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Abstract

Over the last few years, a green revolution is slowly starting to take place within the maritime industry. The
goal of this revolution is to improve operational efficiency and establish sustainable solutions within ships
to allow a competitive edge in the market. The focus of this thesis is to develop ways in which a battery
energy storage system can be integrated into the vessel. This entails the energy storage system architecture
and power management system integration such that it may co-exist with the existing systems on the vessel,
i.e., a retrofit option. The goal of the thesis is to use load forecasting as a tool to attempt to reduce the energy
storage system size.

During dynamic positioning operations, vessels typically run with an extra generator (spinning reserve)
for redundancy purposes such that no single fault will cause the vessel to lose its position or heading. As
a result, all other engines on the grid share the load equally to ensure that if a failure were to occur, the
remaining healthy generators would be sufficient to satisfy the total power demand. As DP vessels operate on
a split-bus mode, the redundancy requirement must be satisfied across both switchboards on the vessel.

Past research has shown that significant fuel and maintenance savings can be made by eliminating the
spinning reserve with a battery energy storage system. However, as Lithium-ion batteries are relatively ex-
pensive, efforts have been made in the past to attempt to incorporate a single battery system than can be
connected to either switchboard in the event of a failure, however the analysis was conducted only for deep-
water pipelaying operations. As the pipeline is produced in 24.4 metre sections at a time, once the production
is complete, the vessel must move forward by the same distance and this event is called a ‘pipe-pull’. During
deep-water operations, as the pipeline is flexible, it is possible for the vessel to move forward slowly while pro-
duction can continue. For shallow water operations, to prevent pipe buckling, the sequence of events must be
simultaneous which results in power surges in the order of 2-4 MW. The operation continues throughout the
day on average 100-150 times. Power surges were found to be a limiting factor in the battery system design.

In this research, a solution was developed as a split battery design which is arranged such that the power
surges can be handled by two independent units connected to one switchboard while a tertiary unit from
the secondary switchboard can be independently connected to the one switchboard wherein a failure has
occurred. This allows all the battery units to be maintained at a low state of charge, which maximises the
battery life.

To complement the design, two power management system integration methods were pursued. Firstly,
a rule-based monitoring system was developed which allowed the power management system to make gen-
erator start-stop decisions based on a back-looking principle of measuring power demand and power surge
characteristics experienced by the battery. The method resulted in daily fuel savings of 3.14 tonnes and a
running hour reduction of 52.5 hours daily, which means that at minimum 2 engines can be turned off be-
tween both switchboards. Battery C-rates and depth of discharge during power surges were kept within 1.5C
and 2% respectively which help prolong its calendar life. The average engine loads improved on average 10-
20% in contrast to the current situation on the vessel and milder weather scenarios showing nearly a 30-40%
improvement.

The second method adopted was to use a neural network based load forecasting tool in order to predict
the expected loads on the vessel for the day using weather and route parameters. By doing so, generators
can be scheduled to be turned on or off in advance which means that the battery can be re-sized without
the power surges acting as a limiting constraint. The results suggest that in contrast to the rule-based sys-
tem, the forecast model overestimates or underestimates the load which causes the fuel savings and running
hour reduction to be less than the former control strategy. The neural network training was conducted on
a data sample of approximately 2 million data samples which was found to be insufficient to capture all the
dynamics. It is recommended to collate several years of data from the vessels datalogging systems to train the
neural network model further. Due to the parallel nature of the neural net design, powerful supercomputers
may be used to accelerate training on large datasets and converge to a deployable model. The potential for
battery size reduction in such a scenario is 38% of the existing design size. Across both methodologies, the
emission reduction opportunities are over 10 tonnes of CO2 per day which offers a unique selling point to
entities awarding pipelaying contracts.
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Abbreviations
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1
Introduction

1.1. Background
Dynamic Positioning (DP) and Dynamic Tracking (DT) are methodologies to keep a vessel at a certain posi-
tion (DP) or track (DT) using thrusters instead of mooring lines. By measuring its position (and heading) and
comparing it to the required position, the DP system on board can determine its position error. The control
system reacts on that by determining what thruster action is needed to bring the vessel as close as possible to
the required position. DP systems can be found on many types of vessels: drilling vessels, installation vessels,
heavy lift vessels, cable and pipe-laying vessels and FPSO’s [34].

The first vessel to fulfil the accepted definition of DP was the "Eureka", of 1961, designed and engineered
by Howard Shatto. This vessel was fitted with an analogue control system of very basic type, interfaced with
a taut wire reference. Equipped with steerable thrusters fore and aft in addition to her main propulsion,
this vessel was about 450 tons displacement and length 130 feet. By the late 1970s, DP had become a well-
established technique. In 1980, the number of DP capable vessels totalled about 65, while by 1985 the number
had increased to about 150. As of 2013, the number of DP vessels worldwide stands above 3000 vessels and it
is continually growing [14].

The DP system itself is a computer-controlled system employed to maintain a vessels position and head-
ing. The operation requires a host of sensors that communicate with the mathematical model of the vessel
and actuators to ensure station keeping. Due to the criticality of the operations undertaken by these specialist
vessels, there are several safety and redundancy requirements set out by classification societies. One of the
main redundancy requirements of DP class II and class III vessels is that the failure of a single active compo-
nent must not cause the loss of position or heading of the vessel. To ensure that the requirement is satisfied-
vessels always operate with an additional generator (called a spinning reserve) connected to the independent
switchboards operating at very low loads. This is not an ideal scenario as the spinning reserve consumes a
significant amount of fuel while operating at an inefficient point resulting in additional maintenance require-
ments due to extended running hours.

The solution to this problem is to use an energy storage system (ESS), which may be a battery, super
capacitor, flywheels etc. to bridge the time gap between the failure of the online generator and the start-up
of a new generator set. This means that the system must be robust and capable of meeting an extremely
demanding power requirement during that phase. Section 1.2.1 will detail the past research conducted into
this, which forms the basis for the problem statements for this research.

The project is conducted in collaboration with Allseas Group S .A. a Swiss based offshore contractor spe-
cialising in pipe lay, heavy lift and subsea construction [47]. The company, founded in 1985 by owner and
President Edward Heerema, employs 3,000 people and operates worldwide [10]. They currently own and
operate two multi-purpose offshore construction vessels, a heavy lift vessel (also capable of pipe laying), a
trenching support vessel and four other pipe-laying vessel. Most of their assets are dynamically positioned
vessels of classes DP-II or DP-III. This forms a good case to research the implementation of an energy storage
system on board these vessels. The case vessel that is investigated during this research project is the ‘M/V
Solitaire’ (Figure 1.1).

1
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Figure 1.1: M/V Solitaire

1.2. Review of Battery Energy Storage Architectures
The appropriate starting point for this research topic is with a review of the pertinent developments in the
design of hybrid power and propulsion systems. In 2017, Geertsma et al [20] gauged that hybrid architectures
with advanced control strategies have the potential to reduce 15-35% fuel consumption, while improving
noise, maintainability, manoeuvrability and comfort.

Three main architectures exist (with their variations) to implement hybrid systems on marine vessels. The
first architecture is wherein the energy storage systems is connected to the main AC bus as shown in Figure
1.2 [20].

Figure 1.2: ESS integration option 1 [20]

Here, the power generation sources are:

• From diesel engines (1), gas turbines or steam turbines

• Electrochemical power supply from fuel cells; or
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• Stored power supply from ESS (2) such as batteries, flywheels or super-capacitors

The paper proposes that the energy storage can be connected at various locations of the electrical system:

• At the main high voltage bus bar through an AC/DC converter;

• At the LV bus bar through an AC/DC converter;

• Directly or through a DC/DC converter to the DC link of the propulsion converter.

Figure 1.3: ESS integration option 2 [20]

The second arrangement is the combination of an energy storage solution with mechanically driven pro-
peller shaft as shown in Figure 1.3

In the above case, the arrangement utilises the maximum efficiency of the direct drive mechanical propul-
sion system with the flexibility of the combination of combustion power from the prime mover(s) and stored
power from the energy storage for electrical supply. This gives the vessel the option to operate under low
loads, purely on electrical power. Lastly, the other type of system architecture would be the DC power supply,
as shown in Figure 1.4. The benefits of this system is that the DC architecture allows one to run the diesel
engine at variable speed, potentially leading to a reduction in fuel consumption, emissions, noise and engine
mechanical and thermal loading. The network is also resilient to faults as the power electronic devices are
capable in handling the faults instantaneously. The disadvantages are that for large vessels with a large num-
ber of AC loads, retrofitting may be cost prohibitive and a coordinated control strategy is required to manage
stability issues.

Figure 1.4: ESS integration option 3 [20]
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1.3. Literature Review
Past research and literature has shown the advantages of hybridisation in the maritime sector. This review will
focus more on the specific cases wherein it is possible to apply this technology by retrofitting. Furthermore,
the latest developments in battery energy storage systems will be reviewed as the recent developments are
more pertinent to this study.

2016/17
In 2016, Gerritsen [21] investigated the applicability of a battery for load levelling on a cutter suction

dredger, the results of the research indicated that it was not a viable solution as the savings were minimal and
the fluctuating power demand had the potential to reduce battery life. In 2017, Geertsma et al [20] mentions
that when an engine operates close to the optimal working point from a fuel consumption perspective, load
fluctuating propulsion load or other load disturbances can cause increased fuel consumption. Then, provid-
ing (a percentage of) the fluctuating load from a battery can reduce the fuel consumption increase and that
dynamic engine loading can be reduced (shown in Figure 1.5). This is done by setting the engine to continu-
ously work at, for example, 85% MCR, this would mean that the engine operates at constant load at all times.
Everytime, that there exists a power demand greater than this output, that would be provided by the battery
while the dip in power demand would be used to charge the battery.

Figure 1.5: Load levelling using peak shaving [43]

However, in 2017, Godjevac et al [23] mentions that peak shaving is not particularly useful as the fuel
savings made are lost due to transmission losses. The way forward would be to either reduce the size of the
prime movers or turning off generators such that the remaining generators may share the total load and they
operate at a more efficient operating point. Particularly in DP (Dynamic Positioning) operations, this is not
the case due the presence of a spinning reserve. The online generators in this case rarely, if ever, operate at
optimal loads.

Godjevac et al also goes on to mention that the rationale behind peak shaving is to push the operating
load of an engine somewhat higher to gain on the efficiency. The short bursts of power demand (i.e. the
peaks in demand) actually load the engine higher for a short period of time which in turn reduces the fuel
consumption at these high load as depicted by the Figure 1.6 [23, 42]. It can be seen from the s.f.c (specific
fuel consumption) curve that the higher the engine load- the less fuel it would consume per kWh generated.

Godjevac Z. Lyu [31] both have demonstrated the gains that can be made in fuel savings by replacing the
spinning reserve. Additionally this also reduces the corrective preventive maintenance to be conducted on
the diesel engines in the long term.
2017/18

Previous research concerning this project was conducted by P. Spruijt in 2018 [42]. In this research, in-
vestigations were made using the case vessel ‘M/V Pioneering Spirit’. Spruijt explored the applicability of a
single and double battery hybrid system to replace the spinning reserve. In the case of the dual battery sys-
tem, it necessitated that double the required capacity were to be installed while being continuously to two
switchboards separately so that they maintain their independence. This meant that the investments and
space requirements double. This, in contrast with the fact that the battery would only be used in the case of
a generator failure (which is a rare occurrence) - meant an unnecessary investment.

The alternative is the single battery system that can be connected to either switchboards in the case of
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Figure 1.6: Specific fuel consumption (s.f.c): Pioneering Spirit’s 11.2 MW engines[42]

a failed generator on either of the switchboards. The research focused on the concept design of the single
battery hybrid system as it is practically feasible (although it does not have as much redundancy). While this
design may be in breach of DP II and III regulations, the focus of the research was a smart starting decision
algorithm for an additional generator. The research focuses on the initiation of a start and stop signal for an
additional generator when there was a potential for the power demand to exceed the available capacity. The
algorithm development was attempted using a mathematical statistical method (ARMA) - the trials proved
unsuccessful as the predictions were not accurate enough to be used for generator start-stops.

The second methodology tested was the multiple linear regression analysis (MLRA) - which proved to
be successful in correctly predicting the future load. In this method the regression coefficients where found
by a least-square estimation based on the observations of the fuel consumption at different trips, where the
predictor variables where measured. In this article, the strength of the model was analysed by examining
the residuals between the model and the observations. It was stated that when the residuals are normally
distributed with constant varianceσ2 the model could be considered as accurate. The input parameters were
the total DP power and the significant wave height [42]. The results of this starting decision algorithm with a
traditional system using a spinning reserve is shown in the Figure 1.7.

The new PMS (Power Management System) makes use of the linear regression method and as seen from
Figure 1.7 is a significant improvement from the original case wherein a spinning reserve was running . Reli-
ability studies were conducted as a follow up on both the proposed designs through the means of a fault tree
analysis.

To compare the system options, the time to reach 95% reliability was compared. For the old ’no hybrid’
system, this limit was reached after 200-400 days, for the single-battery hybrid system, this limit was reached
after 1-3 days, for the double-battery hybrid system, this limit was reached after 1000-2700 days. In short,
the reliability of the single-battery hybrid system is insufficient for this system to be used as hybrid system
of a DP vessel. This poor reliability is caused by the fact that that an unexpected power peak that crosses the
online generator capacity causes the main event to occur directly. In other words, when the multiple linear
regression model does not predict a power peak, the situation where the power generation system cannot
fulfil the power demand directly occurs.

To reach the same reliability as the old ‘no hybrid’ system, the multiple linear regression model would
have to be trained extensively and reach a confidence where an unexpected power peak would only occur
once every 21 years of operation. Next to that, it is expected that the reliability could be increased by using



6 1. Introduction

Figure 1.7: PMS response using linear regression [42]

a fast response electrical energy storage device in every engine room, where the single-battery system could
still be used. These fast response electrical energy storage devices could then deal with the unexpected power
peaks, where the main battery is installed for an unexpected generator failure.

2018/19

Some of the issues faced during a power outage (generator failure) is that there is a dip in the available
capacity on the grid. This can cause a blackout if the demand surpasses the supply. Wetz [45], describes that
in the naval vessels, with increasing electrification, the unique electrical load profiles exhibit characteristics
that have not been traditionally encountered. Conventional power generation devices are unable to meet the
demands of these load profiles and so must be bolstered with energy storage devices to alleviate transient
loading. He proposes the use of ‘active hybrid energy storage modules’ that combine the use of both high-
energy and high-power density units such as the use of ultra-capacitors and batteries in combination with a
fuzzy logic controller to regulate them. While these are specific cases to the naval industry, in the dynamic
positioning realm- the electrification is a common element shared between the two industries- the transient
loads experienced by the DP vessels are far less superior to the one experienced by the naval vessels due to
the use of high power weapons. Hence, the focus for DP vessels would be to use energy storage devices that
are more inclined to high energy density. Further substantiation to this decision has been made with the
findings of Southall et al [41] where it is mentioned that the use of ultra-capacitors would be for high power
applications with duration’s in the order of 3 seconds or lesser. It is mentioned that it could be used in com-
bination with other energy storage technologies. However, in this specific case the main switchboard of the
vessel is rated at 11kV, which means that for a super/ultra-capacitor to be connected to the network to han-
dle the transient power fluctuation during a generator failure – the capacitor must be capable of maintaining
this high potential difference. Farrier et al [19] notes that the key technical challenges of super-capacitor
string integration is their voltage limit, currently 2kV. Capacitor banks can attain higher voltages according to
Whitelegg [46], but only with significant increases in volume and weight. In the case of Farrier, an 11kV su-
percapacitor was used, however- it was to power a railgun. Figure 1.8 depicted by Christen [16] demonstrates
the applicability of different ESS options on a Ragone plot which demonstrates which ESS is applicable for
what use based on the energy density and power density.

This demonstrates that in the case for DP operations it is clear that the use of a hybrid energy storage
system is useful (a combination of capacitors and batteries). However, due to the practical implementation
of such an integrated system in this specific case, it would not be possible due to the sizing of the capacitors
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(due to the high voltages) substantiated by Spruijt and Whitelegg. The applicability of such a system is better
suited to naval vessels and smaller DP vessels that operate on lower voltage DC distribution buses [19].

Figure 1.8: ESS applicability [16]

1.4. Gap analysis
From previous research, it is apparent that while new technologies are being explored and existing energy
storage system technologies are maturing-the current state of the art in research is the combination of a
variety of energy storage mechanisms to satisfy a complex load profile. No new advances have been made
in regard to optimising the existing technologies to adapt it specifically for dynamic positioning operations.
Much of the research has focused on the applicability of energy storage in peak shaving and hybrid operation.
Factors such as reliability and redundancy have been taken into account but the solutions to these problems
have been solved with doubling the required components rather than investigating alternative solutions.

Previous scenarios considered were for deepwater pipelaying by Spruijt [42], however, the shallow water
conditions in pipelaying must be analysed as well before an ESS installation can be realised.

Forecasting was purposed for short forecast horizons in order to make generator start-stop decisions and
proved to be unsuccessful in achieving 100% reliability. Developments of a rule-based system for generator-
start-stops and non-statistical methods for long term forecasting of the load have not been explored in order
to reduce the ESS sizing.

1.5. Problem statements
• The single battery system is not as reliable as the dual battery arrangement. However, the dual battery

system is twice as expensive hence a different solution must be developed.

• The operational analysis conducted was exclusively on deep-water operations, however, the shallow
water operations must be analysed as well before the ESS can be integrated into the vessel.

• Since no DP pipelaying vessel has been outfitted with a battery yet, it is uncertain how the operational
profile of the vessel will interact with the battery. The question of power management system integra-
tion arises in this case.

• Statistical forecasting was previously used to initiate generator start-stops, however, the potential to
use it for battery size reduction has not been investigated.
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Figure 1.9: Dual and single battery arrangements

1.5.1. Scope
The scope of this research will be limited to analysing pipe laying ships during DP operations in shallow
water. The operation in question that is of interest is the pipe pulls when the vessel moves from one set point
to the next. The effects on the battery sizing will be analysed by using a baseline design of a split battery
architecture. The key performance indicators of the vessel specific analysis will be the fuel consumption,
running hour hours and emissions. Battery specific performance indicators will be the C-rates, cycle life and
depth of discharge(DoD).

1.6. Research Questions
“To what extent can a smart load forecasting algorithm influence energy storage size for shallow
water pipelaying DP operations?”

The main research question will be answered by answering the following sub questions:

• How does the vessels operational profile and electrical health affect the installation of an ESS?

• What kind of battery arrangement has the potential to reduce the capacity of Lithium-ion installed for
split bus operations?

• How will the management of an ESS be integrated into the vessels power management system?

• How will the cycle life of the battery be influenced using load forecasting?

• How much further reduction of the ESS size is possible using load forecasting?



2
Pipelaying Operations

This chapter is structured into four distinct parts covering the case vessel characteristics, pipeline production
processes, DP operational activities of pipelaying vessels and the implications of the latter three on the Energy
storage system. Insight into these topics form the basis for the considerations that would be taken in the analysis
and design stages of this research study.

2.1. Allseas Group S.A
The Swiss based Allseas Group S.A is a global leader in offshore pipeline installation and subsea construction.
The company operates a fleet of heavy-lift, pipelay and support vessels that are all designed in house.

Founded in 1985, the company has gained worldwide experience in all types of offshore and subsea con-
struction projects. Allseas currently possess a fleet of eight vessels in operation along with other ancillary
equipment to support the main fleet. In light of the vessels life extension plan, the M/V Solitaire will dock in
2020 which offers a good opportunity for this research study to explore the applicability of an ESS. Hence, the
case vessel for this research study is the M/V Solitaire. The vessel characteristics are outlined in Appendix A.

2.2. Overview

Figure 2.1: Chapter overview

The implications on the ESS are analysed on a high level by considering pertinent systems, power production
& distribution characteristics of the case vessel Solitaire to get an understanding of sizing requirements and
placement within the grid. Following this, the pipeline production process and DP operational activities are
detailed to understand the different systems interacting within the vessel and how that could affect the ESS
design requirements.

9
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2.3. Case vessel characteristics
An analysis will be made of the following systems on board the M/V Solitaire that are pertinent to this study:

i. DP system

ii. Propulsion and transmission

iii. Power generation and distribution

iv. Power management system (PMS)

2.3.1. DP system
Solitaire has been designed to lay pipe up to a maximum 4 – 4.5 m significant wave height at a TZ of 7-9
secs (depending on the angle of attack) with an associated wind of 30-40knts. All equipment required for the
pipelay process has been designed to be operational under these circumstances. Also the position keeping
capability, including pipe tension, has been laid out for this situation fulfilling the requirements laid down for
redundancy.

The vessel is equipped with a Konsberg Maritime Dynamic Positioning (DP) control system K-POS32. To
comply with IMO Equipment Class 3, the DP control system consists of the following components with its
sensor and reference systems:

• K-Pos DP-22 (Main control system)

• K-Pos DP-12 (Backup control system)

• cJoy system (Independent Joystick system)

The K-Pos DP-22 system is an integrated and dual redundant position control system and the main con-
trol system for dynamic positioning operations. The K-Pos DP-12 system is an integrated backup position
control system while the cJoy system is a stand-alone joystick system. It is physically disconnected from both
of the above-mentioned control systems and has only joystick and automatic heading control functionality.
It is directly wired to the thruster control cabinets. [9].

The following inputs are given to the DP system (Figure 2.2):

a Taut wires

b Hydro-acoustic transponders

c Gyrocompasses for heading reference

d Wind sensors

e Vertical reference systems

f Pipe tension input

2.3.2. Propulsion and transmission
The vessel consists of ten azimuthing thruster units (Figure 2.3), six of which are positioned to the vessels
aft and four that are positioned toward the bow of the vessel. Pairs of thrusters are waterproof and fireproof
separated. All thrusters have fixed pitch, variable speed propellers with a peak power rating of 5,500 kW. The
six aft thrusters are assigned as steering devices. Each thruster drive system is supplied by two 10kV/792V
transformers simultaneously. The two transformers share the same 10kV breaker.
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Figure 2.2: DP system inputs

Figure 2.3: Thruster positions



12 2. Pipelaying Operations

2.3.3. Power Production
Main Diesel Engines

The vessel is equipped with eight diesel engines with four located in engine room 1 (ER1) and the other
four in the engine room 2 (ER2). The engine type is Wärtsilä Vasa 6L46B. Maximum Continuous Rating
(MCR) per engine is 5850 kW. Nominal speed is 514 rpm. The engines are suitable for a so-called pier-to-
pier-operation on HFO (380 cSt/ 50°C). Besides HFO, the engines can function on MDO and MGO as well, as
long as the viscosity of the fuel at the injectors remains higher than 2.8 cSt. Limited operation at 110% MCR
(one hour per every twelve hours) is allowed. In case an engine is in the stand-by mode, all necessary auxiliary
systems are maintaining service temperatures close to their working temperatures. This allows the engines
to be loaded to full power within 48 seconds after the generator breaker is closed. Four generators supply one
main switchboard. Each engine room contains one main switchboard (MS).
Main Generators

Eight AEG three-phase, synchronous, brushless generators are installed, type S 7476/14. The generators
are driven by the diesel engines via a flexible coupling. The power rating is 8000 kVA, voltage 3 x 10 kV, 60 Hz at
514 rpm. The generators are enclosed and cooled by means of an air to water heat exchanger. Each generator
has its dedicated cooling water pump, which is connected to the main cooling water system. In case of failure
of the cooler, the generator can function as an open ventilated machine by means of opening of dedicated
covers; the maximum output is in this occasion limited to 80%. The generator control and a part of the PMS
are performed by the GMM (Generator management module) unit, fitted inside each generator panel.
Diesel engine modifications

L.V. Donge [18] conducted a study into the effects of installing two new thrusters on the vessel in 2009.
During this study, 4 modifications were made to the engines that are still persistent. Following that study,
the two thrusters were installed and a review of the effects on the power generation system have been re-
investigated in this thesis as it has been over a decade since those modifications have been made. The modi-
fications to the power generation system the findings of the study conducted by L.V Donge have been sum-
marised below:

Modifications:

i. Waste gate removal: The waste gate is a device that is a controllable valve that diverts exhaust gases
away from the turbine in a turbocharged system to the exhaust gas pipe. This is activated when the
engine operated above 85% load. This is done to prevent the over-speeding of the turbocharger and to
relieve the excess pressure on the engine. Due to a malfunctioning waste gate- it was decided to remove
it in 2000.

ii. Increase in compression ratio: In order to comply with stricter environmental regulations, the decision
was made to increase the compression ratio of the engine from 12.5 to 14. This was done by adding
6mm thicker shims, modifying anti-polishing rings and retarding the fuel injection by about 3 degrees
crank angle. So, by effectively reducing the volume of the cylinder of the engine- the compression ratio
was increased. This has consequences on the maximum power output of the engine.

iii. Pilot injection valve removal: With the increase of the compression ratio- the effectiveness of the pi-
lot injection valve was reduced as it was used to burn the low-quality heavy fuels well at all loading
conditions.

iv. Retarding the fuel injection timing: The fuel injection time was retarded as with an increase in the
compression ratio- the induced pressure would cause the exceedance of the maximum limit of 195
bars.

Following the study conducted, the two azimuth thrusters were eventually installed on the starboard and
port side sponsons.

A diesel engine simulation model was made and tested with the parameters of the Wartsila 6L46B. The
model was developed by C. Dijkstra, D. Boetius, P.Baan and P. Schulten under the direction of D. Stapersma.
Once the model was validated to match the diesel engine- the model was adapted to test the modified engine
settings.

The results of the simulations experiments are summarised below:
As can be seen from the data, the engines have been de-rated due to the modifications made as the lim-

iting factor has been the increased pressure in the cylinder which must not be exceeded. Consequently, this
has impact on the generator output as well to the actual usable energy output totalling to a maximum of 5200
kW.
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Table 2.1: ESS applicability

Parameter Result
Engine Pnomi nal 5850 kW
Engine Pde−r ated 5650 kW
Generator Pnomi nal 5650 kW
Generator Pde−r ated 5200 kW
Maximum cylinder pressure 195 bar
ηm−loss 8%

Figure 2.4: Power distribution layout of a single switchboard

2.3.4. Power distribution
The power distribution of the vessel can be classified into 3 levels (Figure 2.4):
Level 1: High voltage distribution- 10 kV Main Switchboards

Each engine room contains one main switchboard (MS). To each main switchboard, the main compo-
nents are:

• Main diesel engine-generator sets (4x)

• Propulsion units (5x)

• Distribution & consumer transformer panels (3x+3x)

Generators have their dedicated generator unit for management, overload and short circuit protection
(GMM10). The thruster transformers have dedicated protection modules as well (TPM10).
Level 2: Low voltage- 460V switchboards

All 460V switchboards are normally fed via 10kV/460V transformers. The individual distribution boards
are installed for the following main consumers:

i. Pipe transfer cranes & winches

ii. Tensioners
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Additionally, the vessel also has an emergency distribution (ED) board. The power supply to this switch-
board comes from the emergency generator. In case one of the boards loses power, the emergency generator
will receive a start signal. The generator breaker inside the ED board and one of the distribution boards is
made. The allocation and distribution of each of the 460V board has been arranged to ensure that the auxil-
iaries associated with the main generator sets are fed from the boards inside the same compartment.
Level 3: Low voltage- 230V AC, 110V DC, 24V DC
230V distribution:

A large number of 230V switchboards are installed on board with supplies being distributed to feed the
thruster back up control, process stations, battery chargers and back-up supplies to the DP UPS.
110V DC

Each high voltage (HV) switchboard has two independent 110V DC systems for powering the protection
and relay circuits. Each 110V system consists of a battery charger, a battery and a distribution box. It serves
half of the consumers of one HV switchboard. Loss of one 110V supply effects half a main switchboard.
24V DC

For various main systems and components, the 24V DC systems are installed. Main engines and thrusters
require 24V for certain control circuits. Each 24V board is supplied by its own 230V charger and battery sys-
tem.

2.3.5. Power Management System
The power management system is a part of the Konsberg K-Chief vessel management system (VMS). It per-
forms the following main functions:

i. Main diesel engine (MDG) control and monitoring

ii. Load dependent start-stop and blackout restart

iii. Load sharing and preferential tripping

iv. MDG load limitation

v. Alarms and monitoring

The system is integrated with the previously mentioned DP system (K-Pos) and the thruster control sys-
tem K-Thrust. The way they interface together is that DP system K-Pos collects and logs all the measurements
of importance to keep the vessel in position for the operation. Based on the data- the system analyses the
present state of the vessel and the ideal state it must maintain. Based on the energy requirements to position
the vessel in its ideal position, K-Pos will send the necessary setpoints of the thrusters and generator outputs.
These signals are received by K-Chief which controls the power management by adjusting the engines op-
erational point and communicating the requirements to the K-Thrust system to enable the thrusters in the
desired fashion i.e., controlling the required thrust output and the azimuth angle. The K-thrust system then
initiates the thruster actions and relays the data back to K-Pos to complete the control loop (Figure 2.5).

The PMS shares active power and controls frequency by activating the electric governor setting of each
diesel engine. Reactive power is shared by the action of the individual AVR’s (Automatic Voltage Regulators)
of each main diesel generator. The governor controls the fuel regulation of the diesel engine and maintains
the revolutions independent of the load. The generator management module (GMM) controls the errors in
the governor and protects the generator. It also controls the synchronising of the diesel generator set with
the frequency of the busbar. The AVR controls the excitation of the generator and maintains the generated
voltage at 10kV independent of the load; the variation in load causes variation in current.
Symmetric load sharing

The symmetric load sharing options is the usual DP operational mode. This is the case when all the online
engines on a switchboard share the total load equally. The scope of this project considers only the symmetric
load sharing option as it is the most relevant from an operational perspective.

The PMS will automatically start and stop main diesel generators depending on the load. Main diesel
generators are started and stopped depending on the selected running order. If the selected main diesel
generator starts but does not synchronize, the next selected main diesel generator should start and attempt
to synchronize. The whole process from start to synchronization and connection takes 48 seconds.
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Figure 2.5: Integrated Automation System (IAS)

2.4. Pipeline production process
2.4.1. Methods of Pipelaying
Several methods of installing offshore pipelines exist; the most familiar being S-lay, J-lay, Reeling and towing.

S-lay is the method used by Allseas (Figure 2.6). This method provides fast installation for all pipe diame-
ters over a large range of water depths. The fast installation process is possible because the onboard assembly
of the pipeline can be done in a horizontal plane, the firing line. Due to the horizontal- working plane called
the firing line (Figure 2.7), the pipeline leaves the vessel horizontally and has to be supported by a stinger to
introduce the necessary bend to direct the pipeline to the seafloor.

Figure 2.6: S-lay method

2.4.2. Production process
1. Transport & Onboard production:

Typically the pipes are delivered onshore by the client “coated” except for the ends that need to be bare
steel for welding and in pieces of 12.2 meters. Pipe carrier vessels are chartered to transport the pipe from
shore to the pipelay vessel. The preparations on the pipes are done in the firing line of the vessel (Figure
2.7). The pipe leaves the vessel’s storage holds to enter a preparatory phase after which the pipe sections
move onto the firing line wherein the sections are connected together to form 24.4 metre sections. These
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Figure 2.7: Firing line of the Solitaire

larger sections are then connected to the main pipeline to the bottom of the sea and as these sections are
completed, the vessel moves forward 24.4 meters before the production of the next section continues.

Welding

The ends of the 12.2-meter-long pipe sections (joints) are bevelled by means of a bevelling machine. Fol-
lowing the pre-heating, the pipe lengths are welded in the production line (firing line). Solitaire has a double
joint factory which allows the joining of the two joints into one length of 24.4 meters prior to welding it to the
main pipeline . This is the point where the double joint is attached to the pipeline that is suspended behind
the vessel. This increases the vessel productivity, which is more economical on long distance pipelines.

The activities at the various stations are balanced out such that the average cycle time achieves an opti-
mum time per joint of typically 5-10 minutes.

Quality control & Field joint coating

After the weld has been completed, the weld is examined by means of ultrasonic testing (UT). If the defect
is larger than the permitted level, the weld must be repaired which results in a halt in pipelay operations until
the repair has been completed.

The coating station is situated at the aft of the vessel. The welds and bare steel have to be provided with
coating to prevent corrosion. This can be provided by epoxy which is applied to the weld are after is has been
grit blasted and preheated by means of (electrical) induction heating. The epoxy is then sprayed as a powder
to form a thin but very strong protective layer. After coating, the joint goes into the water as the vessel moves
ahead during a pull.

2. Tensioning & Stinger transition

During the pipelaying process described above, the pipeline should be kept under tension to prevent
pipeline buckling. Buckling is the phenomenon that a structural element collapses under a compressive
force due to out of plane bending. Buckling can occur at the point where the pipeline leaves the stinger or
when the pipeline touches the seabed (touchdown point) and is caused by excessive bending in the pipeline
due to its underwater weight. Tensioning reduces the bend sufficiently.

Machines called ‘tensioners’ perform the tensioning of the pipe. A pipelaying vessel has about 3 tension-
ers which clamp the pipe with a crawler that rolls fully controlled whilst the vessel is making a 24.4 metre
‘pipe pull’. The weight of the pipe and depth of the water dictate the degree of tension. More weight and/or
deeper water means more tension. “Tensioner forces” vary between 15 and 500 tonnes.

The pipe is fed onto an outrigger called the ‘stinger’, in a gentle bend (overbend). The stinger will convey
the pipeline into the water on its route to the seabed in a controlled curve. Buckling can be caused by either a
tensioner failure or a vessel drift-off due to a failure in the DP system, such as a thruster or generator failure.
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2.5. DP Operational activities
i Normal Pipelay

In this condition, the stinger of the Solitaire is in the water supporting the pipe string that is being in-
stalled. The DP system is used to keep the vessel in position and to compensate the horizontal force of the
pipe. After a double joint is welded to the pipe string, the vessel moves two pipe lengths (24.4 meters) forward,
which is called the pull of the vessel. In the meantime, the tensioners are paying out the pipe string.

ii Abandonment and recovery

When the weather conditions deteriorate, the decision may be taken to abandon the pipe. The pipestring
will be lowered to the seabed with the help pf the A & R cable attached to a laydown head which is welded to
the end of the pipe string. Depending on the conditions, the A & R cable can be cut and recovered, with the
end of the pipe marked by a buoy allowing Solitaire to lift its stinger out of the water and move to sheltered
waters.

iii Standby condition

Solitaire is on standby when the pipe is abandoned but remains connected to the pipe string via the A&R
cable. The stinger can remain in position in the water (or raised above water), ready to resume operations
when possible. In this condition the vessel can choose a favourable heading with respect to prevailing winds
and waves.

iv Transit condition

In the transit condition, all thrusters are used for sailing. During transits, in which high sea states can-
not be avoided, the stinger has to be rotated to its most upward position and secured to the cross over. A
maximum sailing speed of 13 knots can be achieved.

2.5.1. DP Operations inside the 500m zone of an Offshore structure
DP operations within the 500m zone are carried out in compliance with the DP equipment Class III require-
ments. The Solitaire FMEA study shows that the worst-case failure design is the loss of one complete switch-
board resulting in the loss of four of the generators and 5 of the thrusters. When it is not possible to comply
with the DP equipment Class III regulations it could be considered to carry out the operation with a reduced
level of redundancy. For instance, after a DP Class III failure it might be possible to reduce the bottom tension,
leaving more thrust capacity available for station keeping.

The direction of the wind and waves can also be favourable, such that a loss of position or heading will
not result in coming into contact with a facility. In these cases, a risk assessment is made where all risks
of losing one switchboard section are evaluated. The redundancy level required for a particular operation
should be agreed between the owner of the vessel and the client and can be based on a risk analysis. The
determination of safe working limits should consider the consequences of a sudden failure of the tension
load from mechanical, or control, failure so that such a failure does not risk:

• Injury to personnel working on or near the line

• The vessel coming into contact with any nearby structure (surface or sub-sea) or vessel

At all times the redundancy level should be such that a single thruster or single generator failure does not
result in a loss of position or heading, and the pipe tensioning level is maintained.

2.5.2. DP operations outside the 500m zone
When operating outside the 500m zone of an offshore (subsea) structure, the consequences of a loss of po-
sition are lower than when operating within the 500m zone. A loss of position could result in damage to the
pipe and pipelay equipment (stinger). The chances of injuries to personnel are very small. DP operators have
standing orders to clear the firing line in case a loss of position or tension is evident.

According to the guidance note IMCA M103, DP Class III is assumed but at least DP Class II is expected.
For the Solitaire the worst failure for both DP Class II and DP Class III is the loss of a switchboard. An evalua-
tion of all DP related malfunctions and incidents show that the likelihood of failure of an entire switchboard
itself, is small. Based on a risk analysis, it has been concluded that not being redundant against a switchboard
failure is an acceptable risk for operations outside the 500m zone. All other DP Class II requirements have to
be complied with.
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2.6. Implications on ESS
Vessel characteristics

• The main diesel engine de-rating to 5,650 kW will have to be taken into consideration when sizing the
battery.

• Only the symmetric load sharing option will be considered for this study as it is the most commonly
used during DP operations.

• An insight into the vessels electrical health needs to be re-visited to understand the effects of the low
power factor after the installation of the 2 new thrusters in 2009/10.

• Due to the complexity and cost associated with several battery units split throughout the ship, battery
solutions connected to the main switchboard will only be considered in this study.

Production process

• The ESS will have to be able to sustain spinning reserve capabilities during all of the pipeline production
phases.

• The pipe-pull scenarios need to be analysed further from the vessels power profiles to get a better un-
derstanding of its effects on the ESS.

DP Operational activities

• The ESS applicability must persist across all DP operational activities which includes pipeline loading,
laying, abandonment and recovery which would need the analysis of different power profiles.



3
Data analysis

The data analysis chapter is divided into five main areas of interest: Vessel load components, Power peak anal-
ysis, Electrical system health analysis, power factor corrections & assumptions and failure scenarios.

3.1. NordStream II
The NordStream2 project concerns the construction of an offshore natural gas transmission system compris-
ing two 48-inch diameter pipelines from Russia through the Baltic Sea to Germany (Figure 3.1, Table 3.1).

In general, the pipeline offshore route has been determined with the aim to achieve a line as direct as
possible, but respecting or avoiding adverse natural conditions, environmentally sensitive areas, military ex-
clusion zones, major navigation traffic lanes and special areas commissioned to other economical or recre-
ational interests. The pipeline route is within the European Union (EU), except for the short section in Russia,
as per the table below, where EEZ means Exclusive Economic Zone and TW means Territorial Waters.

Table 3.1: Approximate kilometres per country

Country EEZ(km) TW (km) Total (km)
Russia 0 114 114
Finland 374 0 374
Sweden 511 0 511
Denmark 87 53 140
Germany 31 53 84

Figure 3.1: NordStream II pipeline route
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3.1.1. Kilometre Posts (KP’s)
The Kilometre Post (KP) values indicated in the sections to follow are measured from Russia as a starting
point. They are represented in two formats i.e., the Global KP’s and the Per country KP’s. The global route
considers the kilometre points relative to the whole pipelaying project and the ‘per country’ routing is relative
to same starting point (Russia) but only considers the number of kilometres of pipe to be laid in that countries’
waters. For this study, the analysis has been conducted only for the Finland KP’s using the ‘per country’ KP’s.
The ‘per country’ KP’s start at KP0 on the border of each country closest to Russia (Table 3.2).

Table 3.2: Country KP’s versus global KP’s line A

Global route Per country
Country Start GKP End GKP Start KP End KP
Russia (RKP) 0 113.796 0 113.796
Finland (FKP) 113.796 448.104 0 374.308
Sweden (SKP) 488.104 999.359 0 511.255
Denmark (DKP) 999.359 1138.772 0 139.413
Germany (KP) 1138.772 1223.224 0 84.452

3.2. Overview

Figure 3.2: Chapter 3 overview

3.3. Vessel load components
There exists a provision for all Allseas vessels data to be logged on the vessels datalogging system. For the
Solitaire, this consists of nearly 2500 sensors on board that record various parameters. To conduct a load
analysis, the load can be split into 3 levels on review of the single line diagram attached in Appendix A.

• Level 1: 10x Thrusters (DP load)

• Level 2: Pipe tensioners, Deck cranes, A&R Winch (Ancillary consumers)

• Level 3: Lighting, RCCB panel, Heat tracing, Stabilised supply, HVAC, Galley, Laundry, Heaters (Ancil-
lary consumers)

Using the vessels datalogging system, the active power of all the 10 thrusters on board were recorded as
well as the active power output of all the generators on switchboard MS1. This gives a good representation of
the total load demand breakdown on the power generation system of the vessel.
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Figure 3.3: Simplified Single line diagram of the M/V Solitaire

The simplified single line diagram of the vessel depicts the two switchboards of the vessel. Onto each
switchboard, the DP load component comes from the thrusters while the remaining loads are considered
‘ancillary’ loads which are required to support the primary activities of the vessel. Further in this report, the
aforementioned colour coding will be used for the representation of figures (except in Section 3.5 which is
characterised by its own colour coding system).

Pdemand = DP + Anci l l ar y (3.1)

Figure 3.4: Vessel loads during pipelaying in shallow water
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From Figure 3.4 it is apparent that the majority of the load experienced by the vessel is as a result of the
demand from the thrusters which constitute the DP load. However, it can be seen that between 00:30 and
01:00 that although there is a slight dip in the size of the DP power peak, the size of the overall power peak
is the same size. This means that there exists a relationship between the DP load as well as the ‘ancillary
load component’ which seems to be compensating this load in some way. The difference between the power
demand and DP load would be the remaining Level 2 and 3 consumers (i.e., ancillary load component).

3.3.1. Level 1:DP load
The DP load is consistent of two primary sub-components, namely, the moving average load which is the load
the vessels thrusters must compensate due to the weather and pipe-tension effects. The variant load which is
due to vessel excursions from its setpoint and the large power peaks caused due to the vessels forward motion
to the next position setpoint.

Figure 3.5: Average and variant DP load

From Figure 3.5 it is apparent that the station keeping requirements of the vessel can be satisfied by one
generator while the power peaks require an additional running generator.

DPl oad = DPaver ag e +DPvar i ant (3.2)

3.3.2. Level 2 & 3: Ancillary consumers
Observations were made that although the DP load exhibited the power peaks that were expected, interest-
ingly even the ancillary load component shows these power peaks albeit to a lower extent as the amplitudes
of these peaks are in the order of 1-2.5 MW. Looking at the components in the Level 2 and Level 3 hierarchy
on the single line diagram it is evident that the most active components during a pipe-pull operation would
be the tensioners. The vessel has three such tensioners and the capacity of each tensioner is 350 tonnes.

Table 3.3: M/V Solitaire Tensioner power consumption

Tensioner component Power consumption (max. rated) Per tensioner quantity
Hydraulic power unit (HPU) 200 kW 0.33
Gearbox cooling unit (GCU) 4 kW 1
Trackdrive motors (per tensioner) 360 kW 4
Total (per tensioner & per switchboard) 2195.3 kW (maximum)

Delving into the power consumption of the tensioners shown in Table 3.3, it is evident that the operation
of the tensioning systems during pipe-pulls could play a significant role in the size of the power peaks too.
To further investigate this hypothesis, a power peak analysis is conducted to observe any correlations. Power
supply to the tensioners come from both switchboards separately in order to ensure redundancy in the event
of a complete switchboard failure.
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3.4. Power peak analysis

Figure 3.6: Pipe pulls

The Figure 3.6 represents a typical pipe pull power peak. The time between two consecutive pipe pulls on the
Solitaire is approximately 10 minutes. This process continues throughout the day. It can be seen that around
the 51,500 second mark the vessel is maintaining position, soon after once the pipeline production phase
of 24.4 metre section is completed, all the ‘green lights’ on the vessels ‘pipe-ahead’ systems are activated
which means that all stations have completed their tasks. When this is the case, the same information is
communicated to the bridge where the DP operator/captain initiates a ‘pull’ which essentially moves the
vessel forward by the pipe length to the next DP setpoint. The vessel begins to accelerate its thrusters to ramp
up to a ground-speed that has been set (usually around 0.4 m/s). Once the vessel approaches the setpoint the
thrusters ramp down to a very low load which causes a large dip in the power demand. But as the ground-
speed then decreases and the vessel reaches its next setpoint location, the thrusters re-engage back to a point
that is required to maintain the vessel in the new position. This operation lasts about 70 seconds.

3.4.1. Ground-speed & Tensioner correlation
Figure 3.7 shows that two types of correlations exist for the power peaks. Firstly, the increase in ground-speed
causes the increase of the DP load. Secondly, the ancillary load component fluctuates with two peaks during
each pipe-pull. The reason can be attributed to tensioners operating to compensate the pipe-tensions. At the
370- second mark, it can be seen that the vessel moves forward for the pipe-pull, it results in the pipe tension
increasing as the tensioners consume power to restrain the pipe from moving. After this, the tensioners pay
out slack to the pipeline which results in a drop in pipe-tension (until the 440 second mark). Once the pull
is completed, the tensioners re-engage to restore the tension in the pipeline which results in another power-
peak just after the pull.
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Figure 3.7: Ground-speed and ancillary load correlations

3.4.2. Anomalous power peaks

Figure 3.8: ‘Rogue’ power peak

Figure 3.8 shows that at the 56,000 second mark, the power peak caused is nearly the capacity of an engine
(above the 15600 kW limit). This was caused due to a heading change from 57° to 55°as the vessel attempts
to prevent an overshoot. Such scenarios although rare, occur when vessel orientation is changed during
pipelaying. From the size of the power peak (nearly 5 MW), it is similar to an engine failure scenario. To
prevent an unnecessary generator start-up during such a scenario, the thrusters could phased back in order
to reduce the load. Alternatively, the ESS could supply power for this one-off event.
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3.5. Electrical system health analysis
On analysing the online capacity in use during DP operations, it was noted that more insight into the vessels
electrical system was required. The peak analysis gives insight into the battery sizing requirements but not
the reason for the additional generators (n +2) running on the Solitaire. The findings of L.V Donge [18] had
brought up issues of the vessels poor power factor, however since that analysis was done in 2009 for a thruster
upgrade- it was ascertained that a similar analysis must be done to understand the implications on the energy
storage system. Measurements were recorded on the power generation and thruster unit side.

Figure 3.9: Experimental measurements & inferences

3.5.1. Generator measurement
The electrical measurements were conducted for all 8 generators across MS1 and MS2. This entailed the
logging of the currents and voltages. Additionally, the real power produced was also recorded in kilowatts for
the generators.

The required power for DP operations are determined by the DP model of the vessel. These requirements
are sent to the power management system that translates these requirements as setpoint commands to the
diesel engine. The engine throttle is set based on the active power measures taken on the generator output
side. This setpoint is the desired value of the induced electrical power. In general the actual value fluctuates
around the setpoint [18]. The electrical measurements on the exit side of the generator (Figure 3.10) gives a
clearer picture of the state of the electrical health of the system grid.

Figure 3.10: Generator measures

Table 3.4: Analysis locations

1 Diesel engine induced power
2 Diesel engine brake power
3 Brake power- generator input
4 3-phase output (Il i ne ,Vl i ne )
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3.5.2. Thruster unit measurement
The second set of measurements were taken at the thruster unit breaker (numbered ‘11’ in this example)
(Figure 3.11), which includes a step down transformer with two secondary windings which allow for 12 pulse
rectifying for the propulsion drives. The propulsion transformers, supplying the frequency converters of the
thruster drives, are constructed with double secondary windings with phase shifts. In this way, the secondary
side will be a 24-pulse system and the 5th, 7th, 11th and 13th harmonics from the secondary side will be
deleted on the primary side [9].

The purpose of these transformers are to reduce the total harmonic distortion (THD) of the AC wave en-
tering the VFD (Variable Frequency Drive). Although the motor requires a 3-phase AC sinewaves to operate-
the thruster control is employed by maintaining a 3-phase supply but at different frequencies and not 60Hz.
The peak frequency at 110% load for these thrusters are 35 Hz and the continuous rating is specified at 31 Hz
3-phase AC [18].

Figure 3.11: Propulsion unit

3.5.3. Generator measurement results
The measures taken for this analysis are:

Table 3.5: M/V Solitaire Grid measures

Parameters Symbol Units
Line currents IL−g r i d A
Bus voltage Vbus V
Active Power Pg r i d kW

Using the measurements, the Active, Reactive and Apparent power are plotted to give an overview of the
vessels grid power factor (Formulas attached in Appendix A).

From the Figure 3.12 it can seen that in the first 800 seconds, the vessel engages in one pipe-pull. During
the pipe-pull the maximum available capacity comes from 3 engines. These are all that is required to satisfy
the active power requirement. Since 3 engines are online, 24000 kVA generator capacity is available. In the
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Figure 3.12: P,Q,S on the Solitaire (Recorded on 09/01/2019)

scenario that a pipe pull takes place- the vessel seemingly does not have redundancy1, because the failure of
an engine would mean that the active power capacity would reduce to 10,400 kW and the generator capacity,
correspondingly to 16,000 kVA. The vessel has a mean power factor of 0.55 during DP operations which means
that the reactive power requirement is significant.

The presence of large amounts of reactive power result in the conductor capacity to allow real power to
flow through it to reduce as well as limits the engine from fully inducing its maximum continuous rating. i.e.,
the full capacity of Pb = 5,650kW of the engine cannot be utilised [18]. This is because of the limit on the
generator line currents to ILi ne = 465A for normal operations and ILi ne = 555A as the overload trip current.

It can be seen from Figure 3.13 that when 3 generators are online initially, the peak currents reach closer to
the generator trip limit during the first pipe pull. Due to high currents during a pipe pull - the fourth engine-
generator unit is turned on around the 800 second mark. The presence of high currents have been known to
cause damage to equipment on board as the equipment has nearly reached its end of useful life.

Figure 3.13: Generator currents on the Solitaire

1The vessel is equipped with protection systems for the generators which allow an overload current of 555A for upto 10 seconds and two
levels of short circuit protection. This gives enough time for the thruster control system to phase back the thrusters in order to reduce
the power demand in the event of a failure (See discrimination diagram in Appendix B)
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3.5.4. Thruster units measurement results
Thruster measurements were taken according to Section 3.5.2 and the source of the poor power factor can
be seen in Figure 3.14. The inductive effect of the electromotors, transformers and the VFD contribute to an
average power factor of 0.45 on the load side.

Figure 3.14: Power flow: Propulsion unit

3.6. Power factor correction & assumptions
For this research, the assumption is being made that the vessel would undergo upgrades in order to achieve
a grid power factor of 0.8. Power factor correction options have been documented well in the master thesis of
L.V Donge [18]. A power factor function was built in order to simulate what would happen if the power factor
were to be 0.8 (Figure 3.15). This was done by capturing the existing power factor fluctuations with respect to
different thruster loads and augmenting the profile to PF=0.8.
Power factor function

PF =−1.8227×10−17 ×x4 +8.1961×10−13 ×x3 −1.2878×10−8 ×x2 +9.929×10−5 ×x +0.47339 (3.3)

x = Pswi tchboar d [kW] (3.4)

Resulting power profile

Figure 3.15: Ideal PMS response
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Figure 3.15 shows that in a desirable scenario, the PMS must allow the battery to be used to shave off
power surges. If the power surges get too large, the PMS must initiate a generator start-up to prevent damage
or overuse of the ESS. Hence this gives rise to a mode of operation of the ESS called the ‘power surge shaving
mode’.

3.7. Failure scenarios

Figure 3.16: Failure scenario analysis overview

Using the measured and augmented power factor scenarios, scenarios of normal pipelaying operations and a
scenario of the event of a single engine failure will be considered. Within these two conditions, the effects of
the ESS will be considered during station keeping (no-pipe pull) and the pipe-pull condition (power surge).

3.7.1. 0.55 PF
Normal operations

Figure 3.17: Normal operations with BESS (0.5PF)

The normal operational scenario of the Solitaire analysed here is representative of the existing condition
of operation with one less engine running, no failure occurrence & that a battery is installed.

Such a scenario is represented in Figure 3.17. Due to the poor power factor, the active power limit of the
engine is depicted as the ‘kW limit’2 is seen that this does not match with the rated capacity of 5200 kW of
electrical output (per engine). In region 1, this is not an issue as the apparent power requirement can be met
by the existing set of generators. In region 2, i.e., during a pipe-pull, it can be seen that the apparent power
exceeds the maximum output of two generators. This ESS must supply the apparent power above this limit
which dictates that the ESS must have an inverter capable of 8000 kVA output per switchboard 3. The ESS
would not have to be active in region 3 & 4 as the engines & generators can handle the load requirements.

2The kW limit was calculated by using the measured power factor profile & reducing the online capacity by 8000 kVA to simulate a
situation with a battery & one less engine running

3Same as the existing generators coupled with the main diesel engines
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Single engine failure

Figure 3.18: Failure condition with BESS (0.5PF)

From Figure 3.17, if the online capacity is reduced by 5200 kW, it presents the case of a single engine failure
as shown in Figure 3.18. In region A (Figure 3.18), it can be seen that the available active power capacity from
the generators is limited which means that the BESS will have to compensate for a larger range of power
demand. The requirement to supplement the additional reactive power necessitates an inverter with the
capability to supply 8000 kVA (as is the case with the diesel generators). However, on analysing the region B,
it is evident that during a pipe-pull, if an engine were to fail, the apparent power to be compensated exceeds
8000 kVA.

As the Solitaire is equipped with protection systems to prevent a blackout in such scenarios4, the vessel
would reduce thrust to reduce the power demand. However, after the pipe-pull (600-800 second mark) , the
load still hovers around the 16000 kVA limit which means that a battery inverter of 8000 kVA would not suffice
as there is a risk of loss of position if the vessel reduces its thrust capabilities (or the inverter trips due to an
overload). In this case, a solution would be to add a power factor compensation device or to over-size the
inverter. Region C would require minimal battery support as the existing supply nearly meets the demand.
In region D, the ESS would operate in a similar way to region A.

3.7.2. 0.80 PF
Normal operations

Figure 3.19: Normal operation with BESS (0.8PF)

4Discrimination diagrams attached in Appendix B which shows the overload, short circuit level 1 and short circuit level 2 limits
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Using the power factor augmentation function (Equation 3.3), the analysis of the vessels grid in done
under the scenario wherein the power factor is 0.8.

In the situation wherein the vessel operates at a higher power factor (0.80) it is evident from Figure 3.19
that the battery system would be used to power only the active power demand during pipe pulls (Region 2).
This is advantageous, in that the inverter need not have large reactive compensation units and/or need not
be oversized 5. This is done by using the online generators capability to compensate the required increase in
apparent power. This could be done by ensuring the AVR (Automatic Voltage Regulator) of the generator is
overexcited in order to produce the required reactive power to the grid rather that allowing a battery inverter
to do the same. In all other regions, the ESS is not used. Furthermore, the engine and generators capabilities
can be fully utilised in the event of a higher power factor as the reactive power is not high enough to cause
significantly large currents through the electrical system and saturate the generator output current.
Single engine failure

Figure 3.20: Single engine failure with BESS(0.8PF)

Figure 3.20 is the same as Figure 3.19 with one less running engine to depict a single engine failure.
Region B shows that since a generator has failed (during the a pipe-pull), the online engine and generator

both work at full capacity, the remaining apparent power must be provided by the ESS. So an 8000 kVA inverter
(or lower) would be sufficient to satisfy this load requirement (per switchboard).
Region A & C do not pose an issue to the ESS. In this failure condition, the remaining capacity would be able to
handle the power requirement. In region D, despite having lost a generator, the remaining generator capacity
is capable of compensating for the apparent power, while the active power above the 2nd engines limit is
supplied by the ESS.

Note: Up-scaled figures for all scenarios are attached in Appendix A for closer inspection

5Downsizing the inverters is possible to the point which the kVA capacity will still be able to sustain position keeping- however the
pipe-pull will have to be terminated mid-way if the vessel is engaged in the operation. For sizing characteristics, refer to Chapter 4
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3.8. Implications on ESS
Vessel loads & power peaks

• It is observed that the moving average DP load during pipe-laying is usually within one or two of the
engines output capacity (Figure 3.5) which means that a single engine failure criteria is sufficient to
ensure that the station keeping abilities are maintained.

• The correlations suggests that the power peak profile is a combination of the moving average DP load,
ground-speed induced DP load and the pipe tension compensating action of the tensioners during a
pull.

• If the ESS were to supply the power demand during these peaks, the maximum allowable limit would be
set by the manufacturer of the ESS. This limit would allow the battery to be cycled in an unlimited way
so long as the C-rates are kept within this constraint. Typically, for medium power air-cooled batteries,
this limit is 1.5C [17].

• In order to ensure that the anomalous power peaks are handled by the ESS as one-off events, the in-
verter sizing must be such that it allows a full engines power rating to be extracted from the ESS (i.e.,
5,650 kW of electrical power output) per switchboard.

Electrical health analysis & Failure scenarios

• It is observed that the vessel has a mean power factor of 0.55 based on the measurements logged on the
vessel. This results in high line currents at the generator output. The maximum allowable line current
is calculated to be 465A notwithstanding the overload and short-circuit limits.

• For this study, an assumption is made that the vessel operates on a 0.8 power factor during DP opera-
tions. This assumption is made in light of uncertainty in regard to future vessel upgrades pertaining to
new drives, electromotors and/or power factor correction equipment.

Power factor=0.5

• In the scenario of low power factor, it is observed that in the event of a single engine failure, the battery
inverter must be oversized or power factor compensation must be present to prevent a potential loss of
DP capability.

• Alternatively, a battery inverter rated to the same as the existing generators (8000 kVA) must be capable
of handling an overload for a few minutes without causing the inverter to trip (per switchboard).

Power factor=0.8

• In the scenario that the vessel operates with a 0.8 power factor, the battery inverters can be sized such
that 7000 kVA is available for each switchboard. This will allow 5650 KW of electrical power output for
spinning reserve, power surges caused due to pipe-pulls and anomalous power peaks.
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Conceptual baseline battery design

4.1. Overview

Figure 4.1: Battery design steps

Based on the findings made in Chapters 1-3, implications of the vessel characteristics and pipe-laying oper-
ations on the energy storage system were analysed. The energy storage system can be split into the battery
and the power conversion components. Design requirements of energy, power, battery life and power surges
dictate the battery sizing while the operational characteristics affect the remaining system architecture. For
this case study, a 5C discharge rate battery is considered.

4.2. Design requirements
The design requirements are dependent on the following four primary parameters:

• Energy

• Power

• Battery life

• Power surges

4.2.1. Energy
The basis of the battery design is to ensure that there exists a spinning reserve in event that an engine fails dur-
ing DP operations. This means that the nominal power to be delivered by the energy storage system should
be 5,650kW in line with the rating of the engine. The time that this power must be delivered is dependent on
the new generator start-up time of 48 seconds. However, if the generator fails to synchronise with the grid,
a secondary generator start-up is initiated by the power management system. Additionally, it must be noted
that the new generator start-up would only be initiated once a failure is detected and it begins to affect the
power production capabilities of the vessel. The total bridging time of 3 minutes (180 seconds) is deemed to
be appropriate in order to ensure enough redundancy in the scenarios outlined and a safety margin.

Based on the aforementioned deductions on the energy requirement for the bridging time the battery size
for the spinning reserve can be calculated as:

33
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Ee f = Pnom × t1

t2
[kWh] (4.1)

Where:
Ee f : Effective energy required [kW h]

t1: Bridging time [s]
t2: Number of seconds in one hour [s]

5650kW × 180

3600
= 282.5[kWh] (4.2)

4.2.2. Power
This energy can only be extracted at a discharge rate of 20C from a battery. Few commercial batteries exist
with such capabilities, however they have poor cycle & calendar life characteristics. Hence, another aspect
that has to be taken into account for sizing are the C-rates 1 of the available battery, end of life (EOL) capacity
and reduction in capacity due to high discharge rates. The typical batteries available commercially for mar-
itime applications range between discharge rates of 1C-10C. For this case study, a battery of the discharge rate
of 5C is being considered as this offers a good balance between high energy density and high power. There-
fore, the sizing requirements are dominated by the power production requirements. This capability must be
met even at the end of life (EOL) of the battery which is taken to be when the battery capacity degrades to 80%
of the newly installed capacity. Additionally, the battery must not be depleted below the 20% SoC (State of
charge). Taking these requirements into account, the new energy requirement based on power as a limiting
constraint can be calculated as:

Esp = Pnom × 1[h]

C − r ate ×p1
(4.3)

Where:
Esp : Spinning reserve energy [kW h]

p1: EOL parameter=0.8 [−]
C − r ate: 5C [−]

The calculated power requirement in this case is found to be 1412 kWh. This ensures that at end of life
(EOL), the remaining capacity of the battery is 1130 kWh. This ensures that the power requirement is satisfied
even at EOL.

4.2.3. Battery life
Calendar life

Lcal = ft (σ,Tc , t )
Calendar ageing is a phenomenon caused by the battery not being used i.e., when the battery is not under-

going charging or discharging. In this situation, the lithium ions begin to react with the electrode to produce
irreversible chemical compounds called Solid Electrolyte Interfaces (SEI’s). As the SEI grows larger over time,
it begins to degrade the battery. The chemical equation is represented as [12]:

2(C H2)2CO3 +2e−+2Li+ → (C H2OCO2Li )2 +C2H4 (4.4)

The model by Bolun Xu [49] considers a model with the SOC (State of charge(σ)) and the Temperature
effects on a Lithium ion NMC type batteries. The results clearly show that maintaining the battery at an
elevated temperature has a more detrimental effect on the battery degradation than the SOC (Figure 4.2).
From a practical perspective this would mean that the battery room in a vessel would have to have ambient
temperature control & measurements at the cells to ensure it does not heat up during operation or otherwise.
It is evident that by maintaining the battery at a low SOC, the calendar life of the Lithium-ion cells can be
prolonged well past the manufacturer prescribed calendar life2.

1The C-rate of the battery is the discharge rate of a battery. For example, a 100 Ah battery discharges at a nominal rate of 1C would
imply that the battery is fully discharged in 1 hour while it can be discharges in 30 minutes if the current drawn from it is 50 amperes.
However, in reality the time taken would be around 25 minutes due to a reduction in capacity at higher than nominal discharge rates

2This varies from manufacturer to manufacturer but is usually quoted as 10-15 years- although in reality the battery would last longer
than the prescribed time provided it is operated under a low SoC & reasonably low temperatures
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Figure 4.2: Battery life vs temperature & SOC[49]

Cycle life
Lc yc = ft (char g e −di schar g e c ycles,DoD,C − r ate)

Cycle ageing of batteries refers to the degradation of the batteries due to the charge and discharge cycles
it undergoes. It has a strong dependence on the depth of discharge (DoD) and number of iterations of charg-
ing & discharging (Figure 4.3). The C-rate experienced by the battery also affects the cycle life of the battery
although, to a lower extent than the DoD. The battery will be able to throughput lower cycles if the battery
is discharged to a greater extent. For example, for a spinning reserve situation (either an failure or test situ-
ation), this would mean a deep discharge, however, such a situation is not common. During combating the
power surges, the battery will undergo several smaller cycles which the battery will be able to sustain for an
exponentially longer period of time.

Figure 4.3: Cycle life vs. DoD[44]
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4.2.4. Power surges

Figure 4.4: Power surges

Figure 4.4 shows the typical magnitude of the power peaks above the capacity of the engines. Based on the
data analysis, the magnitude of these peaks are in the order 1.5-4 MW depending on the weather. Typically
each thruster consumes between 0.5-1.5MW of power for position keeping which means the total DP load
on the switchboard amounts to 2.5-7.5 MW (5 thrusters). The remaining load is the ancillary component.
From this it can be deduced that to the original battery sizing calculated at 1412 kWh, an additional reserve
of 120 kWh for the power surge can be incorporated. Approximately 100 kWh corresponds maximum energy
required per power peak of 4 MW. 3

4.3. Baseline split battery design

Now that the battery sizing has been calculated, the architecture of the system can be arranged in a new novel
way to maximise the calendar life of the battery by maintaining it at a low SoC. As the battery is essentially a
collection of cells, they may be split up and reorganised in a different way to achieve the necessary objectives.
Two battery units can be used to supplement the power surging on a single switchboard while allowing an
interconnection of a tertiary battery unit from the other switchboard in the event of a failure. This means that
the energy between the units need only be shared in the event of a failure. Due to the inherently poor calendar
life of high power batteries, this arrangement allows the use of higher power batteries which can share the
energy for spinning reserve. Maintaining a low SoC on high power batteries can maximise its calendar life
without compromising on performance with this system architecture. Additionally, such an arrangement
allows the inverter to be sized smaller.

The schematic of this design is depicted in Figure 4.5. This design will be referred as the ‘split-battery’
design. Figure 4.6 shows the ranges within which the split battery units can be operated. This architecture
enables the individual units to be maintained at a relatively low SoC than a dual battery arrangement by
allowing 3 individual units to share the energy requirement in the event of a failure. Given an operational
profile different from a pipelayer and that of a traditional DP vessel, this design has the potential to make a
33% reduction in battery size.

3During the supply of power for the power surges, a manufacturer prescribed 1.5C discharge limit is advisable for continuous charge-
discharge operation of the battery. Hence with a 1532 kWh battery a maximum allowable peak size can be calculated as 1.5×1532kW h.
This signifies that peaks upto 2.35MW and 1.87MW at EOL can be supplied by the battery. The EOL power surge handling can be
improved to match the newly installed capabilities using better cooling technologies. This aspect is out of the scope of this research
study. Additionally, rather than installing new cooling systems- the battery sizing could be augmented by 300kWh later in its operational
life
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Figure 4.5: Split battery design

Figure 4.6: Split battery sizing (4X units)
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4.4. System architecture
Cells & Module characteristics
The selection of the Lithium-ion battery has been made to demonstrate an example of a battery with a bal-
ance of high energy & high power. Following are the Kokam 5C (100Ah) cell & module characteristics:

Table 4.1: Li-ion cell & module characteristics

Characteristics
Pouch cell capacity 100 Ah
Maximum cell Voltage 4.2 V
Minimum cell voltage 2.7 V
Nominal cell voltage 3.7 V
C-rate (Continuous) 5C
Peak C-rate (10 sec) 6C
Energy per cell 0.37 kWh
No of cells in module 14
Module Nominal voltage 51.8 V
Energy per module 5.18 kWh

Strings & racking arrangement
For the purposes of power conversion, the modules must be arranged such that the appropriate DC voltage
is created to build a rack of Lithium ion modules. In this case, the desired DC input voltage is determined
to be 1139V based on the requirement to have sufficient redundancy for the racks in case of an individual
rack failure. Moreover, this value is chosen as commercial converters have a DC input of a maximum value
of 1500V DC. The nominal operating range of the converters are 875V-1300V, hence at the peak charge of the
Li-ion cell of 4.2V, the DC voltage is 1298V DC which is still within the nominal range.

Table 4.2: Battery string & rack characteristics

Characteristics (Per unit)
Desired DC voltage 1139 V
Modules in series 22
Capacity (per rack) 113.95 kWh
Total installed capacity 766 kWh
Number of strings 7
Total number of Lithium-ion cells 2156

Power conversion: Converters & Transformers
For the purposes of power conversion, decisions have to be made on the sizing based on the size of the power
peaks desired to be handled by the battery. The power peaks to be handled by the battery must fall within the
range of 0.1-1.5C of the installed capacity for continuous charging and discharging during power surges [4].
This must be true even at the end of life of the battery. A 2298 kW limit on power surge peak value allowance
ensures that the average C-rate is kept under 1.5C. This means that if an engine failure were to occur during
a pipe pull, the required output for station keeping would still only be 5650 kW at maximum. To satisfy this
power demand during a worst case scenario of a failure, a 3500 kVA (cosφ = 0.8)4 converter per battery unit
would ensure that three such units of the split system would satisfy the worst case power demand.

Table 4.3: Converter & Transformer information

Characteristics (Per unit)
Converters required 1 per unit
Assumed grid power factor 0.8 lagging
Desired power surge limit 2298 kW
Converter rating 3500 kVA
Voltage range for nominal power 875 V-1300 V

4For 0.55 PF, the inverter would have to be sized to approximately 4.8 MVA each
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System Layout
Based on this conceptual design, the system layout can be visualised below: (per switchboard)

Figure 4.7: Split battery system layout

The calculations for the currents in the table below is the worst case scenario wherein the vessel engages
in a pipe pull and the generator set fails in the power surge shaving mode. The vessels protection will ensure
that the thrusters are phased back to prevent a blackout and the station keeping load requirements only will
be used up from the ESS. Table 4.4 shows the currents when the two units are online and Table 4.5 shows the
system currents once the tertiary unit has connected to the switchboard where the failure has occurred. In
both cases the minimum voltage of 1010 V has been considered as this causes the maximum current.

Region Voltage Current
1 10000 V Il i ne = 203A
2 1010 V 2825 A
3 1010 V 404 A

Table 4.4: Twin units engaged

Region Voltage Current
1 10000 V Il i ne = 136A
2 1010 V 1883 A
3 1010 V 269 A

Table 4.5: Three units engaged
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4.5. Operational conditions

Power surge mode
In the power surge shaving mode, two units of the split architecture are independently connected to each
switchboard (Figure 4.8). As each unit is 766 kWh, they are capable of ideally handling power peaks in the
order of 2298 kW (within 1.5C of the battery). Larger power peaks can be handled by the battery but it is not
recommended to cycle the battery at higher C-rates often. Typically, a 2-3 MW peak would cause a 1-2% DoD
which means that an allowance of 2% DoD can be made before the battery is recharged after a power peak.
The minimum SoC that each of the split units can be maintained at to still ensure 3-minutes of spinning
reserve is at SoC= 35%.

Figure 4.8: Power surge mode

Spinning reserve mode
In the event of an engine failure on either of the switchboards, three units will connect to that switchboard
(Figure 4.9). This ensures that there is an availability of 3 minutes of support to the switchboard to start a new
engine.

Figure 4.9: Spinning reserve mode
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Power management system integration

For the implementation of an energy storage system on the Solitaire, it is important to develop a method in
which such a system would be integrated into the power management system of the vessel. This chapter reviews
the existing system which the vessel uses to ensure that the vessel has a level of redundancy in the case of a single
engine failure. Following which, a new set of elements are designed to be integrated into the existing PMS which
will allow an ESS to operate. Simulations are conducted on Simulink®to verify the fidelity of the algorithm by
measuring key performance indicators (KPI’s) as cycle life, C-rates, depth of discharge for the battery and the
fuel and running hour measurements in different operational conditions.

5.1. Existing rule based system
To match the power demand of the vessel, the power management system of the vessel has a rule based
generator start stop sequence (Table 5.1). The settings prescribed by these rules are based on experience and
can be changed based on operational conditions manually. For example, if the vessel has a power demand
at 7400 kW with two engines supporting the load, the system does not engage another engine to start but if
the load were to increase to 7900 kW for a period of over 25 seconds then the PMS automatically initiates the
start-up of the third diesel engine. The time taken to start up this engine and synchronise it to the grid takes
it approximately 48 seconds. If the synchronisation fails- a new MDG start-up is initiated. Similarly, for an
engine shutdown procedure, the PMS monitors whether the load has dropped to below the stop limit for the
past 24 minutes. If so, then a generator shutdown is initiated.

Table 5.1: Current load dependent start limits for the M/V Solitaire

MDG’s* Pnom(kW ) LSL (kW) Delay time HSL (kW) Delay time Stop limit [kW] Delay time (min)
1 5200 3900 25s 4160 2s - -
2 10400 7800 25s 8320 2s 4160 24
3 15600 11700 25s 13260 2s 8286 24
4 20800 - - - - 12480 24

*The new generator capacity of 5200 kW is considered here (Section 2.3.3)

DP III regulations as stated in Section 2.4 requires that the vessel needs to have redundancy in case of a
generator failure. Which means that if ‘n’ generators are require to satisfy the load, then (n +1) generators
must be available. Observing the data recorded on 27/09/18 (Figure 5.1), it can be seen that despite the load
conditions not necessitating an additional generator to be turned on, the DP operator on board the vessel ini-
tiates a generator start-up. So in this case there seems to be (n +2) generators running during some portions
of the day. The reasons for this are due to the power factor issues which warrant additional generators to keep
running to satisfy the reactive power requirement as found in Chapter 3-these starts are manually initiated.

Figure 5.1 shows that available capacity (displayed by the blue line) at all times is maintained above the
power demand such that should a failure were to occur, it would not cause the vessel to lose position or
cause a blackout. The day is characterised by a waiting on weather condition followed by a pipeline recovery
from the seabed. Once this is completed, the pipelaying operations begin at about 18:00. The vessel does not
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Figure 5.1: Vessel online capacity

appear to be following the prescribed rule-based start-stop system as there is a lot of manual control involved.
The reason for this is not very clear. During pipe-laying operations, the reasoning for the manual starts are
that the currents induced are large due to the excessive reactive power in the network.

5.2. Overview
Based on the requirements, a new PMS decision making process has to be developed and tested. During the
testing phase, the viability of the system will have to be compared against the pre-existing system through the
use of key performance indicators.
PMS Requirements

1. Ensure that the additional generator can be turned off for more efficient operations with the ESS acting
as the backup power supply

2. The new PMS can make decisions about generator start-stops based on the following characteristics of
the power peaks

• Magnitude and Frequency of the power surges

• State of charge and runtime of the battery

Key Performance indicators
To test if the battery and power management system design are appropriate, performance indicators will

have to be used to measure and compare their performances. The are classified into three types of indicators:

1. Vessel parameters: Fuel consumption, Running hours, Emissions

2. Battery measures: Cycle life, DoD, C-rates

3. Feasibility: Investment costs
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Model Structure

Figure 5.2: Model structure

Figure 5.2 depicts the structure of the model which consists of the PMS model and the battery. The green
blocks are the new elements developed in this research study to allow the battery to be integrated into the
vessel. Additional to the new elements, the old table based start-stop system would have to be updated in
order to integrate it with the new elements.

The signals transferred between the blocks are summarised as:

A. Total measured active power (kW)

B. Moving average filtered load (kW)

C. Battery Current (A), Voltage (V), Power (kW) and SoC (%)

D. Binary signal [Trigger=On/Off]

E. Generator online capacity command

As the generators are running, the output is regarded as the power demand as the generators match what-
ever the powering requirement is from the load side. In the current PMS of the Solitaire, the load is measured
and is intended to follow the load dependent start-stop sequence (Table 5.1). For example, if the load were to
exceed the lower start limit for 25 seconds, a new generator would start up. In the new model, this measured
load is filtered out using a moving average filter with a 900 second time window and this load is used instead
to determine generator start-stops. The highly variant loads are allowed to be absorbed by the battery. As the
battery absorbs the highly variant loads, the battery monitoring algorithm monitors the usage of the battery
and makes decisions on whether it is appropriate to start a new generator on not.
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5.3. Battery
5.3.1. Types of battery models
There exists different levels of modelling of batteries depending on the purpose of the model. Maheshwari
[32] summarises the developments in mathematical models of batteries developed in the last years (Figure
5.3).

The simplest model is the Empirical model which are regarded as low accuracy models. Linear, polyno-
mial, exponential or other commonly used functions are used to fit the experimental data directly to obtain
the parameters for the model. The simplicity of the model allows one to rapidly develop them and test them
in simulations as they are computationally non-intensive. The uses of empirical models are to test it on real
world applications such as power management, battery management systems etc. Their extrapolation from
the usual operational conditions is poor.

The next two levels of modelling are the single particle model (SPM) and the pseudo two dimensional
model (P2D). These models take into account the kinetics and diffusion phenomenon in the electrolyte and
the electrodes using partial differential equations [32]. Finite element methods are employed to solve these
coupled equations.

The most advanced models are used to simulate the battery response down to the atomic/molecular level.
These models are called the Kinetic Monte Carlo (KMC) models and can help predict thermodynamic prop-
erties of materials & mobility of lithium inside the crystal structure [32].

Figure 5.3: Types of battery models[32]

Table 5.2: Battery model types & applicability

Battery models Description Purposes
1. Empirical model Simple but not as the most accu-

rate
Real world applications for BMS/PMS

2. Single particle model
(SPM)

Models kinetics and diffusion (use
of FEM)

Works well for modelling low current & thin elec-
trode type cells

3. Pseudo two dimensional
model (P2D)

Models kinetics and electrolyte &
solid electrode diffusion (use of
FEM)

More accurate than SPM. Computationally in-
tensive.

4. Kinetic Monte Carlo
model(KMC)

Simulation at the molecular level Restricted to studying one specific process tak-
ing place in over a fraction of a second

Model selection
The SPM model is not relevant as it is more suited to the study of thinner electrodes and low current con-

ditions. KMC and P2D models are used to analyse specific processes within the lithium-ion cell and are not
suited to fast applications such as BMS/PMS testing as they are inherently computationally intensive. A typi-
cal empirical model works on the principle of an equivalent circuit but faces some issues with accuracy. The
reason for the lack of accuracy with time is due to the effects of current integration. Current integration is
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the method used to determine the energy discharged from the Li-ion cell and determine the SoC. With time
the errors accumulate and the accuracy drops. To alleviate this problem, a method prescribed by Huria T &
Jackey is being used to build an empirical model. In this model the effect of current integration is minimised
by using Open Circuit Voltage (OCV) values of the cell at different SoC’s and temperatures. This means that
the current integration only has to be done for short durations after which the cell voltage is updated peri-
odically with its OCV at that SoC. For the current application of use in the PMS, this improved version of a
traditional empirical model is deemed to be the relevant choice for analysis.

The analysis involves using the parameter estimation methods developed by Huria T & Jackey combined
with the datasheet information from KoKam. The data is is extracted from the datasheet and the parameters
are determined to develop a working model of the battery. In this study, the improved empirical model of
Huria T & Jackey will be used.

5.3.2. Empirical model

Electrical model with thermal dependence

The model prescribed in the analysis is based on Huria T & Jackey [25]. The model is built using an equiv-
alent circuit model (ECM) as it is the most common approach for battery numerical analysis. The complexity
of such a model can be built up using several RC branches. For lead acid batteries, due to parasitic discharge
effects the model must include a parasitic branch. However, for the Lithium-ion type batteries, this para-
sitic effect is not present and hence is not required to be modelled. Additionally, depending on the type of
Lithium-ion battery- the decision to choose the number of RC branches must be made. For chemistry’s of
Lithium Iron Phosphate (Li FePO4), Lithium Titanate (Li4T i5O12) and more complex chemistries- multiple
RC branches must be used to model it correctly (as in Figure 5.4). In the case of this analysis, the selected
battery for analysis is Lithium Nickel Manganese Cobalt Oxide (Li Ni MiCO2 or Li −N MC ). The model was
developed and validated using the NMC chemistry and it was found that using a single RC branch is sufficient.

Figure 5.4: General equivalent circuit cell model of an electro-chemical cell [25]

Where:

Em : Cell voltage[V]
Ep , Zp , Ip : Parasitic branch elements
R1,C1, I1: Branch 1 elements

Rn ,Cn , In : Branch n elements

According to Huria & Jackey [25], it is sufficient to reduce the general ECM with ‘n’ RC blocks to an ECM
with just a single RC block (Figure 5.5), which is sufficient to account for all dynamic characteristics of the
cell including nonlinear open-circuit voltage, average discharge current and inner cell temperature. During
the model development, it was found that there exists dependencies between the state of charge and the
temperature which were then implemented as lookup tables. An extremely complex equivalent circuit model
would fit experimental data well, however, would come at a cost of computational effort.Using more than two
RC blocks will not produce any significant improvement in model accuracy.
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Figure 5.5: Equivalent circuit model with a single RC branch [25]

For short duration of analysis, the cell capacity can be limited to observing the effects if average discharge
current, discharge time and inner cell temperature [25].

Cq =Cq (I ,T ) (5.1)

Qe (t ) =
∫ t

0
Im(τ)dτ (5.2)

Then the state of charge can be given as:

SOC = 1− Qe

Cq
(5.3)

Where:

Cq : Total capacity
Qe : Extracted charge
τ: Time(s)
T : Temperature(K)

Im : Current in main branch (A)

Most models in literature determine the SOC based on the ‘Coulomb counting’ method outlined- this
is usually inaccurate as time progresses as the errors build up. This model designed by Hurian & Jackey
[25] alleviate that issue by periodically compensating this error using an SOC-OCV (open circuit voltage)
correlation curve.

Datasheet battery & Parametrisation

To parametrise the model to simulate a real battery, the discharge curves of the KoKam 5C battery were
obtained from the datasheet (See Appendix B). The discharge curves were present for a nominal discharge
rate of 0.5C for a range of different temperatures which enabled the battery to be modelled from -20°C to
55°C. However, during parametrisation, the inclusion of very low temperatures for the parameter estimation
led to incorrect results to be obtained so these datasets were excluded for further analysis. The problem of
simulating Li-ion at very low temperatures have been investigated by Ji et al [26] which shows that model esti-
mations at high discharge rates for sub-zero temperatures. Since the interest in this case is room temperature
i.e., 25°C, this has been pursued for the modelling purposes.
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Figure 5.6: KoKam 5C datasheet discharge curves

In the Figure 5.6 the discharge characteristics of the Li-ion cell at 25°C temperature and different discharge
rates ranging from 0.5C (i.e., 50A) to 5C (i.e., 500A) are shown. The second subfigure shows the discharge
characteristics of the same cell discharged at 1C but at different temperature conditions. Both figures show
the voltage drop as the cell is discharged. The relative capacity is shown on the x-axis. It is interesting to note
that during high discharge rates i.e., 5C, the relative capacity of the cell reduces by about 5% (from 100Ah to
95Ah). This effect is also seen as a result of low temperatures wherein the Li-ion cell has significantly lower
capacity available to discharge.

Figure 5.7: SOC-OCV (Open circuit voltage) curves
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To alleviate the problems caused by the current integration i.e, Coulomb counting method of calculat-
ing remaining capacity of the Li-ion battery, the Figure 5.7 is obtained by noting the cell voltage at different
discharge rates at different DoD. The correlation between cell voltage and relative capacity ensures that, for
example, if a battery were to be discharged from 100% SoC to 90% SoC, the capacity of the battery would
have to be ascertained at 90% SoC for the next discharge event (for low discharge rates, this SoC value would
increase to, for example 92%). This will depend on the current integration of the previous cycle i.e., at what
discharge rate the battery was discharged at until 90% SoC and what the effective capacity would be available
in the next discharge cycle. These curves allow the model to continuously update itself for the errors that
would otherwise develop using the Coulomb counting method.

Figure 5.8: Battery resistance at different SoC & temperatures

The resistance is computed by taking 100 unique breakpoints between 0 & 100% SOC as (Ohm’s law):

R0 = ∆V

I
= Vbkpt1 −Vbkpt2

I
(5.4)

Where:
R0: Resistance Ω

∆V : Change in Voltage between breakpoints V
I : Current A

From the Figure 5.8 it can be seen that the battery has lower resistance when the SoC of the battery is
in the range of 0.3-0.5. A more significant effect is seen with the battery resistance when the temperature
is lowered. Ji et al [26] states that at low temperatures, the operation of Lithium ion is inherently linked to
thermal effects wherein increased internal resistance and very strong dependency of kinetic and transport
properties can cause significant increase in internal heat generated. The implication that this has on the ESS
is that it must be ensured that when the ESS is installed on the vessel, that the ambient temperature of the
cell must be maintained at room temperature (in this reference case=25°C).
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Figure 5.9: Variation of battery resistance with Temperature & SoC

The same procedure is adopted for all the temperature ranges available in order to generate a surface plot
showing the variation in resistance with respect to the temperature change and the SoC (Figure 5.9). For fur-
ther modelling purposes of the power management system, the event of the battery being used at 25 degrees
will only be considered, represented along the red line. This assumption is made as the commercial battery
systems rarely operate at sub-zero temperatures or even at elevated temperatures such at 55°C. Commercial
battery rooms are outfitted with sufficient HVAC systems to ensure the temperature is maintained at room
temperature. The fitting parameters of the curve that must fit the discharge curve are obtained by using a
curve fitting function on Matlab which yields the resistance parameters at different temperatures.

Ri nt =



0.000124158 0.001072211 0.001349884 0.003412431 0.006206476
0.000527221 0.000952374 0.000768588 0.003360786 0.005743599
0.000455232 0.000732818 0.000519449 0.003177671 0.005627788
0.000428557 0.000472347 0.000178489 0.003694026 0.006317822
0.000369124 0.000510414 0.000353655 0.00385164 0.006786517
0.000422848 0.000511938 0.000264812 0.003921262 0.007188454



Tbat t =
(

263.15 273.15 298.15 313.15 328.15
)

The parameter estimation yields the resistance and the temperature breakpoints which are fed as inputs
to the battery model along with other tunable characteristics such as the capacity, open circuit voltage table,
cells in series and parallel to build a battery bank. For the baseline case, the cells in series are 308 to build up
a voltage of 1139V and the cells in parallel during the power surge shaving mode are 14 units. This is inline
with the split battery design wherein only two units are connected to a single switchboard during operation.
Only in the situation of a failure will the tertiary unit connect to the switchboard which will then result in 21
units in parallel to be connected.
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Figure 5.10: Datasheet battery model

During the simulation, the input to the model is the current demand and the output is the battery voltage,
state of charge and energy output. For the simulation, the state of charge will be used by the PMS and the
corresponding voltage of the battery will be used to determine the current input to the ESS based on the
power demand that exceeds the online capacity of the generators.

ii n −→



ibat t = ii n
Np

VT = Em + Ibat t .Ri nt

Vout = Ns .VT

SOC = 1
C apbat t

∫ t
0 Ibat t d t

LdAmphr =
∫ t

0 Ibat t d t



−→ SOC ,Vout

Where:

ii n : Combined current flowing into the battery network A
Np : Number of cells in parallel −

Ibat t : per module battery current A
Em : Battery open circuit voltage V

RInt : Battery internal resistance Ω

VT : per module battery voltage V
Ns : Number of cells in series −

Vout : Combined voltage of battery network V
C apbat t : Battery capacity Ah
LdAmphr : Battery energy Ah

Model Verification

To verify the model, three tests were conducted on the Simulink model. As the cell is a 100Ah cell, tests
were conducted at three different C-rates i.e., 1C, 3C, 5C. The voltage drops and runtimes were checked to
determine if it accurately represented the battery from the datasheet.
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Figure 5.11: Simulink®parametrised battery model response

Figure 5.11 shows that for the nominal discharge rate of 1C the runtime is approximately 3500s which is
consistent with a 100Ah cell which should supply 100A for 3600 seconds. Similarly, in the cases of 3C and 5C,
the battery runs for the expected timescales. For 5C it would be expected to run for approximately 720 sec-
onds. In this case, the voltage drops rapidly after 650 seconds which is consistent with the discharge curves of
the battery wherein the voltage drops off at about 3.2V. The starting voltage drops of the 1C and 3C are consis-
tent with the discharge curves. However, for the 5C case the model suggests a starting voltage slightly over 4V
but the discharge curves suggest a voltage slightly under 4V. On testing the same parametrization procedure
on another battery datasteet (KoKam 20C discharge rate Li- ion cell), it was found that the model does not
accurately capture very high discharge rates. As the model is not being tested under the failure condition and
only as a part of the PMS integration, this error is deemed acceptable. Furthermore, the runtime for all cases
are accurate enough to be used for BMS/PMS purposes. The implications of this initial starting voltage drop
error (approx. 0.2V) only has an effect on the discharge current, in this case due to a slightly higher prediction
of the cell voltage, the currents experienced by the battery would appear to be lower than according to the
datasheet values. This is a trade-off for this model as it is not intended to be tested at 5C and only within the
1-2C range during the power surge operation (Section 4.5).
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5.4. Power management system
The power management system consists of the load filtering, rule based start-stop table and battery algorithms.
The battery algorithms consist of the peak frequency, magnitude monitoring components as well as the battery
state of charge controllers. It must be noted that all the algorithms run in parallel and the decision making of
each algorithm is independent. The setting of the trigger variable (either 0 or 1) is dependent on any one of the
algorithms causing the variable to activate to a ‘1’ state.

5.4.1. Load filtering
The filtering method employed is a moving average filter. Based on tests conducted with the measured power
signals, a window size of 900 seconds was found to capture the moving mean well and ensuring the delay
induced is small enough for the battery to handle any eventualities. Normally during pipe-laying operations,
the mean value of the load does not fluctuate rapidly which means that the effect of the filter delay is not
significant for the battery. The most significant delay seen was in a situation when the vessel switches from a
non-DP to DP mode.

y(n) = 1

w
· (x(n)+x(n −1)+ . . .+x(n − (w −1))) (5.5)

Where:

y(n): Filtered response kW
w : Window size −
x: Past observations kW
n: 1:w −

Figure 5.12: Filter delay

The effects of the filter delay in such a scenario (non-DP to DP switching) are of little consequence to
the battery as it can be seen from Figure 5.12 that as the start limit for the engine is lower than 100% of the
engines full capacity- the delay in this case is approximately 290 seconds. the region above the start limit is
also available to supply the load increase which allows the moving average to ‘catch-up’ to the actual load.
The discharge of the battery is at a relatively low power for a duration that the baseline battery is capable to
withstand. The green-shaded area represents the battery discharge before the start limit is triggered for a new
engine start-up by the moving average.

As the battery is designed with power as a constraint, the baseline battery will be able to provide upto 12
minutes of runtime at the nominal rated load (5650kW) under a fully charged condition.
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5.4.2. Rule based control system

Table 5.3: Proposed load dependent start limits for the M/V Solitaire (per switchboard)

MDG’s* Pnom LSL Delay time HSL Delay time Stop limit [kW] Delay time Trigger
1 5200 kW 4524 kW 5s 4836 kW 2s - - [0,1]
2 10400 kW 9672 kW 5s 9880 kW 2s 4524 kW 24min [0,1]
3 15600 kW 14508 kW 5s 14820 kW 2s 9672 kW 24min [0,1]
4 20800 kW - - - - 14508 kW 24min [0,1]

*The new generator capacity of 5200 kW is considered here

In contrast to Table 5.1, it can be seen in Table 5.3 that the limits for the start-up have been raised to 0.87-
0.93 (of nominal power) from the pre-existing case of 0.7-0.85 (of nominal power). This, coupled with the
new method of logging the moving average over a long period of time (filtered power demand) will ensure
that the engines will operate at higher partial loads during DP operations. The trigger column would be the
new addition to the existing rule based system. In addition to the LSL and HSL conditions, this would be
the tertiary ‘OR’ condition which is controlled by the battery algorithms. This variable is used to notify the
PMS that an additional generator must start-up even though the moving average load does not necessitate a
generator start up. The instruction given by this variable to the table is dependent on a few other algorithms
that will be explored in the following sections.

Figure 5.13: Rule based load dependent start-stop sequence

The decision making model receives the filtered active power demand and decides whether it breaches
wither the lower or higher start limits. Depending on the scenario, the delay time before a start up of the gen-
erator is either 5 seconds or 2 seconds respectively. Additionally, for the generator to be able to fully produce
power on the grid, a 48 second delay has been implemented using Stateflow’s temporal logic capability which
allows time delays to be implemented in the code. This simulates a realistic scenario & works in line with the
time domain simulations. The full decision making process for a single generator has been represented in
Appendix B. The model includes four such generators running simultaneously as a decision making process
in parallel with their individual lower and higher power limit settings according to Table 5.3.

5.4.3. ESS management algorithm A: Peak frequency
The peak frequency algorithm 1 receives the total power ‘demand’ which is the sum of the measured power
output from the generators and the battery power output. The ‘supply’ variable signifies the online capacity
available from the generators (i.e., 5200 kW, 10,400 kW,. . .). Each time the total power demand crosses this
supply limit, it means that the vessel experiences a power peak. These instances are counted over a time
window (in this case, 900 seconds). If the number of peaks within the time window exceeds the threshold
1 ‘limit’, then the algorithm sets the ‘trigger’ variable to ‘1’ which initiates a generator start-up. Figure 5.14
shows the scope viewer on Simulink ®wherein the sliding 900 second time window checks whether the limit
has been exceeded at any given time.

1If a battery is capable of 1,000,000 cycles for instance (at low DoD) with a 10 year lifespan, this means that per day the vessel may undergo
400 small discharge cycles (assuming 250 days of DP per year). If a monitoring window of 900 seconds were to be implemented, this
would mean that the number of power peaks allowable would be upto 5 cycles during that single watch window.
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Algorithm 1 Peak frequency Pseudo-code

start:
if demand > suppl y then

peak → acti ve
k → 1
if peak=active then

sum = sum +k;
if sum>=15 then

br eak;
tr i g g er → 1

end if
end if

end if
after(900,seconds)
reset: sum=0;
goto(start)

Figure 5.14: Peak frequency scope

5.4.4. ESS management algorithm B: Peak magnitude
The peak magnitude algorithm (Algorithm 2) consists of a generator starting and shutdown decision maker.
The algorithm Stateflow®charts are available in Appendix B.
Generator start-up: Upperbound monitoring

The total power demand 2 is compared against the online capacity (supply) available 3 and if it exceeds
the online capacity, the peak magnitude demand-supply value is recorded. Additionally, the algorithm counts
the number of power peaks within a watch window (in this case 3600 seconds). Using these two values, the
average size of the power peaks are calculated within the watch window. If this exceeds the threshold value
‘limit’, a generator start-up is initiated by setting the trigger variable to ‘1’. The threshold value is dependent
on the ideal C-rate for continuously charging and discharging the battery, which in this case is 1.5C of the
battery. Based on the baseline battery specification, this value is about 2.3MW.
Generator shutdown: Lowerbound monitoring

In a similar method as the upperbound monitoring technique, the generator shutdown mechanism con-
tinuously checks the same conditions to check if the power surge limits would be breached if a generator
would be turned off.

2The total power demand is the sum of the generator power output and battery power measurements
3The online capacity corresponds to the total load acceptable by the generators. For example, if two engines are running then the value

of online capacity is 10,400 kW
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Algorithm 2 Peak magnitude Pseudo-code

start:
upperbound:
if demand > suppl y then

peakaver ag e = peakmax /(count )
if peakaver ag e > l i mi t then

tr i g g er → 1
else

tr i g g er → 0
end if

end if
lowerbound:
if demand < suppl y then

peakL−aver ag e = peakmax /(count )
k → 1
if peakL−aver ag e > l i mi t then

tr i g g er → 1
else

tr i g g er → 0
end if

end if
after(3600,seconds) goto(start)

From Figure 5.15, it can be seen that at the 61250s mark, the 3600 second watch window has expired
and at the end of this time period, the average value of the power peak exceeds the limit. In this case, an
additional generator start up is initiated. The lowerbound monitoring window begins once the generator
has been started-up. This lower bound monitoring checks the average of the power peaks in the event that a
generator has been turned off once again. This is done in order to make a decision as to when it is appropriate
to turn off a generator. In this case, it can be seen that after the generator start-up, the average power of the
power peaks is still above the power peak limit (represented by the ‘lowerbound peak average’ line = approx.
3.5MW). The initiation of a generator is done by setting the trigger variable to 1 which as can be seen from
the PMS response causes the additional generator to start-up.

Figure 5.15: Peak magnitude monitor & PMS response

5.4.5. ESS management algorithm C: SoC control
State of charge control of the battery is consistent of two distinct processes i.e., charge and discharge. These
processes occur in two scenarios: (Stateflow ®diagrams are attached in Appendix B)
Reality

In reality, the battery will be discharged automatically without any prompt as any load requirement above
the generators capabilities will be drawn from the battery. Algorithm 3 and 4 both would work in the same
way except that the idi schar g e would not be required to be sent as a signal to the battery.
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Model
In the case of the model, the physical battery model works by sending an input signal of the discharge

current (idi schar g e ). During the time domain simulations, the pre-recorded timeseries of the load signal is
the measured load. Using the measured load, any load above the online capacity is divided by the battery
voltage which results in the discharge current experienced by the battery.

Mode 1: Pulse mode
The pulse mode of battery charge (Algorithm 3) is programmed such that the battery will be charged

at 0.2C of the battery rating after every battery discharge event. One complete charge and discharge event
is considered a single cycle. In this case the SoC setpoint has been defined as 85%, however, this setpoint
may be increased of lowered. The energy consumed when charging the battery has not been included as a
feedback to the total load as this value is negligible. Additionally, the i 2R losses at low charge rates (0.2C in
this case) is negligible compared to the gains made by preventing a generator start-up.

Algorithm 3 Pulse mode operation pseudo-code

start:
inputs: SOC; battvolt;
supply % Online capacity;
demand % total power demand;
if demand > suppl y then

idi schar g e = (demand − suppl y)/bat t vol t ;
end if
after: demand<supply
c ycle ++;
charge:
if SOC < 85% then

ichar g e = 0.2C ;
if SOC >= 85% then

ichar g e = 0;
end if

end if
goto(start)

Mode 2: Limit mode
The limit mode works such that the battery has an upper and lower SOC setpoint. The battery is allowed

to then shave power surges within these limits. In Algorithm 4 the upper limit is taken to be 60% and the
lower limit is taken to be 50%. Within this 10% band the algorithm allows the shaving of power surges. Once
the battery SOC reaches 50% , the battery is recharged to the original SOC.

Algorithm 4 Limit mode operation pseudo-code

start:
inputs: battsoc; battvolt;
supply % Online capacity;
demand %Power demand;
if demand > suppl y && SOC > 75% then

idi schar g e = (demand − suppl y)/bat t vol t ;
trigger → 0
end if
if SOC <= 75% then

ichar g e = 0.2C ;

end if
goto(start)
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5.5. Simulations & results
The simulations are conducted on Simulink and Matlab 2018b. A model simulation dashboard (shown in Fig-
ure 5.17) is developed to test the various algorithms and visualise the data in realtime. The key performance
indicators are measured for the baseline battery to gain insight. Based on the results, the potential to reduce
the battery size is determined in Chapter 6.

5.5.1. PMS response
Scenario 1: Pipe-laying

Figure 5.16: New PMS response during normal pipe-laying operations

Discussion
In the fist scenario, the response of the newly developed peak monitoring algorithm can be seen in a normal
pipelaying condition of the vessel. Initially, 2 generators are running to satisfy the loads and the battery ESS
is being used to supply any energy that exceeds the supply from the generators. Around the 04:00:00 mark in
Figure 5.16, the algorithm registers that the magnitude of the power peaks have grown too large, i.e., above
the limit setpoint. At this moment, a new generator start-up is initiated. In contrast to the old PMS, the vessel
runs on either one or two generators less throughout the day. For this particular day, the new PMS algorithm &
an energy storage system would have saved the vessel 3.81 tonnes of fuel. Additionally, the reduction in total
running hours for the engines (across both switchboards) was found to be 61 hours. The battery underwent
54 cycles on the MS1 switchboard and 23 cycles on the MS2 switchboard. The imbalance between the two
has to do with the thrusters that are specifically connected to the MS1 & MS2 switchboards. Depending on
the orientation of the vessel, some thrusters have to work more than the others. This imbalance is present on
most days and alternates between the switchboards depending on the weather conditions the vessels relative
orientation. The mean DoD (depth of discharge) on both switchboards was measured to be 1.2%. Additional
PMS response examples are attached in Appendix B.
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Figure 5.17: Simulation Dashboard on Simulink®
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Scenario 2: WoW, pipeline recovery & pipe-laying

Figure 5.18: New PMS response during WoW, Pipe retrieval and pipe-laying

Discussion
In this scenario, the progress report of the vessel indicates that the vessel was in a ‘Waiting on weather’ (WoW)
condition which means that the vessel was waiting for better weather condition before pipe-laying operations
are continued. At 14:45, the pipeline recovery is initiated and as can be seen from Figure 5.18, it is depicted
by a load increase. The generator start-up at this point is caused by the moving average load increasing as
the peaks at this point are not significant. At 19:00 the vessel resumes pipe-laying which is seen by the power
peaks that are present at this point of the day. The power peaks in this case are not significant enough to
warrant an extra generator so the PMS’s peak monitoring algorithm ensures to keep the generator turned off.
At the end of the day, there is an increase in the load which necessitates an additional generator and the PMS
performs the necessary start-up. Throughout the day is can be seen that in contrast to the old PMS, the vessel
always operates on one generator less and on some occasions, even 2 generators less. In this particular case,
the fuel savings were measured to be 3.14 tonnes with the MS1 connected battery unit undergoing 62 cycles
and the MS2 battery undergoing 26 cycles. The reduction in running hours in this case was found to be 50.5
hours across both switchboards.

5.5.2. Fuel reduction

Figure 5.19: Fuel oil consumption block
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Figure 5.20: Fuel oil consumption block

The fuel oil consumption block calculates the fuel consumed during the operations based on two cases, the
old PMS and the New PMS case. The input to the block is the power demand and the number of running gen-
erators. The efficiency losses due to the generator and the shaft have been adapted from L.V Donge [18] to
produce an augmented power demand which is the real power demand that must be used in order to calcu-
late the actual brake power induced in the engines. This is used to determine where along the sfc (specific fuel
consumption) curve the load point exists at every simulation timestep. This is then integrated throughout the
whole simulation to determine the total fuel consumed through the day by the vessel.

%MC R = Pg

5850
.100 (5.6)

f oc = Pg .s f c

3600
(5.7)

FOC (tonnes) =
∫ t

0
f oc.nd t ÷1,000,000 (5.8)

Where:

%MC R: Load point as a function of MCR (maximum continuous rating) −
Pg : Brake power kW

f oc: Fuel consumed g /s
s f c: Specific fuel consumption g /kW h

FOC : Fuel consumption tonnes
n: Number of running generators −

Figure 5.21: Specific fuel consumption of the Solitaire
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In order to use the sfc curve4 in the simulation, a continuous function was created using a 4th order
polynomial fit described by the following equation:

y = (9.8978 · (10−07) · x4)− (0.00036066 · x3)+ (0.052167 · x.2)− (3.5166 · x)+ (2.6386 ·102) (5.9)

Where:
x: % MCR −
y : Specific fuel consumption g /kW h

Table 5.4: Test day descriptions

Day Activity
21/11/2018 Pipelaying
18/11/2018 Pipelaying
09/11/2018 Pipelaying
10/10/2018 WoW, Pipeline recovery & Pipelaying
09/10/2018 WoW
05/10/2018 Pipelaying & partial downtime
27/09/2018 WoW, Recovery of pipeline & Pipelaying
26/09/2018 Pipeline abandonment & WoW

Table 5.5: Fuel consumption results

Test day Old PMS (MT) New PMS (MT) Fuel savings(MT)
MS1 MS2 Total MS1 MS2 Total

21/11/2018 48.91 51.1 100.01 47.15 49.57 96.72 3.29
18/11/2018 49.4 53.61 103.01 47.88 52.33 100.21 2.8
09/11/2018 46.31 45.79 92.1 44.32 43.97 88.29 3.81
10/10/2018 38.07 38.52 76.59 36.69 37.2 73.89 2.7
09/10/2018 20.97 22.13 43.1 19.29 20.62 39.91 3.19
05/10/2018 39.49 42.77 82.26 37.86 41.49 70.35 2.91
27/09/2018 31.13 32.51 63.64 29.41 31.09 60.50 3.14
26/09/2018 24.88 25.41 50.29 23.17 23.83 47.00 3.29
Mean value 3.14 tonnes

Discussion
From the simulation results, it is apparent that average fuel savings of 3.14 tonnes can be made per day

which is approximately 4.11% of the Solitaires daily fuel consumption. On the days that the vessel is engaged
in pipe-laying, the fuel consumption seems to be marginally greater that when the vessel is not pipelaying.
The marginally greater values is attributed to the power peak energy being supplied by the battery. This
means that sizing the battery even larger results in the possibility to save even more fuel without having
to start up a new generator; although this option may be cost prohibitive. In the case of the Old PMS, on
the pipe-laying days, there were 4 running engines on each switchboard while with the new PMS, it was 2-3
engines per switchboard. On the days that the vessel was not pipelaying, activities such as a pipeline recovery,
repair downtime and waiting on weather were in progress. During these days, the vessel was still on DP which
means that despite the vessel being considered on ‘downtime’, there is a potential to save fuel on such days.

4The sfc curve used is prior to the engine de-rating. As no further tests were conducted on the engine, the most recent sfc curve wherein
the vessel has a de-rated engine is not available
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5.5.3. Battery measurements

Figure 5.22: Battery cycles and DoD

The cycles of the battery are calculated after each discharge and charge half cycles. A single cycle therefore
consists of both types of cycles. A setpoint SOC of 85% is defined for the test cases to determine just how
much of a DoD would be produced by the power peaks according to the battery model.

Figure 5.23: Battery cycles vs. DoD

It can be seen form the battery cycle life vs DoD curve that at very low discharge rates, it is possible to
achieve exponentially large number of charge-discharge cycles out of the battery. Keeping it within this range
will ensure that the battery lasts several years. A conservative assumption of 225,000 cycles at 1% DoD (Figure
5.23) results in about 15,000 times that the battery can be cycled per year. Assuming the vessel operates on
DP for 250 days, this would result in the batteries being capable of 60 cycles per day. The results from the
simulation are displayed in the table below.
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Table 5.6: Battery measurement results

Test day Runtime (min) Average C-rate Average DoD(%) Cycles
MS1 MS2 MS1 MS2 MS1 MS2 MS1 MS2

21/11/2018 19 4 1.52 1.54 1.59 1.37 27 8
18/11/2018 8 11 1.43 0.54 1.28 0.4 15 39
09/11/2018 35 12 1.34 1.14 1.3 1.1 54 26
10/10/2018 34 43 0.51 0.59 0.35 0.38 52 66
09/10/2018 1 3 0.21 0.14 0.1 0.03 5 16
05/10/2018 21 58 0.39 0.58 0.29 0.61 40 73
27/09/2018 29 17 0.31 0.39 0.13 0.28 62 26
26/09/2018 7 21 0.47 0.46 0.32 0.54 17 46

Discussion
From the results, it can be seen that the average DoD during power surge shaving is in the range of 0.1-2%.

The average C-rates that have been logged is the average of all the peak values of the power surges throughout
the day. The C-rate measurements suggests that the algorithm has successfully ensured to keep the battery
operating at the nominal discharge conditions of the battery (i.e., within 1.5C of the battery). There have been
instances where the power demand has exceeded the limit on few occasions (i.e., >2300 kW power peaks).
During this scenario, the battery may either be allowed to supply energy or else a power output limit may be
set. In the latter case, this will have an effect by limiting the thrusters power consumption.

On almost all days, the number of cycles per day are lower than the limit 60 cycles using the pulse mode
of charging. Further improvements to this charging can be made by incorporating a limit before a re-charge
is employed which can reduce the cycles even further.

Reducing the battery size, however, will result in higher C-rates and a reduced power peak handling ca-
pacity. Either the decision to select a higher power battery must be made or the capabilities of the battery
must be reduced. Reducing the capabilities of the battery means that it comes at a cost of reduced fuel sav-
ings. The runtime of the batteries on both switchboard’s are relatively low meaning they are not being used as
much. However, this is an advantage as the presence of the batteries prevent an additional generator start-up
which has the potential to reduce the running hours on the Solitaires engines and enabling the remaining
engines to operate at a more efficient working point.
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5.5.4. Engine loads & running hours

To demonstrate the improvement in engine loading conditions, a pipelaying scenario (See Figure 5.16) will
be reviewed. The vessel operates on symmetrical load sharing during DP operations which means that all the
engines share the load demand equally.

Old PMS

Figure 5.24: Engine loads with 4 running engines

In the case of the existing PMS (referred to as ‘Old PMS’), the vessel operates with 4 running engines
throughout the day. This results in the average load on the engine to be between 40-50% (Figure 5.24). The
time spent within this range of operation is nearly 15 hours by each of the 4 engines. The instances attributed
to the vessel reaching loads of upto 60-70% is due to the pipe-pulls wherein the power demand is large but the
duration is short. Based on the existing rule based limit that has been set to turn on another engine should the
load exceed 70% is the reason why no load beyond that point is experienced by the engine. The existing rule
set cannot be increased to a higher start limit due to redundancy requirements of DP class III regulations.
While most DP vessels operate with an average load of upto 35%, in the case of the Solitaire, these limits
have been raised in contrast to the Pioneering Spirit which means that the engines on the Solitaire operate
marginally more efficiently than with the traditional settings.

The implications of low load operation is significant for the vessel from a maintenance perspective. Based
on the overhaul done on the Solitaire’s marine diesel engines in 2018 prior to the inception of Nordstream
II, several maintenance issues were identified which required the replacement of parts. From the testimo-
nial from the engine room engineer, it was identified that common issues were the carbon deposits in the
combustion spaces, cylinder heads, inlet valves, exhaust valves and injector tips. The exhaust side of the tur-
bochargers also had significant carbon deposits due to the low load operation. The piston crown sides were
relatively clean due to the use of anti-polishing rings. The maintenance scheduling of the vessel is based on
running hours.
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(a) Cylinder block contact surface crack (b) Contact surface to the cylinder block

Figure 5.25: Cylinder block contact surfaces

(a) Cylinder head wear (b) Worn out threads of the piston crown

Figure 5.26: Wear on the cylinder head & crown

(a) Crown condition (b) Fretting of the piston crown

Figure 5.27: Piston crowns
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New PMS

(a) Engine loads with two engines operating (b) Engine loads with three engines operating

Figure 5.28: Engine loads under the new PMS

With the implementation of the new PMS based on peak monitoring, there is a significant improvement
in performance. During this particular operational scenario, the vessel operates for 1.5 hours at a load of 70-
80% MCR (Figure 5.28b) which is ideal to burn off carbon deposits. When the PMS initiates an engine startup,
the average load on the engine drops to between 50-60% (Figure 5.28a). This is still a 10-20% improvement in
loading conditions in contrast to the old case and also has an effect on fuel consumption as previously found.
The combination of having better loading on the engines and total running hours have a profound effect on
maintenance costs.

Running hours

Table 5.7: Running hours measurements

Test day Running hours (No ESS) Running hours (with ESS) Total reduction (hours)
MS1 MS2 MS1 MS2

21/11/2018 96 96 64.62 69.59 57.79
18/11/2018 96 96 71.02 71.08 49.9
09/11/2018 96 96 62.75 67.87 61.38
10/10/2018 71.89 71.89 47.91 48.77 47.1
09/10/2018 50.33 50.33 24.86 26.32 49.48
05/10/2018 76.23 76.23 47.91 50.16 54.39
27/09/2018 66.8 66.8 39.07 44.03 50.5
26/09/2018 59.43 59.43 34.19 35.23 49.44
Mean value 52.5

Discussion
The running hour measurements have shown that the mean reduction in total running hours is 52.5

hours- which is a 35% reduction in running hours compared to the existing case. However, it must be ob-
served that on the days that the vessel is not partaking in pipelaying operations, the running hour reduction
is lower that in the case of pipelaying. This means that the vessel downtime must be reduced in order to
maximise running hour reduction. Additionally it can be seen that on 18/11/18, the running hour reduction
is 49.9 hours while on 21/11/18 & 09/11/18 they are higher. This depends on the magnitude of the power
peaks as having larger power peaks and relatively greater DP load which can be attributed to harsher weather
would mean that the running hour reduction would not be as much due to the requirement to start up an
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additional generator. However in all cases, the vessel would operate with one less engine compared to the
existing PMS. This means that the minimum running hour reduction would be 48 hours (taking into account
both switchboards).

5.5.5. Emission reduction

(a) Specific pollutant emission of CO2
(b) Specific pollutant emission of SO2

Figure 5.29: Specific pollutant emission of the Solitaire’s Diesel engines

Table 5.8: Emission reduction opportunities for the Solitaire

Daily savings Annual savings
CO2 r educti on 10,048 kg 2512 tonnes
SO2 r educti on 31.4 kg 7.85 tonnes

*250 DP days assumed for calculations

Discussion
The specific pollution emission is analogous to the specific fuel consumption curve in that it shows the

potential reductions in emissions possible with an increase in engine loads. The average car in the EU emits
1.8 tonnes of CO2 annually as reported by the European Federation for Transport & Environment [5]. When
making a comparison to the CO2 emissions of the Solitaire, it is evident that the potential to save over 2500
tonnes annually. Over the course of 10 years of operation, this would be the equivalent of having 14,000 less
vehicles on the road. While this may seem like an opportunity that may not be an avenue to earn revenue
(as Carbon taxes are not yet implemented), testimonials from multinational oil corporations such as Shell
and Equinor have suggested a move towards more energy efficiency, sustainability & reduction of Carbon
emissions [6] [7]. Companies that move forward towards energy efficiency and low carbon operations could
be positively disposed during contract negotiations as it would produce a positive impact on both parties.
The emergence of such ‘green contracts’ imply that a single such contract awarded to any company that has
invested in an energy storage system would then result in an instant payback of the investment.
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5.5.6. Investment & Returns

Figure 5.30: Investment return avenues

Fuel
The most important factors to calculate the returns from fuel savings would be the fuel saved per day, fuel
cost and the time the vessel spends on the DP mode in a year. The spread for the DP days in the calculations
were taken for a range of 0-365. ‘0’ signifying that the vessel has no work and ‘365’ signifying that the vessel
is busy throughout the year. The mean fuel savings were taken from the simulations to be 3.14 metric tonnes
and the fuel cost was taken from a range of $200-$950 (USD).

DP = [
0 10 20 . . . 365

]′
(5.10)

F P = [
200 250 300 . . . 950

]
(5.11)

S f = DP ·F P ·3.14[U SD] (5.12)

Where:
DP : Days spent on DP −
F P : Bunker prices U SD/MT
S f : Fuel price payback U SD

Maintenance
Maintenance costs are the second most significant savings one can obtain from the installation of an ESS.

The engines of the Solitaire are manufactured by Wartsila. The maintenance programmes that take place are
based on a major overhaul that is to be performed for every 12000 hours the engines are running. Additionally,
within this 12000 hour period, there are checks to be made every 2000, 4000, 6000 hours periodically. When
the engine reaches some major ‘milestones’ such as the 24000, 36000, 72000 hour marks- there are more
significant maintenance works that must be performed on the vessel. Based on measurements taken from
another vessel from the Allseas fleet (M/V Audacia) which is equipped with a 6.2 MW engine- the costs asso-
ciated with maintenance are about 28 USD per hour of engine operation. Extrapolating this to the Solitaires
5.8MW engine, this would amount to approximately 26 USD per hour of operation. Based on the reduction
in the running hours ascertained from the PMS simulaitons, we can calculate the daily mean savings from a
maintenance perspective. This works out to be $1360 per day. This value is significant and nearly as much as
the fuel savings per day that amount to $1570. Once again, these savings are directly correlated to the time
spent on DP by the Solitaire. Hence the savings can be calculated as:

Sm = DP · r h · cr h[U SD] (5.13)

Where:

Sm : Running hour cost savings U SD
DP : Days spent on DP −
r h: Reduction in running hours (52.49) hour s

cr h : Cost per running hour (25.8) U SD
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The total payback per year that can be calculated that are correlated with the fuel cost and DP days are:

T P = S f +Sm[U SD] (5.14)

Using this, we can gain a good insight into the different options subject to changes in fuel prices & opera-
tional conditions of the vessel. If the payback period were to be pinned at 5 years, this would also give us an
idea of what the maximum permitted CAPEX investments (i.e., CAPEX budget) are depending on the vessel &
market conditions.

(a) Cost savings per year (b) CAPEX upper limit

Figure 5.31: Savings & CAPEX

Discussion

Table 5.9: Investment scenarios

Scenario DP days Fuel cost ($/MT ) Savings per year ($) CAPEX budget
A 250 550 $773,400 $3,867,000
B 250 450 $694,000 $3,470,000
C 180 450 $500,900 $2,504,500
D 180 700 $643,000 $3,215,000
E 270 650 $920,100 $4,600,000
F 365 550 $1,112,000 $5,560,000

The results on the surface plot show all possible cross combinations of DP days and movements in global
bunker prices. Figure 5.31a shows the returns on investments per year year, using this data, Figure 5.31b
shows the limit on CAPEX based on a 5-year payback period. Table 5.9 depicts a few investment scenarios
using the represented cross-combinations.

In previous research, the assumptions of 365 day operational conditions are deemed to be too optimistic
as the apparent savings in that case are very high which results in potentially unrealistic payback periods.
While it is true that the operational efficiency of the vessel increases, the returns from fuel and maintenance
alone may not be enough to warrant a battery installation from a realistic perspective. The emission aspect
of batteries in that reduced CO2 emissions are a positive impact for the environment would be a good reason
to invest in batteries. Alternatively, either the payback period must then be assumed to be longer, i.e., about
10 years. In such a case, the batteries must have a longer calendar life.

Since the battery is one of the most expensive components of an ESS installation, the following chapter
explores the opportunity to attempt to reduce the size of the battery using load forecasting. By being able to
schedule generator start-stops and/or determine an optimal vessel velocity during pipe pulls, there could be
a potential to reduce the battery size even further with the split battery design. The forecasting model could
then be used to supplement the rule based algorithm.
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Load forecasting using machine learning

Based on the results from Chapter 5, it is apparent that although the advantages of battery ESS systems have
been outlined for fuel savings, running hours and emission reduction, there exists opportunities to further re-
duce the installed capacity as the limiting factor seems to be the investment cap. The rule based system is one
that works on data recorded in the past operation of the vessel using a back looking principle. As this is advan-
tageous from an operational perspective, it would be insightful to understand the load conditions in the future
which will allow decision making processes to be made in advance. This would eliminate or reduce the watch
window that is required before a generator shutdown is initiated on the rule based power management system.
The added benefit is that then, the battery may be re-sized to handle smaller power peaks and still provide
sufficient spinning reserve for position keeping.

6.1. Overview

Figure 6.1: Chapter overview

The first part of this chapter discusses the various options available to conduct forecasting as well as the se-
lected model for the application of load forecasting. Following this, the background theory of neural networks
are reviewed before the development process is outlined for this study. The final step is to understand how
the forecasts can be implemented into the power management system of the vessel and the corresponding
simulation, results and implications on the ESS design.

6.2. Forecasting methodology
Predictive algorithms

A variety of methodologies exist for forecasting, in this study however, only quantitative forecasting method-
ologies are analysed as the qualitative methods are not applicable to load forecasting purposes. Among the
quantitative methods of forecasting, we can generally classify them as shown in Figure 6.2:

71
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Figure 6.2: Predictive algorithm overview

i Simplistic approach

Simple approaches are classified due to their relatively straightforward forecasting techniques. Typ-
ically they are useful only for forecasting single time step ahead which is not particularly useful for
decision making in the case of vessel loads. The average approach uses past data available in a time
series to predict the next time-step ahead as the average of all the past observed values.

ŷT+h|T = yT + h

T −1

T∑
t=2

(yt − yt−1) = yT +h
( yT − y1

T −1

)
(6.1)

For the purposes of vessel load forecasting, there is no added value in knowing the information of a
single time-step hence this method is not appropriate for the intended application within the PMS.

ii Statistical methods

In a causal statistical approach, one does not rely on any future inputs into the model i.e., the model
makes forecasts based on the past inputs and response of the system in the past. Methods of causal
forecasting that are predominantly used are linear regression and ARMAX models (Auto-regressive
moving average with exogenous inputs). In these models, the forecasts take account of past relation-
ships between variables. For example, if one variable has been linearly related to another for a long
period of time, it may be appropriate to extrapolate such a relationship into the future without neces-
sarily understanding the reasons for the relationship [3].

Other time series models are moving average, weighted moving average, auto-regressive moving av-
erage, auto-regressive integrated moving average, linear prediction, trend estimations and more. No
literature was found apart from Spruijt [42] for the use of electric load prediction on DP pipelaying ves-
sels using a seasonal ARMA model (forecasts dependent on past values of the variables being forecasted
and past prediction errors).

Figure 6.3: Seasonal ARMA equation [42]

iii Advanced methods

Advanced forecasting methodologies are primarily known as artificial intelligence methods. The tools
for artificial intelligence to solve problems in computer science can be classified into search & optimisa-
tion, logic programming, probabilistic methods, classifiers and artificial neural networks [1]. While the
tools for AI are used for data mining, pattern recognition and classification of inputs, neural networks
are a branch of artificial intelligence that can be used for forecasting linear or non-linear relationships
between the inputs and outputs. This is done by a method of system identification wherein a model is
fed in with input and target data and over the course of the training, the model understands and ‘learns’
these relationships through trial and error as opposed to step-by-step coding [33].
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Problem requirements
The model must be able to capture the moving average total load which is a sum of the moving average

DP load and the ancillary load component. The pipe-pull induced power peaks and any loads caused as an
effect of the vessels heading changes need to be accounted for. Furthermore, these requirements need to be
met over a long forecast horizon in the order of at least an hour or more. This is to ensure that the forecasts
do not cause frequent generator start-stops.

Table 6.1 outlines the capabilities of the different forecasting methods to capture these phenomenon over
a long term forecast.

Table 6.1: Long term forecast requirements

Requirement Statistical methods Advanced methods
Moving average total load (non-stationary) 7 3

Pipe-pull induced loads (stationary) 3 3
Sudden heading change induced loads 7 3

Model selection
The simplistic approach is not applicable for PMS decision making as it can only offer a single time step

ahead prediction. The time window required to efficiently schedule generator start stops would have to be
in the order of hours. Of the time series approaches, in previous research by Spruijt [42], a ARMA model
was used to predict the load using a statistical approach based on the data recorded in the past with a time
window of one hour as the ‘observation window’ and the prediction horizon of 90 seconds. The disadvantage
of this method is that it can only predict the load for 90 seconds which was designed for a single battery
system in order to make a decision as to which switchboard the battery must connect to in order to satisfy the
failure/power surge. However, as seen from the rule based system of monitoring, it would be advantageous
to know the forecasted load for atleast an hour in advance. This would allow decisions to be made whether it
is appropriate to use the generator to satisfy the power demand or to use the battery. As none of the statistical
methodologies of forecasting can predict over a long horizon, the approach to be adapted would be more
advanced forecasting techniques.

As the M/V Solitaire is equipped with a datalogging system recording over 2000 parameters daily, it is
possible to use this data to build a model using a data driven approach that employs machine learning1.

Adhikari et al demonstrates that as practical time series often exhibit trends and seasonal patterns, tradi-
tional statistical methods are limited in its capabilities in forecasting such series. Artificial neural networks
(ANN’s) have shown the ability to recognize and forecast strong seasonal patterns without removing the sea-
sonality from the raw data [8]. In the paper, ANN’s outperformed other traditional statistical methodologies,
viz. SARIMA (Seasonal-ARIMA), SVM (Support vector machines) and Holt-Winters (HW) models. In the case
of load prediction for a DP vessel, it is apparent that as weather conditions change, the DP load will change as
well which is analogous to a trends, seasonalities & cyclic patterns. This is compounded with the pipelaying
process that produces large power peaks due to ground speed correlation. Hence, the feedforward artifi-
cial neural network is deemed to be the appropriate model for the application as it offers the capabilities to
capture all the requirements2.

1Artificial neural networks are a subset of the advanced modelling method also referred to under machine learning or artificial intelli-
gence

2Another potential model candidate would be to use hybrid models. The literature on how hybrid models are used and why it is not
necessarily better than a neural network are outlined in Appendix C: Section C2
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6.3. Neural network theory
6.3.1. Biologically inspired mathematics
A neural network is a computing model for information processing. It is modelled after a biological neuron.
The underlying principle is that the neurons receive input signals in the form of ‘synapses’ As these synapses
collectively sum up, they a pass a threshold value after which the neuron fires a signal as the output to more
neurons.

From a mathematical perspective, the interest lies in attempting to capture the behaviour of these neu-
rons in the form of equations. Each node of a neural network is modelled as shown in Figure 6.4.

Figure 6.4: Neural network node structure [11]

ŷ i = f

( N∑
j=1

w j i · x j +bi

)
(6.2)

Where:

ŷ i : Predicted value
w j i : Weights

x j : Inputs
bi : Per-layer biases
f : Activation function

6.3.2. Neural network architectures
There exist several neural network architectures that are suited to purposes such as speech recognition, image
classification and control system design. In the case of forecasting, the two types of neural networks that are
most prevalent are the Recurrent neural network (RNN) and the Feed-forward neural network (FNN). The
most widely used type of network in literature was found to be the feed-forward type network with a single
hidden layer due to its relatively straightforward design and capability to model a wide variety of non-linear
functions according to the universal approximation theorem [24]. Recurrent neural networks work by having
additional inputs as feedback signals which can generate past error patterns. In this way, RNN’s can model
richer dynamics however, their superiority over feed-forward type neural networks has not been established.
Furthermore, some of the problems suffered by the RNN’s are that RNN’s can assume a variety of architectures
and it can be difficult to specify appropriate model structures to experiment with. It is also more difficult
to train RNN’s due to the unstable nature of the training algorithms [50]. Hence for multi-step timeseries
forecasting, the most appropriate architecture would be the feed-forward type neural network with a single
hidden layer.

6.3.3. Neural network structure
General structure

Figure 6.5 is a simplified structure of a feed-forward neural network. It consists of an input, hidden and
output layer. The input variables are fed into individual nodes of the input layer after which mathematical
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Figure 6.5: A simple feed-forward neural network

transformations transmits these values through the network in order to produce a forecasted response. Fol-
lowing the ‘green’ set of paths, an understanding of the path of the individual variables can be better grasped.

Input layer & biases
The input layer corresponds to the layer in which the variable inputs are made. These inputs are multi-

plied by a set of weights that are randomly assigned at the start of a ‘training’ procedure. Once, multiplied
by these weights, the sum of those products (along with bias3 values) are introduced into a layer called the
hidden layer. Using Figure 6.5, mathematically, the input layer can be represented as:

z1 = {x1w1,1 +x2w1,2 + . . .}+b1 (6.3)

Hidden layer & activation functions
This layer consists of an activation function which is analogous to the ‘threshold’ of a neuron. The ca-

pability of a neural network to capture the system non-linearity’s are due to the presence of this non-linear
activation function. The input into the hidden layer node will ensure that the input is ‘squashed’ within the
limits of this activation function which lies between the range [−1,1] or [0,1] depending on the function.

Figure 6.6: Non-linear activation functions [37]

The sigmoid and hyperbolic tangent activation functions (Figure 6.6) can be represented mathematically
as:

g1 = f (z1) = 1

1+e−z1
(6.4)

3The bias is analogous to the ‘y-intercept’ of linear system. It allows the activation function in the hidden layer to shift left or right. See
Appendix C1 for figures representing the effects of the bias variable
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g1 = f (z1) = ex −e−z1

ex +e−z1
(6.5)

The choice between the functions is arbitrary and can be tested to ascertain if the neural network perfor-
mance improves. The advantage of a ‘smooth’ activation function as opposed to a classifier type step function
is that it can be differentiated- this is a useful feature when optimisation is used in the training phase. This is
a method that will be used during the ‘training’ phase of the neural network development.
Output layer

The output layer consists of the combined inputs of the nodes of the hidden layer. The output also con-
tains an activation function, however, in the case of classification problems, the output is set to a function
that allows a ‘0’ or ‘1’ output (binary classifier) but while in the case of forecasting real values such as the
electric load or house prices etc., we use a linear output activation function which maps the output of the
hidden layer into a forecast value [39]. This is represented as:

ŷ j = {g1w1,1 + g2w1,2 + . . .}+b2 (6.6)

6.4. Neural network development
6.4.1. Machine learning workflow overview
The machine learning workflow is a series of steps used to develop the neural network for the purposes of load
forecasting (Figure 6.7). The steps begin with selecting & collecting the input and target parameters followed
by a pre-processing stage. Once the data has been prepared, the next task is to design the neural network
structure. Training ensues from this point wherein a training optimisation algorithm must be implemented
in order to allow the model to identify the input-output (target) relationships. The last step is to test the
network performance on a testing dataset. Using the response from the testing phase, one may re-design the
network iteratively until the necessary performance goals are reached.

Figure 6.7: Machine learning workflow overview

6.4.2. Parameter selection
One of the first steps to developing a neural network is to select the parameters responsible for the target
process. According to May et al, the difficulty of selecting input variables is exacerbated during ANN devel-
opment, since the task of selecting inputs is often delegated to the network itself. Due to the non-linearity,
inherent complexity and non-parametric nature of ANN regression- it makes it difficult to apply many exist-
ing analytical variable selection methods. The notion is that neural networks are capable of understanding
the salient input variables while ignoring the redundant parameters [35]. However, steps can be taken to
improve the performance by considering a few important factors that affect the network development.

The steps taken are to gauge the relevance of the input variables to the output, consider the computational
effort required of potentially redundant variables and the availability of the required input parameters. In this
case, all the available variables that link the vessel to the environment have been considered.
Inputs: Weather parameters

Realistically, the model must be trained to the real weather recorded on the vessel but during the testing
phase, it must be tested on the forecasted weather as this will be the only available data in order to make
power demand forecasts. From the vessel’s data-logging system- the parameters of wind speed, wind direc-
tion and significant wave height (recorded on the WAVEX system) were used as input variables for weather.
Additionally, it would be useful to incorporate the effects of currents, however, as this data is rarely avail-
able for forecasting within Allseas- the decision was made not to include this parameter as there is a lack of
availability of this data. As the vessels position with respect to the currents do not change significantly, it is
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expected that the neural network will understand this relationship automatically- however, it may also result
in larger than usual forecast errors unless the currents are included.

Table 6.2: Weather parameters

Parameter Units Normalised
Wind speed m/s 3
Wind direction degrees 3
Significant wave height cm 3

Inputs: Route plan parameters
While the weather data is sufficient to determine the moving average DP load, it does not completely

capture the bindings between the vessel and the environment. As the vessel moves forward during each
pipe-pull, the power peaks are caused by the vessels forward motion. This is a result of the vessels ground
speed profile. While it is not possible to receive ground speed forecasts, the real ground speed profile can be
input into the neural network as a forecast of the number of pipe pulls planned for the day. For instance, if
the ground-speed setpoint is 0.35 m/s and a route plan is made such that the vessel is expected to complete
120 pipe pulls in a day, the input ground-speed profile can be an input stream of data that represents 120
instances of the vessels’ ground speed profile throughout the day. The vessel always follows a pre-determined
track, therefore it is then possible to plan (Figure 6.8) for the day ahead as to how many kilometres of pipe
to lay. This gives rise to a profile of the vessels heading throughout the day. These two parameters can be
regarded as the ‘vessel centric parameters’.

Another system binding the vessel to the environment is the pipeline and the effect of the ground acting
on the vessel. To take this effect into account, the required pipe-tension setpoints for the day and depth
at any given time were taken as the ‘pipelaying processes’ related parameters. Collectively, the route plan
parameters are summarised in Table 6.3.

Figure 6.8: Route-plan parameters

Table 6.3: Route plan parameters

Parameter Units Normalised
Ground speed m/s 3
Heading degrees 3
Pipe tension tonnes 3
Depth m 3
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Targets
The neural network learns input-output(target) relationships using trial and error. In this case since the

load is the variable of interest to be forecasted, the pre-recorded generator output measurements have to be
fed in as ‘target’ values.

6.4.3. Data collection
For neural network training purposes, the collected data are measured values on the vessel while for testing
purposes- only the forecasted parameters are used.

Table 6.4: Training parameters

Parameter Source
Ground speed Vessel datalogger
Heading Vessel datalogger
Pipe tension Vessel datalogger
Wind speed & direction Vessel datalogger
Significant wave height Vessel WAVEX system
Depth Pre-lay survey

Table 6.4 shows the parameters used for training the neural network. In all instances the data used are
real measured values.

Table 6.5: Testing parameters

Parameter Source
Ground speed Developed profile
Heading Pipe route
Pipe tension Pre-determined setpoints
Wind speed & direction Weather forecast
Significant wave height Weather forecast
Depth Pre-lay survey

In the case of the testing parameters (Table 6.5), to forecast the load, one will not be able to use mea-
sured values to make forecasts. For the weather parameters, the latest weather forecasts received at Allseas
are used. The depth and pipe-tension setpoints have been pre-determined based on measurements & cal-
culations respectively. The vessels heading is determined by taking the general direction that follows the
pipe-route which is known in advance. As for the groundspeed, the measured groundspeed is filtered (to re-
move any noise) to obtain a smooth & regular profile in order to allow the measured and forecasted values to
be compared.

6.4.4. Pre-processing data
Once the inputs and targets have been selected, the next task is to pre-process the data. The pre-processing
stage involves filling in the missing data-points and normalising the data. Most parameters had little to no
missing data (<5%), however due to the nature of significant wave height measurements wherein the WAVEX
system measures data over a 300 second period, the information is updated only every 300 seconds. In order
to alleviate this problem when building a time-series at a sampling rate of 1 second, the nearest neighbour
interpolant was used. The advantage of this method is that it does not create any new data points but merely
connects all the available data-points in the form of steps that accurately captures the trend in which sig-
nificant wave height varies throughout the day. Following the filling of missing data-points, all the input
parameters were normalised within the [0−1] range.

6.4.5. Network design
The final neural net consists of 7 input parameters into an input layer followed by a single hidden layer con-
sisting of 25 neurons and sigmoid activation functions (Figure 6.9). The output layer consists of a linear
activation function in order to map the output values as power demand forecast (in kW). The selection of the
number of neurons in the hidden layer is through a trial and error estimation. Several tests were conducted
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on small and larger datasets by varying the number of neurons and the best responses of the target power
profile was obtained when using 25 neurons. Effects of varying neuron numbers are outlined in Appendix C.

Figure 6.9: Neural network design for load forecasting

6.4.6. Training & Validation
Training is the process of teaching the neural network how to adapt itself to perform system identification. It
is done by a process of trial and error wherein the network predicts an outcome and this is compared to the
actual outcome in the form of a performance function. This performance function is then used to readjust
the weights and biases within the network in order to improve its prediction capabilities. This type of training
has a feedback element involved in the training process (Figure 6.10). A deployable version of this neural
network can be built once the training process is complete and the feedback loop is removed in order to
produce the required feed-forward neural network. The process of training is essentially an optimisation
process wherein the cost function is the error which must be minimised. A variety of optimisation algorithms
exist that are suited to different types of problems. While the optimisation strategy remains the same, the
methods employed to make the optimisation strategies more efficient are dependent on the size of problem,
accuracy required and computational power available. In this case, the goal is to be able to handle a large
datasets as the recorded data consists of approximately 2 million datapoints for the seven input parameters
and their corresponding target values of the same size.

In the training phase, at each iteration, the error ‘E’ is computed. This error is fed back into the neural net-
work model and depending on the magnitude of the error, the weights in the network are readjusted in order
to make a slightly better prediction in the next iteration. This process continues until either the performance
goals are met or the ‘validation checks’ are complete.
Optimisation strategy
The general optimisation strategy comprises of a forward pass wherein the error is computed (performance
measuring parameter). In this case, the performance function is the mean square error (MSE). The reason
for taking the square of the error is that it is mathematically convenient. If the error were to be taken as the
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Figure 6.10: Comparison of response from different neuron settings in the hidden layer

absolute value, when calculating gradients (which are required for the optimisation process), the resulting
differential would result in a constant value which would be the slope the performance function (straight
line). By taking the square of the error, we solve this problem by being able to obtain a curve which can be
differentiated to give a better insight into the error surface. Following this computation in the first iteration,
the backward pass is used in order to re-adjust the weights within the network.

Ei =
N∑

j=1

(
y j − ŷi

)2

n
(6.7)

Where:

E : Mean squared error
y j : Target value
ŷ j : Predicted value
n: Samples

If we consider a system with a weight vector represented by [36]:

ŵ = (. . . , w (l )
i j , w (l )

i+1 j , . . . , w (l )
N j ,θ(l+1)

j , w (l )
i j+1, w (l )
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Where:

w (l )
i j : Weight from unit number i in layer number 1 to unit number j in layer l+1

Nt : Number of units in layer 1

θ(l+1)
j : Bias for unit j in layer l+1

The error during this optimisation process is calculated in a forward pass as E(ŵ). The gradient is calcu-
lated in a single forward and backward pass E ′(ŵ). The gradients vector is represented as:
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 (6.9)

where P is the number of patterns presented to the network and Ep is the error associated with the pattern
‘P’[36].
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Now assuming the first iteration has been completed, we reach a stage in which the decision must be
made as to proceed to re-adjust the weight vectors in order to reduce the global error. A traditional approach
to this would be to use the popular gradient descent based back propagation algorithm [22]. In this algorithm,
we decide the direction (p̂k ) to take the next step by computing the steepest gradient (−E(ŵ)) is chosen as the
direction in which the weights will be re-adjusted. The step to the next point is based on a fixed step size of
αk . One of the disadvantages of this optimisation strategy is that the error at a point (ŵ + ŷ) given by E(ŵ + ŷ)
is linearly estimated as (E(ŵ)+E(ŵ)T y) which leads to poor convergence. Furthermore, parameters such
as the step size are selected manually, hence, the convergence either takes too long or too short with poor
results. In order to alleviate this problem, Rumelhart et al introduced a ‘momentum’ term which helps the
algorithm escape local minimas.

Algorithm 5 General optimisation strategy [36]

start: k = 0
1: Choose initial weight vector ŵi and set k=k+1.
2: Determine a search direction p̂k and step size αk so that E(ŵk +αk p̂k ) < E(ŵk ).
3: Update weight vector: ŵk+1 = ŵk +αk p̂k .
4: If E ′′(ŵk ) 6= 0̂ then set k = k +1 and go to Step 2 else return ŵk+1 as the desired minimum.

The complete optimisation strategy is outlined in Appendix C: Section C.3.
Validation
During the training phase, the data fed into the model amounted to 2,056,320 data points. The partitioning
of the data is represented in Table 6.6.

Table 6.6: Data partitioning

Type Samples %
Training 1,439,424 70%
Validation 308,448 15%
Testing 308,448 15%

The validation step in an important step in determining whether the model is overfitting the data or not.
The way this works is by conducting validation checks throughout the training process i.e., while the model
is training, some inputs are fed in as ‘test inputs’ to check if the performance of the model matches that of
the target values without producing large errors. A sign that the model is overfitting is when the error reduces
on training but rapidly increases as it is trained even further. The moment this threshold of validation checks
have been satisfied, the model stops training.

In the validation performance plot it can be seen that the green line slowly diverges away from the training
error which means that the model is slowly beginning to overfit. The training process is then terminated at
epoch 2166 and the weights from the best performance epoch is saved to the neural network model.

6.4.7. Testing
In the previous section, the model was trained using the feedback set-up which means that it only performed
one step ahead predictions and an MSE of 8810 (=93 kW) was recorded at epoch 2160 (Figure 6.11). This
error rate is quite small given that it is being used for system identification of the vessel. However, to deploy
such a tool to be used in the power management system or to use it remotely for forecasting would require
it to perform multi-step predictions. This is done by removing the feedback element and creating the feed-
forward structure of the neural network. The model will only receive the exogenous inputs i.e., the weather
forecasts, depth, pipe tension setpoints and ground speed profiles. Based on this the neural network will
forecast the total load for the day to come.

For the purposes of testing, another dataset was assigned which the neural network had never ‘seen’ i.e.,
a set of data that has not been associated with any past use for model development. This is done so that the
model uses its new found capabilities to generalise well enough to make load forecasts rather than having
‘memorised’ past input-output relationships. The test set contains data from 18-11-2018 to 22-11-2018 (5
days in total). While the responses of the neural network are available in Appendix C, two instance have been
highlighted here- one wherein the network performs well and the case where the performance is poor. A
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Figure 6.11: Neural network performance plot

summary of the test days are outlined using MAPE (Mean absolute percentage error) in Table 6.7 to compare
this with the performance of the AMRA model used by Spruijt (2018).

M APE = 1

N

N∑
t=1

∣∣∣∣ ŷi − y j

y j

∣∣∣∣ (6.10)

Where:

M APE : Mean absolute percentage error
y j : Measured value
ŷ j : Predicted value
N : Total samples

Table 6.7: Testing results

Test day MAPE(%) Remarks
MS1 MS2

18/11/2018 9.13 % 14.57% Imbalance between switchboards
19/11/2018 6.90% 7.98% No significant trends
20/11/2018 9.40% 8.03% No significant trends
21/11/2018 13.07% 16.99% Load changes due to vessel heading changes
22/11/2018 14.49% 14.40% Load changes due to vessel heading changes
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Good forecast performance
The forecasted response of the MS2 switchboard on 19-11-2018 shows good agreements between the fore-

casted and measured response (MAPE=7.98%). As the day progresses, at around 10 am, the forecasts overes-
timates the load despite the load actually reducing. The magnitude of the peaks are captured well throughout
the day.

Figure 6.12: Forecasted load for 19-11-2018 (MS2)

Poor forecast performance
The forecasted response from 22-11-18 shows that around approximately 11:45 am, the load has a sudden

increase. This was due to a vessel heading change as noted from the input parameters. The neural network
then struggles to cope with understanding the new condition as it has not had enough training on a sample
size large enough to incorporate such instances.

Figure 6.13: Forecasted load for 22-11-2018 (MS1)

6.5. PMS applications
Based on the forecasting capabilities of the neural network, it will now have to be determined as to how these
forecasts can be used in order to reduce the size of the battery installed for spinning reserve. Given that the
baseline design of the battery experiences on average 1.5C discharge during the power surge shaving mode
on pipe-laying operations, if the profile of the power demand can be forecasted in advance, a generator can
be started up instead of using the battery while the rule based system works on the back looking principle.
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This means that the battery can be sized smaller and still ensure that it has a sufficiently long enough cycle
life. This method of employing the forecasts to reduce the battery size will be referred to as the ‘generator
start-stop scheduling’ method.

As the size of the power peaks are highly correlated with the magnitude of the power peaks, it can be
said that reducing the ground speed setpoint could reduce the magnitude of the power peaks. This would
mean that an additional generator need not be turned on as the power peaks would be smaller. The C-rate
experienced by the battery would also be lesser in this case while it is on the power surge shaving mode. The
battery size can be reduced in this case as well. in the further sections, this method will be referred to as the
‘voluntary velocity reduction’ method.

In both approaches, the rule based system works concurrently to offer a backup/safety-net to the power
management system which will not be completely reliant on the forecasts.

6.5.1. PMS response
Method 1: Generator start-stop scheduling
For the generator start-stop scheduling method, two types of scenarios have been considered. One scenario
looks at a day that is characterised primarily by pipe-laying. The second scenario was one in which the vessel
had a partial downtime that lasted approximately half the day. To determine the load profile, latest weather
forecasts available to the Solitaire were fed into the neural network (NN) model along with the route plan.
Scenario 1: Pipe-laying operations
In the pipe-laying scenario (Figure 6.14), the Solitaire spends the day laying pipe with no downtime. Certain
portions of the day, such as, just before 10 am and after 4 pm, the forecast suggests that the magnitude of the
power peaks would be low enough to warrant a generator shutdown. Once the shutdown is initiated, the rule
based system continues to monitor the power peaks. It can be seen that the actual measured power demand
(blue line) indeed is larger than the forecasted values which causes the rule based PMS to initiate a generator
start-up at a little after 12 pm in the first case and similarly in the second case, before 6 pm. In this case, these
seems to be a constant battle between the rule based system and the forecast model as the neural network
model underestimates the load while the measurements have shown otherwise. This would mean that the
installed battery would suffer more usage as long as the load predictions are underestimations and hence a
size reduction of the battery is not recommended. A reduction in size implies that the battery is cycled at
higher C-rates during these generator shutdown phases.

Figure 6.14: Generator scheduling during pipelaying operations

Scenario 2: Pipe-laying & downtime
In the scenario that the vessel has a partial downtime (Figure 6.15), it can be seen that the forecast model

overestimates the load that would be experienced by the vessel. The rule based system would have initiated
a generator shutdown around the 8 am mark however, the forecast model has predicted a larger load. This
discrepancy results in the PMS not shutting down an engine due to an overestimation of the load. The results
are that the battery is not used at all for the power surges and can indeed be sized smaller as overestimations
or accurate predictions in loads do not result in any significant usage of the battery and a generator is kept
running instead. The implications of this would be that while the battery sizing can be reduced, the savings
in the form of fuel consumption, running hours and emissions would also reduce. On test days 19/11/18
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and 20/11/18 (see Appendix C) , the forecast was accurate enough that the scheduling of generators could be
done and that a battery size reduction could be made in such scenarios.

Figure 6.15: Generator scheduling during downtime

Method 2: Voluntary velocity reduction
As the size of the power peaks is correlated with the ground speed of the vessel, a case can be made for re-
ducing the peak speed set-point during a pipe-pull. By voluntarily reducing the velocity, the size of the power
peaks could be reduced such that the batteries can handle these peaks without exceeding the power surge
limit of allowing the battery to work within 1.5C. As the agreement between the forecasted and measured
response was most accurate on 19/11/18, the input ground-speed profile of this day was selected to test the
forecasted load in the event that the velocity would be reduced by 15%.

Figure 6.16: 15% reduced velocity on MS1

On 19/11/18 (Figure 6.16), the forecast suggests that a 15% reduction in velocity would significantly change
the power profile such that the batteries could be used for large portions of the day to shave off the power
surges. The relatively smaller power peaks imply that technically, a smaller (re-sized) battery could be used
to shave off these power surges. The rule based system was used in this case to initiate generator start-stops,
however, using the forecasts even the three instances of the generator start being initiated (at 1 am, 5 am and
3 pm) could be prevented if the vessel reduces its velocity in those cases by more than 15%. As a consequence
of reducing the velocity, the time taken to complete a pipe-pull would increase. The influences of this are
considered in Section 6.6.1.
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6.6. Simulations & Results
6.6.1. Fuel reduction
For fuel reduction calculations, the quantification approach is using the same model as prescribed in Chapter
5. Based on the output of the forecast model, the measurements were tabulated under the two methods and
compared against the response of the rule-based system.

Table 6.8: Generator scheduling: Fuel savings results

Operation Rule-based model (MT) Forecast model (MT) Fuel savings(MT)
MS1 MS2 Total MS1 MS2 Total

Pipe-laying 1.49 2.02 3.51 1.59 1.71 3.3 -0.21
Pipe-laying & Downtime 1.94 2.14 4.08 1.88 1.69 3.57 -0.51

Table 6.9: Voluntary velocity reduction: Fuel consumption & savings results

Velocity setting Velocity reduction (MT) No velocity reduction (MT) Fuel savings(MT)
MS1 MS2 Total MS1 MS2 Total

15% velocity reduction 43.23 42.63 85.86 43.56 44.55 88.11 2.25

Discussion
In the case of the generator-scheduling method (Table 6.8) the results suggest that using the forecasts results
in lower than expected fuel savings. This is consistent with the PMS response previously seen wherein the
forecasts tend to make over-estimations which result in an additional generator running when it is not nec-
essary. In the event that the forecasts make an under-estimation, the rule based system then engages in order
to protect the batteries from over-use. However, as the generator is running, this implies that a battery is not
necessary at this point to shave the power surges. This creates a paradox in that one may decide to rely on the
forecast model and size the battery smaller- consecutively receiving lower savings or else, sizing the battery
larger and reaping the benefits of a larger battery with its better capabilities.

As the power peaks are correlated with the ground-speed, a 15% reduction in ground-speed was made
in order to reduce the power peaks and allow a potentially smaller battery supply the power peaks. The
average speed is reduced from the existing 0.340 m/s to 0.249 m/s (as the ground speed input-parameter).
The fuel savings in this case compared to the rule-based system operating without velocity reduction shows
that there is a significantly larger savings in fuel (Table 6.9). However, the time taken to complete the pipe-
pull increases from approximately 70 seconds to 82 seconds. This 12 second increase in time means that in a
day with approximately 100 pipe-pulls, there would be a reduction in 14 pipe pulls (each at 24.4 meters) that
could be completed. Approximately every 10 days, this distance adds up to 3.4 kilometres- which means that
the vessel will have to lay pipe for an additional day. This negates any fuel savings made in the 10 day period.

6.6.2. Battery measurements
Battery measurements were collated across two main scenarios i.e., using the rule based system (Results: Ta-
ble 6.10) and the forecasting mode. Additionally, the two sub-categories of generator scheduling and velocity
reduction methods were considered under the forecasting mode to understand the effects on the batteries.
Across all analyses the rule based system was used as a backup system in the event that the forecasts failed to
capture the load sufficiently well.

Table 6.10: Battery measurement results: Rule based-system (RBS)

Test day Runtime (min) Average C-rate Average DoD(%) Cycles
MS1 MS2 MS1 MS2 MS1 MS2 MS1 MS2

Pipe-laying 5.66 2.8 0.86 0.75 1.01 1.16 11 15
Pipe-laying & Downtime 16.9 8.5 0.94 0.78 0.98 0.77 76 13
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Table 6.11: Battery measurement results: Forecast based generator scheduling

Test day Runtime (min) Average C-rate Average DoD(%) Cycles
MS1 MS2 MS1 MS2 MS1 MS2 MS1 MS2

Pipe-laying 4.33 0.3 0.37 0.19 0.39 0.1 17 4
Pipe-laying & Downtime 6.6 0 0.61 0 0.67 0 48 0

Discussion
Comparing the rule-based system and the generator scheduling method (Table 6.11)- it can be seen that
the battery is not used as much in the latter case. The cycles experienced by the battery is also lower than
in the case of the rule-based system. All measured parameters suggest that there is a case to be made for
reducing the batteries as the nominal conditions of operating the battery at 1-1.5C during power surge has
not been met in the scheduling case. This is due to an additional generator running based on the forecast.
These measurements further corroborate the paradox that a smaller battery can be used as long as the limited
capabilities & smaller savings of the re-sized battery arrangement is acceptable.

Table 6.12: Battery measurement results: Forecast based velocity reduction (VR)

Test day Runtime (min) Average C-rate Average DoD(%) Cycles
VR RBS VR RBS VR RBS VR RBS

19/11/18 MS1 80 30.16 0.91 1.01 0.77 1.04 109 41
20/11/18 MS2 88.8 42.96 0.72 0.74 0.54 1.17 129 76

Discussion
The velocity reduction method results (Table 6.12) has shown that this is the best option from a re-sizing
perspective. In this case the battery usage is significantly greater as it will be used for large portions of the
day, however as the DoD and C-rates are lower, it is possible to reduce the size to an extent that the new
battery would produce C-rates in the range of 1-1.5C during power surges. The limiting factor in this case is
the number of cycles that the battery experiences per day which is relatively larger than in all other options
considered. This would mean that a battery with a very high cycle life is required for this application.

6.6.3. Emission reduction

(a) Specific pollutant emission of CO2 (b) Specific pollutant emission of SO2

Figure 6.17: Specific pollutant emission: RBS vs Genset scheduling
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Table 6.13: Emission reduction using forecasting vs RBS (Pipe-laying scenario)

Test day Daily emission reduction
CO2 SO2

RBS 12,160 kg 38 kg
Genset scheduling 11,008 kg 34.4 kg
Velocity reduction 17,248 kg 53.9 kg

Discussion
Between the generator scheduling and rule based system- the forecast model has a higher pollutant emission
(Table 6.13) as it is generally working at lower operational loads (Figure 6.17a and Figure 6.17b). As can be
seen, if the battery sizing were to be made small such that it would then necessitate a generator start-up, the
pollutant emission would be larger. The velocity reduction option is not regarded as a viable solution to the
problem as the reduction in velocity implies additional operational days of the vessel.

6.6.4. Running hours & Engine loads
Engine loads for the RBS as well as the scheduling method were compared during pipelaying operations. The
results show that in the case of the rule-based system, using the baseline battery design, the vessel operates
for about 7 hours under 50-60% and 70-80% MCR load on the engines (Figure 6.19). This is clearly the superior
choice compared to the forecast model which, due to over-estimations in the load results in an additional
generator running rather than allowing the battery to absorb the power peaks. Furthermore, in the case
of the generator scheduling, if the battery were to be resized to a smaller arrangement, even if the forecast
correctly made the load estimations- it would not always allow the battery to shave off those power peaks as
the magnitudes would be too large to do it within the batteries power surge shaving C-rate range of 1.5C.

The generator scheduling option keeps the engines running in the 50-60% range for the most part of the
day (12-13 hours) while allowing only about 2 hours for the engine to operate at 70-80% load (Figure 6.18).

Running hours

Table 6.14: Running hours measurements: Rule based system vs Generator scheduling

Test day Rule based system Generator scheduling Total reduction (hours)
MS1 MS2 MS1 MS2

Pipe-laying 69.66 60.92 68.78 71 -9.2
Pipe-laying & Downtime 64.79 59.86 67.54 71.46 -14.35

Figure 6.18: Engine loads using the forecast model
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Figure 6.19: Engine loads under the rule based system

Table 6.15: Running hours measurements: Rule based system vs Velocity reduction (VR)

Test day Total running hours Total reduction (hours)
RBS VR

19/11/18 118.32 103.22 15.10
20/11/18 110.44 96.62 13.82

Discussion
While engine loading conditions have improved in the case of using the rule based system as well as the

forecast model, reduction in running hours shows that in the case of the generator scheduling (Table 6.14),
due to the nature of the forecast, it keeps additional engines running to avoid the eventuality that the load is
higher than the measured values in the future. This prediction keeps the engines running despite the actual
not exceeding this value. Hence the greater number of running hours and lower fuel savings in this case offset
any savings made by reducing the battery size marginally. The velocity reduction option (Table 6.15) makes
significant savings in the number of running hours of engines but the advantages of this are offset by the
fact that the slower lay speeds will require an additional day of work. The additional fuel expenses of this
additional day of work offset any significant savings made by running hour reduction.

6.7. Implications on ESS
Based on the inferences from Chapter 5 and Chapter 6 results it is apparent that the forecasting model has
the potential to reduce the battery size only if the predictions made by the model are near perfect. Any over-
estimations or under-estimations of the load would result in either the smaller re-sized battery being over
used or keep additional generators unnecessarily running. In the event that the model can be trained on sev-
eral years of data, in theory, it would still have troubles accurately predicting the load due to the fact the the
exogenous inputs into the neural network model are weather forecasts rather than actual weather conditions.
The weather forecasts are reliant on a variety of forecasters at Allseas and the dependency of the the model
output on another forecast would mean that there is a likelihood of the errors compounding if the weather
forecasts are not as accurate as desired.

Scenario 1: Battery re-sizing without forecasts
Based on the simulations from Chapter 5 using the rule based control system, it was found that the av-

erage C-rate experienced by the battery throughout the day is typically lower than 1.5C as the battery is sub-
jected to large as well as small power peaks. The previously set 120 kWh (to account for the maximum energy
under a 4 MW power peak) may be reduced to obtain a smaller sized battery. The upper limits of the battery’s
operational capabilities are shown in Table 6.16. In the fully charged condition, the re-sized battery may be
used in the 85%-83% range for power surge shaving and the remaining reserve for spinning reserve require-
ments. At the end of life condition, the top 5% may be used for power surge shaving and the 75% for spinning
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reserve. The lowest SoC that all the units can be maintained is at 42% (54% at EOL) to ensure that there is
sufficient energy for spinning reserve (for at-least 3 minutes) and for power surges.

Table 6.16: Split battery battery specifications: RBS

Baseline split battery Re-sized split battery
New EOL New EOL

Total battery size 3064 kWh 2451 kWh 2816 kWh 2252 kWh
Nominal power rating 7830 kW 6127 kW 7040 kW 5632 kW
1.5C power surge limit 2298 kW 1838 kW 2112 kW 1690 kW
Spinning reserve power rating 11490 kW 9191 kW 10560 kW 8445 kW
Run-time 3+ minutes 3+ minutes
CAPEX* $1,991,600 $1,830,400

* only the Lithium-ion is considered here (=650 US$/kWh- Corvus Energy Orca ESS)[2]

Figure 6.20: Re-sized split battery ESS without forecasts- schematic

Scenario 2: Battery re-sizing with accurate forecasts
In the scenario that the forecasts are successful in predicting the power demand of the vessel throughout

the day with the fidelity to capture the DP load and changes in load due to heading changes, there exits a
possibility to reduce the battery size. However it must be noted that this reduction in battery size will come
at the cost of running generators in order to satisfy the excess power demands that surpass the batteries
capabilities. Over-using the batteries due to inaccurate forecasts could harm battery life in the event that the
forecasts underestimate the load. The savings obtained by installing the batteries would not be significant if
the generators were to continue to run in order to satisfy the load demand. The advantage of this system is
that under conditions that the power peaks are within 1-1.5MW, the system will be able to reap the maximum
benefits with a lower CAPEX. Table 6.17 outlines the comparison between the re-sized split battery design
and the split battery design with forecasts. The sizing of the ‘split battery with forecast model’ have been
quantified by designing the spinning reserve requirement to 93% of the rated capacity of 5,650 kW.4 The

4This is because 0.93 is the new start limit for the next generator.
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reduction in Lithium-ion capacity used in the event that the forecasts are accurate are a reduction of 37.8%
compared to the re-sized split battery design.

Table 6.17: Split battery battery specifications: Forecast model

Re-sized split battery Split battery with forecast model
New EOL New EOL

Total battery size 2816 kWh 2252 kWh 1751 kWh 1400 kWh
Nominal power rating 7040 kW 5632 kW 4377 kW 3500 kW
1.5C power surge limit 2112 kW 1690 kW 1313 kW 1050 kW
Spinning reserve power rating 10560 kW 8445 kW 6566 kW 5250 kW
Run-time 3+ minutes 3+ minutes
CAPEX* $1,830,400 $1,138,000

* only the Lithium-ion is considered here (=650 US$/kWh- Corvus Energy Orca ESS)[2]

Figure 6.21: Re-sized battery ESS with forecasts- schematic





7
Conclusions and Recommendations

This research study has focused on the integration of a battery energy storage system with the electrical grid of
a pipelaying vessel. The scope of analysis has been primarily shallow water operations which is characterised
by pipe-pull actions i.e., the simultaneous movement of the vessel forward while the pipeline from the vessel is
being payed out from the aft of the vessel. This characteristic operation in shallow water produces power surges
in the order of megawatts. In previous research, the analysis was limited to deep-water operations but in this
study it was found that power surges in shallow water operations are the main design consideration to be made
for ESS sizing. Insight into the health of the electrical grid was gained through the help of measurements on
board. Using these measurements, a better understanding of the implications of a battery installation under
different failure scenarios were gauged. Following this analysis, the design criteria were identified as a result of
the vessels operational profile and a new ‘split-battery’ design was developed.

Alongside the new system architecture, ESS management methods were developed to work in tandem with
the existing power management setup. To further explore the potential for battery size reduction from the devel-
oped baseline design, a machine learning approach was used to forecast loads in order to gauge the possibility
to reduce the battery size.

7.1. Conclusions
The research study is underpinned by the main research question formulated as:

“To what extent can a smart load forecasting algorithm influence energy storage size for shallow
water pipelaying DP operations?”

To answer this, the sub-questions are re-visited to formulate a complete picture of the research study:

• “How does the vessels operational profile and electrical health affect the installation of an
ESS?”

Statement: The operational profile has shown that the power surges caused due to pipe-pulls are a
limiting factor when it comes to the ESS sizing. The poor electrical health of the Solitaire suggests that
the inverters of the ESS must be oversized if no power factor compensation is conducted.

Reasoning: The operational profile of the pipelaying vessel M/V Solitaire was analysed during the Nord-
Stream II project in 2018. In contrast to the previous research conducted on deep-water operations, in
shallow water it is seen that the simultaneous pipeline deployment and forward motion of the vessel
results in large power surges that occur periodically that must be supplied by the battery throughout
the day. Hence the battery was designed to handle not only the spinning reserve requirement but also
to handle power surges. As a design requirement to keep the power surges within 1.5C of the batter-
ies capabilities, the maximum allowable peak size was determined to be in the 2-2.5MW range which
resulted in the final battery sizing.

Based on the data analysis it was found that under the circumstances that the vessel continues to op-
erate with a low power factor (0.55PF) and a battery energy storage system, the consequences of a gen-
erator failure could be more detrimental which requires an oversized inverter to compensate for the
excessive apparent power demand during such a scenario.

93
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• “What kind of battery arrangement has the potential to reduce the capacity of Lithium-ion
installed for split bus operations? ”

Statement: The developed split battery design allows a 33% reduction in lithium-ion for spinning re-
serve requirement, however as the power surges are a limiting factor in ESS sizing, the split units had to
be oversized to handle the surges within 1.5C of the battery’s discharge capabilities. The architecture
allows energy sharing between the split units which prolongs battery calendar life.

Reasoning: With the split architecture, the minimum spinning reserve requirement energy can be
shared with 3 units of the architecture which allows all the individual units to be maintained at a low
SoC as they are sharing the energy requirement during a failure event. This prolongs the calendar life
of the battery and design is applicable across both open and closed bus. The design maintains the
independence between the two switchboards under all operational scenarios and satisfies DP III regu-
lations.

• “How will the management of an ESS be integrated into the vessels power management sys-
tem?”

Statement: To integrate a battery ESS to the vessels grid, it was determined that a traditional rule-
based power management system would not be sufficient as the benefits of the battery must be reaped
by allowing the battery to handle the power surges. To do this, the moving average of the measured
load must be taken over a 900 second time window in order to filter out the highly variant loads. In
addition to the filtered load, the existing rule based table is augmented to include a new condition that
must be met to initiate a generator start-up. These conditions are determined by a set of algorithms
that monitor the usage of the energy storage system.
Reasoning: The setting of the new On/Off (trigger) variable is determined by a set of ESS management
algorithms that monitor the magnitude and frequency of the power peaks to gauge whether they lie
within the nominal operating conditions of the battery for power surge shaving. If they fall out of this
region, it initiates the start up a new engine.

• “How will the cycle life of the battery be influenced using load forecasting?”

Statement: The improvements made in the cycle life of the battery suggest that marginal improve-
ments could be made using a generator scheduling approach according to Table 6.10 and Table 6.11. In
the case of the velocity reduction, the cycle life worsened (Table 6.12) which necessitates a battery with
high cycle life to be used in the scenario.
Reasoning: The results suggests that the cycle life was improved using forecasting however the reason
for this was that on occasion the neural network would overestimate the load which resulted in the
PMS leaving a generator on when it was not required. The effect of an underestimation in the load
would result the battery being used as per the conditions set by the rule based system (as it operates
as a ‘safety-net’) and so no improvements were seen in cycle life in that scenario. The cycle life was in-
fluenced such that as the accuracy of the forecasts improve, the cycle life improves and as the accuracy
reduces, the improvements are marginal to none in contrast to the rule-based system.

Using an alternative approach of reducing the forward velocity of the vessel by 15% during pipe-pulls
resulted in the cycle life worsening as the battery was being used for nearly all pipe pulls throughout
the day. This would suggest that the use of a battery with a high cycle life is required for long term
operation.

• "How much further reduction of the ESS size is possible using load forecasting?"

Statement: Due to the effects of load underestimation and overestimations, the neural network based
load forecasting has not yet achieved the capability to forecast the load with a high enough confidence
to allow any reduction in the ESS size. However, with the ability to train the model on several years of
data, it could be possible to obtain the forecasted results to be in close agreement with measured results
or near perfect. In such a scenario, the battery may be resized to only the spinning reserve requirement
& consequently downsized. Along with the split architecture, this offers the capability to reduce the
battery size by 38%.

Reasoning: In the neural network model, one of the deficiencies observed was the inability for the
model to capture the vessels heading changes and how the load on the vessel changes with respect to
that action. The reason the model was unable to capture this phenomenon was that such instances
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in the training dataset were far too few for the model to understand the relationship. Given more data
from several months/years and more computational power- it would be possible for machine learning
models such as the neural network to accurately capture the trends in the data.

However it must be noted that the response of the neural network is based on training done on actual
weather conditions but the only available input data during the testing phase are the weather fore-
casts. Due to the inherent nature of the inputs themselves being forecasts, the error in weather forecasts
would imply that an error in the neural network forecast would persist.

Based on the sub-questions, the main research question can now be addressed by comparing the two
methodologies of ESS integration:
Base case: The new rule based system with a 2.8 MW split battery has been capable of reducing on average
3.14 tonnes of fuel oil per day of DP operations and a total running hour reduction of 52.5 hours per day.
In addition to the monetary savings offered- the reduction of CO2 and SO2 emissions are approximately 10
tonnes and 32 kg respectively. These emission reductions have a profound effect on potential new contracts
that could be pursued in the maritime market as there is a shift to more ‘green contracts’. The implication
of this is that although the economic viability of a battery is debatable from a savings and payback point of
view, a contract award due to the ‘green’ status of the vessel would imply that the capital expenses of such an
installation would ultimately be covered by the entity awarding the contract to the vessel operator due to the
aforementioned reasons.
Forecast case: For shallow water operations, the extent to which the battery size can be reduced is upto 38%
compared to the re-sized split battery design in the scenario that the forecasts and measured values are near
perfect. The capability to reduce the capacity by such a large extent is due to the battery having to be re-
sized only keeping the spinning reserve requirement in mind. The strengths of the split architecture in size
reduction are more prevalent when the battery is designed only to the spinning reserve requirement. The
power surge handling capabilities of such a battery will be limited but by using load forecasting, it is possible
to allow the generators to handle large power peaks beyond the capabilities of the battery. In the event that the
forecasts are not accurate enough to quantify the load correctly, it is not possible to make any size reductions
of the battery as the incorrect forecasts can have negative effects on the health of the battery.

7.2. Recommendations
This research study has explored the vessels operational profile, electrical grid health, alternative design ar-
chitectures to maximise battery calendar life and power management system integration using a rule-based
and forecast-based system. Further areas of work that could be pursued following this study are:

Energy storage system

• One of the areas of future work would be to analyse the calendar life of the batteries- as this varies from
manufacturer to manufacturer, it would be an area wherein the effects of different operational profiles
of vessels could be incorporated in the battery calendar life prediction.

• For this study, the manufacturer prescribed 1.5C limit was used as the baseline for continuous charging
and discharging. This limit is prescribed for air-cooled batteries. However, with liquid cooling, the
battery may be cycled at higher C-rates for power surges which gives the opportunity to reduce the
battery size. However the effectiveness of liquid cooling on Lithium-ion pouch cell is an area of research
that could be pursued.

• A failure mode effect analysis could be conducted on the effects of low power power factor operation
on the energy storage system as well as tests on thruster phase back at 100% load on the generators.
Currently such tests have been performed on 55% and 85% load on the generators, however during
pipe-pulls, situations will exist where the generators are loaded to 100%.

System architecture

• Recent developments within Allseas signal towards the vessels operating on a closed bustie with the
necessary protection systems to be installed in 2020 (AGS- Advanced Generator Supervisor). This
would mean that a large single battery is likely sufficient so long as the vessel operates on closed bustie.
As the power peaks are characteristic for each switchboard- their combined effect on a single battery
must be analysed in this event to size the single battery correctly for long life operation.
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Load forecasting

• The neural network developed for this research could be trained further with larger datasets spanning
years which would allow it to capture the effects of heading changes on the total load. Additionally,
several more parameters could be incorporated such as the non-DP to DP mode switching signals,
crane On-Off signals as all of these large equipment have an effect on the load changes seen when
non-pipelaying. By identifying all the parameters that are responsible for the load changes, a neural
network with more hidden layers could be used which would be able to capture even more complex
relationships. Spanning a large dataset from several years would ensure that the model is not over-
fitted and the neural net can also then be safely allowed to perform ‘on-line’ learning as opposed to
batch learning techniques.

• A statistical model could be used in conjunction with the neural network in order to offer ‘medium-
term’ forecasts that could allow the strengths of both models to be used in synergy.

Business outlook

• Due to the nature of battery design having to incorporate energy and power as design requirements- it
is seen that with current day Lithium-ion technology, the limiting factor is the battery life. To maximise
the battery life- a relatively low power and higher energy battery is selected for the design when in reality
it would be desirable to use a high power battery that has long calendar life. Since another constraint
is battery power, it would make a case for analysing the business case for other smaller vessels in the
Allseas fleet. For instance, OCV’s such as M/V Oceanic and Fortitude. The reason for this is that due to
the lower power rated engines- a spinning reserve requirement for these vessels could make a better
business case. The operational profile of pipe-layers have shown that the large power peaks have to be
addressed when designing the battery while this would not be the case for the offshore support vessels.
Furthermore, the suitability of the split architecture to reduce Lithium-ion capacity is more attuned to
vessels with only spinning reserve as a requirement.

• Based on the testimonials from crew aboard the Solitaire, it is understood that sometimes during quay-
side operations, the vessel engages its DP system as the mooring arrangement is poor- perhaps the
battery could be used in such circumstances to power a part of the power needed for station keeping.
Another use of the battery that could be investigated is its potential for use during loading or unloading
using cranes at shore.

• The economic viability of such an investment is dependent on how many days the vessel spends on
DP. Given that the Solitaire has not been scheduled for any major project post NordStream II, it would
possibly be more financially viable to install a battery in the near future rather than immediately. As
batteries have limited shelf life and depreciating value year on year it would be better to design the in-
frastructure and integration techniques in advance, however, the battery installation itself is one that
could be carried on later. The lowest cost of implementation of such a system would be a deck place-
ment which requires no additional structural work.

• A market analysis of the potential shallow and deep-water projects could be analysed in order to gain
a better understanding of whether the Solitaire would engage in more shallow or deepwater projects in
the future. It would also be interesting to determine what water depth would be regarded as ‘deepwater’
such that the operation of paying out the pipe and forward motion could be de-coupled. By doing so,
the power surges would not affect the battery in those scenarios.



Bibliography

[1] Artificial intelligence. URL https://en.wikipedia.org/wiki/Artificial_intelligence.

[2] Electric and Hybrid Propulsion Leaders Recognized. URL https://www.maritime-executive.com/
article/electric-and-hybrid-propulsion-leaders-recognized.

[3] Forecasting- Wikipedia. URL https://en.wikipedia.org/wiki/Forecasting.

[4] High ESS Discharge/Charge Rates are Key to Fuel-Efficiency with Variable Loads | Corvus Energy. URL
https://corvusenergy.com/high-ess-dischargecharge-rates-are-key-to-fuel-efficiency-with-variable-loads/.

[5] CO 2 EMISSIONS FROM CARS: the facts A report by Transport &amp; Environment Acknowledgements.
Technical report, 2018. URL www.transportenvironment.org.

[6] Batteries on board: offshore vessels setting the course - DNV GL,
2019. URL https://www.dnvgl.com/expert-story/maritime-impact/
Batteries-on-board-offshore-vessels-setting-the-course.html.

[7] Climate change, 2019. URL https://www.equinor.com/en/how-and-why/climate-change.html.

[8] Ratnadip Adhikari and R K Agrawal. Forecasting Strong Seasonal Time Series with Artificial Neural Net-
works Market Mix Modeling (MMM) using BBN View project IT Growth Driver Analysis using Bayesian
Belief Network (BBN) View project Forecasting strong seasonal time series with artificial neural net-
works. Technical report, 2012. URL https://www.researchgate.net/publication/230583150.

[9] Allseas Engineering B.V. Technical Description- M/V Solitaire. 2018.

[10] Allseas Group S.A. Allseas.com. URL allseas.com/company/.

[11] Itziar Alonso-González, David Sánchez-Rodríguez, Carlos Ley-Bosch, and Miguel A. Quintana-Suárez.
Discrete indoor three-dimensional localization system based on neural networks using visible light
communication. Sensors (Switzerland), 18(4), 4 2018. ISSN 14248220. doi: 10.3390/s18041040.

[12] Bharat Balagopal, Cong Sheng Huang, and Mo-Yuen Chow. Effect of calendar aging on li ion battery
degradation and SOH. In IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society,
pages 7647–7652. IEEE, 10 2017. ISBN 978-1-5386-1127-2. doi: 10.1109/IECON.2017.8217340. URL
http://ieeexplore.ieee.org/document/8217340/.

[13] Jason Brownlee. How to Decompose Time Series Data into Trend and Seasonality. URL https:
//machinelearningmastery.com/decompose-time-series-data-trend-seasonality/.

[14] Alexander Castro. Training and competence session DP Emergency Drills. Technical report.

[15] M. V. K. Chari and S. J. (Sheppard Joel) Salon. Numerical methods in electromagnetism. Academic Press,
2000. ISBN 9780126157604.

[16] Thomas Christen and Martin W Carlen. Theory of Ragone plots. Technical report, 2000. URL www.
elsevier.comrlocaterjpowsour.

[17] Corvus Energy. Corvus energy At 6700 Li-ion cell. Technical report. URL https:
//corvusenergy.com/wp-content/uploads/2016/03/AT6700-Module_-CORVUS-ENERGY_
Specifications-Brochure-_Mar2016.pdf.

[18] L van Donge. Analysis of the power management system on board the Solitaire. Technical report, TU
Delft, 2009.

97

https://en.wikipedia.org/wiki/Artificial_intelligence
https://www.maritime-executive.com/article/electric-and-hybrid-propulsion-leaders-recognized
https://www.maritime-executive.com/article/electric-and-hybrid-propulsion-leaders-recognized
https://en.wikipedia.org/wiki/Forecasting
https://corvusenergy.com/high-ess-dischargecharge-rates-are-key-to-fuel-efficiency-with-variable-loads/
www.transportenvironment.org
https://www.dnvgl.com/expert-story/maritime-impact/Batteries-on-board-offshore-vessels-setting-the-course.html
https://www.dnvgl.com/expert-story/maritime-impact/Batteries-on-board-offshore-vessels-setting-the-course.html
https://www.equinor.com/en/how-and-why/climate-change.html
https://www.researchgate.net/publication/230583150
allseas.com/company/
http://ieeexplore.ieee.org/document/8217340/
https://machinelearningmastery.com/decompose-time-series-data-trend-seasonality/
https://machinelearningmastery.com/decompose-time-series-data-trend-seasonality/
www.elsevier.comrlocaterjpowsour
www.elsevier.comrlocaterjpowsour
https://corvusenergy.com/wp-content/uploads/2016/03/AT6700-Module_-CORVUS-ENERGY_Specifications-Brochure-_Mar2016.pdf
https://corvusenergy.com/wp-content/uploads/2016/03/AT6700-Module_-CORVUS-ENERGY_Specifications-Brochure-_Mar2016.pdf
https://corvusenergy.com/wp-content/uploads/2016/03/AT6700-Module_-CORVUS-ENERGY_Specifications-Brochure-_Mar2016.pdf


98 Bibliography

[19] Farrier. Investigating the faulted performance of warship power systems with integrated energy storage.
INEC/iSCSS 2018 Conference Proceedings 2-4 October 2018, pages 318–332, 2018.

[20] R. D. Geertsma, R. R. Negenborn, K. Visser, and J. J. Hopman. Design and control of hybrid power and
propulsion systems for smart ships: A review of developments, 2017. ISSN 03062619.

[21] J L S Gerritsen. The Hybrid Cutter Dredger a study on technical and economical feasibility. Technical
report.

[22] Murray Gill and Michael Wright. Methods for Large-scale Nonlinear Optimisation. Technical report,
Stanford University, Stanford, California, 1980. URL https://pdfs.semanticscholar.org/653b/
9fe0ddf23fe3d444ad2ba90bb5bfbf8f28d1.pdf.

[23] M. Godjevac, K. Visser, E. J. Boonen, C. Malikouti, B. T.W. Mestemaker, Z. Lyu, and F. Van Der Veen.
Electrical energy storage for dynamic positiong operations: Investigation of three application case. In
2017 IEEE Electric Ship Technologies Symposium, ESTS 2017, 2017. ISBN 9781509049448. doi: 10.1109/
ESTS.2017.8069278.

[24] Boris Hanin. Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU
Activations. 8 2017. URL http://arxiv.org/abs/1708.02691.

[25] Tarun Huria, Massimo Ceraolo, Javier Gazzarri, and Robyn Jackey. High Fi-
delity Electrical Model with Thermal Dependence for Characterization and Simula-
tion of High Power Lithium Battery Cells. ISBN 9781467315616. URL
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/i/
71900-ieee-2012-high-fidelity-lithium-battery-model-with-thermal-effect.pdf.

[26] Yan Ji, Yancheng Zhang, and Chao-Yang Wang. Issue 4, Pages A636-A649. J. Electrochem. Soc, 160, 2013.
doi: 10.1149/2.047304jes. URL http://ecec.mne.psu.edu/Pubs/047304JES%202013.pdf.

[27] Murat Kankal and Ergun Uzlu. Neural network approach with teaching–learning-based optimization for
modeling and forecasting long-term electric energy demand in Turkey. Neural Computing and Applica-
tions, 28:737–747, 12 2017. ISSN 09410643. doi: 10.1007/s00521-016-2409-2.

[28] Mehdi Khashei and Mehdi Bijari. An artificial neural network (p, d, q) model for timeseries forecasting.
Expert Systems with Applications, 37(1):479–489, 1 2010. ISSN 09574174. doi: 10.1016/j.eswa.2009.05.
044.

[29] Denis Kwiatkowski, Peter C.B. Phillips, Peter Schmidt, and Yongcheol Shin. Testing the null hypoth-
esis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1-3):159–178, 10
1992. doi: 10.1016/0304-4076(92)90104-Y. URL https://linkinghub.elsevier.com/retrieve/
pii/030440769290104Y.

[30] Chunshien Li and Tai Wei Chiang. Complex neurofuzzy ARIMA forecasting - A new approach using
complex fuzzy sets. IEEE Transactions on Fuzzy Systems, 21(3):567–584, 2013. ISSN 10636706. doi:
10.1109/TFUZZ.2012.2226890.

[31] Zelan Lyu. Concept Design of Hybrid Crane Vessel Feasibility study of utilizing electric energy storage
technology. Technical report. URL http://repository.tudelft.nl/.

[32] A Maheshwari. Modelling, aging and optimal operation of lithium-ion batteries. Technical report.

[33] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. Statistical and Machine Learning
forecasting methods: Concerns and ways forward. PLoS ONE, 13(3), 3 2018. ISSN 19326203. doi: 10.
1371/journal.pone.0194889.

[34] MARIN. Dynamic Positioning. URL http://www.marin.nl/web/Research-Topics/
Manoeuvring-DP/Dynamic-Positioning.htm.

[35] Robert May, Graeme Dandy, and Holger Maier. Artificial Neural Networks- Methodological advances
and biomedical applicaitons. pages 19–22.

https://pdfs.semanticscholar.org/653b/9fe0ddf23fe3d444ad2ba90bb5bfbf8f28d1.pdf
https://pdfs.semanticscholar.org/653b/9fe0ddf23fe3d444ad2ba90bb5bfbf8f28d1.pdf
http://arxiv.org/abs/1708.02691
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/i/71900-ieee-2012-high-fidelity-lithium-battery-model-with-thermal-effect.pdf
https://www.mathworks.com/content/dam/mathworks/tag-team/Objects/i/71900-ieee-2012-high-fidelity-lithium-battery-model-with-thermal-effect.pdf
http://ecec.mne.psu.edu/Pubs/047304JES%202013.pdf
https://linkinghub.elsevier.com/retrieve/pii/030440769290104Y
https://linkinghub.elsevier.com/retrieve/pii/030440769290104Y
http://repository.tudelft.nl/.
http://www.marin.nl/web/Research-Topics/Manoeuvring-DP/Dynamic-Positioning.htm
http://www.marin.nl/web/Research-Topics/Manoeuvring-DP/Dynamic-Positioning.htm


Bibliography 99

[36] Martin Fodslette Møller. A scaled conjugate gradient algorithm for fast supervised learning. Neural
Networks, 6(4):525–533, 1993. ISSN 08936080. doi: 10.1016/S0893-6080(05)80056-5.

[37] Daisik Nam, Hyunmyung Kim, and R Jayakrishnan. A Model Based on Deep Learning for Predicting
Travel Mode Choice Persistent Traffic Cookies View project. Technical report, 2017. URL https://www.
researchgate.net/publication/317913178.

[38] R V Rao, V J Savsani, and D P Vakharia. Teaching–learning-based optimization: A novel method for
constrained mechanical design optimization problems. Computer-Aided Design, 43:303–315, 2011. doi:
10.1016/j.cad.2010.12.015. URL www.elsevier.com/locate/cad.

[39] Muhammad Rizwan. How to Select Activation Function for Deep Neural Network. URL https:
//engmrk.com/activation-function-for-dnn/.

[40] Murray Smith. Neural networks for statistical modelling. Van Nostrand Reinhold, New York, 1993.

[41] Martin Southall and K Ganti. Battery and Ultra-capacitor based energy storage vessel integration, capa-
bilities, considerations and challenges. INEC/iSCSS 2018 Conference proceedings 2-4 October 2018, pages
342–352, 2018.

[42] P Spruijt. Investment Costs Reduction of Marine Energy Storage using Smart Power Generation Control.
Technical report, TU Delft, 2018. URL http://repository.tudelft.nl/.

[43] Moslem Uddin, Fakhizan Romlie, Mohd Faris Abdullah, Abd Halim, Ab Halim, Abu Bakar, and Tan Chia
Kwang. A review on peak load shaving strategies. 2017. doi: 10.1016/j.rser.2017.10.056. URL http:
//dx.doi.org/10.1016/j.rser.2017.10.056.

[44] Ying WANG, Zhi ZHOU, Audun BOTTERUD, Kaifeng ZHANG, and Qia DING. Stochastic coordinated
operation of wind and battery energy storage system considering battery degradation. Journal of
Modern Power Systems and Clean Energy, 4(4):581–592, 10 2016. ISSN 2196-5625. doi: 10.1007/
s40565-016-0238-z. URL http://link.springer.com/10.1007/s40565-016-0238-z.

[45] David A. Wetz, Isaac J. Cohen, and John M. Heinzel. Active control of a hybrid energy storage module
(HESM) driving transient loads. INEC/iSCSS 2018 Conference proceedings 2-4 October 2018, pages 333–
352, 2018.

[46] I Whitelegg. Power system design considerations when integrating electromagnetic railguns with elec-
tric warships. In: INEC 2016, Bristol: IMarEST.

[47] Wikipedia. Allseas. URL https://en.wikipedia.org/wiki/Allseas.

[48] Wai Keung Wong, Enjian Bai, and Alice Wai Ching Chu. Adaptive time-variant models for fuzzy-time-
series forecasting. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(6):1531–
1542, 12 2010. ISSN 10834419. doi: 10.1109/TSMCB.2010.2042055.

[49] Bolun Xu, Alexandre Oudalov, Andreas Ulbig, Goran Andersson, and Daniel S. Kirschen. Modeling of
Lithium-Ion Battery Degradation for Cell Life Assessment. IEEE Transactions on Smart Grid, 9(2):1131–
1140, 3 2018. ISSN 1949-3053. doi: 10.1109/TSG.2016.2578950. URL http://ieeexplore.ieee.org/
document/7488267/.

[50] G. Peter Zhang. Neural Networks for Time-Series Forecasting. In Handbook of Natural Computing, pages
461–477. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. doi: 10.1007/978-3-540-92910-9{\_}14.
URL http://link.springer.com/10.1007/978-3-540-92910-9_14.

https://www.researchgate.net/publication/317913178
https://www.researchgate.net/publication/317913178
www.elsevier.com/locate/cad
https://engmrk.com/activation-function-for-dnn/
https://engmrk.com/activation-function-for-dnn/
http://repository.tudelft.nl/.
http://dx.doi.org/10.1016/j.rser.2017.10.056
http://dx.doi.org/10.1016/j.rser.2017.10.056
http://link.springer.com/10.1007/s40565-016-0238-z
https://en.wikipedia.org/wiki/Allseas
http://ieeexplore.ieee.org/document/7488267/
http://ieeexplore.ieee.org/document/7488267/
http://link.springer.com/10.1007/978-3-540-92910-9_14




A
Vessel data

Name Solitaire
Type Pipelay vessel
Port of registry Valletta
Gross tonnage 94,855
Net tonnage 28,456
Deadweight 31,500 t
Lightship weight 52,215 t
Dimensions Loa299.85m : Lpp 248.65mX Bml d 40.6mX Dml d 24.0m (excl. stinger)
Transit draught 8.50 m (excl. thrusters), 13.64 m (incl. thrusters)
Max. draught 11.15 m (16 m incl. thrusters)
Air draught 70.64 mast up, 60.98 m mast lowered (at 8.5 m draught)
Service draught 6.50 - 9.23 m (excl. thrusters), 14.37 m (incl. thrusters)
Maximum speed 13.5 knots
Bunker capacity HFO (6,438m3)

MDO (1,179m3)
MGO (62m3)

Quarters 420 persons in 1 and 2 berth cabins
Cranes Huisman special purpose crane: 300t at 17 m, whip hoist 40 t at 57 m

2x Liebherr pipe transfer cranes each at 35 t at 33 m, whip hoist 18 t at 42 m
5x 35 t Liebherr overhead cranes, single joint
2x 65 t Liebherr overhead cranes, double joint
2x 35 t Liebherr overhead cranes, equipment handling

Pipelay Double-joint working stations: 2x 4 (each with 3x welding and 1 NDT)
Main firing line welding stations: 8
Polyurethane field joint coating stations: 2
Pipeline diameter: 60” max
Total pipe capacity: 14,625 t- 22,000 t (depending on pipe properties)
Tension capacity: 1,050 t (3x 350 t)
A&R winch capacity: Electrical, 400t / hydraulic four cable system, 1,000 t (4x 250 t)
Stinger: 140 m adjustable stinger (3 sections)

Engines (a) Main engines: 8x Wartsila Vasa 6R46B, 514 rpm, 5,850 kW
(b) Emergency diesel: Cummins KTA 50G2, 1800 rpm, 900 kW

Thrusters 10x 5,550 kW peaks Lips azimuth thrusters
DP NMD Class 3, LR DP (AAA), fully redundant

Konsberg K-Pos DP-22, K-Pos DP-12 and 3x cJoy system
Navigation 1x GMDSS, Fleet 77, Private satellite line VSTA, Autopilot, 3x Gyros, 2x Echosounder,

Doppler Log, ((3)+1)x (D)GPS, VHFs, 2x Radar (X&S-band), 3x DWTW, 2x Fanbeam,
DWTP, PHINNS
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Figure A.1: Solitaire single line diagram



A.1. 3-phase systems 103

A.1. 3-phase systems
The nature of reactive power is that it uses up the conductor capacity and moves between the inductive ele-
ments in the network (load) and source. The energy is stored in the inductors’ magnetic fields and fluctuates
between the load and source instantaneously. The phenomenon is better described with the following equa-
tions:

Vi nductor =
dφ

d t
= dLi

d t
=−L

di

d t
[V] (A.1)
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From the Equation A.1 we can see that the voltage across the inductor depends on the rate of change
of magnetic flux which in turn depends on the rate of change of current. In an AC current, the inductor
is constantly storing and releasing energy. The released energy is sent back to the source during the cycle
wherein there is negative power. To understand this, the Figure A.2 represents the instantaneous power flow
in AC systems.

Figure A.2: Instantaneous power

Due to the current lagging the voltage in an inductive network, the product of the voltage and current will
be negative in some parts of the AC wave form. The greater this negative power is, the greater the reactive
power within the network and hence a lower power factor. Capacitive elements (leading power factor) are
used to offset this issue normally to attempt to achieve a power factor as close to 1 as possible. In this case,
since the Solitaire has a power factor of 0.55, the reactive power traversing through the conductors is higher
than the active power that is capable of being delivered. The high line currents flowing through the network
are a consequence of this as the inductive elements draw large currents during pipe-pulls.

In order to keep the grid voltage constant, the AVR of the generators control the excitation of the genera-
tors in order to regulate the reactive power.

Formulae:

Sg r i d = IL−g r i d ×Vbus ×
p

3[kVA] (A.4)

cosφ= Pg r i d

Sg r i d
(A.5)

Qg r i d = IL−g r i d ×Vbus ×
p

3× sinφ[kVAr] (A.6)
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Figure A.3: 0.5 power factor- no failure condition
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Figure A.4: 0.5 power factor failure condition
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Figure A.5: 0.8 power factor no failure condition
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Figure A.6: 0.8 power factor failure condition





B
ESS & PMS integration

The section on ESS consists of the vessels discrimination diagrams, and FMEA tests proving the fault toler-
ance capability of the Solitaire in the event of a single engine failure and battery datasheet characteristics. The
PMS section consists of the ESS management algorithm descriptions and rule based system PMS responses
as test cases for different days.
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B.1. ESS
M/V Solitaire’s discrimination diagram

Figure B.1: Discrimination diagram representing the overload and short circuit level 1 & 2 protection limits
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FMEA tests- thruster phaseback

Figure B.2: MDG trip at 55% load
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Figure B.3: MDG trip at 85% load
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FMEA tests-Heading change overshoot

Figure B.4: Overshoot during heading changes
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Battery datasheet

Figure B.5: Cell characteristics
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Figure B.6: Charge, discharge & temperature characteristics
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Voltage drop chart

Figure B.7: Voltage drop chart

In the voltage drop chart, it can be seen that both, in the spinning reserve and power surge mode, the
battery is appropriately protected. The BMS (Battery management system) must enable the battery system
cutoff if the SoC has reached a value of 20%. An added level of protection is the transformers and inverters
which have a minimum input voltage for it to be able to produce the 3-phase voltages and currents. So
if the battery SoC drops below 20% the conversion capability will fail to ensure which protects the battery
from reaching an under-voltage situation. The minimum possible voltage that the cells can safely operate
at is 2.7 V, the BMS automatically enables a complete cut-off at this point preventing the battery from over-
discharging. The transformer start-up & cut off is specific to manufacturers and is dependent on the inverter
voltage output. From the voltage drop chart, it is possible to calculate the currents in the battery power
generation system. The currents developed in the network have been outlined in Section 4.4: System Layout.
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B.2. PMS
B.2.1. Stateflow ®Rule based system model (per generator)

Figure B.8: Stateflow®Generator online capacity

Figure B.8 is a representation of the Stateflow ®generator decision making model which determines how
many generators must stay online in order to satisfy the load demand. The decision making model is essen-
tially a programmed version of Table 5.1 & 5.3 in the old and new PMS case for the rule-based system.
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B.2.2. ESS management algorithms

Algorithm A: Peak frequency

Figure B.9: Peak frequency monitor (Stateflow®)

Figure B.9 is the stateflow blocksets used to determine if the number of peaks within a time window ex-
ceeds a threshold before setting the trigger value to ‘1’. The way it works is that the total power demand is fed
into the block along with the total available capacity from the generator decision making model (Figure B.8),
i.e., 5200 kW, 10,400 kW, 15,600 kW or 20,800 KW depending one the number of online generators. Any power
demand exceeding this results in the variable ‘k’ to increase to 1 at every event of a power surge. The variable
‘sum’ counts the instances of ‘k’ within a 900 second window and then refreshes to reset to ‘0’. If the value
‘sum’ exceeds a pre-defined limit (for example 5 peaks), then the trigger variable is set to ‘1’ in the last block,
else it remains ‘0’. Note: Section 5.4.5 contains a notice about the differences between the model & reality.

Algorithm B: Peak magnitude

Figure B.10: Peak profile/magnitude monitor

Figure B.10 shows the Simulink block for the peak magnitude monitor. The inputs are the total power de-
mand and the available online capacity from the generator decision making model (Figure B.8). From Figure
B.11, it can be seen that 3 data ports are used for diagnostic information while the only variable used is the
‘trigger’ variable. The input signals branch out into two distinct blocks, i.e., the upperbound and lowerbound
monitoring blocks. The goal of the upperbound monitoring is to quantify the magnitude of the power peaks
and make decisions on whether to turn on a new generator. This is done by monitoring the peak value of the
power peak i.e., if a power peak lasts 20 seconds above the online capacity of the engines (which means that
it is drawn from the battery), the peak value of that power demand is noted- for example for a 2 MW peak, the
value 2000 kW is noted as the maximum peak value ‘p_max’. Similar to the peak frequency monitoring algo-
rithm from Figure 5.14, this block also counts every instance of a peak using a variable ‘k1’. Using the peak
value and the number of peaks within a time window (1800s, 3600s,. . . ), we can quantify the average value of
the power peaks to see if it crosses a threshold value set within the block as 2298kW (1.5C battery discharge
limit for continous charge-discharge).

The lowerbound monitoring blocks are used to determine when it is appropriate to turn off a generator.
The same strategy as the upperbound monitoring is used except that peak magnitude monitoring is con-
tinued by maintaining the ‘online capacity (supply)-5200 kW’, so in this way the measured load is used to
determine what would happen if a generator were to be turned off- if it proves that the trigger variable would
be set to ‘1’ again then the algorithm will not initiate a generator shutdown instead it will continue to keep
the generator running by maintaining ‘trigger’ at ‘1’ until it reaches a point wherein it can initiate a shutdown
by setting the variable to ‘0’.
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Figure B.11: Peak profile/magnitude monitor (Stateflow®)
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Algorithm C: SoC Control

Figure B.12: SOC based battery control units
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The battery SoC control unit consists of the charging methods that could be applied to the ESS followed
by a datalogging block & the battery model itself. Depending on the charging procedure desired (pulse or
limit), the algorithm receives the online capacity available and total power demand. Any power demand
that surpasses the engines online capacity is drawn from the battery. Since the battery input requires the
discharge current, the excess power demand is divided by the battery voltage to obtain the amperes required
from the battery. The discharge is not controlled in any fashion i.e., the power demand will be drawn from
the battery without any intervention. Every-time the battery discharges and re-charges- both the charging
controller modes count the number of cycles the battery experiences. In addition to this the power drawn
from the battery is divided by the battery sizing to determine the C-rates induced. The SoC is measured from
the battery ‘Info’ outport of the battery model. The DoD is noted once the battery discharged to a new SoC
(For example, if the setpoint charge is 85% and a power peak occurs, the new SoC would be 82% after the
discharge, this value is noted to calculate a DoD of 3%). Following this, the pulse mode or limit mode of
charging are employed to re-charge the battery to its original setpoint of 85%.
Pulse mode

Figure B.13: Battery mode 1 flowchart (Stateflow®)

In Figure B.13, the Stateflow diagram shows the determination of the ‘batterycurrent’ when the power
demand is greater than the online capacity. The difference is divided by the battery voltage (obtained from
the outport of the battery model). In ‘charge1’ condition, if the SoC is less than 85% and greater than 75%- a
charge current will be sent to the battery model. This is only done when the power demand is lower than the
online available capacity i.e., when the vessel is not experiencing a power peak. This results in a scenario
wherein the battery discharges from 85% when a power peak is experienced and after the power peak is
completed, the SoC drops to below 85% which means that the ‘batterycurrent’ will be 250A (in this example),
until the 85% setpoint is reached. Once 85% is reached, the current goes to ‘0’ (‘charge2’ block). During each
such an event, the cycles are counted using a counter ‘cycle’.
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Limit mode

Figure B.14: Battery mode 2 flowchart (Stateflow®)

In the limit mode of operation (not used in analysis), the higher SoC limit of 85% is used and the battery
is allowed to discharge until it reaches an SoC of 75%. Once the 75% SoC has been reached, the battery is
re-charged to 85% SoC. Once cycle hence is a 10% DoD. To maximise cycle life with many smaller charges,
the pulse mode was used instead for the analysis as the cycle life is better in that case. Similar to the pulse
case, the battery current is determined by dividing the excess power demand by the battery voltage that is
obtained from the physical battery model.
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B.2.3. New PMS response

Figure B.15: 05/10/18 MS1 response

Figure B.16: 09/10/18 MS1 response

Figure B.17: 10/10/18 MS1 response
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Figure B.18: 10/10/18 MS2 response

Figure B.19: 18/11/18 MS1 response

Figure B.20: 21/11/18 MS2 response
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Figure B.21: 26/09/18 MS1 response





C
Artificial neural network

C.1. Commonly used terms
Seasonality, cyclical patterns and trends

Figure C.1: Seasonality in data [13]

Figure C.1 shows the decomposition of the observed data that consists of a trend and cyclical patterns that
are a function of seasonal fluctuations caused in the data. To be able to make predictions ,the way forward
would be to use a linear trend estimation and a statistical prediction approach applied to the stationarised
data i.e., the seasonal component. Due to this requirement for statistical forecasting, the limitation of the
forecasts are that it can only be done for short term forecasts as the trend of DP load is rarely ever increasing-
they may only ever be considered to be increasing over a short forecast horizon. To be able to capture more
complex trend variations due to the weather and heading changes- more advanced models based on machine
learning are to be used as they have the capability to capture these effects given enough training data.
Stationary
A stationary time-series is on whose properties do not depend on the time at which the series is observed.
Thus, time series with trends, or with seasonality, are not stationary — the trend and seasonality will affect
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the value of the time series at different times. On the other hand, a white noise series is stationary — it does
not matter when you observe it, it should look much the same at any point in time [29].

In the case of the load profiles of the Solitaire, the profiles are not stationary as several seasonal and cyclic
patterns are commonly seen. As weather conditions change throughout the day, the load profile changes sig-
nificantly. Statistical methods cannot be used for long term forecasting due to this problem. Using a machine
learning approach, it could, in theory, be possible to capture the effects of the input parameters on the vessels
load profiles given enough data to train the neural network model.

Over-fitting

Figure C.2: Neural network validation check

Figure C.2 shows the effect of overfitting the model. As the goal of the neural network is to represent the
non-linearity’s of the ships model as a ‘black-box’ it is supposed to be able to generalise and fit a smooth
curve to the input output relationships. However, if the model is overfitted- it will attempt to satisfy all these
input output relationships with minimal training error. The overfitting is tested by introducing new inputs
into the neural network that it has never seen before- if the model is overfitted- it will produce erroneous
outputs while a well fitted model will give an error, however the solution will be generalised well.

Bias

The bias is a term analogous to the y-intercept of linear systems. The sigmoid activation function would
attempt to fit the data with its crossover point on the x-axis at 0 if there was no bias value Figure C.3). The
bias term allow the sigmoid to move more freely to the right or left as shown in Figure C.4 which allow it to fit
data better.

Figure C.3: Activation function with ‘0’ bias
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Figure C.4: Effects of different bias values

Momentum

Figure C.5: Momentum term in optimisation

Figure C.5 is a representation of a local and global minima. A typical back-propagation type optimisation
algorithm would converge at the local minima, however by adding a momentum term- an adhoc attempt is
made to escape the local minima and continue the optimisation process until it reaches the global minima.
This approach is rather inefficient as the momentum constant is typically manually chosen and the effective-
ness of the momentum constant is dependent on the unknown search space. If the constant is chosen to be
too high, there could be a situation that the search exits the global minima altogether.
Hessian matrix

The hessian matrix is a matrix consistent of second order partial derivatives. The matrix is used to conduct
the seocnd order partial derivative test in optimisation. The tests helps us verify whether a point (x0, y0) is a
local maximum, minimum or a saddle point. Specifically it is computed as:

H = fxx (x0, y0) fy y (x0, y0)− fx y (x0, y0)2 (C.1)

If H>0, then the function definitely has a local maximum/minimum at the point (x0, y0), if H<0, then the
function has a saddle point at (x0, y0) and if H=0, then it is indeterminate.
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C.2. Literature on hybrid models
Khashei et al mentions that the model formulation can include the strengths of multiple models combined
into one i.e., to use the strengths of the statistical models and to combine that with neural networks in order
to produce a ‘hybrid’ neural network. The aim is to reduce the risk of failure and obtain more accurate results
for time series forecasting [28].Kankal et al used a neural network with a teaching-learning based optimisa-
tion [38] for modelling the long term electric energy demand in Turkey. This forecast was based on the GDP,
population, imports and exports. However, this was done to forecast only the trends for the next five years
[27].Another example of a hybrid model is that made by Chunshien Li [30] which is a neuro-fuzzy ARIMA
model. The neuro-fuzzy component is a synergy of a neural network combined with a fuzzy inference system
(FIS). FIS’s can extract a human operators’ experience and knowledge in the form of ‘if-then’ rules and such a
setup has been shown to be useful in time series forecasting.

One of the problems associated with statistical methodologies of forecasting is that the time-series must
be stationary. In the case of forecasting the DP load of a ship, this is not the case as the weather conditions
during a day are variant and so is the orientation of the vessel. Wong et al gets around the requirement for
a stationary data set by using a fuzzy set which is based on linguistic inputs. One of the drawbacks of this
type of model that must take into account ‘if-then’ based rules is that these models require a large amount of
computation time as the max-min operations are used for reasoning [48].

Taskaya et al argues that hybrid models- as they are a function of all the smaller models used to supple-
ment it, are not necessarily better than using a standalone mode. Based on the tests conducted on nine time
series datasets on an ARIMA neural network (ARIMA-NN) & an autoregressive (AR) model and time delay
neural network (TDNN), it was found that the standalone models (AR & TDNN) outperformed the hybrid
models and that it can be sufficient to use a single model. The reasoning for this is that the relationship be-
tween the linear and non-linear components may not necessarily be additive.
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C.3. Optimisation algorithms
Conjugate gradient methods
To handle large datasets, the applicability of the gradient descent method of back-propagation is not rec-
ommended and it is generally accepted that a class of optimisation method called the ‘Conjugate gradient
methods’ are well suited. The Conjugate gradient method is also based on the same optimisation strategy,
however the selection of the search direction and step size are done more carefully by using information from
the Hessian matrix (second order information i.e., E ′′(ŵ)). In this method the E(ŵ + ŷ) term is estimated
as E(ŵ)+E(ŵ)T ŷ+ 1

2 ŷT E ′′(ŵ)ŷ using a Taylor expansion [36]. The advantage of this method is that one can
make use of the second order information in order to determine whether the computed point of minimum
error is a local minima (saddle points) or a global minima. This is done with the help of the second order
matrix E ′′(ŵ) called the Hessian matrix. If the Hessian matrix is positive definite 1, then it can be said that
there exists a unique global minimum[36].

Algorithm 6 Standard Conjugate gradient algorithm [36]

1: Choose initial weight vector ŵ1 and set k=1.
Set p̂1 = r̂1 =−E ′(ŵ1)

2: Calculate second order information:
ŝk = E ′′(ŵk )p̂k ,
δ̂k = p̂T

k ŝk

3: Calculate step size:
µk = p̂T

k r̂k ,
αk =µk /δk

4: Update weight vector:
ŵk+1 = ŵk +αk p̂k ,
r̂k+1 =−E ′(ŵk+1)

5: If k mod N=0 then restart algorithm: p̂k+1 = r̂k+1

else create new conjugate direction:
βk = (|r̂k+1|2 − r̂ T

k+1r̂k )/µk ,
p̂k+1 = r̂k+1 +βk p̂k

6: If the steepest descent direction r̂k 6= 0̂ the set k =
k +1 and go to (2).
else terminate and return ŵk+1 as the desired minimum.

Example
To demonstrate the working of the Conjugate gradient method of optimisation, a simple numerical ex-

ample is shown for a linear set of equations 2:[
2 1
1 2

]
·
[

x1

x2

]
=

[
2
1

]
Assume a starting vector (i.e., initial guessed solution) as xT

0 = [0,0], we have:

r T
0 = (b − Ax0)T = [2,1] (C.2)

We now have to compute α

α0 =
r T

0 W0

W T
0 AW0

= 5

14
(C.3)

The new estimate of x is given as:

xT
1 = (x0 +α0W T

0 ) = 5

14
[2,1] (C.4)

1A positive definite matrix is a symmetric matrix whose eigenvalues are all positive. The multiplication of such a matrix with a vector
will ensure that the transformed vector points in the same ‘general direction’.

2Due to the complexity of calculating the non-linear set of equations i.e., with second order information, an example is shown with a
linear set of equations. The more complex non-linear systems are solved more easily on a computer.
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The new residual is calculated as r1 :

r T
1 = (b − Ax1)T = 3

14
[1,−2] (C.5)

β0 =
r T

1 A0W0

W T
0 AW0

= 9

142 (C.6)

The new weights are found as:

W T
1 = (r1 +β0W0)T = 15

142 [4,−5] (C.7)

This process is repeated until the solution converges (in this case until k=2). When k=2, the calculated ‘x’
value is the missing matrix from the initial problem which has been solved. The same process is used for larger
non-linear problems albeit with the use of second order information.

Table C.1: Numerical example results [15]

k x r α β W Remarks

0

[
0
0

] [
2
1

]
5

14 -

[
2
1

]
Initial solution

1 5
14

[
2
1

]
3

14

[
1
−2

]
14
15

9
142

15
142

[
4
−5

]
-

2

[
1
0

] [
0
0

]
0 0

[
0
0

]
Converged solution

Scaled-conjugate gradient algorithm3

One of the drawbacks of the Conjugate gradient method is that it relies on the computation of the Hessian ma-
trix which is computationally more intensive. The second order information in the CGD (Conjugate Gradient
method) is stored in a term ‘ŝk ’ as E ′′(ŵk )p̂k . Møller (1993), developed a scaled conjugate gradient method to
be used for fast supervised learning. In this method the second order information is estimated as:

ŝk = E ′(ŵk +σk p̂k )−E ′(ŵk )

σk
+λk p̂k (C.8)

Where:
λk : Scaling parameter
σk : Scalar i.e., 0 <σk ¿ 1

The parameter λk in each iteration looks at the value of δk =p̂T
k ŝk after scaling as:

δk = δk + (λk −λk )|p̂k |2 (C.9)

If δk ≤ 0, then the Hessian is not positive definite andλk is raised and ŝk is re-estimated. The full description
of the algorithm 4 can be found in Møller (1993) [36]. For this research study, the scaled conjugate gradient
method was employed during the training phase as it was capable of handling a large dataset and reaching
convergence within a few hours.

3The scaled conjugate gradient algorithm was used for training purposes of the neural network model. The implementation was done
with the Matlab®Neural Network Toolbox ®

4The Pseudo-code for the algorithm is available in Appendix C
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Algorithm 7 Scaled Conjugate gradient algorithm [36]

1:Choose weight vector ŵ1 and scalars 0 <σ≤ 10−4,
0 <λ1 ≤ 10−6,λ1 = 0
Set p̂1 = r̂1 =−E ′(ŵ1),k = 1 and success = true.

2: If success =true, then calculate second order information:
σk =σ/|p̂k |,
ŝk = (E ′([̂wk )−E ′(ŵk ))/σk ,
δk = p̂T

k ŝk

3: Scale δk : δk + (λk −λk )|p̂k |2
4: If δk ≤ 0 then make the Hessian matrix positive definite:

λk = 2(λk −δk /|p̂k |2),
δk =−δk +λk |p̂k |2
λk =λk

5: Calculate step size:
µk = p̂T

k r̂k ,
αk =µk /δk

6: Calculate the comparison parameter:
∆k = 2δk [E(ŵk )−E(ŵk +αk p̂k )]/µ2

k
7: If ∆k ≥ 0 then a successful reduction in error can be made:

ŵk+1 = ŵk +αk p̂k ,
r̂k+1 =−E ′(ŵk+1),
λk = 0, success =true.
If k mod N=0 then restart algorithm:

p̂k+1 = r̂k+1

else:
βk = (|r̂k+1|2 − r̂ T

k+1r̂k )/µk ,
p̂k+1 = r̂k+1 +βkp̂k

If ∆k ≥ 0.75, then reduce the scale parameter:
λk = 1

4λk . el se :

λk =λk , success = f al se.
8: If ∆k < 0.25, then increase the scale parameter:

λk =λk + (δk (1−∆k )/|p̂k |2)
9: If the steepest descent direction r̂k 6= 0, then set k = k +1 and go to (2)

else:
Terminate and return ŵk+1 as the desired minimum
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C.4. Effects of varying number of neurons

Figure C.6: Comparison of response from different neuron settings in the hidden layer

Figure C.6 shows the variations in results obtained from a small training set. In the event of using 10 neurons,
the forecasting model captures the power peaks reasonably well however, the moving average load is misrepre-
sented around the 7-8 MW range when in reality, based on the measured values, it is around 8-8.5MW. In the
case of 85 neurons in the hidden layer, the output obtained has not yielded any fruitful results meaning than the
number of neurons must be reduced or the datset must be expanded. The same problem persisted on expanding
the dataset and it is assumed that a much larger dataset than the one available for training is required to test
the effects of large number of neurons in the hidden layer. Based on further trial and error methods of testing
the response, 25 neurons produced the most promising results across the small and large dataset. It appears
to capture the moving average DP load reasonably well (within the 8-8.5MW range), however, in this case as a
small training set was used, the power peaks have not yet been accurately captured. But at this stage of the net-
work design, it can be gauged that the appropriate number of neurons, preceding training on larger datasets, is
to be set to 25 neurons. This conclusion is based on the fact that adding the more than necessary neurons to the
hidden layer will allow the network to identify more complex patterns and give the network enough complexity
to overfit (which is the reason for the aberrations seen in the 85 neuron model case) [40].
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C.5. Load forecast scenarios

Figure C.7: 18/11/18 MS1 response

Figure C.8: 18/11/18 MS2 response

Figure C.9: 19/11/18 MS1 response
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Figure C.10: 20/11/18 MS1 response

Figure C.11: 20/11/18 MS2 response

Figure C.12: 21/11/18 MS1 response
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Figure C.13: 21/11/18 MS2 response

Figure C.14: 22/11/18 MS1 response

Figure C.15: 22/11/18 MS2 response
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C.6. Power peak forecasting
Using only the groundspeed as the correlation, the power peaks can be forecasted with a high accuracy. Note
that from Section C.4, the load forecasts of 18/11/18 MS1 and 18/11/18 MS2 were not deemed to be accurate
enough to be used for PMS applications, however the power peak forecasts have shown very good agreement.

Figure C.16: 18/11/18 MS1 response

Figure C.17: 18/11/18 MS1 response

Figure C.18: 18/11/18 MS2 response
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Figure C.19: 18/11/18 MS2 response

C.7. Neural network Matlab ®code
1 %% A r t i f i c i a l neural network code
2 % Requires Neural network toolbox
3 % Author : Akash Menon
4 % Supporting f i l e s available via USB
5

6 %% Inputs and Target d e f i n i t i o n s
7 X = train_input_nn ( 1 : end ) ;
8 T = train_target_nn_MS1 ( 1 : end ) ;
9

10 %% ANN design
11 trainFcn = ’ t r a i n s c g ’ ;
12 inputDelays = 1 : 2 5 ;
13 feedbackDelays = 1 : 2 5 ;
14 hiddenLayerSize =25;
15

16 %% Open−loop training mode (−o )
17 neto = narxnet ( inputDelays , feedbackDelays , hiddenLayerSize , ’ open ’ , trainFcn ) ;
18 neto . l a y e r s { 1 } . transferFcn = ’ l o g s i g ’ ;
19 neto . inputs { 1 } . processFcns = { ’ removeconstantrows ’ , ’mapminmax ’ } ;
20 neto . inputs { 2 } . processFcns = { ’ removeconstantrows ’ , ’mapminmax ’ } ;
21

22 %% Prepare neural net
23 [ Xo , Xoi , Aoi , To ] = preparets ( neto , X , { } , T) ;
24

25 %% Data divis ion
26 neto . divideFcn = ’ dividerand ’ ; % Divide data randomly
27 neto . divideMode = ’ time ’ ; % Divide up every sample
28 neto . divideParam . trainRatio = 70/100;
29 neto . divideParam . valRatio = 15/100;
30 neto . divideParam . t e s t R a t i o = 15/100;
31

32 %% Performance
33 neto . performFcn = ’mse ’ ; % Mean Squared Error
34 % Plot performance parameters
35 neto . plotFcns = { ’ plotperform ’ , ’ p l o t t r a i n s t a t e ’ , ’ p l o t e r r h i s t ’ , . . .
36 ’ p l o t r e g r e s s i o n ’ , ’ plotresponse ’ , ’ p l o t e r r c o r r ’ , ’ p l o t i n e r r c o r r ’ } ;
37
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38 %% Training parameters and train neural net
39 neto . trainParam . epochs =5000;
40 neto . trainParam . goal=1e−6;
41 [ neto , t r ] = train ( neto , Xo , To , Xoi , Aoi ) ;
42

43 %% P a r a l l e l computing notice :
44 % I f p a r a l l e l computing i s to be used− a p a r a l l e l pool must f i r s t be
45 % created before the code i s run .
46 % ( . . . , ’ useparallel ’ , ’ yes ’ )−> add f o r p a r a l l e l computing option ( multi−core
47 % devices ) to train ( neto , Xo , To , Xoi , Aoi , ’ useparallel ’ , ’ yes ’ ) ;
48

49 %% Test the Network
50 Yo = neto (Xo , Xoi , Aoi ) ;
51 Eo = gsubtract ( To , Yo ) ;
52 performance = perform ( neto , To , Yo )
53

54 % View the network s t r u c t u r e
55 view ( neto )
56

57 % P l o t s
58 figure , plotperform ( t r )
59 figure , p l o t t r a i n s t a t e ( t r )
60 figure , p l o t e r r h i s t ( e )
61 figure , p l o t r e g r e s s i o n ( t , y )
62 figure , plotresponse ( t , y )
63 figure , p l o t e r r c o r r ( e )
64 figure , p l o t i n e r r c o r r ( x , e )
65

66 %% Closed Loop Network f o r multi−step prediction
67 netc = closeloop ( neto ) ;
68 netc .name = [ neto .name ’ − Closed Loop ’ ] ;
69 view ( netc )
70

71 [ Xc , Xic , Aic , Tc ] = preparets ( netc , X , { } , T) ;
72 Yc = netc ( Xc , Xic , Aic ) ;
73 closedLoopPerformance = perform ( neto , Tc , Yc )
74

75 %% Simulink model of the neural network
76 gensim ( netc )
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