoice:

U∗
sum = arg max

(

∑
i∈S

Uchoice(Ai, li, j, li−1,k)

)

(3.2)

The route choice model was developed by Hoogendoorn and Bovy (2004) using the

minimum walking cost principle. The costs of walking reflect preferences of pedestri-

ans: travel distance, minimum distance to obstacles, travel time, physical effort (using

stairs is more costly than escalators), subjective preferences such as closeness to shop-

ping windows (assuming an interest by the pedestrians then close positions generate

lower walking cost).

The end result of the route choice calculation for a particular destination is a cost

map that presents the walking cost for each position in the walking area to reach the

destination. The optimal route results from moving from the current position to the

closest position with the lowest cost. This is repeated until the destination that has the

overall lowest cost is reached. Hoogendoorn and Bovy (2004) show that the optimal

route is the one that presents the lowest sum of walking costs between the origin and

the destination and that for each position with connection to the destination there is

always one optimal route connecting them.1

Figure 3.2 shows an illustration of a cost map and three desired routes from three

different origins towards the same destination. The coloured rings represent regular

lines of walking costs (equi-cost). The walking cost is minimal over the destination (in

yellow) and maximal the furthest from the destination (over the white dotted line).

Each destination has only one equi-cost map. Optimal routes can be obtained from any

location of the walking area by simply following perpendicular curves to the equi-cost

lines (minimal walking cost during the trip). The desired walking direction is always

perpendicular to the equi-cost lines and the speed is obtained by the walker model.

Changes in the plan (tactical level)

There are many reasons why pedestrians make choices during the trip: the need to

reschedule the plan because the original route is congested and an alternative route is

less costly or an alternative activity area has considerably less pedestrians waiting to

perform the activity. Choices always follow the utility maximisation principle. Also

pedestrians may have to choose between queues, escalators and stairs. Section 3.3.2

will present in more detail the choice behaviour of queues and servers.

1There are situations in which there is not a single optimal route. Walking areas with independent
accesses to a destination present regions that present more than one equally optimal route. In these cases

random fluctuations in the model will decide which route is desired (see figure 3.2).
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Figure 3.2: Three optimal routes starting from origins 1, 2, 3 and 4 (represen-

ted by the stars) leading to the same destination accessible via three doors. The

background colour are rings representing the cost maps. In grey are all walls and

obstacles and in yellow the destination. Locations above the white dotted line on

the left have optimal routes via the upper corridor and below via the lower cor-

ridor. Locations on the line such as origin 3 always present two optimal routes.

Walking (operational level)

Once on their way pedestrians will walk towards their upcoming activity area. They

navigate around the pedestrian traffic that is encountered. When reaching the area and

if the activity is available, pedestrians start performing it. This walking and performing

activity cycle repeats until all activities are finished. The behaviours displayed during

the walking and performing activities is the domain of the operational level and are

detailed in the next sections.

3.2 Nomad walker model

This section presents and discusses the original version of the Nomad walker model

proposed by Hoogendoorn and Bovy (2003) and modifications introduced by Cam-

panella et al. (2009c). Nomad is a continuous model in space and time. Therefore, it

allows the representation of pedestrian movements by the dynamics of the position:

d~r (t)

dt
=~v(t) and

d~v (t)

dt
=~a(t) (3.3)
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where:

~r (t) is the position vector at time t.

~v(t) is the velocity.

~a(t) is the acceleration.

The Nomad model is the function f that estimates the acceleration: ~a = ~f . This func-

tion has two components: the controlled and the non-controllable acceleration.

The controlled acceleration ~ac represents the subjective walking behaviour that steers

pedestrians towards their destinations avoiding other pedestrians while trying to main-

tain their free-speeds. ~ac is not equivalent to conscious movement because much of the

walking is realised without awareness (Goffman (1972)). It represents all movements

that can be initiated and modified by pedestrians.

The non-controllable or physical acceleration ~ap results from contact forces with other

pedestrians or with obstacles. The forces generated by contact are also referred as

crowd pressure (Helbing et al. (2000a), Maury and Venel (2007)). By definition they

are independent of each other. Therefore, the total acceleration model is the sum of the

controlled and the uncontrolled acceleration:

~a(t) = ~ac(t)+ ~ap(t) (3.4)

where:

~ac is the controlled component.

~ap is the physical component (not controlled).

In the next subsection we present the walking cost function J. This function allows the

derivation of the controlled acceleration as a cost minimisation problem following the

normative Nomad pedestrian theory.

3.2.1 Walking costs

The Nomad cost function is determined by the sum of the walking costs along the

trajectory. This is mathematically described by integrating the so-called walking costs

Lp over the planning period [t, t +T ]. This is represented by the cost functional J(p)

for the pedestrian p:

J(p) =
∫ ∞

t
e−ηpsLp (s,~z(s),~ac(s))ds (3.5)

where:

ηp > 0 is the (temporal) discount factor that decrease the value of the predicted costs
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over time and space.

~ac is the controlled part of the acceleration.

~z(t) = (~r,~v) is the state vector composed by the position and the velocity.

The controlled acceleration ~ac results from the minimisation of the cost functional J(p):

~ac
∗ = arg min

(

J(p)
)

(3.6)

The walking costs reflect a variety of factors k that pedestrian consider, and it is as-

sumed that these costs add linearly (although this assumption is not determinant for

the derivation):

L(s,~z, ~ac) = ∑
k

ckLk(s,~z, ~ac) (3.7)

where:

ck denotes the relative weight between the cost components.

The complete derivation of the acceleration model is detailed in Hoogendoorn and

Bovy (2003) and in Hoogendoorn et al. (2003), and will not be shown here.

In the following we will present the three acceleration components that are derived

from walking costs that represent: following desired paths, avoiding pedestrian and

avoiding obstacles. The walking costs are preceded by behavioural hypothesis (re-

ferred by the letter H) taken from empirical studies.

3.2.2 Controlled acceleration ~ac

Like real pedestrians Nomad pedestrians perceive their surroundings and use the per-

ceptions to act.

change to:

H1: Pedestrian behaviour is feedback-oriented.

Pedestrians follow the minimum effort principle and this is translated to a utility op-

timisation strategy of minimising the costs of walking. In Nomad the walking costs are

explicitly defined and correspond to independent behaviours related to walking. The

independence assumption allows the walking costs to be added (equation (3.5)).

H2: Pedestrians minimise additive discounted costs resulting from walking.

In its basic version Nomad distinguishes three walking costs.
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Pedestrians minimise costs resulting from:

H3: straying from the desired route,

H4: the vicinity of obstacles and
H5: the vicinity of other pedestrians.

In the model this corresponds to:

~ac(t) = ~a f (t)+ ~ao(t)+~ar(t) (3.8)

where:

~a f is the path following component.

~ao is the obstacle interaction component.

~ar is the pedestrian interaction component.

Inserting equation (3.8) into (3.4) we obtain Nomad acceleration model:

~a(t) = ~a f (t)+~ao(t)+~ar(t)+ ~ap(t) (3.9)

Equation (3.8) shows the accelerations resulted from the basic walking costs but others

such as the cost of staying in the vicinity of a group, can also be included. These

three costs are the most important to define individual walking behaviours and their

mathematical formulations are detailed in the following.

3.2.3 Path following component ~a f (H3)

Section 3.1 showed that the optimality assumption results in desired velocities along

optimal routes towards a destination. Furthermore, according to Buchmueller and

Weidmann (2006) pedestrians prefer to walk with their free-speeds that are close to

the optimum in terms of energy consumption. Therefore, deviations from free-speeds

and from the desired velocity constitute additional walking costs. (figure 3.3)

The Nomad model proposes an exponential equation (3.10) for the velocity that pen-

alises deviations below and above the free-speeds and away from the optimal route.

~v(t) = ~v0(1− e−t/τ) (3.10)

where:

τ is the constant acceleration time.

v0 is the free-speed.
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The further away from the optimal velocity the stronger is the acceleration bring-

ing the velocity back to the optimal, with the maximum acceleration occurring when

~v(t) = 0m/s. When densities are high, interaction accelerations (section 3.2.5) can

push speeds above the free-speed resulting in negative acceleration from the path fol-

lowing component.

The exponential formulation with its characteristic asymptotic shape on ~v0 was shown

to reflect empirical evidence for pedestrians walking alone and starting from standstill

(Moussaïd et al. (2009)).

The path following component ~a f (t) is the acceleration that the pedestrian will ap-

ply trying to reach the desired velocity. It results from the temporal derivative of the

equation (3.10).

~a f (t) =
d~v(t)

dt
=

~v0 −~v

τ
(3.11)

~v0 −~v
~v0

~v

desired path

Figure 3.3: The path following component elements.

The acceleration time τ mostly affects the amount that pedestrians stay close to the

optimal route. Pedestrians with very small τ (∼ 0.0s ) will walk closely to their desired

path with speeds around their free-speeds. It will require very large interaction accel-

erations (section 3.2.5) to make these pedestrians deviate from their paths, and thus to

avoid other pedestrian representing uncooperative (aggressive) pedestrians.

3.2.4 Obstacle repulsion component ~ao (H4)

Pedestrians maintain a shy-away distance to obstacles (see section 2.3.4). Further away

obstacles are not influencing the walking. However, there are situations in which ped-

estrians may need to stay closer to obstacles when waiting or passing turnstiles. There-

fore, we use a linear function that to keep the accelerations not increasing too much in

short distances (equation (3.12)). For simplicity the distances between the pedestrians

and the obstacles are calculated considering circular pedestrians. (figure 3.4)

If a pedestrian is in the vicinity of several obstacles than the interaction acceleration

of all obstacles are added (H2). Equation (3.12) considers the set O of obstacles in the

vicinity and calculates the acceleration due to avoidance of obstacles.
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Figure 3.4: The interaction acceleration ~ao(t) applied by the pedestrian due to the

obstacle. The function against the distance d is shown in top.

~ao(t) =−~en·aW ∑
o∈O











1 if 0 < d ≤ dshy/2

2(1−d/dshy) if dshy/2 < d ≤ dshy

0 if d > dshy

(3.12)

where:

~en is the unity vector in the normal direction pointing to the closest point of the

obstacle.

aW is the obstacle interaction strength is a balancing parameter between this compon-

ents and the others (the larger aW the more important is the obstacle interaction).

dshy is the shy-away distance.

3.2.5 Pedestrian interaction component ~ar (H5)

When pedestrians perceive pedestrians that potentially could collide in the near future

they (may) apply avoiding manoeuvres. The reaction to these opponents is based on

assumptions about their reactions. When opponents are not paying attention (distracted

behaviour) or display a ‘dominant’ behaviour (aggressive behaviour) they are non-

cooperative. In the assumption of non-cooperation the reference pedestrian carries the

whole burden of the avoidance manoeuvres.

Hoogendoorn and Bovy (2002) show that under some conditions, cooperative mod-

els are similar to non-cooperative models. The Nomad model uses a non-cooperative

strategy that is simpler to implement and realistic because all pedestrians apply the

avoiding manoeuvres approximating the overall behaviour to a cooperative behaviour.

H6: Walkers anticipate on the behaviour of other pedestrians by predicting their
walking behaviour according to non-cooperative or cooperative strategies.
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3.2.6 Anticipation strategies (H6)

Pedestrians anticipate the movement of others and themselves with the aim of min-

imising their future cost of walking. The anticipation time can extend from zero (no-

anticipation) to a positive value (in seconds). In Nomad this is modelled by using

anticipated positions instead of current positions in the pedestrian perception.

We use the zero acceleration assumption used commonly in collision avoidance models

(section 2.2.3). The anticipated positions are extrapolated from the current speeds of

the opponents (and for themselves) for a time determined by the anticipation time (tA).

~rA =~r+~v · tA (3.13)

where:

tA is the anticipation time.

~rA is the anticipated position of pedestrians.

Anticipation introduces the direction of movement to the pedestrian interaction be-

haviours. Figure 3.5 shows on the left the red pedestrian walking approaching and

on the right distancing from the brown pedestrian. One would expect that even if in

both cases, the distances between the pedestrians are the same, they interactions differ.

With the former creating larger accelerations than the latter and this is exactly what the

anticipation produces.

~vytA
~vxtA

~v

(a) approaching

~vytA
~vxtA

~v

(b) distancing

Figure 3.5: The anticipation of pedestrian positions. For avoidance purposes the

leftward pedestrian considers the anticipated dashed positions.

If the anticipated distances are larger than the real distances, pedestrians are moving

away from each other (case (b) in figure 3.5). In these cases their interaction will be

vanishing in the future and the anticipation reflects this. In the case that pedestrians are

approaching (case (a)) their interaction will increase in the future and the anticipation

behaviour reinforces this.
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The anticipation is only used for interactions with pedestrians that are in front. Pedes-

trians do not guess the speed of pedestrians that are behind them. When pedestrians are

very close and walking towards each other the anticipated positions could change from

approaching to distancing. This would create a wrong behaviour in a crucial moment.

Therefore, we avoid illogical behaviour by not allowing anticipated positions to fall

behind the reference pedestrians.

3.2.7 Influence area (H7 and H8)

Pedestrian perception is largely based on vision, but the other senses also play a role

(especially for vision impaired pedestrians). Pedestrians perceive what is happening

behind them, but only in close range (see the discussion in section 2.3.2). The percep-

tion is limited in range, according to Goffman (1972) pedestrians scan a elongated area

around 3 to 4 sidewalk squares ahead when walking on streets.

Nomad pedestrians thus have a limited area of interaction that is named the influence

area that identifies which obstacles and pedestrians affect the pedestrian interaction

behaviour.

H7: Pedestrians have limited predicting possibilities, reflected by discounting

utility of their actions over time and space, implying that they mainly consider
pedestrians in their direct environment.

H8: Pedestrians react mainly to stimuli in front of them.

The perception of pedestrians is dependent of the direction of the velocity and creates

a distinction between the frontal (d f ) and the backward (db) parts of the influence area.

Figure 3.6 shows the depiction of the two elliptical shapes that compose the influence

area.

ieb ief

~d f

~dx f

~dy f

Figure 3.6: The influence area that determines the interaction zone extending

to the front and to the back of the pedestrian. The maximum extensions of the

influence area are respective ief and ieb for the frontal and backward parts.
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Another important aspect of the Nomad influence area is the increased influence on

the interaction behaviours of pedestrians and obstacles that are in the vicinity of the

walking direction. This is implemented by modifying the perceived distance in such

a way that their distances become closer than reality. This is shown by the isolines in

figure 3.7. The darker the colour the closer the pedestrians are perceived. Figure 3.7(b)

shows an exaggerated effect of this distortion.
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Figure 3.7: The influence area and the isofields with similar influence on the in-

teraction behaviour. The pedestrian in white is walking to the right. (a) A value

of c+0 that resulted from calibrations. (b) A more extreme case of influence from

the frontal walking direction.

This change of the perception results from multiplying the projected distance between

pedestrians in the velocity direction ~dx by a factor c+0 that is smaller than 1. However,

in general in the backward locations the opposite occurs when pedestrians on lateral

positions are easier perceived. Therefore, the backward factor c−0 is generally larger

than 1 causing the backward elongation to be perpendicular to the walking direction as

shown in figure 3.7. Equation (3.14) shows the mathematical formulation:

~d f =

√

(c+0
~dx f )

2
+ ~dy f

2 ~db =

√

(c−0 ~dxb)
2
+ ~dyb

2
(3.14)

where:
~d f and ~db are the perceived distances respectively in the front and in the back between

the pedestrians.
~dx is the projected distances in the velocity direction.
~dy is the orthogonal distances in the velocity direction.

c+0 is the multiplying factor for the forward distances and is < 1.

c−0 is the multiplying factor for the backward distances.
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3.2.8 Interaction acceleration

For interaction purposes the costs of proximity are inverse to the distance between

pedestrians. The closer they are to each other the more intensively pedestrians want to

increase their relative distances. This is the equivalent to say that pedestrians will apply

larger avoiding accelerations due to pedestrians that are closer. These accelerations

push them away from each other in a direction along their centres also called normal

direction (see figure 3.8). In Nomad the interaction acceleration is modelled by an

exponential function that amplifies the close-by accelerations, supported by empirical

studies (Moussaïd et al. (2009)).

~arn(t)

dA

~en

Figure 3.8: The interaction acceleration ~arn(t) applied by the left pedestrian due

to the opposing pedestrian in the direction along their centres.

The normal interaction acceleration ~arn(t):

~arn(t) =−a0e−dA/r0 ·~en (3.15)

where:

a0 is the interaction strength parameter.

r0 is the interaction distance parameter.

dA is the anticipated distance between pedestrians.

~en is the unity vector in the normal direction pointing to the other pedestrian.

The interaction strength parameter a0 is the balancing parameter between the pedestri-

ans interacting component and the other components. The larger a0 the more important

this component is in comparison to the others.

The interaction distance r0 relates the distance between the pedestrians and the in-

tensity of the interaction acceleration. Diminishing values of r0 (∼ 0.0m ) diminish the

distances required to generate large interaction accelerations. Diminishing r0 decreases

the space between pedestrians in crowded situations.

3.2.9 Extra lateral interaction

When two pedestrians walk towards each other in an almost parallel path they perform

a strong lateral avoidance manoeuvre (usually the right side, Moussaïd et al. (2009)).
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The interaction acceleration ~arn(t) presented in the previous section is not enough to

create such large lateral accelerations when trajectories are aligned in a collision path.

This occurs because the angle of the resulting ~arn(t) is aligned and opposing the velo-

cities.

In the extreme case of perfectly aligned 180◦ ongoing paths the interaction component

would display a non-realistic behaviour of only decelerating the pedestrians until they

stop. To improve such situations an extra lateral interaction component is introduced

for pedestrians walking towards each other (figure 3.9).

~arl(t)

dA

dyA

Figure 3.9: The lateral interaction acceleration ~arl(t) applied by the left pedes-

trian due to the opposing pedestrian.

The same exponential principle is applied and the lateral displacement of pedestrians

as seen in figure 3.9 is used.

The lateral interaction acceleration ~arl(t):

~arl(t) =−a1e−(dAdyA)/r1·~ey (3.16)

where:

a1 is the lateral interaction strength parameter.

r1 is the lateral interaction distance parameter for lateral interactions.

dA is the anticipated distance between pedestrians.

dyA is the anticipated lateral distance between pedestrians.

~ey is the orthogonal speed direction pointing to the oncoming pedestrian.

The term (dAdyA) makes sure that only when pedestrians are close to each other and

with small lateral displacement the extra lateral acceleration will be significant.

The total interaction acceleration component is the sum of both interactions:

~ar = ~arn + ~arl (3.17)
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3.2.10 Interaction with many pedestrians (H9)

When pedestrians interact with several pedestrians they react more intensively than

when facing a single pedestrian. In Nomad this is achieved by adding the interaction

of each pedestrian in the influence area as described by ~ar .

H9: Walkers will be more evasive when encountering a group of pedestrians than
when encountering a single pedestrian.

The behaviour hypothesis H9 states that pedestrians will add the influence of all ped-

estrians inside the influence area. Therefore the equations 3.18 and 3.16 are rewritten

to:

~ar(t) =−a0 ∑
p∈P

e−dAp/r0 ·~enp −a1 ∑
p∈Pf ront

e−(dApdyAp)/r1·~eyp (3.18)

where:

P is the set of pedestrians inside the influence area.

Pf ront is the set of pedestrians inside the influence area and walking towards the ped-

estrian.

3.2.11 Physical acceleration ~ap (H10 and H11)

The contact forces occurring in collisions can achieve dangerous levels in extreme

conditions. It is difficult to exactly model pedestrian collisions because the complexity

of the body constitution. Bellies are usually softer than shoulders and the body vertical

projection is elongated. Extreme situations may require sophisticated collision models

(Helbing et al. (2007)), but Helbing et al. (2000a) proposes a particle based collision

model to estimate the contact and friction forces. Similar contact accelerations are

introduced in Nomad.

The most important assumption for the physical model is the division of the physical

acceleration in two parts: the acceleration acting in the direction of the centres of the

pedestrians (elastic) and the acceleration in the orthogonal direction (friction). These

forces are additive due to the assumption that these forces are independent of each

other in the same manner as collisions between perfectly circular elastic bodies.

~ap(t) = ~apn
(t)+ ~apt

(t) (3.19)
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During collisions:

H10: pedestrians bounce away from each other,

H11: whilst sliding and dragging each other.

pedestrian p

pedestrian q

~vt p

~vnp

~vnq

~vtq

δpq

Figure 3.10: The graphic representation of a collision between two Nomad pedes-

trians. For simplicity, the collisions occur between circular shaped pedestrians.

The physical acceleration components for pedestrian p can be written as:

~apn
(t) =−k0δpq·~en (3.20)

~apt
(t) = k1δpq

(

~vtq −~vt p

)

(3.21)

where:

~apn
(t) is the physical acceleration in the direction of the centres of pedestrian p and q.

(always in the direction opposite to the other pedestrian)

~apt
(t) is the physical acceleration in the tangential direction of the centres of pedes-

trian p and q.

δpq is the deformation of pedestrians p and q.

k0 is the elastic spring coefficient.

k1 is the orthogonal friction factor.

~vt is the projection of the velocity vector into the orthogonal direction.

~en is the unity vector in the normal direction pointing to the other pedestrian.

The accelerations are always applied in the direction contrary of the projected velo-

cities. Therefore they always act in the opposite directions for each pair of pedestri-

ans. The same model applies for collisions between pedestrians and obstacles where

obstacles do not present deformations or velocities.

3.3 Special types of behaviour

In this section we present behaviours that are necessary in simulations of complex

pedestrian facilities. Usually, large airports, train stations, metro stations, high-rise
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buildings and shopping centres have pedestrians waiting, queueing or changing levels

using stairs or escalators. These special behaviours were introduced to Nomad for

complex simulations such as those presented in chapter 8.

The lack of data did not allow a proper calibration and validation of these behaviours.

However, they were implemented and face validated with close resemblance to the

data found in literature and in field observations. All behaviours were considered good

enough for the applications that they were created for.

In the following, we will present models for waiting behaviours that are to be used in a

variety of situations such as train platforms, in front of arrival halls below information

boards. We then proceed by presenting servers (devices that provide a functionality

to pedestrians such as turnstile machines) and associated queue behaviours, and finish

with walking in stairs and escalators.

3.3.1 Waiting behaviour

The Nomad model presents several possibilities to simulate pedestrians performing

activities (see appendix A). These include a wide range of waiting behaviours. The

basic distinction between waiting and other activities is the reactiveness that pedestri-

ans present to their surroundings. Pedestrians may not react to the presence of other

pedestrians when standing in front of a metro ticket machine. This is mostly observed

in activities that require higher concentration. However, when waiting on a train plat-

form or in a public space pedestrians display an awareness of the current pedestrian

traffic and may give way to walking pedestrians in crowded situations.

Waiting behaviours are also dependent of subjective preferences of individuals. Indi-

viduals may display a general non-reactive behaviour even when waiting but we sim-

plify and consider that waiting behaviours are dependent on the type of activities and

waiting pedestrians are reactive.

H12: Waiting Pedestrians display awareness and react to the surrounding traffic.

In Nomad the waiting behaviour is modelled by an adapted version of equation (3.9).

The interaction with pedestrians and obstacles (~ar and ~ao), and the physical accelera-

tion (~ap) are not modified. However, the path following behaviour is modified for the

different walking situations that make up the Nomad waiting behaviour. Figure 3.11

shows a pedestrian entering an area where many pedestrians are waiting. In Nomad

we distinguish three situations:

1. Walking outside the waiting area (normal walking described by equation (3.9)).

2. Waiting in the waiting location.

3. Walking inside the busy waiting area.
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1 3

2

waiting area

Figure 3.11: The trajectory of a pedestrian towards the waiting location inside

the waiting area illustrating three possible situations.

Pedestrians choose a position to wait according to subjective reasons such as proximity

to train doors, closeness to shopping windows. In this version Nomad has a random

location assignment inside waiting areas.

The assigned waiting location is randomly determined within a location grid that is

created over the waiting area. The cell size is a parameter that determines the minimal

waiting distances (default value is 0.5m). When pedestrians reach the waiting area they

get the coordinates of the centre of a free cell anywhere in the grid.

The pedestrian will stay in a circle around the assigned location (region 2 in figure

3.11). The location radius is dependent on the pedestrian radius (d = rad/2 ≈ 0.1m).

Inside the circle, pedestrians stop applying the path following acceleration (~a f = 0) and

move only according to the remaining behaviours (such as in equation (3.9)). Thus,

making way for the pedestrians still walking.

When waiting:

H13: pedestrians prefer to stay around a chosen location in the waiting area,

H14: and only move in reaction to pedestrians walking in close distances.

Very often the waiting area is shared with many pedestrians and the navigation inside

the area is severely hindered. Crowded platforms are often heterogeneously occupied

presenting some areas of high density regions (region 3 in figure 3.11).

Walking inside crowded areas requires different behaviours than walking in normal

traffic. If pedestrians would walk normally, there would be a probability that they

would not penetrate the crowded area. Therefore, pedestrians walking in and around

high density areas are forceful. They walk much closer to standing pedestrians as they

would do in normal situations. Furthermore, they ‘brush’ waiting pedestrians more

often than they would in normal conditions. In Nomad this behaviour is achieved by

temporarily setting a very small value of τ ≈ 0.1 in ~a f (equation (3.11)) for pedestrians

walking towards their waiting locations.

H15: When walking inside waiting areas pedestrians walk more forcefully than
in normal conditions and accept smaller distances to waiting pedestrians.
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3.3.2 Servers and queues

Nomad has servers and choice areas that can be used to simulate a group of turnstiles,

ticket counters or sport stadium entrances. Servers implement a situation in which

pedestrians stop during the service time and then move on towards the next destina-

tion. When ‘being served’, pedestrians are not implementing the waiting behaviours

described previously. They simply stop and do not interact with nearby pedestrians.

This represents situations that require the full attention of pedestrians.

If servers are used to simulate a group of turnstiles, after the service time finishes,

pedestrians move through the turnstile. A line of turnstiles divide the walking zone

into two separated zones each on one side of the servers.

What distinguishes them from activity areas is the possibility to form queues for those

waiting to be served. In front of a group of servers always a choice area is modelled.

Inside this area pedestrians start to choose a server and may eventually stand in queues

(figure 3.12).

destination

servers

choice area

Figure 3.12: Choice areas (striped area) and servers (turnstiles). Brown ped-

estrians are in queues or being served. Red pedestrians are still reaching their

chosen queues. The green pedestrian is changing queue after predicting a smaller

queuing time.

Server choice behaviour

The choice of servers is performed by calculating the perceived time needed to reach

the server and to be served. The total perceived time is named ttotal . Pedestrians will

choose the server that offers the lowest ttotal at that moment. If no other pedestrian

is inside the choice area nor in any server ttotal is the time to reach the closest server

from the current position plus the expected service time twalking + tservice. Here we are
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assuming that the average service time is the same for all servers. However, in Nomad

this is not mandatory and pedestrians identify the different service times.

If the choice area is occupied with other pedestrians in queues or walking towards, the

expected service time is added with the expected queuing time tqueue and the service

time of the pedestrian currently in the server in front of the chosen queue tserver. The

ttotal is determined by:

ttotal = tqueue + twalking + tserver + tservice + ε (3.22)

where:

tqueue is the estimated time spent in the queue.

twalking is the walking time to reach the estimated end of the queue.

tserver is the current service time if the server is occupied.

tservice is the expected service time for the reference pedestrian.

ε is a stochastic noise accounting for ttotal assessment and modelling errors.

H16: Pedestrians minimise the time needed to reach servers.

Reconsidering the choice

Pedestrians regularly reconsider their choice of queue based on the prevailing queuing

conditions. In Nomad the choice interval is a parameter and the default value is 5

seconds. Their choice always follows the same model presented in equation (3.22).

H17: While waiting in queues pedestrians reconsider their queue choice.

3.3.3 Escalators and stairs

Escalators and stairs have the function to connect levels. Both are automatically in-

corporated during the route map calculations only requiring the user to specify which

levels they are connecting. Stairs are bidirectional, while escalators are unidirectional

and the direction (up or down) must be specified. 2

Very often stairs and escalators are installed side-by-side and pedestrians have to choose.

According to field observations and literature, escalators are more attractive than stairs

(Daamen et al. (2005a), Zeiler et al. (2011)).

When calculating the routes Nomad assigns higher walking costs for stairs. This cre-

ates a bias towards escalators in the route choice map similar to the routes towards

destinations shown in the walking map presented in figure 3.2. Figure 3.13 shows in

grey the cost map pointing towards the escalator.

2Bidirectional escalators are getting more popular, particularly in the Netherlands. In the future they

will be available in Nomad as well.
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stair escalator

equi-cost lines

wall
floor

Figure 3.13: Scheme of a walking area that ends with a stair and a escalator. The

floor Route map with equi-cost lines (section 3.1) for a stair and a escalator. The

red lines represent the area where pedestrians will choose the stairs.

Figure 3.13 shows that the stair is also an exit option but only for pedestrians located

close to its entrance. The red lines represent the area with lower walking costs for

stairs. This area is not set directly but is the consequence of the route choice cost

maps.

The size of the area that determines the preference for stairs depends of two factors:

the relation between the stair and escalator walking costs Lstair/Lescalator and the length

of the stairs (and escalators). The stair preference area decreases when Lstair and the

length of the stair increases.

In Nomad the use of stairs is dependent on the level of congestion in front of the

escalator. The more pedestrians are waiting in front of the escalators the larger is the

probability that pedestrians will reach inside the red dotted area in front of the stair.

This behaviour is in agreement with field observations for commuters in metro stations.

H18: When changing levels pedestrians prefer escalators over stairs.

H19 For side-by-side layouts, the amount of pedestrians taking the stairs increases
with the increase of congestion in front of the escalator.

Stairs can propagate the tail of the congested queue upstream but escalators not. Like

real escalators, pedestrians will always be poured to the next level. If many pedestrians

are standing nearby the exit of escalators, they risk causing collisions.

Stairs

Nomad only implements straight stairs with handrails. Spiral stairs can be introduced

by creating several straight stairs with horizontal landings.

Some factors influence the speed of pedestrians in stairs, its construction, the amount

of steps (length of the stair), the size of risers. However, these are not taken into

consideration in Nomad and the same average walking speed is used for all stairs.
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We are assuming that the simulated stairs are designed according to standard comfort

levels.

According to Fruin (1971) pedestrians on stairs have smaller vision cones and less

manoeuvrability than when walking level. Therefore, free-speeds and the walker model

in the equation (3.9) are adjusted both for the upward and the downward directions.

Table 3.1 shows the staircase free-speeds from Weidmann (1993):

Table 3.1: Mean walking speeds in stairs taken from Weidmann (1993)

horizontal vertical

speed (m/s) speed (m/s)

upward 0.61 0.31

downward 0.69 0.35

The speeds shown in table 3.1 are used as average speeds in stairs and the actual speeds

in stairs will be proportional to v0. Fast pedestrians (v0 f ast > v0) will climb or descend

faster than the speeds in table 3.1 and the opposite happens with slow pedestrians.

The behaviours are temporarily modified according to the following hypothesis:

H20: To avoid tripping in stairs:

(a) pedestrians have less attention for other pedestrians,

(b) apply less manoeuvres and
(c) do not walk backwards.

In Nomad this is achieved by restricting the size of the influence area (ief = 1.0m and

ieb = 0.3m) and making pedestrians less prone to deviate from the path following the

stair. For stairs the path following parameter τ is severely reduced to 0.1 m/s. (These

values were validated for capacity).

When walking on stairs pedestrians only ascend or descend. If their interaction with

close-by pedestrians is very intense they do not move and congestion develops down-

stream. The Nomad stair behaviour restricts the walking direction to the forward and

lateral directions. This results in a behaviour similar to queues but with a (reduced)

overtaking behaviour.

Escalators

Escalators are designed with space for one or two pedestrians per tread. Equation

(3.23) shows that the maximum theoretical flow of 2.5peds/s could be achieved if all

spaces would be taken by standing passengers (Kauffmann (2011)).
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theoretical capacity = (belt speed)(tread depth)(pedestrians per tread) (3.23)

2.5 pedestrians/s = (0.5m/s)(1 tread/0.4m)(2 pedestrians/tread) (3.24)

It is generally accepted that the maximum theoretical capacity of full occupancy of

threads is never achieved. Fruin (1971) notes that escalators present empty spots to

allow larger personal space decreasing the maximum theoretical capacity sometimes

to 50%. To calibrate the capacity Nomad has a parameter that controls the probability

that pedestrians enter the escalator.

In real situations some pedestrians in wide escalators go to the left lane and over-

take standing pedestrians. This increases the capacity of escalators (Davis and Dutta

(2002)). However, in Nomad this feature is not implemented yet. Nomad escalators

behave as queues and pedestrians stay on the same treads and are simply moved.

3.4 Nomad implementation

The Nomad simulation software is developed as a research tool to investigate pedes-

trian behaviours. Given the incremental development of the model it was structured to

be friendly to extensions and modifications by presenting a modular architecture and a

Object-Oriented (OO) programming paradigm.

The OO programming is a development of earlier programming paradigms that provide

tools to describe the elements of the system and how they relate to each other. The units

of the program are a direct abstraction of the real problem and are defined as classes.

The realisation of the classes are the Objects.

In Nomad we have a Pedestrian class that contains the characteristics of the simulated

pedestrians: how they behave, what they know, how they interact with other classes

such as Obstacles. Each pedestrian that enters the simulation is a different instance

that implement the methods of the Pedestrian class.

These requirements gave a strong motivation to choose Java (Oracle (2014)) due to its

well structured OO programming language that makes it friendly to non-professional

programmers. Furthermore, there are several tools and libraries that help the develop-

ment of complex and large systems. The portability of Java was also a factor for its

choice.3

The Nomad simulation can be distributed in different versions that differ by the differ-

ent capabilities. For example, the basic version that is freely distributed 4 is restricted

3In general Java programs are simpler and friendlier to implement but are slower than C++ programs.

However, the difference is steadily diminishing and for intensive floating point calculations such as in the

Nomad simulation the loss is acceptable. Furthermore, to develop the full performance C++ programs
requires a level of programming skills that are beyond that of the average programmers (Hundt (2011)).

4www.pedestrians.tudelft.nl
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to a single level and has no scripting language capabilities for complex batch manipu-

lations of simulations. Appendix B presents a list of features of the Nomad simulation.

Some of the Nomad simulation features are presented in this section and more details

can be found in the Nomad simulation user manual (Campanella (2011)).

3.4.1 Overview of the system architecture

The most important Nomad classes are Pedestrian, Activity and Infrastructure. Ped-

estrians are from the commuter type that will follow the optimal path towards their

destinations and activity areas. Activity is the super class of the activity classes that

implements the behaviour that pedestrians display when performing them. The In-

frastructure class is a super class that implements all the elements that make up the

simulation area.

The simulation area is structured in Levels that are 2D representations of a walking

area. They are formed by groups of Obstacles and Walkables that are surfaces that

allow pedestrians to walk on. Levels are connected by Staircases and Escalators. Ped-

estrians always enter the simulation via an Origin and exit via a Destination that are

not necessarily on the same level. Activity areas are from class Destination.

The organisation of the classes is top down using the concept of inheritance (inheriting

methods from super-classes) and interfaces (obligatory methods for interfaced classes).

Several tasks are necessary in the simulation: creating the demands, moving the ped-

estrians, performing the activities and updating the infrastructures. Each of these tasks

are executed by special classes called Managers. They contain instructions to the

classes that actually realise the tasks. This logical division of the tasks is part of the

modular modelling strategy that helps the development and extension of Nomad.

The simulation step is conducted by the NomadModel Class that execute serially all 5

managers. One simulation step is the sequence of steps of the managers as presented

in flow diagram shown in figure 3.14.

Pedestrian class

The NomadAgent is the super-class for all agent types that are implemented. The Ped-

estrian class implements pedestrians with the ability to walk and to perform activities

and is a sub-class of the NomadAgent. Pedestrians in wheel chairs or blind pedestrians

could have a special class to represent them.

Another important class for pedestrians is the PedestrianType. The PedestrianType is

the class that contains parameter distributions for pedestrian characteristics, of which

a single value is drawn for an individual Pedestrian. The simulation input contains the

description of the several PedestrianType’s creating different age groups and/or gender
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DemandManager introduces pedestrians in the simulation

PedestrianManager manages all pedestrians and their walking

ActivitiyManager manages the activities behaviour

InfrastructureManager modify the state of infrastructures

OutputManager collects, prints and saves all output data

end?
no yes

simulation ends

Figure 3.14: The representation of one simulation step conducted by the Nomad-

Model class.

groups. This gives the user the possibility to have total control of the demographics in

the simulation.

The PedestrianType is a list of random variables normally distributed with µ and σ set

by the user in the input. Each parameter distribution with σ 6= 0 generates different

parameter values creating heterogeneity.

Figure 3.15 shows the UML class diagram for the Pedestrian class and its relation with

the NomadAgent and the PedestrianType classes.

Infrastructure class

All infrastructures are sub-classes of the NomadInfrastructure that defines the basic

fields for all infrastructures such as the ‘visible’ that sets the rendering in the simulation

window (flag that indicates if the object is visible or not). Figure 3.16 shows the UML

diagram for the Nomad infrastructures.

Two different classes are directly sub-classed from the NomadInfrastructure: the Infra-

structureCollection that is used for complex objects constituted of moving parts such
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NomadAgent

name
shape
colour
level
dynamic state~z

PedestrianType
parameter distributions

has a 1

Pedestrian

parameter list
origin
activity list
isolation level
isolation time
state
desired vel. ~v0

is a

Figure 3.15: The UML class diagram of the pedestrian class with the most im-

portant fields.

as the RevolvingDoor class and the InfrastructureObject that is the base-class for all

other infrastructures.

There are several infrastructure types such as origins, destinations, turnstiles, servers

and levels.

An Origin is a line that generates pedestrians. A Origin will only place a new pedes-

trian in the simulation, if the pedestrian has enough space over the line. Otherwise, the

pedestrians are put in a FIFO (First-In First-Out) list and will be introduced in the next

simulation step.

Obstacle is the super-class for any form of infrastructure that blocks walking. They are

considered solid objects that block the interaction between pedestrians on both sides

of obstacles. Pedestrians only ‘see’ each other if there is an unimpeded line between

their centres.

Destination are the locations where pedestrians can perform activities. In the Nomad

simulation, exiting the simulation is an activity. The parameters that affect the destin-

ation choice as described by equation (3.2) in section 3.1 are set in the destinations.

The behaviour of pedestrians while performing the activities is determined by the type

of activity chosen (see section 3.4.1).

Level is the super class of the surfaces that create the simulation walking area. The

walking area is constituted by at least one Horizontal level. One Inclined level will

always connect two horizontal levels. There is no limit for the amount of horizontal

and inclined levels in one simulation. In the Nomad simulation we have implemented

Stairs and Escalator as inclined levels.

In Nomad the walking behaviour is implemented in special infrastructure called Walk-

able. The most common level is the horizontal that contains a WalkableLevelHori-

zontal that implements the ‘normal’ walking behaviour represented by the equation

(3.9). Similarly each other type of level will have its own walkable and associated

walking behaviour such as WalkableLevelEscalator.

Pedestrians can only walk in one level at a time. However, other walkables can be

implemented in a level. Turnstile is a sub-class of the NomadServerChoiceWalkable

that is a walkable that implements a server choice behaviour (section 3.3.2). Turnstiles



80 TRAIL Thesis series

own one or more Server that is a walkable with the special server behaviour. Turnstiles

and servers are not shown in figure 3.16. The simulation will always know which

walking behaviour to use because they are always connected to the current activity that

the pedestrians is performing.

Activity class

The NomadActivity is the super class of all activities implemented in the Nomad sim-

ulation. It implements the Activity interface requiring that all activities must have the

essential functions such as those that implement the waiting behaviour. All activities

in Nomad can be input with more than one activity area (destination). The service time

of the activities are set in the destinations allowing for the activity area choice to be

influenced by all parameters as described by the equation (3.2) in section 3.1.

Figure 3.17 shows the fields of the NomadActivity including the choiceType and des-

tinations list.

The waiting activity described in section 3.3.1 corresponds to the RandomWaiting and

is very useful for wide locations such as train platforms where pedestrians are dis-

persed.

Another waiting activity is the CentroidWaiting that fixes a single waiting location for

all pedestrians, usually the centroid of the waiting area. Pedestrians will then stand

around the centroid until their waiting time has passed following the same behaviours

described in section 3.3.1. It is useful for areas under information boards that usually

offer preferred locations.

Nomad also has the Simple activity that does not apply the walking behaviours de-

scribed in section 3.3.1. When reaching the Simple activity area, pedestrians simply

stop and do not interact with any pedestrian. It is mostly used to remove pedestrians

from the simulation. If the activity is the last of the activities list then Nomad exits the

pedestrian. Usually for exiting, the activity time is set to 0s.

3.4.2 Numerical methods

Numerical instabilities cause erratic behaviours due to overreactions of pedestrian in-

teractions. If the time-step is too large pedestrians will not walk smoothly and will

bounce frequently. This problem is aggravated in dense situations when the probabil-

ity of collisions between pedestrians is very high. A simple but costly remedy in terms

of computational time is to use very small time-steps, usually in the order of fractions

of seconds. However, when simulating complex pedestrian facilities and large flows

usually only part of the pedestrians are subjected to high densities. Furthermore, these

high densities may occur only during short time periods. Therefore, imposing very

small time-steps to all pedestrians all the time creates an unnecessary performance

penalty.
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Figure 3.16: The UML class diagram of the infrastructure classes with their most important fields.
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NomadActivity Activity
<<Interface>>name

destinations
choiceType

RandomWaiting SimpleCentroidWaiting

Figure 3.17: The UML class diagram of the activity class with the most important

fields.

To mitigate this performance penalty the Nomad simulation introduces a different time-

step for each pedestrian. The size of the time-step depends on the level of isolation of

the pedestrians. The level of isolation is determined by the (current) distance to the

nearest pedestrian or obstacle, effectively introducing a variable time-step for each

pedestrian in the simulation.

The numerical methods also includes a smart management of the search of the sur-

roundings of each pedestrian. Every pedestrian will only search the surroundings for

pedestrians and obstacles if he or she was close to any in the previous time-step (low

level of isolation). Pedestrians isolated from other pedestrians and from obstacles do

not need to search their surroundings.

The following sections give an overview of the variable time-step and the smart man-

agement. Further details are found in Campanella et al. (2007b) and Campanella et al.

(2009b).

3.4.3 Variable time-steps

In the Nomad simulation there is one update of the complete traffic state at each sim-

ulation step. Each simulation step corresponds to the passing of one time-step (∆Tsim).

However, some pedestrians have their state updated more than once during the simu-

lation step effectively being subjected to smaller time-steps. As mentioned in the pre-

vious subsection, the time-steps are dependent of their level of spatial isolation from

other pedestrians and obstacles. The Nomad simulation uses three levels of spatial

isolation: isolated, in-range and in-collision (figure 3.18).

isolatedin-rangein-collision

Figure 3.18: The three isolation levels that determine the variable time-steps.
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Isolated pedestrians have no pedestrians or obstacles with the possibility to enter their

influence area in the next time step. Without interactions pedestrians tend to follow

the desired velocity (section 3.2.3). This is true in straight paths such as those found

in corridors. Curves introduce deviations from the desired velocity. These deviations

increase with larger values of the parameter τ and larger time-steps. For most applic-

ations the behaviour of isolated pedestrians is not important for the determination of

bottlenecks and areas with high densities. Therefore, their accelerations can be calcu-

lated using larger time-steps.

The Nomad simulation applies the simulation time-step (that is the largest possible) to

calculate the next position of isolated pedestrians (∆Ti = ∆Tsim in equation (3.11)).

Pedestrians in-range have other pedestrians (or obstacles) inside or close to their influ-

ence area requiring the application of interaction accelerations. However, pedestrians

in-range have no possibility of colliding in the next time-step. Therefore, the accel-

eration model described by equation (3.9) can be simplified eliminating the physical

acceleration (section 3.2.11).

The determination of the positions of pedestrians interacting requires a small time-step

to minimise the numerical errors. After some tests we set the in-range time-step to be

∆Tr = 0.2∆Tsim.

The remaining pedestrians are very close to others or to obstacles and need a very

small time-step to account to the large numerical instabilities that arise in collisions.

The Nomad simulation applies an even smaller time-step to in-collision pedestrians

∆Tc = 0.1∆Tsim.

The Nomad simulation calibration and validation presented in the chapters 7 and 8 use

the isolation fractions presented in this section with ∆Tsim = 0.1s.

Determining the isolation levels

To determine the isolation level the Nomad simulation does not consider the current

speed and direction of pedestrians. To prevent an incorrect classification due to a

sudden change of the velocity the Nomad simulation considers the worst case scen-

ario: pedestrians are walking at their maximum speed and on a collision path. Fig-

ure 3.19 shows how a pedestrian (p) is far enough of its nearest neighbour that even

in a collision path at full speed his influence area cannot be reached during the next

time-step. Pedestrian p is therefore isolated. A similar algorithm determines whether

the pedestrians are in-range and the remaining ones are in-collision. For interactions

between pedestrians and obstacles the Nomad simulation considers the closest point to

the obstacle.
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~Vmax

~Vmax

~Vp
~Vq

normal situation isolation calculation

Figure 3.19: The left figure shows the real dynamics of the isolated pedestrian p.

The right figure shows both pedestrians walking at maximum speed towards each

other and a circular isolation area to determine the isolation level.

3.4.4 Smart pedestrian management

All pedestrians need to search their vicinities for pedestrians and obstacles and this is

a large source of computational cost. Nomad uses the isolation levels of the variable

time-step to reduce the the amount of spatial search of pedestrians.

Large simulation areas create situations in which pedestrians walk during long peri-

ods without coming close to other pedestrians or obstacles. The Nomad simulation

takes advantage of these situations by letting very isolated pedestrians walk ‘blindly’,

i.e. without searching for nearby pedestrians and obstacles. These pedestrians walk

without perception for a limited period of time. This so called ‘time-in-isolation’ is

the time that the nearest pedestrian would take to reach the influence area in the worse

case scenario mentioned in the previous subsection.

When a pedestrian enters the simulation, Nomad determines the time-in-isolation.

After the time expires, the isolation level and the new time-in-isolation is determ-

ined. This is repeated for each pedestrian in isolation. Pedestrians walking in the other

isolation levels search their surroundings at each time step.

When new pedestrians are introduced in the simulation Nomad recalculates the isola-

tion level and time-in-isolation for all pedestrians in the areas surrounding the origin.

Campanella et al. (2007b) and Campanella et al. (2007a) show the details for the cal-

culation of these times.

The Nomad simulation differentiates between pedestrian and obstacle isolation. It

always uses the smallest time-step determined, but it will perform the assessment sep-

arately of pedestrians and obstacles allowing for further improvement of the computa-

tional efficiency.

In our tests with large simulation areas we observed that the variable time-step al-

gorithm combined with the smart management proposed was four times computation-

ally more efficient. The performance loss due to the extra tests to determine the isola-

tion levels were negligible for small simulations.
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3.4.5 State update strategies

Pedestrian states including the dynamic state (position and velocity), are updated se-

quentially during the simulation time-step. This is an alternative to the most common

parallel update that changes the state all pedestrians simultaneously at the end of the

simulation step based in the traffic state before the time step. The investigations in

Campanella et al. (2009b) showed that the sequential update is more accurate for lar-

ger time-steps and only marginally less accurate for small time steps.

The sequential update is combined with the variable time steps. Therefore, at each

intermediate time-step some pedestrians may have their state updated and others not

depending in which level of isolation they are. The order of the sequential time step is

fixed and according to the appearance of the pedestrians in the simulation.

3.5 Conclusions

In this chapter we have shown the relation between the components of Nomad and

empirical behaviour. This direct connection between modelling and reality simplifies

the understanding of the model and allows for improvements and extensions.

The acceleration equation (3.9) that was implemented and used in several simulations

contains innovations that could benefit many types of walker model. Most notably the

development of anticipation in section 3.2.6 introduces the direction of the velocity in

the interaction component. This has the logical consequence of distinguishing between

frontal and backward interactions bringing the model closer to real interactions. The

acceleration model can now be used to investigate the accuracy of pedestrian models

in the chapters 4, 6 and 7.

Section 3.4 detailing the implementation of the model serves as a basic conceptual

outline of the structure and features of pedestrian models. The list of performance

optimisations is extensible to similar models such as social force models. The im-

provements of computational performance outweighs the accuracy loss for pedestrians

walking isolated since these are not determinant for crowded situations that are usually

of interest in simulations. This algorithm (together with the optimised pedestrian man-

agement) can be adapted to other type of models and especially traffic driver models.

The introduction of the special behaviours greatly expanded the possibilities of the

Nomad simulations. The waiting behaviour is divided in three situations that reproduce

realistic behaviour that can be adopted by any type of pedestrian model. Chapter 8 will

show the importance of the new behaviours and the benefits of the implementation

features.
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Chapter 4

Novel methodologies for calibration

and validation of walker models

In the state-of-the-art we discussed that pedestrian traffic is usually very complex,

presenting many situations such as unidirectional, bidirectional and crossing flows.

On local levels, densities can go up to 10 peds/m2 (Helbing et al. (2007)).

It is not desired to have parameter sets that are accurate only in specific situations

such as those occurring in unidirectional flows. Such ‘specialised’ parameter sets have

limited use in simulations of large pedestrian facilities that present several different

situations such as bidirectional corridors and crossing flows. A parameter set suited

for general use needs to perform well (be accurate) in different situations.

These requirements made us hypothesised that the most useful walker models are ac-

curate and generic: walker models should be able to reproduce a large amount of

different situations with a high level of accuracy. This chapter proposes a new form-

alisation of the calibration and validation processes of walker models. The novelty is

the focus on obtaining parameters for general use.

The process of determining the accuracy of a model and its parameter set is called val-

idation. Before the validation, the model parameters must be known and the systematic

process of parameter estimation is called calibration (Kleijnen (1995)).

There are different types of validation. In this dissertation we use the most common

approach of dividing the validation into three steps: a model is verified, face validated

and predictively validated.

• Verification indicates to which extent the model does what the developer expects

it to do. Galea (1998) details that this initial step aims at testing the simulation

components and their functional behaviour.

• Face validation is a qualitative assessment of the model. If face valid, the model

has the capacity to reproduce the behaviour of the system in the required detail
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(Van Lint (2009)). For example, a walker model should not present pedestrians

walking on top of each other or predict that pedestrian speeds are not affected by

the density.

• Predictive validation is the quantitative assessment that ensures that the results

of the model can be used for the prediction of performance indicators (Klügl

(2008)). A model should only be used if it has been predictive validated.

These definitions are consistent with those used in transportation and in the pedestrian

dynamics community (Hoogendoorn (2007), Van Lint (2009), Galea (1998), Klügl

(2008), Klüpfel (2009) and Schadschneider and Seyfried (2009b)). The first verifica-

tion step and the face validation deals with the implementation of the simulation model

and is not the subject of this chapter.

Optimal parameters are calibrated for certain performance indicators of the traffic sys-

tem. These can be the positions of the individual pedestrians, fundamental diagram

relations or distributions of travel times. However, once the parameters are estim-

ated there is no guarantee that the walker model is reproducing other aspects on an

acceptable level (specialisation of the parameter set). The same applies for different

flow configurations: parameters estimated with data from unidirectional flows may not

perform well in other flow configurations (e.g. bidirectional or crossing flows).

The basic hypothesis of this chapter is that the simultaneous use of several indicators of

pedestrian traffic for the calibration reduces the level of specialisation of the parameter

set. Parameter sets calibrated with several indicators will likely perform better in many

situations than specialised parameter sets. This hypothesis is confirmed in chapter 7.

No systematic calibration or validation guidelines incorporating the diversity of ped-

estrian behaviours was found in the literature. The Rimea project1 proposes a set of

guidelines for the application of microscopic models in evacuation analysis that is fo-

cused on ships (Rimea (2009)). Unfortunately, it only proposes few face validation

tests in some simple evacuation scenarios. According to the manual, predictive valid-

ation tests are not proposed due to insufficient availability of empirical data.

In this chapter we identify and discuss all components of calibration (section 4.1) and

validation (section 4.2) processes proposing novel methodologies. The key compon-

ents for both methodologies are the so called scenarios and the multi-objective func-

tions. Scenarios contain all data and methods to run simulations and compare their

outcomes with reference data. Multi-objective functions combine the outcomes of

scenarios producing a single measure of accuracy of models (Section 4.3). In the re-

maining, we will refer to multi-scenarios in contrast to single-scenario.

Another important aspect of the calibration methodology are the significance tests that

show the sensitivity of the model for the calibrated parameters (section 4.4). Without

1(http://www.rimea.de)
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those tests, it is not possible to know if a parameter has any influence in the outcomes

of the model or if the data used on the calibration was appropriate.

Section 4.5 finishes the chapter with a summary and a discussion on the benefits of

using multi-scenarios to improve the significance and accuracy of the calibrations.

4.1 A generalised calibration methodology

For the calibration methodology we use the knowledge on the walking behaviour to

obtain parameters of general use. The methodology favours (but is not restricted to)

the simultaneous use of several aspects of walking behaviours by the choice of smart

performance indicators applied on different walking situations in what we call multi-

scenario calibration.

Figure 4.1 shows the scheme of the methodology for the calibration of the parameter

set θ. The calibration consists of two parts: the clockwise loop describing the iterative

process for estimating the optimal parameter set and the sensitivity analysis to calculate

the significance of each estimated parameter.
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Figure 4.1: Calibration methodology for walker models. It is a loop initiating

in the upper left corner and ending after the optimal parameter set θ∗ is shown

to be statistically significant for the outcomes of the model, therefore considered

estimated (θ̂) ending the calibration.

The most important component of the methodology is the scenario that incorpor-

ate everything that is necessary to simulate pedestrians: boundary conditions such

as demands, description of the walking facility and population demographics; and
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everything necessary to calculate the deviations of the model from the reference system

(reference data, indicators and objective functions).

Scenario 1 in figure 4.1 shows how parameter set θ is input to the simulation model

(top left) to generate trajectories Xi according to the boundary conditions determined

by the walking situation to this scenario. The trajectories are mapped by a function

hi to calculate the traffic indicator Yi that will be input in the objective-function f (Yi)

generating the performance measure εi that compares the predicted and reference data

(right side of the calculation step). The other scenarios have their own reference data

and other indicators and may represent different walking situations.

The methodology does not require trajectory data, e.g. capacity values, velocity distri-

butions can also be used as reference data. However, having trajectories allows for a

wider choice of performance indicators in the objective functions. To simplify the de-

scription of the methodology we consider the reference data in the form of trajectories.

Performance measures can be errors (differences) between simulated and reference

data, log-likelihoods of indicators estimating optimal values. In a more general form

the performance indicators can be ordinal variables that results in a ranking. We will

discuss these performance measures in section 4.3. In the remainder of this chapter we

will mostly mention the error as a general performance measure to simplify the text.

An example of an indicator is the position r of pedestrians resulting directly from the

trajectories. The performance measure εi can be calculated by the mean of absolute

position errors of all time instances k in the complete pedestrian trajectory:

ε =
1

n

n

∑
k=1

∣

∣

∣
r(tk)− rre f (tk)

∣

∣

∣
(4.1)

There is no assumption on the form of h (only that it is a computable function). Fun-

damental diagram relations, distributions of headways and travel times are examples

of functional mapping in the form indicated by (4.2). The variable s represents other

parameters necessary to calculate the diagrams such as space and time discretisation

for fundamental diagrams (Edie (1963)).

h : Y (s) = h(X) (4.2)

A calibration with more than one scenario will combine errors from the objective-

functions in a single error by a multi-objective function. The resulting error is submit-

ted to an optimisation process that compares the current error with errors from previous

iterations and calculates if a stopping condition is met. If not, a new set of paramet-

ers is generated and a new iteration is performed. If a minimum error is found the

parameters are considered optimal:

θ∗ = arg min ε(θ) (4.3)
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If the optimality condition is not met, a condition based on the maximum amount of

iterations forces the end of the optimisation with a non-optimal parameter. This can

indicate that there is no distinguished optimal value (highly non-linear result space),

problems with the reference data (see the following discussion on poorness of data),

problems with the model or a non-appropriate optimisation algorithm. In these cases

some action must be taken before the calibration process can be initiated again.

4.2 A generalised validation methodology

It is a general advice to perform the validation with a different set of data than those

used for calibration (Van Lint (2009)). This prevents the problem of the model be-

ing optimised for a single walking example (the overfitting problem). However, using

different reference data for the validation does not only assure that the parameters

are performing well in walking situations other than those in the calibration. There-

fore, multi-scenario validations that combine several scenarios are necessary to evalu-

ate walker models for general use.

There is no optimisation process for the validation methodology. We assume that it is

not necessary to repeat the significance analysis because it has been included during

the calibration. With these suppositions the validation methodology comprises one

iteration of the loop presented in figure 4.2. The multi-objective errors represent the

performance measure for all scenarios. The assessment criteria determine if the level

of accuracy of the model is adequate for application.

We mentioned in the introduction the distinction between face validation and predict-

ive validation. Face validation shows that the model is reproducing basic features of

pedestrian movement usually in a qualitative manner and predictive validation makes

use of quantitative indicators to show the accuracy of the simulations.

If we inspect the literature for walker models we observe that most validations are

qualitative. The qualitative indicators vary in their complexity and scope. Developers

put more emphasis on complex assessments such as the appearance of self-organised

lanes in bidirectional flows (Still (2000), Treuille et al. (2006), Nakayama et al. (2008),

Bandini et al. (2009), Asano et al. (2010)) and the shape of the fundamental diagrams

(Blue and Adler (1999), Still (2000), Isobe et al. (2004), Berrou et al. (2005), Seyfried

and Schadschneider (2008), Portz and Seyfried (2010), Townsend (2014)).

We argue in this methodology that these assessments need to be quantified and com-

bined in multi-objectives. Chapter 7 presents a multi-scenario validation of Nomad

using quantitative indicators. The validation criteria is based in three ordinal values

‘Bad’, ‘Medium’ and ‘Good’ converted from the multi-objective error.
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Figure 4.2: Validation methodology for walker models. It is a single iteration ini-

tiating on the left with the calibrated parameter set and ending with the validation

criteria on the right.

4.3 Multi-objective functions

There is no unique way to combine performance measures from different scenarios.

It depends what type of performance measures the objective-functions are calculating,

e.g. log-likelihoods or errors.

Likelihood functions use likelihoods instead of errors allowing for a probabilistic way

to combine different scenarios. If the scenarios are assumed to be independent they

can be multiplied to give the combined probability. Furthermore, by calculating the

logarithm of the likelihood we obtain the log-likelihood L̃ that can be added without

any need of weights to express the joint probability of different scenarios. The as-

sumption of independence usually does not hold, but Hoogendoorn and Hoogendoorn

(2010) show how to overcome this problem. This approach is exposed in section 5.2.1.

Multi-objective error functions have several functional forms (Steuer (1986)) and its

simplest and most popular form is a linear addition of the several errors of the objective

functions with weights λi:

~ε = λ1ε1 +λ2ε2 + . . .+λnεn (4.4)

There is no simple way to find the values of λ other than setting them arbitrarily (Ta-

boada et al. (2007)). The interpretation of λ depends on the errors. If the range of the

errors are equal, they have the same relative magnitude and larger values of λ reflect
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the importance of indicators over others. If the errors have different magnitudes then

λ is also reflecting the differences between the error ranges.

One way to have errors with the same range is to calculate them as proportions of an

indicator. If the indicator is an absolute value such as travel time and door capacity

then we can calculate their relative errors:

εi(θ) =
‖ Yi(θ)−Y

re f
i ‖

Y
re f
i

(4.5)

where:

Yi
re f is the reference indicator value.

Yi(θ) is the simulated value.

Another approach to determine the parameter value is to create a Pareto set of solutions

and choose one of them. A solution is part of the Pareto set if it is not possible to

improve the outcomes from one objective function without decreasing the others. This

condition creates a set of solutions that are locally optimal and the optimal is chosen

according to an arbitrary choice or a specific condition (Taboada et al. (2007)).

Both weighted sums and Pareto optimality require extra conditions for the definition

of the optimal solution. The possibility to set prior information in the calibration of

walker models can be used to obtain parameter sets that perform well in several situ-

ations with a focus on a particular one. One could imagine the application of walker

models to situations that are complex and with specific characteristics. For example,

if a parameter set is to be used mainly for popular outdoor music festival, it should de-

liver good behaviours in bidirectional flows generally occurring in the dedicated paths

and very good behaviours of individuals manoeuvring inside dense crowds.

4.4 Significance analysis

The significance indicates the sensitivity that the model has for a parameter. If the

significance is low, the model is not much affected by variations of the parameter.

For each parameter θ∗i from the optimal set θ∗ a significance analysis is performed

calculating their sensitivity around the calibrated value Sθi
∈ ~S. The sensitivity can be

visualised by the hypothetic example in figure 4.3. In the figure we plotted the variation

of the error of the objective function for an optimal parameter θ∗i = 1.6 (the value of

the other parameters of θ∗ were kept the same). The dashed curve represents an ideal

situation in which the error is minimal and small variations will increase significantly

the error. The solid curve shows the opposite and the parameter is not significant.

The two most important reasons for a parameter not passing the significance test are the

parameter is not useful and could be eliminated from the model or the empirical data

was ‘poor’ (Ossen (2008)) and needs to be supplemented and new scenarios created.
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Figure 4.3: A generic example of a sensitivity analysis of two parameters. The

multi-objective function is used to calculate the errors around of θ∗n = 1.6. The

dashed curve shows a significant and the solid curve shows a low significant para-

meter.

If the parameter is significant with other reference data then the problem lies with the

reference data used in the calibration.

Poorness of data is the insufficient amount of information about important behaviours

such as collision avoidance or following behaviour. If no interactions occur in a refer-

ence data, the parameters responsible for these behaviours cannot be optimised. In the

validation process the poorness of data prevents any conclusion regarding the model

accuracy in the lacking behaviours.

There is a possibility to have too high significance (small variations of the parameters

generate extremely high variations in the errors). This is generally an indication of

overfitting of the parameters. The model will show very large variations of the per-

formance indicators when not simulating the exact conditions used for the calibration.

The parameters are therefore too specialised (Van Lint (2009)). Models with many

parameters such as walker models are more susceptible for overfitting.

Therefore, the significant test is a very important component and needs to be passed

by all estimated parameters before a model can be used. A statistical test such as the

one presented in section 5.2.1 must determine if the parameter is significant.

4.5 Conclusions

In this chapter we identified the key components of the calibration and validation of

walker models and used them to propose generalised calibration and validation meth-

odologies.

The basic component of the methodologies are the scenarios that comprise all elements

necessary to obtain a performance measure from estimations of the walker model with

a particular parameter. The scenario contains a flow that is represented by the reference
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data and the simulations of the model. The flow will provide the model with walking

situations that need to be accurately reproduced.

The calibration was proposed with two steps. The first step is the optimisation pro-

cess that estimates a parameter that best reproduce the performance indicator applied

to the reference data. The second calibration step is a significance analysis that cer-

tifies that the parameters are significant therefore useful to the model. The validation

methodology has one step that calculates a performance indicator and subjects it to an

assessment criteria defining the accuracy of the parameter and the model.

We hypothesised that pairing different scenarios in what we called multi-scenario cal-

ibration will increase the probability of obtaining parameter sets that perform well in

situations not used in the calibration. This hypothesis is confirmed in chapter 5 and in

chapter 7 where we show that parameter sets using multi-scenario calibrations result

in parameter sets with higher accuracy than single-scenario parameters.
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Chapter 5

Investigating factors that affect

calibration of walker models

The calibration process is an optimisation process with an unknown solution. It is not

possible to know how close a parameter set is from the optimal solution giving the

highly non-linear search space of walker models (Hofmann (2005)). However, it is

possible to study the process of calibration using synthetic trajectories. The main idea

is to generate trajectories with Nomad and use the known parameters as the optimal

values to be retrieved.

Synthetic trajectories allow the comparison of the calibration results with the optimal

parameters that created the trajectories. In this chapter we create trajectories that rep-

resent the most common walking situations to investigate factors that affect the process

of calibration.

The aim is to gain insights on the calibration process and to investigate the impact of

using multi-scenarios in the accuracy of the calibrations and the significance of the

calibrated parameters. We present the aims in form of research questions in section

5.1.

The calibrations use a trajectory based calibration in accordance with the methodology

presented in chapter 4 that optimise the parameters corresponding to the behaviours of

individual pedestrians. The trajectories represent bidirectional, crossing and unidirec-

tional congested flows. The set-up of the experiments is presented in section 5.2.

The factors that affect the accuracy of calibrations are discussed in section 5.3. Section

5.4 shows how the use of multi-scenarios improves the significance of the calibrated

parameters maintaining a good level of accuracy.

Section 5.5 finishes the chapter with a discussion on the benefits of using multi-scenarios

to improve the significance and accuracy of the calibrations. The investigations con-

cluded that multi-scenarios are effective in overcoming the problem of ‘poorness of

data’ (lack of information about the behaviour in the reference data) proving the use-

fulness of the proposed calibration methodology.

97
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5.1 Calibration investigation research questions

The fundamental question of calibration can be summarised as: how to improve the

probability that a calibration is finding optimal parameters that are statistically signi-

ficant? We break this question in two parts and the first investigates the factors affecting

the accuracy of the calibration procedure and the second how to improve the accuracy

and the significance of the parameters by using more than one set of reference data in

the calibration.

The calibration of models simulating complex processes is not expected to be perfect

because of the non-linear result space (Hofmann (2005)). Given that different flows

such as bidirectional, crossing and unidirectional submit pedestrians to different situ-

ations, we suppose that the optimal parameter values will be different. The question is

how can we know if the optimisation algorithm is correctly estimating the optimal val-

ues for each of them if they are different and cannot be compared. Therefore, we need

to know: What are the factors that affect how close the estimated parameter values are

to their true optimal values?

Supposing that the calibration procedure is not finding correct parameters for single-

scenarios, we can test the hypothesis that combining reference data from different flows

provides more information about pedestrian behaviours, thus improving the accuracy

and the significance of the parameters. However, the different flows will contain differ-

ent levels of information about specific behaviours and pairing them in multi-scenario

calibrations is no guarantee that the reference data that is ‘rich’ will prevail over the

one that is ‘poor’ in behaviour information and deliver good results. Therefore, to what

extent the accuracy and the significance of the parameters are affected by combining

scenarios with different levels of ‘poorness’ of data?

5.2 Experimental set-up

The questions formulated in the previous section concern the calibration procedure

and the use of multi-scenarios to improve the quality of the calibrations. Therefore,

we need to know what are the values of the optimal parameters. The only way to

know with certainty is to create the reference data with simulations and compare the

calibrations with a ground truth (Ossen (2008)).

We are also interested in investigating the questions in conditions that are similar to

those found in real situations with heterogeneous populations. Therefore, we need to

be able to estimate parameters for individual pedestrians. A trajectory based procedure

that estimates parameters of single pedestrians is presented in section 5.2.1. The es-

timated parameter set is compared with the original parameter set (the correct optimal)

that generated the reference trajectory.
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Three reference sets were created namely one with identical parameters for all ped-

estrians that we call clean, a set called heterogeneous formed by normally distrib-

uted parameters creating heterogeneity, and the noisy that has distributed parameters

and a stochastic noise added to their states. We estimate the amount of heterogeneity

from previous calibrations of Nomad using trajectory data from real experiments. The

stochastic noise stands for tracking errors usually encountered in empirical data. The

inclusion of both should create conditions close to calibrations using empirical data.

It is expected that the heterogeneity and the noise complicate the calibration by in-

creasing the complexity of the search space. The heterogeneous set was created to

compare the influence of heterogeneity and tracking noise in the calibration accuracy.

The clean set allows for the investigation of other causes of loss of accuracy.

The trajectories are composed by three flow configurations namely a unidirectional

congested flow with a narrow bottleneck (bneck), a bidirectional corridor (bidi) and

90◦ crossing flows (cross). These configurations represent the most common traffic

situations occurring between pedestrians and obstacles creating a large amount of be-

haviours that need to be properly predicted by walker models. In these configurations,

pedestrians need to avoid oncoming pedestrians, follow or overtake leading pedestri-

ans, interact with pedestrians coming from the sides and deal with conflicts due to

congestion near bottlenecks.

Two types of multi-scenarios are used to investigate their impact on accuracy and the

level of significance of the calibrations by reducing the effect of poorness of data. The

first is composed by the trajectories of the three flows. The second type uses ten differ-

ent individuals from the bidirectional flow. The bidirectional flow was chosen because

it presented the most accurate single scenario calibrations and therefore, minimises

errors arising from the other factors that reduce the accuracy of the calibrations.

We visualise these calibrations by imagining three (or ten) scenarios from figure 4.1

generating errors from their objective-functions. Each scenario has a randomly chosen

pedestrian to be calibrated. This creates a high probability that each will have different

parameters for the heterogeneous and noise sets. The different parameters make it

impossible to compare the calibrations with a single correct parameter. To overcome

this, we compare the calibrations to the means of the parameter distributions.

Creating different multi-scenario calibrations allow to compare two approaches to

overcome poorness of data. Using three different flows necessarily result in the op-

timisation algorithm finding optimal solutions for different walking situations. By

taking 10 trajectories from the same flow we increase the probability to submit similar

situations to the optimisation problem.

5.2.1 Trajectory based calibration

We explained earlier that we need a calibration procedure that allow us to obtain in-

dividual parameters. We found similar frameworks that calibrate traffic models with
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single trajectories Hoogendoorn et al. (2005), Ossen and Hoogendoorn (2008) and Jo-

hansson et al. (2007). Although they share similarities, the former is more flexible

because it uses a log-likelihood objective function that easily allows for multi-scenario

calibrations. Furthermore, the log-likelihood has been used with good results for both

for walker (Hoogendoorn and Daamen (2010)) and for car driver models (Hoogen-

doorn and Hoogendoorn (2010)). In the following sub-sections we will recall and

describe the parts of the framework that are used in this and in the following chapters.

For more details we refer to the original references.

The calibration is performed by selecting one trajectory from the set X of trajectories

and use it to calculate the likelihood that Nomad can predict the dynamic states of

this pedestrian along his or her trajectory. The state of the other pedestrians match

the reference trajectories. By doing so we make sure that we estimate the parameters

that best represent the walking behaviour of this single pedestrian during the whole

trajectory while the external conditions correspond to the reference data.

A potential problem of such procedures is the effect of autocorrelation in the errors

resulting in non-optimal parameters. Autocorrelated or serially correlated errors occur

when the prediction errors by the model and the reference system at subsequent time

steps of the simulation are not independent from each other (Hoogendoorn and Ossen

(2006)). In these cases the errors are not distributed around zero but around a base

value. Autocorrelation can also be introduced by a treatment of the reference data such

as smoothing or any other type of interpolation.

Another type of auto-correlation arises from the propagation of one error in a sim-

ulation time step to the next. For instance, when a pedestrian interacts with other

pedestrians during his or her trajectory. At the moment that a simulated pedestrian is

not in the exact position of the real pedestrian then he or she is perceiving a different

traffic situation and this may cause an additional prediction error. This error is not in-

dependent of the previous error and the longer the trajectory of a pedestrian the higher

is the probability of autocorrelation.

This type of autocorrelation can be diminished or even prevented by putting the state

variables back at the values of the reference data at regular instants (reset-times). That

is, correcting the state of the pedestrian after he or she walked the equivalent of the

reset-step and the error was measured. The smaller the reset-step, the smaller is the

chance this type autocorrelation can occur. If the reset-time is equivalent of the simu-

lation time-step, it is eliminated.

Hoogendoorn and Hoogendoorn (2010) show that it is possible to determine the level

of autocorrelation and that the framework described in the next sections allows the

calibration using likelihood functions for the estimation of parameters even with cor-

related errors.
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Maximum likelihood mapping for single trajectories

To estimate the set of parameters θp for a single pedestrian p we use a microscopic

mapping Y that reflects the pedestrian behaviour. The most common is one of the

dynamic state variables: position~rp, velocity~vp or acceleration~ap but any microscopic

mapping or a combination of mappings can be used as well. The difference between

the mappings at time tk subject to parameter set θ is expressed by:

ε(tk | θp) =
∥

∥

∥
Y re f (tk)−Y (tk | θp)

∥

∥

∥
(5.1)

If we assume that the model predictions ε(tk | θp) of the mappings are independent and

normally distributed N (0,σ2) we can obtain the probability pk of the calibration error

at time tk from the probability density f (ε) of the normal distribution:

pk(θp,σp) =
1

σp

√
2π

exp

(

−ε2(tk | θp)

2σ2
p

)

(5.2)

A common definition of a likelihood function L combines all n time instances observed

for pedestrian p:

L(θp,σp) = p(ε(t1 | θp), . . . ,ε(tn | θp)) =
n

∏
k=1

pk(θp,σp) (5.3)

The log-likelihood is then:

L̃(θp,σp) =−n

2
ln(2πσ2

p)−
1

2σ2
p

n

∑
k=1

ε2(tk | θp) (5.4)

The parameter calibration equation defined in (4.3) can be expressed in terms of the

log-likelihood:

θ∗ = arg max L̃ (θ) (5.5)

By applying the optimality condition in the log-likelihood we obtain the Maximum-

Likelihood-Estimate (MLE) condition:

∂L̃

∂σ2
p

= 0 ⇒ σ̂2
p =

1

n

n

∑
k=1

ε2(tk | θp) (5.6)

Substituting (5.6) in (5.4) we are able to write the MLE only as a function of the errors

(5.7).
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L̃(θp,σp) =−n

2
ln

(

2π

n

n

∑
k=1

ε(tk | θp)
2

)

− n

2
(5.7)

The maximum value of the MLE can then be found by determining θp that maximises

its value by means of a numerical optimisation.

We used the acceleration as calculated by the equation (3.9) for the mapping of the

trajectories. We did preliminary calibrations comparing the accuracy of the position

and the velocity mappings and observed that the acceleration gave the best results

(Campanella et al. (2010)). We suspect that because the simulation model calculates

directly the acceleration it generates smaller numerical errors.

Multi-objective

If we combine S different scenarios s in the likelihood function we need to assume that

the pedestrians ps chosen to be calibrated have the same parameter set θ. In this case

we can modify equation (5.3) by substituting the individual parameters θp in equation

(5.3) by θ and combining them in a multiple likelihood function:

Lmulti(θ) =
S

∏
s=1

Li(θ) (5.8)

The resulting θ is not optimal for an individual but reflects an average behaviour of the

chosen individuals of the S different scenarios.

Parameter significance

After calibrating a parameter θ∗i we need to know if its influence on predicting pedes-

trian behaviours is significant and therefore the parameter is ‘useful’. The task is to

show that the model outcomes (in our case the log-likelihoods) are varying signific-

antly around the estimated parameter value (other parameters are kept fixed). Below

we describe the statistical method that decides if the influence of the estimated para-

meter is statistically different from the outcomes of the ‘zero’ parameter θ∗i = 0 that is

equivalent to removing the parameter from the model.

Ben-Akiva and Lerman (1985) proposes a test that calculates the range in which a

parameter is considered significantly different from any value of interest θtest with a

desired probability. The test assumes that the distribution of the outcomes θ̂i of this

parameter around the optimal value θ∗i is normally distributed with mean µ = θ∗i and

variance σ2
i . The test states that:

H0: θ∗i = θtest

H1: θ∗i 6= θtest
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Where, H0 is the null hypothesis and H1 is the alternate. If we do not reject H0 then

θ∗i is not significantly different from θtest (in our case θtest = 0).

To simplify we translate the parameter value according to:

Z =
θ∗i −θtest

σi
(5.9)

The variable Z is then normally distributed with N (0,1) (standard normal distribution)

and the condition to confirm the null hypothesis for a 5% level of significance becomes:

c0.025 =−1.96 and c0.975 = 1.96 for Pr = 0.95.

Substituting θtest = 0 we can reject the null hypothesis for
θ∗i −0

σi
if:

∣

∣

∣

∣

θ∗i
σi

∣

∣

∣

∣

≥ 1.96 (5.10)

To apply equation (5.10) we need to find σi. Hoogendoorn et al. (2005) indicate that

for likelihood objective functions the Cramer-Rao lower bound can be used to estimate

the variance of the parameters (5.11):

σ2
i ≥−E(∇2L∗

i ) (5.11)

However, calculating analytically the matrix with the partial derivatives is often not

possible, because walker models are too complex to permit an analytical derivation of

the partial derivatives.

This matrix can be approximated by a sensitivity analysis around the values of θ∗

maintaining the other parameters constant at their optimal values and calculating the

approximated second derivative of the objective-function at θ∗i (Ossen (2008)):

σ2 =−
(

∂2L

∂θ2
i

)
∣

∣

∣

∣

θ∗i =θ∗
(5.12)

After estimating the variance, the significance test can be applied by introducing the

variance into equation (5.10). If the test is satisfied the parameter θ∗ is significant

otherwise, we are unsure about its value.

5.2.2 Calibrated parameters

Nomad has many parameters and all contribute to the predictions of the estimated

states. However, four parameters display a much larger influence to the estimated

states. The interaction strength (a0) and interaction distance (r0) are directly respons-

ible for the interaction between pedestrians, the acceleration time (τ) controls the
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intensity that pedestrians try to walk along their intended path and the obstacle in-

teraction strength that affects the interaction between pedestrians and obstacles (aW).

Chapter 3.2 details these parameters in Nomad.

The heterogeneity was introduced in three of the calibrated parameters: a0, r0 and

τ. The aW was not varied due to a lack of evidence of how much it varies in the

pedestrian population. The free-speed v0 and the pedestrian radius rad were also varied

as they are two of the most important input parameters of walker models and they have

been widely documented giving a good empirical estimation of their distributions. The

heterogeneity of all five parameters is created with normal distributions N (µsy,σsy)

and are referred in the following sections as distributed parameters.

The noise is inserted at each time step of the simulation by a normally distributed

variable added to the acceleration ~a presented in equation (3.4) resulting in~anoise:

~anoise =~a+N (0,φ2) (5.13)

Table 5.1 shows the means and standard deviations of the six parameters of interest

and the noise in the investigations. The rest of the parameters necessary to run the

Nomad model were kept fixed and equal through all the calibrations. Their values

resulted from previous calibration of the Nomad model. We also added the coefficient

of variation (cv = σ/µ) to give an idea of the dispersion of the distributions.

Table 5.1: Distribution means and deviations for the parameters that produced

heterogeneity or were estimated.

parameters mean deviation coef. variation

µsy σsy σsy/µsy

a0 10.0 0.7 0.07

r0 0.16 0.02 0.13

τ 0.25 0.03 0.13

v0 1.45 0.20 0.14

rad 0.22 0.02 0.09

φ 0 0.001 -

aW 20.0 - -

5.2.3 Synthetic trajectories

The reference data are composed of three sets of synthetic trajectories created by the

Nomad model. The heterogeneity was created with normal distributions shown in table

5.1. Table 5.2 shows their heterogeneity and noise composition.
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Table 5.2: Heterogeneous parameters and input errors for the reference sets.

heterogeneity noise

clean

heter a0, r0, τ, v0, rad

noisy a0, r0, τ, v0, rad φ

5.2.4 Number of calibration runs

The analysis of the mean calibrated parameter values for the distributed parameters

should not be affected by statistical errors due to insufficient sample size. A too small

sample, may result in values outside of the desired accuracy due to large stochastic

variations. While in reality, if enough calibrations would have been performed, the

sample average could have fallen within the accuracy boundary. Therefore we de-

termine for each distributed parameter the minimum sample size that guarantees an

accuracy of 5% of the mean parameter value θ
sy

.

To determine the amount of calibrations necessary of the distributed parameters we

apply a dependent t-test for paired samples with 95 % confidence. The samples are

generated with N (θ
sy
,σsy) for the three distributed parameters until the sample size

consistently gives the desired accuracy. The following calculations show that samples

with 25 individuals are sufficient:

n ≥
(zσp

d

)2
(5.14)

where:

n is the number of runs needed to obtain the sample accuracy

z is the confidence multiplier (1.96 for 95% confidence for the two tailed distribution)

σp is the standard deviation of the sample test (table 5.1)

d is the desired accuracy of the sample (5% of the mean parameter value θ
sy

(table

5.1))

na0
=

(

1.96∗0.7

0.5

)2

= 8 nr0
=

(

1.96∗0.02

0.008

)2

= 24

nτ =

(

1.96∗0.032

0.0125

)2

= 25 nv0
=

(

1.96∗0.17

0.0725

)2

= 21

nrad =

(

1.96∗0.02

0.011

)2

= 13
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5.2.5 Flow configurations

Figure 5.1 shows the scheme of the three flows: the bidirectional (bidi), the narrow

bottleneck (bneck) and the crossing flows (cross). The dimensions of the walking

areas are: 10m×4m for the bidirectional flow, 10m×4m narrow bottleneck flow with

a corridor of 1m at x = 6m and 8m× 8m for the crossing flow. These dimensions

were chosen to match the walking experiments realised in Daamen and Hoogendoorn

(2003). The experiments were designed to present representative walking behaviours

and their trajectories will be used in the calibrations performed in chapter 6.

Figure 5.1: The three experimental set-ups (from left to right): the bidirectional

flow, the narrow bottleneck and the crossing flows. The arrows represent the

direction of the flows with the percentage of the demands on the flows and the

dotted lines the origins of the flows.

The input flows were created in a stepwise ascending manner to assure that both free

flow and congestion could occur in all flow configurations and that the densities could

reach approximately 2 peds/m2. Figure 5.2 shows the graph with the demands per

simulation period for the bidirectional flow. The demand value is multiplied by the

percentages shown in figure 5.1 to obtain the amount of pedestrians that is generated

in each origin (represented by the dotted lines on figure 5.1).
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Figure 5.2: The stepwise inflow demands for the bidirectional flow.

The total time of the input flows is 60 seconds for all experiments to allow enough time

for interactions between pedestrians but not extend too much the computational time

of the calibrations. The total amount of pedestrians that walk in the simulations are

respectively, 173 for the narrow bottleneck corridor, 200 for the crossing flow and 236

for the bidirectional corridor.
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5.2.6 Indicators

In this section we present the two indicators used in this chapter the accuracy indicator

that calculates relative errors of the calibrated parameters and a local density indicator.

Accuracy indicator

The results are analysed using the absolute values of the relative errors (ε) of the cal-

ibrated parameters:

ε(θ∗i ) =
‖θ

sy
i −θ∗i ‖
θ

sy
i

(5.15)

where:

θ
sy
i is the correct value used in the simulation that created the trajectories.

θ∗i is the calibrated parameter.

The parameters calibrated for the noisy trajectories for the multi-scenario calibrations

can not be subtracted from the correct parameters. The scenarios chose randomly the

pedestrians from the flows and they likely present different parameter values. There-

fore, for the analysis of the multi-scenario calibrations we use the mean values of the

normal distributions to calculate ε:

ε(θ∗i ) =
‖µ

sy
i −θ∗i ‖
µ

sy
i

(5.16)

where:

µ
sy
i is the mean of the parameter distribution θi ∼ N (µsy,σsy).

θ∗i is the calibrated parameter with the multi-scenario.

Density indicator

In this chapter we are interested in calculating the local densities as a way to assess the

local conditions experienced by each individual. Given that the walking areas of the

different types of flows are relatively small, the usual grid based density calculation

produces non smooth results (Edie (1963)). Therefore, we use the definition of local

density proposed by Helbing et al. (2007) and shown in equation (5.17). This density

calculates how much of a pedestrian should be included to the occupation of a circu-

lar area around a location. This ocupation varies between 0 and 1 depending to the

distance to the location. Duives et al. (2015) call it Exponentially Weighted Distance

(EWD) and showed that it is accurate producing smooth values for local densities.

k(~r, t) =
1

πR2 ∑
j

exp
[

−|~r j(t)−~r|2/R2
]

(5.17)
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where:

R is the radius around the location We adopted R = 1m as recommended by Helbing

et al. (2007) to emphasise the local range.

j are all pedestrian within the circle with radius R.

The exponential factor exp
[

−|~r j(t)−~r|2/R2
]

determines the extent of occupation of

pedestrian j into the density k in (ped/m2) in location~r.

5.2.7 Simulation set-up

The numerical set-up of the simulations was the same for all flows. We used a simu-

lation time-step ∆T = 0.02s. These values have proven to simulate stable trajectories

and do not demand too much computational power. The reset-step used is the smallest

possible i.e. the simulation time-step.

5.2.8 Optimisation algorithm

The calibration of complex non-linear models such as the Nomad model requires an

optimisation algorithm that does not get trapped in local minima solutions. Also the

algorithm must be able to find a solution in reasonable computational time given the

intention of performing several calibrations.

A genetic algorithm (GA) was chosen due to its simplicity and excellent qualities in

dealing with non-linear models. The disadvantage of GA’s is their relatively high de-

mand of computational power. Tests with the Nomad model indicated that the GA

could consistently find the correct parameter values. To improve the performance we

used a hybrid optimisation procedure combining a GA and a Simplex optimiser. The

Simplex is a much faster optimisation algorithm that works well in finding local min-

ima. The idea of combining both algorithms is to apply the GA in the first part of

the optimisation until the best candidate of the GA population is close enough to the

stopping condition. The best candidate is sent to the Simplex optimiser and the op-

timal parameter set θ∗ is found. This hybrid procedure improved the computational

performance by often taking less than 50% of the time when compared with the pure

GA with similar results.

5.3 Investigating the calibration accuracy

In this section we investigate the factors that affect the calibration accuracy by com-

paring the results of the calibrations of the three experiments using the single-scenario.

Figure 5.3 shows the box-plots with the results of 25 calibrations for each type of flow

for two sets of synthetic trajectories (clean and noisy).
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Figure 5.3: Estimation errors for all clean and noisy single-scenario calibrations.

The left column for the clean trajectories shows that both bidirectional and crossing

flows present very accurate calibrations for the three parameters a0, r0 and τ. The

average results are close to the correct value and their distribution is very small. How-

ever, the narrow bottleneck simulation presents significantly worse results with larger

calibration errors shown in table 5.3. What is not visible in the figure is that for the

narrow bottleneck less parameters are significant.

We can point to two causes for these differences in the clean set for the parameters
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a0, r0 and τ, namely poorness of data due to insufficient interactions and complex

movements in the area around the entrance of the corridor.

Table 5.3: The average relative errors ε for the three parameters a0, r0 and τ.

The results include only the significant calibrations. The values below are the

percentages of significant calibrations from the total.

flows

bidirectional crossing narrow

a0 r0 τ a0 r0 τ a0 r0 τ

clean
ε 0.02 0.01 0.01 0.02 0.01 0.01 0.11 0.10 0.20

(% sig.) (100) (100) (100) (100) (100) (100) (96) (96) (96)

heter
ε 0.01 0.01 0.01 0.02 0.01 0.02 0.11 0.14 0.25

(% sig.) (100) (100) (100) (100) (100) (100) (100) (100) (100)

noisy
ε 0.16 0.06 0.20 0.18 0.06 0.20 0.21 0.08 0.35

(% sig.) (100) (100) (100) (100) (100) (100) (92) (96) (92)

The third cause of loss of accuracy is the introduction of noise visible on the right

column (figure 5.3(b)). Table 5.3 shows that the noise affected negatively the calibra-

tion of all parameters from all flows. The table also shows that heterogeneity had no

significant impact in the calibrations and will not be discussed further.

The discussion about the aW results is restricted to the narrow bottleneck trajectory,

that is the only simulation that generates enough interactions between pedestrians and

obstacles. This can be seen by the very low percentages of significant calibrations for

the bidirectional and crossing flows in table 5.4. The table also shows that the accuracy

of the aW calibrations is the wort of all parameters.

Table 5.4: The average relative errors ε for the aW parameter. The values in

brackets include only the significant calibrations. The values below are the per-

centages of significant calibrations.

aW (significant)

bidirectional crossing narrow

clean
ε 0.73 (0.05) 0.83 (0.32) 0.24 (0.12)

(% sig.) (20) (4) (84)

noisy
ε 0.71 (0.18) 0.88 (0.35) 0.41 (0.26)

(% sig.) (28) (4) (80)

In the next sections we will discuss separately the influence of the three factors of

loss of accuracy for all four parameters. For the first two factors, poorness of data

and complexity of movement, we used the clean trajectories. We proceed with the

influence of noise comparing the results of the clean and the noisy trajectories.
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5.3.1 Poorness of data

The largest errors for the three flows resulted from trajectories with extreme poorness

of data due to very little interactions with other pedestrians. Figure 5.4 shows the

trajectory for the narrow bottleneck flow of a pedestrian walking alone in the beginning

of the narrow flow simulation.
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Figure 5.4: A trajectory (walking from the right to the left) and the accelerations

for a pedestrian walking alone in the narrow bottleneck simulation. The error ε

is the sum of the errors from parameters a0, r0 and τ.

The trajectory presents no accelerations due to the absence of other pedestrians and

the coincidence that the trajectory was aligned with the middle of the corridor. In this

situation almost any value of the parameters will keep the pedestrian following the

desired trajectory. The resulting calibration errors are at least 10 times higher than for

other trajectories. By being such a special case with very large outlier values it is the

only calibration that was taken out from the average results presented in table 5.3.

The main reason why the narrow bottleneck is more affected by the poorness of data

is that pedestrians have less possibility to interact inside the corridor that takes half

the length of the trajectory. Also it is only possible to interact with slower pedestri-

ans in front. Therefore, in general the narrow bottleneck presents less probability of

interactions in low flows. Figure 5.5 shows that even the worse calibration for the

bidirectional flow presented some interactions.

Similarly, the non-significant calibrations for the the aW parameter for the narrow bot-

tleneck occurred for pedestrians walking alone in the corridor. These pedestrians did

not interact with the walls and walked straight and further than the shy-away distance

(the relatively constant distance from the walls in section 2.3.4). Therefore, they did

not apply the interaction behaviour with walls. This can be seen in the trajectory

presented in figure 5.4. Removing the results without interactions with walls improve

the calibration results significantly (inside brackets in table 5.4).
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Figure 5.5: A trajectory (walking from the left to the right) and the accelerations

for a pedestrian walking practically alone in the bidirectional simulation. The

error ε is the sum of the errors from parameters a0, r0 and τ.

These results show that poorness of data is a strong factor in the loss of accuracy

and that it may cause calibration errors that may not be accounted when using real

trajectories.

5.3.2 Complexity of movement

For situations with larger flows, the narrow bottleneck simulation presents a more com-

plex behaviour due to the strong interactions in the area upstream of the bottleneck.

The trajectories tend to be less smooth than the normal walking that occurs in the bid-

irectional and crossing flows. A small change of one of the parameters such as τ that

strongly affects the longitudinal acceleration (in this chapter called ax) can be enough

for the pedestrian to advance or not into the corridor.

The same applies to the interaction parameters (a0 and r0) when pedestrians from the

back part of the influence area may push the pedestrian into the corridor. Figure 5.6 il-

lustrates this situation for the simulation and for the experiments where two pedestrians

a and b are interacting strongly.

The complexity is further enhanced by the fact that pedestrian behaviours are also

determined by the aW parameter that controls the interaction with obstacles. This is

certainly true for pedestrian p1 in figure 5.6(a) that is bordering the corridor wall and

also has a strong push from this proximity.

It is not easy to quantify the complexity of movements. We can identify its effects

using two indicators: walking time and the walking accelerations. The walking time is

a measure of congestion and time spent while manoeuvring in crowded situations (in

the clean trajectories all pedestrians have the same free-speed). A long walking time
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funnel

(a)

funnel

(b)

Figure 5.6: A snapshot of the narrow bottleneck simulation with two pedestrians

interacting in the entrance of the corridor for a simulation and for the experi-

ments when the congestion sets in (from Daamen et al. (2005b)).

indicates more interactions and a likely increase of complexity of interactions. The

acceleration a directly represents the disturbances in the trajectory and the larger its

absolute mean value the more disturbances a pedestrian encountered in its trajectory.

Figure 5.7 shows plots with these indicators on the axis for the three flows. We used the

calibration errors to paint the dots. Large errors are painted with bright colours. The

scales of the axis and the colour-bar were chosen to improve the visibility by enhancing

the variations.

The diagonal shape of the plots indicates that the average acceleration and the walk-

ing time have a positive correlation. Larger walking times reflect more manoeuvres

causing larger accelerations.

We distinguish three regions in the plots. The first region is the lower left with low

acceleration and short walking time. These calibrations presented large errors due to

poorness of data mentioned earlier for the three flows. The narrow bottleneck plot

reveals the extreme case represented by pedestrian with id:0.

In the second region above a ≥ 0.5m/s2, the errors start to decrease. For the bidirec-

tional and crossing flows the dots get darker until a third region where the errors are

close to zero. This increase in accuracy reflects the increase of traffic, thus increase of

interactions. For these two flows the errors stay low indicating trajectories with plenty

of room for manoeuvres that even with an increase of accelerations, stay relatively

smooth. These situations are favourable for accurate calibrations.

Figure 5.8 shows the trajectory for the pedestrian with the largest acceleration and

one of the largest walking times in the bidirectional flow. It is interesting that this

pedestrian generated a perfect calibration with ε= 0.0.

The narrow bottleneck presents a different situation. When the congestion sets in, some

pedestrians present complex movements around the entrance of the corridor sharply

decreasing the accuracy. These pedestrians are not able to enter the funnel created in

front of the corridor entrance (figure 5.6) until they reach the walls around the corridor.
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Figure 5.7: The average of the absolute values of the acceleration against the

walking time for the clean trajectories. The colour represents the sum of the

errors from parameters a0, r0 and τ. We enlarged the ids of pedestrians that have

their trajectories plotted in separate figures.

They struggle for a long time to force themselves into the congested flow creating

movements with sharp directional changes and large accelerations (a ≥ 3.0m/s2 and

walking times ≥ 20s). The trajectory shown in figure 5.9 illustrates these cases.

Figure 5.10 shows the average local densities experienced by the pedestrians during

their whole trajectory. For the narrow simulation we limited to a the region at 2m from

the entrance. This eliminates the corridor and enhances the effects of congestion.

We plotted the average local densities to illustrate the two situations occurring in the

narrow bottleneck. The first situation is the situation described previously in which

pedestrians walk around the funnel because they entered at positions outside it. They

experience lower densities but their situations results in long walking times and inac-

curate calibrations due to the complex movements around the corridor entrance. The

trend 2 line in the narrow bottleneck plot in figure 5.10 represents these cases.

These sharp manoeuvres can be approximated by different values of the parameters

of Nomad. This makes the calibration process end in local optima decreasing the

calibration accuracy for the narrow bottleneck.

The second situation is similar to what we described for the bidirectional and crossing
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Figure 5.8: A trajectory (walking from the left to the right) and the accelera-

tions for the pedestrian that applied the highest accelerations and spent one of

the longest walking times in the bidirectional simulation. The error ε is the sum

of the errors from parameters a0, r0 and τ.
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Figure 5.9: A trajectory (walking from the right to the left) and the local density

for the pedestrian that encountered one of the highest local densities near the

corridor entrance and moderate walking times in the narrow simulation. The

error ε is the sum of the errors from parameters a0, r0 and τ.

flows. Pedestrians walk in relatively smooth trajectories even with greater densities.

The accuracy improves due to the increase of interactions. This can be seen in the

plots of the bidirectional and crossing flows in figure 5.10 and in the trend 1 line in the

narrow bottleneck flow.

Above ≥ 2ped/m2 trend 1 represents the pedestrians walking inside the congested

funnel. These pedestrians experience large densities but their movements are smooth
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Figure 5.10: The average of the local density against the walking time for the clean

trajectories. The colour represents the sum of the error values from parameters

a0, r0 and τ. For the narrow trajectories the density is limited to the region at two

meters distance from the corridor entrance. The numbers near the dots are the

ids of the pedestrians.

allowing accurate calibrations. To illustrate this, we plot the trajectory of the pedes-

trian with id = 139 that encountered one of the largest densities as we can see in figure

5.10 (walking time = 17s and density = 2.2ped/m2). Figure 5.11 shows that the ped-

estrian is well positioned in relation to the entrance of the corridor and presented good

calibration results.

The situation of the aW parameter is distinct from the other parameters because its ac-

curacy depends mainly on lateral accelerations inside the corridor that create interac-

tions with the corridor walls. This can be seen in figure 5.12 where lateral accelerations

ay ≥ 0.3m/s2 have higher accuracy.

Two pedestrians with id:8 and 10 in figure 5.12 display enough lateral accelerations to

deliver good calibrations even with low densities inside the corridor. These occurred

because they entered the corridor in a oblique path that leads to short distances to the

wall creating interactions.
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corridor entrance and moderate walking times in the narrow simulation. The

error ε is the sum of the errors from parameters a0, r0 and τ.
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Figure 5.12: The average of the local density against the lateral acceleration inside

the corridor of the narrow bottleneck flow with clean trajectories. The colour

represents the error values from parameter aW.

5.3.3 Effects of heterogeneity and noise in the calibration

As expected, the introduction of noise decreases the accuracy of the calibrations for all

parameters. This is clearly seen in the figure 5.3(b). Table 5.3 shows that heterogeneity

has little influence on the accuracy and we will not discuss the heterogeneity separately

any further.

Table 5.3 shows that the narrow bottleneck flow still presents the worst accuracy with

noise for the three interaction parameters. However, the introduction of noise has a

large negative effect in the accuracy of all parameters and all flows diminishing the

differences between the different flows.
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Figure 5.13: The average of the local density against the walking time for the noisy

trajectories. The colour represents the sum of the error values from parameters

a0, r0 and τ. For the narrow trajectories the density is limited to the region at two

meters distance from the corridor entrance.

Contrary to the clean sets, the primary effect of noise is to create a loss of accuracy

with increase of density. This derives from the fact that the negative effect of the

noise at every trajectory step is proportional to the amount of steps with interactions

and the increase of density increases the number of interactions. This can be seen

in figure 5.13 that presents the same density plot as figure 5.10 but without the well

defined regions with high accuracy. On the contrary the region with high density has

inaccurate calibrations reflecting the negative effect of the noise at each time-step.

Figure 5.3(b) shows how the optimisation process is affected by the noise in the traject-

ories. The optimisation algorithm compensates the difficulties in finding the optimal

values by estimating larger values of τ and smaller values of a0. This tendency cre-

ates pedestrians that are more manoeuvrable and walk closer (see discussion in section

3.2.5). This finding can be used to restrict the lower and upper boundaries of these two

parameters during calibrations with prior-information.

The calibration of aW is also significantly affected by the noise. Table 5.4 shows that

the introduction of noise increased the calibration errorsr. Also for the noisy set the

poorness of data remained the largest cause of inaccurate aW calibrations.

For all parameters, the significance was not very affected by the noise showing that the
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poorness of data is the largest cause for loss of significance in the calibrations.

5.3.4 Conclusion

The use of the different sets allowed us answering the first research question by identi-

fying and discussing three factors that affected the accuracy of the calibrations, poor-

ness of data about pedestrian behaviours, the complexity of movements when pedes-

trians forced their way inside a congested flow near a bottleneck and errors caused by

tracking noise. Each of the factors affect the accuracy in different ways and intensity.

The noise has the largest impact resulting in differences between the clean and noisy

errors of ∼ 15% for all flows indicating that care must be taken when tracking and

smoothing pedestrian trajectories. More importantly the noise did not affect the amount

of significant calibrations.

The poorness of data also has a large impact but its effect can be easily avoided by

identifying parameters that originated from trajectories with very small accelerations.

Its main contribution is in reducing the amount of significant calibrations.

The most difficult factor to avoid is what we call complexity of movements. These ac-

counted for ∼ 10−20% of the errors for the clean narrow bottleneck. When inspecting

the trajectories for the bidirectional and the crossing flows we could observe some in-

stances in which pedestrians would also apply sharp changes in direction. However,

these did not affect the accuracy significantly because the rest of the trajectories were

smooth. This indicates the difficulty in identifying the effect of complex manoeuvres.

5.4 Multi-scenario calibrations

The multi-scenario calibrations followed the procedure presented in section 5.2.1. The

log-likelihoods of the three flows (called multi-3-flows in the remainder) or ten tra-

jectories (multi-10-bidi) were added and used by the optimisation algorithm. The res-

ults for the clean trajectories in figure 5.14(a) and in table 5.5 shows that the multi-

scenarios presented the same excellent results for the parameters a0, r0 and τ as for the

single objective bidirectional and crossing flows.

Pairing 10 trajectories in multi-10-bidi with the same optimal parameters (clean tra-

jectories) produced better results than for the three trajectories of the multi-3-flows. 10

trajectories produced by the same parameter sets presents a large amount of informa-

tion to the optimisation algorithm increasing the chance to reach optimal results.

The multi-3-set presented good results for a0, r0 and τ as well, indicating that the

problems of poorness of data and complexity of movements presented by the calib-

rations with the narrow trajectories are overcome with the multi-3-flows and that the
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Figure 5.14: Estimation errors for all clean and noisy multi-scenario calibrations.

Table 5.5: The average relative errors ε for the multi-scenario calibrations using

the mean of the original parameter distributions. The values in brackets include

only the significant calibrations. The values below are the percentages of signific-

ant calibrations from the total.

multi-3-flows multi-10-bidi

a0 r0 τ a0 r0 τ

clean
ε 0.01 0.00 0.01 0.00 0.00 0.00

(% sig.) (100) (100) (100) (100) (100) (100)

noisy
ε 0.16 0.12 0.31 0.23 0.06 0.47

(% sig.) (100) (100) (100) (100) (100) (100)

optimisation algorithm can correctly find the parameter values of a0, r0 and τ for both

multi-scenarios.

The aW parameter was more affected by poorness of data for the multi-3-flows. Table

5.6 shows that the results with the clean set of the multi-scenarios is worse than those

for the narrow bottleneck flow. Differently, the multi-10-bidi resulted in much better

accuracy and amount of significant calibrations than both the narrow bottleneck flow

and the multi-3-flows.



Chapter 5. Investigating factors that affect calibration of walker models 121

Table 5.6: The average relative errors ε and standard deviations for the aW para-

meter. The values in brackets include only the significant calibrations. The values

below are the percentages of significant calibrations.

aW (significant)

narrow multi-3-flows multi-10-bidi

clean
ε 0.24 (0.12) 0.36 (0.19) 0.05 (0.05)

(% sig.) (84) (80) (100)

noisy
ε 0.41 (0.26) 0.23 (0.17) 0.25 (0.23)

(% sig.) (80) (92) (96)

The fact that only one of the three flows provided information about obstacle interac-

tion created more difficulties for the calibration procedure. The decrease in accuracy

for aW with the clean for the multi-3-flow set can also be attributed to a larger amount

of trajectories without many lateral accelerations in the corridor than with those used

in the single-scenario narrow bottleneck calibrations (not shown). An indication of this

larger poorness of data is the lower amount of significant multi-scenario calibrations.

The multi-10-bidi produced very good results for aW because the groups of 10 tra-

jectories presented on average 3 trajectories with pedestrians walking close to the lat-

eral walls. These 3 trajectories contained enough information for the optimisation

algorithm to find the optimal value of aW.

The next section presents the analysis of the effect of noise in the multi-scenario cal-

ibrations and compare with the single scenario calibrations. After that we discuss the

effect of the three flows in the results of the multi-3-flows and end the section with

the conclusions on the impact of multi-scenario calibrations in the accuracy and the

amount of significant of parameters.

5.4.1 Effects of noise in the calibration

Table 5.5 shows us that the multi-scenarios maintained the 100% significant calibra-

tion statistic obtained with the bidirectional and the crossing flows. This indicates the

robustness of the multi-scenario calibration.

The comparison of the accuracy for the noisy trajectories must be done using errors

ε calculated with the mean µsy of the normal distributions. Therefore, we need to

recalculate the single-scenario errors shown in table 5.5 using the mean instead of the

correct values. Table 5.7 shows the differences in the errors for the two calculation

methods for the flows.

The table shows that in general the errors with the means are larger than with the

correct values. This reflects the accuracy of the calibrations. The smaller the errors
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Table 5.7: The average relative errors ε for the individual flows calculated with

the correct values θ
sy
i and with the mean µsy of the distributions.

flows

bidirectional crossing narrow

a0 r0 τ a0 r0 τ a0 r0 τ aW

noisy (correct) 0.16 0.06 0.20 0.18 0.06 0.20 0.21 0.08 0.35 0.41

noisy (mean) 0.17 0.16 0.22 0.18 0.12 0.23 0.28 0.12 0.61 0.41

with the correct values the larger will be average distance between the calibrated value

and the mean of the distribution µsy. This explains the large variation for the r0.

The amount of this difference is also dependent of the coefficient of variation (cv =

σsy/µsy) of the original distribution (table 5.1). Small cv will decrease this difference

by creating small dispersions of the correct values around µsy. This explains the small

differences for a0 that presents the smallest cv.

When the errors and the coefficient of variation are large then anything can happen.

The calibrated parameters do not follow the original distribution and larger errors most

likely will increase the variation. This explains the very large difference for the τfor

the narrow. The aW was constant and no variation could occur.

Comparing the mean results for the noisy set in table 5.7 with those in table 5.5 we

observe that the multi-3-flow produce errors for a0, r0 and τ that are smaller than those

from the narrow bottleneck flow and comparable with those from the bidirectional and

crossing flows for all parameters. This shows the beneficial influence of combining

three different flows in the multi-scenarios.

The noisy set of multi-10-bidi resulted in larger errors for a0, r0 and τ than those

of the multi-3-flow set but still smaller than the errors from the narrow bottleneck.

Using 10 trajectories of the bidirectional flow creates a large dispersion of the optimal

parameter sets around the mean of the distribution. This increases the difficulty for

the optimisation algorithm in finding the optimal values resulting in the opposite effect

obtained with clean trajectories. The multi-3-flow is less affected by this problem by

only using 3 different optimal values for each calibration.

Table 5.7 shows that contrary to the multi-scenario calibrations with the clean set, the

calibrations with the noisy set improved both the accuracy and the significance of the

aW parameter. The improvement of the accuracy is not large but the percentage of sig-

nificant calibrations increases with the amount of trajectories that present proximity to

walls. Thus, explaining why the multi-10-bidi presents the best results for significance.

The good qualities of the multi-3-flows calibration with noise and heterogeneity can

be observed by the cumulative distribution of the calibrated parameters compared to

the calibrations using the bidirectional and crossing flows (figure 5.15).
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Figure 5.15: The cumulative distribution of the parameters estimated for the bi-

directional, crossing and the multi-scenario with the noisy trajectories.

5.4.2 The influence of the flows in the multi-3-flow calibrations

To have a better understanding of the multi-3-flow calibration process, we compared

the overall influence of each flow to the final calibration results. This is done by com-

puting the errors for each flow with the correct parameter value for this scenario θ
sy
i

instead of the mean of the distribution µsy. We rename this error to parameter distance

ds(θ
∗
i ) for scenario s.

Low values of ds for a flow indicates that the calibrated parameter was closer to the

correct values of this flow. If we compare the average of ds for the flows we can

measure which flow had a larger influence on the calibration procedure.

Table 5.8 shows that the bidirectional flow has the smallest average of all distances for

a0, r0 and τ. The narrow bottleneck flow showed larger distances than the crossing

flow for τ and exactly the same for the other two parameters. This also supports the

result that in general the multi-scenario calibration approximates the flows that are

less influenced by the noise. The aW distances are necessarily the same because this

parameter was the same for all flows.
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Table 5.8: The average relative distances between the correct values of the para-

meters to the calibrated results using the multi-scenario.

relative distance

a0 r0 τ aW

d̄s

bidirectional 0.23 0.13 0.21 0.84

crossing 0.26 0.17 0.24 0.84

narrow 0.26 0.17 0.27 0.84

5.4.3 Conclusion

We can conclude that the multi-scenarios have a positive impact in the calibration

accuracy and significance and are more influenced by the scenarios with smaller errors.

Even in the unfavourable situation of aW with only one flow providing information

about the obstacle interactions, the errors were closer to the narrow bottleneck than for

the other two flows.

The clean trajectories produced very small errors for the multi-scenario calibrations

showing that the poorness of data and complex movement factors can be mitigated if

they are not present in all scenarios.

For the multi-3-flows, the introduction of heterogeneity and noise resulted in errors of

a0, r0, τ that are between 1 and 9% larger than for the single-scenarios with the best

results (bidirectional and crossing flows). Simultaneously the errors for the aW were

reduced by 18% and the significance increased by 12%.

Figure 5.14 shows that for the two multi-scenarios the optimisation algorithm also

finds τ that are in general larger and a0 that are smaller than the mean of the distribu-

tions. This reveals the same process discussed for the single-scenario calibrations of

estimating pedestrians that are more manoeuvrable.

5.5 Conclusions and findings

The original in this chapter is the quantitative analysis of the calibration process using

synthetic trajectories as the ground truth. The investigations identified the factors that

reduce the accuracy of calibrations and proved the beneficial effects of using multi-

scenario calibrations in increasing the amount of significantly calibrated parameters.

The investigation consisted in two parts: determining the most important factors that

affect calibrations and using these factors to discuss the implications of using multi-

scenarios.

We determined that three factors: poorness of data, complexity of movements and

random noise in the data are the most critical for the calibration accuracy and parameter
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significance. The first refers to the availability of data containing information about of

pedestrian behaviours such as pedestrian interactions. The second refers to complex

manoeuvres with sharp and abrupt movements. The third arises from the imperfect

process of acquisition of pedestrian data containing errors and noise.

The most important result from this chapter resulted from the second part of our invest-

igations. We showed that multi-scenario calibrations were positively influenced by the

scenarios that produced the most accurate calibrations. These results show that even

if some scenarios presented difficult situations to the calibration, other scenarios com-

pensated resulting in good accuracy and increased significance of parameters. This

supports the use of multi-scenario calibrations to obtain parameters that are generic

and useful.

The investigations showed the importance of the significance analysis in determining

the accuracy of sample of parameters. The parameter responsible for obstacle inter-

action was estimated with extremely low amount of significant calibrations for two of

the flows. Without the significance analysis determining the statistical significance the

calibrated parameters would be completely inaccurate.

We found that tracking noise had the largest influence in the calibration. This important

result shows that the process of tracking pedestrians and smoothing trajectories must

be well performed to minimise the introduction of noise in the trajectories.

We defined complexity of movements as large variations of direction coupled with

large accelerations. These movements deviate from smooth movements encountered

in most flows and create difficulties for the calibration procedure. We identified a par-

ticular situation that caused these complex movements. Future investigations could

determine quantitative or qualitative indicators that give measures of movement com-

plexity. These measures could be used to identify non-optimal calibrations due to

complex movements.

We observed that the calibrations that were inaccurate due to one or more of the three

factors previously mentioned produced a bias in the estimated parameters. From the

four parameters estimated in this investigation, one parameter was often underestim-

ated whilst the other was mostly overestimated. These biases increase the manoeuv-

rability of the pedestrians and decrease their interaction distances. The knowledge

of these tendencies can be used as prior-information by the optimisation algorithm to

improve the calibration in defining upper and lower boundaries for the parameters.

Two important results of this chapter will be used in the following chapters. In chapter

6 we will investigate individual characteristics using single trajectories. We observed

that using 10 trajectories created difficulties for the optimisation algorithm resulting in

values that are less accurate.

Chapter 7 investigates the effect of multi-scenario calibrations on the accuracy of pre-

dictions. The good results of the multi-scenario calibration with different flows motiv-

ate us to use three flows to improve the accuracy of parameter sets.
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Chapter 6

Investigating microscopic behaviours

with calibration

The microscopic pedestrian simulation model Nomad has (like other simulation mod-

els shown in chapter 2) a large amount of parameters. The calibration of such complex

models is not a simple process given the problem of complexity of behaviours and the

information poorness of the available data as discussed in chapter 4.

Furthermore, pedestrian behaviours vary according to several factors such as walking

area configurations, traffic conditions and pedestrian heterogeneity. Therefore, it is

important to know to which situations a model can be applied for prediction. One way

to investigate the general applicability of a walking model is to compare the parameter

estimations when varying the different factors.

We showed in chapter 4 that differences in the estimated parameter samples can reflect

the inability of the model to correctly predict the different behaviours. If the para-

meter samples are significantly different then the model is not general enough and the

samples reflect variations of pedestrian behaviours. The estimated parameter samples

can therefore be used to investigate how pedestrians are behaving in the different situ-

ations possibly resulting in insights to improve the model.

This chapter presents the calibration results of Nomad using data from several con-

trolled experiments. The experiments give the opportunity to compare distinct beha-

viours from different flows such as bidirectional, unidirectional and crossing flows.

We estimate parameters for each pedestrian using the trajectory based calibration intro-

duced in chapter 4. The parameters are simultaneously estimated for each individual

pedestrian. The calibration results are used to investigate the parameter significance,

parameter correlation and general applicability of Nomad.

The calibrations were performed using trajectories representing three flows that provide

behaviours found during normal walking, evacuation through a door and interactions

between individual pedestrians. The walking experiments replicating these situations

and the other components of the calibration set-up are presented in section 6.1.

127
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Section 6.2 explains how we perform statistical tests based in Kolmogorov-Smirnov

goodness-of-fit test to investigate the influence of type of flows and traffic conditions

to the pedestrian behaviours and to infer the extent of pedestrian heterogeneity.

Section 6.3 shows that the calibration procedure is able to significantly estimate a large

amount of parameters for the Nomad model simultaneously. This section also presents

the amount of independence of the parameters by means of their correlation.

Section 6.4 shows that there is a significant variation in the parameter samples along

different types of flows and gives an analysis of the causes of these differences. The

impact of population composition and urgency levels is discussed in section 6.5.

We also show that traffic conditions influence pedestrian behaviours and we analyse

in section 6.6 how the values of the estimates vary with walking speeds as a proxy of

local conditions. The discussion of the results of this chapter is in section 6.7.1.

This chapter ends in section 6.7 with the conclusions and the general implications of

these results suggesting that microscopic models must account for heterogeneity and

variation of behaviours. The results support modifying model parameters according to

the actual traffic conditions experienced by pedestrians. Modifications are suggested

by creating dependences of parameters to traffic conditions.

6.1 Parameter estimation set-up

In the following, first a short description of the calibration procedure is given. Then,

the laboratory experiments of which the data are used. Finally, we present the Nomad

parameters that will be estimated, followed by a discussion about the parameters that

are not estimated.

6.1.1 Calibration procedure

The model calibrated in this chapter is the modified Nomad model with anticipation

and extra lateral repulsion forces presented in chapter 3. The acceleration behaviour

does not predict swaying effects. This required that the trajectories of the empirical

data sets were transformed via a smoothing procedure to remove the swaying effects.

Appendix D presents details about the smoothing algorithm adopted in this chapter.

The trajectory based calibration is described in chapter 4 and the log-likelihood ob-

jective function used the error in acceleration. The position of the pedestrian being

calibrated was reset at each time-step to minimise auto-correlation in the errors (one

step ahead prediction with reset-time = 0.02s). The same hybrid genetic algorithm

with a simplex optimiser described and used in chapter 4 was applied.
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6.1.2 Trajectory data

In this thesis we are interested in behaviours occurring in normal conditions by com-

muters. These conditions are found in large pedestrian facilities and result in several

types of flows, such as unidirectional and bidirectional flows found in corridors, cross-

ing flows in large atriums; and congested flows around exits. Furthermore, there are

situations in which the motivation to exit is high but no extreme behaviour is found

(see discussion in section 2.3.6). Such situations are found in evacuations or in certain

situations when pedestrians have short transfer time. In this chapter we chose empir-

ical data that present data cover normal walking in several types and intensities of flow

and different levels of urgency.

The trajectories used in this chapter originate from three types of controlled experi-

ments: a series of normal walking flows (Daamen and Hoogendoorn (2003)), room

evacuations through a door (Daamen and Hoogendoorn (2009a)) and one-to-one in-

teraction experiments (Versluis (2010)). Pedestrians in the normal walking and inter-

action experiments walked under normal conditions. In the evacuation experiments

pedestrians were instructed to evacuate as quickly as possible and were induced during

the experiments to low and high urgency levels. The interaction experiments were set

up forcing the pedestrians to apply avoiding manoeuvres.

The overview of the eleven calibrations performed is presented in table 6.1. The table

shows the abbreviation of the trajectory set used in this chapter, the type of experiment

that originated the trajectories, the name with a brief description of the walking area

arrangement with the type of flow and the amount of trajectories (pedestrians) available

to calibrate. The abbreviations will be used as much as possible in the remainder as the

identification of the calibrations. We will present some details about the experiments

in the next sections and more details can be found in appendix C and in previously

mentioned references.

Normal walking experiments

Figure 6.1 shows the infrastructure layout and flow directions of the four configurations

of the normal experiments: unidirectional flow, bidirectional flows, crossing flows and

a narrow bottleneck. All experiments have been performed under normal walking con-

ditions, while only in the narrow bottleneck experiment congestion occurred. Since the

congestion occurred upstream of the corridor, the area of this experiment has been split

into two: one (possibly) congested area upstream of the bottleneck and an area inside

the bottleneck where capacity occurred. Therefore, five calibrations were performed

with the normal experiments.

The bold lines in figure 6.1 represent floor markings that demarcated the borders of

the walking areas. Pedestrians were instructed to stay inside these markings as if these

were walls. Only the narrow corridor walls were made solid and could not be walked

over.
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Table 6.1: Description of the 11 calibrations and the amounts of trajectories es-

timated

abbreviation experiment description # of

type traj.

bidir normal bidirectional flow 709

unidir normal unidirectional flow 1167

cross normal 90◦ crossing flow 1052

bneckDown normal unidirectional flow downstream the bottleneck 1123

bneckUp normal unidirectional flow upstream the bottleneck 1123

evacHoLoSt evacuation homogeneous population with low urgency 78

evacHoHiSt evacuation homogeneous population with high urgency 81

evacHetLoSt evacuation heterogeneous population with low urgency 99

evacHetHiSt evacuation heterogeneous population with high urgency 99

interBidir interaction bidirectional 168

interCross interaction crossing 144

total 5843

The dotted rectangles are used for the calibrations. Experiment cross used only the

positions inside the region in which interaction behaviour happened (the dotted square

‘c’ with dimensions 4m× 4m inside the crossing area shown in figure 6.1. The cal-

ibration for bneckDown used the positions inside the corridor that are downstream of

the bottleneck (dotted rectangle ‘a’ in figure 6.1), while the calibration for bneckUp

upstream the narrow corridor used only pedestrian positions inside the rectangle ‘b’.

Evacuation experiments

The evacuation experiments were not being held under normal walking conditions.

The four evacuation experiments have the same walking layout but two different pop-

ulation compositions and two levels of induced urgency as different human factors1.

These urgency levels created a sense of urgency that was not present in the two other

experiment types.

The homogeneous population (Ho) was composed by adults only and the heterogen-

eous population (Het) was composed of 25 % children, 55 % adults, and 20 % elderly

that correspond approximately to the average of the Dutch population. We called the

two urgency levels normal (Lo) and high (Hi). The density in all evacuations varied

between 0.0 < k < 3.0 peds/m2.

The four evacuation experiments are composed of a combination of these four experi-

mental variables (see table 6.1). The evacuation experiments were split into upstream

1The authors of the original experiments called the variable as stress in Daamen and Hoogendoorn

(2009a) but we will adopt the term urgency as explained in the chapter 2.
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Figure 6.1: Schemes of the areas in which the trajectories where located for the

normal walking calibrations. The arrows represent the dominant direction of

the flows. The red dotted areas define the perimeter of the trajectories used for

calibration.

and downstream flows in relation to the evacuation door, just like in the narrow bottle-

neck experiment. This was done because the behaviours exhibited by the participants

was significantly different in these two situations. Upstream of the door pedestrians

made a real effort to evacuate as fast as possible and downstream they dispersed in a

relaxed manner. The upstream behaviours are more relevant for evacuation analysis

and therefore only those trajectories were included in the estimation. Figure 6.2 shows

the rectangle ‘e’ that enclosed the pedestrian positions used in the calibrations.

e

evacuations

8m

6
m

door width 

0.85m

Figure 6.2: Schemes of the areas in which the trajectories where located for the

evacuation calibrations (red dotted areas). The arrows represent the dominant

direction of the flows.
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Interaction experiments

In these experiments the focus was to create conditions to pedestrians interact in one-

on-one situations. The aim was to investigate how pedestrians apply avoidance man-

oeuvres when walking towards each other under different approach angles. Pedestri-

ans were placed at locations at 10m distances and walked towards each other meeting

somewhere halfway. The schemes of the experiments are shown in figure 6.3.

crossingbidirectional

1
0
m

10m

Figure 6.3: Schemes of the areas in which the trajectories were located for the in-

teraction calibrations. The arrows represent the dominant direction of the flows.

6.1.3 Overview of parameters to be estimated

The parameters calibrated in this chapter are those responsible for three behavioural

components of the Nomad model: path following, pedestrian interactions and obstacle

interactions. Table 6.2 gives a brief description of the role of the parameters that are

estimated. For a complete overview and mathematical definitions, see section 3.2.

Table 6.3 shows the calibrated parameters for each experiment and the three corres-

ponding model components. Chapter 5 showed us that poorness of data was a large

influence in the amount of significant calibrations. Therefore, aW is only included in

the evacuation experiments and the two calibrations using the narrow bottleneck ex-

periment. The other experiments did not present obstacles to provide such behaviours.

Figure 6.4 shows how Nomad would incorrectly predict collisions for radius around

0.25m that is the average body width according to Fruin (1971) (image from the evac-

uation experiments).

Such situations mostly occur in the evacuation experiments. Therefore, rad is calib-

rated for the evacuation experiments. However, non-existing collisions can also oc-

cur in the remaining experiments, especially in the narrow bottleneck. To prevent

non-existing collisions to interfere in the calibrations we adopt a smaller value of

rad = 0.22m to all pedestrians. This radius expresses body depth according to Fruin

(1971). A small radius also reduces the lateral width of each pedestrian. This is not a
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Table 6.2: Overview of the parameters calibrated in this chapter. The double

lines separate the parameters according to the pedestrian characteristics and the

three model components: path following, pedestrian and obstacle interactions.

The single lines separate the four parts of the pedestrian interaction component:

pedestrian avoidance, influence area, lateral avoidance and anticipation.

Symbol Explanation

rad pedestrian radius (m).

τ acceleration time (s), the time required to accelerate towards the free

speed v0 in the direction of the desired path. Small values of τ will force

pedestrians to walk very close to their desired path and to their free-speeds.

Deviations from the path will generate large path following accelerations.

a0 interaction strength (m/s2), controls the intensity in which pedestrians

are avoiding each other. Larger values of a0 indicate an increase

of the avoidance accelerations due to other pedestrians.

r0 interaction distance (m), controls how sensitive the avoidance accelerations

are to the distance between pedestrians. Small values of r0 signify that

only small distances between pedestrian cause avoidance accelerations.

c−0 transforms the shape of the influence area behind pedestrians from circular

(value = 1) to an ellipsoid. For values smaller than one the main axis of the

ellipsoid is in the walking direction otherwise; in the perpendicular direction.

c+0 transforms the shape of the influence area in front of pedestrians from

circular to an elongated ellipsoid similar to c−0 .

ief influence area extension at the front (m), the largest distance at the front

at which a pedestrian will provoke avoiding behaviours.

ieb influence area extension at the back (m), the largest distance at the front

at which a pedestrian will provoke avoiding behaviours.

a1 lateral interaction strength for pedestrians (m/s2), controls the intensity

of the extra lateral component of the avoidance accelerations when

pedestrians are walking towards each other.

r1 lateral interaction distance for pedestrians (m), controls how responsive

the extra lateral avoidance accelerations are to the lateral distances of

pedestrians walking towards each other.

tA anticipation time (s), the time in the future that pedestrians project

the current locations of neighbouring pedestrians.

aW obstacle interaction strength (m/s2), controls the intensity in which

pedestrians are avoiding obstacles. Larger values of aW indicate

an increase of importance of the obstacle avoidance accelerations.

problem for the estimation of the parameters because Nomad model uses the centre of

pedestrians and not their shoulder distances.
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Table 6.3: The parameters that are calibrated in each experiment.

parameters

pedestrian

path interactions obst-

follow ped influence lateral antici- acle

avoid area avoid pation

experiments rad τ a0 r0 c−0 c+0 ief ieb a1 r1 tA aW

bidir × × × × × × × × × ×
unidir × × × × × × × × × ×
cross × × × × × × × × × ×
bneckDown × × × × × × × × × × ×
bneckUp × × × × × × × × × × ×
evacHoLoSt × × × × × × × × × × × ×
evacHoHiSt × × × × × × × × × × × ×
evacHetLoSt × × × × × × × × × × × ×
evacHetHiSt × × × × × × × × × × × ×
interBidir × × × × × × × × × ×
interCross × × × × × × × × × ×

Figure 6.4: Two pedestrians walking close but not colliding in the evacuation

experiment. The circular body formulation in Nomad predicts a collision.

6.1.4 Parameters not estimated

Three parameters were not included in the calibrations: the free-speed (v0) and the two

parameters that are used to calculate the physical forces (k0, k1). In the following, we

discuss the main motivation for these exclusions.

Free-speeds

Since the free-speed is specific for each pedestrian, this speed is estimated using the

beginning of the trajectories when the densities are low and it can be assumed that a

pedestrian is walking in free flow conditions.

In the normal experiments the free-speeds of pedestrians were calculated as the av-
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erage speed in their first second in the walking area. This procedure was motivated

by the arrangement of the walking areas where pedestrians were only tracked after

walking a few meters and the densities at the regions of their initial positions were

low. This initial non-tracked walking enabled pedestrians to ‘warm-up’ reaching their

free-speeds. Given that the trajectories used in the calibrations were obtained after

smoothing out the original positions the interval of 1s was sufficient to overcome the

observation noise.

The evacuation experiments did not allow such a free-speed calculating method be-

cause in all four experiments there was a spill-back of the congestion towards the

initial positions of the pedestrians. This congestion decreased the speeds far below

free-speeds values given by literature. Therefore, for all pedestrians a constant value

of v0 = 1.5m/s obtained from Daamen and Hoogendoorn (2003) was used.

Fixing the free-speeds may affect the calibrations, specially for the children and elderly

in the heterogeneous population in the evacuation experiments. According to equation

(3.11) if the free-speeds are higher or lower than the correct values, the resulting τ will

be larger to reduce the path following accelerations. This may explain partially, the

larger values of τ as presented in table 6.6 for the evacuation experiments. However,

the results for the heterogeneous population (that include the children and elderly)

showed smaller values of τ indicating that other reasons discussed in the next sections

are more important for these large values.

For the interaction experiments we could obtain the free-speed for each individual in

dedicated runs. Each subject walked alone and unimpeded eight times a distance of

12m. The average speed on each run was used to create a sample of free-speeds and

the average of this sample would constitute the pedestrian’s free-speed.

Physical forces

The parameters used to calculate the physical forces are set to very large values that

were proven to prevent large compressions of pedestrians in previous calibrations.

Therefore, it was not necessary to estimate them and the values k0 = 1000,k1 = 1000

were kept fixed.

6.2 Parameter analysis for the calibrations

A parameter set θ∗p is constituted by the calibrated parameters for a pedestrian p (θ∗p =
[

τp,a0 p . . .
]

). All parameters θi∗
p for one experiment are are grouped in samples of

parameters θi∗. One experiment will therefore result in a collection of samples θi∗ ∈ θ∗.

Table 6.1 presents the maximum sample size of each experiment. An estimated value

will only be part of the sample if it is significant according to the method shown in

section 5.2.1. Values that are on the boundaries of the estimation interval available for
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the optimisation algorithm are not part of the sample since we cannot guarantee that

they are optimal.

The following subsections explain how the parameter samples are used in the investig-

ations of this chapter.

6.2.1 Analysing the calibration results

In this chapter we discuss the results of the calibrations using the average values of the

samples, their correlations and the percentage of significant calibrations. The correl-

ations between the parameters are only calculated among pairs of significant estima-

tions for the same experiment. This limits the size of the set of pairs of parameters to

be used in the correlation calculation to the smallest amount of significant parameters

from both parameters.

If two samples present a large degree of correlation (or anti-correlation) then the beha-

viours associated with the parameters are linearly related. If the correlation is close to

1 in all experiments then one of the parameters could be replaced by a linear relation

of the other. However, we show in section 6.3 that the high non-linearity of the Nomad

model does not result in wide spread correlations. The significance is calculated ac-

cording to the procedure used in section 5.2.1.

The extra lateral acceleration parameters presented in section 3.2.9 resulted in very

small samples of significant calibrations. We tested if the cause of these results were

due to the lack of sufficient situations requiring the extra accelerations (poorness of

data) in the experimental data or that their limited influence in the outcomes of the

Nomad model. We applied likelihood-ratio test to compare Nomad with the two extra

lateral acceleration parameters (unrestricted model) with a version without them (the

parameters are set to zero and the model called restricted).

The test involves calculating the likelihood ratio (D) that corresponds the differences

of the log-likelihoods:

D = 2 [ln(likelihoodu)− ln(likelihoodr)] (6.1)

Then a chi-squared distribution (χ̃2) with degrees of freedom equal to the difference of

the number of parameters (for the lateral avoidance parameters the difference is two)

is used to approximate the test probability distribution of of D with α = 95%.

null hypothesis - The unrestricted model is not significantly better than the restricted

model.

alternative hypothesis - The unrestricted model is significantly better than the restric-

ted model.
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Since the unrestricted model has more parameters it is supposed to fit the data better.

Therefore, if the log-likelihood of the restricted model (llr) is not reduced then the

test failed and the unrestricted model is worse. However, if llu− llr > 0 we apply the

likely-ratio test to see if the improvement is significant.

6.2.2 Testing the impact of type of flow on pedestrian behaviours

We discuss the influence of the type of flows in pedestrian behaviours using Kolmogorov-

Smirnov tests and the sum of Kolmogorov-Smirnov statistics of parameter samples in

what we called Similarity Statistics (ST ).

An inspection of the estimated parameter distributions shows that they are very deviant

from a normal distribution making parameterised statistical tests such as student t-

tests and analysis of variance (ANOVA) tests not applicable. Therefore, we choose

Kolmogorov-Smirnov tests to perform our statistical analysis of similarity between

samples, since this test is independent of the distribution type.

To establish if two estimated parameter samples come from the same distribution we

perform a two sample Kolmogorov-Smirnov test with 5% significance level. The null

and alternative hypothesis are:

null hypothesis - The two samples are realisations of the same distribution.

alternative hypothesis - The two samples are not realisations of the same distribution.

We test the impact of the type of flow on the estimated parameter values by two criteria:

showing that the samples θi∗ for each experiment are significantly different from each

other (rejecting the null hypothesis) and comparing the sum of the KS statistics of all

samples for two experiments.

Both criteria define the degree of similarity between the experiments and consequently

represent the degree of similarity between the behaviours in the experiments.

The first criteria uses the KS test and applies it for all samples of the same parameter

obtained in the different experiments. Every time the null hypothesis is rejected the

samples are statistically different and the walking behaviours that created the traject-

ories are significantly different. The first criteria of is the percentage of rejection of

the KS tests between two experiments. The more rejection the less similar the experi-

ments.

The second criteria uses the result of the KS statistic as a measure of similarity between

the samples (see figure 7.1 for a representation of the KS statistic for two samples).

Independently if the samples passed the equality KS test, the KS statistic can always

be used to show the degree of similarity between the samples.
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To simplify the analysis we add the KS statistics Da,b from all KS tests between the

samples θi of experiments [a,b]. This results in the sum of the KS statistics (ST[a,b]).

The assumption is that the sum of the KS statistic can be considered another indicator

of similarity between the types of flows represented by the experiments. The smaller

the ST the more similar are the behaviours in the experiments.

ST[a,b] = ∑
θi∈θ∗

D[a,b](θ
i) (6.2)

All KS tests are only performed between samples of the same experiment types, elim-

inating other sources of differences that could mask the results for the types of flows.

This strategy generates 10 comparisons for the normal, 6 comparisons for the evac-

uation and 1 comparison for the interaction experiments for each parameter. These

numbers are obtained by the combination of the amount of experiments in pairs of

each type.

6.2.3 Testing the population composition and urgency level on ped-

estrian behaviours

The influence of types of flow are investigated for the normal and interaction experi-

ments. The evacuation experiments are very similar to each other and an investigation

of the differences between the samples measures the effect of the two experimental

variables: population composition and urgency level, rather than type of flow. There-

fore, the similarity statistic results for the evacuation experiments are presented separ-

ately.

6.2.4 Measuring pedestrian behaviours based on walking speeds

The most frequently used definitions of traffic conditions come from the so called

fundamental relations (chapter 2). In this investigation we use the speed as the inde-

pendent investigation variable because it can be directly measured without requiring

assumptions on the density or flow definitions. Since the duration of the trajectories is

several seconds, we use the average speed along the entire trajectory.

The basic hypothesis here is that for each pedestrian the parameter estimated is optimal

for the entire trajectory therefore averaging the speed reflects the average behaviour

during the trajectory. The relationship between behaviour and speed varies according

to the conditions created by the flows. Therefore, for each speed range we will include

the influence the different conditions on the behaviours.

The average walking speed during each trajectory is calculated and classified into in-

tervals of 0.20m/s. Each interval (given that there are pedestrians walking within the
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interval) forms a sample of parameters. The influence of the speeds on the behaviours

is analysed by comparing the average values of the estimated parameters in the differ-

ent intervals. These average values are plotted against the speed intervals.

No normal experiment presented speeds between 0m/s and 0.20m/s and no experi-

ment had more than 4 pedestrians with speeds above 2.0m/s. Table 6.4 presents the

intervals and the total amount of pedestrians that walked with speeds that were in the

intervals. These values represent the maximum possible size of the parameter samples.

However, for the analysis the samples are composed of significant parameters thus the

intervals most likely have smaller sizes. Furthermore, we only considered samples

with at least five significant parameters to reduce the influence of outliers.

The evacuation and interaction experiments did not present enough estimations in the

different speed intervals to allow a proper statistical analysis of the speed intervals.

Therefore, only the results for the normal walking experiments are considered in this

analysis.

6.3 Calibration results

Table 6.5 with average values of calibrated parameters allow for general discussion of

the calibration results. This discussion is presented in subsection 6.3.1.

This section also discusses the reasons why certain parameters present low percentage

of significant calibrations for some experiments (table 6.6). The discussion of signific-

ance in calibrations is presented in subsection 6.3.2.

6.3.1 Average parameter values and correlations

The three different types of experiment present parameter values that reflect the differ-

ent situations pedestrians are encountering. After the initial discussion for τ, a0 and r0

we will discuss the results of the remaining parameters.

Results for τ, a0 and r0

This section presents discuss the calibrations of τ, a0 and r0. These three parameters

are arguably the most important driving the behaviours of pedestrians and focusing on

them simplifies the analysis.

Nomad pedestrians following closely to desired paths, need larger path accelerations

to reduce the movements in case of interactions with pedestrians or walls. Thus, ac-

celeration time parameter τ tend to be small for trajectories that stay close to desired

paths (section 3.1).
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Table 6.4: The speed intervals used to classify the estimated parameters and

the maximum size the parameter samples can have per interval. The table only

presents the normal experiments. The evacuation and interaction experiments

did not present enough calibrations to create many samples with the minimum

sample size of 5 parameters.
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pedestrian

path interactions obst-

follow ped influence lateral antici- acle

avoid area avoid pation

v rad τ a0 r0 c−0 c+0 ief ieb a1 r1 tA aW

bidir 1.30 0.32 2.02 1.24 0.94 1.01 1.30 1.98 7.08 0.69 0.53

unidir 1.41 0.27 2.39 1.45 1.01 1.03 1.42 1.82 × × 0.61

cross 1.35 0.62 2.42 0.99 1.00 1.00 0.96 1.10 4.71 × 0.52

bneckDown 1.00 0.63 4.51 1.28 1.07 1.06 1.04 1.51 × × 0.56 9.43

bneckUp 0.74 0.57 2.84 1.06 0.99 0.96 1.36 1.14 5.97 0.62 0.60 9.02

evacHoLoSt 0.60 0.12 1.06 1.36 0.59 1.28 0.89 1.28 0.89 1.64 0.85 0.70 ×
evacHoHiSt 0.64 0.12 0.86 1.52 0.59 1.26 0.93 1.30 0.85 2.40 0.71 0.70 ×
evacHetLoSt 0.50 0.09 0.99 1.26 0.63 1.32 0.94 1.55 0.78 1.06 0.71 0.76 0.96

evacHetHiSt 0.46 0.11 0.82 1.65 0.61 1.36 0.91 1.53 0.75 1.45 0.83 0.59 ×
interBidir 1.50 0.08 2.45 × 0.92 1.03 1.51 2.01 2.49 × 0.54

interCross 1.57 0.14 5.66 0.91 1.03 1.00 1.66 1.52 7.12 0.92 0.69
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pedestrian

path interactions obst-

follow ped influence lateral antici- acle

avoid area avoid pation

rad τ a0 r0 c−0 c+0 ief ieb a1 r1 tA aW

bidir 49 58 10 66 62 62 68 7 1 57

unidir 75 62 17 60 71 71 71 0 0 56

cross 52 36 3 40 55 43 28 2 0 48

bneckDown 72 91 32 72 81 72 79 0 0 61 28

bneckUp 66 75 21 55 66 58 53 3 1 53 13

evacHoLoSt 71 92 96 92 90 87 62 55 6 8 73 0

evacHoHiSt 72 95 98 89 81 86 77 59 7 5 65 0

evacHetLoSt 60 94 84 82 82 86 63 48 7 4 68 1

evacHetHiSt 74 99 92 90 80 91 77 53 3 8 78 0

interBidir 67 17 0 45 21 24 41 8 0 37

interCross 69 34 2 28 42 58 39 5 2 69

average 69 66 65 21 59 67 61 58 4 3 56 8
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This is exactly what happens to the bidirectional, unidirectional experiments. In these

two experiments, densities were small allowing for very unobstructed walking. For

larger densities in the bidirectional flow, the self-organised lane formation resulted in

trajectories fairly parallel to the main walking directions also resulting in lower values

of τ.

The interaction experiments produced very smooth trajectories because pedestrians

were separated by long distances giving them plenty of time to avoid the incoming

pedestrians as shown in figure 6.5. The smooth trajectories resulted in the smallest

values of τ.

location of encounter

walking to the right

walking to the left

y(
m
)

x(m)

0

0.5

-0.5

1

-1
5 6 7 8 9 10 11 12 13 14 15

Figure 6.5: Two interacting trajectories from the bidirectional experiment.

The other experiments resulted in larger values of τ, reflecting the larger variations in

speed and direction of movement. The crossing flow presents avoidance manoeuvres

even with low densities creating deviations from the desired path. Figure 6.6 presents

two interacting trajectories represented by dots corresponding to time steps of 0.2s.

The pedestrian walking from the top to the bottom realises the avoidance maneuverers,

whilst the pedestrian walking from the right to the left walks at a higher speed almost

unperturbed.

manoeuvre
evasive

walking

walking

direction

direction

2 2.5 3 3.5
4

4

6

5.5

5

4.5

x(m)

y(
m

)

Figure 6.6: Two trajectories from the normal crossing experiment, illustrating

the large avoidance manoeuvres that occur even in low densities. The dots corres-

ponds to time steps of 0.2s.

The evacuation and narrow bottleneck experiments result in larger values of τ due to

the slower speeds that pedestrians are experiencing. In these experiments, the path

following acceleration is always large due to the difference between the walking and
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the free-speed. To limit the value of the path following acceleration, τ results larger.

This is why the largest values of τ occur for the evacuation experiments that presented

the lowest walking speeds (first column of table 6.5).

The values of the interaction strength parameter a0 give a measure of the intensity

of the interaction accelerations. The bidirectional, unidirectional and interaction bid-

irectional experiments present mostly longitudinal interactions in smooth trajectories.

a0 for these experiments, reflect the deceleration in case of slower pedestrians down-

stream. The self-organised lanes in the bidirectional flow create more interactions than

the unidirectional flow. Pedestrians also mostly follow each other but do not spread

laterally reducing the interactions. Thus, the smaller value of a0 for the bidirectional

flow.

A similar situation occurs with the evacuation experiments. In these flows, pedestrians

walk very close in a synchronised pattern that result in smooth trajectories with very

little overtaking maneuverers. These small distances result in even smaller values of

a0 for the evacuation experiments.

The crossing and narrow bottleneck upstream flows present similar values of a0 as

the unidirectional flow indicating the need for larger interaction accelerations to allow

for avoiding maneuverers. The complex movements in front of the corridor entrance

described in section 5.3.2 requires even larger interaction acceleration, thus the lar-

ger value of a0 for the narrow bottleneck upstream experiment in comparison to the

unidirectional and crossing flow.

The self-organised ‘zipper’ pattern observed in the narrow corridor creates very short

distances between pedestrians and corridor walls (section 2.3.5. These short dis-

tances are better modelled with large pedestrian and obstacle accelerations. Otherwise,

Nomad would create oscillations in the corridor. This also explains the positive correl-

ation of 0.84 between these two parameters indicating their linear dependency inside

the corridor. Thus, the large values of a0 and aWfor the narrow bottleneck downstream

experiment.

The 90◦ arrangement of the crossing trajectories results in much closer interaction

distances than those of the bidirectional interaction experiment. Also the maneuverers

are larger for the crossing flow, resulting in significant larger a0. The normal crossing

flows offer more interaction possibilities than the interaction crossing that only have a

one-to-one interaction not resulting in such large a0.

The main effect of the interaction distance parameter r0 is to change the sensitivity of

the interaction acceleration with the distances between pedestrians. Higher densities

will result in shorter distances. Thus, higher densities result in smaller values of r0 as

the evacuation calibrations show. Also the crossing, narrow bottleneck upstream and

interaction crossing with smaller interaction distances also result in smaller r0 than

for the bidirectional and unidirectional flows. The unidirectional flow presents larger

distances between pedestrians, thus resulting in the largest r0.
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The evacuation experiments presented the smaller values of a0 and r0. This is due to

the higher densities that also created smooth trajectories with little overtaking. These

parameters resulted with negative correlation. Table 6.7 shows that the negative cor-

relations are not large but were significant for the four experiments. We included

the correlation for the crossing experiment that also presented interactions with short

distances. No correlations between these two parameters were found for the other

experiments.

Table 6.7: Correlations between the parameters a0 and r0 for the evacuation ex-

periments.

experiment parameter r0

cross

a0

-0.41

evacHoLoSt -0.34

evacHoHiSt -0.42

evacHetLoSt -0.41

evacHetHiSt -0.32

Pedestrian radius

The estimated rad for the experiments with homogeneous population was ≈ 0.12m

(equivalent of a diameter of 0.24m). The calibration results are much smaller than the

average body diameter of 0.46m according to Buchmueller and Weidmann (2006), they

are closer to the average body depth of 0.28m for males reported in the same source.

The experiments with heterogeneous population estimated an even smaller radius due

to the presence of children and elderly people.

These results for the radius show that for simulations of dense situations, the depth of

the bodies is more accurate than the width that would result in too large longitudinal

distances.

Influence area parameters

The values for the influence area extension at the front ief for all the experiments were

similar and stayed between 1.3m and 1.6m. Only the crossing and the downstream

bottleneck presented lower values, around 1.0m. Thus, the calibrated ief are not far

from results of previous investigations. Johansson et al. (2007) obtained ief = 1.0m.

There are different mechanisms that influence the length of ief. Duives et al. (2014a)

showed that pedestrians in congested flows adapt their speeds anticipating the con-

gestion ahead. This may justify the relatively large values of ief for the upstream

bottleneck and the evacuation experiments. The bidirectional, unidirectional and the

interaction experiments also presented large values of ief due to the need to anticipate

when walking with higher speeds.
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Poor visibility is a factor reducing ief. Pedestrians inside the narrow corridor in the

downstream bottleneck can only see the leader in front. Visibility of pedestrians walk-

ing in the crossing experiment inside the tracked area is also reduced due to small

distances between pedestrians (figure 6.1). Poor visibility results in smaller ief for

both experiments.

A strange result were the large values of influence area extension at the back ieb for

the normal and interaction experiments. It is not so clear why we obtained these non-

intuitive results. Furthermore, only the upstream bottleneck and the interaction exper-

iments obtained ief > ieb. As discussed in section 2.3.2 the perception of the events

in front are more important for pedestrians and these results cannot be justified as

realistic. These results may reflect a deficiency of the model rather than pedestrian

behaviours. Campanella et al. (2009c) showed the necessity of the effect called ‘push

from behind’ in the Nomad model to deliver good validation results. This push from

behind is an artificial repulsion force that push pedestrians when they are being fol-

lowed at close distances. The calibration results suggest that this effect is enhanced in

the experiments in which pedestrians are more aligned with each other (bidirectional,

unidirectional and the downstream bottleneck).

The calibration of the influence area factors for the evacuation experiments resulted

in values that create the elongated elliptical shape in the frontal part c+0 < 1 and the

lateral elliptical shape for the backward part c−0 > 1 as represented in figure 3.6. This is

also happening for the upstream bottleneck, which is the only normal experiment that

presents c+0 < 1. The results for these experiments show that in congestion pedestrians

are much more influenced for those exactly in their front.

The urgency did not affect the influence area parameters, but the heterogeneity did.

We observe that heterogeneity makes pedestrians more aware to what is happening to

their sides both in front and at their back iefHo
< iefHet

and iebHo < iebHet . However,

the largest influence is in the extension of the influence area. Again, with increase of

heterogeneity pedestrians increase their scanning areas in both directions. We could

hypothesise that the different age groups create situations that are more confusing for

the individuals requiring a wider scanning to keep their safety margins.

For the normal walking and interaction experiments the results stayed around the unit-

ary value approximating the influence area to circles. Interestingly, we obtained a small

positive correlation between ief and c+0 . This a logical behaviour in which pedestrian

scanning further in their walking direction (large ief) also include more of their sur-

roundings (larger c+0 ). This explains why there are no correlations for the interaction

experiments (table 6.8).

Lateral avoidance

There were not many significant results for lateral avoidance parameters (especially

for r1). We discuss in section 6.3.2 the difficulties to significantly calibrate the lateral
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Table 6.8: The significant correlations between the parameters ief and c+0 for the

normal and interaction experiments.

experiment parameter c+0
unidir

ief

0.42

cross 0.51

bneckDown 0.33

interCross 0.36

avoidance parameters for the normal and interaction experiments. However, a1 correl-

ates positively with a0 in the bidirectional (0.50) and crossing experiments (0.99).

These correlations indicate that the lateral behaviour is creating large lateral move-

ments when the interaction accelerations are the greatest. This is an indication of the

usefulness of the extra lateral accelerations for frontal conflicts when pedestrians are

needing to apply large interaction accelerations.

Anticipation time parameter

If we inspect the calibrated values of tA for the normal and interaction experiments

we observe that they stay roughly around two distinct values: 0.55s and 0.70s. If we

multiply the average speeds of the experiments with the anticipation times we obtain

an anticipation distance (dtA = v× tA).

The anticipated distance depends on the intensity and direction of the velocities. How-

ever, Nomad does not apply anticipation if pedestrians are so close that their anticipated

position would change the sign of the relative velocities. Therefore, we can interpret

the anticipated distance as the preferred distance at which the anticipation occurs and

it is dependent from the type of flows and walking speeds.

Table 6.9 shows the average anticipation distances obtained by multiplying the calib-

rated value of tA with the average speed of the pedestrian for every trajectory in the

experiments.

In general for car traffic, anticipation allows drivers to keep safety margins to have time

to react to potential hazards from the cars ahead (Van Der Hulst (1999)). The same is

assumed to happen in pedestrian traffic, Hoogendoorn and Daamen (2005a) show that

distance headways increase with speeds to account for larger steps and to increase the

safety margin for unidirectional flows.

The results in table 6.9 show a similar behaviour for the anticipation distance. The

evacuation experiments and the upstream bottleneck resulted in the smallest anticip-

ated distances. This is the reflection of their slow speeds and higher densities. The

table shows that the anticipation distance increases with the walking speeds for the

unidirectional flows.
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Table 6.9: The average values of the product v× tA that represent the average

anticipated distance for all experiments.

experiment
v tA v× tA

(m/s) (s) (m)

bidir 1.30 0.53 0.68

unidir 1.41 0.61 0.86

cross 1.35 0.52 0.72

bneckDown 1.00 0.56 0.56

bneckUp 0.74 0.60 0.45

evacHoLoSt 0.60 0.70 0.37

evacHoHiSt 0.64 0.70 0.43

evacHetLoSt 0.50 0.76 0.33

evacHetHiSt 0.46 0.59 0.32

interBidir 1.50 0.54 0.81

interCross 1.57 0.69 1.00

However, the anticipation distance is also dependent of the direction of the flows.

Nomad assumes that in non-unidirectional flows the avoiding manoeuvres are shared.

In theory when both pedestrians anticipate their positions the effect of the anticipation

in the interaction acceleration should double.

Effectively we see that the anticipation times of the bidirectional and crossing flows

are smaller when compared to the unidirectional flows. However, the difference in the

interaction distance from the bidirectional and crossing flows with the unidirectional

is considerably smaller than half. This indicates that the self-organised lanes and the

diagonal stripes reduce the necessity of anticipation.

These results for tA support the anticipation model adopted in Nomad. We showed

that tA does not vary much with the types of flow making the formulation proposed

in Nomad in accordance to empirical evidence, encouraging the application in other

walker models.

Obstacle Avoiding parameter

Upstream and downstream narrow bottleneck walking experiments resulted in similar

average values for aW. The value for the evacuation experiment is unreliable because

it is the outcome of only one significant calibration (see section 6.3.2).

We saw that aW correlated strongly with a0 for the pedestrians walking inside the

corridor (0.84). The upstream bottleneck experiment also presented a small positive

correlation (0.29). These two correlations show that the interaction behaviours work

together in dense situations that are near walls.
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6.3.2 Significances of the calibration results

In total the calibrations resulted in 120 parameter samples for all experiments. This

number is obtained by counting all cells of table 6.6. The table shows different percent-

ages of significance calibrations for the parameters. The percentages of non-significant

calibrations are concentrated mostly on the two lateral avoidance parameters and the

obstacle interaction parameter. r0 samples resulted with more significance calibrations

than the samples for these three parameters, especially for the evacuation experiments,

but lesser than for τ and a0. The experiments have less influence on the significant

calibrations. Only the interaction experiments resulted in fewer percentages.

The low amount of significant calibrations of the lateral avoidance parameters was

expected since the majority of the experiments did not present sufficient frontal in-

teractions. We will discuss the significances in the following. However, the overall

results for the important parameters τ, a0 and in somewhat lesser amount for r0, give

confidence that the calibration procedure is able to find optimal values that are relev-

ant for the model outcomes and that the model outcomes are sensitive for most of the

parameters.

We recall from section 4.4 that two possible causes exist for the small number of sig-

nificant estimations of parameters and these causes will be referred in the analysis:

1. The model outcomes are insensitive to the parameters.

2. The amount of information in the data about the behaviour modelled by the

parameters in the trajectories is low.

The level of significant calibrations varies for the different experiment types. In gen-

eral, the normal experiments presented more than 50% significant calibrations. Only

the crossing flow experiment showed a smaller amount of significant calibrations than

the other four experiments. The reasons are the somewhat shorter trajectory length of

4m and the low densities encountered in the crossing flow experiment. Inspections of

the results showed that the percentage of significantt calibrations increases for larger

densities.

Both bottleneck experiments presented a slightly longer walking distance of 5m and

much higher density levels while the bidirectional and unidirectional experiments had

10m long trajectories. These factors contributed to longer walking time and higher

probability for interactions and consequently higher percentages of significant calibra-

tions for these experiments.

The high percentages of significant calibrations for the evacuation experiments are due

to the high densities achieved and the long walking time due to congestion. Further-

more, the urgency that was present in the evacuation experiments created less overtak-

ings resulting in less complex manoeuvres that have a negative impact on the calibra-

tion procedure as shown in chapter 4.
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The interaction experiments resulted in the smallest amount of significant calibrations

from all three experiment types. This is due to very low amounts of information in the

tracked data. Figure 6.5 illustrates the lateral movements that occurred between ped-

estrians in the interaction bidirectional experiment (interBidir). The figure shows that

the pedestrians were already laterally displaced when they entered the tracking area

and only a small lateral displacement occurs and thus interaction around the moment

of encounter. Moreover, there is a maximum of one single conflict per trajectory. This

problem especially affected the parameters responsible for pedestrian interactions, a0,

r0, a1 and r1.

Tracking noise in the trajectories certainly affected the significance of the calibrations.

However, it is not possible to determine the extent of its effect since the same tracking

algorithm was used for all trajectories. The software was improved over the years and

we believe that the version used for the evacuation and interaction experiments reduced

tracking errors. This would further justify the better quality of the calibrations of the

evacuation experiments.

In the following we will discuss the four parameters that had very low amounts of

significant calibrations: r0, a1, r1 and aW.

Pedestrian avoidance parameter r0

From the three most important parameters: τ, a0 and r0, only the interaction distance

r0 had a relatively low amount of significant calibrations for the normal and interaction

experiments, with more significant calibrations for higher densities. This is in accord-

ance with the high amounts of significant calibrations for the evacuation experiments

that achieved the highest densities.

The relationship with density occurs because lower densities reduce the time available

for the avoidance manoeuvres. Therefore, the interaction accelerations must be larger

at longer distances to allow for the avoiding manoeuvres to be effective. Thus, larger

r0 are estimated for lower densities. The other experiments obtained r0 values that

follows a negative relationship with densities.

The normal crossing and the two interaction experiments provided few significant cal-

ibrations of r0. Most of the avoiding manoeuvres occurred outside of the tracked area

(see section 6.3.2). Therefore, calibrations that resulted in significant parameters were

those in which pedestrians applied avoidance movements at short distances, thus hav-

ing small r0.

It is not entirely clear why we obtained so few significant calibrations for r0, espe-

cially because it was accurately calibrated with the synthetic trajectories in chapter 4.

However, the smaller values of r0 for the evacuation experiments presented in table 6.5

suggest that the proximity between the pedestrians not only results in larger interaction

accelerations originated from r0, but also increases its significance for the behaviours.



Chapter 6. Investigating microscopic behaviours with calibration 151

For other less dense situations any value of r0 combined with a sufficiently large value

of a0 is enough to create the necessary interaction accelerations.

Lateral avoidance a1 and r1

Even if it was expected that most of the experiments, that are predominantly composed

by unidirectional flows, would not deliver significant calibrations, for the parameters

dealing with lateral avoidance it was surprising that the bidirectional, crossing and

interaction experiments also had few significant calibrations.

The majority of the significant calibrations for the bidirectional occurred in higher

densities. Furthermore, the trajectories that resulted in significant calibrations ended

with 23% more lateral movements than the rest of the trajectories. Similar situations

but in less amount, occurred with the crossing and interaction experiments. This sug-

gests that there were not enough frontal collision situations resulting in lateral avoid-

ance movements. Therefore, poorness of data on frontal collisions caused the low

amounts of significant calibrations.

We extended this investigation by comparing the log-likelihoods of the calibration ob-

jectives with and without these parameters. We modified Nomad excluding a1 and

r1 (restricted model) and calculated the log-likelihood for each optimal parameter set

estimated in these four experiments.

To test the relevance of these parameters for the model we applied the log-likelihood

ratio test as presented in section 6.2.1. The test compares both models with 95 %

confidence and m = 10−8 = 2 degrees-of-freedom.

By removing these parameters from Nomad we would expect two things to happen

with the log-likelihoods: a small variation for the trajectories that presented no signi-

ficant calibrations and a large variation for the trajectories that presented at least one

significant parameter. This should result in rejecting the null hypothesis of the log-

likelihood test that states that the unrestricted model is not significantly better than the

restricted model, in similar amounts to the percentage of significant estimations.

However, table 6.10 shows a surprisingly high level of rejection indicating that even

if the parameter is not significant any value different than zero (that is the equivalent

of removing it) improves significantly the simulated behaviour. The second column

shows the percentages of log-likelihood amount of trajectories in which the log-likelihood

of the unrestricted model is larger than the restricted model. The third column shows

the percentages of significant calibrations of both parameters serving as comparison to

the log-likelihood tests.

The large rate of success in the likelihood-ratio tests gives a solid indication that these

parameters are relevant for the model. The reasons for the low amount of significances

are specific for each flow. As we saw in the discussions about the parameter values,

the bidirectional flows are similar to unidirectional flows distributed over lanes. These

large amounts of leader-follower behaviour diminishes greatly the frontal conflicts.
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Table 6.10: Results of the log-likelihood ratio test between the unrestricted model

and the restricted model without a1 and r1. The table also shows the amount of

times that the log-likelihood of the unrestricted model is larger than the restric-

ted. The last column shows the percentages of significant calibrations of both

parameters.

log-likelihood log-likelihood significant

test success (%) unres.>rest. (%) estimations a1 (%)

bidir 66 88 7

cross 53 89 2

interBidir 80 92 8

interCross 88 98 5

Obstacle Avoiding parameter aW

The obstacle interaction strength aW responsible for the interaction behaviour with

obstacles proved to be very difficult to calibrate for the evacuation experiments. The

reason is that there were very few situations in which pedestrians were close to the

obstacle walls.

Figure 6.7 shows the funnels created by the trajectories that prevented wall interactions

for the evacuation experiment with homogeneous population and no urgency (evacHo-

LoSt) as well as the complete trajectories of the bottleneck experiments. The plot

clearly shows that very few trajectories from the evacuation experiment are following

the walls and that that exit door gives only few trajectory positions that could be used

for the calibration.
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Figure 6.7: Trajectories of the experiments used to estimate the parameter aW

(interaction with obstacles).

The calibrations involving the bottleneck experiment obtained better results. However,

the figure shows that also not many pedestrians were close to the lateral walls. Most of

the interactions with the walls occurred in the vicinity of the corridor entrance during

conflicts with other pedestrians.

Not surprisingly the trajectories inside the corridor produced the largest amount of sig-

nificant calibrations of aW. In the bneckDown trajectories, pedestrians were constantly
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in the vicinity of the walls. However, the relatively low amount of 28% of significant

calibrations can be attributed to the fact that pedestrians would only interact with the

wall in the not so common situations of conflicts with slower pedestrians in front. This

is a consequence of the lateral organisation arising from the zipper effect mentioned in

section 2.3.5 and in figure C.1.

6.4 Influence of type of flow on pedestrian behaviours

In this section we will discuss to which extent we can identify differences in pedestrian

behaviours due to the different type of flows. Each experiment has a distinct walking

configuration and different density patterns. We are going to show how these aspects

create significantly distinct behaviours.

In this section we show that different types of flow result in parameter samples that

are statistically different, that is, these samples cannot be considered to be realisations

of the same distributions. For this we use the Kolmogorov-Smirnov goodness-of-fit

testing. We calculate the sum of the KS Statistics ST as defined in section 6.2.2 to

obtain an indicator of the similarity between behaviours encountered in the flows.

Table 6.11 presents the amount of times that each pair of samples have confirmed the

null hypothesis of the KS tests (the samples are from the same distribution). The last

column shows the percentage of times the test has rejected over the total amount of

tests. Values close to 0% express a large influence of the traffic flows in the walking

behaviours.

Table 6.11: The amount of positive results of the KS tests for pairs of parameter

samples for each experiment type. The last column shows the percentages for

each type of experiments of the positive results from the total amount of tests.

parameters

pedestrian

max # path interactions % of positive

tests follow ped influence antici- KS results

avoid area pation

experiments τ a0 r0 c−0 c+0 ief ieb tA

normal 12 0 1 4 3 3 2 0 2 19

evacuation 6 3 3 6 4 6 6 4 5 77

interaction 2 0 0 1 1 0 0 0 29

The results show clearly that the walking behaviours in each experiment from the nor-

mal and interaction experiments are different from each other. The contrary can be

confirmed for the evacuation experiments, for which statistically can be indicated that

the behaviours along the experiments are similar. These results support the assumption
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that differences between the evacuation experiments are not significant and are ac-

counted for by the other experimental variables: population composition and urgency

levels. These are discussed in section 6.5.

Table 6.11 shows results from the samples of parameters that had enough significant

estimations to be compared. Therefore, no samples of the a1, r1 and aW parameters

were included in this section (see table 6.6). In the following we will discuss the details

of the results for the normal and interaction experiments.

6.4.1 Normal experiments

Table 6.11 shows that the five experiments presented no samples of τ and only 1 for

a0 were significantly similar. These parameters as described in chapter 6.2 determine

the intensity between the two components, path following and pedestrian interactions

and are very determinant for the behaviours predicted by their components. The fact

that all samples are significantly different suggests large differences between their path

following and pedestrian avoidance behaviours.

Table 6.12 contains the results of the similarity statistics that are the sum of the KS

distances of every parameter of a pair of normal experiments. The table shows that

in general the experiments display a similar value of the ST . However, experiments

bidir and unidir presented a much smaller value of the ST indicating that these two

experiments present most similar behaviours. This is in agreement with the calibration

results shown in section 6.3 and confirms that the occurrence of the self-organising

lanes in the bidirectional flow effectively put most pedestrians into a follower and

leader situation similar as in unidirectional flows.

The largest statistics occurred between experiments unidir, bidir and cross, but the

value was not significantly larger than the other values.

Table 6.12: The sum of all KS distances (ST ) for the normal walking experiments.

The bold values present the lowest and highest values of ST .

experiments bidir unidir cross bneckDown bneckUp

bidir 0.00 1.21 1.81 1.75 1.60

unidir 0.00 1.88 1.67 1.60

cross 0.00 1.61 1.50

bneckDown 0.00 1.63

bneckUp 0.00

The similarity between the bidir and unidir samples can be seen in figure 6.8 that

shows the plots of the distributions of the significant calibrations of the τ, a0 and r0.
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Figure 6.8: The distributions of the significant parameters τ, a0 and r0 for the

normal experiments.

6.4.2 Interaction experiments

The interaction experiments showed a very large value of ST even without a compar-

ison between the samples of r0 that had no significant values for the experiment inter-

Bidir. Only two parameters that control the shape of the influence area (c−0 and c+0 )

presented samples that could be attributed to the same distribution. The other samples

did not reject the KS tests indicating that when walking individually the angle of ap-

proach causes different behaviours. This corresponds with the normal experiments

where the highest differences occurred between the unidir, bidir and the cross.

Table 6.13: The similarity statistics ST for the interaction experiments.

experiments interBidir interCross

interBidir 0.00 2.37

interCross 0.00

6.5 Impact of population composition and urgency levels

Results in table 6.5 show that the composition of the population and the urgency affect

the behaviours. If we compare the experiments with the same population composition

we observe that the increase of urgency to Hi creates pedestrians that follow more their

paths (smaller τ) but they react more to the surroundings (larger a0).

r0 is not much affected. The parameter differences are smaller for the increase of

heterogeneity in the population (Ho → Het), not allowing for a significant conclusion

about its influence. Table 6.14 shows the relative differences between the parameters

for the same population composition and varying the level of urgency and for the other

way around.

The evacuation experiments gave a small percentage of rejection of the null hypotheses

indicating that the distributions are similar (table 6.11). The two parameters that failed
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Table 6.14: Parameter differences for τ, a0 and r0 for the evacuation experiments

with different levels of urgency and population composition

experiment
difference (%)

τ a0 r0

Urgency Homogeneous -19 11 0

Lo → Hi Heterogeneous -17 24 -3

Composition Lo urgency -6 -7 7

Ho → Het Hi urgency -5 9 3

most of the KS tests were τ and a0 (three times each). This is in agreement with the

large differences in the average τ and a0 values discussed in section 6.3. In this section,

we compare the evacuation experiments according to the similarity of all samples.

The 23% of rejections for the evacuation experiments can be attributed largely to the

differences arising from the population composition and to a smaller extent to the ur-

gency level in agreement with the empirical analysis from the experiments in Daamen

and Hoogendoorn (2009a). When analysing the results from table 6.15 we find evid-

ence that both variables contribute to differences in behaviours. The effect of urgency

is different for the populations.

Table 6.15: The similarity statistics ST for the evacuation experiments.

experiments evacHoLoSt evacHoHiSt evacHetLoSt evacHetHiSt

evacHoLoSt 0.00 1.11 1.42 1.80

evacHoHiSt 0.00 1.43 1.33

evacHetLoSt 0.00 1.36

evacHetHiSt 0.00

The homogeneous adult population presented the smallest value of ST = 1.11 for the

two urgency levels (evacHoLoSt x evacHoHiSt) suggesting that the urgency is not in-

fluencing their behaviours very much. This seems to contradict the results for the aver-

age parameter values of τ and a0 as discussed in section 6.3. However, the samples of

τ and a0 did not produce very large KS statistics in the tests and the similarity between

the other parameter samples of these two experiments is very high compensating for

these two parameters. Therefore, we conclude that urgency must be affecting the be-

haviours, but not equally in all parameters.

The heterogeneous population (evacHetLoSt x evacHetHiSt) has a larger value of ST =

1.36 indicating that the induced urgency creates different responses for the different

age groups that compose the population. These responses increase the differences in

the average behaviours reaffirming the determinant role of heterogeneity in the nature

of pedestrian flows as discussed in chapter 2.

When we compare the different pedestrian compositions for the same urgency level

we obtain results that do not differ much: evacHoLoSt x evacHetLoSt and evacHoHiSt
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x evacHetHiSt have similar values of ST = 1.42 and 1.33 respectively. This indicates

that the differences between the populations are more determinant than the urgency for

the differences of the behaviours. However, the smaller difference for the high urgency

suggests that urgency exerts a tendency of uniformity in the behaviours as we observed

in section 6.3.

ST = 1.80 was the largest value and it occurred between the experiments evacHoLoSt x

evacHetHiSt indicating that the effect of both variables reinforce each other in creating

different behaviours.

6.6 Influence of traffic conditions on pedestrian beha-

viours

In this section we will analyse the variation of the parameter values with different

traffic conditions. For simplicity we use the average walking speeds as a proxy for the

local conditions. The analysis is made with plots with the average parameter values

for speed intervals for the five normal experiments. For readability, we will always

distribute the five plots over two figures.

6.6.1 Path following parameter

The plot of the acceleration time τ on the left side of figure 6.9 suggests a sigmoid type

of curve in which for high and low speeds τ is constant. The values of the plateaus are

different for the two experiments.
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Figure 6.9: The average values of τ in the speed intervals.

The upstream bottleneck experiment presents an initial period of free flow until the

bottleneck saturates at which moment pedestrians walk in congested flow. In the initial

period, pedestrians are walking freely and behave similarly as those in the unidirec-

tional flow. This is reflected by the low values of τ necessary for pedestrians to keep

close to their desired paths and free-speeds. At this initial period the values of τ are
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very similar to those of the (almost constant) unidirectional and bidirectional flows

shown in the right plot in figure 6.9.

When the bottleneck starts getting oversaturating, pedestrians reduce their speeds and

have more interactions. This happens around v = 1.1m/s. Trajectories in these situ-

ations start being calibrated with larger τ to allow for the slower speeds. When the

congestion is settled, trajectories result in similar high values of τ creating the high

plateau.

The crossing flow shows a similar behaviour but the values of τ in both plateaus are

higher. This reflects the differences in the type of flows. The crossing flow requires

more change in walking directions, therefore τ must be higher to allow the deviations

from the desired paths, even for higher speeds. It is not certain if the top plateau repres-

ents the saturation of the crossing flow because the speeds are still high. However, it is

expected that saturation would occur at higher speeds given the complex maneuverers

required in the crossing interactions.

We discussed in section 6.3 the reasons for the higher values of τ for the downstream

bottleneck. Interestingly, τ remains high and practically constant for the whole speed

range. This indicates that the conflicts imposed by the walls and the slower pedestrians

have similar effects requiring large variations of the longitudinal accelerations.

6.6.2 Pedestrian avoidance parameters

The three experiments on the left plot of figure 6.10 suggest that the interaction strength

a0 varies according to ‘U’ shapes. The minimum values of a0 are located roughly at

1.1m/s corresponding to the beginning of the saturation for the upstream bottleneck

flow.
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Figure 6.10: The average values of a0 in the speed intervals.

For the upstream bottleneck, the ‘U’ shape reflects three distinct situations. During

free flow a0 is high to compensate larger distances. When speeds decrease, a0 also

decreases preventing the interaction forces from increasing too much. The minimum

value of a0 coincides with the beginning of the saturation of the bottleneck. After this
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moment, pedestrians recognise the saturation ahead and anticipate the congestion by

walking slower than they would in the same densities (Duives et al. (2014a)). The de-

celeration due to the anticipation results in larger a0. With the distance to the congested

flow diminishing due to the spill-back the deceleration is more intense increasing a0.

This stops when the whole flow is congested and a0 practically stays constant prevent-

ing further increase of the interaction accelerations.

The curve for r0 at the left of figure 6.11 for the upstream bottleneck has approximately

the opposite shape of a ‘U’ with the maximum around 0.8m/s. The curve shows how

r0 starts from a large value in free flow and increases slightly to values close to those of

the bidirectional and unidirectional flows. When the saturation occurs around 1.1m/s

r0 grows rapidly showing the increase of sensitivity with distance required for the

anticipation. After the flow is congested r0 decreases rapidly indicating an increase in

sensitivity to nearby pedestrians.
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Figure 6.11: The average values of r0 in the speed intervals.

The shape of the crossing flow a0 curve may indicate a similar anticipation mechanism

due to saturation of the area of conflict. However, the drop appears to occur at a higher

speed around 1.4m/s. Unfortunately, there was not a single sample of r0 with more

than 5 significant parameters for the crossing flow.

The downstream bottleneck flow presents a more extreme version of the ’U" shape

curve for a0. Inside the corridor a0 and r0 are large in free flow and both decrease

with lower speeds preventing large interaction accelerations. The fact that a0 reaches

a minimum at exactly the same speeds as the for the upstream bottleneck, suggests the

same anticipation mechanism. Inside the corridor, pedestrians see slower pedestrians

ahead and decelerate to avoid collision, thus increasing a0. r0 stays almost constant for

a range around 0.8m/s. We suspect that r0 would also decrease if slower speeds would

have been attained.

a0 is much larger for the downstream bottleneck flow, because of the proximity of the

walls inside the corridor. Natural variations of movements at all speeds require that

pedestrian and obstacle interaction accelerations act like spring forces damping the

movements, thus requiring larger a0 than in situations without walls. This explains the

positive correlation between a0 and aW.
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The unidirectional flow shows a diminishing trend of a0 with decreasing speeds that

resembles both bottlenecks and the crossing flow. r0 stayed at a large value also in

agreement with the other flows. Unfortunately the speeds never got less than 1.1m/s

to eventually reveal the anticipation mechanism.

The bidirectional flow presents a small increase of a0 with slower speeds. It is not

clear if this variation is connected to the appearance of the self-organised lanes where

pedestrians are less free and react to the leader in front. Nothing can be interpreted

from the r0 curve with only three points.

6.6.3 Influence area parameters

Figure 6.12 shows that the values of c−0 for all experiments stayed close to unity in-

dicating that pedestrians are equally aware of what is happening in backward lateral

positions. However, the c+0 showed some small variations that we will discuss in the

following.
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Figure 6.12: The average values of c+0 and c−0 in the speed intervals.

The bidirectional and crossing flows resulted in values of c+0 ∼ 1.0 for all speeds. The

bidirectional has only three points not allowing for trends to appear. The values of

c+0 indicates that for the large speeds in the experiment, pedestrians are considering

their surroundings to avoid collisions. The layout of crossing paths require scans in all

directions regardless of the speeds, thus resulting in a constant c+0 = 1.0.
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The upstream bottleneck flow presents a sharp decline of c+0 for speeds below 1.4m/s.

Above this speeds pedestrians are looking around for potential conflicts. However,

when more pedestrians are present, the anticipation mentioned in the previous sections

causes a focusing in pedestrians in front of their paths decreasing c+0 . This happens for

speeds until around 1.1m/s when the bottleneck saturates. In congestion pedestrians

continue to react more to the leader keeping c+0 values below 1.

The downstream bottleneck, presents c+0 values above 1.0 indicating that when there is

interaction pedestrian are staggered in the ‘zipper’ layout needing to scan their sides.

It is not so clear why the curve presents a decrease of c+0 for high speeds, given that

there are no lateral interactions in the corridor at such speeds. The lowest point is in

agreement with the anticipation mentioned in the previous section and the increase of

c+0 for lower speeds is due to lateral proximity between pedestrians.

The results for the unidirectional flow, suggest a decrease of c+0 for speeds above

1.1m/s in accordance to the upstream bottleneck flows.

It would be expected that the influence area extension at the front would be increasing

with the speeds. However, this relation seems to be significantly occurring only for

the downstream bottleneck and the unidirectional flows. The upstream bottleneck also

shows this trend, but not very accentuated.

The values for ieb are very high, suggesting that they do not reflect reality. Further-

more, we would expect that ieb would decrease with speeds but we see this tendency

only with the crossing flow. We discussed in subsection 6.3.1 that this reflects a defi-

ciency of the model rather than pedestrian behaviours, a necessity of an extra forward

acceleration when pedestrians are followed at short distances.

6.6.4 Anticipation time parameter

We saw in the discussions in section 6.3.1 that tA did not display much variation with

the types of flow. In this section we show that they also do not show much variation

with speeds. All experiments apart from the upstream bottleneck, experiment show a

almost flat values of tA.

We suggested in the discussion about the interaction parameters that pedestrians were

adapting their speeds before reaching the end of the spill-back when the bottleneck was

saturating at speeds around 1.1m/s. Figure 6.14 for the bneckUp shows a increase of

tA before saturation and a decrease thereafter, providing evidence for the anticipation.

6.6.5 Obstacle Avoiding acceleration

The curves for the two bottleneck experiments presented remarkable similar results

even though these are totally different situations.
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Figure 6.13: The average values of ief and ieb in the speed intervals.
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Figure 6.14: The average values of tA in the speed intervals.

In the upstream bottleneck experiment pedestrians walking in free-flow conditions,

only interact with the walls when they are entering the corridor. Inspecting the tra-

jectories that resulted in large values of aW we observed that most displayed oblique

approaches to the entrance of the corridor. Johansson et al. (2014) show that the path

following component similar for Nomad and Social Force Models does not provide

correct amounts of drifting when compared with observations. Therefore, large values

of aW for high speeds are compensating the low values of τ as shown in figure 6.9.

For the downstream bottleneck experiment the situation is different. At free-flow

speeds pedestrians are very isolated and only obstacle interaction accelerations are

responsible to natural oscillations in lateral directions. Since the shy away distance to
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the walls is large (equation (3.12)), aW increases to produce the lateral accelerations.

At lower speeds, the distance to the walls do not vary much. A fairly constant value of

aW ∼ 9 is enough to avoid collisions with the walls in both experiments.
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Figure 6.15: The average values of aW in the speed intervals.

6.7 Conclusions and implications

The main contribution of this chapter is the extensive calibration of pedestrian beha-

viours using multiple sets of trajectories from several experiments, including different

flow configurations, population characteristics and traffic conditions. The results of the

calibrations were used to investigate pedestrian behaviours and the general applicabil-

ity of the Nomad model.

What is innovative in this chapter is the analysis of pedestrians behaviours using mul-

tiple sets of trajectories derived from several experiments. The calibration methodo-

logy developed in chapter 4 was used to calibrate individual parameter sets of ped-

estrians and the obtained parameter samples were used to investigate the sensitivity,

correlation and distributions of the different parameters. Several behavioural findings

based on the statistical properties of the parameter samples are used to propose modi-

fications in the Nomad model, that could also benefit other walker models.

6.7.1 Conclusions

The extensive significance analysis showed that all the Nomad parameters are import-

ant. The outcomes of the parameter values and their significance was significantly

influenced by the walking regimes and types of flow. This outcome reveals the import-

ance of using several types of flows to investigate walker models and its components.

We obtained few significant correlations between parameters of different components.

The most important was the strong correlation between interaction strength a0 and the

obstacle interaction strength aW. In the only experiment that subjected pedestrians to
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long periods of close proximities with walls, these parameters correlated positively.

suggesting that it would be possible to eliminate aW.

Section 6.3 showed that in high densities the pedestrian radius for circular pedestrians

should have the dimensions of the body depth and not from the body width. For models

using circular pedestrians these results suggest that for the simulation of dense flows

the pedestrian radius should be set closer to the body depth instead of the body width to

compensate for the overestimation of distances when pedestrians are walking behind

each other. Using these smaller values also approximate the real lateral distances. Real

pedestrians are ellipses and in dense situations pedestrians assume staggered positions

that resemble the zipper-effect found in narrow corridors.

Smaller radii are easy to introduce, but will only be effective if the calibration of the

model parameters uses the smaller radius. Alternatively the model could be improved

by introducing elliptical body shapes instead of circular bodies.

Influence of type of flows

After the extensive calibrations we obtained significant differences between the es-

timated parameters for the experiments (section 6.3). We discussed the significant

differences due to the directions pedestrians walk (normal experiments) and walking

characteristics (normal and evacuation behaviours).

We showed that bidirectional and unidirectional flows presented the smallest differ-

ences between the calibrated parameters. Pedestrians in these type of flows walk

mostly along their preferred paths and do not need to make large deviations. The ma-

jority of the pedestrians in bidirectional flows are walking inside lanes, clearly indic-

ating positive effects of self organisation. This suggests that parameter sets calibrated

for bidirectional flows could potentially be used for unidirectional flows (this result is

further supported by the validation results in section 7.4.2).

However, the same cannot be said for the other normal walking flows. Particularly the

crossing flow displayed the largest differences to both bidirectional and unidirectional

flows. The same was obtained for the interaction experiments.

Pedestrians in evacuations walk in a constrained situation and with a larger sense of

urgency. These create less possibilities for pedestrians to manoeuvre and resulted in

the different sets of parameters that these experiments generated when compared to

the other experiment groups. Furthermore, the tests comparing the similarity of the

samples of parameters showed small variations between the four evacuation experi-

ments indicating the similarity between the congested evacuation flows.

This relation between the estimated parameters and the type of flows is common to

traffic models that describe complex and non-linear phenomena (Van Lint (2009)). The

obvious consequence for walker models is the specialisation of the calibrated paramet-

ers to the conditions that were present in the calibrations. This strongly points to the
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necessity to submit the walker models and the parameter set that will be used in generic

situations to multi-scenario validations that take several flow variables into considera-

tion.

Importance of population composition and urgency levels

We showed that the population composition and the level of urgency have a significant

effect on the outcomes of the calibrations (section 6.5). Calibration with homogeneous

population resulted in similar parameter samples for two urgency levels. However, we

observed that urgency did affect the forcefulness of the pedestrians. The urgency made

pedestrians deviate less from their desired paths and simultaneously they were reacting

more with the nearby pedestrians. These effects of urgency show the importance of

human factors into the behaviour of pedestrians. Models developed for simulation

of evacuations and normal walking should be calibrated with data obtained in these

different situations.

The parameter samples for the same level of urgency, but with different levels of

heterogeneity, were significantly different. This shows the importance of calibrating

walker models with heterogeneous populations for accuracy. Therefore, models must

be prepared to accept parameters that are represented by distributions. The Nomad

model is capable to generate pedestrians with parameters generated from normal dis-

tributions.

Influence of traffic conditions

The results from section 6.6 show that pedestrian behaviours vary significantly in dif-

ferent traffic conditions and that the estimated parameters reflect these differences.

Particularly, the estimated parameters of the upstream bottleneck experiment present a

significant dependency to the average speeds of pedestrians in the form of (relatively)

smooth curves. This experiment also showed the widest range of observed speeds.

For most parameters these curves presented inflexions at a critical speed vc ≈ 1.0m/s.

This speed was shown in Hoogendoorn and Daamen (2005a) to correspond to the ca-

pacity speed that separates the two regimes of free-flow and congestion. Therefore, an

easy and effective way of improving walker models is to incorporate parameters that

are dependent of different regimes. Eventually, a more complete solution is to define

the parameters as functions with the local density as independent variable (θi = f (k)).

These functions account for all regimes from free flow until congestion improving the

accuracy of the model in a wide range.

6.7.2 Findings

This chapter shows that the hypothesis of structuring walker models in behavioural

components is correct. Parameters of the different components did not present enough
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correlations to reject this hypothesis. All parameters of the Nomad model could be

calibrated, and are therefore necessary to be included in the model. Results of the

calibrations from trajectories of different experiments show that flow configurations

have a strong influence on pedestrian behaviours, and resulted in different parameters.

Pedestrians in unidirectional flows behaved similar to pedestrians in bidirectional flows,

showing that lane formation effectively separates the area in unidirectional regions. In

congestion, pedestrian behaviour is quite different: in low densities pedestrians are

more reactive due to the presence of other pedestrians, while in congestion pedestrians

tend to follow other pedestrians and do not strain from their paths. The latter is also

shown in the clear relation between some of the parameters and the (local) speed.

Population composition (heterogeneity) and urgency have significant impact on ped-

estrian behaviours. In general the increase of urgency turns pedestrians into more

forceful walkers. They tend to stay closer to their desired paths and simultaneously

they are more reactive to nearby pedestrians. This effect is enhanced if the heterogen-

eity is also increased. The overall effects of urgency and heterogeneity explains the

loss of efficiency due to heterogeneity (Campanella et al. (2009a)) and due to the so

called freezing-by-heating effects (Helbing et al. (2000b)).

Pedestrian avoidance behaviours also vary according to walking regimes. Most be-

haviours were shown to vary with speeds and some presented a distinct change at a

critical speed that corresponds to the saturation of the bottleneck.

6.7.3 Implications

We found that the crossing flow experiments obtained less significant calibrations. We

attributed to poorness of data due to a limited amount of interactions in the relatively

small walking area and low densities encountered in the flows. This shows that em-

pirical data must be composed by long trajectories that contain sufficient behavioural

information.

We summarise the results with implications for the development walker models:

1. The use of body depth instead of width for models using circular shapes or the

introduction of elliptical bodies in simulations of dense situations.

2. Introduction of heterogeneity in the input of the models.

3. Introduction of urgency for evacuation simulations.

4. Determination of parameters as functions of the local conditions such as current

speeds or local densities. This would incur in a regime based model.

The previous list makes it clear that the level of complexity of walker models would

increase even further. The current models with large amounts of variables are already
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very difficult to calibrate and validate and this goes beyond the capacities of normal

users. However, the fundamental question is: is the effort of improving the microscopic

characteristics of such models necessary?

In this chapter we focused on the microscopic accuracy of walker models. However,

walker models are predominantly used to assess macroscopic traffic characteristics

such as capacities, egress times, area use and occurrence of bottlenecks. Being this

the case, we may be content to show that current models are able to predict macro-

scopic indicators within accepted levels of accuracy. Chapter 7 does that for Nomad

by comparing the accuracy of several parameter sets including those estimated in this

chapter.
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Chapter 7

Investigating the accuracy of

multi-scenario calibrations

The aim of this chapter is to investigate the hypothesis proposed in chapter 4 that

parameter sets calibrated with several situations represented by different flows perform

better than parameter sets calibrated with a single situation. The hypothesis aims at

obtaining parameter sets that are intended for general use.

To investigate the hypothesis, we compare the accuracy of parameters resulted from

multi-scenario calibrations against those resulting from single-scenario calibrations. In

the remaining of the chapter we will abbreviate the name of the calibrated parameter

sets to multi sets (for multi-scenario) and single sets (for single-scenario).

The single sets are originated from two different calibration procedures. The first single

sets are calibrated in chapter 6. These parameter sets represent an average of individual

behaviours for the flows that they were calibrated. The second single sets are calibrated

using travel time distributions, resulting in sets that are specialised in predicting a

macroscopic characteristic of the flows.

The two procedures use the bidirectional, unidirectional and narrow bottleneck flows

from the experiments introduced in chapter 6. These calibrations resulted in a total

of six single-scenario parameter sets (two for each flow). Two multi-scenarios calib-

rations are performed resulting in two multi sets. The first uses the travel time distri-

butions of the three flows simultaneously in a three scenario calibration. The second

multi set combines the travel time distributions with an additional indicator based in

the u× k relation in a total of six scenarios.

We argued in chapter 4 that the validation of models must also include several situ-

ations in what we called multi-scenario validation. The validations use the same ex-

perimental data from the calibrations and a additional crossing flow not used in any

calibration. This flow is also originated from the experiments introduced in chapter 6.

These flows represent the most commonly flows occurring in pedestrian facilities.

169
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The scenarios use the following performance indicators: u× k relation, travel time

distribution and bottleneck capacity. The indicators were chosen because they provide

the required data for analysis of pedestrian flows (TRB (2010)). The multi-scenario

validations result in average errors of these indicators. The capacity is only included in

the assessment with the narrow bottleneck flow that presents congestion. We use these

six single sets and two multi sets in three assessments of the parameter accuracies.

The first compares the performance of the multi sets with the performance of the single

sets on the flows that were used to calibrate the single sets. We show that the multi sets

are as accurate as single sets. These results show that it is not necessary to calibrate

parameter sets for every specific situation (specialised sets).

We also show that the single sets resulting from the trajectory based calibration are

inaccurate in predicting macroscopic characteristics of flows leading to the conclusion

that averaging individual behaviours is not a good strategy for predicting macroscopic

indicators.

The second compares the performance of multi sets and single sets over several flows

simultaneously. The improved results in favour of the multi sets confirm the hypothesis

that multi-scenario calibrations result in parameter sets more appropriate for general

purpose applications. This is in agreement with the investigation in section 5.4 for

synthetic trajectories.

The third compares the results of the two multi sets that were obtained with the same

reference data from the same flows. We show that the multi set that resulted from

two different indicators is almost two times more accurate than the multi set obtained

with one indicator. Furthermore, the most accurate multi set also presented realistic

movements indicating that Nomad can be applied with this parameter set for real case

applications.

Three questions referring to the multi-scenario calibration are asked in section 7.1.

Details of the multi-scenario calibrations and the macroscopic indicators are presented

in section 7.2. The assessments set-up, explaining the components of the scenarios and

the descriptions of the simulations are presented in section 7.3. Results are presented

and discussed in section 7.4.

The chapter ends with the overall conclusions in section 7.5, a list of the findings and

its implications for validation of walker models in general.

7.1 Research questions related to multi-scenario calib-

rations

This chapter argues that if no parameter set is calibrated for a specific situation (spe-

cialised set), then the set to be used for predictions must have shown to perform well
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in various validation assessments utilising several walking situations giving a measure

of general usability.

The first question that arises from this hypothesis relates to the presumed loss of accur-

acy of multi sets in comparison with single sets in the situations used to calibrate the

single sets: To what extent multi sets are less accurate than single sets in the specific

situations used to calibrate the single sets? This question addresses the necessity of

calibrating sets for specific situations (specialised sets).

The second question investigates the claim made by the hypothesis that multi-scenario

calibrations produce sets for general use: What are the benefits of using multi sets in

the combined accuracy of many flows?

The third question addresses the overall performance of the multi sets: What is the

influence of indicators in the composition of multi-scenario calibrations? This ques-

tion does among other things evaluate the usability of Nomad in simulating complex

situations.

7.2 Parameter sets

Eight parameter sets are used in this chapter that deals with the influence of multi-

objective scenarios in the calibration of parameters. The first group of parameters

were calibrated in chapter 6. These parameter sets are the average of the samples of

calibrated parameters using the trajectory based scenarios presented in chapter 5. The

scenarios use the acceleration prediction errors as indicators, thus being distinguished

by the suffix ‘Ac’.

For this chapter we use three parameter samples estimated with the normal bidirec-

tional, unidirectional and narrow bottleneck upstream experiments (table 6.5). In

the remainder these three single-scenario parameter sets are named bidiAc, uniAc,

bneckAc.

The other five parameter sets use macroscopic performance indicators in the calibration

scenarios. Two macroscopic indicators are used: differences in travel time distributions

(TT) and a Fundamental Diagram indicator (FD) represented by the u× k relation.

Three single-scenario sets and one multi-scenario set use the travel time indicator (suf-

fix ‘TT’). The single sets use the same experiments as the ‘Ac’ sets being called: bid-

iTT, uniTT and bneckTT. The travel time multi-scenario set is multiTT and the other

multi-scenario set uses both macroscopic indicators being named multiTF. The eight

parameter sets are presented in table 7.1. All the calibrations applied the methodology

presented in chapter 6 and are explained in the following subsections.
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Table 7.1: Overview of the parameters sets used in the validations in this chapter.

pedestrian

path interactions obst-

follow ped influence lateral antici- acle

avoid area avoid pation

τ a0 r0 c−0 c+0 ief ieb a1 r1 tA aW

bidiAc 0.32 2.02 1.24 0.94 1.01 1.30 1.98 7.08 0.69 0.53

uniAc 0.27 2.39 1.45 1.01 1.03 1.42 1.82 0.61

bneckAc 0.57 2.84 1.06 0.99 0.96 1.36 1.14 5.97 0.62 0.60 9.02

bidiTT 0.50 0.67 0.07 0.84 0.24 0.69 0.55 0.83 0.58 0.25

uniTT 0.79 1.09 1.54 1.97 1.36 1.88 1.53 0.99

bneckTT 0.77 2.22 1.42 1.47 1.25 0.90 0.44 0.95 0.12

multiTT 0.26 1.50 1.38 1.84 0.72 1.55 1.45 0.92 1.44 0.14 0.14

multiTF 0.15 20.0 0.16 0.95 0.80 3.0 0.52 1.80 0.22 0.013 10.0

7.2.1 Travel Time indicator (TT)

The objective function consisted of the Kolmogorov-Smirnov distance (De,s(θi)) between

the travel time distributions. Figure 7.1 shows the representation of De,s(θi) for two

travel time distributions. This distance was then associated with the objective function

error (ε). However, during the try outs it was noticed that De,s(θi) would sometimes

not reflect properly the occurrence of non-realistic behaviour.
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Figure 7.1: The representation of the Kolmogorov-Smirnov statistics for two

travel time distributions.

Some combinations of parameters produce pedestrians walking erratically but eventu-

ally finding their way to the exit. In some cases the KS distances would not expose

these erratic behaviours because the travel time distribution would not necessarily be

too different from the empirical. Therefore, we introduced in the objective function

two penalties: due to differences between the exit time of the last pedestrian in the

simulation (|ETe −ETs|) and due to the amount of simulated pedestrians that exited

the area after the last time a real pedestrian exited the experimental area. The penal-



Chapter 7. Investigating the accuracy of multi-scenario calibrations 173

ties are described by exponential functions that increase the error significantly if the

differences become too large. Equation (7.1) and figure 7.2 show how the error is

calculated.

ε(θ) = De,s(θi)exp

( |ETe −ETs|
(0.5ETe)

)

exp

(

(Ae −As)

(0.05Ae)

)

(7.1)

where:

ε(θ) Objective function error for the simulation with parameter set θ.

De,s Kolmogorov-Smirnov distance between empirical and simulated travel times dis-

tributions.

ETe Exit time of the last pedestrian in the experiments.

ETs Exit time of the last pedestrian in the simulation.

Ae Total amount of pedestrians in the experiments.

As Amount of simulated pedestrians that exited the area at simulation time= ETe.

N

Ae

As

ETe ETs t

experiment

simulation

Figure 7.2: Representations of the cumulative distributions of the exit times.

The erratic movements due to very bad parameter sets created deadlocks or conges-

tion. Deadlocks caused more difficulties to the calibration process, especially with the

narrow bottleneck experiment. For a significant time no pedestrians would enter the

corridor and than suddenly the deadlock would solve and pedestrians would exit at the

end of the corridor. The variation of the KS distance would become highly non linear

and optimisation convergence was a problem. Therefore, we created a high penalty for

deadlock formation that is expressed by the differences in the amount of exit pedestri-

ans at the end of the experiments (ETe). The penalty represents an increase of 700%

of the KS distance for a 10% increase in As in relation to Ae.

In other situations congestion would cause many collisions slowing pedestrians for-

ward movement. These situations were not so extreme as with deadlocks and a smaller

penalty was introduced to the Kolmogorov-Smirnov distance. The penalty represents

an increase of 22% of the KS distance for 10% difference in ETs in relation to ETe.

The weights chosen for the penalties were arbitrary and tests with the synthetic data

from chapter 4 showed that the objective function successfully estimated the correct

synthetic parameters.
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7.2.2 Fundamental Diagram indicator (FD)

The Fundamental Diagram indicator, called the FD in the remaining, is the slope of

the u×k relation. We define the values of the slope over bins of density intervals equal

to 0.1 peds/m2. We assume that these density intervals represent particular walking

conditions that can be considered similar. Therefore, the slope of the u× k relation

can be approximated by the average speed in the bin. Preliminary tests showed that

intervals smaller than 0.1 peds/m2 were not necessary and often created empty bins.

The fundamental diagrams were obtained according to the definition by Edie (1963)

using the whole area to compute the densities (accumulation/walking area) and a time

aggregation interval of 1 second to compute the speeds. These choices diminish the

scatter and problems associated with density definitions (Duives et al. (2015)). We use

the u× k relation for the assessment because it is the most used of the relations for

pedestrian flows (Schadschneider et al. (2009)). Details of the u× k calculations can

be found in Campanella et al. (2009d). The mean curve and the two shifted curves

above and below the mean by the standard deviation are shown in figure 7.3.
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Figure 7.3: Speed-density plots for the experimental trajectories with the fitted

curves.

For a simulation s, each bin errorub
is computed according to:
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εub
=

usim −uexp

uexp
|b∈binss

with:

binss = bins on simulation s

u = average speed in bin b

The slope error for the simulation s is the average of the errors of all bins. Empty

bins were assigned usim = 0 generating εub
=−1. The same error was given to empty

experimental bins in the case that simulations generated higher densities than the ex-

periments. This prevents small slope errors when parameter sets correctly predict the

free-flow densities of the u×k relation but does not produce the densities in the conges-

ted branch due to incorrect high flow capacity. This strategy assumes that the demands

of the experimental and synthetic flows are similar.

εu(s) =
∑

binss

b=1 εub

binss
(7.2)

7.2.3 Parameter estimations using macroscopic indicators

The calibrations for the three single scenario and the the multi-scenario TT parameters

use the combination of the genetic algorithm with a simplex optimiser used in the two

previous chapters and described in section 5.2.8. The single TT sets were calibrated

with the error presented in equation (7.1) with the travel time distribution from the

experiments. The multiTT sets was calibrated similarly but with the sum of the errors

of the three experiments in a three scenario calibration.

The multiTF set was calibrated similarly but with the additional slope indicator. In

total the multi-objective was the sum of errors from six scenarios, two indicators for

each experiment.

A previously calibrated multi parameter set (Campanella et al. (2009c)) was used as

the initial seed in a local search interactive approach for the multiTF. The previously

calibrated set also used three flows and two performance indicators. However, because

it was resulted from a limited amount of iterations, it was considered a good candidate

to be improved.

The procedure initiated by varying every parameter from the seed around their values

while keeping the others fixed. The parameter that presented the largest improvement

was modified with the new value. The process repeated until no improvement could

be achieved after 11 cycles. The FD indicator for the narrow bottleneck experiment

produced the largest errors. Even though local search is not the most suited optimisa-

tion algorithm for non-linear search spaces the good assessment results obtained in this

chapter (table 7.8) indicate that the calibration succeeded in finding at least an accurate

local optimum.
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7.3 Validation procedure

The validation procedure applied in this chapter is an implementation of the methodo-

logy proposed in chapter 4. The multi-objective function is the average of the relative

errors of the scenarios. We propose a simple validation criteria based in the multi-

objective error. A parameter set is considered accurate if the multi-objective error is

smaller than 5%. For discussion purposes, we associate the range of errors into three

ordinal variables (table 7.2).

Table 7.2: The three score intervals for the errors of the quantitative indicators.

score interval

Bad 10% < error

Medium 5% < error ≤ 10%

Good error ≤ 5%

This validation aims at testing the influence of multi-scenario calibration and the usab-

ility of Nomad as an accurate predictor of pedestrian flows in complex pedestrian facil-

ities. Therefore, we need to validate the relevant behaviours found in these areas apply-

ing performance indicators that allow operational and planning analysis as defined in

TRB (2010). We choose the duration, characteristic and intensity of flows represented

by: travel times, u× k diagram and bottleneck capacity.

Pedestrian facilities such as train stations and airports will generally be composed by

flows that resemble those found in the flows from the four normal experiments used

for the calibration of individual parameters in chapter 6. In the next subsections we

describe the three performance indicators and the set-up of the validations used to

calculate the validation errors.

7.3.1 Performance indicators

Every validation scenario has one performance indicator as defined in chapter 4. The

average travel times and the slope of the u × k diagram are part of the validations

of all flows. The capacity indicator is only present in validations using the narrow

bottleneck experiment. Table 7.3 shows that we created 9 different scenarios and that

each parameter set is submitted to four different validations using 2 or 3 different

scenarios.

All indicators are formulated as relative errors as defined in equation (4.4). This allows

the direct calculation of the average of the scenario errors as the multi-objective of the

validations. The indicators are calculated over 30 different simulations of each flow to

account for the stochasticity of Nomad (section 7.3.2).
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Table 7.3: Overview of the experiments used in each validation assessment.

Experiments

Indicator
bidirectional unidirectional crossing narrow bneck

(bidir) (unidir) (cross) (bneck)

Travel times × × × ×
Capacity ×
Speed density × × × ×

Travel times

The travel time indicator (TT) is the difference between the average travel times of the

reference and simulated trajectories. The travel time error εT T is presented in (7.3).

εT T =
∑30

s=1 εTT (s)

30
×100 (in %) (7.3)

εTT (s) =
T T

sim −T T
exp

T T
exp |s∈Simulations

Table 7.4 shows the mean travel times T T
exp

for the four flows used in equation (7.3).

Table 7.4: Overview of the mean travel times T T exp for the four flows.

exp.
mean of std of

travel times (s) travel times (s)

bidir 7.8 0.9

unidir 7.2 0.7

cross 5.8 0.7

bneck 15.8 6.6

Fundamental diagrams

The fundamental diagram indicator εFD averages the slope indicator εu(s) for the 30

simulations (s ∈ S). The slope indicator was defined in equation (7.2).

εFD =
∑30

s=1 εu(s)

30
(7.4)
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Bottleneck capacity

The bottleneck capacity (C) is only evaluated with the narrow bottleneck experiment.

The capacity was calculated as the maximum flow in the entrance of the corridor (bot-

tleneck) during the congested period. For the purpose of the validation we need a

simple and consistent method for calculating the capacities.

The flows were calculated by counting a fixed amount of pedestrians and measuring the

time needed for the first and the last pedestrians to pass the cross section. The choice

of fixed amount of pedestrians instead of more common fixed time interval increases

the statistical significance of the measured capacities. Hoogendoorn (1999) points that

with fixed intervals, observations of traffic data show large variance. This happens

specially when the flows are not high. Low flows have a double effect of presenting

larger variations of speeds and smaller amounts of counts. Therefore, Hoogendoorn

(1999) proposes fixing the amount of observations (pedestrians passing the bottleneck

in our case) to keep the observations with comparable statistical significance.

This procedure has the advantage of being very simple. Basically it measures the

time that passed between pedestrian p and the pedestrian p+N, N being the size of

the batch. We measure the time passed for all pedestrians and the smallest time will

determine the maximum flow, thus the capacity. The choice of the batch size is very

important. If the amount is too small unrealistic high flows are measured. If too

many pedestrians are counted over a long period of time there is large variations in the

conditions.

To determine the size of the batch that reflects saturated conditions for the narrow

bottleneck experiment we created an iterative process that increased the batch size

progressively. We started with N = 10, and increased until the maximum difference

between two consecutive measures during the congested period was not larger than 5%

of the maximum flow. This error follows from the validation criteria in table 7.2. We

observed that smaller errors did not change significantly the capacity.

The smallest amount that fulfilled this criteria for the experiments was 50 pedes-

trians and the interval of time measured was tc = 30.7s resulting in a capacity of

qc = 1.63 peds/s. This value is consistent with the two results calculated with two

different and more complex methods in Hoogendoorn and Daamen (2005a) for the

same experiments: 1.56 peds/s for a distribution-based estimate and 1.61 peds/s the

Product Limit Method estimate.

The capacity estimator εqc
is the relative error of the capacities for each simulation

resulting from the procedure described above:

εqc
=

∑30
s=1 εqc

30
×100 (in %) (7.5)
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with:

εqc
=

qs
c −q

exp
c

q
exp
c

|s∈simulations

qexp
c = 1.63 peds/s

7.3.2 Simulation set-ups

Each simulation was set-up to resemble the original experiment: the same layout of

the walking area, the same inflow pattern and the total amount of pedestrians. The

inflows of the simulations were determined by counting the inflow of the experiments

over periods of 10 seconds.

Simulation runs for the quantitative validations

To account for stochasticity we performed 30 runs of simulations for each parameter

set. This number was determined to be sufficient to provide a statistical accuracy of 5%

using the procedure explained in section 5.2.4. The 5% threshold follows the validation

criteria established in table 7.2. Table 7.5 shows the 5% values of the average travel

times, bottleneck capacity and average speeds in the density bins.

Table 7.5: Overview of the statistical accuracy used to determine the amount of

runs in the validation mappings (the values shown represent 5% of the experi-

mental average values).

Experiments

Mappings bidirectional unidirectional narrow bneck

Travel times (s) 0.38 0.36 0.80

Capacity (peds/s) 0.080

FD: mean speed (m/s) 0.071 0.078 0.72

After running 30 simulations we could calculate the standard deviations of the indic-

ators and determine the minimum amount of simulation runs that would be enough to

satisfy the accuracy threshold. Table 7.6 shows that the worse results never required

more than 29 runs. The table also shows that the bottleneck experiment produced the

largest stochastic variation for all mappings, indicating that congested flows are more

affected by stochastic variations of the model.

7.4 Validation results

This section presents the individual scores of the indicators and discuss the perform-

ance of parameter sets over the different flows. Initially we will discuss the results of

the three indicators and than proceed in answering the research questions.
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Table 7.6: Minimum amount of simulation runs necessary for the validation map-

pings. Only the worse case per mapping is posted.

Mappings Experiment
Parameter Std deviation Actual amount

sets of mappings of simulations

Travel times bneck bneckTT 2.2 29

Capacity bneck multiTT 0.15 1

FD: mean speed bneck bneckTT 0.06 13

Examining table 7.7 with the summary of the validation results we see that there is an

agreement between the results of the indicators. Small travel time errors are accompan-

ied by small fundamental diagram errors and the opposite is also true. The agreement

between the errors is mostly visible in the narrow bottleneck flow where the capacity

errors are correlated with the travel time errors and the FD indicator.

This is coherent since travel times are directly related with situations represented by

the high density bins of the u× k relation and these presented the largest errors (not

shown in the table). Too small capacity as observed with the single sets resulted in

congestion setting sooner during the simulations. This increased the total occupancy of

the walking area, increasing the slope errors. These validation results are in agreement

with the discussions in chapter 4 about the difficulties to predict complex interactions.

The last column of the results table presents the overall score calculated according to

table 7.2. The overall results clearly indicate that the multi sets give better validation

results when compared to the specialised sets. We will discuss these results in detail in

the following sections.

The densities of the unidirectional flow are comparable to those of the bidirectional and

higher than those of the crossing flows (figure 7.3). However, the unidirectional flow

produces the best results. This indicates that the behaviours occurring in this flow are

less complex and therefore easier to be reproduced. We also observe that the narrow

bottleneck flow produced the lowest scores. This is due to the calibration dificulties

associated with higher densities such as the complexity of movements discussed in

chapter 5.

The crossing flow that presents novel situations to all parameter sets posed difficulties

to most sets. Only the multiTF resulted in a ‘Good’ score indicating that it can be

considered a general purpose parameter set.

The three ‘Ac’ parameters showed bad accuracy in all experiments. This shows that the

sum of individual behaviours does not result in an average pedestrian behaviour. This

was further supported by visual inspections of the flows produced with these paramet-

ers. The trajectories presented jagged and unnatural movements for most situations.

Given these bad results, we will not discuss these parameters in detail in this chapter.

The good validations of the bidiTT for the bidirectional, unidirectional flows and me-
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Table 7.7: Overview of all validation errors in percentage (%).

parameter travel fundamental
capacity

validation

exp sets times diagram errors score

εT T εFD εqc
εtotal

bidir

bidiAc -16 24 20 Bad

bidiTT 0 3 2 Good

uniTT 29 15 22 Bad

bneckTT 115 23 69 Bad

multiTT 5 4 4 Good

multiTF -1 3 2 Good

unidir

uniAc -14 13 13 Bad

bidiTT -4 4 4 Good

uniTT 0 4 2 Good

bneckTT -3 4 3 Good

multiTT 5 5 5 Good

multiTF 0 3 2 Good

bneck

bneckAc 214 25 -20 125 Bad

bidiTT 149 39 -34 74 Bad

uniTT 100 38 -20 52 Bad

bneckTT 156 40 -16 71 Bad

multiTT -4 9 1 5 Good

multiTF 6 8 1 5 Good

cross

bidiAc -17 21 19 Bad

uniAc -16 18 17 Bad

bneckAc 23 7 15 Bad

bidiTT 6 6 6 Medium

uniTT 26 27 26 Bad

bneckTT 11 7 9 Medium

multiTT 14 11 12 Bad

multiTF 2 4 3 Good

dium for the crossing flow show that in the density range of the experiments, the bi-

directional flow provides rich enough data to calibrate parameter sets. The other two

single TT sets produced good accuracy only on the unidirectional flow, making them

less suitable for single scenario calibrations.

The surprisingly bad result of bneckTT in the narrow bottleneck flow is caused by

the difficulty to obtain accurate calibrations for the type of conflicts that occur in the

entrance of the corridor as discussed in chapter 5. The travel time indicator could not

overcome these difficulties suggesting that it does not a good indicator to be used in

single calibrations involving complex situations.

We also made qualitative assessments about the quality of the movements resulted
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by the simulations. In general the movements generated by the single sets were not

realistic.

All single sets presented too many frontal collisions in the bidirectional flow and lateral

collisions in the crossing flows. In the congested part of the narrow bottleneck we

observed that for the uniTT and the bneckTT pedestrians would stay too far from each

other. The bidiTT creates oscillations in the corridor of the narrow bottleneck.

Both multi sets presented better movements with the multiTF being the most realistic

with minimal amount of collisions and less erratic movements in general.

7.4.1 Accuracy of specialised sets

The three single TT parameter sets can be considered to be specialised to the flows that

were used in their calibration scenarios and the multiTT the chosen general purpose

set to answer the first scientific question that states: To what extent multi sets are less

accurate than single sets in the specific situations used to calibrate the single sets?

As expected, the bidiTT and the uniTT sets presented the lowest travel time errors

in the same flows used for their calibration. Both present εT T = 0%. However, the

multiTT also presents a ‘Good’ result, although with a larger error of εT T = 5% for

both flows. The difference between the errors of the multiTT and the specialised sets

for the u× k indicator is only around 1%.

The multiTT also resulted with a smaller TT error for the narrow bottleneck flow. This

shows that the multi-scenario calibration resulted in a set that was calibrated correctly

on the three flows. The other two indicators also resulted in good results presenting a

overall good accuracy of the multiTT set on the congested flow.

The good result of the multiTT for the narrow bottleneck flow is important because the

calibration of the bneckTT did not succeed in estimating an accurate predictor for this

flow.

We plotted the complete results for the TT (figure 7.4) and the capacity validations

(figure 7.5) in form of box-plots to show that the results for the multiTT are not vary-

ing very much, presenting good statistical accuracy for the obtained distribution. The

results discussed in this section answer the question by showing that the accuracy of

specialised flows can be matched and even improved by multi sets.

Therefore, we can answer the first question by stating that multi sets have small losses

(∼ 5%) of accuracy when comparing with specialised sets for non congested situations.

Furthermore, for the travel time indicator we showed that the multi set is much less

affected by the difficulties presented by the complex manoeuvres in the bottleneck area

resulting in more than 25 times more accurate travel times than the specialised single

set. These results make the calibration of specialised sets not advantageous from the

accuracy point of view.



Chapter 7. Investigating the accuracy of multi-scenario calibrations 183

bidiTT uniTT bneckTTmultiTTmultiTF

0

-0.1

-0.2

-0.3

-0.4

0.1

0.2

0.3

0.4

re
la

ti
ve

er
ro

r
of

T
T

(a) bidirectional

bidiTT uniTT bneckTTmultiTTmultiTF

0

-0.1

-0.2

-0.3

-0.4

0.1

0.2

0.3

0.4

(b) unidirectional

bidiTT uniTT bneckTTmultiTTmultiTF

0
-0.2

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

re
la

ti
ve

er
ro

r
of

T
T

(c) narrow bottleneck

bidiTT uniTT bneckTTmultiTTmultiTF

0

-0.1

-0.2

-0.3

-0.4

0.1

0.2

0.3

0.4

(d) crossing

Figure 7.4: Box-plots with the relative errors of the travel times for the parameter

sets. The dotted lines show the score intervals (‘Good’ at 5% and ‘Medium’ at

10%).

bidiTT bneckTTuniTT multiTT multiTF

re
la

ti
ve

er
ro

r
of

q
c

0

-0.1

-0.2

-0.3

-0.4

0.1

0.2

0.3

0.4

Figure 7.5: Box-plots with the relative errors of the capacities for the parameter

sets in the narrow bottleneck. The dotted lines show the score intervals (5% and

10%).

7.4.2 Comparing results for all flows

In this section we compare the accuracy of each of the TT sets over the combined

errors of the four flows. With that we are answering the second scientific question
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that addresses the hypothesis that multi sets are more adequate to be used as general

purpose sets. This answer requires novel flows not included in the calibrations.

We mentioned in the beginning of this section that the bidiTT presented good results

for the bidirectional, unidirectional and crossing flows (table 7.7). However, things

change when we include the error from the narrow bottleneck flow. The difficult walk-

ing situations in this flow are not well reproduced by the bidiTT that ends with very

large errors (Table 7.8).

Table 7.8: Overview of combined validation errors for all flows in percentage (%).

parameter validation

exp sets errors score

εtotal

[bidir + bidiTT 21 Bad

unidir + uniTT 26 Bad

bneck + bneckTT 38 Bad

cross] multiTT 7 Medium

multiTF 3 Good

General purpose parameters are difficult to be obtained due to the complexities and

non-linearities of walker models in the different situations that they are applied. We

observe this by noticing the difficulties of the single sets in being accurate over all

flows. The better overall accuracy of the multiTT was expected given that its calibra-

tion scenarios used three of the four flows used in the overall validation.

It would be expected that for each flow the multiTT would be slightly worse than the

specialised set but ending with an overall lower error than the three specialised sets.

This sort of behaviour indicates a compromise in the calibration algorithm balancing

the importance of the scenarios.

The much better accuracy on the narrow bottleneck suggests that the multiTT not only

reached a compromise but found a good solution. If we examine the parameters that

compose the multiTT, we notice that τ is much smaller than the values of the other

TT sets. From our experience with Nomad, this difference is large and has a greater

impact in the movements of pedestrians than the differences on a0 and r0.

However, the multiTT presented worse results for the crossing flow than the bidiTT

and the bneckTT sets. The bneckTT set performs so poorly in the narrow bottleneck

flow that we cannot consider the parameter to be close to any optimal. Therefore, the

good result of the bneckTT for the crossing flow must be regarded as coincidental.

The same cannot be said about the better performance of the bidiTT in the crossing

flow. The bidiTT clearly shows a good accuracy when predicting flows with similar

low to middle densities. This interesting result indicates that the walking behaviours
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required in bidirectional flows are complex enough to be transferable to unidirectional

and crossing flows that are not congested.

The compromise that the multiTT represents seemed to be affected by the situations

represented by the narrow bottleneck reducing the accuracy on the crossing flow when

compared to the bidiTT. This suggests that the multiTT is not close to a global optima.

The ‘Medium’ overall accuracy of εtotal = 7% in contrast of the much larger error

for the single sets, supports the hypothesis that combining several flows with different

walking situations and densities improves the chances of estimating parameters that

reflect general walking behaviours.

7.4.3 Impact of the calibration indicators on the validation results

As expected the inclusion of the u× k indicator in the calibration improved the val-

idation accuracy of the multiTF in comparison to the multiTT for the bidirectional,

unidirectional and narrow bottleneck flows. This is because the multiTF was calib-

rated with two indicators used in the validation.

Table 7.8 shows that the multiTF outperforms the multiTT in all indicators for the

bidirectional, unidirectional and narrow bottleneck. Furthermore, if we exclude the

results for the crossing in the calculation of the overall error we obtain εtotal = 5% for

the multiTT and εtotal = 3% for the multiTF (not visible in the tables).

These errors show that the calibration algorithms find good solutions with both scen-

ario arrangements. However, when we look at the parameters in table 7.1 we notice

that almost all of their parameters are significantly different. Clearly indicating that

the calibration procedures finished in different areas of the solution space.

The accuracy of the two multi sets are different for the crossing flow. In the analysis

of the previous section we mentioned that the multiTT did not perform well with the

crossing flow. The multiTT actually ended with a ‘Bad’ score and the multiTF with

the only ‘Good’ score for this flow. It is with novel situations that we see the benefits

of including more scenarios in the calibration.

The best way to visualise the good performance of the multiTF is to inspect the bins

with the results of the u×k indicator. Figure 7.6 shows in blue the dots corresponding

to the u×k bins formed by the average of the speeds (slope) according to the formulas

presented in section 7.3.1 for the multiTF. We added the simulated and experimental

shifted curves above and below the means by the standard deviation in each bin.

The u× k curves are close to the experimental curves (in red). The figure also shows

that the slope errors are larger in the higher densities for all flows. The relatively

low values of the densities for all flows results from the global densities (# peds in

simulation/area), local densities that are much higher.

The multiTF resulted with a ‘Good’ validation for all flows and ended with a overall

accuracy measure of εtotal = 3% as shown in table 7.7. Another important consequence
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Figure 7.6: The speed density relations resulting from the parameter setmultiTF.

The filled dots correspond to the average speeds for the density bins. The white

dots are the standard deviation displacements. The thick middle line is the av-

erage speeds for the experiments and the dotted lines are the standard deviation

displacememnts.

of the improved calibration is the superior qualitative individual and collective move-

ments resulting from the multiTF.

The results in this section showed that adding a second indicator in the calibration

scenarios almost doubled the accuracy measured by the indicators and flows used in

the calibration scenarios. However, the most important result was that adding a second

indicator in the calibration improved by four times the accuracy for the crossing flow

that was not used in the calibrations. Furthermore, the movements generated by the

multiTF are also more realistic, showing that it is a better general purpose parameter

set.

7.5 Conclusions

In this chapter we performed an extensive quantitative validation of the Nomad model

using eight parameter sets. The validations followed the methodology presented in
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chapter 4 where we proposed the concept of scenarios. In this chapter the scenarios

were composed by four flows and three performance indicators.

The advantages of the validation implemented in this chapter are its simplicity and

flexibility that allows for pairing any amount of assessments. The multi-objective was

the average of the errors, resulting in each indicator being equally important. Further-

more, we used a simple conversion of the quantitative relative errors to three ordinal

variables: ‘Good’, ‘Medium’ and ‘Bad’. This conversion allowed for easy interpreta-

tion of the results.

The original on this chapter is the detailed comparison between five parameter sets.

The most important result from this chapter is the support of the use of multi-scenario

calibrations for the estimation of parameters intended for general use (not specialised

in particular flows).

We showed that single-scenario sets that were calibrated with one particular flow are

not appropriate to predict all the remaining flows. We also showed that using errors

from three different flows simultaneously in multi-scenario calibrations, resulted in

accurate predictions of the different flows.

The parameter sets resulting from the trajectory based calibration (calibration of indi-

viduals) are inaccurate in predicting macroscopic characteristics of flows leading to the

conclusion that the sum of individual behaviours does not result in average pedestrian

behaviour.

The calibrations involving travel time indicators produced better results with several

parameter sets with good level of accuracy. The parameter set that was calibrated with

the bidirectional flow had good accuracy in reproducing the unidirectional and the

crossing flows. This indicates that the walking behaviours occurring in non congested

bidirectional flows are similar and transferable to unidirectional and crossing flows.

The conclusion is thus that bidirectional flows should be included in multi-scenario

calibrations.

Since high densities and complex manoeuvres create the most difficult conditions for

good accuracy they should always be included in walker model validations. Simil-

arly, validations involving only unidirectional and bidirectional corridors with low or

moderate densities should be avoided.

It was found during qualitative observations that the multi-scenario parameter sets pro-

duced flows with realistic walking movements while the single-scenario sets produced

flows that were more erratic and displayed too many collisions. The implication is

that realistic walker models diminish the sensitivity of simulation results by creating

pedestrians that behave more predictably, similar to real pedestrians.

This chapter showed the importance of using several scenarios for validation of walker

models. Even though the results of the scenarios showed positive correlations they al-

lowed for detailed quantitative analysis of the accuracy of the different parameter sets.

The analysis resulted in the recommendation of pairing more than one performance
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indicator and using for several flows in the calibration scenarios to obtain parameters

for general use.

We also demonstrated that Nomad fulfils the aim of this dissertation in obtaining a

walker model that is accurate and realistic. We consider that overall errors below a

threshold of 5% with the most important pedestrian flow assessments, namely travel

times estimation, speed density relation and the capacity of a bottleneck corridor allow

the application of Nomad for quantitative predictions.



Chapter 8

Applications of Nomad for pedestrian

planning

Fruin (1971), Predtechenskii and Milinskii (1978) and TRB (2000) promote traffic

conditions such as densities, travel times and travel distances experienced by pedestri-

ans as important indicators of comfort and safety. More than predicting the evolution

of traffic conditions with a detailed level, walker models can be used to predict the

location and duration of activities of individual pedestrians. Detailed information on

pedestrian walking and activity occurrences are useful to identify the impact of lay-

out changes and increase of demand in complex facilities, helping decision making

processes.

This chapter shows how a validated walker model such as Nomad can be applied to

reveal insights about pedestrian operations in transport nodes. The examples illustrate

how a walker model can be applied to perform different tasks required for transport

planning and facility design. Simultaneously, the investigations in this chapter also

justify the need and applicability of special behaviours by Nomad introduced in chapter

3.

The chapter is structured as follows. We present in section 8.1 how Nomad provides

the data needed to estimate traffic conditions in circulation areas to identify the impact

of installing turnstiles in the entrance hall of Amsterdam Airport Schiphol (Schiphol

Plaza). Section 8.2 shows an optimisation problem, where Nomad predicts queuing

times to reveal the influence of positioning reservation poles on train platforms. The

last investigation in section 8.3 illustrates how Nomad is used to determine demands

that are compliant to comfort criteria in a still to be built metro station.

The chapter ends in section 8.4 with the conclusions and insights resulting from the

assessments described in this chapter.

189
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8.1 Predicting traffic conditions at Schiphol Plaza

Schiphol Plaza is the shopping and food court of the land-side of the Amsterdam airport

Schiphol. In this area arriving passengers meet their relatives and friends and departing

passengers circulate towards one of the four terminals. Other pedestrians visit shops

and restaurants, go to their working places or exit to destinations in the neighbourhood.

Plaza is a wide area of more than 80,000m2 with an underground train station. On the

busiest day in 2007 (a Friday in July) 164,000 pedestrians visited the Plaza during the

period between 5:00 am and 12:00 pm.

The aim of the study was the determination of comfort levels based on LOS values

in future scenarios with 30 % passenger increase and the impact of the introduction

of turnstiles at the exits of the subterranean train platforms in the circulation area.

Several simulations were run for a whole day in the Plaza and a detailed analysis was

performed. (More details can be found in Daamen et al. (2008)).

Figure 8.1 presents one of the outcomes of the simulations in the form of a map with

maximum densities observed along the simulated day. The figure shows for each loca-

tion of the circulation area, the maximum density reached during one day of the airport

operation. Thus, the figure is not a snapshot of a moment but a maximum density map.

The crowded areas are mostly waiting areas. We can see that the walking patterns

are clearly visible, while the lighter grey areas indicate the shops. In this simulation

we were not interested in the crowdedness inside the shops and therefore they are not

included in the density colour coding.

Figure 8.1 shows some critical areas. The areas around the ticket machines and the

ticket offices became very crowded (areas a and b). This happened because the demand

for tickets was far higher than the capacity of sales. The area c is the surroundings of

one of the revolving doors that was saturated and generated large waiting times.

The introduction of turnstiles near the entrances of the train platforms narrowed the

circulation area. Most of the affected areas did not create large discomfort, with the

exception of the area d in figure 8.1.

The investigation concluded that the situation for the future scenario presented critical

areas with high densities. However, we showed that the impact of the turnstiles was

not as critical as for example the insufficient amount of ticket machines.

We showed that Nomad was successfully applied to simulate a complex situation and

provided relevant answers to the original questions of the analysis. For this investiga-

tion we performed a validation of the OD table by simulating the base day of 2007 and

compared the average stay time with empirical data obtained from surveys. We also

compared qualitatively the waiting behaviours modelled in Nomad with those found in

the real areas.
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Figure 8.1: Overview of the maximum densities for the future Schiphol scenario.

The walking area is divided in 2x2m squares and the densities (ped/m2) during

the day are recorded. Only the maximum densities are shown and they do not

necessarily occur at the same time.

8.2 Assessment of ticket reservation posts on platforms

NS Hispeed is the train operator between Amsterdam Central Station and Brussels Sta-

tion. NS Hispeed operates international trains and national trains between the stations

of Amsterdam, Schiphol Airport, Rotterdam and Breda. During the planning phase,

a ‘new’ tariff system including an obligatory reservation, both for international and

national trains was considered1. Tickets would be sold on the internet, using dedicated

Hispeed counters and via existing counters and ticket machines of Dutch Railways

(NS). However, NS ticket machines would not be able to provide the corresponding

seat reservations. Therefore, dedicated seat reservation posts would be developed.

These posts would be able to read public transport chip cards or bar codes and, after

an approval of the back office, to provide a seat reservation. The reservation posts

were planned to be located on the platforms and it was questioned what would be their

impact on the passenger flows and transfer capacities.

The aim of this investigation was to determine the minimal amount of posts (effi-

ciency from operator perspective) without keeping passengers spending too much time

in queues and to keep operations in the platform smooth. The details of this study can

be found in Daamen et al. (2009).

1The Hispeed system was eventually implemented without the obligation of seat reservation.
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Figure 8.2 shows an overview of platform 5/6 in Schiphol with the scheme of the

reservation posts. The light grey area indicates the platform. The brown areas are not

available for pedestrians: they either represent obstacles on the platforms (escalators,

columns) or the tracks next to the platform. The train is indicated in red, while the

white squares indicate locations of the train doors. Four access points lead towards the

platform, indicated in green. The middle two entrances are escalators, while the outer

two access points consist of inclined moving walkways. It also shows the six clusters

of reservation posts in orange.

3_1

4_1

3_2

4_2

5_1
5_2

5_3

6_1

6_2

6_3

Figure 8.2: Location and numbering of reservation posts.

To determine the optimal utilisation of the posts we performed an iterative cycle of

simulation. We removed the less busy poles one by one, and then identified the (steep)

increase in waiting time. This time is dependent on the queues and indicates the use of

each post.

The reference scenario with fourteen posts is taken as a starting point. The simulations

showed that passengers spent around 12s at the posts. Then, the reservation post with

the lowest load (usually the furthest from the platform entrances) is removed from the

simulation, and the next simulations are run. A reduction to eleven posts does not

affect the average time at a reservation post. When ten reservation posts are present,

the average time increases, but only when the number of posts is reduced to eight, a

considerable increase is visible in the average time per passenger (15s).

Figure 8.3 shows the average time passengers needed at a reservation post as a function

of the number of reservation posts on the platform for the Schiphol station.

The investigations showed that the original amount of posts was unnecessarily high.

The final recommendation was to reduce the amount to not less than eight units. The

best location of the poles was also determined by the optimisation process resulting in

the elimination of the most distant posts.
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Figure 8.3: Average time of passengers at a reservation post as a function of the

number of reservation posts on the platform.

In this investigation, Nomad was successfully applied to an optimisation problem. The

amount of poles is optimised, given acceptable waiting times and reasonable cost. This

use case shows a novel application of walker models for planning tasks. Regarding the

assessment question the conclusion was that the proposed number of reservation posts

could be reduced without decreasing passenger service for the three stations studied. It

was not shown here but the results of the stations investigated showed that the most im-

portant factor for an efficient use of reservation posts is their location on the platform.

The closer they were to the exits (stairs, escalators) the more they were used.

Preliminary to this investigation, a face validation of the distribution of pedestrians on

the platform, including the immediacy of the doors before the alighting, was realised

based on empirical data from other studies.

8.3 Determining the capacity of a Metro Station

Jardim Oceânico is a metro station being built in the city of Rio de Janeiro, Brazil. It

will be inaugurated before the Olympic Games in August 2016. Three years before

the inauguration, the private operator of the future station asked what would be the

maximum amount of pedestrians walking in the station with an acceptable level of

comfort. This amount would then be defined as the station capacity in operational

conditions. It was expected that this capacity would be different from the capacity

previously determined for emergency evacuations.

The aim of this investigation was to determine the maximum demand that could gen-

erate pedestrian flows and platform occupation that are compliant to comfort criteria

that are less stringent than safety criteria. For detailed description of the investigation

refer to Campanella (2012).

Jardim Oceânico is a terminal station with two lateral platforms. Platform 1 will only
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serve for alighting and platform 2 for boarding. Both have an area of 513m2. The

station’s layout is approximately cruciform with three levels: platform, mezzanine and

street level (figure 8.4).

platform 1

platform 2

One EscalatorTwo Escalators

tu
rn

st
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Lagoa Exit
BRT Exit
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Stairs Stairs

Stairs Stairs

Two Escalators One Escalator

Figure 8.4: The Jardim Oceanico station with a simulation snapshot.

Figure 8.4 shows that the station has three levels connected by stairs and escalators.

Furthermore, the entrance to the area accessible for travellers with a valid transport

ticket is limited by a series of turnstiles. Before the simulations, we performed a series

of calibrations of these components using operational data from MetrôRio, the future

operator.

The comfort criteria were defined based on the duration of LOS levels at the walking

and waiting areas. For example, it was decided that no waiting area of the station

should reach LOS D for periods longer than 2 minutes.

We ran successive simulations of complete days with increasing demand resulting from

multiplying a base demand with a factor larger than 1. The analysis determined that

the bottleneck of the station was platform 2 (entering the station) in the morning peak.

Figure 8.5 shows contour maps presenting the maximum consecutive periods that LOS

D was reached on the platform 2 for the morning peak.

This investigation showed how a pedestrian simulation can be used to estimate an oper-

ational capacity of a metro station. The purposely defined comfort criteria determined
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Figure 8.5: The maximum periods in minutes that areas of the platforms reached

LOS D for the capacity demand. These areas are a 2x2m cell grid the maximum

LOS D periods were not necessarily reached simultaneously.

the maximum inflow that fulfilled the criteria and showed that one of the platforms is

the bottleneck of the station.

The capacity of the stairs and escalators were calibrated using data obtained by the

operator of the metro. Furthermore, observations in existing stations provided evidence

for face validations of the behaviours of pedestrians in the queues formed in front of

the turnstiles.

8.4 Conclusions

In this chapter we showed how Nomad and any microscopic pedestrian simulation

model can be used to generate simulation results, analyse the data, calculate indicators

and derive insights about pedestrian flows and comfort in pedestrian facilities.

Three investigations involving Nomad were presented. The first investigation was

the assessment of bottlenecks and circulation problems of the large entrance hall of

Schiphol Airport in Amsterdam. The second investigation looked at the effects of re-

servation posts on passenger flows on train platforms in the Netherlands. The third

investigation was the determination of the maximum demand that would fulfil comfort

criteria of a metro station in Rio de Janeiro, Brazil.

For each of these investigations different qualitative validations of the special func-

tionalities introduced in chapter 3 were performed. The walking areas of these invest-

igations showed the need of these functionalities in walker models that are simulating

complex pedestrian areas. This indicates that Nomad is a useful tool for operators,

designers and authorities.

This chapter provides an important conclusion that pedestrian simulation models are

ready to be fully integrated into planning and design services. However, pedestrian

simulation models should not be handled as ‘black-boxes’ that always give correct

predictions. Users need to know the level of accuracy of the simulation model, which

features best represent the real processes and understand the principles of safety and

comfort in pedestrian flows to provide appropriate answers to the questions asked.
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Chapter 9

Conclusions and recommendations

The research focused in contributing to the development of pedestrian microscopic

models. The contributions made in this thesis concentrated in improving the accuracy

of walker models and modelling processes that are necessary to simulate large pedes-

trian facilities.

Accuracy is essential for the use of walker models and received the largest attention in

this thesis. We focused in a key aspect of accuracy of walker models, that is, how to

obtain parameter sets that are accurate in predicting flows and situations that were not

used in the calibration. To implement novel walking processes, we chose Nomad as the

most suitable model, and used it in extensive calibrations and validations performed in

this thesis.

This chapter presents the main findings and conclusions in section 9.1. The practical

implications and applications resulting from this thesis are discussed in section 9.2.

The chapter ends with considerations about future research directions derived from the

perspectives opened by this dissertation in section 9.3.

9.1 Main findings and conclusions

The main conclusion of this dissertation is that parameters calibrated with several flows

and performance indicators increase the general applicability and the usefulness of

walker models.

We concluded this by investigating the process of calibration with synthetic data (chapter

5) and comparing the results of validations using empirical data (chapter 7). In both

studies we showed that parameter sets that were calibrated with data from three dif-

ferent flows (multi-scenarios) were more accurate than parameters that were calibrated

with only one flow as reference data (single-scenarios). These investigations resul-

ted in the recommendation of pairing more than one performance indicator and using

several flows in the objective function to obtain parameters for general use.

197
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The findings and conclusions from the thesis are presented in subsections that follow

the general research questions presented in the introduction (section 1.4).

9.1.1 Agent based representation of walker models

The agent based representation proposed in chapter 2 resulted in model characteristics

being directly related to pedestrians, their behaviours and the environment that they

walk.

The agent based process of describing how pedestrians apply what they perceive to

perform their walking actions resulted in the conclusion that walker models evolved

into four families since their introduction in the 1970’s: rule-based reactive, force-

based reactive, goal-based and utility-based models.

The model assessments and scoring outcomes based in the agent representation showed

that no model received high scores in all agent based characteristics suggesting that

walker models that simulate large pedestrian facilities need to be improved.

The most promising modelling direction identified was a combination of strategies

between reactive behaviours that are predicted directly from the state of the traffic and

the environment with behaviours that are modelled with anticipation of future actions

of the neighbouring pedestrians.

In this thesis we introduced anticipation in the Nomad model proposed by Hoogen-

doorn and Bovy (2002) that originally was purely reactive. Nomad together with other

models achieved the highest score and was chosen to be further developed in this thesis

by being the only model derived from a pedestrian walking theory.

9.1.2 Modelling walking behaviour

We conclude that the principles of the Nomad pedestrian theory can be applied for

the development of special behaviours other than walking, showing the importance of

having a behavioural theory to provide the basis of pedestrian models (chapter 3).

The hypothesis of structuring walker models in behavioural components according to

the Nomad pedestrian theory, is strongly supported by the results in chapter 6. Para-

meters of the different components did not present enough correlations to reject this

hypothesis. All parameters of the Nomad model could be calibrated, and are therefore

necessary to be included.

Chapter 7 provided extensive validations showing that the Nomad model fulfils the aim

of obtaining a walker model that is sufficiently accurate and realistic.
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9.1.3 Generalised calibration and validation methodology

Chapter 4 resulted in a methodology for calibrations and validations based in a multi-

objective function that includes several walking situations and performance indicators

in what we called multi-scenarios.

Multi-scenarios are necessary to increase the probability of obtaining parameter sets

that perform well in situations not used in the calibration. For validations multi-

scenarios are necessary to increase the amount of walking situations (and levels of

density) that parameter sets are shown to be accurate.

Calibrations require a significance analysis that certifies that the calibrated parameters

are significant therefore influencing the outcome of the predictions on the situations

encountered in the empirical data.

Validations require an assessment criteria based with quantitative indicators. The cri-

teria establishes if the model is accurate for applications.

9.1.4 Factors affecting calibration of walker models

The analysis using individually calibrated parameters using trajectories produced with

simulations allowed for finding that three factors affect calibrations: poorness of data,

complexity of movements and random noise.

The first refers to lack of data containing information about pedestrian behaviours res-

ulting in non-significant parameters. The second finding deals with congested bot-

tlenecks involving complex manoeuvres presenting situations that are difficult to be

accurately predicted. We showed quantitatively that noise in the tracking process af-

fects significantly the accuracy of the calibrations. This finding reveals the importance

of the accuracy of the tracking process in obtaining empirical data.

We concluded that multi-scenario calibrations combining errors from three flows re-

duce the problems arising from the three factors.

9.1.5 Investigations in microscopic behaviours

The research conducted in this dissertation shows for the first time quantitatively that

flow configurations have a strong influence on pedestrian behaviours resulting in sig-

nificantly different parameters. This allows us to conclude that pedestrians display

different behaviours in different walking situations.

Pedestrian avoidance behaviours vary with speeds (used as a proxy for traffic condi-

tions). In general pedestrians will be more sensitive to pedestrians further away and

further from their walking direction when walking in free-flow. In congestion, pedes-

trian behaviour is quite different: pedestrians tend to follow other pedestrians and do

not strain from their paths.
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The transition of behaviours from free-flow to congestion is not gradual but presents

a distinct change at a critical speed that corresponds to saturation of the flow. Before

reaching a bottleneck, pedestrians increase their reactivity to pedestrians in their walk-

ing direction and decelerate due to temporal and spatial anticipation of the bottleneck

conditions upstream. These results support the conclusions from Duives et al. (2014a).

Population composition (heterogeneity) and urgency have significant impact on pedes-

trian behaviours. In general the increase of urgency turn pedestrians into more forceful

walkers. When urged to walk fast, pedestrians tend to stay closer to their desired paths

reducing deviations (less cooperative). The effect of urgency is not the same for the

different age groups and the reactivity between the pedestrians increases for hetero-

geneous populations probably accounting for unequal reactions.

Pedestrians in unidirectional flows behaved similarly to pedestrians in bidirectional

flows, showing that lane formation effectively separates the area in unidirectional re-

gions. The similarity between these two flows was also supported by results from the

validation chapter (chapter 7) that showed that a parameter calibrated with a bidirec-

tional flow was very accurate in predicting indicators of a unidirectional flow. Although

the opposite is not true due to the absence of interactions with colliding trajectories in

unidirectional flows.

The different outcomes for the types of flow reveal the importance of using several

types of flows to investigate pedestrian behaviours.

9.1.6 Multi-scenario calibrations

Single-scenario sets that were calibrated with one particular flow are not appropriate

to predict all the remaining flows. Multi-scenario calibrations using errors from three

different flows resulted in accurate predictions of the different flows.

The best parameter set (validation error of 3%), reproduced with a satisfactory level of

accuracy the most important pedestrian flow assessments, namely travel times estima-

tion, speed density relation and the capacity of a bottleneck corridor for four different

flows including one that was not used in the calibration.

It was found during qualitative observations that the most accurate parameter sets pro-

duced flows with the most realistic walking movements. The worst results of the quant-

itative validations coincided with flows that were more erratic and displaying many

collisions. The implication is that realistic walker models diminish the sensitivity of

simulation results by creating pedestrians that do behave more predictably similarly to

real pedestrians.

Parameter sets resulting from the trajectory based calibration (calibration of individu-

als) are inaccurate in predicting macroscopic characteristics of flows leading to the

conclusion that the sum of individual behaviours does not result in average pedestrian

behaviour.
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9.1.7 Application of walker models

The three case studies that used validated parameter sets combined with the special

features introduced in chapter 3 showed that microscopic models are suited to be in-

tegrated into planning and design processes.

9.2 Contributions and recommendations for model de-

velopers

It is fundamental to any model developer to show extensively with calibrations, sig-

nificance analysis and validations that the model components and the calibrated para-

meters are significant, and produce accurate results. Therefore, the most important

practical contribution of this dissertation is the methodology that improves the probab-

ility of calibrating parameter sets that can be applied in various situations commonly

found in large pedestrian facilities.

The methodology and the investigations in this thesis show the importance of perform-

ing sensitivity tests to determine the significance of the calibrated parameters.

The investigations using the methodology indicate the importance of quantitive valid-

ations using several performance indicators and different flows to assess the prediction

accuracy in several situations, especially those not used in the calibration of the para-

meters.

The calibrations with synthetic trajectories is an useful procedure to investigate the

ability of the calibration procedure in finding global optimal parameters. Such invest-

igations increase the confidence that the results of calibrations with empiric data will

correspond to the best predictions from the model. Results in chapter 5 show the ne-

cessity to introduce noise in the synthetic trajectories accounting for imperfections of

the tracking procedure that reduce the ability to find global optimal results.

Chapter 7 proposes multi-objective function that averages errors from scenarios that is

effective in producing quantitative assessments of different parameter sets. The simple

and flexible objective function allows for extensive discussions about the accuracy of

different parameter sets or of different models.

Fundamental diagram relations are important indicators of traffic flow variables but

are usually only verified qualitatively with superimpositions of the predicted and the

empirical fundamental relations. We recommend the mapping of fundamental relations

into performance indicators to obtain a measure of accuracy of walker models in the

whole range of the traffic variables.

The diameter of the circular shaped pedestrians in dense situations resulted in optimal

values reflecting the body depth (∼ 0.25m) instead of the commonly assumed body

width (∼ 0.50m). This has important consequences for developers that use similar
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formulations. The theoretical maximum densities that a walker model can achieve

without collisions for ∼ 0.25m diameters is 16 peds/m2 instead of only 4 peds/m2 for

∼ 0.50m. Although 16 peds/m2 is not a realistic value for maximum density, using

diameter values smaller than the body width allows for extreme situations that were

observed in real flows (Helbing et al. (2007)).

9.3 Future research

The future research directions follow the main contributions of this thesis on the em-

pirics of pedestrian behaviour, walker model developments, and on calibration and

validation methods.

9.3.1 Empirics

The mechanism of anticipation of traffic conditions downstream is important for the

design of pedestrian facilities. The fact that pedestrians change their behaviour ac-

cording to conditions in the near future should be further studied to determine if it

occurs in real-world situations and how far the anticipation reaches. The anticipation

mechanism can combine tactical level decisions with walker models. Furthermore, the

knowledge of the anticipation mechanisms can also be investigated regarding crowd

management actions and design guidelines. If it is determined that pedestrians are

scanning long distances, rules can be developed to avoid visual obstructions blocking

alternatives to bottlenecks. If an escalator is predicted to congest then an alternative

staircase should be placed in a position that allows pedestrians to choose it before they

reach the bottleneck.

We used trajectory data obtained from controlled experiments for calibrations and val-

idations. A next step is collecting empirical data directly from flows occurring inside

large pedestrian facilities. Real-world observations will assure that models are cal-

ibrated and validated with behaviours found in large pedestrian facilities. Controlled

experiments may create conditions such as fatigue, boredom and bonding between

subjects that make the data less reliable.

Trajectory data is difficult to obtain in public spaces and the spacial precision that

trajectory data provides is not required to calculate macroscopic indicators. The pre-

cision and limitations of data obtained with new methods of position tracking such

as Bluetooth, Radio-frequency identification (RFID) need to be investigated. New

tracking methods will allow for new types of flows and situations to be included in

calibrations and validations of walker models, increasing the accuracy of parameter

sets.
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9.3.2 Model developments

The findings on the influence of local conditions into behaviours obtained in this thesis

are promising to improve model accuracy. Our study had the merit of showing quant-

itatively that different situations result in different parameters. A promising way to

improve the accuracy of walker models (operational level) is to have parameters that

vary with the local conditions. Pedestrians need to recognise the type of situations they

are walking and switch the parameter set accordingly. It is not difficult to characterise

the different types of flows such as bidirectional and crossing flows from the pedes-

trian perspective. When pedestrians perceive a change of type of flows or increase of

density, they adopt other parameters.

Such modifications may risk increasing the complexity of the models but one can ar-

gue that no simple model can perform well in all situations pedestrians are walking.

Therefore, making walker models more complex may increase their general use by

simplifying the conditions that end users need to account when applying them.

The Nomad walker model was developed to improve the behaviours and activities usu-

ally occurring with commuters. Although this travel purpose is very common among

pedestrians visiting large pedestrian facilities, the applicability of walker models can

be extended to new travel purposes such as evacuation, shopping and leisure. These

modes are important because these travel purposes occur in several situations with

large crowds such as shopping centres and concerts.

The development of the new travel purposes requires the development of strategic and

tactical model components including psychological and sociological aspects specific

for these situations. Both empirical knowledge and modelling aspects need to be de-

veloped determining what behaviours should be applied in these situations.

To develop new strategic and tactical components, requires the expansion of the agent

representation. These travel modes are more informal, not fitting to the current com-

muter behaviour of aiming destinations using utility based choices. Artificial Intelli-

gence reasoning architectures such as the Belief Desire and Intention models (BDI) are

good candidates to develop the agent representations of pedestrian models.

9.3.3 Calibration and validation guidelines

The other direction of future research is the development of calibration and validation

guidelines. Guidelines are a further development of the methodology proposed in this

thesis. There is a need to normalise the performance indicators and flow situations used

in the calibrations and validations to compare different parameter sets and especially

different types of models.

Developing the guidelines will require research into types of flows encountered in

pedestrian facilities. Such study should include different types of facilities such as
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train stations and airports that are often subjected to simulations. Preferably the flow

conditions should include high densities and congestion that are critical conditions

for walker models. Importantly, the investigation should also result in quantitative

performance indicators that are able to represent the complexity of the flows. Funda-

mental diagram relations that expose the accuracy of models over the whole range of

the traffic variables are the best candidate to be quantified in similar ways as proposed

in this thesis.



Appendix A

Nomad activities

Nomadprovides five activities in total that give the user the possibility to simulate

different types of waiting behaviours such as standing in train platforms, in front of

public screens around information poles:

• SimpleStatic - The most basic activity. In this activity pedestrians stop immedi-

ately after stepping on the activity area.

• RandomInternal - Pedestrians are taken out of the simulation and do not react.

• InPlaceWaiting - Pedestrians start the activity in the current position.

• RandomWaiting - Pedestrians will choose a random location inside the activity

area and stay on it while performing the activity.

• CentroidWaiting - Pedestrians will try to stay close to the centroid of the activity

area.

SimpleStatic

The most basic and almost always present in the simulations as the activity of the fi-

nal destination. Usually it is used with small destinations representing exits and ticket

machines. When over it pedestrians do not move or take other pedestrians into consid-

eration never being dragged away. Other pedestrians do react to those performing this

activity. Like all other activity types pedestrians start moving to the next activity after

the service time is finished.

RandomInternal

In this waiting activity pedestrians are not part of the simulation until the service time is

passed. When entering the activity area pedestrians receive a random location and are
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placed on it without walking. They are visible but do not exert any influence to other

pedestrians. When the activity finishes they are moved to a point inside the activity

area that is closest to the next destination and start walking. It is a useful activity for

very complex simulations when pedestrians reach areas that are not of interest. For

example when the simulation is focusing in the flow of corridors pedestrians entering

shops can be temporarily removed.

InPlaceWaiting

This waiting behaviour is used in situations that are very crowded and the pedestrians

cannot reach the main destination area. When boarding a public transport vehicle

pedestrians usually aim at a seat. However, in crowded situations they may not find

a free seat and wait somewhere in a free location in the standing areas. When the

activity is finished (train reached the station) they simply go to the next activity area

(exit) without the need to pass over the seat. While in their position pedestrian react to

surrounding pedestrians and obstacles using the waiting behaviour.

RandomWaiting

The second most common type of waiting behaviour. Usually is used with large wait-

ing areas like train platforms or areas under sign boards. When pedestrians reach the

waiting area they choose a random location and walk towards it. Pedestrians need to

navigate around other pedestrians that are waiting on the area. Pedestrians react to

each other and those already close to their waiting locations may drift giving way to

walking pedestrians and return to their location.

CentroidWaiting

Similar to the RandomWaiting but pedestrians do not have a fixed location but group

around the centroid of the activity area. It is useful to simulate situations where ped-

estrians tend to stay compacted such as in groups. While in their position pedestrian

react to surrounding pedestrians and obstacles using the waiting behaviour.



Appendix B

Nomad simulation

In this chapter we present a compilation of features present in the full version of the

Nomad simulation. We divided the compilation in three areas: simulation features

that list the tools to create complex simulation scenarios, usage features presents the

facilities for user interaction, input and output; and computational performance im-

provements. Bellow is a list of features available in the Nomad simulation.

Simulation features

• Input of individual parameters for pedestrians (heterogeneity).

• Input of obstacles with different characteristics.

• Multi level simulations.

• Implementation of stairs.

• Implementation of escalators.

• Implementation of turnstiles (uni and bi-directional).

• Implementation of ordered queues.

• Queue choice model.

• Different activities.

• Two activity area choice behaviours.

• Capacity of setting attractiveness or repulsiveness to walking areas.
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Usage features

• A comprehensive graphic user interface.

• AutoCAD plug-in for automatic input of infrastructure.

• Export of simulation images.

• export of route choice images.

• Export of pedestrian trajectories.

• Export of individual pedestrian data.

• Export densities over a user defined grid. The densities can be the instant or max

densities recorded in a grid cell.

• Export of simulation data.

• Use of detectors to restrict the output data to desired locations.

• Easy batch runs with different random seeds.

• API - Application Programming Interface that allows Nomad to be accessed by

other platforms such as Matlab (Mathworks (2014)).

• NomadNmd - Nomad scripting language for complex batch processing.

Performance improvements

• Variable time-steps.

• Smart pedestrian management

• Capacity to switch off the graphics to improve simulation performance.



Appendix C

Walking experiments and trajectory

data

The empirical data used in this dissertation was obtained through controlled walk-

ing behaviour experiments performed by the Transport & Planning department of the

Delft University of Technology. According to Daamen (2004) commuting behaviours

require no conscious effort and therefore can be studied using data gathered in such

controlled experiments. The experiments were performed in three different occa-

sions for different purposes: collecting data for normal and hurried walking (Daamen

and Hoogendoorn (2003)), for evacuation through single doors (Daamen and Hoogen-

doorn (2009b)) and for studies into interaction behaviour between pedestrians (Versluis

(2010)). Figure C.1 show captions of some of the experiments.

All experiments were filmed and the trajectories from the pedestrians were extracted

using a methodology developed in the Delft University of Technology and explained

in Hoogendoorn et al. (2003).

In the following subsections we introduce the experimental set-ups that originated the

trajectories for each experiment.

C.1 Normal walking experiments

Daamen and Hoogendoorn (2003) performed walking experiments with heterogeneous

populations in so called normal conditions. Their goals were to get data for different

walking conditions to study pedestrians behaviours, perform calibrations and valid-

ations of walker models. They controlled five experimental variables: free-speed of

pedestrians (normal or hurried walking), direction of incoming flows (unidirectional,

bidirectional and 90◦ crossing flow), intensity of incoming flows (equal or unequal in-

flows of pedestrians), density of the flow and presence of bottlenecks. The population

demographics was set to be heterogeneous with equally divided groups of children,

students, adults and elderly. The distribution of the different age groups was kept the
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(a) normal bottleneck (b) normal crossing

(c) evacuation (d) interaction

Figure C.1: Experiments that originated the trajectory data used in this disserta-

tion.

same for all experiments. For more details refer to Daamen and Hoogendoorn (2003).

Bellow we list the experiments with the type, density range and amount of individual

trajectories and figure C.2 show the arrangements of the experiments (the names in

brackets represent the trajectories used in this dissertation):

1. Bidirectional flows with low global densities and equal inflows, k < 1.0 peds/m2,

709 participants. (bidir)

2. Unidirectional flow with low global densities, k < 1.0 peds/m2, 1167 parti-

cipants. (unidir)

3. 90◦ crossing flow with low global densities and equal inflows, k < 1.0 peds/m2

, 1052 participants. (cross)

4. Unidirectional flow with a narrow bottleneck corridor, k < 2.0 peds/m2, 1123

participants. (bneck)

5. Unidirectional flow with a wide bottleneck corridor, k < 2.0 peds/m2, 1898

participants.
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Figure C.2: Schemes of the normal walking experiments set-ups.

C.2 Evacuation experiments

Daamen and Hoogendoorn (2009b) conducted a series of experiments simulating evac-

uation through a single door varying several control variables: the composition of the

population, stress levels conditions, lighting and door widths. The aim was to de-

termine the dependency of the capacity of doors according to these variables. The

composition of the population was varied over four distinct groups: children (under

18 years), adults (between 18 and 65 years), elderly (above 65 years) and disabled

(people in wheelchair and blindfolded); the stress among the population was varied in

three levels: normal conditions, using a slow-whoop siren (medium stress) and com-

bining a slow whoop siren with a stroboscope light (high stress). Two alternative light

situations were used: full lighting (200 lux) and dimmed (1 lux, corresponding to

emergency lighting). The door sizes varied from a minimum of 55cm to a maximum

of 275 cm. For this dissertation we chose four experiments with evacuations through a

door opening of 85cm, two different populations compositions: one homogeneous and

one heterogeneous and two levels of stress (normal and high stress). The homogen-

eous population was composed by adults only and the heterogeneous population was

composed with 25 % children, 55 % adults, and 20 % elderly that correspond approx-

imately to the average of the Dutch population. The global density in all evacuations

varied between 0.0 < k < 3.0 peds/m2. Figure C.1(c) shows the experiment in which

pedestrians are walking from the right to the left. The dimensions of the walking area

are 8m×6m and the wall with the evacuation opening was placed at 4m (figure C.3).
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The names in brackets represent the trajectories used in this dissertation:

6. Evacuation with a homogeneous population in normal stress conditions, 78 par-

ticipants. (evacHoLoSt)

7. Evacuation with a homogeneous population in high stress conditions, 81 parti-

cipants. (evacHoHiSt)

8. Evacuation with a heterogeneous population in normal stress conditions, 99 par-

ticipants. (evacHetLoSt)

9. Evacuation with a heterogeneous population in high stress conditions, 99 parti-

cipants. (evacHetHiSt)

6
 m

8 m

evacuation

door = 0.85 m

Figure C.3: Scheme of the evacuation experiments set-up.

C.3 Interaction experiments

Versluis (2010) performed experiments on interaction behaviour between one to one

and one to two pedestrians. The author investigated how the interaction between in-

dividual pedestrians affect the walking behaviour. To force pedestrians in interaction

situations the author set-up intersecting trajectories in angles varying from 0◦ (over-

taking) through 180◦ (head-on) including three intermediate angles 45◦,90◦ and 135◦

(crossing). Twelve different pedestrians participated: nine young adults (19< age< 24

years), two adults and one elderly. The genders were equally represented (6 males and

6 females). Figure C.4 shows the angles of approach of pedestrians walking in col-

lision paths to perform the avoidance manoeuvres. In the experiments pedestrians

walked 10m before reaching the interaction point and the trajectories were recorded

from a distance of 4m before and after from the interaction points. Bellow is the list of

the experiments that provided trajectories for the interaction experiments (the names

in brackets represent the trajectories used in this dissertation):

10. Interaction between two pedestrians in overtaking, 96 trajectories.

11. Interaction between two pedestrians in 45◦ crossing flows, 144 trajectories.
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12. Interaction between two pedestrians in 90◦ crossing flows, 144 trajectories. (in-

terCross)

13. Interaction between two pedestrians in 135◦ crossing flows, 144 trajectories.

14. Interaction between two pedestrians in collision route, 168 trajectories. (inter-

Bidir)

0° 45° 90° 135° 180°

Figure C.4: Schemes of the interaction experiments set-ups.
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Appendix D

Smoothing and interpolating

trajectories

Pedestrians when walking and standing move sideways in a pendulum movement due

to the bio-mechanics of the hip (Weidmann (1993)) in which the upper body ’falls’ to

the side of the supporting foot. This effect varies with the walking speed, length and

age of the pedestrians. The length of the lateral movement has an average of 12 cm

with average speeds of 1.19 m/s for the younger population (Woledge et al. (2005)).

We showed in chapter 5 that noise has a large effect in the calibration accuracy. Few

authors mention the processes of smoothing trajectories (Brogan and Johnson (2003))

leaving this as an open research question. Therefore, we had to experiment with several

standard smoothing algorithms available to find the most suited.

We chose randomly a number of trajectories from the experiments used in this thesis

(appendix C) and applied different smoothing algorithms. We looked for the algorithm

that would result in positions that mostly correspond to the movement of the centre of

gravity of pedestrians (located approximately in the middle of the waist). Using the

original videos we compared the smoothed positions and chose a local regression using

weighted linear least squares and a 2nd degree polynomial model available in Matlab.

Figure D.1 shows an original trajectory and the resulting smoothed trajectory used in

the calibrations. The trajectory has the lateral component in a broader scale to enhance

the swaying effect.

After smoothed, the positions of the trajectories were interpolated to a time step of

0.02s that was shown to minimise the numerical errors that could influence negat-

ively the estimation. This resulted in four extra locations to be inserted between the

smoothed locations.

The interpolations considered the accelerations between the smoothed points to vary

linearly. The algorithm divided the difference between the current and next time-step

acceleration by four and distributed between the four interpolated points. The resulting
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0 104 6 8
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1.9
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Figure D.1: Example of the smoothing of a trajectory from the narrow bottleneck

experiment described in appendix C. The blue crosses are the tracked locations

and the red stars the smoothed.

accelerations were used to calculate the speeds and interpolated locations. This created

new locations that were not linearly distributed as can be seen in figure D.2.

42.8 3.2 3.6

1.96

2.00

2.04

Figure D.2: Example of the interpolation after the smoothing algorithm. The blue

stars are the smoothed locations and the red dots are the interpolated locations.
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