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ARTICLE INFO ABSTRACT

Keywords: Increasing shares of renewable generation are leading to more volatile electricity prices, presenting an
Implicit balancing opportunity for Energy Storage Systems (ESS) participating in short-term electricity markets. Model Predictive
Model Predictive Control Control (MPC) has been shown to be a powerful tool to leverage the latest information at the time of

Value-oriented forecasting
Time series forecasting
Recurrent Neural Networks

optimization, yet its efficacy depends on the quality of the employed price forecasts. So far, these forecasts have
been developed with traditional forecasting methods instead of value-oriented approaches, which consider the
downstream decision problem during the forecaster training phase. Existing value-oriented methods, however,
often rely on a specific downstream problem structure. This paper addresses these shortcomings by introducing
a universally applicable, value-oriented forecasting methodology that employs a generalized loss function
designed to account for inter-temporal price variability, using the downstream value (i.e., profit from ESS
market participation) as the selection criterion in the hyperparameter tuning step. The proposed methodology
is tested on a case study considering different types of ESS participating in the Belgian balancing market
through MPC. The method is benchmarked against other forecasting techniques including a neural network
trained in traditional, accuracy-oriented fashion. Using real-life data over a test set of two months, we show
that the methodology outperforms those traditional techniques in terms of ex-post out-of-sample profit.

1. Introduction 1.1. ESS market participation

While bidding behavior has been described with heuristic decision
rules [3], the scientific literature has widely adopted optimization
techniques to model market participation. Broadly, two types of op-
timization strategies can be discerned. The first concerns day-ahead
optimization. Many papers consider this stage due to the prominence
of the day-ahead market in many energy systems, as well as the
reserve markets being typically organized at that stage. Research often
explores either exclusive day-ahead market participation [4] or co-
optimization of energy and reserve bids [5-8]. A critical element when
participating in reserve markets is the uncertainty of activation. This
leads to uncertainty on the State of Charge (SoC), which is subject to

In recent years, net-zero emissions policies and climate awareness
have driven investments in intermittent Renewable Energy Sources
(RES), resulting in more volatile electricity prices in various electricity
markets. These trends are strengthening the business case of Energy
Storage Systems (ESSs). Indeed, arbitrage opportunities become more
abundant and profitable since inter-temporal electricity price spreads
tend to increase with growing intermittent RES output. One particular
technology that is getting a lot of attention is the Battery Energy
Storage System (BESS). Such systems tend to have high round-trip
efficiencies [1], and their costs are projected to decrease with over 40%

by 2030 compared to 2020 [2]. This has sparked a variety of research in box constraints. Assumptions like worst-case considerations [5,6], prob-
finding the optimal schedule in order to maximize profits in short-term abilistic guarantees [7] and only considering expected activations [8]
electricity markets. have to be introduced to mitigate this uncertainty. These approaches,
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Nomenclature

Sets and Indice

Tia Set of instances in Look-Ahead horizon,
indexed ¢

L Set of degradation break levels, indexed /

T Set of instances in MPC test horizon,
indexed ¢

X, Set of train data examples, indexed j

X, Set of validation data examples, indexed i

I, Degradation cost at instance 7 [€]

/] Neural network parameter [-]

5. BESS State of Charge at time step ¢
associated with degradation level / [MWh]

& Hyperparameter related to neural network
architecture [-]

& Hyperparameter related to loss function [-]

b, Binary for activation of degradation level /

at time step 7 [-]

et Energy discharged at instance  [MWh]

e; Energy charged at instance z [MWh]

S, BESS State of Charge at time step 7 [MWh]

Parameters

At Duration of time step [h]

0t/ Discharge (+) and charge (-) efficiency [-]

i,(t) Forecasted price for lookahead instance 7 at
optimization time 7 [€/MWh]

A0 Actual price for lookahead instance z at
optimization time ¢ [€/MWh]

P Maximum (dis)charge power [MW]

SoC BESS maximum energy content [MWh]

SoC BESS minimum energy content [MWh]

ct Total BESS investment cost for energy
capacity [€]

I BESS degradation break point for break
level I [-]

qf BESS energy break point for break level /
[MWh]

while necessary to address the unpredictability of reserve activations,
introduce compromises in terms of feasibility and economic efficiency.

The second method involves Model Predictive Control (MPC). This
framework entails optimizing the schedule of the ESS with a rolling
horizon, only realizing the first time step with every iteration. This
allows the ESS operator to have a precise view of the SoC, as such
alleviating some of the uncertainty-related shortcomings of day-ahead
optimization. This has been extensively studied in US-style RT mar-
kets [9-14], and has recently been suggested for the strategy of ex-
plicit [15] and implicit [16] balancing in European markets, as well as
trading on the continuous intra-day market [17].

While such optimization methodologies have been implemented
considering perfect price foresight, see e.g. [18], employing price fore-
casts and evaluating the decisions using the actual prices improves
the realism of the model. In that case, the model is classified as a
predict-then-optimize problem. First, prices are predicted based on
contextual information, to subsequently use them as parameters in the
optimization program, also known as the “downstream problem”. The
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success of such a predict-then-optimize method crucially depends on
the forecaster’s ability to accurately represent the uncertain variable,
which, in this paper, corresponds to the electricity price.

1.2. Price forecasting

The literature regarding short-term price forecasting can be split
into three broad categories, being (i) deep learning, (ii) statistical
methods, and (iii) hybrid methods [19]. Whereas statistical methods,
see e.g. [20,21], have the advantage of higher interpretability, deep
learning methods gained traction since they tend to outperform their
statistical counterparts [22], and will thus be the focus of this paper.
Within the realm of deep learning, Recurrent Neural Networks (RNNs)
are designed to accurately capture temporal dependencies. More specif-
ically, the strength of Long-Short Term Memory (LSTM) unit-based
RNNs has been shown for forecasting electricity prices [23-25], the
System Imbalance (SI) [16,26] and electrical load [27].

A key component in training neural networks is the choice of the
loss function, which guides the learning process, typically optimized
using gradient descent. Any differentiable loss function may be chosen,
and there exists a plethora of loss functions that have been imple-
mented [28]. Among those, the Mean Squared Error (MSE) and the
pinball loss are ubiquitous for deterministic and probabilistic forecasts
respectively.

1.2.1. Value-oriented forecasting

Recently, researchers argue that the forecaster should not necessar-
ily maximize accuracy, but rather the downstream value resulting from
deploying the forecaster in the downstream decision problem. This con-
cept is known as value-oriented, or decision-focused, forecasting. For
the application of ESS participation in energy markets, the downstream
value corresponds to the ex-post profit.

There are two distinct approaches to such value-oriented forecast-
ing. A first, integrated approach attempts to train the forecaster directly
to maximize the downstream value. The primary challenge with this ap-
proach is that applying the gradient descent method requires calculat-
ing the derivative of the optimal decisions with respect to the forecast,
i.e., a derivative “through” the optimization program. Calculating these
derivatives has been accomplished for non-linear convex programs
using implicit differentiation of the Karush-Kuhn-Tucker (KKT) condi-
tions of the downstream problem [29-31]. However, (mixed)-integer
linear programs exhibit zero gradients almost everywhere [32]. To
address that issue, the training problem has been approximated by in-
troducing smoothing terms in the optimization objective [32-34], or by
using a surrogate value function [35]. There are two major drawbacks
to this integrated approach. The first is that the training procedure is
computationally expensive because it requires solving the downstream
optimization problem for every example in the training set repeatedly,
i.e., for every epoch in the training procedure. Secondly, although it
has been implemented for stand-alone optimization, i.e., where the
value function corresponds to the optimization objective, it is not
obvious how it can be deployed to models with other structures such
as heuristic decision rules and MPC. To date, integrated value-oriented
approaches have been shown to outperform traditional forecasting-
based approaches in stand-alone applications such as participation in
day-ahead electricity markets [36,37]. Chapter 5 of [38] shows this can
only be achieved when (i) all optimized decisions are implemented, and
(ii) the optimization objective aligns directly with the realized value. In
contrast, rolling horizon optimization contexts — such as MPC in real-
time markets — typically involve the execution of only the first decision
from each optimization problem. This leads to a misalignment between
the optimization objective and the realized value, which is determined
solely by the executed decisions.

In the second approach, the objective is to identify a suitable loss
function, based on traditional accuracy metrics, that effectively aligns
the forecaster with the downstream task. In [39], a smoothed version
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of a Theil accuracy metric is proposed to train day-ahead electricity
prices because of its favorable properties regarding differentiablility
and robustness against outliers. In the context of minimizing generation
costs based on load forecasts, [40] proposes a loss function which
is piece-wise linear in the load forecast error, to capture the asym-
metric impact of load forecast errors on the system cost. In [41], a
directionality-based penalty term is added to a Mean Absolute Error
(MAE)-style loss function for equity price forecasting applied to the
problem of optimal trading in financial markets. In [42], a forecaster
is trained by minimizing a loss function that gives more importance
to large wind power output forecast errors and it is shown that this
improves the downstream profit obtained from energy trading in the
day-ahead market. While these implementations of the loss-based ap-
proach to value-oriented forecasting acknowledge the subsequent use
in a downstream problem, they generally do not formally integrate it
in the training method of the forecaster.

1.3. Contributions

In conclusion, current loss-based approaches have not explicitly
accounted for downstream value in the learning phase of the fore-
caster, while integrated methods are computationally expensive and
unsuitable for rolling horizon optimization settings such as MPC, where
only the first decision of each optimization cycle is executed. To
overcome these issues, we propose the method of loss tuning — a novel,
loss-based value-oriented forecasting approach. It involves defining a
generalized loss function parameterized by hyperparameters, training
a set of forecasters using different instances of this loss, running the
downstream optimization problem with each trained forecaster, and
selecting the one that yields the highest downstream value (e.g., profit
from ESS market participation). The scientific contribution is threefold:

+ The proposed method of loss-tuning is a loss-based value-oriented
forecasting approach that systematically integrates the down-
stream problem that outperforms traditional forecasting methods
in rolling horizon optimization settings like MPC. It is, in fact,
agnostic to the specific nature of the downstream task, making it
broadly applicable.

We apply the method of loss tuning to participation of ESS in
RT balancing markets and propose a parametric family of loss
functions tailored to that problem. The tunable parameters of this
loss function include (i) a continuously variable exponent of the
error term and (ii) a variability component to accurately capture
price variations over the forecast horizon.

In a real-life case study of the Belgian balancing market using
actual price data, we show that the proposed methodology can
outperform traditional (accuracy-based) forecasts. The increase
in ex-post out-of-sample profit ranges from 13% to 176% for
different types of ESSs maximizing their profit through implicit
balancing actions based on forecast-informed MPC.

The proposed methodology is of interest for any agent who deploys
forecasts in a downstream (optimization) problem, and in particular
for ESS operators seeking inter-temporal arbitrage opportunities in
volatile short-term electricity markets. The remainder of the paper is
organized as follows. Section 2 introduces European balancing markets,
and describes the strategy of implicit balancing where real-time out-of-
balance actions expose market participants to the imbalance price. In
Section 3, we present the methodology, focusing both on the general
training framework, as well as the specific implementation for an ESS
maximizing its implicit balancing profits through MPC. An extensive
case study considering the Belgian balancing market is presented in
Section 4. Finally, we provide some concluding remarks in Section 5.
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Fig. 1. Illustration of the balancing market clearing.

2. Balancing markets

In European electricity markets, the balancing market is designed
to correct a mismatch in supply and demand to avoid grid frequency
deviations. In the day-ahead stage, balancing service providers place
bids for (i) the reservation of balancing capacity and (ii) for activation
of that capacity in Real-Time (RT). Aggregating the bids for reserve
activation gives rise to the Available Regulation Capacity (ARC) merit
order. In the RT stage, the System Operator (SO) decides on the amount
of activated reserves based on the observed and forecasted SI. As
depicted in Fig. 1, the ARC merit order represents the supply side of the
balancing market, while the activated reserves constitute the demand.
The intersection yields the imbalance price, which is either paid by
market participants in the case of excess supply in their portfolio or
credited to them in the case of a shortage, effectively internalizing the
cost of imbalances within the market. This pricing mechanism creates
a potential opportunity: market participants can deliberately deviate
from their contracted positions to capitalize on favorable imbalance
prices. This strategy, known as implicit or passive balancing, has been
shown to allow higher profits compared to day-ahead market partic-
ipation, particularly when using MPC to optimizing decisions [16].
Importantly, this approach does not require submitting bids; exposure
to the imbalance price arises solely from real-time deviations between
scheduled and actual positions.

The success of such an approach relies heavily on actionable fore-
casting of the imbalance price, which is the central focus of this paper.
Since the SI critically affects the imbalance price, a two-step approach
for imbalance price forecasting has been shown to result in the highest
accuracy [43]. In our previous work, we adopted a method following
such a two-step procedure to forecast prices informing ESS decision-
making [16,26]. The first step consists of forecasting SI quantiles
using a RNN. In the second step, those quantiles, with corresponding
weights, are converted to imbalance price values by minimizing the
cost of activating balancing energy, which corresponds to clearing the
balancing market. As such, this can be regarded as a fundamental
approach for imbalance price forecasting. Notice that the second step
in this procedure assumes that (i) the SO has perfect foresight of the SI
and activates the exact amount of reserves to counteract the SI, and (ii)
the merit order is perfectly known. In this paper, we replace the second
step of the two-step forecasting approach in [16] by introducing a RNN
to map data of the forecasted SI and the published ARC merit order to
imbalance prices.

3. Method

This section presents our proposed loss-based value-oriented neu-
ral network training methodology. The overall approach is described
in Section 3.1, while Section 3.2 details its application to an ESS
participating in balancing markets using MPC.



R. Smets et al.
3.1. General training framework

Here, we lay out the value-oriented NN training methodology.
First, we define a new generalized loss function including a variability
component in Section 3.1.1. In Section 3.1.2, the general value-oriented
hyperparameter tuning framework is presented. Finally, Section 3.1.3
outlines the proposed solution strategy to the optimization problem
outlined before.

3.1.1. Generalized loss function

This paper revolves around the premise that when training a fore-
caster, the modeler is unaware of the optimal (statistical) loss function
to be implemented such that the resulting forecaster yields favor-
able downstream performance. To overcome this issue, we propose to
consider a generalized loss function, defined as a parametric family:

L=fAA4E), (€))

with ¢ the parameters defining the specific loss function, A the fore-
casted variable and A its corresponding ground truth. Depending on the
problem at hand, 4 and A can be scalars, vectors, multi-dimensional
arrays or even probability distributions. The form of the parametric
family should be defined based on an understanding of the problem. In
Section 3.2.2, we propose a parametric family for time series forecast-
ing of prices in the context of an agent seeking inter-temporal arbitrage
opportunities.

3.1.2. Value-oriented hyperparameter tuning

The traditional training procedure of a NN considers different sets
of HyperParameters (HPs) which can be related, but are not limited, to
the NN architecture (e.g. activation functions, number of hidden layers,
etc.). Because of their unknown impact on the forecast accuracy, an
iterative procedure is adopted in which different NNs with different
values of those HPs are trained to minimize the pre-defined loss func-
tion £ on the training set. In the validation step, the NN that has the
lowest loss value on the validation set, which is composed of data that
is not used in calculating the gradients in the training step, is selected.
This procedure can be translated mathematically to:

minimize 2 L (ng‘,,'_(x,-), /1,-) (2a)
@ IS
subject to:
6* = argmin Z L (ng"(xj), /1/-> , (2b)
o JjeX,

where x; represents the i example of input features fed to the NN,
and 4; the actual values of the quantity to be predicted, associated to
that example. The predicted quantity is the output of the NN, i.e., 4, =
nga (x;), where £, are the architectural HPs of the NN, and 6 the NN
parameters, also referred to as “weights and biases”. In Problem (2),
the upper level optimization tries to find the optimal hyperparameters
&,, that upon training of the NN parameters 6 using the train set X,,
minimizes the loss on the validation set X,.

Here, we propose a new training framework that extends Problem
(2) by (i) using a variable loss function and considering its associated
unknown parameters & as HPs to be tuned, and (ii) evaluating the
validation performance using the downstream value. This forecaster
training problem can then be written as:

maximize Z V(d;. 4) (3a)
adi i€X,
subject to:
d; = DP (x32(x)) (3b)
6* = argmin z L <7r§"(xj), /lj> . (30)
¢ JEX;
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Here, DP represents the downstream problem which is informed by
the predicted values. The output of this problem is the optimal decision
d*. The value function V is typically the objective function of DP,
evaluated using the ground truth 4, if it is an optimization program.

Within this training procedure (3), there are no constraints to the
type of forecaster nor the form of the downstream problem, in con-
trast to existing integrated methods to value-oriented forecasting [33,
35]. Therefore, the forecaster can leverage the predictive power of,
e.g., deep learning models, while the downstream problem can be
anything ranging from optimization to MPC and a heuristic decision
rule.

While Problem (3) formally describes the objective of maximizing
downstream value on the validation set, using forecasters trained on the
training data, implementing this as an integrated optimization is often
computationally intractable, especially in settings where the down-
stream problem corresponds to an MPC problem. In practice, and as we
propose in this work, it is more efficient to decouple the training and
validation procedures. This separation allows for scalable use of pow-
erful forecasting models while still guiding hyperparameter selection
based on downstream performance, as discussed in Section 3.1.3.

3.1.3. Solution strategy

Algorithm 1 Value-Oriented Hyperparameter Tuning

1: Input: Training data X,, validation data X,, number of epochs K
and HP combinations M

2: Initialize: HP spaces =¢ (architecture), = (loss)
3: Sample M combinations {(5;,5,’")}’1;’21 from 59 x =! > (A1)
4:
5: form=1to M do
6: 0 < TraMopEL(£9, & X, X ) > (A2)
7: end for
8:
9: form=1to M do
10: for alli € X, do
11: Forecast: " « nj';: (x;)
12: Optimize: d;" « DP(};”) > (B1)
13: end for
14: Evaluate: V,, < Z,GXU V™", A;) > (B2)
15: end for
16: Select: m* « argmax,, V,, > (B3)
17: Output: Trained model ng;"*
18: "
19: function TrawMopEeL(9, &, X, X))
20: Define model ngﬂ and loss L
21: Initialize parameters 6
22: Initialize L5 < o
23: for k=1to K do > Gradient descent
24: 0—0-—n-VoLn
25: Loa < 57 Ziex, Lo (ry (). 4)
26: if L4 < Lpes: then
27: Lpest < Lyal
28: 0% <0
29: end if
30: end for
31: return 6*

32: end function

Because the lower level in Problem (2) is usually highly non-convex,
the main method for solving it is the gradient descent algorithm [44].
As solving the lower level is computationally intensive, the upper level
is often solved by trying a limited number of HP samples. Even though
algorithms for finding the optimal HP values have been introduced,
randomly sampling the HPs can yield similar performance [45]. The
solution strategy for the newly proposed training procedure is outlined
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Al. Take M random HP samples

A2. Train NNs with gradient descent
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Fig. 2. Solution strategy of the value-oriented HP tuning problem (3). Starting from loss and architectural HPs, M loss functions and randomly initialized NNs are defined. Those
NNs are trained to minimize their respective loss function with the train data. The downstream problem is run M times on the validation set with forecasts from the different
trained models, yielding M different decision sets, from which the downstream value can be calculated using the ground truth of the forecasted value. The model yielding the

highest downstream value is selected and deployed on the test set.

in Algorithm 1 and visualized in Fig. 2. The upper part (A) depicts
the training step whereas the lower part (B) depicts the step related to
selecting the best trained NN. In (A1), M sets of values are randomly
sampled for the predefined architectural and loss-related HPs, being
denoted &% and &' respectively. This results in M distinct NNs and loss
functions {{ﬂ'fr‘;l’[:é{n}lm = 1,...,M}. In (A2), those NNs are trained
to minimize their respective loss functions on the training data with
gradient descent, using early stopping on the validation set. In (B1),
the resulting trained NNs are deployed on the same validation set to
yield forecasts 4, i.e. imbalance prices in this paper. These are fed to
the Downstream Problem DP leading to M (optimized) decision sets
d*. In (B2), the downstream value is calculated from the optimized
decision sets and the validation labels, i.e., the ground truth A. Finally,
in (B3), the trained NN with the highest downstream value is selected
and can be deployed on the test set. Note that the upper and lower
part are decoupled. Indeed, the choice of HP values is pre-defined
and as such does not depend on intermediate training outcomes. The
same M trained NNs can therefore be tested on different downstream
problems. This can be useful for agents with different tasks that require
similar forecasting capabilities, such as an owner of multiple assets
with distinct technical characteristics simultaneously participating in
electricity markets.

3.2. Implementation for ESS implicit balancing

In this section, we describe the ESS profit maximization strategy
in RT balancing markets that constitutes the downstream problem
in this paper. In Section 3.2.1, we write down the MPC algorithm
determining the ESS actions. Section 3.2.2 presents a generalized loss
function tailored for arbitrage-seeking agents, such as ESSs. Finally,
Section 3.2.3 details how we reduce the amount of hyperparameters
arising from that generalized loss function.

3.2.1. ESS model predictive control problem

When considering ESS participation in electricity markets, the Eu-
ropean balancing markets are an interesting case because the regime-
switching of prices leads to high and frequent price spreads [46,47].
At the same time, it is notoriously difficult to accurately predict the
SI, and therefore imbalance prices [48]. A strategy that is increasingly
investigated is applying Model Predictive Control (MPC) to constantly
re-optimize the ESS schedule in RT markets. By doing that, the diffi-
culty of forecasting is partly overcome as the latest information can be
leveraged to produce the best possible forecasts. A second merit of MPC
is that it exploits exact knowledge of the SoC of the ESS, contrasting

decision-making in day-ahead which is subject to uncertainty on the
activation of reserves. In our previous work [16], we have adopted MPC
for participation in RT European balancing markets through implicit (or
passive) balancing. With this strategy, the ESS takes RT out-of-balance
positions, and as such is exposed to the imbalance price without the
need of decisions in day-ahead. The optimization program governing
the MPC reads:

R e,
max Z (ir(t) <e:'n+ - —T> - [“T> (4a)
T€T 4 -
subject to:
0< e:“ +e < PAt vt (4b)
Spp1 =S HenT —ef /n+ vz (4c)
SoC < s, <SoC vt 4d)
51 = SoC(1) (4e)
0<TI,>C8(5,,, -6, vz 4
Piy1—Pr .
5‘: = Z br,lpl + L (S‘r,l - br,lqi) vVt (4g)
IleL qi+1 — 4
b gy <505 < b gy vz,1 (4h)
Z S =5, vz (4)
leL
Z b, =1 Vr (4
ieL
b, € 10,1}, vzl (4K)

with decision variables {e*,e™, s, 3, b, I'}, adopting the convention that

bold symbols represent vectors. In the objective, Eq. (4a), the BESS
maximizes the expected profit from the implicit balancing actions based
on imbalance price forecasts 4, corrected with the degradation costs
from cycling the battery. Egs. (4b)—(4d) are typical ESS constraints
limiting the (dis)charge power and the SoC, and dictating the SoC
evolution from the (dis)charge decisions. Eq. (4e) sets the initial SoC.
Finally, Egs. (4f)—(4k) account for the (non-convex) battery degradation
costs through a mixed-integer linear approximation, see [16,49].

The MPC approach operates in a rolling horizon fashion: at each
time step 7, the optimization problem (4) is solved over a finite looka-
head horizon 7}, using the latest forecasts A_(r). However, only the
first control action, i.e., charging or discharging at the current time,
is implemented. The SoC is then updated according to the following
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equation:

0]

nt

SoC(t +1) = SoC(1) + ¢t~ — ®)

and the horizon rolls forward by one step. This process repeats se-
quentially over the entire MPC horizon T, continuously incorporating
updated forecasts and system states, thereby allowing the ESS to adapt
to changing market conditions and forecast uncertainties in real time.

The downstream value function is the same as the optimization
objective function (4a), but the predicted price is replaced with the
actual value. Additionally, the sum runs over the MPC horizon instead
of the optimization horizon, taking for every time step the optimized
values of the first instance:

e (1)
V= a0 (er*(z)»f - ) - 7. ®)

teT

3.2.2. Generalized loss for arbitrage

In this section, we define a parametric family of loss functions
for time series forecasting in the context of capturing inter-temporal
arbitrages. It generalizes three dynamics having an a priori unknown
impact on the downstream value (6). The generalized loss of a vector
prediction 4 over N lookahead instances, provided the ground truth 4,
is given by:

L= 2 ( wn,()lln _2n|p+
n=1
N—

N
n

Z wn,kl(irﬁk - }‘n) - (in+k - in)lp >7 (7)
k=1

where the hyperparameters' w,, are the weights of the loss function
pertaining to the n® lookahead instance and k™ lookahead time dif-
ference. Note that setting w, , = 0 for nonzero k and w,, = 1/n for
all n is equivalent to using the MAE and MSE when p = 1 and p = 2
respectively. The first generalization of (7) with respect to traditional
loss functions relates to p. When using the MSE as loss function, one
could expect that the variability over the forecast lookahead period
may be lower compared to a NN trained using the MAE, as large
forecast errors are penalized more severely. Since the variability of the
predicted price is expected to affect the quality of decision-making, but
the exact effect is a priori unknown, p is considered a continuously
variable hyperparameter. The second and third generalizations relate
to the weights array {w,,In € [l,....N].k € [l,....,N — n]}. The
first dimension of the weights array assigns different importance to
different lookahead instances. It may, for example, be beneficial to
assign lower weights to instances further in the future when it is
known that the input features for those instances are less accurate.
Finally, if the weights array is nonzero for k > 0, the generalized
loss function exhibits a variability component. While traditional loss
functions penalize the static difference between the forecasted and
actual values, here the difference in variability between forecasted and
actual values is accounted for. As correctly capturing price differences
is crucial for agents seeking to exploit inter-temporal arbitrages, such
a variability component in the loss function is expected to increase the
downstream value of the price forecast.

3.2.3. Reduction of loss-related hyperparameters

An issue arising from generalized loss (7) is the large amount of
parameters, and hence loss-related HPs. Indeed, the amount of weights
equals |7 4| - (ITp4l + 1)/2 with |7, 4| the length of the lookahead
horizon. This results in a 55-dimensional HP space when a lookahead
horizon of 10 time steps is implemented. A comprehensive search in
this space requires training a large amount of NNs which is computa-
tionally inefficient. To mitigate this problem, we propose three distinct
expressions for the weights in (7) to reduce the amount of HPs:

1 Corresponding to the loss-related hyperparameters &, in Problem (3)
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VOa e ifk=0 (8a)
ow, =
k 0 otherwise
1-A ifk=0
VOb: w,, = (8b)
mk { A otherwise
(1—=A)e ™ ifk=0
VOc: w,, = (8¢c)
k {Ae‘(‘”’“’”") otherwise.

The codes (VOa, VOb and VOc) associated with the expressions
are used to refer to models trained with that specific HP reduction.
“VO” here refers to the fact that these models are trained with the
Value-Oriented methodology. Expression VOa disregards the variability
component in (7) and considers an exponentially decaying importance
of accurately forecasting the price further in the future. Such exponen-
tially decaying weights are chosen, since it has been shown [16] that
the input features to the model (SI forecast) are significantly less ac-
curate for further away lookahead time steps compared to those in the
near future. The VOa model has 2 loss-related HPs: {«, p}, where p is the
exponent in (7) and « the coefficient of exponential decay of the weight
w.r.t. the lookahead. VOb does consider the variability component, and
gives every instance in the lookahead horizon equal importance. It also
has 2 loss-related HPs: {A, p}, where A represents the weight of the
variability component in the loss function. Finally, VOc considers a
combined exponential decaying importance of both future lookahead
instances and time differences in the variability component. Its 4 loss-
related HPs are: {A,a, f, p}, where p is the coefficient of exponential
decay of the weight w.r.t. the time difference.

4. Case study

In this section, the presented methodology outlined in Section 3
is tested on a case study of the Belgian Balancing market. First, Sec-
tion 4.1 describes the design of the case study. Section 4.2 discusses the
downstream profit performance results when implementing the fore-
casters in the proposed MPC algorithm. Section 4.3 gives an overview of
the forecasting errors produced by the different trained models. Finally,
an analysis of the impact from the assumptions in the generalized loss
function is given in Section 4.4.

4.1. Case study design

The proposed methodology is validated on the Belgian balancing
market for a test set comprising the months November and Decem-
ber 2020. The train and validation sets comprise the period January
2019-October 2020, applying a 70/30 train/validation split. The input
features for the imbalance price forecaster are forecasted SI quantiles
and the ARC merit order. The merit order consists of 20 price levels
of balancing power activation ranging from —1000 MW to +1000 MW
and is found on the Elia Data Download page [50]. Quarter hourly
actual imbalance price values are used for the ex-post analysis and
are also found from [50]. The forecasted SI quantiles are generated
from a separate RNN forecaster proposed in [26]. The SI forecaster
was trained with data from 2015-2018. The SI forecaster uses two
categories of input features. The first consists of historical observa-
tions, including past SI values, load, and generation from wind, solar,
gas, and nuclear sources, and inter-zonal power flows. The second
includes forecasted values, which are provided by the TSO [50], for the
same variables: load, generation from different sources, and inter-zonal
flows. All features exhibit a quarter-hourly granularity.

To test the proposed value-oriented methodology, training proce-
dure (3) is performed for the three expressions of loss-related HPs
from (8) separately. In each run, the outer optimization (HP tuning)
consists of evaluating 100 random samples of loss-related HPs. For all
the trained models, the architecture is unchanged, such that we single
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Table 1

Overview of different MPC applications.
Application code — Bl Gl G4
Power rating (MW) 1 1 1
Energy rating (MWh) 1 1 4
Rountrip efficiency 0.9 0.81 0.81

Inv. cost (€/MWh) 150,000 - -

out the effect of a varying loss function. The chosen architecture is
an encoder-decoder Long-Short Term Memory (LSTM) RNN with 64
hidden units. The encoder has a lookback horizon of 4 quarter hours
and the decoder a lookahead horizon of 10 quarter hours. All the
models are implemented with the PyTorch library, and trained using the
ADAM optimization procedure. For the downstream problem in (3), we
employ MPC algorithm (4) maximizing ESS profits. Three different im-
plementations of the MPC are used to showcase how this method can be
generalized. In the first application, B1, the investment cost determin-
ing the battery degradation costs in Eq. (4f) amounts 150,000€/MWh
and a roundtrip efficiency of 90% is assumed, resembling a large-
scale BESS [16]. In the other applications, the degradation costs are
neglected and the ESS has a roundtrip efficiency of 81%, representing
a general non-specified storage system. The two applications have an
Energy-to-Power (E/P) ratio of 1 and 4 and are referred to as G1 and
G4 respectively. An overview of the different applications is given in
Table 1.

Two distinct benchmarking methods are used to show the effective-
ness of the proposed value-oriented methodology. The first benchmark
is an Optimization Program (OP) that minimizes the cost of activat-
ing balancing energy from the ARC merit order, elaborated upon in
Section 2. This is also the only benchmark available in the literature
for imbalance price forecasting applied to ESS profit maximization,
see [16,26]. A second benchmark is the Traditional (T) forecast training
procedure (2). Again, 100 forecasters are trained using three loss
functions: T1 refers to model trained with the MAE. T2 refers to model
trained with the MSE. Finally, T3 refers to the model trained with the
cubed absolute error between the forecast and actual prices.

4.2. Comparing forecasters with downstream value

Table 2 summarizes the results obtained from using the different
forecasting models in the different MPC applications. When deploy-
ing these models in real-life, the agent would in principle select the
forecaster with the best performance on the validation set. Note that
the metric measuring that performance is different for the traditional
models (being the validation loss) than for the value-oriented models
(being the MPC profit on the validation set). The MPC profit on the
test set attained by the selected forecaster is then the true ex-post
out-of-sample performance of the different models. To showcase the
robustness of the results, the range of the validation profit for the
5 best performing forecasters per model is given, together with the
profit range of the same forecasters in the test set. Even though the
traditional models (T1,T2,T3) did not have varying HPs in their training
procedure, there is still a range in profit outcomes, typically amounting
around 10% of the maximum value for the G1 and G4 applications,
and even 30% for the B1 application. This profit range results from
the sensitivity to randomness in the NN training procedure, arising
from the random initialization of weights and biases, and random
shuffling of training examples. Indeed, as the gradient descent method
for training the neural networks does not guarantee a globally optimal
solution, different initial sampling of the forecaster parameters leads
to different solutions of the training procedure, yielding different ESS
decisions and profits. The Perfect Foresight (PF) benchmark considers
the actual imbalance prices within the optimization and serves as an
upper bound to the attainable profits per application. Note that in
general, the agent with perfect price foresight strongly outperforms the
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one taking decisions based on uncertain forecasts in terms of profit.
This is due to the highly uncertain nature of the balancing market. This
effect increases with decreasing ESS energy content, as this results in a
higher importance of timing the optimal (dis)charge moments exactly
right.

Table 2 shows that the value-oriented models strongly outperform
both the optimization program and the traditional models. The profit
improvement ranges from 13% for application G1 to 176% for applica-
tion B1. For VOb and VOc, the profit of all 5 best performing models is
higher than the attained profit by the OP, demonstrating the merit of
including the variability component in (7), which is nonzero only for
VOb and VOc. Recall that the profits for the B1 application include the
degradation costs, therefore covering the investment cost of the battery,
leading to significantly lower profit values compared to the applications
without degradation costs.

Fig. 3 gives an in-depth comparison of the different models for
application G1. It shows a snapshot of predicted imbalance prices and
resulting forward discharge schedules. At the start of the lookahead
horizon, all the models are at the maximum SoC. The comparison is
limited to the OP, traditional models T1 and T2, and the value-oriented
VOc for the sake of clarity. The most significant observation is that
the only forecaster correctly predicting the qualitative short-term price
evolution is VOc. Indeed, whereas the other models believe the price
in the first time step is a local minimum, the forecast by VOc correctly
identifies it as a local maximum. For that reason, only the agent acting
by the VOc forecasts will discharge in the first time step. Since in the
MPC algorithm re-optimization occurs after every instance realization,
the short-term behavior will have the highest impact on the final result.
Secondly, the low price forecasts by the OP can be attributed to missing
information in the merit order. These negative price forecasts lead
to the peculiar behavior of systematic charging decisions, resulting
from the optimization program in (4) allowing for both charging and
discharging within a quarter hour, resulting from constraint (4b).? Even
though the impact on the SoC is zero, this behavior leads to a net
charge from the grid due to (dis)charge inefficiencies. As the ESS is
fully charged at the start of the snapshot in Fig. 3 such combined
charging/discharging is indeed the most profitable strategy given the
negative price forecasts. Throughout the test set, all models exhibit such
behavior, with an impact of less than 0.5% on their total profit.

4.3. Comparing forecasters with accuracy metrics

Fig. 4 shows the MAE and the Root Mean Squared Error (RMSE)
of the imbalance price predictions over the test set, comparing the
different models introduced in Section 4.1. The first observation is that
models trained to minimize different loss functions (unsurprisingly)
perform differently when considering different, but equally reasonable,
accuracy metrics. This is the basis for the philosophy adopted in
training procedure (3) of varying the loss function and evaluating its
impact on the downstream problem.

A second observation lies in the statistical accuracy of models
trained from different training strategies. The traditional models
(T1,T2,T3), trained according to procedure (2) tend to outperform the
value-oriented models with non-zero variability component in (7), VOb
and VOc. This is a sensible result as those value-oriented models are
partly trained to predict the variability of the imbalance prices, which
is not captured in the MAE and RMSE accuracy metrics. Finally, the
benchmark of estimating the imbalance price with an optimization
program generally exhibits a poor statistical accuracy.

Comparing Fig. 4 to Table 2 leads to the observation that even
though the traditional models do outperform the OP in terms of tra-
ditional forecast accuracy, they do not generally outperform the OP

2 This is indeed physically possible since the storage operator could decide
to first discharge 7.5 min, and then charge for the remainder of the quarter
hour.
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Table 2
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Overview of attained profit by different forecasting models and a Perfect Foresight (PF) benchmark for the three applications summarized in Table 1. The bold
numbers indicate the profit by the model that would be selected (being the one with the highest validation profit) per application. All numbers in €/MW/qh.

App. Metric OoP T1 T2 T3 VOa VOb VOc PF
Validation profit 0.10 0.18 0.24 0.09 0.33 0.37 0.34 1.87
B1 Test profit 0.17 0.25 0.18 0.12 0.30 0.47 0.38 2.08
Top 5% val. profit range - [0.17,0.22] [0.22,0.25] [0.09,0.14] [0.31,0.33] [0.34,0.37] [0.32,0.34] -
Top 5% test profit range - [0.19,0.25] [0.17,0.25] [0.09,0.15] [0.27,0.39] [0.45,0.47] [0.36,0.47] -
Validation profit 1.57 1.30 1.48 1.35 1.69 1.66 1.70 4.19
Gl Test profit 1.60 1.32 1.58 1.35 1.66 1.84 1.80 4.28
Top 5% val. profit range - [1.25,1.31] [1.47,1.55] [1.33,1.39] [1.64,1.69] [1.62,1.66] [1.66,1.70] -
Top 5% test profit range - [1.31,1.33] [1.44,1.60] [1.25,1.46] [1.60,1.73] [1.64,1.84] [1.68,1.80] -
Validation profit 2.11 1.62 1.99 1.93 2.21 2.66 2.63 4.77
G4 Test profit 2.16 1.63 2.18 1.94 2.16 2.62 2.84 4.86
Top 5% val. profit range - [1.54,1.66] [1.99,2.10] [1.85,2.00] [2.16,2.21] [2.19,2.66] [2.22,2.63] -
Top 5% test profit range - [1.57,1.63] [1.92,2.18] [1.86,2.07] [2.16,2.28] [2.21,2.62] [2.20,2.84] -

Imbalance price (€/MWh)

Discharge energy (kWh)

0 2 4 6 8
Lookahead instance

Fig. 3. Imbalance price forecast (top) and optimized forward discharge energy de-
cisions (bottom) for different forecasting models applied to an ESS with E/P = 1
not considering degradation costs at time step 01/11/2020 07:45. The black curve
represents the actual price.

in terms of realized profit. In fact, the OP significantly outperforms
T1 and T3, whereas it achieves similar results as T2. This observation
strengthens the insight that improving on traditional accuracy metrics
does not necessarily correspond to improving the downstream value,
and therefore that value-oriented methodologies should be adopted
when price forecasts are deployed in downstream decision problems.

4.4. Analysis of loss-related hyperparameters

In this section, a concrete example is used to showcase the relevance
of allowing the loss function to have varying hyperparameters. Fig. 5
shows the validation profit of all the trained forecasters within the VOb
model for the three different MPC applications, as a function of the
exponent p in the generalized loss function (7). The validation profit is
expressed in a dimensionless score calculated as the validation profit
divided by the median validation profit for that application, which
facilitates the comparison across applications. As a single forecaster
typically results in different validation profit scores for different appli-
cations (seen in the vertical spread per value of p), it can be concluded
that it is indeed sensible to consider application-specific loss functions.
A second observation is the trend of lower available energy content
requiring lower p. Indeed, on the left side of Fig. 5, B1 tends to perform
best and G4 worst, whereas it is the reversed order on the right side of
the graph. One could regard B1 as the model with the lowest available
energy, as the agent is reluctant to access low SoC states because of

the relatively high degradation costs in that regime. These results are in
line with the relative performance of models T1 and T3 in Table 2. This
effect may be explained by considering the variability of the forecasts.
A forecaster trained with low p will yield more variable forecasts than
a forecaster trained with high p. The low variability of the predictions
of a forecaster with high p inhibits it from taking decisions with
limited energy availability (especially when degradation costs are also
taken into account), whereas predictions with high variability may
lead to erroneous (dis)charge decisions for a forecaster trained with
low p. Finally, the variation in validation profit is much higher for
the application considering degradation costs than for those without.
This can be explained through the degradation costs amounting roughly
80% of the arbitrage profits. Consequently, small changes in attained
arbitrage profits can have a comparatively large effect on the total
profit. This effect also contributes to the larger profit improvement, of
the value-oriented methodology w.r.t. the benchmarks, for application
B1 compared to the other applications.

Note that in Fig. 5, the exact same 100 trained NNs were evalu-
ated in three different applications. In theory, different agents with
similar applications (that require similar generalized loss functions)
could combine their computing power to train the models, and sep-
arately investigate which of the models performs best on their own
distinct application. This is not possible for existing integrated value-
oriented forecasting methodologies [33,35], which require a specific
training technique for specific types of applications. This highlights the
advantage of the proposed generalizable methodology.

4.5. Computational aspects

Table 3 presents the average training times for the benchmark
model (T2) and the proposed loss-tuning methods (VOa, VOb, VOc).
As expected, NN training takes longer for the value-oriented models,
due to the added complexity introduced by our proposed parametric
family of loss functions including a variability component. Adding
the optimization on the validation set to the NN train times, loss-
tuning leads to training procedures that are 28% to 48% higher than
those of the traditional approach. However, this remains two orders
of magnitude faster than integrated value-oriented methods, which
require solving the downstream optimization problem during every
forward pass of training. Given that (i) our training set is 2.3 times
larger than the validation set, (ii) each optimization problem takes
around 630 s to solve and (iii) models are trained over approximately
150 epochs, the cumulative cost of optimization in an integrated setup
would exceed 200,000 s (roughly 55 h). For this reason, we did not
implement integrated methods in this study.

5. Conclusion

With increasing volatility of RT electricity prices and declining
costs of storage solutions, ESSs should look into novel ways to exploit
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Fig. 4. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) of predicted imbalance prices comparing seven forecasting models. The value-oriented models were
selected for application G1. The evaluation comprises the test set of November and December 2020.
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Fig. 5. Validation profit score in function of exponent p in the generalized loss function
evaluated for the model VOb, comparing different applications. The forecaster with the
highest performance per application is indicated with a star.

Table 3
Summary of total training time per forecaster, divided into neural network training
and validation set optimization. All times are reported in seconds.

Model T2 VOa VOb VOc
Avg. NN train time 2,366 2,401 2,497 2,878
Avg. optimization time 0 628 631 627
Avg. total train time 2,366 3,029 3,128 3,505

these price spreads. We have shown that traditionally-trained imbal-
ance price forecasters do not necessarily improve ESS arbitrage profits
compared to a fundamental approach to price forecasting, despite their
higher statistical accuracy. Based on that insight, this paper presents
a universally applicable value-oriented methodology for training time
series forecasters by defining a new generalized loss function tailored
to better capture the variability of electricity prices, and putting forth a
hyperparameter tuning procedure that considers downstream value as
a selection criterion instead of the traditional forecast accuracy. A case
study of the Belgian balancing market, using actual imbalance prices,
shows that the proposed model outperforms existing benchmarks in
terms of ex-post out-of-sample profit from 13% to 176% depending on
the specific application. Building on the findings of this study, future
research could investigate the application of the loss tuning method in
other rolling horizon optimization contexts, such as intra-day market
participation and other energy applications involving real-time control.
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