
Hybrid UAV Attitude Control
using INDI and Dynamic Tilt-
Twist

Thesis report

L.F.A. Dellemann - 4616057

Hybrid UAV Attitude
Control using INDI and
Dynamic Tilt-Twist

Thesis report
by

L.F.A. Dellemann - 4616057
This thesis was written, for the MSc degree in Aerospace Engineering at the TU Delft. This thesis was
conducted within the the Control & Simulation department from October 2019 until December 2020.

Student name: Lars Dellemann
Student number: 4616057
Date: 03-12-2020

Supervisor: Ir. C. de Wagter
Thesis committee: Prof. dr. G.C.H.F. de Croon

Dr. J. Guo
Dr. E.J.J. Smeur

Preface

This thesis was written, for the MSc degree in Aerospace Engineering at the TU Delft. It was conducted within
the the Control & Simulation department from October 2019 until November 2020.

The sources for this thesis thoughts and concepts are based on the performed literature study, meetings with
the daily supervisors, earlier research and meetings with employees within the faculty.

This thesis is written for engineers, aerospace students and researchers that have a sustained understanding
of control theory principles and/or have an interest for getting a better understanding of tailsitter control.

Acknowledgements
I want to express my gratitude to Ir. C. de Wagter, my daily supervisor. His suggestions and support helped
me conduct this research.

In addition, I want to thank Dr. E.J.J. Smeur for helping me with the paparazzi software and understanding
the controller.

Furthermore I want to express a word of gratitude to the Nederdrone team which shared their knowledge
about the tailsitter and gave me the possibility to work with the Nederdrone.

iii

Contents

I Preliminary Thesis Report 1

1 Introduction 3
1.1 General . 3
1.2 Types of tailsitters . 3
1.3 NederDrone. 4
1.4 Problem definition . 4

2 Controllers 7
2.1 General controller overview. 7

2.1.1 Inner and Outer Loop . 7
2.1.2 Resolved tilt-twist angle control . 7
2.1.3 Resolved Euler-angles . 8

2.2 Attitude Error . 8
2.2.1 Euler Angles . 8
2.2.2 Quaternion feedback control . 8

2.3 PID . 9
2.4 MPC . 9
2.5 Sliding mode control . 9
2.6 Backstepping . 10
2.7 Incremental Backstepping . 11
2.8 NDI . 11
2.9 INDI . 12
2.10 Adaptive INDI. 13

3 Control allocation 15
3.1 Saturation. 15
3.2 Least squares . 16
3.3 Active set method . 16
3.4 Multi-parametric quadratic programming . 16
3.5 Sequential quadratic programming . 16
3.6 Interior point method. 17
3.7 Fixed point method . 17

II Paper 21

III Conclusions and recommendations 33

IV Appendix 37

A Appendix A Ground Effect 39
A.0.1 Problem description . 39
A.0.2 Ground effect on tailsitters. 39

B Appendix B Pendulum Simulation 41
B.0.1 INDI controller. 41
B.0.2 IBS controller . 42
B.0.3 Results . 43

v

vi Contents

C Appendix C Feedback Error Methods Comparison 47
C.0.1 Quaternion . 48
C.0.2 Tilt-twist . 48
C.0.3 Simulation . 50
C.0.4 Quadcopter flight tests . 53

D Appendix D Flight tests results 57
D.1 Test 1 Results . 57

D.1.1 Test 1 zoomed . 64
D.2 Test 2 Results . 68

D.2.1 Test 1 zoomed . 75

Bibliography 79

I
Preliminary Thesis Report

1

1
Introduction

1.1. General
The market for applications of Unmanned Aerial Vehicles (UAV) is increasing [29]. The first UAV was made
in 1849 (a hot air balloon) [3]. Until 1984, the use of this type of vehicle was small. From 1984 onward, the
military started investing in remotely controlled UAVs [11] and first used them during the 1990’s. Due to the
development of small processors the UAV became available for the public since the last couple of decades
[33]. Many companies are currently developing UAVs for various purposes [2] [25]. The reasons to use these
type of aircraft are their low cost, high maneuverability and ease of use. A quadcopter is a type of UAV which
has good vertical take-off and landing (VTOL) and maneuverability performance. One of the major draw-
backs of quadcopters is their flight endurance. The fixed wing UAV is comparable to the conventional shape
of an aircraft. A fixed wing is able to cover larger distances than quadcopters, but it has poor hover perfor-
mance. A solution to achieve both the benefits of a quadcopter (high maneuverability) and a fixed wing plane
(able to cover long distances) is to use a hybrid UAV (Figure 1.3). This type of aircraft is able to take off ver-
tically. A tailsitter is a special type of a hybrid UAV. A tailsitter uses the same motors for hover and forward
flight. Once it is in the air, it is able to pitch down and fly like a fixed wing. One of the challenges with this
type of UAV is during the landing phase, especially during tough conditions (hard and unpredictable wind),
which regularly occurs on vessels [6]. The vessel used during this project is the Guardian, see Figure 1.1. The
challenge lies in the nonlinear behaviour of the UAV. During hover some actuators become less efficient and
saturation occurs. The controller can demand more than the actuator can handle. Therefore, it needs to de-
cide which manoeuvre has the highest priority: pitch, roll or yaw. Furthermore, the actuator effectiveness
changes orders of magnitude depending on the amount of airflow that passes over them. For example, when
hovering, the airflow over the wings is almost negligible which reduces the effectiveness of the elevons.

Figure 1.1: Vessel example, the Guardian

1.2. Types of tailsitters
There are multiple types of UAVs, within this research the tailsitter is used. In order to get a better under-
standing of how these type of UAVs operate, the different variants will be presented. This also includes look-
ing into the different components and their functions. In the figures on the next page examples of tailsitters
are shown. The tailsitter in figure 1.2 is one of the first tailsitters[9], which was an operational tailsitter that

3

4 1. Introduction

was not developed further due to required pilot experiences. The aircraft was hard to control as there were
no advanced controllers to help the pilot. With two props, yaw control could be possible by varying torque.
It had two elevons and a rudder that were used to control the attitude. Another disadvantage of this model is
the handling capability in hover. During hover it must be stabilised by the aerodynamic control surfaces, but
the airflow over the control surfaces is very small which makes them less effective. The Cyclone (Figure 1.3)
has only two aerodynamic control surfaces (the elevons). These are used to control the pitch and the yaw ro-
tations. The props are used to generate thrust and roll (in hover), rolling with the props has a side effect in yaw
due to the torque difference in both propellers. It needs to be compensated by the elevons. The pitch of the
props can not be changed which leads to low performance, as efficient hovering requires other pitch angles
than for cruise flight [32]. The UAVs from Figures 1.4 and 1.5 were made by the TU Delft. The Delftacopter
has seven actuators [6]. The rotor of the Delftacopter is very large compared to the wings (fuselage), which
means that the rotor contributes more to the rotational inertia than is typical for quadcopters and less for
helicopters. This interferes significantly with the dynamics of the Delftacopter and complicates the control.
The NederDrone has 20 actuators, 12 of them generate the lift in hover. During this project the NederDrone
is the used tailsitter.

Figure 1.2: The Convair
Pogo Figure 1.3: The Cyclone Figure 1.4: Delftacopter Figure 1.5: NederDrone

1.3. NederDrone
The tailsitter used for this project is the NederDrone, see Figure 1.5. The NederDrone is being developed
in cooperation with the Dutch defense department. Eventually the tailsitter must be able to perform long
endurance recon flights autonomously. This will be accomplished by using a hydrogen tank, with a target
flight time of four hours. The NederDrone has two wings which carry twelve engines and hold eight elevons.
The twelve engines are used in hover, only four are used during forward flight. The wingspan is approximately
two meters. At the beginning of this thesis it was controlled by a PID controller and uses Paparazzi software.

1.4. Problem definition
For the autonomous landing of the tailsitter several problems need to be considered and solved, which are:

1. Wind conditions affected by the ship

2. Ground effect (clarified in Appendix A)

3. How to keep track of the vessel’s position

4. Actuator saturation during hover

5. Nonlinear flight dynamics

This thesis focuses on problems 1, 4 and 5. The objective of this study is:

Improve the landing capabilities of the NederDrone when landing on a vessel
with high distortions (wind) by designing a suitable controller and demonstrating

its performance experimentally.

The project can be divided into three pillars: the literature study in the already existing solutions to the prob-
lems, designing a suitable controller and test/validate the controller. Part I includes the literature study. In
chapter 2 the type of controllers are explained. The control allocation methods are described in chapter 3.

1.4. Problem definition 5

After the literature study the paper is presented, part II. It presents the dynamic tilt-twist method in combi-
nation with an INDI controller, as well as the performed tests. In part III general conclusions are drawn and
recommendations are given. The appendix starts after part III. The ground effect acting on the Nederdrone is
described in appendix A. In Appendix B two type of controllers are compared, IBS and INDI. The quaternion
feedback error method is compared to the tilt-twist method in appendix C. The data analyse done for the
flight test for the paper is shown in appendix D.

2
Controllers

To determine the right controller for this project the different types need to be investigated and compared.
There are a lot of different controllers available, each with their own advantages and disadvantages. Some
were designed specially for nonlinear systems, which makes them more suitable for this project. This liter-
ature study will provide a broad view of the available controllers. First a close look into the widely used PID
controller is given. As this controller is not well suited for nonlinear systems, controllers with better char-
acteristics will be examined. These controllers are the model predictive control, incremental backstepping,
nonlinear dynamic inversion and its variants. Before looking into the different types of controllers the general
outline will be mentioned.

2.1. General controller overview
2.1.1. Inner and Outer Loop
Separating the control in two cascaded loops is generally seen in the UAV industry [16, 20]. The advantages
of using this method is the ease of tuning and simplicity of implementation. Furthermore, controlling a 4th
order system with a PID is impossible. When using two PID controllers for two 2th order systems it becomes
controllable. The two used loops are the inner loop and the outer loop, as shown in Figure 2.1. Within the
inner loop the moments are controlled, which are linked to the attitude. The outer loop controls the forces,
which are linked to the position.

Figure 2.1: General tailsitter control

2.1.2. Resolved tilt-twist angle control
Within the inner loop both the tilt and the twist are controlled. The most important factor is the tilt, as it
needs to overcome the gravity. Matsumoto et al. described a solution to prioritise the tilt over the twist, by
using resolved tilt-twist (RTT) [23, 37].

The quaternion feedback works when the attitude errors are small but will have problems as the errors
become larger. An example: the required attitude is 0, 90, 0 degrees for α, β, γ and the current attitude is 180,
80, 0 degrees. Calculating the quaternion error (0, -0.57, 0, -0.34) will have no initial error around the y-axis.
The tilt-twist method is further elaborated and simulated in appendix C.

7

8 2. Controllers

2.1.3. Resolved Euler-angles
As the resolved tilt twist angle uses more computational power compared to the normal quaternion or Euler
feedback an error determination method is proposed by Argely et al [30]. The Resolved Euler Angle (REA) has
almost the same performance as the resolved tilt-twist but uses less computational effort. The REA method
describes the attitude error as three subsequent rotations. First the heading error is computed by pitching
around φ̃,θ̃ and ψ̃ or roll, pitch and yaw. The needed formulas for the errors can be seen in equation 2.1, 2.2
and 2.3. The equations make use of the quaternions. Singularity occurs when θ̃ equals ±90◦. This can be
solved by saturating η̃.

φ̃= tan−1

(
2(η̃0η̃1 − η̃2η̃3)

2η̃2
0 +2η̃2

3 −1

)
(2.1)

θ̃ = sin−1 (
2(η̃0η̃2 − η̃1η̃3)

)
(2.2)

ψ̃= tan−1

(
2(η̃0η̃3 − η̃1η̃2)

2η̃2
0 +2η̃2

1 −1

)
(2.3)

2.2. Attitude Error
In order to control the tailsitter a feedback error is needed. There are several ways to generate the feedback
error. Two coordinates are required to calculate it, namely the inertial frame and the body frame. A way to
describe the body frame is: it is fixed to the UAV and the origin lies in the centre of gravity of the body. The
x-axis points to the nose of the aircraft, see Figure 2.2. The y-axis points along the right wing and the z-axis to
the bottom of the UAV, following the right hand rule. In the inertial frame the x-axis points to the north, the
y-axis to the east and the z-axis is pointing down. The origin is at an arbitrary point.

Figure 2.2: Tailsitter with reference frame

2.2.1. Euler Angles
One of the simplest attitude error descriptions is the Euler angles error feedback. Where the attitude error
is described by the angles φ, θ and ψ [4]. Applying this within a controller can cause gimbal locking. When
gimbal lock occurs when two planes are aligned, as in figure 2.3. Moving towards a new position from a the
gimbal lock will cause an inefficient manoeuvre.

Figure 2.3: Gimbal lock

2.2.2. Quaternion feedback control
Quaternion feedback works with the quaternion system which is widely used in the UAV industry as it is
computationally efficient. The gimbal lock issue that can occur when Euler angles are used is also eliminated
by using quaternions. The basic formula to use for quaternion feedback can be seen in equation 2.4.

2.3. PID 9

ηer r = ηdes ⊗η−1
cur (2.4)

Where ηer r corresponds to the attitude error around the body axis. ηdesi r ed is the desired attitude and the
current attitude is ηcur .

2.3. PID
One of the most commonly used controllers is the Proportional Integral Derivative (PID) controller. The
general model of the PID controller can be seen in Figure 2.4. The PID controller can easily be applied to
linear systems and can be adapted as the controller can be split up into three different parts. The first part
is the Proportional, which is always in the controller. It determines how fast the error will be decreased. The
Integral can be used to remove the steady state error. The derivative uses the rate of change of the error and is
able to influence the damping term. As the controller is used in several areas, for example in UAVs and aircraft
a number of papers about the topic have been published [27, 28, 46]. The type of UAV used for this project is
highly nonlinear. To be able to control the tailsitter gain scheduling must be done for every flight condition
and a gain table must be generated. This will take a large amount of flight tests and it is not guaranteed that
all possible flight conditions are included. Therefore this controller will not be used for this project.

Figure 2.4: Standard PID scheme

2.4. MPC
The Model Predictive Controller (MPC) determines the control behaviour by predicting the upcoming path.
A simple example is driving into a turn. Humans adapt to the upcoming turn by reducing speed, a standard
PID controller will start to react at the beginning of the turn instead of anticipating it earlier. As it requires
an accurate model of the system and adapts to the future it is one of the most promising controllers [7]. The
controller can also be used for nonlinear systems by using the Taylor series expansion [10]. H. Khan et al.
performed simulation tests on quadcopters with an MPC controller [27]. Nevertheless, there are some major
drawbacks to the controller which makes it unsuitable for this project. The first one is the accurate model that
is needed. A part of getting an accurate model (especially for a highly nonlinear system) is to gather a large
amount of data which goes beyond the scope of the project. The second disadvantage is the computational
effort required. As the goal of the tailsitter is to fly as long as possible a light processor is used. To be able
to use the MPC controller a more powerful processor is needed which consumes more power. If weight and
development time were not limited, the adaptive MPC would be the most suitable controller.

2.5. Sliding mode control
The sliding mode controller is robust and designed for nonlinear systems. E. Zheng et al. performed real
flight tests with a UAV [17]. It requires to follow a path. Sliding mode is a trajectory based controller, where it
switches between two ’positions’ which will results in chattering, which is one of the main disadvantages of
the controller. Furthermore, R. Ghosh Dastidar [13] found that the fuel efficiency is low as it requires a lot of
control.

10 2. Controllers

2.6. Backstepping
Backstepping control is based on using control Lyapunov functions. These functions give information about
the stability and determine the tracking error of nonlinear systems. This tracking error is returned to the con-
troller. An overview of Lyapunov candidates functions can be seen in table 2.1. Several studies are performed
regarding this subject. Van Ekeren et al. performed real flight tests on a fixed wing aircraft [44] and Guerreiro
et al. simulated an IBS controller for a Boeing 747 [19]. A real-life test with a quadcopter was performed by D.
Lee et al. [12].

Table 2.1: Lyapunov candidates

V (x) V̇ (x)
1
2 x2 xẋ
|x| sgn(x)p|x| sgn(x) 1

2 |x|−
1
2 ẋ

ln(x2 +1) 2xẋ(x2 +1)−1

ln2 (x +1) xẋ · log(x +1)(x +1)−1

In order to determine if the systems are asymptotically stable a scalar function V (x) is used with the following
conditions: the function is positive for every x value greater then zero and its time derivative must be nega-
tive. To create a backstepping controller the following steps are carried out:

System dynamics
To define the backstepping controller the system dynamics need to be known. These will be defined as:

ẋi = fi (x i)+ gi (x i)xi+1, i = 1, ...,n −1 (2.5a)

ẋn = fn(x)+ gn(x)u (2.5b)

Where the states are defined by x i and the control inputs are xi+1 and u. The controller will follow a reference
signal (x1r) by comparing it with x1. The next steps will be continued with n = 2.

Subsystem one
As the defined system has two state variables, x1 and x2, the first equation to look at is for the outer loop (x1),
see equation 2.6.

ẋ1 = f1(x1)+ g1(x1)x2 (2.6)

As can be seen, the equation depends on x2. This is known as the virtual input as it is not the real control
input but a state variable. Next, the errors need to determined. As the system has two state variables there
will be two tracking errors z1 and z2:

z1 = x1 −x1r (2.7a)

z2 = x2 −α1 (2.7b)

Where α is the stabilizing function. Now the Lyapunov candidate needs to be selected. The first candidate of
table 2.1 is chosen. The Lyapunov candidate and its derivative can be seen in equation 2.8.

V1(z1) = 1

2
z2

1 (2.8a)

V̇1(z1) =z1 ż1 = z1(z2 +α1 − ẋ1r) (2.8b)

The stabilizing control law needs to be chosen. For this example the control law is defined as:

α1 =−c1z1 + ẋ1r (2.9)

Inserting equation 2.9 into 2.8b gives:
V̇1(z1) =−c1z2

1 + z1z2 (2.10)

Where c1 is the control gain. The second component of the equation will be excluded by using the upcoming
steps. This is done to always get a negative derivative.

2.7. Incremental Backstepping 11

Subsystem two
The second subsystem is designed to eliminate the last term of equation 2.10. By using the earlier mentioned
Lyapunov control function this will result in:

V2(z) =V1 + 1

2
z2

2 (2.11)

The derivative is:
V̇2(z) = V̇1 + z2 ż2 =−c1z2

1 + z1z2 + z2[ẋ2 − α̇1] (2.12)

Where the ẋ2 component depends on u (equations 2.5b and 2.7b). The last step is to determine the formula
for u. The formula must be selected so V̇2 is only dependent of −c1z2

1−c2z2
2 , so the outcome is always negative

(stable). For this method a detailed model description is needed, as can be seen in equation 2.5. An addition
to the standard backstepping method is the incremental one which requires a less defined model.

2.7. Incremental Backstepping
Incremental Backstepping (IBS) has more potential to be used for this project. The method increases the
robustness of the closed loop system, as it does not rely completely on having a well-defined model [41]. To
get to the incremental form, a first order Taylor expansion needs to be carried out. The same model is used
as written in the previous part, see equation 2.5 where n is equal to two. When defining the control Lyapunov
function for z2 it becomes:

V (z) = 1

2
z2

2 (2.13a)

V̇ (z) = z2 ż2 = z2(ẋ2 − v) (2.13b)

ẋ2 = ẋ2,0+A0∆x +G0∆u (2.13c)

The assumption is made that the dynamic system increments are small compared to the actuator dynam-
ics (A0∆x << B0∆u). Therefore, the component dependent on ∆x is eliminated. B0 represents the control
effectiveness matrix. By taking the correct stabilizing control law the system is defined:

∆u =G−1
0 (−cz2 − ẋ0 − v) (2.14)

Previous research showed that this method performs almost identical as INDI [26]. A simulation was per-
formed where an IBS and an INDI controller are designed and compared, see Appendix B. As will be shown
later both IBS and INDI are both suited to be used for the tailsitter. Where each controller has its own method.
Several tests were done with tailsitters (with less actuators) in normal flight conditions, which will be the bases
of this research. In the next two sections the INDI controller will be explained further.

2.8. NDI
A controller which was designed especially for nonlinear systems is the Nonlinear Dynamic Inversion con-
troller (NDI) [35, 47]. NDI has some drawbacks, which makes it hard to implement for a real life tailsitter.
The model of the tailsitter must be accurate. In order to get an accurate model a lot of analysis and simula-
tions must be performed which goes beyond the scope of the project. Controllers based on NDI, which are
explained later are suitable to be used. Before going into these controllers a look at the fundamentals of these
controllers are given, the NDI controller. The NDI controller uses algebraic transformation to convert a non-
linear dynamic system into a linear system. A restriction on the use of a NDI controller is that the system must
be feedback linearisable. First the system will be explained as a single input single output (SISO) system. The
system is described as equation 2.15.

ẋc = f (x)+G(x)u (2.15)

y = h(x) (2.16)

Where ẋc is the output of the system, which consists of the control variables and is a part of the state variables.
The state variables are given as x = [x1, x2, ..., xn] and u is the control input. To get to the desired input several

12 2. Controllers

steps are required. First the Lie derivative of h(x) with respect to f (x) and g (x) and the gradient of h(x) needs
to be determined, as shown in equation 2.17.

Lfh(x) =∇h(x) · f(x) Lgh(x) =∇h(x) ·g(x) ∇h(x) = ∂h(x)

∂x
(2.17)

By performing these steps the input can be determined, as shown in equation 2.18. Here, r represents the
number of differentiations until LgLr−1

f 6= 0.

u = 1

LgLr−1
f h(x)

(−Lr
f h(x)+ v) (2.18)

Figure 2.5: Standard NDI scheme

An NDI controller can be controlled in two ways, by a multi-loop or by a single-loop [40]. In the multi-loop
case contains a cascaded structure where the outer loop is used to convert the angles command to angular
rate commands. The inner loop is used as the controller for the angular rate.

Further research has been performed in order to solve the problems with NDI. Examples of controllers
that are based on NDI are INDI and adaptive INDI. The potential of these controllers will be explained.

2.9. INDI
The Incremental Nonlinear Dynamic Inversion (INDI) works on the principle of actuator effectiveness and
gives the increment of the controller input [16]. The INDI controller was first presented by S. Sieberling et al.
in 2010 [35]. It is based on NDI, where the feedback is coming from the acceleration sensors. Instead of having
an accurate model the INDI uses the accelerometer (IMU) to determine the state of the UAV, which is used for
the feedback of the INDI. The drawback of INDI is that the noise coming from the measurements propagates
and it relies on inverting. Normal control systems also have trouble with noise but for INDI, the situation is
worse, as it contains more components which rely on the measurements coming from the sensors. For INDI
the G-matrix (control effectiveness matrix) is fixed. Whereas for NDI both the F- and the G-matrix need to be
known, for INDI this is only the G matrix needs to be known. This makes the controller less model dependent.
During the design of the controller it is not possible to determine the stability as can be done with IBS. This
can become a problem for certification [41]. Furthermore it cannot be used directly for non-minimum phase
systems, where the systems first respond in the opposite direction to the new input. This cannot be done
because the virtual controller directly relies on the output but there are integrators in between [40]. INDI has
been tested on both UAVs and general aviation aircraft. E. Smeur et al. [15] performed flight tests inside the
wind tunnel, where the UAV (quadcopter) needed to fly in and out of the wind tunnel’s wind stream. The UAV
used for the test had an INDI controller for the inner (attitude control) and the outer loop (position control).
The way it recovered from the sudden change of wind shows that the INDI controller works better then the
compared PID controller. E. van Ekeren et al. [40] shows that the INDI controller can be used for fixed wing
aircraft. The INDI controller was used for the angular rate and the attitude control. For this research, real
flight tests were also performed. R. van ’t Veld showed that the controller can also be used in general aviation

2.10. Adaptive INDI 13

aircraft (Cessna Citation) [42]. Unfortunately there were no real flight tests performed, nevertheless some
interesting results of the research can be used. When setting the sampling time of a discrete INDI smaller
then 0.02s, the stability margins become large.

If this controller is used for this project the G-matrix needs to be determined, which can be done by
performing flight tests where several flight conditions are checked. The general system of INDI can be seen
in equation 2.19.

ẋ = f (x,u) (2.19)

By assuming that the sampling time is very short and that the control effectors are instant the system can be
linearised around the current point (subscript 0). By taking the derivative with respect to x the F matrix is
generated, and the G matrix is generated by taking the derivative with respect to u, as shown in equation 2.20.
So the complete linearistation around the current point can be seen in equation 2.21.

∂ f (x,u)

∂x
= F (x0,u0)

∂ f (x,u)

∂u
=G(x0,u0) (2.20)

ẋ ≈ ẋ0 +F (x0,u0)∆x+G(x0,u0)∆u (2.21)

The derivation can be simplified by using the time-scale separation (equation 2.22). This assumption reduces
the formula to calculate the state derivative [42]. In order to use it for INDI, the incremental input needs to
be known, ∆u. This can be done by taking the inverse of the control effectiveness matrix G . Furthermore the
virtual input is introduced as v , which will come from the IMU data. This will result in equation 2.24.

F (x0,u0)∆x ¿G(x0,u0)∆u (2.22)

ẋ ≈ ẋ0 +G(x0,u0)∆u (2.23)

∆u ≈ (v− ẋ0)G−1(x0,u0) (2.24)

The input from the controller must not be incremental but must be the real new input. This is accomplished
by taking the input of the previous time step and adding the incremental input. An example code is written
for a pendulum, which can be seen in Appendix B.

2.10. Adaptive INDI
The normal INDI controller has some limitations for the correctness of the control effectiveness matrix as it
can change during flight conditions. E. Smeur et al. described a method where the control effectiveness ma-
trix is updated during flight, known as adaptive INDI [8, 16]. When the model does not respond as it should,
due to an inaccurate G-matrix, it is adapted. The delay of the model needs to be considered. When an ac-
tuator is exited it needs some time to adjust. There are different models presented with different feedback.
Previous research has shown that it is possible to use adaptive INDI to control a tailsitter [36]. The research
focused mainly on the transition between normal flight and hover flight. The theory was proven to be suc-
cessful by performing flight tests with a quadcopter. There are some drawbacks when using adaptive INDI,
as it can be calibrated wrong which can result in an unstable flight. For example, if the model is calibrated
while still on the ground it will generate a G-matrix which does not correspond with the conditions once air-
borne. Furthermore, the conditions for this project describe unexpected wind gusts which can influence the
performance and therefore possibly cause inaccurate estimates of the parameters.

3
Control allocation

To achieve a new state the Nederdrone has several options to chose from. It needs to be considered how con-
trol will be allocated to the actuators when there are more actuators available than are necessary for reaching
the desired state. For example, to change the pitch angle the propellers or the elevons can be used. The allo-
cation of the actuators is mentioned within this part of the report. Also, the saturation is mentioned, which
can be dealt with by control allocation. Several methods can be used to solve these problems, including the
weighted least squares and the sequential least squares methods, which are optimization techniques [14].

The control allocation problem is shown graphically in Figure 3.1. It will translate the virtual input (v(t))
coming from the controller into the required input for the UAV. Here, the required input u is bounded by:

u ≤ u ≤ u

Where u and u are the upper and lower bounds of the required input. The optimization will give the optimum
path by setting the correct inputs. The optimum is defined by defining the weight factors, where the goal can
be to achieve the new state as fast as possible. When the UAV is not able to achieve the given virtual input the
optimization should approach the required attitude as closely as possible.

Figure 3.1: Flowchart of the control loop, including the control allocation phase.

3.1. Saturation
Saturation of the actuators is a problem when flying with the NederDrone. During hover saturation of the
elevons and motors can occur. During this flight condition the effectiveness of the elevons is small as the
airflow over the wings is only coming from the propellers. The saturation is occurring and must be dealt
with in a smart manner. As a control allocation method needs to be selected a logical decision is to include
the saturation. Other ways of dealing with the saturation is to apply Pseudo Control Hedging [24]. With this
method the aircrafts response to the given inputs is analysed. Thereafter, the required input is changed so
states with less priority will get a lower input difference, for example the thrust vector to overcome the gravity
is more important than yaw control.

15

16 3. Control allocation

3.2. Least squares
There are several types of least squares methods. All of them will try to solve equation 3.1 for u.

Bu = v (3.1)

Where B is the control effectiveness matrix, u the controller input, v represent the virtual input. Sequential
least squares is one of these techniques. It is formulated in equation 3.2.

useq = argmin
u

[||Wa(u −up ||) : u ∈ arg min
u≤u≤u

||Wb(Bu − v)||] (3.2)

In this equation up represents the preferred control vector and Wa and Wb are weight factors. Where the Wa

matrix sets the weight factors for the inputs and Wb for the objective. To find the solution a redistribution
scheme is used [43]. Every actuator that exceeds its maximum deflection is saturated and removed from the
optimization. The optimization is then repeated with the remaining free variables. This process is repeated
until a feasible solution is found or until all the actuators are saturated.

Equation 3.2 can also be reformulated as one optimization known as the weighted least square method
(WLS):

uwl s = arg min
u≤u≤u

||(Wa(u −up)||2 +γ||Wb(Bu − v)||2 (3.3)

The WLS method is known to be faster than the standard least squares method. It minimizes a cost function
where multiple actuators are included. The cost function is defined by introducing a parameter γ [34], that
represents the relation between the first and second objective[14].

3.3. Active set method
The active set method was introduced by Härkegård [21]. Whereas the least squares methods only gives
an approximation of the optimal solution, the active set method gives the optimum solution within a finite
number of iterations. The method is efficient when using the weighted least squares, especially when an
good estimate of the optimal set is available. The active set method uses several constrains consisting of
equality and bounded constraints. All active set methods work in the same manner: every iteration the in-
equality constrains are treated as equality constraints, while the other constrains are neglected. Then, the
Karush-Kuhn-Tucker (KKT) optimality conditions will be checked [34]. These are first derivative tests where
the optimality is determined. The optimization finishes when this condition is met, otherwise the active con-
straint that broke the condition is removed. In general, the difference between the least squares method and
the active set method is that saturated variables can become ’free’ variables again. Furthermore, it deter-
mines more precisely which variables should be saturated. A variant of the active set method is provided by
Schofield [34] which is especially suited for time varying problems. The method saturates all free variables
where the values of the unconstrained maximum are outside the feasible set, where the normal case moves
along a line from the current iteration towards unconstrained minimum until it touched the border of the
feasible set.

3.4. Multi-parametric quadratic programming
The multi parametric quadratic programming (MPQP) method is an offline method where the computation
power required during flight is very low [1, 39]. This comes with a cost of, pre-calculated parameters need to
be stored on-board. Another disadvantage occurs when the flight conditions change, which makes it neces-
sary to re-calculate and update the parameters that are stored on-board before flight. This makes the method
not suitable for this project.

3.5. Sequential quadratic programming
Another approach to control allocation is dynamic control allocation (DCA) [22]. DCA allocates control while
also considering frequency by using information from the previous time steps. The DCA can be considered
as a sequential quadratic programming problem (SQP) as shown in equation 3.4.

u(k) = argmin
u∈Ω

(||(Wa(u(k)−us (k))||2 +||Wb(u(k)−u(k −T))||2) (3.4a)

Ω= arg min
u(t)≤u(t)≤u(t)

||Wc (Bu(t)− v(t))|| (3.4b)

3.6. Interior point method 17

Where the true control input is represented by u, us is the desired control input, v is the virtual input, k is
the time step and T the sampling time. The weight factors are given by matrices Wa , Wb and Wc . The control
effectiveness is given by the matrix B . First, equation 3.4b minimizes the virtual control error (weighted by
Wc) by giving the feasible control inputs. Next, it picks the control input that minimizes equation 3.4a. The
most important goal is to fulfill the virtual control demand. When this is not possible due to saturation of
the actuators, the weight matrix Wc can be changed. It is possible that different control inputs give the same
virtual control error. Which is the same asΩ does not contain a single point. This can be solved by minimizing
equation 3.4a and tuning it with weight factor matrices Wa and Wb . By increasing Wa , the time it takes to get
to the right value will decrease. Increasing Wb will decrease the acceleration of the actuators, reducing the
wear and tear. SQP is known for its numerical simplicity [5]. The method tries to find an optimum on an
ellipsoid that surrounds the feasible control input space of the actuators. It is not guaranteed that it will find
the optimal solution [18]. This is one of the drawbacks of the method as it can give poor results.

3.6. Interior point method
The interior point method is suited for systems with a large number of actuators but can be computationally
expensive as a large cost function needs to be minimized [31]. The method is a path following method where
it attempts to travel around the central path to find the optimal solution. The interior point method relies on
a Lagrangian (equation 3.5), the cost function J needs to be minimised.

min
x

J = 1

2
xT H x + cT x subject to x +w = xmax , x ≥ 0 w ≥ 0 (3.5)

H = 2(GT G +hI) cT =−2(aT
0 G +hxT

0)

x = u −umi n x0 = u0 −umi n a0 = ad −Gumi n

Here G is the control effectiveness matrix, h is the weight factor of the actuators, w is the slack variable, ad is
the acceleration vector and u0 is the preferred control value. According to J. Petersen and M. Bodson [31] the
method is efficient for a small number of actuators. For this project there are 16 actuators.

3.7. Fixed point method
The fixed point method is able to find an optimal point but needs many iterations [5]. It does this by solving
the recursive fixed point contraction algorithm. The cost function must be written in terms of xn and xn+1.
For the first iteration, a starting value is assumed for xn . For each subsequent iteration, the value of xn+1 from
the previous is assigned to xn . The method should converge on a single value for xn . It converges if xn+1 has a
derivative with respect to xn that has an absolute value smaller than 1. An example how to use the fixed point
method for a general function:

f (x) = x2−x −1 = 0 (3.6a)

x2 =x +1 (3.6b)

x = 1+ 1

x
(3.6c)

xn+1 =1+ 1

xn
(3.6d)

In order to determine whether this method converges, the derivative needs to be determined, as shown in
equation 3.7. If the initial value of x0 is 2 the absolute value of equation 3.7b will be 0.25 which is smaller than
one, so the method converges in this case.

g (x) = 1+ 1

x
(3.7a)

g ′(x) =− 1

x2 (3.7b)

The method is easy to implement, but converges slowly. This disadvantage is usually ameliorated by choosing
a fixed maximum number of iterations.

Introduction part II, III and IV

Part II, III and IV continue with the information gathered in part I. Part II includes the paper. The paper de-
scribes the dynamic tilt-twist method in combination with the INDI. The theory, simulations and flight test
are described in the paper.

Within Part III conclusions are drawn and recommendations are given about the complete thesis report.

The appendixes are included in part IV. The ground effect acting on the Nederdrone is one of the problems
the tailsitter has during the landing phase. A closer look is given towards this problem in appendix A.

This thesis focuses on the controller of the Nederdrone. Both the INDI and IBS controller were promising
controllers. To compare the two controllers a pendulum simulation is performed in Matlab, see appendix B.

The feedback error used in the controller can improve the hover capabilities of the Nederdrone. The
tilt-twist method and the quaternion method are compared by performing a simulation in Matlab. This is
mentioned in appendix C.

The INDI controller with dynamic feedback error method, mentioned in the paper, is used during test
flights. The results of these test flights are shown in appendix D. During these test flights the Nederdrone
used the INDI controller with the quaternion feedback method, tilt-twist method and the dynamic tilt-twist
method subsequently.

19

II
Paper

21

Hybrid UAV Attitude Control using
INDI and Dynamic Tilt-Twist

L.F.A. Dellemann - 4616057
Delft University of Technology

ABSTRACT

The application of Unmanned Aerial Ve-
hicles (UAVs) is increasing, much like the
performance of these aircraft. A tailsitter is a
type of UAV which is capable of performing
vertical take-offs and landings (VTOL) and
long endurance flights. During hover, the yaw
control is limited due to the dynamics of these
tailsitters. The generally used quaternion
feedback for the attitude does not compensate
for this as it describes a singular rotation.
Tilt-twist is a solution to the problem as
it splits the tilt (pitch and roll) from the
twist (yaw). The axis of the yaw rotation
is body fixed. When hovering with a pitch
and/or roll angle the twist axis will be aligned
with the body z-axis, instead of the desired
gravitational force vector (for position con-
trol). Previous tilt-twist methods used a PID
controller. This paper describes an improve-
ment over previous tilt-twist approaches, the
dynamic tilt-twist in combination with INDI.
The INDI controller is designed for nonlinear
systems. The dynamic tilt-twist compensates
for the problem with the normal tilt-twist
as test results will demonstrate. Tests are
performed in a simulation and a real life test
with the NederDrone hybrid tailsitter is done.

1 INTRODUCTION

The market for applications of unmanned aerial vehicles is
increasing [1]. The first UAV was made in 1849 (a hot air
balloon) [2]. Until 1984, the use of this type of vehicles
was small. From 1984 onward, the military started investing
in remotely controlled UAVs [3] and first used them during
the 1990’s. Due to the development of small processors the
UAV became available for the public since the last couple of
decades [4]. Many companies are currently developing UAVs
for various purposes [5] [6]. The reasons to use this type of
aircraft are their low cost, high maneuverability and ease of
use. A quadcopter is a type of UAV which can perform VTOL
and the maneuverability is agile. One of the major drawbacks
of quadcopters is their flight endurance. The fixed wing UAV
has a shape comparable to the shape of an conventional air-

craft. A fixed wing aircraft is typically able to cover larger
distances than quadcopters, but is not able to hover. A solu-
tion to achieve both the benefits of a quadcopter (high ma-
neuverability) and a fixed wing aircraft (able to cover long
distances) is to use a hybrid UAV (Figure 1). This type of
aircraft is able to take-off vertically.

Figure 1: The Nederdrone, capable of performing VTOL. The
tailsitter has 20 actuators (12 motors and 8 elevons) and the
energy is stored in a hydrogen tank.

The most common hybrid UAV types are tilt-rotors [7],
tilt-wings [8], tailsitters [9] and quadplanes [10]. Both the
tilt-rotors and tilt-wings have components which can rotate
during the transition between hover and forward flight. A
quadplane uses different actuators for hover and forward
flight. A tailsitter uses the same actuators in hover and
forward flight and rotates the entire body of the aircraft.
Once it is in the air, it is able to pitch down and fly like a fixed
wing aircraft. One of the challenges with this type of UAV is
its controllability during the landing phase, especially during
hard and unpredictable wind conditions, which regularly
occur on vessels [11]. The challenge originates in the nonlin-
ear behaviour of the UAV and the high inertia of the wings.
During hover, some of the actuators become less efficient, the
wings experience turbulent and hard wind while the airflow
over the elevons is minimized. Furthermore, the motors need
to handle yaw control while the torque is reduced by efficient
props, which results in saturated actuators. Better control
behaviour is achieved during low wind speeds.

1.1 Types of tailsitters
This research is conducted on a tailsitter. In order to get a bet-
ter understanding of how this type of UAV operates, different
variants will be presented. This includes an examination of
the different components and their functions. The tailsitter

1

in Figure 2 was one of the first tailsitters [12], which was
an operational tailsitter that was not developed further due to
the required level of pilot experience. The aircraft was hard
to control as there were no advanced controllers to help the
pilot. With two props, yaw control was possible by varying
torque. It had two elevons and a rudder that were used to con-
trol the attitude. Another disadvantage of this model was the
handling capability during the hover phase. During hover it
had to be stabilised by the aerodynamic control surfaces, but
the airflow over the control surfaces was very small which
made them less effective.

The UAVs from Figures 1, 3 and 4 were developed by the
TU Delft. The Cyclone [13] (Figure 3) has only two aero-
dynamic control surfaces (i.e. elevons) and two motors. The
control surfaces are used to control the pitch and the yaw ro-
tations. The props are used to generate thrust and control roll
in hover. Rolling with the props has a side effect in yaw due
to the torque difference between the propellers. It needs to
be compensated by the elevons during the hover phase. The
pitch of the props cannot be changed which leads to low per-
formance, as the pitch angle for optimal efficiency differs
between hover and cruise flight [14]. The Delftacopter has
seven actuators [11]. The rotor of the Delftacopter is very
large compared to the wings (fuselage), which means that the
rotor contributes more to the rotational inertia than is typical
for quadcopters and less for helicopters. This interferes sig-
nificantly with the dynamics of the Delftacopter and compli-
cates the control system. The NederDrone has 20 actuators,
12 of which generate lift during hover.

Figure 2: Convair
XYF-1

Figure 3: The Cy-
clone

Figure 4: Delfta-
copter

1.2 NederDrone
The tailsitter used for this project is the NederDrone [9],
shown in Figure 1. The NederDrone is being developed in co-
operation with the Dutch defense department. Eventually the
tailsitter must be able to perform long endurance recon flights
autonomously. This will be accomplished by using a hydro-
gen tank, with a target flight time of four hours. The Ned-
erDrone has two wings which carry twelve engines and hold
eight elevons. The twelve engines are all used during hover,
but only four are used during forward flight. The wingspan
is approximately two meters. Several problems need to be
solved for the autonomous landing of the tailsitter on a mov-

ing vessel during high wind distortions:

1. Wind conditions affected by the ship

2. Ground effect

3. Tracking the vessel’s position

4. Actuator saturation during hover

5. Nonlinear flight dynamics

The objective of this study is to improve the autonomous
landing capabilities of the NederDrone when landing on a
moving vessel, where high wind distortions are present, by
designing or improving the autopilot and demonstrating its
performance experimentally. To solve the problems listed
above, several aspects of the tailsitter can be changed, such
as the type of controller [15]. This paper focuses on handling
problems 1, 4 and 5, by handling the feedback error.

The feedback error is generally calculated by using the
quaternions. Euler angles are also an option but have certain
limitations, such as gimbal lock, and are less efficient as more
computational power is needed [16]. The quaternion method
does have limitations when used in tailsitters. It calculates
the shortest path to the new position without considering the
effectiveness of the actuators. During hover, yaw is harder to
control for tailsitters than pitch and roll. The newly proposed
method was based on the research done by Matsumoto et al.
[16]. This research used a different feedback error method,
called the tilt-twist method. Better hover position control
was achieved by splitting the tilt error (pitch en roll) and
the twist error (yaw). When larger pitch angles are present
(due to wind) the twist will be around the body fixed z-axis
instead of the desired gravitation force vector. Previous work
described the method in combination with a PID controller.
This paper proposes a modification of the already existing
tilt-twist method called the dynamic tilt-twist method. This
modification will allow it to be used with larger pitch and roll
angles during hover. Furthermore, the (dynamic) tilt-twist
method is tested in combination with a incremental nonlinear
dynamic inversion (INDI) controller, which is designed for
nonlinear systems [17].

In Section 2 the theory behind the feedback error will be
given. This includes the attitude representation. The three
methods (quaternion, tilt-twist and dynamic tilt-twist) that
will be compared are also included in Section 2. Section 3
describes the methodology for both the simulation and the
real life test. The results of the simulations and the real-life
test are also presented in Section 3. Conclusions are drawn in
the last Section.

2

2 METHOD

2.1 Axis definition
A axis system needs to be defined in order to describe the
feedback error. Both the required attitude and the current at-
titude must be defined in the same coordinate frame. The
axes are body fixed, where the z-axis is parallel to the gravi-
tational force during hover, when the pitch and roll angles are
zero. The x-axis goes through the belly of the UAV and the y-
axis through the right wing (see Figure 5). In forward flight,
the axes are kept body fixed, which implies that the z-axis is
perpendicular to the gravitational force vector when the pitch
is -90 degrees and the roll angle is zero.

Figure 5: Axis definition, body fixed. If the pitch and roll
angles are 0 degrees, the z-axis is parallel to the gravitational
force vector.

2.2 Quaternion
A commonly used feedback method in the industry is the
quaternion method [18]. The quaternions describe the tran-
sition of the attitude in one single rotation, when using the
Euler angles the rotation is calculated in three subsequent ro-
tations. Another difference between the quaternions and the
Euler angles is the computational efficiency [19]. Quater-
nions can be calculated faster as no trigonometric functions
are required. In addition, the problem of gimbal lock does
not occur. A quaternion describes the attitude with a rotation
and a three dimensional unit vector component, see Equation
1.

q =

[
cos(η2)
r sin(η2)

]
=
[
qi qx qy qz

]>
(1)

To calculate the errors by using the quaternions, the current
and the desired quaternions need to be known. The current
attitude is given by

qc =

qci
qcx
qcy
qcz

 (2)

The desired attitude is given by

qd =

qdi
qdx
qdy
qdz

 (3)

The attitudes qc and qd are used to calculate the errors for the
controller, as shown in Equations 4 and 5.

qerr = qd ⊗ q−1c (4)

qerr =

qerr1
qerr2
qerr3
qerr4

 =

qd0 qd1 qd2 qd3
−qd1 qd0 qd3 −qd2
−qd2 −qd3 qd0 qd1
−qd3 qd2 qd1 qd0

 qc (5)

The controller needs to separate errors for the x-, y- and z-
axis. These can be found with Equations 6, 7 and 8, these
Equations are used for a PD controller. δa, δe and δr rep-
resent the aileron deflection, elevator deflection and rudder
deflection, respectively.

δa = −2(kpqerr2 + kdq̇err2) (6)

δe = −2(kpqerr3 + kdq̇err3) (7)

δr = −2(kpqerr4 + kdq̇err4) (8)

The quaternions are limited when saturation of the actuators
occur or the response time of the actuators is insufficient. If
a large yaw error occurs while the pitch angle is small, the
quaternion feedback controller will find the shortest path to
the required attitude, for which the yaw error will be the most
significant factor. To align the thrust vector with the gravita-
tional vector the most relevant part is the pitch error.

2.3 Tilt-Twist
When a tailsitter hovers, complications occur because the
twist (yaw) is limited, due to saturation of the actuators. The
thrust/tilt (combination of pitch and roll) component is reli-
able for the xyz position. In the situation where a hovering
tailsitter needs to follow a position the tilt-twist is a solution.
During perfect hover, the tilt is zero degrees when the body
z-axis is opposite to the gravitational vector. As was men-
tioned before, this method splits the motion into a tilt and a
twist component. This method is described by Matsumoto et
al [16]. Beach et al. improved the method to make it more
computationally efficient [20]. The procedure of the tilt-twist
method will be explained next.

2.4 Rotation matrix
A rotation matrix is used to rotate from one frame to another
and is calculated based on the current and the desired atti-
tudes, as shown in 9. The matrix will be used for both the
tilt-twist method and the dynamic tilt-twist method.

R(q) =

[
q2i+q

2
x−q2y−q2z 2(qxqy+qzqi) 2(qxqz−qyqi)

2(qxqy−qzqi) q2i−q2x+q2y−q2z 2(qyqz+qxqi)

2(qxqz+qyqi) 2(qyqz−qxqi) q2i−q2x−q2y+q2z

]
(9)

3

Rotation matrices can be calculated for both the current (Rc)
and the desired (Rd) attitudes, as shown in Equation 10.

Rd = R(qd) Rc = R(qc) (10)

Figure 6: Total tilt error definition. In this case the pitch error
is 10◦, the roll error 5◦ and the yaw error is 60◦.

2.4.1 Tilt error

The first part of the tilt-twist method consists of calculating
the tilt error. As was mentioned before, this error is a combi-
nation of the pitch- and the roll error. The error is calculated
using the rotation matrices to align the current frame with the
desired frame, as shown in Equation 11. If the pitch and roll
error are small compared to the yaw error, the total tilt error
can be defined according to Figure 6.

Rd = RerrRc (11)

Equation 11 can be rewritten as,

Rerr = RdR
>
c =

r1,1 r1,2 r1,3
r2,1 r2,2 r2,3
r3,1 r3,2 r3,3

 (12)

The axis definition from Matsumoto et al. is different from
the one used in this paper. Here, the tilt error is about the x-
and y-axis instead of the y- and z-axis. The third row compo-
nent of matrix Rerr will provide the tilt error. The x compo-
nent of the tilt error is given by

Tilt error1 , εx = −atan2(r3,2, r3,3) (13)

Where atan2 is the inverse tangent. The negative sign en-
sures that the rotation is in the desired direction. The y com-
ponent is given by Equation 14.

Tilt error2 , εy = atan2(r3,1, r3,3) (14)

2.4.2 Twist error
In the second part of the tilt-twist method the twist error is
calculated, which is the given error around the body fixed z-
axis. To calculate the error, an intermediate coordinate frame
is formulated to align the current z-axis with the desired z-
axis. This is done by using the rotation matrices,

Rd =

rd1
rd2
rd3

 Rc =

rc1
rc2
rc3

 (15)

The total tilt error will be used to align both the z-axes. The
complete tilt error is calculated by using both Rc and Rd, as
shown in Equation 16.

Tilt error , εtilt = cos−1 (r>d3 · r>c3) (16)

In Equation 17 the unit length axis is defined.

k =
r>c3 × r>d3
|r>c3 × r>d3|

(17)

As the rotation needs to happen in the vehicle frame the unit
vector k needs to be in the vehicle frame, which is done by

vb = Rck =

vbx
vby
vbz

 (18)

and

v =

0 −vbz vby
vbz 0 −vbx
−vby vbx 0

 (19)

Next a rotation matrix needs to be defined which rotates
a vector around a vector. The angle of this vector is also in-
cluded. This is accomplished by using the Rodrigues’ rota-
tion formula [21], where the angle is εtilt and the vector is
vb. The rotation matrix is given by Equation 20.

Rv =

{
I, εtilt = 0

I − v sin(εtilt) + v2[1− cos(εtilt)], εtilt 6= 0

(20)
The attitude of the UAV can be compensated with the tilt er-
ror, which can be found by using Rv . By multiplying Rv

with the rotation matrix of the current attitude of the UAV
(Rc) a new rotation matrix Rp is found, as shown in Equa-
tion 21.

Rp = R>v Rc (21)

Where

Rp =

rp1
rp2
rp3

 (22)

The absolute twist error can be found using the x components
of Rp and Rd, see Equation 23. In Figure 7 the frame has

4

already been compensated for the tilt error and the twist error
is shown.

Figure 7: Twist error definition. In this case the pitch error
is 0◦ and the roll error 0◦ due to the compensation for the tilt
error.

εtwist = cos−1(r>p1 · r>d1) (23)

The sign of the twist error needs to be determined, as Equa-
tion 23 gives the absolute value of the twist error. By using
the y component of Rp this can be achieved, see Equation 24.

εsign = cos−1(r>p2 · r>d1) (24)

When this value is above 90◦, or π
2 radials, the sign of the

twist error becomes negative. The final twist error can be
seen in Equation 25.

Twist error , εz =

{
εtwist, εsign ≤ π

2

−εtwist, εsign >
π
2

(25)

Together, the calculated errors form the total feedback error,
given by:

Feedback error , ε =

εx
εy
εz

 (26)

For a PD controller, the actuator deflections of the ailerons,
elevator and rudder are calculated with Equation 27, 28 and
29.

δa = kpεx − kdε̇x (27)

δe = kpεy − kdε̇y (28)

δr = kpεz − kdε̇z (29)

In Figure 8 and 9 the difference is depicted of a quaternion
feedback error method and the tilt-twist method. A simula-
tion is performed where there is a small pitch and roll error
and a large yaw error. The tilt-twist method solves the pitch
and roll in a shorter time period then the quaternion feedback
method. Which will result in larger position errors for the

quaternion method. From Figure 9 it can be seen that the tilt
twist method uses both pitch and roll to solve the problem.

Figure 8: Error handling comparison between tilt-twist and
quaternion feedback, in Euler angles. The tilt error is also
shown, which is linked to the trust vector.

Figure 9: Error handling comparison between tilt-twist and
quaternion feedback, inputs for the system.

2.5 Dynamic Tilt-Twist
In the tilt-twist method the twist component is always mea-
sured around the body fixed z-axis. However, the Nederdrone

5

can still have a very large pitch angle (e.g. 60 degrees) when
hovering with significant wind. When landing on a vessel
the twist vector should be parallel with the gravitational force
factor, to ensure position control. The body tilt axis does not
correspond to the lift vector anymore. The idea of having the
lift vector making the shortest path becomes invalid. Instead,
as the wings of the hybrid UAV still participate heavily in the
lift production, the tilt axis is redefined to be parallel with the
gravitational vector. To align the twist vector with the gravi-
tational vector the rotational matrix Ra is used, see Equation
30. It requires the pitch (θ) and roll (φ) angle. When the pitch
angle is -90◦ the rotation matrix contains the values shown in
Equation 31. Effectively, the first and third row are swapped.
The twist will no longer be around the x-axis but around the
z-axis.

Ra(θ, φ) =

cos−θ sin−θ sin−φ sin−θ cos−φ
0 cos−φ − sin−φ

− sin−θ cos−θ sin−φ cos−θ cos−φ

(30)

Ra(−
π

2
, 0) =

0 0 1
0 1 0
1 0 0

 (31)

The procedure to calculate the actuator deflections is similar
to the one described in Section 2.3 except for the changes
described below. First, the rotation matrices from Equation
10 need to be adjusted by using the matrix from Equation 30.
The new rotation matrices are given by Equations 32 and 33.

Rd = RaR(qd) (32)

Rc = RaR(qc) (33)

The last step is to determine the actuator deflections to com-
pensate again for the dynamic tilt angle. Ra is modified by
multiplying both θ and φ by -1 to produce R−a, which is used
to adjust the feedback error, as shown in Equation 30:

Feedback error , ε =

εx
εy
εz

R−a (34)

3 SIMULATION AND FLIGHT TEST

The Nederdrone is used to perform the simulations and the
flight test. The controller used during the test is an INDI con-
troller [22]. Three different feedback errors are compared,
quaternion feedback, tilt-twist and dynamic tilt-twist. The
setup is identical for the simulations and the flight test. The
tests were conducted by flying the Nederdrone from point 1
to point 2 and back. When it hovers at a point for three sec-
onds the setpoint is instantly changed with a heading offset
ψchange. An artificial twist error is introduced (bypassing the
reference model) to simulate the effect of turbulence acting

on a wing and inducing saturation. Thereafter it flies to the
other point. The goal was to simulate the conditions the Ned-
erdrone would experience during a landing procedure on a
moving vessel. The sudden change in heading represents a
sudden gust of wind. When landing on a moving vessel the
x- and y location also change over time, which is simulated
by instructing the drone to fly from point 1 to point 2 and back
again, repeatedly.

3.1 Results

3.1.1 Simulation

Before the flight tests, the different types of feedback errors
were tested in a simulation. The same controller settings were
used for the flight test. The heading offset (ψchange) during
the simulation was 160◦. The simulation results can be seen
in Figure 11 and 10. The simulations were performed with
a low fidelity model of the Nederdrone. Detailed PD tuning
was not performed. The maximum accelerations were high,
which is undesirable, as it causes extra stress on the drone.
PD tuning would result in lower accelerations. The simu-
lation was performed to get an impression of the relative im-
provement of the tilt twist and dynamic tilt twist methods over
the quaternion feedback method. During the simulation, most
wind effects were ignored, except for the wind gust described
earlier. As can be seen from the Figures below, the quater-
nion feedback resulted in irregular behaviour. The tilt-twist
and dynamic tilt-twist methods were much more consistent.

Figure 10: Total error in the horizontal plane (reflection on
earth). Normal quaternion 0-350 seconds, dynamic tilt-twist
350-680 seconds, tilt-twist 680-980 seconds

6

Figure 11: Flight paths during simulation (quaternion, tilt-
twist, dynamic tilt-twist). The quaternion feedback method
had problems with handling the yaw angle. Both the tilt-twist
and the dynamic tilt-twist method showed more stable be-
haviour.

3.1.2 Flight test

During the flight test the wind conditions were challenging
for the Nederdrone. The smallest angle between the wind and
the path (orange) was 50◦. Yaw control of the Nederdrone
becomes easier when flying parallel to the wind, as the wind
helps with rotating the tailsitter. The heading offset, ψchange,
was 45◦. Higher heading offsets could result in an unsafe
flight, especially when the quaternion feedback controller is
used. Due to the large instantaneous error, the tilt component
can become unstable.

In Figure 12.A the flight path of the Nederdrone can be seen
when the quaternion feedback is used. It needed to follow the
orange line, but instead it behaved irregularly, with a larger
average distance from the line, see Table 1. When the tilt-
twist method was used the behaviour improved (Figure 12.B),
with a consistent flight path. The dynamic tilt-twist method
improved the behavior even further (Figure 12.C), demon-
strating an even smaller average distance from the reference
line. The average distances for the different methods are
shown in Table 1. A straight line was chosen for the refer-
ence path to simplify the calculation of the distance between
the drone and the path, which made it possible to calculate
this distance for every time step.

Table 1: Test results, distance from reference line.

Average distance (m)
Quaternion 3.27
Tilt-twist 2.74
Dynamic tilt-twist 2.08

7

Figure 12: Flown path during flight test, the wind conditions
were equal for all flights

4 CONCLUSION

This paper presented an improvement to the existing tilt-
twist method, namely the dynamic tilt-twist method. The
method was explained and compared to the quaternion feed-
back method and the tilt-twist method. The simulation and
the flight test demonstrated that the quaternion feedback
method had problems following the required path, whereas
the tilt-twist method showed some improvements and the dy-
namic tilt-twist showed the best results. The dynamic tilt-
twist method is suitable for tailsitters that vary their pitch and
roll angles during hover and experience yaw/position control
problems. In forward flight, the twist is rotated -90 degrees
and can be used to align the twist vector along the axis where
the rudder acts, which proved to be an effective addition to
the tilt-twist method.

REFERENCES

[1] G. Mattei L. Canetta and A. Guanziroli. Exploring com-
mercial UAV market evolution from customer require-
ments elicitation to collaborative supply network man-
agement. In 2017 International Conference on Engi-
neering, Technology and Innovation (ICE/ITMC), pages
1016–1022, June 2017.

[2] V. Ambrosia A. Watts and E. Hinkley. Unmanned Air-
craft Systems in Remote Sensing and Scientific Re-
search: Classification and Considerations of Use. 2012.

[3] J. H. Christner. Pioneer unmanned air vehicle ac-
complishments during Operation Desert Storm. In
Thomas W. Augustyn and Paul A. Henkel, editors, Air-
borne Reconnaissance XV, volume 1538, pages 201
– 207. International Society for Optics and Photonics,
SPIE, 1991.

[4] P. Murrieri S. Bouabdallah and R. Siegwart. Design and
control of an indoor micro quadrotor. In IEEE Interna-
tional Conference on Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004, volume 5, pages 4393–
4398 Vol.5, 2004.

[5] A. Kumar A. Saha and A. K. Sahu. FPV drone with GPS
used for surveillance in remote areas. In 2017 Third In-
ternational Conference on Research in Computational
Intelligence and Communication Networks (ICRCICN),
pages 62–67, 2017.

[6] S. Ge K. Feng, W. Li and F. Pan. Packages delivery
based on marker detection for UAVs. In 2020 Chi-
nese Control And Decision Conference (CCDC), pages
2094–2099, Aug 2020.

[7] G. Flores and R. Lozano. Transition flight control of
the quad-tilting rotor convertible MAV. In 2013 In-
ternational Conference on Unmanned Aircraft Systems
(ICUAS), pages 789–794, 2013.

[8] N. Okada K. Muraoka and D. Kubo. Quad Tilt Wing
VTOL UAV: Aerodynamic Characteristics and Proto-
type Flight.

[9] R. Ruijsink F. van Tienen E. van der Horst C. De Wagter,
B. Remes. Design and Testing of a Vertical Take-Off
and Landing UAV Optimized for Carrying a Hydrogen
Fuel Cell with a Pressure Tank. Unmanned Systems,
08(04):279–285, 2020.

[10] A. Wang and T. Chan. Estimation of Drag for a Quad-
Plane Hybrid Unmanned Aerial Vehicle. 11 2017.

[11] E. Smeur K. van Hecke F. van Tienen E. van der Horst
C. De Wagter, R. Ruijsink and B. Remes. Design, con-
trol, and visual navigation of the DelftaCopter VTOL

8

tail-sitter UAV. Journal of Field Robotics, pages 937–
960, 2018.

[12] W. F. Chana and J. F. Coleman. World’s First VTOL
Airplane Convair/Navy XFY-1 Pogo. SAE Transactions,
pages 1261–1266, 1996.

[13] H. Garcia de Marina M. Bronz, E. J. Smeur and G. Hat-
tenberger. Development of A Fixed-Wing mini UAV
with Transitioning Flight Capability. In 35th AIAA Ap-
plied Aerodynamics Conference.

[14] L. Meier R. Bapst, R. Ritz and M. Pollefeys. Design
and implementation. 2015.

[15] E. Smeur. Incremental Control of Hybrid Micro Air Ve-
hicles. 2018.

[16] R. Suzuki A. Oosedo K. Go Y. Hoshino A. Konno
T. Matsumoto, K. Kita and M. Uchiyam. A Hovering
Control Strategy for a Tail-Sitter VTOL UAV that In-
creases Stability Against Large Disturbance. 2010.

[17] S. Sieberling, Q. P. Chu, and J. A. Mulder. Robust
Flight Control Using Incremental Nonlinear Dynamic
Inversion and Angular Acceleration Prediction. Journal
of Guidance, Control, and Dynamics, 33(6):1732–1742,
2010.

[18] H. Abaunza J. Cariño and P. Castillo. Quadrotor quater-
nion control. In 2015 International Conference on Un-
manned Aircraft Systems (ICUAS), pages 825–831, June
2015.

[19] C. Milazzo A. Ricciardello A. Alaimo, V. Artale. Com-
parison between Euler and quaternion parametriza-
tion in UAV dynamics. AIP Conference Proceedings,
1558(1):1228–1231, 2013.

[20] T. McLain R. Beard J. Beach, M. Argyle and S. Morris.
Tailsitter attitude control using resolved tilt-twist. 2014.

[21] E. W. Weisstein. Rodrigues’ Rotation For-
mula., 2020 (accessed October 9, 2020)
https://mathworld.wolfram.com/RodriguesRotationFor
mula.html.

[22] R. C. van ’t Veld. Incremental Nonlinear Dynamic In-
version Flight Control. 2019.

9

III
Conclusions and recommendations

33

Conclusions and recommendations

Within this thesis is investigated on how to improve the landing performance of the Nederdrone. The goal of
this thesis was defined by:

Improve the landing capabilities of the NederDrone when landing on a vessel
with high distortions (wind) by designing a suitable controller and demonstrating

its performance experimentally.
By looking into the controller an improvement has been realised. Using an INDI controller in combination
with dynamic tilt-twist showed sufficient improvements from both the simulations as the test flight. Within
the literature study the current problems with the Nederdrone were mentioned during the landing phase.
The wind conditions, non-linearity and the saturation of the actuators were the problems. By using INDI and
dynamic tilt-twist the problems were reduced.

Recommendations
During this thesis a flight test was conducted. Flight tests can be done on a real vessel to further validate
the proposed method. Furthermore, the dynamic tilt-twist is tested during hover. More tests can be done
to receive the performance during forward flight. Control allocation is not further elaborated after the pre-
liminary thesis report. Research into the control allocation can be conducted to further improve the hover
performance of the Nederdrone.

35

IV
Appendix

37

A
Appendix A Ground Effect

During the last phase of the landing of the UAV the tailsitter experiences a lot of problems due to the ground
effect. In order to be able to counteract this effect it will be further elaborated in the chapter.

A.0.1. Problem description
Several flight tests with the NederDrone are already performed for this project. During these flight tests the
UAV was mainly tested in order to check what the problems are with the tailsitter. In the final phase of the
landing it could be noticed that the ground effect was kicking in and the UAV started tipping forward, see
Figure A.1. This is a desired effect as it will land horizontally. The only problem is that it is a uncontrolled
movement. To be able to get a controlled pitching forward movement the ground effect will be tested during
flight test. Before the flight tests the written theory will be investigated.

Figure A.1: The ground effect forces on the tailsitter

A.0.2. Ground effect on tailsitters
Not a lot of research is performed on the ground effect on tailsitters. Nevertheless, C. Thipyopas et al. [38] did
some research and performed test with a tailsitter. During their research several fight tests were performed
with a tailsitter with counter rotating propellers. During the tests the forces and moments due to the ground
effect were measured. As the design of the tailsitter is comparable with the design of the NederDrone this
research can be used as a reference.

The wing height will influence the ground effect behaviour, as the motors of the tailsitter are above the
wings in the situation of hovering (see Figure A.1). According to C. Thipyopas the ground effect kicks in at a
height of approximately two times the prop width, when also considering the wing under the props. Which
influences the ground effect.

39

40 A. Appendix A Ground Effect

Figure A.2: Coefficients and actuator deflection relations against the altitude

The ground effect reduces the required thrust to hover. The thrust delivered by the motors is nearly constant.
However, the down load force coefficient (CDp) changes, it reduces around 52%. The difference is from out
of ground effect region up until just above the ground. The down load force consists of the pressure drag
and skin friction in the x direction. The moments and the normal force (z-direction) caused by the ground
effect can be neglected as they are close to zero[38]. Nevertheless the efficiency of the actuators (flaps) does
decrease. The coefficients change when varying the angle of the flaps at different altitudes and it is quasi
linear. In Figure A.2 the results of deflecting the flaps can be seen. It represents the change of the coefficients
per degree of deflection against the altitude. It can be noticed it does affect the CDp more then it does to the
other coefficients.

B
Appendix B Pendulum Simulation

Within this section a simulation is performed to compare the INDI controller with the IBS controller. The
used model is a pendulum (Figure B.1). It is described by formulas B.1a and B.1b.

ẋ1 =x2 (B.1a)

ẋ2 =− g

l
sin x1− k

m
x2 + 1

ml 2 u (B.1b)

Where x1 represents the angle around the pivot point, g the gravitational acceleration, l the length of the
chord of the pendulum, k the friction coefficient, m the mass of the pendulum (the chord is not included)
and u is the input which is the applied torque.

Figure B.1: Pendulum

For convenience equation B.1b will be rewritten into the form:

ẋ2 =β1 sin x1 +β2x2 +β3u (B.2)

Where:

β1 =− g

l
β2 =− k

m
β3 = 1

ml 2

A reference signal will be generated, which the controller needs to follow. The first reference signal is a step
input and the second input is a sinusoidal.
For the simulations the value used are g =−9.81m/s2, l = 1m, k = 5 and m = 10g .

B.0.1. INDI controller
The INDI controller must be able to reduce the error from equation B.3.

z1 = x1r −x1 (B.3)

x1 needs to be differentiated until the control input u occurs:

ẋ1 = x2 (B.4a)

ẍ1 = ẋ2 =β1 sin x1 +β2x2 +β3u (B.4b)

41

42 B. Appendix B Pendulum Simulation

From equation B.4b only the last component is dependent of u. Therefore, the control effectiveness consists
of β3. Writing equation B.4b into the incremental form, by using a first order Taylor expansion gives:

ẋ2
∼= ẋ2,0 +θ1 cos x1,0∆x1 +θ2∆x2 +θ3∆u (B.5)

When using NDI the first and second component are used in the feedback, for an INDI controller the in-
formation of the sensor is used to determine ẋ2 (feedback). So the δx components are neglected. ẋ2 will be
written as the virtual input v . The incremental input will become:

∆u ∼= 1

θ3
[v − ẋ2,0] (B.6)

Where 1
θ3

is the inverse control effectiveness matrix (G−1). To get from the angular state error to the virtual in-
put a PD controller is used. As the incremental feedback will reduce the integration, the I of the PID controller
is not required. The complete controller can be seen in Figure B.2

Figure B.2: INDI controller

B.0.2. IBS controller
For the IBS controller several steps are required. The two tracking errors can be defined as:

z1 = x1 −x1r (B.7a)

z2 = x2 −α1 (B.7b)

Where x1r is the reference state and α1 is the stabilizing control law. For the incremental part the equation
for ẋ2 will be rewritten by using the first order Taylor series expansion.

ẋ2
∼= ẋ2,0 +θ1 cos x1,0∆x1 +θ2∆x2 +θ3∆u (B.8)

As the incremental states are small in comparison to the incremental control (θ1 cos x1,0∆x1+θ2∆x2 << θ3∆u)
[41] ẋ2 will become:

ẋ2
∼= ẋ2,0 +θ3∆u (B.9)

The differentiation of the set of equations B.7 is:

ż1 = z2 +α1 − ẋ1r (B.10a)

ż2 = ẋ2,0+θ3∆u − α̇1 (B.10b)

For the first subsystem the control Lyapunov function is formulated as:

V1(z1) = 1

2
z2

1 (B.11)

Where the derivative is:
V̇1(z1) = z1 ż1 = z1[z2 +α1 − ẋ1r] (B.12)

The control law (α1) will be defined as:
α1 =−c1z1 + ẋ1r (B.13)

43

Inserting equation B.13 into B.12 gives:
V̇1(z1) = z1z2 − c1z2

1 (B.14)

Next the second subsystem will be defined. The control Lyapunov function will be used for the second one:

V (z) =V1(z1)+ 1

2
z2

2 (B.15)

And its derivative:
V̇ (z) = V̇1(z1)+ z2 ż2

∼= z1z2 − c1z2
1 + z2[ẋ2,0 +θ3∆u − α̇1] (B.16)

To assure stability the incremental input∆u can be selected so V̇ becomes like equation B.17. The associated
formula for u can be seen in equation B.18.

V̇ =−c1z2
1 − c2z2

2 (B.17)

∆u = 1

θ3
[−ẋ2,0 + α̇1 − z1 − c2z2] (B.18)

B.0.3. Results
The simulation time is set to be 100 seconds with both the controllers. The P and D value for the INDI and
IBS are different. It is tuned to get a stable performance. The values used for the simulation can be seen in
table B.1. The input u is saturated at 250.

Table B.1: Values used for simulation

Symbol Value
g -9.81
l 1
k 5
m 10
c1 10
c2 10

For the simulation three different reference signals are generated: step, sinusoidal and a polynomial. The
results of these simulations can be seen in Figure B.3 to B.8. The computational time of the simulation can
be seen in Table B.2. From the table it can be seen the computational power required is less for INDI.

Table B.2: Average computational time simulation

Input
Average time
IBS

Average time
INDI

Step 0.133 0.123
Sinus 0.132 0.127
Polynomial 0.121 0.118

44 B. Appendix B Pendulum Simulation

Figure B.3: INDI simulation results (step input)

Figure B.4: IBS simulation results (step input)

Figure B.5: INDI simulation results (sinus input)

45

Figure B.6: IBS simulation results (sinus input)

Figure B.7: INDI simulation results (polynomial input)

Figure B.8: IBS simulation results (polynomial input)

C
Appendix C Feedback Error Methods

Comparison

For the inner loop the attitude error can be determined in several ways. The most straight forward way is to
use Euler angles. When dealing with Euler angles singularities occur, especially for large errors. Within the
UAV industry often is chosen to use quaternions. With this method no singularities occur and it is computa-
tional efficient. Quadcopters and tailsitters have problems with yaw movements as the response time is long.
Quaternion feedback calculates the errors by determining the shortest angle towards the new attitude. The
alternative is to use the tilt-twist method, where quaternions are used and the error is split up into tilt (pitch
and roll) and twist (yaw). The thrust vector is the most important which must be achieved in order to keep
the UAV flying. Within this chapter the quaternion method is compared to the tilt-twist by using a Matlab
simulation and a flight test. For the Matlab simulation the used model is based on the Nederdrone. It is a
simplified version which contains six actuators, four motors (one for each wing) and two elevons (one for
each side). The used state space is shown in equation C.1 and C.2.

ẋ = Ax+Bu (C.1)

Where x is the state vector and the input is given by u. The state x, input u and the A and B matrix are defined
by:

x =

q0

q1

q2

q3

p
q
r

u =

T1

T2

T3

T4

δe1

δe2

 ,

A = 0.5

0 0 0 −q1 −q2 −q3

0 0 0 q0 −q3 q2

0 0 0 q3 q0 −q2

0 0 0 −q3 q2 q1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

B =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1

Ixxδe1
− 1

Ixxδe2

− 1
Iy yT1

− 1
Iy yT2

1
Iy yT3

1
Iy yT4

1
Iy yδe1

1
Iy yδe2

− 1
IzzT1

1
IzzT2

− 1
IzzT3

1
IzzT4

0 0

(C.2)

For this simulation a PD controller is used to control the system. The axis are defined according to Figure C.1.

47

48 C. Appendix C Feedback Error Methods Comparison

Figure C.1: Axis directions

C.0.1. Quaternion
The relationship between different quaternions can be described by:

ηdes = ηer r ⊗ηcur (C.3)

To get the error the following equation can be used:

ηer r = ηdes ⊗η−1
cur (C.4)

ηer r =

qer r 0

qer r 1

qer r 2

qer r 3

 ηk =

qr 0 qr 1 qr 2 qr 3

−qr 1 qr 0 qr 3 −qr 2

−qr 2 −qr 3 qr 0 qr 1

−qr 3 qr 2 −qr 1 qr 0

 ηcur =

qc0

qc1

qc2

qc3

 (C.5)

The input u is calculated by using qer r 1, qer r 2 and qer r 3 and applying a PID controller to control the angular
accelerations.

C.0.2. Tilt-twist
For tilt twist the tilt error needs to be calculated first. The tilt error consists of two components. Around the
y-axis and the z-axis. The rotation matrices of the current attitude and the desired attitude compared to the
earth reference frame need to be determined. Rotation matrices can be generated by using equation C.6.

R̃η =
q2

0 +q2
1 −q2

2 −q2
3 2(q1q2 +q3q0) 2(q1q3 −q2q0)

2(q1q2 −q3q0) q2
0 −q2

1 +q2
2 −q2

3 2(q2q3 +q1q0)
2(q1q3 +q2q0) 2(q2q3 −q1q0) q2

0 −q2
1 −q2

2 +q2
3

 (C.6)

Rotation matrices can be calculated for both the current (Rc) and the desired (Rd) attitudes, as shown in
equation C.7.

Rd = R̃η(ηdes) Rc = R̃η(ηcur) (C.7)

Tilt error
The first part of the tilt-twist method consists of calculating the tilt error. As was mentioned before, this error
is a combination of the pitch and the roll error. The error is calculated by using the rotation matrices to align
the current frame to the desired frame, as shown in equation C.8.

Rd = Rer r Rc (C.8)

Equation C.8 can be rewritten as,

Rer r = Rd R>
c =

r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 (C.9)

The tilt error is about the y- and z-axis. The first row component of matrix Rer r will provide the tilt error. As
both the x-axis need to be aligned. In equation C.10 an example is given of the rotation matrices when there

49

is a roll angle of 10 degrees, in case of a pitch error of 10 degrees the matrices will look like equation C.11. A
visualisation is given in figure C.2.

Rd =
0 0 1

1 0 0
0 −1 0

 Rc =
−0.17 0 0.98

0.98 0 0.17
0 −1 0

 Rer r =
0.98 −0.17 0

0.17 0.98 0
0 0 1

 (C.10)

Rd =
0 0 1

1 0 0
0 −1 0

 Rc =
0 −0.17 0.98

1 0 0
0 −0.98 −0.17

 Rer r =
0.98 0 −0.17

0 1 0
0.17 0 0.98

 (C.11)

Figure C.2: Axis definition in case there is pitch or roll error of 10 degrees.

The y component of the tilt error is given by

T i l t er r or1 , εy =−at an2(r1,3,r1,1) (C.12)

Where at an2 is the inverse tangent. The negative sign ensures that the rotation is in the desired direction.
The z component is given by equation C.13.

T i l t er r or2 , εz = at an2(r1,2,r1,1) (C.13)

Twist error
In the second part of the tilt-twist method the twist error is calculated, which is the given error around the
body fixed x-axis. To calculate the error, an intermediate coordinate frame needs to be found which aligns the
current x-axis with the desired x-axis, which will still include the twist error. This is done by using the rotation
matrices,

Rd =
r d1

r d2

r d3

 Rc =
r c1

r c2

r c3

 (C.14)

The total tilt error will be used to align the x-axes. The complete tilt error is calculated by using both Rc and
Rd , as shown in equation C.15.

T i l t er r or , εt i l t = cos−1 (r >
d1 · r >

c1) (C.15)

In equation C.16 the unit length axis is defined.

k = r >
c1 × r >

d1

|r >
c1 × r >

d1|
(C.16)

As the rotation needs to happen in the vehicle frame the unit vector k needs to be in the vehicle frame, which
is done by

v b = Rc k =
vb

x

vb
y

vb
z

 (C.17)

50 C. Appendix C Feedback Error Methods Comparison

and

v =

 0 −vb
z vb

y

vb
z 0 −vb

x

−vb
y vb

x 0

 (C.18)

Next a rotation matrix needs to be defined which rotate a vector around a vector. The angle of this vector is
also included. This is accomplished by using the Rodrigues’ rotation formula [45], where the angle is εt i l t and
the vector is v b . The rotation matrix is given by equation C.19.

R v =
{

I , εt i l t = 0

I −v sin(εt i l t)+v 2[1−cos(εt i l t)], εt i l t 6= 0
(C.19)

The attitude of the UAV can be compensated with the tilt error, which can be found by using R v . By multiply-
ing R v with the rotation matrix of the current attitude of the UAV (Rc) a new rotation matrix R p is found, as
shown in equation C.20.

R p = R>
v Rc (C.20)

Where

R p =
r p1

r p2

r p3

 (C.21)

The absolute twist error can be found using the x components of R p and Rd , see equation C.22.

εt wi st = cos−1(r >
p3 · r >

d3) (C.22)

The sign of the twist error needs to be determined, as equation C.22 gives the absolute value of the twist error.
By using the y component of R p this can be achieved, see equation C.23.

εsi g n = cos−1(r >
p2 · r >

d3) (C.23)

When this value is above 90◦, or π
2 radials, the sign of the twist error becomes negative. The final twist error

can be seen in equation C.24.

T wi st er r or , εz =
{
−εt wi st , εsi g n ≤ π

2

εt wi st , εsi g n > π
2

(C.24)

Together, the calculated errors form the total feedback error, given by:

Feedback er r or , ε=
εx

εy

εz

 (C.25)

For a PD controller, the actuator deflections of the ailerons, elevator and rudder are calculated with equation
C.26, C.27 and C.28.

δa = kpεx −kd ε̇x (C.26)

δe = kpεy −kd ε̇y (C.27)

δr = kpεz −kd ε̇z (C.28)

C.0.3. Simulation
Both the feedback error methods are simulated in Matlab by using the above mentioned state space. The used
values of the system is shown in table C.1. The high inertia values for the x-axis represent the saturation of the
actuators. As both methods give different errors a PD tuning is performed for both the situations (quaternion
and tilt-twist).

51

Table C.1: Used values for the Matlab simulations

Value Value Value
Ixxδe1 6 Iy yT1 0.06 IzzT1 0.06
Ixxδe2 6 Iy yT2 0.06 IzzT2 0.06

Iy yT3 0.06 IzzT3 0.06
Iy yT4 0.06 IzzT4 0.06
Iy yδe1 0.06
Iy yδe1 0.06

Results
Figure C.3 until C.9 show the behaviour of the system. The quaternion feedback decreases the tilt error slowly
(phi and theta). Tilt-twist is able to remove the tilt error within 0.6 seconds, where the quaternion feedback
needs more then a second, see figure C.3 and C.5. Furthermore, tilt-twist uses all the axis to define the error,
the quaternion feedback uses only two (figure C.6 and C.7).

Figure C.3: Simulation results for the quaternion feedback. Attitude representation in Euler angles.

Figure C.4: Simulation results for the tilt-twist feedback. Attitude representation in Euler angles.

52 C. Appendix C Feedback Error Methods Comparison

Figure C.5: Tilt error comparison between quaternion feedback and tilt-twist.

Figure C.6: Simulation results for the quaternion feedback. The errors from the calculation for the quaternion feedback.

Figure C.7: Simulation results for the tilt-twist feedback. The errors from the calculation for the tilt-twist feedback.

53

Figure C.8: Simulation results for the quaternion feedback. The actuator deflections.

Figure C.9: Simulation results for the tilt-twist feedback. The actuator deflections.

C.0.4. Quadcopter flight tests
Both the feedback methods were applied into a Bebop, see figure C.10. The flight tests were performed at
the Cyberzoo (indoor location) at the TU Delft. The yaw was saturated. During the test flight the drone was
controlled manually. The pilot controlled the position of the quadcopter. The pilot controlled the Bebop
aggressively, see figure C.11. In figure C.12 the height of the Bebop is shown. When using the Quaternion
feedback the drone crashed two times. Furthermore it had unpredictable height drops. The tilt-twist method
did not crash and was able to perform an safe flight. In figure C.13 the tilt error is shown. The tilt error
was easily reduced when using tilt-twist, during quaternion the tilt error was not constantly removed and
kept present. From this test a clear difference is seen in the behaviour of the quadcopter, where the tilt-twist
performed much better and there were no crashes.

Figure C.10: The Bebop used for the test flight.

54 C. Appendix C Feedback Error Methods Comparison

Figure C.11: Flight path during the tests

Figure C.12: The z position of the Bebop during the test flight.

55

Figure C.13: The tilt error during the test flight.

D
Appendix D Flight tests results

In this section all the plots of the performed flight tests are presented. The first test was conducted at airport
Valkenburg on the 22th of July 2020. The second test was conducted at airport Valkenburg on the 19th of
August 2020.

D.1. Test 1 Results

Figure D.1: Flight paths during test 1

57

58 D. Appendix D Flight tests results

Figure D.2: The desired attitude during the test.

Figure D.3: The attitude of the Nederdrone during the test.

D.1. Test 1 Results 59

Figure D.4: Yaw angle of the Nederdrone during the test flight.

Figure D.5: Plot of the tilt error, included is the heading offset angle and which error feedback method is used, 0 is the quaternion
feedback, 0.5 is the tilt-twist and 1 is the dynamic tilt-twist.

60 D. Appendix D Flight tests results

Figure D.6: Xyz position of the Nederdrone

Figure D.7: The x position of the Nederdrone against the desired x position, the error is also included.

D.1. Test 1 Results 61

Figure D.8: The y position of the Nederdrone against the desired x position, the error is also included.

Figure D.9: The wind components, x is the east direction and y in the north direction.

62 D. Appendix D Flight tests results

Figure D.10: Graph showing the y position of the Nederdrone and the desired y position, the desired heading, the navigation status
(manual control or autopilot on), which feedback error is used and the heading offset.

Figure D.11: The velocities of the Nederdrone

D.1. Test 1 Results 63

Figure D.12: The graphs show the heading of the Nederdrone against the airspeed along the desired flight path.

Figure D.13: The airspeed of the Nederdrone.

64 D. Appendix D Flight tests results

D.1.1. Test 1 zoomed
This section includes information of a zoomed section of the flight (30 seconds).

Figure D.14: Flight paths during test 1 (30 seconds)

Figure D.15: The x required and the real x positions of the Nederdrone.

D.1. Test 1 Results 65

Figure D.16: The x required and the real y positions of the Nederdrone.

Figure D.17: The real attitudes of the Nederdrone.

66 D. Appendix D Flight tests results

Figure D.18: The required attitudes of the Nederdrone.

Figure D.19: The required and real attitudes of the Nederdrone.

D.1. Test 1 Results 67

Figure D.20: The required yaw compared to the real yaw.

68 D. Appendix D Flight tests results

D.2. Test 2 Results
The second flight test did not show much improvement. The quaternion feedback method already had good
performance. There are several explanations for this, the wind direction was more parallel to the desired flight
path. If the wind is perpendicular to the flight path the control effectiveness decreases. The heading change
during the first test was much higher, the difference between the maximum and minimum values varied
between 160 to 200 degrees for the first test and the second flight test varied between 75 to 100 degrees. If the
difference in yaw is small the control is easier. The velocity was also different, during test one the distance
between the points was bigger and resulted in larger velocities, the maximum velocities varied between 5
and 10 m/s. During test two the maximum velocities varied between 3 and 5 m/s. Flight test two was not
included in the paper, as there were no major problems during flight test 2 for the quaternion. So no major
improvements were achieved.

Figure D.21: Flight paths during test 2

D.2. Test 2 Results 69

Figure D.22: The desired attitude during the test.

Figure D.23: The attitude of the Nederdrone during the test.

70 D. Appendix D Flight tests results

Figure D.24: Yaw angle of the Nederdrone during the test flight.

Figure D.25: Plot of the tilt error, included is the heading offset angle and which error feedback method is used, 0 is the quaternion
feedback, 0.5 is the tilt-twist and 1 is the dynamic tilt-twist.

D.2. Test 2 Results 71

Figure D.26: Xyz position of the Nederdrone

Figure D.27: The x position of the Nederdrone against the desired x position, the error is also included.

72 D. Appendix D Flight tests results

Figure D.28: The y position of the Nederdrone against the desired x position, the error is also included.

Figure D.29: The wind components, x is the east direction and y in the north direction.

D.2. Test 2 Results 73

Figure D.30: Graph showing the y position of the Nederdrone and the desired y position, the desired heading, the navigation status
(manual control or autopilot on), which feedback error is used and the heading offset.

Figure D.31: The velocities of the Nederdrone

74 D. Appendix D Flight tests results

Figure D.32: The graphs show the heading of the Nederdrone against the airspeed along the desired flight path.

Figure D.33: The airspeed of the Nederdrone.

D.2. Test 2 Results 75

D.2.1. Test 1 zoomed
This section includes information of a zoomed section of the flight (30 seconds).

Figure D.34: Flight paths during test 2 (30 seconds)

Figure D.35: The x required and the real x positions of the Nederdrone.

76 D. Appendix D Flight tests results

Figure D.36: The x required and the real y positions of the Nederdrone.

Figure D.37: The real attitudes of the Nederdrone.

D.2. Test 2 Results 77

Figure D.38: The required attitudes of the Nederdrone.

Figure D.39: The required and real attitudes of the Nederdrone.

78 D. Appendix D Flight tests results

Figure D.40: The required yaw compared to the real yaw.

Bibliography

[1] S. Bhartiya A. Gupta and P. Nataraj. A novel approach to multiparametric quadratic programming. 2011.
doi:10.1016/j.automatica.2011.06.019.

[2] A. Kumar A. Saha and A. K. Sahu. FPV drone with GPS used for surveillance in remote areas. In 2017 Third
International Conference on Research in Computational Intelligence and Communication Networks (ICR-
CICN), pages 62–67, 2017.

[3] V. Ambrosia A. Watts and E. Hinkley. Unmanned Aircraft Systems in Remote Sensing and Scientific Re-
search: Classification and Considerations of Use. 2012. doi:10.3390/rs4061671.

[4] A. Subiantoro M. Djemai B. Pratama, A. Muis and R. Atitallah. Quadcopter Trajectory Tracking and Atti-
tude Control Based on Euler Angle Limitation. 2018. doi:10.1109/CEIT.2018.8751819.

[5] M. Bodson. Evaluation of Optimization Methods for Control Allocation. 2002. doi:10.2514/2.4937.

[6] E. Smeur K. van Hecke F. van Tienen E. van der Horst C. De Wagter, R. Ruijsink and B. Remes. Design,
control, and visual navigation of the DelftaCopter VTOL tail-sitter UAV. Journal of Field Robotics, pages
937–960, 2018. doi:10.1002/rob.21789.

[7] D. Prett C. Garcia and M. Morar. Model predictive control: Theory and practice. 1989. doi:10.1016/0005-
1098(89)90002-2.

[8] S. Cao and L. Shen. Adaptive Incremental Nonlinear Dynamic Inversion Control Based on Neural Net-
work for UAV Maneuver. 2019. doi:10.1109/AIM.2019.8868510.

[9] W. F. Chana and J. F. Coleman. World’s First VTOL Airplane Convair/Navy XFY-1 Pogo. 1996.
doi:10.2307/44725614.

[10] W. Chen. Closed-Form Nonlinear MPC for Multivariable Nonlinear Systems with Different Relative De-
gree. 2003. doi:10.1109/ACC.2003.1242497.

[11] J. H. Christner. Pioneer unmanned air vehicle accomplishments during Operation Desert Storm. In
Thomas W. Augustyn and Paul A. Henkel, editors, Airborne Reconnaissance XV, volume 1538, pages 201
– 207. International Society for Optics and Photonics, SPIE, 1991. doi:10.1117/12.48706. URL https:
//doi.org/10.1117/12.48706.

[12] C. Ha D. Lee and Z. Zuo. Backstepping Control of Quadrotor-Type UAVs and Its Application to Teleoper-
ation over the Internet. 2013. doi:doi.org/10.1007.

[13] R. Ghosh Dastidar. On the Advantages and Limitations of Sliding Mode Control for Spacecraft. 2010.
doi:10.2514/6.2010-8777.

[14] C. de Wagter E. Smeur, D. Höppener. Prioritized Control Allocation for Quadrotors Subject to Saturation.
09 2017.

[15] G.de Croon E. Smeur and Q. Chu. Cascaded incremental nonlinear dynamic inversion for MAV distur-
bance rejection. 2018. doi:10.1016/j.conengprac.2018.01.003.

[16] Q. Chu E. Smeur and G. de Croon. Adaptive Incremental Nonlinear Dynamic Inversion for attitude
control of Micro Air Vehicles. 2016. doi:10.2514/1.G001490.

[17] J. Xiong E. Zheng and J. Luo. Second order sliding mode control for a quadrotor UAV. 2014.
doi:10.1016/j.isatra.2014.03.010.

[18] D. Enns. Control Allocation Approaches. 1998. doi:10.2514/6.1998-4109.

79

https://doi.org/10.1016/j.automatica.2011.06.019
https://doi.org/10.3390/rs4061671
https://doi.org/10.1109/CEIT.2018.8751819
https://doi.org/10.2514/2.4937
https://doi.org/10.1002/rob.21789
https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1109/AIM.2019.8868510
https://doi.org/10.2307/44725614
https://doi.org/10.1109/ACC.2003.1242497
https://doi.org/10.1117/12.48706
https://doi.org/10.1117/12.48706
https://doi.org/10.1117/12.48706
https://doi.org/doi.org/10.1007
https://doi.org/10.2514/6.2010-8777
https://doi.org/10.1016/j.conengprac.2018.01.003
https://doi.org/10.2514/1.G001490
https://doi.org/10.1016/j.isatra.2014.03.010
https://doi.org/10.2514/6.1998-4109

80 Bibliography

[19] N. Guerreiro and A. Moutinho. Robust Incremental Backstepping Controller for the Attitude and Air-
speed Tracking of a Commercial Airplane. 2019. doi:10.1109/ICMAE.2019.8881034.

[20] D. Lee H. Lim, J. Park and H.J. Kim. Build Your Own Quadrotor: Open-Source Projects on Unmanned
Aerial Vehicles. 2012. doi:10.1109/MRA.2012.2205629.

[21] O. Härkegård. Efficient Active Set Algorithms for Solving Constrained Least Squares Problems in Aircraft
Control Allocation. 2002. doi:10.1109/CDC.2002.1184694.

[22] O. Härkegård. Dynamic Control Allocation Using Constrained Quadratic Programming. 2004.
doi:10.2514/1.11607.

[23] T. McLain R. Beard J. Beach, M. Argyle and S. Morris. Tailsitter attitude control using resolved tilt-twist.
2014. doi:10.1109/ICUAS.2014.6842322.

[24] E. Johnson and A. Calise. Pseudo-control hedging: A new method for adaptive control. 2000.

[25] S. Ge K. Feng, W. Li and F. Pan. Packages delivery based on marker detection for UAVs.
In 2020 Chinese Control And Decision Conference (CCDC), pages 2094–2099, Aug 2020.
doi:10.1109/CCDC49329.2020.9164677.

[26] T. Keijzer. Flight testing of incremental backstepping based control laws with angular accelerometer
feedback. AIAA Scitech 2019 Forum, 2019. doi:10.2514/6.2019-0129.

[27] H. Khan and M. Kadri. Attitude and Altitude Control of Quadrotor by Discrete PID control and Non-
linear Model Predictive Control. 2015. doi:10.1109/ICICT.2015.7469486.

[28] A. Kunickaite L. Balasevicius. Discrete-time PID Controller Design in Programmable Logical Controllers.
2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology
and Applications, pages 86–90, 2007. doi:10.1109/IDAACS.2007.4488380.

[29] G. Mattei L. Canetta and A. Guanziroli. Exploring commercial UAV market evolution from cus-
tomer requirements elicitation to collaborative supply network management. In 2017 International
Conference on Engineering, Technology and Innovation (ICE/ITMC), pages 1016–1022, June 2017.
doi:10.1109/ICE.2017.8279993.

[30] R. Beard T. McLain M. Argyle, J. Beach and S. Morris. Quaternion Based Attitude Error for a Tailsitter in
Hover Flight. 2014. doi:10.1109/ACC.2014.6859324.

[31] J. Petersen and M. Bodson. Constrained Quadratic Programming Techniques for Control Allocation.
2006. doi:10.1109/TCST.2005.860516.

[32] L. Meier R. Bapst, R. Ritz and M. Pollefeys. Design and implementation. 2015. doi:10.1007/978-981-
4451-66-6_3.

[33] P. Murrieri S. Bouabdallah and R. Siegwart. Design and control of an indoor micro quadrotor. In IEEE In-
ternational Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, volume 5, pages
4393–4398 Vol.5, 2004. doi:10.1109/ROBOT.2004.1302409.

[34] B. Schofield. On Active Set Algorithms for Solving Bound-Constrained Least Squares Control Allocation
Problems. 2008. doi:10.1109/ACC.2008.4586883.

[35] S. Sieberling. Robust Flight Control Using Incremental Nonlinear Dynamic Inversion and Angular Ac-
celeration Prediction. 2010. doi:10.2514/1.49978.

[36] E. Smeur. Incremental Control of Hybrid Micro Air Vehicles. 2018. doi:10.4233/uuid:23c338a1-8b34-
40a6-89e9-997adbdafd75.

[37] R. Suzuki A. Oosedo K. Go Y. Hoshino A. Konno T. Matsumoto, K. Kita and M. Uchiyam. A Hovering
Control Strategy for a Tail-Sitter VTOL UAV that Increases Stability Against Large Disturbance. 2010.
doi:10.1109/ROBOT.2010.5509183.

https://doi.org/10.1109/ICMAE.2019.8881034
https://doi.org/10.1109/MRA.2012.2205629
https://doi.org/10.1109/CDC.2002.1184694
https://doi.org/10.2514/1.11607
https://doi.org/10.1109/ICUAS.2014.6842322
https://doi.org/10.1109/CCDC49329.2020.9164677
https://doi.org/10.2514/6.2019-0129
https://doi.org/10.1109/ICICT.2015.7469486
https://doi.org/10.1109/IDAACS.2007.4488380
https://doi.org/10.1109/ICE.2017.8279993
https://doi.org/10.1109/ACC.2014.6859324
https://doi.org/10.1109/TCST.2005.860516
https://doi.org/10.1007/978-981-4451-66-6_3
https://doi.org/10.1007/978-981-4451-66-6_3
https://doi.org/10.1109/ROBOT.2004.1302409
https://doi.org/10.1109/ACC.2008.4586883
https://doi.org/10.2514/1.49978
https://doi.org/10.4233/uuid:23c338a1-8b34-40a6-89e9-997adbdafd75
https://doi.org/10.4233/uuid:23c338a1-8b34-40a6-89e9-997adbdafd75
https://doi.org/10.1109/ROBOT.2010.5509183

Bibliography 81

[38] C. Thipyopas and J. Moschetta. Experimental Analysis of a Fixed-Wing VTOL MAV in Ground Effect.
2010. doi:10.1260/1756-8293.2.1.33.

[39] P. Tondel and T. Johnson. Control allocation for yaw stabilization in automotive vehicles using multi-
parametric nonlinear programming. 2005. doi:10.1109/ACC.2005.1469977.

[40] W. van Ekeren. Incremental Nonlinear Flight Control for Fixed-Wing Aircraft. 2016.

[41] P. van Gils. Adaptive Incremental Backstepping Flight Control. 2015. doi:10.2514/6.2016-1380.

[42] R. C. van ’t Veld. Incremental Nonlinear Dynamic Inversion Flight Control. 2019.

[43] J. Virnig and D. Bodden. Multivariable control allocation and control law conditioning when control
effectors limit. 2019. doi:10.2514/6.1994-3609.

[44] R. Kuchar Q. Chu W. van Ekeren, G. Looye and E. van Kampen. Design, Implementation and Flight-Test
of Incremental Backstepping Flight Control Laws. 2018. doi:10.2514/6.2018-0384.

[45] E. W. Weisstein. Rodrigues’ Rotation Formula., 2020 (accessed October 9, 2020)
https://mathworld.wolfram.com/RodriguesRotationFor mula.html. URL https://mathworld.
wolfram.com/RodriguesRotationFormula.html.

[46] Y. Wang Z. Li S. Shen X. Lyu, H. Gu and F. Zhang. Design and Implementation of a Quadrotor Tail-sitter
VTOL UAV. 2017. doi:10.1109/ICRA.2017.7989452.

[47] F. Zhanqi and L. Lin. The High Angle of Attack Aerodynamic modeling and Nonlinear Dynamic Inversion
Flight Control Law Design. 2012. doi:10.1109/INDIN.2012.6300870.

https://doi.org/10.1260/1756-8293.2.1.33
https://doi.org/10.1109/ACC.2005.1469977
https://doi.org/10.2514/6.2016-1380
https://doi.org/10.2514/6.1994-3609
https://doi.org/10.2514/6.2018-0384
https://mathworld.wolfram.com/RodriguesRotationFormula.html
https://mathworld.wolfram.com/RodriguesRotationFormula.html
https://doi.org/10.1109/ICRA.2017.7989452
https://doi.org/10.1109/INDIN.2012.6300870

	I Preliminary Thesis Report
	Introduction
	General
	Types of tailsitters
	NederDrone
	Problem definition

	Controllers
	General controller overview
	Inner and Outer Loop
	Resolved tilt-twist angle control
	Resolved Euler-angles

	Attitude Error
	Euler Angles
	Quaternion feedback control

	PID
	MPC
	Sliding mode control
	Backstepping
	Incremental Backstepping
	NDI
	INDI
	Adaptive INDI

	Control allocation
	Saturation
	Least squares
	Active set method
	Multi-parametric quadratic programming
	Sequential quadratic programming
	Interior point method
	Fixed point method

	II Paper
	III Conclusions and recommendations
	IV Appendix
	Appendix A Ground Effect
	Problem description
	Ground effect on tailsitters

	Appendix B Pendulum Simulation
	INDI controller
	IBS controller
	Results

	Appendix C Feedback Error Methods Comparison
	Quaternion
	Tilt-twist
	Simulation
	Quadcopter flight tests

	Appendix D Flight tests results
	Test 1 Results
	Test 1 zoomed

	Test 2 Results
	Test 1 zoomed

	Bibliography

